
Software demonstrations

Tuesday, May 4 1999 10:00-12:30

7 Adele A Web-Based Pedagogical Agent
W. Lewis Johnson, Erin Shaw, Rajaram Ganeshan, USC Information Sciences Institute

9 Agent Aided Aircraft Maintenance
Onn Shehory, Katia Sycara, Gita Sukthankar, Vick Mukherjee, Carnegie Mellon University

11 A-Team Asynchronous Teams of Agents for Optimization and Decision-Support
Richard Goodwin, Sesh Murthy, Rama Akkiraju, Fred Wu, IBM T. J. Watson Research
Center

13 Bond The Bond Agent Framework
Ladislau Boloni, Purdue University

17 . . COLLAGEN A Collaborative Spoken-Language Desktop Agent Implemented with COLLAGEN
Charles Rich, MERL, Candace L. Sidner, Lotus Development Corporation

19 DESIRE Software Environment for Compositional Development of Multi-Agent Systems
Frances M.T. Brazier, Frank Cornelissen, Catholijn M. Jonker, Lourens van der Mey, Jan
Treur, Vrije Universiteit Amsterdam

29 LARKS Matchmaking Among Software Agents in CyberSpace
Katia Sycara, Seth Wido, Carnegie Mellon University

33 MailCat An Intelligent Assistant for Organizing E-Mail
Richard Segal, Jeffrey Kephart, IBM T. J. Watson Research Center

35 . Market Maker David Wang, Giorgos Zacharia, MIT

39 News Dude A Personal News Agent that Talks, Learns and Explains
Daniel Billsus, Michael J. Pazzani, University of California, Irvine

41 PESKI Intelligent Interfaces for Decision-Theoretic Systems
Scott M. Brown, Air Force Research Laboratory,Eugene Santos Jr., University of
Connecticut

43 RAX Remote Agent Demonstration
Gregory A. Dorais, James Kurien, Kanna Rajan, NASA Ames Research Center

47 ROPE Role Oriented Programming Environment for Multiagent Systems
Micheal Becht, J¨urgen Klarmann, Matthias Muscholl, Universität Stuttgart

51 Sensible Agents Demonstration of Dynamic Configuration of Agent Organizations for Responsive
Planning Operations
K. Suzanne Barber, University of Texas, Austin

53 . . ScienceIndex Intelligently Augmented Search and Browsing of Scientific Literature on the Web
Kurt D. Bollacker, Steve Lawrence, C. Lee Giles, NEC Research Institute

61 Watson Demonstration Description
Jay Budzik, Northwestern University

63 ZEUS The ZEUS Agent Building Tool-kit
Divine Ndumu, Jaron Collis, BT Laboratories

Software demonstrations

Wednesday, May 5 1999 10:00-12:30

1 ACA Arguing and Cooperating Agents
Michael Schroeder, City University, London

3 ARA An Adaptive Interactive Agent for Route Advice
Seth Rogers, Claude-Nicolas Fiechter, Pat Langley, DaimlerChrysler Research and
Technology North America

5 AdEater Learning to Remove Internet Advertisements
Nicholas Kushmerick, University College Dublin

15 BTFS The Border Trade Facilitation system
Laurence R. Phillips, Sandia National Laboratories

21 . . e-Marketplace Agent-based Electronic Mall e-Marketplace
Gaku Yamamoto, Yuhichi Nakamura, IBM Japan Tokyo Research Lab

23 FM 1.00 A Test-bed for Trading Agents in e-Auctions
Juan A. Rodr`ıguez-Aguilar, Francisco J. Mart`ın, Miguel Mateos, Oscar Molina, Pere
Garcia, Carles Sierra, Universitat Auton`oma de Barcelona

25 Grammex Training Agents to Recognize Text by Example
Henry Lieberman, MIT, Bonnie A. Nardi, AT&T Labs West, David Wright, Apple
Computer

31 LiveMarks Collaborative Information Gathering
Angi Voss, GMD

37 MASMaS A Multi-Agent Simulation Management System
Hamilton Link, Sandia National Laboratories

45 RMM Demonstration of Rational Communicative Behavior in Coordinated Defense
Sanguk Noh, Piotr J. Gmytrasiewicz, University of Texas at Arlington

49 Rover Autonomy Autonomous Mars Rovers: Sequence Generation, Testing and Execution
John Bresina, Corin Anderson, Ted Blackmon, Laurent Nguyen, David E. Smith, Keith
Golden, Katherine Smith, Trey Smith, Rich Washington, Vineet Gupta, Eric Zbinden, NASA
Ames Research Center

55 SETA An Agent Architecture for Personalized Web Stores
Liliana Ardissono, Giovanna Petrone, University of Torino, Italy

57 sicsDAIS A Dynamic Agent Interaction System
Fredrik Espinoza, Swedish Institute of Computer Science

59 STALKER A Hierarchical Approach toWrapper Induction
Ion Muslea, Steve Minton, Craig Knoblock, University of Southern California

Arguing and Cooperating Agents

Michael Schroeder
City University, London

msch@soi.city.ac.uk, www.soi.city.ac.uk/ msch

Arguing and Cooperating Agents
Negotiation is fundamental to autonomous agents. In a ne-
gotiation process, a group of agents communicates with one
another to come up with a mutually acceptable agreement.
In many application, such a process may be the exchange
of prices between a buyer and seller according to a particu-
lar protocol; in others, negotiation involves a more compli-
cated process of argumentation to determine and change the
beliefs of agents. The ACA-framework (Arguing and Co-
operating Agents (Schroeder 1999)) deals with multi-agent
argumentation. There are two fundamental types of inter-
action for multiple agents: they cooperate and argue. An
agent, which does not know anything about a certain lit-
eral, cooperates with others, which help out and possibly
provide the knowledge. As for argumentation, an agent be-
lieves in something and argues with other agents to deter-
mine whether this belief is valid or has to be revised. When
arguing we can distinguish skeptical and credulous agents.
The former is more critical towards its own beliefs than the
latter. Technically, the difference amounts to the acceptance
of different types of arguments: an undercut denotes an at-
tack to a premisse of a conclusion and a rebut an attack to
the conclusion itself. Skeptical agents accept undercuts and
rebuts to their own arguments, whereas credulous agents
accept only undercuts. In the argumentation protocol, the
agents use the speech acts (Searle 1969) propose, oppose,
and agree and for cooperation ask and reply.

To reduce the number of messages exchanged an agent
will ask only its cooperation partners for help and only
those whose domain of expertise covers the issue in ques-
tion. Similarly, an agent proposes its beliefs only to its
argumentation partners with the corresponding domain of
expertise. All in all, an agents is defined by

1. an avatar to represent the agent

2. a set of arguments

3. a set of predicate names defining the agent’s domain of
expertise

4. a flag indication whether the agent is credulous or skep-
tical

5. a set of cooperation partners

6. a set of argumentation partners

Figure 1: An HTML form to define agents.

Figure 1 shows a form to specify such an agent. The user
can query an agent about its beliefs. The query results in
a conversation among the agents to establish the answer to
the query. For visualisation, the agents are represented by
avatars and the conversation among them is animated by
the messages slowly flying as text strings from sender to
receiver. Figure 2 shows a screen shot of such a conversa-
tion for a BT business process explained below (Schroeder
1999).

Example
The example is derived from the ADEPT project (Jennings
et al. 1996), which developed negotiating agents for busi-
ness process management. One such process deals with
the provision of customer quotes (Sierra et al. 1997) for

11

Figure 2: A screenshot of the animated argumentation trace
generated.

Vet costumer

quote

Survey costumer site

Cost & design
costumer network

Provide costumer
Service

Vet

(VC)

Surveyor

Design
Department
(DD)

Costumer

Division
(CSD)

Costumer

Department
(SD)

Costumer

Figure 3: BT’s business process to provide customer
quotes.

networks adapted to the customers’ needs (see Figure 3).
Four agents are involved in this process: the customer ser-
vice division (CSD), which makes the initial contact with
the customer and delivers the quote eventually, the vet cus-
tomer agent (VC), which determines whether the customer
is credit-worthy, the design department (DD), which does
the design and costing of the requested network if it is not
a portfolio item, and the surveyor department (SD), which
may has to survey the customer site for the design depart-
ment.

The process works as follows. Initially, a customer issues
a request. The CSD gathers some data for this request such
as the requirements, the equipment already installed at the
customer site, and how important the client is. Before any
action is taken, the CSD asks the VC to vet the customer.
If the customer is not credit-worthy the process terminates
and no quote is issued to the customer. If it is credit-worthy,
the CSD checks whether the required network is a portfolio
item so that a previous quote exists. If positive, this quote
is send to the customer, otherwise the design department is
contacted. The DD develops its design and costing based
on the information of given equipment held by the CSD. In
many cases, however, this information may be out of date or
not available at all, so that the site has to be surveyed. In this
case, the DD contacts the surveyors to do a survey. After
the survey is done, the DD can design and cost the network
and the CSD can finally provide the customer quote.

The above scenario involves two fundamental types of
interactions: argumentation and cooperation. If the DD
wants to do its task it needs information held by the CSD.

Therefore they cooperate. The CSD should not quote if
the customer is not credit-worthy which it should assume
by default. But the VC may counter-argue and give evi-
dence for the credit-worthiness of the customer. Therefore
VC and CSD argue. When arguing it is advisable to distin-
guish the credulousness of agents. The CSD and VC should
be skeptical when arguing about giving a quote, while the
other two are credulous. It is important to note that not all
agents communicate with each other which would lead to a
tremendous amount of messages exchanged, but each agent
maintains a list of agents that it cooperates with and that
it argues with. Besides knowing these partners, the agents
know the partners domains so that they bother their partners
only with requests relevant to them. Before we formally
model and implement these aspects of the above business
process we have to develop the theory underlying our argu-
mentation framework.

Modelling CSD’s arguments
Consider the customer service division CSD. It knows
about the customer’s equipment and its requirements and
in the example we assume that the customer has require-
ment 2 and 3 and equipment 2 and 3. Furthermore, CSD
knows that the customer is important. Besides these facts
about a particular customer, CSD has some general rules
such as requirements 1, 2, and 3 together make up a portfo-
lio and can be quoted if a previous quote exists. Otherwise,
the design department has to prepare the quote. CSD does
not provide a quote if the client is not credit-worthy, which
is assumed by default.

requ2
requ3
equ3
equ2
important

portfolio requ1 requ2 requ3
quote not credit worthy

quote portfolio previous quote
quote quote DD

CSD’s domain Dom1 covers all predicates occuring in P1

and CSD will argue about credit-worthiness with the vet
customer agent VC so that Arg1 2 and is skeptical in
this respect so that F1 s. It cooperates on quotation with
the design department and hence Coop1 3 . So, Ag1

P1 F1 Arg1 Coop1 Dom1 .

References
Jennings, N. R. et al. 1996. Agent-based business pro-
cess management. Intl. J. of Cooperative Information Systems
5(2&3):105–130.

Schroeder, M. 1999. An efficient argumentation framework for
negotiating autonomous agents. Submitted.

Searle, J. 1969. Speech Acts. Cambridge (UK): Cambridge
University Press.

Sierra, C.; Jennings, N.; Noriega, P.; and Parsons, S. 1997.
A framework for argumentation-based negotiation. In Proc. of
ATAL-97, 167–182. Springer-Verlag.

22

An Adaptive Interactive Agent for Route
Advice

Seth Rogers Claude-Nicolas Fiechter Pat Langley
DaimlerChrysler Research and Technology North America

1510 Page Mill Road
Palo Alto, CA 94306

650-845-2533
rogers@rtna.daimlerchrysler.com

Current route advice systems present a single route to the user based on static
evaluation criteria, with little or no recourse if the user finds this solution unsatis-
factory. In this demonstration, we present a more flexible approach, the Adaptive
Route Advisor. Our agent behaves more like a human travel agent, using a pref-
erence model, when known, and working with him or her to find a satisfactory
route. The route advisor predicts what route a user will prefer based on a model
of user preferences, and, if the predicted route is unsatisfactory, the advisor gen-
erates additional routes based on interaction with the user. The route that the user
eventually selects serves as feedback to improve the preference model.

The major capabilities the Adaptive Route Advisor demonstrates are interac-
tivity and automatic personalization. The system always provides the user with
multiple route options and the opportunity to generate more. When the user se-
lects a route, the system presumes that the user finds this route superior to the
other options according to his internal preferences, and takes this as training data.
We employ a perceptron algorithm that trains on differences between examples to
generate a model of the user preferences. The next time this user requests a route,
one of the routes the system suggests is the one that scores best according to the
user preference model. The system also automatically records the user’s familiar
routes using Global Positioning System tracking, and includes a preference for or
against familiar routes in the user model.

The route advice agent is designed for use in a car with a wireless Internet

1

33

connection. The interface is a lightweight client, and the remote servers perform
compute-intensive and memory-intensive tasks. In the demo, participants see a
detailed roadmap of the Seattle area. Participants or the operator enter the start-
ing address, ending address, and a user identifier. Some user identifiers will be
“pre-loaded” with plausible preference models and some familiar routes in the
Seattle area, as recorded by a Global Positioning System unit we will place in our
rental car. The Adaptive Route Advisor finds the preference model for the user
(or creates a default model if none exists), and generates two routes between the
endpoints: one optimized for that user model, and one exploratory route. The
route advisor summarizes the route options in terms of estimated travel time, total
distance and distance along highways, thruways, and local roads, total number of
intersections and number of intersections with traffic lights and stop signs, number
of left and right turns, and distance along “familiar” roads.

The user examines a route in more detail by clicking on its summary. The
interface displays turn-by-turn directions and highlights the selected route on the
map. If the selected route is satisfactory to the user, he or she clicks the accept
button, and the system updates its user preference model. If not, the user can
perform a number of “tweaks” on the route to improve some attributes of the
route, such as number of turns, at the expense of others, such as time. The user
continues tweaking the route options until he or she is satisfied with one of them.
The user may also generate a completely different route if none of the options are
nearly satisfactory. Once the user accepts a route, the system saves his preferences
for the duration of the conference.

Although interaction is in the user’s best interest if he or she wants a satis-
factory route, the agent does not require it, and ideally interaction will become
less necessary as the agent better approximates the user’s cost function. This low
interaction requirement is crucial for in-car decision making where the driver’s
attention is necessarily focused elsewhere.

This system is an example of an adaptive user interface agent that automati-
cally and unobtrusively acquires value judgments by observing the user’s actions
in a domain, and utilize interaction as an additional source of value judgments.
The agent generates a solution using its current user model, receives feedback
from the user if its model is inaccurate, and corrects its model in areas relevant to
the problem being solved.

2

44

Demonstration
Learning to remove Internet advertisements

Nicholas Kushmerick
Department of Computer Science, University College Dublin

nick@ucd.ie

Abstract. AdEater is a fully implemented browsing assistant that automatically removes advertisement images
from Internet pages. Unlike related systems that rely on hand-crafted rules, AdEater takes an inductive learning
approach, automatically generating rules from training examples. Our experiments demonstrate that our
approach is practical: the off-line training phase takes less than six minutes; on-line classification takes about 70
msec; and classification accuracy exceeds 97% given a modest set of training data. To use AdEater, set your browser
proxy to cygnus.ucd.ie:8888; see www.cs.ucd.ie/staff/nick/research/ae for details.

Before after.

55

System Architecture

proxy messages
to/from browsers

on-line advert.
remover

off-line
rule

learner

off-line example
gatherer

training
examples

rules

Internet

HTTP messages
to/from sites

.
.
.

<
A

h
r
e
f
=
"
h
t
t
p
:
/
/
w
w
w
.
c
o
r
p
.
c
o
m
/
s
a
l
e
s
.
h
t
m
l
"
>

O
u
r

s
p
o
n
s
o
r
:

<
I
M
G

s
r
c
=
"
h
t
t
p
:
/
/
w
w
w
.
c
o
r
p
.
c
o
m
/
a
d
s
/
t
h
e
a
d
.
g
i
f
"

a
l
t
=
"
c
l
i
c
k

h
e
r
e
"

h
e
i
g
h
t
=
"
4
0
"

w
i
d
t
h
=
"
2
0
0
"
>
<
/
A
>

.
.
.

<
A

h
r
e
f
=
"
c
o
n
t
a
c
t
.
h
t
m
l
"
>

C
o
n
t
a
c
t

u
s
:

<
I
M
G

s
r
c
=
"
/
i
m
a
g
e
s
/
c
o
n
t
a
c
t
.
g
i
f
"

a
l
t
=
"
c
o
n
t
a
c
t

i
n
f
o
"

h
e
i
g
h
t
=
"
5
0
"

w
i
d
t
h
=
"
4
0
"
>
<
/
A
>

.
.
.

<
A

h
r
e
f
=
"
h
t
t
p
:
/
/
w
w
w
.
m
e
g
a
.
c
o
m
/
m
a
r
k
e
t
i
n
g
.
h
t
m
l
"
>

F
u
n
d
e
d

b
y
:

<
I
M
G

s
r
c
=
"
h
t
t
p
:
/
/
w
w
w
.
m
e
g
a
.
c
o
m
/
a
d
v
e
r
t
s
/
a
d
i
m
g
.
j
p
g
"

a
l
t
=
"
f
r
e
e

s
t
u
f
f
"
>
<
/
A
>

.
.
.

h
t
t
p
:
/
/
w
w
w
.
p
r
o
v
i
d
e
r
.
c
o
m
/
i
n
d
e
x
.
h
t
m
l

BA C

A B C Feature
40 50 ? height
200 40 ? width
5.0 0.8 ? aspect ratio
0 0 1 local?
1 0 0 ÒourÓ
1 0 0 ÒsponsorÓ
1 0 0 Òour+sponsorÓ
0 1 0 ÒcontactÓ
0 1 0 ÒusÓ
0 1 0 Òcontact+usÓ
0 0 1 ÒfundedÓ
0 0 1 ÒbyÓ
0 0 1 Òfunded+byÓ
1 0 0 ÒfreeÓ
1 0 0 ÒstuffÓ
1 0 0 Òfree+stuffÓ
0 1 0 ÒcontactÓ
0 1 0 ÒinfoÓ
0 1 0 Òcontact+infoÓ
0 0 1 ÒclickÓ
0 0 1 ÒhereÓ
0 0 1 Òclick+hereÓ
1 1 1 Òwww.provider.comÓ
1 1 1 ÒindexÓ
1 1 1 Òindex+htmlÓ
1 0 0 Òwww.corp.comÓ
1 0 0 ÒsalesÓ
1 0 0 Òsales+htmlÓ
0 1 0 ÒcontactÓ
0 1 0 Òcontact+htmlÓ
0 0 1 Òwww.mega.comÓ
0 0 1 ÒmarketingÓ
0 0 1 Òmarketing+htmlÓ
1 0 0 Òwww.corp.comÓ
1 0 0 ÒadsÓ
1 0 0 Òads+theadÓ
1 0 0 ÒtheadÓ
1 0 0 Òthead+gifÓ
0 1 0 Òimages+contactÓ
0 1 0 ÒimagesÓ
0 1 0 ÒcontactÓ
0 1 0 Òcontact+gifÓ
0 0 1 Òwww.mega.comÓ
0 0 1 ÒadvertsÓ
0 0 1 ÒadimgÓ
0 0 1 Òadverts+adimgÓ
0 0 1 Òadimg+jpgÓ

AD AD AD Classification

caption
features

 alt
features

 Ubase
features

 Utarget
features

 Uimg
features

 I
f a

sp
ec

t
ra

ti
o

>
 4

.5
83

3,
 a

lt
 d

oe
sn

Õt
co

nt
ai

n
Ôt

oÕ
 b

ut
 d

oe
s

co
nt

ai
n

Ôc
lic

k+
he

re
Õ,

an
d

 U
d

es
t d

oe
sn

Õt
co

nt
ai

n
Ôh

tt
p+

w
w

w
Õ,

th
en

 in
st

an
ce

 is
 a

n
ad

ve
rt

is
em

en
t.

66

Adele: A Web-Based Pedagogical Agent

W. Lewis Johnson, Erin Shaw, and Rajaram Ganeshan
Center for Advanced Research in Technology for Education (CARTE)

USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 902-6695 USA
Email: {johnson, shaw, rajaram}@isi.edu; Web: http://www.isi.edu/isd/carte/

1. INTRODUCTION
This demonstration will introduce Adele (Agent for
Distributed Learning Environments), an animated pedagogical
agent designed to complement Web-based courseware. Adele
appears as an animated figure that monitors the studentÕs
activities, provides hints, critiques inappropriate student
actions, tests the studentsÕ mastery of the course material, and
evaluates the studentsÕ performance. She thus is a kind of
intelligent tutoring system (Wenger 1987). At the same time,
Adele is a kind of autonomous agent, and shares important
characteristics with autonomous agents in other domains. She
operates in a complex environment, including complex
simulations and one or more students. She is an interface
agent, capable of communication with students using a
combination of verbal and nonverbal gestures and body
language.

The Web is a rich environment for instructional agents, since
large amounts of instructional material is becoming available
in the Web environment. Agents are needed to help students
find relevant course materials. They also can help overcome
some of the limitations of Web-based instruction by making i t
more interactive and engaging. At the same time, Web-based
delivery imposes a number of design constraints. Fewer
interaction modalities are available than for immersive
environment agents such as Steve (Johnson et al 1998, Rickel
and Johnson 1999). The agents need to be lightweight, so that
they can run on client machines. They need to interoperate
with Web servers and browsers.

2. ARCHITECTURE
AdeleÕs system consists of four main components: the
pedagogical agent, the simulation, the client-server, and the
server store. The pedagogical agent consists further of two sub-
components, the animated persona and the reasoning engine. A
fifth component, the session manager, is employed when the
system is run in multiple-user mode. The central server is used
to maintain a database of student progress and when
appropriate, to provide synchronization for collaborative
exercises being carried out by multiple students on multiple
computers.

The reasoning engine performs all monitoring and decision
making. Its decisions are based on a student model, a case task
plan, and an initial state, which are downloaded from the server
when a case is chosen, and on the agentÕs current mental state,
which is updated as a student works through a case. Upon
completion, a record of the studentÕs actions is saved to the
server where it is used to assess the level of the studentÕs
expertise and determine how Adele will interact with the
student in future cases.

The animated persona is simply a Java applet that can be used
alone with a Web page-based JavaScript interface or

incorporated into larger applications, such as simulation-
based exercises. The persona is capable of expressing a range of
gestures, such as pointing, nodding, changing focus of gaze,
and speaking.

The simulation can be authored using the language or
authoring tool of oneÕs choice. For our clinical health science
applications, we developed our own simulation in Java. For a
trauma care application we used EmultekÕs RAPID simulation
authoring tool. Adele expects the simulation to notify Adele
of user events and simulation state changes, so that she and
interpret and respond to them appropriately.

The integrated system is downloaded to and run on the
clientÕs side for execution efficiency. This is in contrast to the
architecture of most other Web-based Intelligent Tutoring
Systems where the intelligent tutor sits on the server side,
resulting in increased latency in tutor response to student
actions (e.g., Brusilovsky et. al 1997). Reducing latency i s
especially critical when one considers animating an agentÕs
response to a studentÕs action, in order to achieve the
perception of awareness in a shared workspace.

3. KEY CAPABILITIES
3.1 Situation and Student Monitoring
Adele must keep track both of the actions that the student
performs and the events that occur in the simulation, in order to
provide appropriate advice and feedback. Student monitoring
makes reference to a task plan, which is an abstract description
of an expected solution, in a hierarchical nonlinear plan format.
For example, in clinical medicine the task plan represents a
standard clinical procedure, specialized to the particular case
being studied.

Some Adele exercises, such as those for trauma care, involve
dynamic simulations in which students may need to
reprioritize their actions from moment to moment. Adele adopts
the situation space approach (Marsella and Schmidt 1990,
Marsella and Johnson 1998) to model changing situations.
Situation spaces include situations, which are state patterns
matched against the simulation state, and transitions between
situations. Task subplans are associated with particular
situations, and are dynamically added to the task plan.

Although the task plan approach is general enough to apply to
a range of subject matter areas, it is limited in its ability to
support guidance and feedback. In clinical decision making, i t
is important for students to weigh the evidence that they
encounter and at the same time follow clinical procedures. Task
plans are good at modeling clinical procedures, but are less
suitable for modeling analysis of evidence. For this purpose
we have built an extension to AdeleÕs student monitoring
capability to model diagnostic reasoning, for use in courses
where it is relevant. As the student uncovers evidence, the

77

estimate of likelihood of possible hypotheses is adjusted as
necessary.

3.2 Opportunistic instruction
As the student progresses through the exercise, situations
might arise that are opportunities for instruction. For example,
when the patient tells the student that her condition has been
slowly developing, it might be useful to make sure that student
can knows what kinds of diseases develop rapidly and what
kinds do not. Adele monitors such opportunities as
situations, similar to the situations used for tracking student
progress. But instead of specifying student behavior, they
specify AdeleÕs pedagogical behavior. For example, they can
cause Adele to present a quiz about slow-onset diseases when
the student receives information about disease onset from the
patient.

References to Web-based instruction are also opportunities for
instruction. Adele takes advantage of these opportunities in
two ways. AdeleÕs interface has a Show button that becomes
active in situations where relevant reference materials exist.
Clicking on the button takes the student to a particular page
associated with the situation. Additionally, the studentÕs
actions can provide context that is used to provide context-
specific access to reference materials. The Reference page
contains a set of references that changes dynamically as the
student works through the case.

3.3 Student Assessment
When a task is finished, AdeleÕs assessment module analyzes
the studentÕs record and provides domain-appropriate
feedback. For example, in a clinical domain, Adele provides
three types of post-task assessment: 1) An evaluation of the
diagnosis; 2) an evaluation of the diagnostic costs incurred,
and 3) an evaluation of the steps taken. Scoring of the
studentÕs record varies from course to course, dependent on the
preferences of the individual instructor. Once the case i s
complete, it is uploaded to the instructor for further review.

4. IMPLEMENTATION
To facilitate Web-based delivery, Adele is implemented in Java,
making it possible to download Adele-enhanced course
modules over the Web. This approach offers long-term
advantages, although in the near term, incompatibilities
between Java virtual machines make portability somewhat
difficult. High quality text-to-speech synthesis is platform-
dependent, so speech packages are wrapped in Java and
invoked locally.

AdeleÕs animations are produced from two-dimensional
drawings, making it possible to run Adele on a variety of
desktops and operate in heterogeneous educational
environments. We placed emphasis on improving AdeleÕs
appearance of reactivity, rather than emphasize photorealism.
For example, when the student clicks on a button in the
simulation window, Adele turns her head to look toward
where the student clicked.

5. DEMONSTRATION HIGHLIGHTS
Multiple Adele-assisted learning modules will be
demonstrated, depending upon the interests of the attendees.

One learning module will be taken from a clinical medicine
course. For example, a simulated patient comes to the clinic
complaining of a lump on her chest. The student must ask the
patient questions in order to obtain a patient history, examine
the patient, order relevant tests, and come up with the
appropriate diagnosis (in this case cancer). Along the way
Adele quizzes the student to make sure that he or she
understands the distinguishing characteristics of different
diseases, and is able to interpret the disease findings correctly.
A geriatric dentistry case will be available for demonstration
as well, in which the student must both assess the patientÕs
situation and prescribe treatments. Finally, a dynamic case
simulation such as trauma care may be shown.

6. ACKNOWLEDGEMENTS
CARTE staff members Kate Labore and Dr. Jeff Rickel, ÔAÕ Team
members Ami Adler, Andrew Marshal, Anna Romero, and
medical researcher Michael Hassler all contributed to the work
presented here. Invaluable assistance was provided by our
colleagues in the USC School of Medicine and School of
Dentistry, particularly Drs. Riccardo Hahn, Clive Taylor,
Beverly Wood, and Roseann Mulligan. This work was
supported by an internal research and development grant from
the USC Information Sciences Institute; course development
was supported by grants from the USC Health Sciences
Consortium and the USC School of Medicine.

7. REFERENCES
[1] Brusilovsky, P., Schwartz, E., and Weber, G., ELM-ART:

An intelligent tutoring system on world wide web.
Frasson, C., Gauthier, G. and Lesgold, A. (Eds.), Proc. of
the Third IntÕl Conf. on Intelligent Tutoring Systems, pp.
261-269. Springer Verlag, 1996.

[2] Johnson, W.L. and Rickel, J., Steve: An animated
pedagogical agent for procedural training in virtual
environments. SIGART Bulletin 8, pp. 16-21, 1998.

[3] Marsella, S.C. and Schmidt, C.F., Reactive planning using
a situation space, Proc. of the 1990 AAAI Spring
Symposium Workshop on Planning, 1990.

[4] Marsella, S.C. and Johnson, W.L., An instructorÕs
assistant for team-training in dynamic multi-agent virtual
worlds. Goettl, B.P., Halff, H.M, Redfield C.L., and Shute,
V.J. (Eds.), Proc. of the Fourth IntÕl Conf. on Intelligent
Tutoring Systems pp.464-573. Springer-Verlag, 1998.

[5] Rickel, J. and Johnson, W.L., Animated agents for
procedural training in virtual reality: perception,
cognition, and motor control. To appear in Applied
Artificial Intelligence Journal, 1999.

[6] Shaw, E., Ganeshan, R., Johnson, W.L., and Millar, D.,
Building a case for agent-assisted learning as a catalyst for
curriculum reform in medical education. To appear in
Proceedings of AI-Ed Õ99, IOS Press, Amsterdam.

[7] Wenger, E., Artificial intelligence and tutoring systems:
Computational and cognitive approaches to the
communication of knowledge. Los Altos, CA: Morgan
Kaufmann Publishers, Inc., 1987.

88

Agent aided aircraft maintenance�

Onn Shehory, Katia Sycara, Gita Sukthankar and Vick Mukherjee

School of Computer Science

Carnegie-Mellon University

fonn,katia,gitars,vickg@cs.cmu.edu

1 Introduction

Aircraft maintenance is performed by mechanics who are re-
quired, by regulation, to consult expert engineers for repair
instructions and approval. In addition to their own experi-
ence, these engineers rely on external information sources,
which are often inadequately indexed and geographically
dispersed. The timely retrieval of this distributed informa-
tion is vital to the engineers' ability to recommend repair
procedures in response to the mechanics' requests. This
problem domain is well suited for a multi-agent system:
it consists of distributed multi-modal information which is
needed by multiple users with diverse preferences. Using
the RETSINA multi-agent architecture [2], we demonstrate
an implementation of such a system. Such an implementa-
tion reinforces the importance of multi-agent systems, and
in particular the usefulness of the RETSINA infrastructure
as a basis for the construction of such systems.

The MAS we developed [1] provides information retrieval
and analysis in support of decision making for aircraft main-
tenance and repair in the U.S. Air Force. Although the solu-
tion was developed for a speci�c type of aircraft, the agents
and the interactions among them were designed to apply to
a range of similar maintenance scenarios.

2 The problem

Standard aircraft maintenance in the U.S. Air Force involves
the following: when inspecting an aircraft, a mechanic who
indicates a possible discrepancy consults an engineer to de-
cide on the required repair. The engineer, in turn, may need
to consult external sources of information. These include
manuals, historical maintenance data and other, remotely-
located experts. Hard-copy repair manuals are used, thus
searching for relevant information may be both time con-
suming and incomplete. Historical data (records of previous
similar repairs) is scarcely used, since it is stored in pa-
per format with no search mechanisms, usually only kept
for short periods of time, and may be distributed along re-
motely located service centers. Expert engineers may be
located remotely, and their advice is available by voice or
fax messages. All of these factors contribute to a slow, inef-
�cient inspection and maintenance process.

�Funding for this work has been provided by the ONR grant
#N00014-96-1-1222.

The repair process consists of the following steps:

� An aircraft arrives at a maintenance service center for
regularly scheduled maintenance, which must be com-
pleted within a limited time period.

� Mechanics inspect the aircraft and locate discrepan-
cies. For each discrepancy a mechanic �nds, he/she:
(1) consults manuals and other, more experienced me-
chanics; (2) �lls in a 202a form (a standard Air Force
form for aircraft discrepancies); (3) sends 202a to an
engineer for advice and authorization to perform re-
pair;

� An engineer, upon receipt of a 202a form: (1) deter-
mines repair procedure for the discrepancy described
in the 202a form; (2) �lls in a 202b form (a standard
Air Force form for repair instructions); (3) �les 202a
and 202b forms for future use.

� Upon receipt of a 202b form from an engineer, the
mechanic performs the repair as instructed.

3 The system design

Information sources The sources of information relevant to
the inspection and maintenance processes are: (1) the form
�lled in by the mechanic for the current fault encountered
during inspection (current 202a form); (2) collections of his-
torical 202 (a and b) forms from previous aircraft inspec-
tion, consultation and maintenance procedures; (3) techni-
cal manuals; (4) expert engineers.

Agent types We developed an agent system that provides
information gathering, �ltering and fusion in support of main-
tenance decisions. The system has been implemented and is
tested with real data from a U.S. Air-base. The system is
comprised of three types of agents, as follows:

� A form agent. Its role is to analyze the current 202a
form it receives from a mechanic, characterize the prob-
lem presented in the form, and request information
which is relevant for the solution of this problem. Upon
the receipt of such information it merges, �lters and
presents it in a meaningful and comprehensible man-
ner to the engineer.

� A history agent. Upon request from another agent
(probably a form agent), it searches for historical forms
which are relevant to the problem presented in the re-
quest. The relative relevance of the forms is computed

99

Form Form Form
202a

Form
202a

Form
202a

Form
202b

Form

202a

Form
202b

Form

202a

202b 202b202b
Form

forms

Form
agent

Form
agent

Form
agent

Manuals
agent

History
agent

202

Manuals Manuals

202
forms

Manuals
agent agent

Engineer

Mechanic Mechanic Mechanic Mechanic

Engineer Engineer

WearableWearable Wearable WearableWearable

Service center computer networkService center computer network

WorkstationWorkstation

History

Workstation

Mechanic

Figure 1: The multi-agent system organization.

and forms that pass some relevancy threshold are sent
as an answer to the requester.

� A manuals agent. Upon request from another agent, it
locates, in the manuals, data relevant to the problem
presented in the request.

4 Data processing and ow

In our system, each specialized type of agent may have sev-
eral instances. Below, we describe the processing and ow
of information in the computerized system. The process be-
gins with a mechanic inspecting the plane. The mechanic
uses a wearable computer with a touch-screen, microphone
and a digital camera. When a discrepancy is found, the me-
chanic �lls in an electronic 202a form, and when necessary
and practicable, adds voice notes and digital photographs.
The 202a form with the attachments is sent to an engineer.
At this point, the mechanic waits for a reply from the engi-
neer.

The engineer, with the support of a form agent on his/her
workstation, extracts keywords from the 202a form. Using
these keywords, the form agent automatically requests rele-
vant historical forms from history agents and relevant man-
ual pages from a manuals agent. These requests may also
be activated, controlled and edited by the user (engineer).
At this point, the form agent waits for the requested infor-
mation to arrive, in reply to its requests.

History and manuals agents are located on central com-
puter networks of service centers, on which the archival in-
formation they need to access is located as well. Upon re-
ceiving a request for information, history agents perform a
search on the historical 202 forms archive, and conduct a
relevancy analysis. They reply with a list of relevant forms,
the reason for their selection and the level of relevancy. A
manuals agent performs a simple search in an indexed man-
uals database and replies with the results of this search.

Upon receiving replies from history and manuals agents,
the form agent displays them to the engineer. Using this
information the engineer can decide upon the appropriate
repair procedure, �ll in an electronic 202b form, attach to it
graphical description grabbed from manuals and historical
forms and send it to the mechanics wearable computer.

The information ow and processing end when the me-
chanic receives the 202b form on the wearable computer.
The details in the 202b form and the approval of a repair
procedure allow the mechanic to execute the actual repair.

5 Multi-agent organization

A graphical illustration of the multi-agent organization is
presented in Figure 1. As depicted there, multiple mechanics
each use a wearable computer in the inspection process to
compose a 202a form. These forms are sent to form agents.
There may be multiple form agents and each form agent
may handle several 202a forms. A form agent may request
information relevant to the forms it handles from multiple
history agents. This is necessary since historical archives of
202 forms may be distributed over multiple service centers.
Manuals agents and history agents may receive information
requests from multiple form agents.

References

[1] O. Shehory, K. Sycara, G. Sukthankar, and V. Mukher-
jee. Agent aided aircraft maintenance. In Proceeding of
Agents-99, Seattle, 1999.

[2] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert {
Inteligent Systems and Their Applications, 11(6):36{45,
1996.

1010

Asynchronous Teams of Agents
for

Optimization and Decision-Support
Richard Goodwin, Sesh Murthy, Rama Akkiraju, Fred Wu

 IBM T. J. Watson Research Center

Yorktown Heights, NY

An asynchronous team of agents is a collection of software agents that cooperate to solve a problem by dynamically
evolving a population of solutions (Talukdar et al, 1983). Agents cooperate by sharing access to populations of
candidate solutions. Each agent works to create, modify or remove solutions from a population. The quality of the
solutions gradually evolves over time as improved solutions are added and poor solutions are removed.
Cooperation between agents emerges as one agent works on the solutions produced by another.

The figure below presents an overview of the A-Team architecture. Each agent, shown as a block, encapsulates a
particular algorithm. This algorithm may consist of a call to an external system. Within an A-Team, agents are
autonomous and asynchronous. Each agent encapsulates a particular problem-solving method along with the
methods to decide when to work, what to work on and how often to work. These decisions are evaluation driven.
An agent decides when to work and what to work on by looking at the evaluations of the solutions in the
population. Agents are free to use any method for deciding when to work and what to work on, but intelligent
strategies look at the state of the solutions in the population and take into account the agent’s ability to improve
them.

Kill
Bad

Sequence Balance Swap

Improvers modify
existing solutions

MIP Greedy LP

Constructors create
new solutions

Destroyers discard
poor or redundant
solutions

populations

solutions

A-Teams consist of populations of solutions and agents that create, improve and destroy solutions.

Agents come in three flavors: constructors, improvers and destructors. Constructors create initial solutions and
add them to the population. Improvers select one or more existing solutions from the population and produce new
solutions that are added to the population. Technically, improvers are modifiers and may not actually make
measurable improvements in the solutions they modify. They may, in fact, make random modifications that lead to
worse solutions. Such modifications may be useful in that they serve to explore the solution space and, in so doing,
may lead down a path to a better solution. Typically, however, improvers encapsulate domain specific methods
designed specifically to effect quick directed improvement. Finally, destroyers keep the size of the population of
solutions in check. Their main function is to delete clearly sub-optimal or redundant solutions, while keeping
promising solutions. This prevents improver agents from wasting effort by working on solutions that are going
nowhere.

1111

In our work, we have used A-Teams to solve multi-objective optimization problems such as production and
transportation scheduling for the manufacturing domain. Each element of the solution population created by the
A-Team is a complete solution to the problem such as a production schedule for a mill or a transportation schedule
for a distribution center. The representation of the problem and the solution are problem specific but uniform
throughout. For example, a machine scheduling A-Team might use a representation of the problem as a list of
orders and machines and the solution as a sequenced assignment of orders to machines.

In order to promote cooperation between agents and human experts, our software allows the human to operate as
an agent, creating, improving and destroying solutions in the population. This interaction is accomplished through
our Java based user interface. This allows the decision maker and human expert to refine the solutions taking into
account a number of competing prospectives.

Direct editing, filtering, and
solution refinement tools

Customer

Quality Manufacturing
Issues

Costs

Agents . . .

Evolving
Population
of Solution

A-TEAM

 Decision-maker as an agent in the A-Team

Demonstrations

To demonstrate the A-Team architecture, we have created three example domains, described below. Each example
makes use of our agent library in C++ and our interface library in Java. Optimization algorithms for each example
and solution editors were specifically created for each example.

Traveling Salesman Problem: This is a version of the classic traveling salesman problem where multiple local
improvement algorithms are used to create nearly optimal tours. One twist is that we use both a population of
complete solutions and a population of promising partial solutions.

Paper Trim Problem: This example is taken from paper manufacturing where large reels of paper (200 inches
wide) must be cut to fill customer orders (roll widths vary from 15 to 100 inches). It is a variation on the
on-dimensional cutting stock problem, with multiple objectives including minimizing loss, minimizing setups and
maximizing on-time production.

Multiple Knapsack Problem: The objective of the problem is to pack items into containers in such a way that we
maximize the weight of items packed into the containers while minimizing the volume of containers used. This is
a variation on the classic knapsack problem and is relevant for industrial problems, such as loading items into
trucks and rail cars.

References

Talukdar S.N., Pyo S.S., and Mehrotra R.; 1983. Distributed Processors for Numerically Intense Problems. Final Report for
EPRI Project. RP 1983-1764-3

Murthy S., Akkiraju A., Goodwin R., Keskinocak P., Rachlin J., Wu F., Yeh J., Fuhrer R., Kumaram S., Aggarwal
A., Sturzembecker M., Jayaraman R., Daigle R; 1999. Cooperative Multiobjective Decision Support
for the Paper Industry .To appear in Interfaces.

1212

The Bond Agent Framework - the technical content of the

demo

January 31, 1999

The Bond distributed object system provides a message oriented middleware environment
for developing distributed applications. Bond uses KQML as a metalanguage for inter-object com-
munication. The message space of Bond is divided into subprotocols, task-oriented, closed set of
messages. Examples of subprotocols are the property access, persistent storage access or security
subprotocols. Bond objects can be extended with new subprotocols by the means of probes. Probes
implement the functionality of a speci�c subprotocol and are attached as dynamic properties to
Bond objects. A special class, called preemptive probes process an incoming message before it is
delivered to the object, and act as �lters for security, accounting, or logging purposes. Probes
implement a way of aspect oriented programming.

Bond executables usually run as threads in the runtime environment provided by a resident.
The resident provides the messaging thread and the local directory service for the running executa-
bles. Although Bond programs may run in stand-alone mode, their natural environment is a Bond

domain. A domain contains a number of core servers such as the directory server, persistent storage
server, authentication server and the monitoring agent.

The agent framework of the Bond system simpli�es the task of developing agents by allowing
the programmer to concentrate on the speci�c strategies of a new agent. Bond agents have the
intrinsic capability to be controlled remotely and to cooperate with each other. The task of an
application programmer is limited to specify the agenda, the �nite state machine of the agent, and
the strategies associated with each state.

The structure of the Bond agents presented in Figure 1. The components of a Bond agent are:

Agent

Model

Strategy 1

Finite state machine

State

State

Strategy n

Strategy i

Strategy 2

Agenda

StateState

Metaobjects
Knowledge

-base

Neural
network

?

Figure 1: The anatomy of a Bond agent

� The model of the world is a container object which contains the information the agent
has about its environment. This information is stored in the form of dynamic properties

1

1313

of the model object. There is no restriction of the format of this information: it can be a
knowledge base or ontology composed of logical facts and predicates, a pre-trained neural
network, a collection of meta-objects or di�erent forms of handles of external objects (�le
handles, sockets, etc).

� The agenda of the agent, which de�nes the goal of the agent. The agenda is in itself an
object, which implements a boolean function on the model and a distance function on the
model. The boolean function shows if the agent accomplished its goal or not. The agenda acts
as a termination condition for the agents, except for the agents marked as having a continuous

agenda where their goal is to maintain the agenda as being satis�ed. The distance function
may be used by the strategies to choose their actions.

� The �nite state machine of the agent. The current state is a model variable named STATE-1.
Each state has an assigned strategy which de�nes the behavior of the agent in that state. An
agent can change its state by performing transitions. Transitions are triggered by internal or
external events. External events are messages sent by other agents or programs. The set of
external messages which trigger transitions in the �nite state machine of the agent de�nes the
control subprotocol of the agent.

� Each state on an agent has a strategy de�ning the behavior of the agent in that state.
Each strategy performs actions in an in�nite cycle until the agenda is accomplished or the
state is changed. Actions are considered atomic from the agent's point of view, external or
internal events interrupt the agent only between actions. Each action is de�ned exclusively
by the agenda of the agent and the current model. A strategy can terminate by triggering
a transition by generating an internal event. After the transition the agent moves in a new
state where a di�erent strategy de�nes the behavior.

The Bond agent framework can be programmed at two levels. At the expert level, the developer
can de�ne its own new strategies and agendas by programming them directly in Java. At the
blueprint level, the user can create new agents using the blueprint language of the Bond agent
framework. The blueprint is not a full featured programming language: the various aspects of agent
strategies have to be programmed in Java. However, a database of ready-made strategies allows the
most common aspects of agents to be assembled from components of this database, without the need
of programming. The blueprint provides the assembly instructions used by the bondAgentFactory
object to assemble the agent during runtime. The blueprint of an agent implicitly de�nes a control

subprotocol, that can be used by an external object to control the agent.

Dynamic modi�cation of agents (\agent surgery"). Bond agents can be modi�ed dynam-
ically during runtime. This is performed by the AgentFactory object using \surgical" blueprint
scripts. New states, new transitions may be added, existing states or transitions deleted or new
strategies added to existing states.

One of the many fascinating applications is the possibility that a coordinator agent changes
it's federation of agents as a reply to new instructions from a human. The surgery of agents is a
relatively inexpensive operation compared to starting new agents, and the agents are keeping their
existing model, which may contain information diÆcult to restore in a new agent.

Migration. The behavior of a Bond agent is uniquely determined by the model of the world,
which is a Bond object. The intrinsic property of Bond objects that they can be migrated between
residents, imply that Bond agents can be migrated by simply interrupting the execution, transferring
the model and recreating the agent from the same blueprint. The agent factories on the source and
destination residents have an important role in the migration, performing the actual transfer of
data. Nevertheless, it is possible that the model contains information which will become invalid
after a migration - for example the handle of an open �le. The agent factory can perform a check
if the agent is migratable in the current status.

Links The Bond system is currently under implementation at the Bond Lab at Computer Science
Department of Purdue University. More information and the second alpha version (as of January
1999) is available at http://bond.cs.purdue.edu

2

1414

BTFS: The Border Trade Facilitation system1

Laurence R. Phillips (lrphill@sandia.gov)
Advanced Information Systems Lab

MS 0455
Sandia National Laboratories

Albuquerque, NM 87185

System Description:

We will demonstrate the Border Trade Facilitation System (BTFS), an agent-based
bilingual ecommerce system built to expedite the regulation, control, and execution
of commercial trans-border shipments during the delivery phase. The system was
built to serve maquila industries at the US/Mexican border. The BTFS uses
foundation technology developed here at Sandia Laboratories’ Advanced
Information Systems Lab (AISL), including a distributed object substrate, a general-
purpose agent development framework, dynamically generated agent-human
interaction via the World-Wide Web, and a collaborative agent architecture. This
technology is also the substrate for the Multi-Agent Simulation Management
System (MASMAS) proposed for demonstration at this conference. The BTFS
executes authenticated transactions among agents performing open trading over the
Internet. With the BTFS in place, one could conduct secure international
transactions from any site with an Internet connection and a web browser. The BTFS
is currently being evaluated for commercialization.

In 1997 the AISL completed a prototype of the Border Trade Facilitation System
(BTFS), a collaborative information processing environment that operates on the
Internet and World-Wide Web. The BTFS comprises multiple autonomous
software agents that assist human actors in conducting international shipping
transactions by creating, documenting, monitoring, and coordinating shipment
transactions in information space.

The BTFS prototype demonstrates a multi-agent approach to coordinating a
complex, knowledge-intensive shipping process. We have demonstrated the
following agent behaviors: elicitation, mediation between ontologies, negotiation,
delegation, monitoring, goal satisfaction, and conduct of an authenticated
negotiation protocol for commercial contracts. A typical trans-border documentation
package includes one to two dozen Spanish and English forms. The BTFS allows a
registered user to fill out the core documentation set and execute the border crossing
paperwork.

The essential concept of the BTFS is that the physical trans-border shipment of
goods and the required accompanying certification are entirely represented as a set of
events in information space, the state of which both controls and certifies events in
physical space. The BTFS information system contains a real-time transaction-
centric model of the physical border-crossing process. The BTFS design is based on
† This work was performed at Sandia National Laboratories, which is supported by the U.S. Department of Energy

under contract DE-AC04-94AL85000

1515

three general concepts: (1) creation of a distributed object programming
environment with an underlying secure network infrastructure; (2) a distributed
object representation of a shipping transaction; and (3) insertion of knowledgable
software agents at critical points in the information flow.

The BTFS is supported by the AISL’s distributed object programming system DCLOS
(Distributed CLOS) that provides a seamless design methodology for networked
object environments. DCLOS is essential to networking agents in a collaborative
environment. DCLOS also supports a shared fragmented workpiece object. The
information needed to effect a single shipment is captured in a complex distributed
information structure with compositional semantics called the Maquila Enterprise
Transaction (MET). The components of a given MET are distributed among the
agencies involved in a particular shipment; no one agent or agency has access to all
components. The MET is shared via proxy; when a given agent needs MET
information, it is handed a MET proxy. Access is permitted based on task
requirements and controlled by electronic signature. BTFS agents interact with the
border-crossing process by collecting and organizing information and posting it in
the MET. Control of the distributed computation is decentralized and opportunistic.
Each agent computes new information components based on its internal knowledge
base and the state of the MET . Changes in the components trigger computations in a
manner reminiscent of blackboard systems

The framework comprises two associated abstract classes: agent and agency. An
agency identifies an independent locus of processes, activities, and knowledge
typically associated with some natural partitioning of the application domain.
Agencies are collectives of agents that have ongoing high-level goals stated in
business terms. In particular, the BTFS is a distributed set of agencies specialized on
the commercial functions of the various stakeholders in the border-crossing process.
The underlying assumption is that the application is naturally modeled as a group
of interacting agencies, certainly true for the BTFS.

An electronic commerce agency (ECA) is a specialized subclass of the agencies class
that implements architectural features specific to ecommerce applications. An ECA
has the additional attributes of transactions and organizations. The transactions
attribute holds a collection of open and closed transaction objects. The organizations
attribute holds a collection of public proxy objects pointing to agencies that represent
trading partners.

The BTFS agent society comprises several federated ECAs analogous to the
interested business entities. Each ECA is populated by a heterogeneous collective of
speciated agents, each of which is able to perform a fragment of the information
tasks needed to effect trans-border shipment. Their exact duties are based on the
idiosyncratic business rules of the actual businesses involved, so an operational ECA
must be tailored and situated for each business. Constructing the ECA and the agents
that make it up consists in specializing agents from a set of standard agent classes
constructed for commerce. ECA classes are also pre-defined for the various required
roles: originator, receiver, transport provider, and import/export broker.

1616

Agents’99 Software Demonstrations Program 1

A Collaborative Spoken-Language Desktop Agent

Implemented with COLLAGEN

Charles Rich
MERL–A Mitsubishi Electric Research Lab

201 Broadway
Cambridge, MA 02139

rich@merl.com

Candace L. Sidner
Lotus Development Corporation

55 Cambridge Parkway
Cambridge, MA 02139

csidner@lotus.com

The underlying premise of the CollagenTM(for Collaborative agent) project is that software
agents, when they interact with people, should be governed by the same principles that
govern human-to-human collaboration. To determine the principles governing human col-
laboration, we have relied on research in computational linguistics on collaborative discourse,
specifically within the SharedPlan framework of Grosz & Sidner [1, 2, 4]. This work has pro-
vided us with a computationally-specified theory that has been empirically validated across
a range of human tasks. We have implemented the algorithms and information structures
of this theory in the form of a Java middleware component, a collaboration manager called
Collagen, which software developers can use to implement a collaborative interface agent for
any Java application.

In the collaborative interface agent paradigm, illustrated abstractly at the bottom left, a
software agent is able to both communicate with and observe the actions of a user on a shared
application interface, and vice versa. The software agent in this paradigm takes an active
role in joint problem solving, including advising the user when he gets stuck, suggesting what
to do next when he gets lost, and taking care of low-level details after a high-level decision
is made.

The screenshot at the bottom right shows how the collaborative interface agent paradigm
is concretely realized on a user’s display. The large window in the background is the shared
application, in this case, the Lotus eSuiteTM email program. The two smaller overlapping
windows in the corners of the screen are the agent’s and user’s home windows, through
which they communicate with each other.

observe

Agent

communicate

interact interact

observe

Application

User

Collaborative interface agent paradigm. Graphical interface for Collagen email agent.

1717

Agents’99 Software Demonstrations Program 2

A key benefit of using Collagen to build an interface agent is that the collaboration
manager automatically constructs a structured history of the user’s and agent’s activities.
This segmented interaction history is hierarchically organized according to the goal structure
of the application tasks. Among other things, this history can help re-orient the user when
he gets confused or after an extended absence. It also supports high-level, task-oriented
transformations, such as returning to an earlier goal.

Collagen also includes plan recognition capabilities specially adapted to the collaborative
interface agent paradigm [3]. The inclusion of plan recognition significantly reduces the
amount of communication required of the user, since the agent can infer the intent of many
user actions.

To apply Collagen to a particular application, the application developer must provide an
abstract model of the tasks for which the application software will be used. This knowledge
is formalized in a recipe library, which is then automatically compiled for use by the interface
agent. This approach also allows us to easily vary an agent’s level of initiative from very
passive to very active, using the same task model.

We have developed prototype interface agents using Collagen for several applications,
including air travel planning (see [5]), desktop activities, resource allocation, and industrial
control. At Agents’99, we will demonstrate our collaborative interface agent for common PC
desktop activities using email and calendar applications.

The desktop agent is the first Collagen-based agent we have built that supports spoken-
language interaction. Our other agents avoided the need for natural language understanding
by presenting the user with a dynamically-changing menu of expected utterances, which was
generated from the current discourse state according to the predictions of the the SharedPlan
theory. The desktop agent, however, incorporates a speech and natural language understand-
ing system developed by IBM Research, allowing users to collaborate either entirely in speech
or with a mixture of speech and graphical actions

References

(References [3] and [5] are available at http://www.merl.com/projects/collagen)

[1] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175–204, 1986.

[2] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen, J. L. Morgan,
and M. E. Pollack, editors, Intentions and Communication, pages 417–444. MIT Press,
Cambridge, MA, 1990.

[3] N. Lesh, C. Rich, and C. Sidner. Using plan recognition in human-computer collabora-
tion. In Proc. 7th Int. Conf. on User Modelling, Banff, Canada, June 1999.

[4] K. E. Lochbaum. A collaborative planning model of intentional structure. Computational
Linguistics, 24(4), December 1998.

[5] C. Rich and C. Sidner. COLLAGEN: A collaboration manager for software interface
agents. User Modeling and User-Adapted Interaction, 8(3/4):315–350, 1998.

1818

1

DESIRE Software Environment for Compositional
Development of Multi-Agent Systems

Frances M.T. Brazier, Frank Cornelissen, Catholijn M. Jonker,
Lourens van der Mey, Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

URL: http://www.cs.vu.nl /{frances,frankc, jonker,lourens,treur}. Email: {frances,frankc,jonker,lourens,treur}@cs.vu.nl

The compositional development method DESIRE (DEsign and Specification of Interacting REasoning
components) for multi-agent systems supports system designers during the entire design process: from
knowledge analysis through to automated prototype multi-agent system generation. The basic principles
behind the DESIRE compositional development method are:

• different levels of design (conceptual design, detailed design and operational design)
• documentation of problem description (including the requirements) and design rationale
• compositionality (based on both process abstraction and knowledge abstraction levels)
• reusability (generic models of agents and tasks)
• formal semantics (based on temporal models)
• evaluation (a compositional verification method)

These are principles generally acknowledged to be of importance in both software engineering and
knowledge engineering.

The conceptual design includes conceptual models for each individual agent and the interaction between
agents. The detailed design of a system, based on the conceptual design, specifies all static and dynamic
aspects of a system's knowledge and behaviour. Prototype implementations, the operational design, are
automatically generated from the detailed design.

In DESIRE all three levels of design are supported by a (graphical) software environment, which
includes libraries of both generic models and instantiated components. Generic agent models and generic task
models help in structuring the process of system design.

The compositional development method DESIRE is supported by a software environment that includes
tools to support system development during all phases of design. Graphical design tools support
specification of conceptual and detailed design of processes and knowledge at different abstraction levels. A
detailed design is a solid basis to develop an operational implementation in any environment. An
implementation generator supports prototype generation of both partially and fully specified models. The
code generated by the implementation generator can be executed in an execution environment. This
execution environment can be centralized, or distributed: it can execute all agents on one server, or execute
different agents on different servers.

Currently the method and environment are used in a number of research, industrial and educational
environments, providing input for the evolutionary design of the method and software environment itself.
The demo includes examples of design specification, as illustrated by Figures 1 and 2 below.

Key references

Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. (1995). Formal specification of Multi-
Agent Systems: a real-world case. In: V. Lesser (Ed.), Proc. of the First International Conference on
Multi-Agent Systems, ICMAS’95, MIT Press, Cambridge, MA, pp. 25-32. Extended version in: Int.
Journal of Cooperative Information Systems, M. Huhns, M. Singh, (Eds.), special issue on Formal
Methods in Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-agent System
Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress, WCC'98,
Conference on Information Technology and Knowledge Systems, IT&KNOWS'98, 1998, pp. 347-360.

1919

2

Hardware The software environment runs under Solaris, Linux, Windows 95, and Windows NT.

external world

Figure 1 Graphical design tool for process composition

OOOObbbbjjjjeeeecccctttt IIIInnnnppppuuuutttt IIIInnnnffffoooorrrrmmmmaaaattttiiiioooonnnn TTTTyyyyppppe: observation_results

OOOObbbbjjjjeeeecccctttt OOOOuuuuttttppppuuuutttt IIIInnnnffffoooorrrrmmmmaaaattttiiiioooonnnn TTTTyyyyppppe: action_info

AAAAddddddddiiiittttiiiioooonnnnaaaallll IIIInnnnffffoooorrrrmmmmaaaattttiiiioooonnnn TTTTyyyyppppe: SSSSppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnn::::

OOOObbbbjjjjeeeecccctttt IIIInnnnppppuuuutttt IIIInnnnffffoooorrrrmmmmaaaattttiiiioooonnnn TTTTyyyyppppe: observation_result_info

Figure 2 Component editing window

2020

Agent-based Electronic Mall
e-Marketplace

e-Marketplace
Agent execution environment, within which consumer and merchant agents
are situated

Agents interact with each other
Consumer agents search products

Merchant agents provide their products

Each agent has its own policy
Merchant agents may provide products that do not meet consumer
requirements, and products of different types
Consumer agents may filter out products and merchant agents

Market Ad. agents may advertize their marketplace address
Multiple e-Marketplaces comprises a virtual community

Agents roam around e-Marketplaces to meet others

Web
Browser

e-Marketplace A

e-Marketplace B

Consumer's PC

 Linking
e-Marketplaces

Matched with your
request!
Cost: $2980
Pentium166

Bit expensive but better
performance
Cost: $3200
PentiumPro200

PC Shop
Agent-2 Why don't you

go to our
market?

Advertizing
Agent

PC Shop
Agent-1

Consumer
Agent

Do you
have...?
Cost <= $3000
Pentium166

How about this?
Cost: $120
SIMM Memory

PC Shop
Agent-3

Consumer
Agent

Adv.
Agent

Go

Visit

Architecture and Performance Evaluation of a Massive Multi-Agent System
Gaku Yamamoto, Yuhichi Nakamura {yamamoto,nakamury}@jp.ibm.com IBM JapanTokyo Research Lab

21

Manage agent interaction based on interaction protocols defined in a XML file.
Schedule agent activities to host thousands of agent in a single agent server.

Architecture of e-Marketplace

Application

Prepare/Finish Prepared/Busy
e-Marketplace

Middleware

(Subclassing) (Load)

Consumer
Agent

Shop
Agent

Timer Bulletin
Board

Protocol
Definition Scheduling

Definition

Participant
Agent

Market
Resource

HTTP
Gateway

Interaction
Protocol

Schedule
Config. FIle

Message Monitor

Agent Scheduler

A java based mobile agent framework - Aglets

"TabiCan" , a commercial site for travel information
using e-Marketplace
http://www.tabican.ne.jp/ (Japanese only)

MerchantDB
(Products)

HTML

LAN

IBM Japan Computer
Center

Hosting service for travel agencies by IBM Japan
Providing airline tickets and package tours (airline and hotels) information for
consumers

Web
Server

Agent Server
(Consumer

Agents)

Agent Server
(Travel Agency

Agents)

HTML Files
CommonDB

(CityCode, etc)

Consumer
Agent

Architecture and Performance Evaluation of a Massive Multi-Agent System
Gaku Yamamoto, Yuhichi Nakamura {yamamoto,nakamury}@jp.ibm.com IBM JapanTokyo Research Lab

22

FM 1.00 A test-bed for Trading Agents in e-Auctions

Juan A. Rodr��guez-Aguilar, Francisco J. Mart��n, Miguel Mateos

Oscar Molina, Pere Garcia, Carles Sierra

Institut d'Investigaci�o en Intel.lig�encia Arti�cial

Campus de la Universitat Auton�oma de Barcelona

08193 Bellaterra Spain

email: fjar,martin,sierrag@iiia.csic.es

Abstract

Auction-based e-commerce is an increasingly interesting domain for developing trading agents competing in

multi-agent electronic markets. We present a framework for de�ning trading scenarios based on �sh market

auctions. In these scenarios, trading (buyer and seller) heterogeneous (human and software) agents of arbitrary

complexity participate in e-auctions under a collection of standardized market conditions and are evaluated

against their actual market performance. Such competitive situations constitute convenient problem domains

in which to study issues related with agent architectures in general and trading strategies in particular. The

proposed framework, FM, constitutes a test-bed for trading agents in auction tournament environments.

1 Introduction

Internet is spawning many new markets. In this sense, we observe that the proliferation of on-
line auctions in the Internet|such as Auctionline (http://www.auctionline.com), Onsale (http://-
www.onsale.com), InterAUCTION (http://www.interauction.com), eBay (http://www.eBay.com), and
many others | has established auctioning as a main-stream form of electronic commerce. Thus,
agent-mediated auctions appear as a convenient mechanism for automated trading, due not only to
the simplicity of their conventions for interaction when multi-party negotiations are involved, but also
to the fact that on-line auctions may successfully reduce storage, delivery or clearing house costs in
many markets. This popularity has spawned research and development in agent-mediated auction
houses as well as in trading agents endowed with intelligent auction strategies.

The matter of trading within an auction house appears to be numbingly complex, because of the
numerous variables coming into play. The actual conditions for deliberation are not only constantly
changing and highly uncertain|new goods become available, buyers come and leave, prices keep on
changing; no one really knows for sure what utility functions other agents have, nor what pro�ts might
be accrued | but on top of all that, deliberations are signi�cantly time-bounded. Hence there is the
intricate matter of providing agent developers with some support to help them face the arduous task
of designing, building, and tuning their trading agents before letting them loose in wildly competitive
markets.

The FishMarket project[6] conducted at the Arti�cial Intelligence Research Institute (IIIA-CSIC)
attempts to contribute in that direction by developing FM, an agent-mediated electronic auction
house which has been evolved into a test-bed for electronic auction markets. The resulting framework,
FM[1], constitutes an example of an agent-mediated electronic institution in the sense proposed in [5].
Conceived and implemented as an extension of FM96.5[3] (a Java-based version of the Fishmarket
auction house), FM allows to de�ne auction-based trading scenarios. It provides the framework
wherein agent designers can perform controlled experimentation in such a way that a multitude of
experimental market scenarios|that we regard as tournament scenarios due to the competitive nature
of the domain| of varying degrees of realism and complexity can be speci�ed, activated, and recorded;
and trading (buyer and seller) heterogeneous (human and software) agents compared, tuned and
evaluated. We argue that such competitive situations constitute convenient problem domains in
which to study issues related with agent architectures in general and auction strategies in particular.

1

2323

2 System Features 2

2 System Features

The current version of FM, FM1.00[4], is now available and can be downloaded from the FishMarket
project web page. Next, we summarize the most salient features of this very �rst release:

� FM is completely written in Java.

� The customizability of FM allows for the speci�cation, and subsequent activation, of a large
variety of market scenarios: from simple toy scenarios to complex real-world scenarios, i.e.,
from extremely simple market scenarios in which the same auction is repeated over and over
till market scenarios that make FM behave like the actual market. This capability of scenario
generation allows the repeatability of the experiments (tournaments) to be conducted.

� FM supports an easily extensible library of auction protocols (English, Dutch, First Price Sealed
bid, and Vickrey).

� FM is multi-user. It allows multiple users to spawn their agents in their own machines in order
to make these to participate in remote tournaments.

� FM remains architecturally{neutral since no particular agent architecture (or language) is as-
sumed or provided for building trading agents. Alternatively, a library of agent templates written
in Java, C, and Lisp accompanies this release in order to assist agent programmers to build their
agents. In this way, the programming e�ort narrows down to developing auction strategies.
Importantly, these templates handle the connection of the trading agent to the FM interagents:
autonomous software agents which intermediate the communication between the trading agents
and the institution, the market, enforcing them to follow the rules of the game[2].

� A built-in agent builder facility allows for the automatic generation of agents with customizable
auction strategies, so that families of agents capable of simulating di�erent trading behaviours
can be easily created.

� Auctions can be monitored step-by-step thanks to the FM Monitoring Agent. This keeps track
of every single event taking place during a tournament in order to obtain a visual, global repre-
sentation of the agents' ow from scene to scene within the market as well as the communication
ow (what the agents utter and when).

� The FM database stores the information to be used by trading agents to carry out market
analysis and auditing.

� FM has been designed to be as user-friendly as possible. Thus, the FM GUI allows the whole
interaction between the users and FM to be done through graphical interfaces.

References

[1] Juan A. Rodriguez-Aguilar, Francisco J. Martin, Pablo Noriega, Pere Garcia, and Carles Sierra.
Competitive scenarios for heterogenous trading agents. In Second International Conference on
Autonomous Agents (AGENTS'98), pp. 293{300, 1998.

[2] F. J. Mart��n, E. Plaza, and Juan A. Rodr��guez-Aguilar. An Infrastructure for Agent-based Systems:
An Interagent Approach. In International Journal of Intelligent Systems (to appear).

[3] Juan A. Rodr��guez-Aguilar, P. Noriega, C. Sierra, and J. Padget. Fm96.5 a java-based electronic
auction house. In Second International Conference on The Practical Application of Intelligent
Agents and Multi-Agent Technology(PAAM'97), pp. 207{224, 1997.

[4] Juan A. Rodr��guez-Aguilar, F. J. Mart��n, Oscar Molina, Miguel Mateos. FM 1.00 Users Guide.
Institut d'Investigaci�o en Intel.lig�encia Arti�cial. Technical Report, 1999.

[5] Juan A. Rodr��guez-Aguilar, Francisco J. Mart��n, Pere Garcia, Pablo Noriega, and Carles Sierra.
Towards a Formal Speci�cation of Complex Social Structures in Multi-agent Systems. In Lecture
Notes in Arti�cial Intelligence,1999 (to appear).

[6] The FishMarket Project. http://www.iiia.csic.es/Projects/�shmarket.
2424

Training Agents to Recognize Text by Example (Demo)

Henry Lieberman
Media Laboratory

Massachusetts Institute of
Technology

Cambridge, MA 02139 USA
(1-617) 253-0315

lieber@media.mit.edu

Bonnie A. Nardi
AT&T Labs West
75 Willow Road

Menlo Park, CA 94025
(1-650) 463-7064

nardi@research.att.com

David Wright
Apple Computer

1 Infinite Loop

Cupertino, CA 95014 USA

(1-408) 974-6018

dave.wright@apple.com

1. ABSTRACT
An important function of an agent is to be “on the lookout” for
bits of information that are interesting to its user, even if these
items appear in the midst of a larger body of unstructured
information. But how to tell these agents which patterns are
meaningful and what to do with the result?

Especially when agents are used to recognize text, they are
usually driven by parsers which require input in the form of
textual grammar rules. Editing grammars is difficult and error-
prone for end users. Grammex ["Grammars by Example"] is the
first direct manipulation interface designed to allow non-expert
users to define grammars interactively. The user presents
concrete examples of text that he or she would like the agent to
recognize. Rules are constructed by an iterative process, where
Grammex heuristically parses the example, displays a set of
hypotheses, and the user critiques the system’s suggestions.
Actions to take upon recognition are also demonstrated by
example.

2. Grammex: A demonstrational interface for
grammar definition
Grammex is the interface we have developed for defining
grammars from examples. It consists of a set of Grammex rule
windows, each containing a single text string example to be used
as the definition of a single grammar rule. Text may be cut and
pasted from any application. The task of the user is to create a
description of that example in terms of a grammar rule.

Grammex parses the text string according to the current
grammar, and makes mouse-sensitive the substrings of the
example that correspond to grammar symbols in its
interpretation. Clicking on one of the mouse-sensitive substrings
brings up a list of heuristically computed guesses of possible
interpretations of that substring. The user can select sets of
adjacent substrings to indicate the scope of the substring to be
parsed. At any time, a substring can be designated as a new
example, spawning a new Grammex rule window, supporting a
top-down grammar definition strategy.

There is also an overview window, containing an editable list of
the examples and rules defined so far.

2.1 An example: Defining a grammar for e-
mail addresses

We start defining the pattern for E-Mail-Address by beginning
with a new example that we would like to teach the system to

25

handle. We get a new Grammex rule window, and type in the
name for our grammar, E-Mail-Grammar, the name of the
definition, E-Mail-Address, and the example text
lieber@media.mit.edu. In Parse Mode, Grammex tries to
interpret the text in the example view, and the user can
interactively edit the interpretation. Grammex makes pieces of
the text mouse sensitive. Initially, "lieber", "@", "media", ".",
"mit" "." and "edu" are identified as separate pieces of text, using
the parser's lexical analysis. Each displays a box around it.
Clicking on a piece of text brings up a popup menu with
Grammex's interpretations of that piece of text. Here, the user
clicks on "mit".

Interpretations of the string "mit"

2.2 Top-down definition: examples can spawn
new examples

The concept of a Host is more complex than that of a person,
because we can have hosts that are simply names, such as the
machine named "media", or we can have hosts that consist of a
path of domains, separated by periods, such as "media.mit.edu".
Thus, the definition for Host requires two examples: one of each
important case.

We describe "media" as being an example of a Host being a
single word, in the same way we did for "lieber" as a Person.
Note that when we choose the word "media" the possible
interpretation [plausible, but wrong] of "media" being a Person
crops up.

"media" is a Host

2.3 Definition of recursive grammar rules
The second example for a Host describes the case where there is
more than one component to the host name, for example
"media.mit". We select the substring "media.mit" from our
original example, "lieber@media.mit.edu", and invoke New.

The default interpretation of "media.mit" would be as a Word,
followed by a ".", followed by another Word. However, while
this is a possible interpretation, it does not describe the general
case in such a way as could accommodate any number of host
components. For that, we need to express the idea that following
a "." we could then have another sequence of a word, then
another "." then a word.... that is, we could have another Host. In
our example, then, we need to change the interpretation of "mit"
to be a Host rather than a word, so that we could have not just
"media.mit" but also "media.mit.edu",
"media.mit.cambridge.ma.us", etc. This is done by simply
selecting "mit" and choosing the interpretation Host from the
popup menu.

A Host is recursively defined

The result is now that if we ask what the interpretation of "
media.mit" is, we get a Word, then ".", then a Host.

 Verifying the interpretation of "media.mit"

This is an important and subtle idea, the concept of defining a
recursive grammar definition through multiple examples.

Verifying "lieber@media.mit.edu"

3. REFERENCES

[1] Lieberman, H., Nardi, B., and Wright, D. Training Agents
to Recognize Text by Example, International Conference on
Autonomous Agents [Agents-99], Seattle, May 1999.

26

PROJECT JAMES
A Mobile Agent Platform for the Management of

Telecommunication and Data Networks

This project is inserted in the area of Information and
Telecommunication Technology and its main goal is to
apply the concept of Mobile Agents to the
Management of Telecommunication Systems and
Data Networks.

A Consortium was created mixing the experts on
Mobile Agents and Java - University of Coimbra - and
experts in Telecommunications and in the real
knowledge about the market needs which are
Siemens SA and Siemens AG, respectively.

University of Coimbra, Portugal

SIEMENS Portugal SA
SIEMENS AG

Eureka Project: E!1921

• JAMES Agencies (that support the
execution of agents);
• Support for remote upgrading of
Agents and Agencies;
• Agent monitoring and profiling;
• Efficient agent migration;
• Fault-tolerance mechanisms;
• Reconfigurable itinerary;
• Caching and Prefetching
mechanisms to optimize the agent
migration;
• Support for parallel execution;
• Disconnected computing;
• Java-based SNMP implementation;

Contact: Luis Moura Silva
Affiliation: University of Coimbra, Portugal
Email: luis@dei.uc.pt
Web page: http://james.dei.uc.pt

2727

2828

LARKS: Matchmaking Among Software Agents in CyberSpace�

Katia Sycara and Seth Wido�
The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA.

fkatia, swido�g@cs.cmu.edu

1 Introduction

One of the basic problems facing designers of open,
multi-agent systems for the Internet is the connection
problem, that is, �nding the other agents that may o�er
the services that an agent needs. Middle agents(Decker,
Sycara, and Williamson 1997), such as matchmakers,
brokers, billboards, etc. have been proposed as a way to
solve the connection problem and allow service requester
agents to �nd service providerswith desired capabilities.
Since, in general, agents are heterogeneous, there is a
need for standardized ways for agents to communicate
their services and requests. We present LARKS (Lan-
guage for Advertisement and Request for Knowledge
Sharing) that allows agents to express service capabil-
ities and requests, as well as a powerful matchmaking
algorithm that allows di�erent types of partial matches.
LARKS and the matchmaking algorithms have been
implemented and are currently extensively testedand
incorporated within our RETSINA multi-agent infras-
tructure framework (Sycara, et al. 1996).
The following �gure shows the user interface of the

matchmaker agent.
Matchmaking is the process of �nding an appropriate

provider for a requester through a middle agent, and
has the following general form: (1) Provider agents ad-
vertise their capabilities to middle agents, (2) middle
agents store these advertisements, (3) a requester asks
some middle agent whether it knows of providers with
desired capabilities, and (4) the middle agent matches
the request against the stored advertisements and re-
turns the result, a subset of the stored advertisements.
1.
While this process at �rst glance seems very simple,

it is complicated by the fact that not only local infor-
mation sources but even providers and requesters in the
Cyberspace are usually heterogeneous and incapable of

�This research has been sponsored in part by O�ce
of Naval Research grant N-00014-96-16-1-1222, and by
DARPA grant F-30602-98-2-0138. We want to acknowledge
the contributions of Matthias Klusch and Jianguo Lu.

1We assume the existence of multiple middle agents on
the Internet. We have developed protocols for e�cient, dis-
tributed matchmaking among multiple middle agents (Jha,
et al. 1998).

Figure 1: The User Interface of the Matchmaker Agent.

understanding each other. This gives rise to the need
for a common language for describing the capabilities
and requests of software agents in a convenient way.
In addition, it is necessary to have an e�cient mecha-
nism to determine a structural and semantic match of
descriptions in that language.

2 The Agent Capability Description
Language Larks

There is an obvious need to describe agent capabilities
in a common language before any meaningful service
matchmaking or brokering among the agents can take
place. Some of the main desired features of such a lan-
guage are the following:

� Expressiveness The language should be expressive
enough to represent not only data and knowledge,
but also the meaning of program code. Agent ca-
pabilities should be described at an abstract rather
than implementation level.

2929

� Inferences. Inferences on descriptions written in
this language should be supported. Automated rea-
soning and comparison on the descriptions should be
possible and e�cient.

� Ease of Use. Descriptions should not only be easy
to read and understand, but also easy to write by
the user. The language should support the use of
domain or common ontologies for specifying agents
capabilities.

A speci�cation in Larks is a frame with the following
slot structure.

Context Context of speci�cation
Types Declaration of used

variable types
Input Declaration of

input variables
Output Declaration of

output variables
InConstraints Constraints on

input variables
OutConstraints Constraints on

output variables
ConcDescriptions Ontological descriptions

of used words
TextDescription Textual Description of

speci�cation

Local Domain Ontologies: As mentioned above
Larks o�ers the option to use application domain
knowledge in any advertisement or request. This is done
by using a local ontology for describing the meaning of
a word in a Larks speci�cation. In our implementa-
tion of the matchmaking process it is assumed that any
local ontology is de�ned in the concept language Itl

(Sycara, Lu, and Klusch 1998).
Any user or agent, requester or provider, may browse

through the matchmaker's ontology and use the in-
cluded concepts for describing the meaning of words in
a speci�cation of a request or advertisement in Larks2.

3 Matchmaking Using Larks

Every speci�cation in Larks can be interpreted as an
advertisement as well as a request; the speci�cation's
role depends on the agent's purpose for sending it to a
matchmaker agent, and it is indicated in the wrapper
language by an appropriate performative (advertise or
request). Every Larks speci�cation must be wrapped
by the sending agent in an appropriate message that
indicates if the message content is to be treated as a
request or an advertisement.
The matching engine of the matchmaker agent con-

tains �ve di�erent �lters (described below).
Context Filter: Any matching of two speci�cations

has to be in an appropriate context. In Larks to deal
with restricting the advertisement matching space to
those in the same domain as the request, each speci-
�cation supplies a list of keywords meant to describe

2This is similar to the common use of domain namespaces
in XML for semantically tagging Web page contents.

the semantic domain of the service. Word distance is
computed using the trigger-pair model. If two words
are signi�cantly co-related, then they are considered
trigger-pairs, and the value of the co-relation is domain
speci�c. In the current implementation we use the Wall
Street Journal corpus of one million word pairs to com-
pute the word distance.
Pro�le Filter: Although context matching is most

e�cient, it does not consider the whole speci�cation it-
self. This is done with a pro�le �lter that compares two
Larks speci�cations by using a variant of the known
TF-IDF (term frequency-inverse document frequency)
technique (Salton and Wong 1975).
Similarity Filter: Computation of similarity relies

on a combination of distance values as calculated for
pairs of input and output declarations, and input and
output constraints. Each of these distance values is
computed in terms of the distance between concepts
and words that occur in their respective speci�cation
section.
Signature and Constraint Filters: The similar-

ity �lter takes into consideration the semantics of indi-
vidual words in the description. However, it does not
take the meaning of the logical constraints in a Larks

speci�cation into account. This is done in our match-
making process by the signature and constraint �lters.
Signature matching checks if the signatures of input and
output declarations match. It is performed by a set of
subtype inference rules as well as concept subsumption
testing (see (Sycara, Lu, and Klusch 1998) for details).

References
K. Decker, K. Sycara, M. Williamson. Middle-Agents for
the Internet. Proc. 15th IJCAI, pages 578-583, Nagoya,
Japan, August 1997.

S. Jha, P. Chalasani, O. Shehory and K. Sycara. A For-
mal Treatment of Distributed Matchmaking. In Proceed-
ings of the Second International conference on Autonomous
Agents (Agents 98), Minneapolis, MN, May 1998.

G. Salton, A. Wong. A vector space model for automatic
indexing. Communications of the ACM, 18, 613-620, 1975.

K. Sycara, J. Lu, and M. Klusch. Interoperability among
Heterogeneous Software Agents on the Internet. Carnegie
Mellon University, PA (USA), Technical Report CMU-RI-
TR-98-22.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D.
Zeng. Distributed Intelligent Agents. IEEE Expert, pp. 36
- 46, December 1996.

3030

LiveMarks: Collaborative Information Gathering

LiveMarks builds on mutuality: letting everybody profit a great deal from the accumulated results of
other people’s work with minimal additional effort for each person involved. While a user submits
queries to a search engine, browses and assesses the results, software agents in the background can
apply their accumulated knowledge about the users and look for recommendations from other people
and find related documents by inspecting large collections of documents using text mining techniques.

LiveMarks uses BSCW, a shared workspace system on the Web, as its front-end. BSCW supports
cross-platform cooperative work in widely dispersed working groups by the provision of “shared
workspaces”, i.e. repositories in which users can upload arbitrary electronic documents, collect
URLs, hold threaded discussions, and are kept aware of the activities of others to coordinate their
own work. BSCW is integrated with an unmodified Web server and is accessible from standard Web
browsers.

For agent-based information collection we have extended BSCW in two ways: at the user interface we
have introduced a new type of object, the query, and a rating and annotation feature for URLs; at the
back-end we have enabled BSCW to communicate with LiveMarks agents.

Agent platform

LiveMarks agents are implemented on our SOcial Agents Platform (SOaP). SOaP forms an extension
of the Java Virtual Machine and constitutes a minimal operating system for multi-agent applications. It
is tailored to our application requirements, namely openness, scalability, robustness and security.

An agent consists of at least one thread and communicates via asynchronous message object passing
using mailboxes. Agents run concurrently in a single Java VM, called “agent engine”, or may be
distributed among several agent engines.

SOaP is conceptually divided into four abstraction layers. The two lower layers deal with the local
agent life cycle management and additionally provide basic agent services, e.g. a name service. The
remaining layers implement location transparent general and application specific service agents.

The LiveMarks application employs four types of agents: the BSCW agent interfaces with the BCSW
server and spawns task agents which are associated to BSCW workspaces and process the queries
within these workspaces. Search and recommender agents are service agents which both wrap
external information sources: search engines like AltaVista or Infoseek and the recommender database
of rated Web documents.

Recommender Agent

SearchAgent

BSCW Agent

SOaP engine

WWW

LiveMarksBSCW

HTTP
Task Agents

Reco.
DB

CGI

BSCW server

Browser

TCP

Inter-
connection

protocolA
G
I

HTTP

User perspective

Whenever a user creates a query for Web documents, this query is propagated to the software agents
that work in the background. The agents forward the query to search engines, collect the results, and
enrich them with their own recommendations. The recommendations are derived from an internal
database that stores references and descriptions of Web documents along with user ratings and anno-
tations. The agents produce recommendations by searching this database for highly rated documents
whose descriptions match the query. The best-ranked results are transmitted back to BSCW where
they are presented within the query to which they belong; the query operates as a folder for its results.

After having received the results, users may inspect the documents as well as rate and annotate them
for the benefit of their fellow users with whom they share the workspace. Rated and annotated URLs

3131

are automatically moved out of the query folder one level up to a more prominent position, URLs
judged irrelevant disappear for good. The ratings and annotations are also propagated to the
LiveMarks agents which store them in their document database for future recommendations.

The BSCW interface of LiveMarks showing two active query objects, rated and annotated
URLs, and a document produced by the group.

As long as a query is active, new results will continue to flow in when the query folder can take more.
The capacity of a query folder is limited in order to ensure a better overview for the users and to avoid
flooding them with too many results. The agents make sure that, at any time, the folder will contain
only the best results. The flow of results can be stopped by inactivating a query.

For its members, a BSCW shared workspace serves as the context for an information collection task.
The workspace contains all queries and all relevant results. Within this context, the agents will
minimize redundant information: same or similar URLs are suppressed, material that has been judged
irrelevant within a workspace, or has been removed from the workspace will not be produced again as
response to a new query.

By integrating the agent-based information retrieval services of LiveMarks into the BSCW groupware
system we believe to have created an environment that addresses the needs of information acquisition
tasks:

• Information seeking extends over time; intermediate queries and results need to be preserved so
that the activity may be interrupted and resumed easily.

• Information seeking is not a stand-alone activity. Support tools need to be integrated into an
electronic working environment.

• Information seeking is not a solitary activity in most cases. Queries and search results need to be
shared, assessed and structured in a working group.

Additionally, the group setting of LiveMarks motivates serious and responsible rating and annotating
which in turn improves the quality of LiveMarks recommendations.

Contact:. A. Voss, V. Paulsen, GMD; angi.voss@gmd.de; http://orgwis.gmd.de/projects/Coins/

3232

���������	��
����������
���������������
�����������
�����
! #"�$&%�$������'��(����'�*)�+��,�-���

.0/21436587:9<;>=?;�@�/

A0BDC�E:FHG�I�J'KML�N�O�FQP�FHR:I>STN#U�GVN2W>XYK:Z'N2[�E:FHG]\
^�J0_,`�E�aTbcFTdeS�K�f?FH\�d6a<RgA0NHd6NhFQG�C�E>i�N2R�\]N�G

j�aTG]k�\]aHl0RnmoN2BpOTE�\�d#q�rojts2u<vTw<x
Gyd6N2O4FQP{zel|FQ\�d�aTRK}B�~�b�K�C�a<bgqTk�N2[�E�FQG]\#zel0FQ\yd6a<RK�Bp~�bgK�C#aTb

�����#�2�<���T�
�0�6�������V���}���������#�D�{�����}�V�{�#���V�D���}�D�D�6�#�����2�V�T�2�{�����

� �D�����- 6���V�6�#�}¡¢�o�����{���£�{¤p¥-�����M���#�D e¦§ 6�}¨#�{����© ª¬«p¯®§�
� �D�°���£�D�{±#��²��}�]�D����³��{���D ´�}�°�6�D�Y�¢�]²D� � �D�{��µ ��¥-�6����¤³��������¶���6·#�}�D�¢>�0���������V� � �D�°��¸��2�V�-�}�´�}�¢���D�2�0�D �����°¨¹�}²¢�0�����0���#���¢�º¦» 6�}¨#�{���´���¼¸��#�}²½�¼����� � �D�{���}�¥-]�D�:����¾��{�}¿e�D ��#�}�]²¢���¢�]²D�0���2²°]¥������0¥-�¢�D�D�V�]�]À®§�
���2���-���� �Á]�}¨#�¢�:���2 ����D² � ��· � �D�D ��2�Â�D M³#�}���¢�V²½��¥��¢��¤�D�]�V�Ã���#�D £ 6���� �¦������¢�D���������¢�¦§ ��}¨��{���¢ÅÄÆ���{�' ��2�
 6¦H�0���������]�¢µ �������°¨¹�}²¢���} ��2���}��²¢ ��D���¢²¢�¢Ç������:�{ÈH ����T���{¤
É]� �����°¨Æ�D �³#�}���0¥��¢�D�D�]�V�´�}����¢¨ � ²¢�¢¨¯�D 0�0�������6�}�· � �D�D 6�e²����}²½¾H

Ê Ë�Ì�Í�Î:ÏeÐÆÑeÒ�ÍÂÓ�ÏºÌ
Ô'Õ�Ö�×�ØoÙ#Ú�ÛTÜ�Ý�Ù�ÞHÝ�Ü�Ö-Ù�Û�Û�Õ�ß�àHÖ{Ý�Ü�Ö-×�ÕoÕ#Ü{á#Ù#âQÚ�ã6Ý�×{äHÝ�Ú�Ü�ØoÝ�ÖDå
Ö�Ù�á#Ý�Ö´Ú�â2×{Õ0æpÕ�Û�ÞQÝ�Ü�Ö�×{Õ'Ý�Ù#Ö{Ý0Û�Ù�×�Ý�Ü-Ü{Ý�×�Ü{Ú�Ý6ç�Ù#ÛDè0é�âQÝ0ØeÚ�á#ä2×
Ö�àQêHê<Õ�Ö�Ý�×{äHÙ#××{äHÝ-Ý¢ë�Õ#Ü�×�Ü�Ý�ì2àHÚ�Ü{Ý�Þ¯×�Õ´í<Û�Ý-Ù£ØoÝ�Ö�Ö{Ù#á�Ý�àQÖDå
Ú�âHá0×�äQÝ�Ö�Ý0êHÜ{Õ#á�Ü�Ù#ØoÖßÀÕ�àHÛ�Þ'î<Ý�âHÝ�á�Û�Ú�á�Ú�îQÛ�Ý�èÀïDâ¶êHÜ{Ù#ð�×{Ú�ð6Ý#ñ
äHÕ�ß�Ý�ç#Ý6ÜVñ2ØeÙ�â2ò�àHÖ�Ý6Ü�ÖíTâHÞe×{äHÝ�ð�Õ�á#âHÚ�×{Ú�ç�Ý�îHàQÜ�ÞHÝ�â'Õ¹æ�ÞHÝ¢å
ð�Ú�ÞHÚ�âHáóßäHÝ6Ü�Ý¯×{Õ¶í<Û�Ý¯ÙóØeÝ�Ö{Ö�Ù�á#Ý'êHÛ�àHÖ0×�äQÝ¯×�Ú�ØeÝoÖ�êTÝ�â2×
Ú�â2×�Ý�Ü{Ù#ð�×{Ú�âQá�ßÚ�×�ä�×�äHÝ�àHÖ�Ý�Ü�Ú�â2×�Ý�Ü½æpÙ#ð�Ý×{Õ�îTÝÙ�Ö�àHîQÖ�×�Ù�â2×�Ú�Ù#Û
îHÙ�Ü�Ü�Ú�Ý�Ü]è:ôäHÚ�Ö�îHÙ#Ü{Ü�Ú�Ý�ÜÚ�ÖÖ�Ú�á�âHÚ�í<ð�Ù#â2×�Ý�âHÕ�àHá#ä'×�äQÙ#×ØeÙ�â2ò
àHÖ{Ý�Ü�Ö�ì2àHÚ�ð°õ2Û�ò-æpÙ�Û�Û�îTÝ�äHÚ�âHÞ0Ù�âHÞ�Û�Ý6×:àHâ2í<Û�Ý�Þ0ØoÝ�Ö�Ö{Ù#á�Ý�Ö:êHÚ�Û�Ý
àHê'Ú�âe×{äHÝ�Ú�Ü�ØoÙ#Ú�Û�î<Õ]öHÝ�Ö]è
Ô'Ù#Ú�Û§÷�Ù#×MÚ�ÖÙ�â'Ú�â2×{Ý�Û�Û�Ú�á�Ý�â2×:Ù#Ö{Ö�Ú�Ö�×{Ù#â2××�äHÙ�×äHÝ�Û�êHÖ�àHÖ�Ý�Ü{Ö

Õ#Ü{á#Ù�âHÚ�ã�Ý:×�äQÝ�Ú�ÜÂÝ¬åøØoÙ#Ú�Û#Ú�â2×�Õ�æpÕ�Û�ÞHÝ�Ü�Ö]èÂÔùÙ#Ú�Û§÷�Ù#×�àQÖ�Ý�Ö�Ù-×�Ý¢öH×
ð�Û�Ù#Ö{Ö�Ú�í<Ý�Ü�×�Õ�Û�Ý�Ù#Ü{â0Ý�Ù#ð¢äoàHÖ�Ý�Ü]ú ÖÀØoÙ#Ú�Û�åpí<Û�Ú�âHáäHÙ�îHÚ�×�Ö]è:Ô'Ù#Ú�Û�å
÷�Ù#×´àHÖ�Ý�Ö0ßäQÙ#×�Ú�×�Û�Ý�Ù�Ü�âHÖ�×�Õ¯êQÜ�Ý�ÞHÚ�ð�×�×�äQÝe×�äQÜ�Ý�ÝoæpÕ�Û�ÞQÝ�Ü�Ö
Ú�â'ßäHÚ�ð°ä'×{äHÝ-àHÖ�Ý�Ü-Ú�Ö�ØeÕ#Ö{×ÀÛ�Ú�õ#Ý6Û�ò0×{Õ0êHÛ�Ù#ð�Ý-Ý�Ù�ð¢ä¯Ú�âHð�Õ#Øºå
Ú�âHá-ØeÝ�Ö{Ö�Ù�á#Ý#è�ïD×:×�äQÝ�âeêHÜ{Õ�ç2Ú�ÞQÝ�Ö:Ö�äQÕ#Ü�×{ð�àH×�îHàH×{×�Õ#âQÖ:×�Õ-íTÛ�Ý
Ý�Ù�ð°äóØoÝ�Ö�Ö{Ù#á�Ý£Ú�â2×�Õ'Õ#âQÝ£Õ¹æÅ×{äHÝ�Ö�Ýo×�äHÜ{Ý�Ý�æpÕ�Û�ÞQÝ�Ü�Ö]è0û�äHÝ�â
Õ#âQÝ�Õ�æÀÔ'Ù�Ú�Û§÷�Ù�×Vú ÖÀêQÜ�Ý�ÞHÚ�ð�×{Ú�Õ#âHÖ�Ú�Ö�ð�Õ#Ü{Ü�Ý�ð6×Vñ�×{äHÝ�Ý¢ë�Õ#Ü{×�Ü{Ý¢å
ì2àHÚ�Ü�Ý�Þ'×{Õ�í<Û�Ý�Ù£ØoÝ�Ö�Ö{Ù#á#Ý�Ú�ÖÜ�Ý�ÞHàQð�Ý�Þ¯×{Õ£Ù�Ö�Ú�âHá�Û�Ý�îHàH×{×�Õ#â
ð�Û�Ú�ð¢õ4è
Ô'Ù#Ú�Û§÷�Ù#×TêHÜ{Õ�ç�Ú�ÞHÝ6Ö�Ú�×�Ö�Ù�Ö�Ö�Ú�Ö{×�Ù#âQð�ÝÀßÚ�×{äHÕ#àH×�êQÛ�Ù�ð�Ú�âHáÙ#â2ò

Ù#ÞQÞHÚ�×�Ú�Õ#âHÙ�ÛîHàHÜ{ÞHÝ�âHÖ¯Õ�â�×�äQÝ¯àHÖ�Ý6ÜVè?û�äHÝ6â�Ô'Ù�Ú�Û»÷�Ù�×£Ú�Ö
í<Ü{Ö�×�Ú�âQÖ�×�Ù�Û�Û�Ý6Þ�ñ�Ú�×�Ù�âHÙ#Û�ò2ã�Ý�Ö´×�äHÝoàHÖ�Ý�Ü]ú Ö£Ý¢öHÚ�Ö�×{Ú�âHá'æpÕ�Û�ÞQÝ�Ü�Ö
×�Õ0Û�Ý�Ù�Ü�â¯äQÝ�Ü�ØoÙ#Ú�Û�åpí<Û�Ú�âHá-äHÙ�îHÚ�×�ÖVèÔ'Ù�Ú�Û»÷�Ù�×Ú�ØeØ0Ý�ÞHÚ�Ù�×�Ý�Û�ò
Ö�×{Ù#Ü{×�Ö0êHÜ{Õ�ç�Ú�ÞHÚ�âHá¶Ö�äQÕ#Ü�×{ð�àH×0îHàQ×�×�Õ�âHÖVè�ï�æ-×�äHÝ'àHÖ{Ý�ÜeÛ�Ú�õ#Ý6Ö

ÔùÙ#Ú�Û§÷�Ù#×Vú Ö�Ö�àHá�á#Ý�Ö{×�Ú�Õ#âQÖVñHÖ{äHÝ�ð�Ù#â'àHÖ{Ý�×�äHÝ´Ö�äHÕ�Ü�×�ð6àH×-îHàH×Då
×{Õ#âHÖ´×�Õ¯ì2àHÚ�ð¢õ2Û�òùí<Û�Ý0äHÝ�Ü�Ý¢åDØeÙ�Ú�Ûøè�ï�æ�×{äHÝ0àHÖ�Ý6Ü£ÞHÕ2Ý�Ö�âHÕ�×
Û�Ú�õ#ÝeÔùÙ#Ú�Û§÷�Ù#×Vú Ö�Ö�àHá�á#Ý�Ö{×�Ú�Õ#âQÖVñ:Ö{äHÝ¯ð�Ù�âóí<Û�Ý'ØeÝ6Ö�Ö�Ù�á#Ý�Ö�Ú�â
×{äHÝ�àHÖ�àHÙ�Û�ßÀÙ�ò2è�Ô'Ù�Ú�Û§÷�Ù�×�ð�Õ�â�×{Ú�â�àQÕ#àHÖ{Û�òoÚ�ØeêHÜ{Õ�ç#Ý�ÖÚ�×�Ö{Ý�Û�æ
Ù�âHÞ�Ù�ÞHÙ#êH×{Ö'×�Õ�ð¢äHÙ#âHá�Ý�Ö'î2ò�Û�Ý�Ù#Ü{âHÚ�âHáóæpÜ{Õ#Ø*Ý�Ù�ð¢ägâHÝ�ß
ØoÝ�Ö�Ö{Ù#á�Ý�×�äQÝ�àHÖ�Ý6Üí<Û�Ý�Ö]è
ü ýÿþ´Ó����?þ-Í
��Ú�á#àQÜ�Ý��'Ö{äHÕ�ßÖeäHÕ�ß�Ô'Ù�Ú�Û§÷�Ù�×£Ö{Ú�ØoêHÛ�Ú�í<Ý�Ö0×�äQÝ¯×�Ù�Ö�õ�Õ�æ
Õ�Ü�á�Ù#âHÚ�ã�Ú�âHá¯ØoÝ�Ö�Ö{Ù#á�Ý�ÖVè�Ô'Ù#Ú�Û§÷�Ù#×´êHÛ�Ù#ð�Ý�Ö0×{äHÜ�Ý6Ý îQàH×�×{Õ#âHÖ
Ù�î<Õ�ç�ÝÀÝ6Ù#ð¢ä0ØeÝ�Ö{Ö�Ù�á#Ý×�äQÙ#×:Ù�Û�Û�Õ�ßó×{äHÝàHÖ�Ý6ÜÀ×{Õ�ì2àHÚ�ð¢õ2Û�ò-í<Û�Ý
Ý6Ù#ð¢ä0ØeÝ�Ö{Ö�Ù�á#ÝÚ�â2×�Õ-Õ#âHÝÕ¹æ4×{äHÝ�×{äHÜ�Ý6ÝæpÕ�Û�ÞQÝ�Ü�Ö:Ú�×�Ö�àQá#á#Ý6Ö�×�Ö]è
û äHÝ�â�Õ#âHÝ�Õ�æ<×{äHÝ×�äQÜ�Ý�ÝîHàQ×�×�Õ�âHÖ:Ú�Ö�ð�Û�Ú�ð°õ�Ý�Þ�ñ�×{äHÝ�ØeÝ�Ö{Ö�Ù#á�Ý
Ú�Ö�Ú�ØeØeÝ6ÞHÚ�Ù#×�Ý6Û�ò´ØeÕ�ç#Ý6Þ0×�Õ0×�äQÝ�Ú�âHÞQÚ�ð6Ù#×�Ý6Þeæ�Õ#Û�ÞHÝ�Ü]è
Ô'Ù#Ú�Û§÷�Ù#×�àHÖ�Ý6Ö�Ùe×{Ý¢öH×�ð�Û�Ù#Ö{Ö�Ú�í<Ý�Ü-×�Õ'êHÜ{Ý�ÞHÚ�ð�×�×{äHÝ�Û�Ú�õ�Ý�Û�ò

ÞQÝ�Ö�×{Ú�âQÙ#×�Ú�Õ�âeæ�Õ#Û�ÞHÝ�Ü{Ö�æpÕ#ÜÝ�Ù�ð¢ä¯ØeÝ�Ö{Ö�Ù�á#Ý#è:Ô'Ù�Ú�Û»÷�Ù�×ÀîQàHÚ�Û�ÞQÖ
Ú�×{Ön×{Ý¢öH×gð�Û�Ù#Ö�Ö{Ú�í<Ý�Ügî2ò�Û�Ý�Ù#Ü{âHÚ�âHá�æ�Ü�Õ#Ø àHÖ�Ý�ÜgÙ�ð�×�Ú�Õ�âHÖVè
ÔùÙ#Ý�Ö��	��
�Ö�àQá#á#Ý6Ö�×�Öo×�äHÙ�×0Ú�×£ð�Ù�â�×�Ù#õ�ÝeÖ{Õ#ØeÝo×�Ú�ØeÝ�æ�Õ#Ü�Ù
àQÖ�Ý�Ü:×{Õ�í<Û�ÝÝ�âHÕ#àQá#ä�ØeÝ�Ö{Ö�Ù#á�Ý�Ö�æpÕ#Ü�Ù�â0Ý¢åøØoÙ#Ú�Û�Ù#Ö{Ö�Ú�Ö�×{Ù#â2×:×{Õ
Û�Ý�Ù�Ü�â¶Ù¯á#Õ2Õ2Þ¶ð�Û�Ù#Ö�Ö{Ú�í<Ý�ÜVè'Ô'Ù�Ý�Ö�êHÜ{Õ#êTÕ#Ö�Ý6Ö£ð�Õ�Û�Û�Ù�î<Õ�Ü�Ù�×�Ú�ç#Ý
Û�Ý�Ù�Ü�âHÚ�âHá0Ù�Ö-ÙeÖ�Õ�Û�àH×�Ú�Õ#â'×{Õe×�äQÚ�Ö-êHÜ{Õ#îHÛ�Ý�Ø&Ú�â¯ßäHÚ�ð¢ä¯Ý�Ù�ð°ä
Ý¬åøØoÙ#Ú�Û:Ù#á�Ý�â2×£Û�Ý�Ù�Ü�âHÖ´æpÜ{Õ#Ø Õ#×{äHÝ�Ü0Ý¢åDØeÙ�Ú�ÛMÙ#á#Ý6â�×{Ö£ßäQÕ#Ö�Ý
àQÖ�Ý�Ü{ÖÂäQÙ�ç#Ý:Ö{Ú�ØoÚ�Û�Ù�ÜHØeÙ�Ú�Û}å�í<Û�Ú�âHá�äHÙ#îQÚ�×{ÖVè�û�äHÚ�Û�Ý�×�äHÚ�Ö�ß�Õ#Ü{õ2Ö
ß�Ý�Û�Û-Ú�æ£Õ#âHÝÆð�Ù#â í<âHÞ>Ù�àHÖ�Ý�Ü'ßÚ�×�ä>Ö�Ú�ØoÚ�Û�Ù�Ü£ØoÙ#Ú�Û�åpí<Û�Ú�âHá
äQÙ#îHÚ�×�Ö]ñ�í<âHÞHÚ�âHá�Ö�àQð°ä'Ù0àHÖ{Ý�ÜÖ�Ý6Ý�ØeÖàHâQÛ�Ú�õ�Ý�Û�ò0Ú�âoêHÜ�Ù�ð�×�Ú�ð�Ý
á�Ú�ç#Ý�âo×�äHÝ�ÞQÚ�ç�Ý�Ü�Ö{Ú�×Dò0Õ�æ:ØeÙ�Ú�Û�å�í<Û}Ú�âHá-Ö{ð°äQÝ�ØeÝ�Ö]è
� â8Ù#Û�×�Ý�Ü{âHÙ#×{Ú�ç#Ý0Ö�Õ�Û�àH×�Ú�Õ#â¶Ú�Ö�×�ÕÆÛ�Ý6Ù#Ü�â¶æ�Ü�Õ#Ø ØoÝ�Ö�Ö{Ù#á#Ý6Ö

êQÜ�Ý�ç2Ú�Õ#àHÖ{Û�òóí<Û�Ý�Þ�î2ò¼×{äHÝ'àHÖ�Ý�Ü]ègÔ'Õ#Ö{×eÝ¢åDØeÙ�Ú�ÛMàHÖ�Ý�Ü{Ö'Ù#Û�å
Ü{Ý�Ù#ÞQò¯äHÙ�ç#Ý�Ù'Û�Ù#Ü�á�Ý£ÞQÙ#×�Ù�îHÙ#Ö{Ý£Õ¹æÅêQÜ�Ý�ç2Ú�Õ#àHÖ{Û�ò#å�í<Û�Ý�Þ¶ØeÝ�Ö½å
Ö{Ù#á�Ý�ÖßäHÚ�ð¢äeð�Ù�âeîTÝ�àQÖ�Ý�Þ'×�Õ0îTÕ2Õ#×{Ö�×�Ü{Ù#êo×�äHÝ-×�Ý¬öh×ð6Û�Ù�Ö�Ö{Ú}å
íTÝ�Ü�t×�äHÝ´ØeÝ�Ö{Ö�Ù#á�Ý�Öð�àHÜ{Ü�Ý�â2×{Û�òoÖ�×{Õ#Ü�Ý6Þ¯Ú�âe×�äQÝ�Ú�Ü�æpÕ#Û�ÞHÝ�Ü{ÖVè
ôäQÚ�Ö�ÞHÙ#×{Ù#îHÙ�Ö�Ý:êQÜ�Õ�ç2Ú�ÞHÝ�Ö�Ù#ØoêHÛ�Ý�×�Ü{Ù#Ú�âHÚ�âHá�ÞHÙ#×{Ù�×�Õ�á#Ý�×�×�äHÝ
ð6Û�Ù�Ö�Ö{Ú}íTÝ�Ü�ì2àHÚ�ð¢õ2Û�òoàHê'×�ÕoÖ�êTÝ�Ý�Þ�èû äHÝ�âYÔ'Ù�Ú�Û»÷�Ù�×ÀÚ�Ö�í<Ü{Ö�×
Ú�âHÖ{×�Ù�Û�Û�Ý�Þ�ñ�Ú�×�Ü{Ý�Ù#ÞQÖ£×{äHÝ0àHÖ�Ý6ÜVú Ö�ÞHÙ�×�Ù#îQÙ#Ö�Ý0Õ¹æÅêQÜ�Ý�ç2Ú�Õ#àHÖ{Û�ò#å
íTÛ�Ý6Þ0ØeÝ�Ö{Ö�Ù#á�Ý�Ö�Ù#âHÞ0àQÖ�Ý�Ö�ßäHÙ#×�Ú�×�í<âQÞHÖ:×�Õ´×�Ü�Ù�Ú�â£×{äHÝ×�Ý¢öH×
ð6Û�Ù�Ö�Ö{Ú}íTÝ�ÜVè � æp×�Ý�Ü×{äHÚ�ÖÀÚ�âHÚ�×{Ú�Ù�ÛH×�Ü{Ù#Ú�âHÚ�âHáTñ�Ô'Ù�Ú�Û»÷�Ù�×:ð�Ù�âeÚ�Ø0å
ØoÝ�ÞHÚ�Ù#×{Ý�Û�ò£îTÝ�á�Ú�â'ØoÙ#õ2Ú�âHá-àHÖ�Ý¢æ�àHÛ�êHÜ{Ý�ÞHÚ�ð�×{Ú�Õ�âHÖVè
ôäHÝ-Ú�âHÚ�×�Ú�Ù#ÛH×{Ü�Ù�Ú�âQÚ�âQá�Õ�æ�×�äHÝ�ð�Û�Ù#Ö�Ö{Ú�í<Ý�ÜÚ�ÖÀÕ�âHÛ�ò£äQÙ#Û�æ�×�äHÝ

îQÙ#×�×{Û�Ý#è���Ö{Ý�Ü�ÖoÙ#Ü�Ý'ð�Õ�âHÖ�×{Ù#â2×�Û�ò8ð�Ü�Ý�Ù�×�Ú�âHáTñÀÞQÝ�Û�Ý�×�Ú�âHáóÙ�âHÞ

�
3333

���	�����������������	 "!���#�$��%�&��#%�&'('�)�*���#%$��+#(,+��#%#�*�-�'/.0*��1#�)��2#%)+�%���3.0*� 	4��&�%'5�	-�61)��	$7)��8#19+�%��4��	$�#�':#%)��2�+'%���:�	'1;�*<'%#� 8�	=<�� 	>
#%*39� 	��$��?����$7)�;@��'%'����<��ACBD)���-��	#�'E9�����4��	$�#��8*<-�'����%�?$�*����%��$&#GF�#�)��5�+'%���1$��<-IHJ 	�5���<$7)�;��&'%'%�<���1��'��	-��2�I'%�	-��� 	�1,��+#%#%*<-
$� 	�	$7=KA

�%�&*��%�<��-��	L��	-��I#%)+���	��.0*� 	4�����'GANMPO<��-��Q.C#%)+�:.0*� 	4��&�%'1�%�&;����	-
#%)+�R'���;��<F5#�)��R#S>T9U�R*V.W;@��'%'����<��'�9� 	��$���4X�	-Y�Z.0*� 	4��&�
$7)���-+����'I*�O����I#%�	;@��A������	 "!���#:'�*� 	O���'I#%)+�8'I9���*�,� 	��;[,T>
��'��8-+�\�8-+$��%��;@��-T#%�< 1 8�&���%-+�8-+�JAY]?-�$���#�)���$� 	��'�'%�QHJ���@)���'
,U����-I#%�%�<�	-���4CF��^���	 "!���#G_ '`�	-�$�����;��&-a#��� QbS 8�&���%-+�8-+�14�����;@*�-
6���#%$7)��&'�.c*��d;��&'%'%�<����'@#%)��<#��<�%���<4�4���4X#%**<��4��� 	��#���4
.0��*�;[����$7)e.0*� 	4����fAgBY)���-��&O����d�g;���'�'%�<���d�	'h�<4�4���4Z*��
4��� 	��#���4CFN���<�	 i!��<#:��'%��'I�	#%'2�	-�$&�%��;@��-T#%�� j 8�&���%-+�8-+���� 	��*Vb
�%�	#�)�;k#�*���9U4��<#%�2�	#%'?��'%�&�(;@*T4��� SANl/.0#%���:��9U4��<#%�	-��JF+#%)��
$� 	��'�'%�QHJ���d61�	 	 1���&-����%�<#%��#�)���'%�<;���9+�%��4��	$�#��	*�-�'d�<'d�m.:�	#
6����%�2#��%�<�8-+��4�*�-�#%)��:��-T#��8���24��<#%��,+��'%�<A
nS-�$�����;���-T#��� U 8�&���%-+�8-+�h�< 8 	*�61'E�^���	 "!���#N#�*hoT���	$7=T 8>d���7b

'%9U*�-+4h#�*5$7)���-+����'fAPnc.J#%)��1�+'%���P$�������#���'E�?-���6e.0*� 	4�������-�4
��4+4�'1�2.c��6p;@��'%'����<��'GFU�����	 "!���#N�	-�'�#%�<-a#� 	>d 8�&���%-+'1��,U*���#
#%)+��.c*� 	4����I��-�4�$��<-�'%#%�<�%#d9�����4��	$�#��8-+�\61)��	$q)Z;���'�'%�<����'
'%)+*��� 	4���*I�	-�#%)+�2-���6D.0*� 	4��&�GA
�����	 "!���#g9���*�Oa�	4��&'\#%)������p'�)�*���#%$��+#�,���#�#%*<-�'�����#%)+���

#%)+��-�*<-��5#�*h�	-�$&�%���<'%�:#%)��?$7)���-�$&��'1#%)��<#E*<-��5*V.r#�)��5,��+#Sb
#%*<-�'��8#j9��%*�OT�	4���'��	'N��'%�s.0�� SAN�����	 "!���#P$��<-���'��5#�)��%���:,��+#Sb
#%*<-�'N,U��$��<��'%�:�	#P6E�<'N4���'��8�<-���4d#�*29��%*�OT�	4�����4�OT�	$��1����#%)+���
#%)+��-:����#�*�;@��#%�	$��< 	 8>jHJ 	�P;���'�'%�<����'fArtT�	-�$&�N�1;���'�'%�<���P$���-
,U�d����#�*�;��<#%�	$��< 8 	>uHJ 	��4\�	-R*<-� 	>�*�-��3.0*< 84+���GF�����#�*�;@��#%�	$
$��<#%���<*��%�	L��<#%�	*�-g'%>T'�#%��;@'2)���O��I#%*����� 	>�*�-g#%)��d�<$�$�������$�>
*�.P#%)��&�8�/HJ�%'�#19��%�&4��	$�#%�	*�-�A

v wDx�ygz1{N|f}~z��2�r�

B\�1��O��< 8�+��#%�&4����<�8 "!��<#r,T>d'��8;d�+ 8�<#%�	-��?�8#�'N9U���S.0*<�%;@��-�$��
*�-g#%)+�d;����	 	,U*f���&'1*�.1'%�Q�R�%�&�� ���'%����'GAd�1)+�d#%��,+ 8�I,U�� 	*�6
'%)+*�61'�#%)+���<$�$�������$�>�*V.3�^���	 "!���#3.0*��d���<$7)��+'%����61)���-
9���*�Oa�	4��	-��@.0��*�;[*�-+��#%*g#%)+�%����'%)+*��%#�$���#d,��+#%#%*<-�'GAg�1)��
��$&$����%�<$�>d*�.r�^���	 "!���#P61�	#%)I��,���#%#�*�-�'��	'N#%)+�1.0����oT����-�$�>
#%)+��#1*�-+�(*V.N#%)��:HU�%'%#?�[,���#%#�*�-�'1�	#19���*�OT�84+��'161�	 8 `;@*�O��
#%)+�(;@��'%'����<�(�	-T#%*I#%)+�2$�*����%��$.0*< 84+���GA

���a�S�S�&�a� � � �
�1�����7�f��� �G�V� � �f����� �<�G� �
�T�� 1��¡�¢T��£%� ���<� � �f��� � �f¤����
¥��S�%£1¦5� §G¨<� � �&���Q� �f¨�� �
¥��S�%£1¦5¨ §©�V� � �f����� �<�G�Q�
¥��S�%£1¦(� ��¤<�m� �f���Q� �f��� §
¥��S�%£1¦5§ ���f�m� �f¨�� ¨ �f���Q�

�1)��:�7��9J�&�%�	;���-T#�'%)�*�61'�#%)+��#5���<�8 "!��<#N�	'N.0�<�	�% 	>2��$&$��Tb
����#��E61�	#%)1ª7��'�#N*�-+�E,��+#%#%*<-CF��<��#%#��8-+�(,U��#S6�����-�«�¬�A�<®Y�<-�4
+��A	�G®¯��$�$&���%�<$�>aA������	 "!���#j�8;@9��%*�O<��'N�	#%'�*�O��&�%�� 	 `9U���S.c*��Sb
;@��-�$&�h,T>g'%�	;�9� 	>�9���*�Oa�	4��	-���;@*��%�I#%)+��-*�-+��'%)+*��%#�$���#
,+��#%#�*�-CA\°�>\��'��8-+�R#�)��%����,��+#%#%*<-�'GF1���<�	 i!��<#:�8;@9��%*�O<��'
�	#�'d��$�$��+�%��$&>Y#%*��±�A�²<®[#%*�¬<�A	�G®´³µ�\.0�<$�#%*<�d*�.2#S6�*
����4���$&#%�	*�-��	-��8#�'1���%��*��1����#%�<A

¶ ·¹¸ ��º1»f¼��P| ¸ ���

�^���	 "!���#P'%�	;�9+ 8�QHJ�&'r#�)��5#���'�=h*V.`HJ 	�8-+�(;@��'%'����<��'N,T>d��-��Vb
 	>TL��	-��1#�)��E�+'%���f_ 'P;@���	 Qb0HJ 	�Q-��N)��<,��	#%'C#�*59�����4��	$�#P#%)+�E#�)��%���
;@*�'�#SbS 8�	=<�� 	>1.0*< 84+���%'j.0*��j����$7)�;@��'%'����<�1��-�4d#�)���-�9+�%*�OT�	4Tb
�	-��:'�)�*���#%$���#�,���#�#%*<-�'E#�*2oT���	$7=a 	>:HU 8�1�&��$7)d;���'�'%�<���1�	-T#%*
*<-��2*V.½�	#�'19��%��4+�8$&#%��4¾.0*� 	4��&�%'GA?tT�	-�$��2�	#%'19+�%��4��	$�#��	*�-�':�����
�<$�$�������#��2*�O����:�±<®¿#%*�¬�±�®À*�.N#%)��3#%�	;���F��^���	 "!���#�'%��,Tb
'�#%�<-a#��	�� 	 	>2�%��4+��$���'1#�)��5�7Á`*���#E����oT���	�%��4@#%*:HU 8�1;@��'%'����<��'GA

Â z?Ã�z/{½z���º1z5�

Ä �sÅ�ÆPAC���<��'GAIl?����-T#%'3#%)��<#(����4���$&��6�*��%=¾��-�4g�	-T.0*���;��Vb
#%�	*<-�*�O<���% 	*<��4CA?ÇCÈIÇCÉgF�Ê�ËTÌSË�Í&� Ê+�7ÎTÏa±�FVÐ��� 	>��G¬<¬�ÏUA

Ä ²©Å�Ñ2ATtT���<�� U��-�4@ÐJA<Ò:��9�)��<�%#GAP���<�8 "!��<#G�`l?-��	-T#%�� 	 	�	����-T#
��'�'%�	'%#���-T#1.c*��5*<�%�<��-��	L��	-��I�7bS;����	 SANnS-�Ó�Ô7ÕGÖ7×7×7Ø�Ù"ÚTÛ�ÜhÕ�Ý
È�Û�×&ÚJÞßÜ�à á�á�FU����>��G¬<¬�¬+A

²
3434

Market Maker

David Wang, Giorgos Zacharia

dwang,lysi@media.mit.edu

Market Maker is an electronic marketplace project at the MIT Media Laboratory. Developed based on the
Kasbah concepts, Market Maker utilizes software agents to assist users in making transactions online. It
incorporates the concept of trust and collaborative reputation mechanisms to facilitate reliable online
transactions. Transaction categories in the marketplace are fully extensible, providing support for a wide
range of possible products and services to be traded online. Market Maker is currently used to facilitate a
consumer-to-consumer marketplace at MIT. Categories of items being transacted are similar to those found
in traditional marketplaces such as classified Ads and flea markets. Unlike the traditional buying and
selling process, users of Market Maker do not need to monitor, identify, and negotiate with prospective
buyers and sellers. Users can create software agents to conduct transactions on their behalf, while retaining
control and various levels as appropriate.

Software agents in Market Maker have the ability to monitor, identify, and negotiate over products in all
categories being transacted. Prior to handling a transaction, an agent receives knowledge from the
marketplace on the category in it resides. Upon processing, the agent self-customizes and incorporate
market rules specific to the particular category, including information on criteria it will use to find
appropriate buyers or sellers, given a set of instructions for its user. Agents may also choose to receive
market-wide information, such as prior transaction trends, supply and demand, in order to obtain better
position during negotiations. Users may also customize agentÕs negotiation process and logic. Agents can
receive instructions on item utilities and valuations from userÕs prospective, as well as information on
urgency of transaction and styles of negotiations. Currently users can select from a pre-defined set of agent
behaviors and customize them accordingly. User defined agent logic may be incorporated into Market
Maker in the future, such that more sophisticated transaction algorithms can be implemented by users.

Unlike Kasbah, Market Maker has a much more modular architecture which allows the maintainer of the
system to create new categories through a user through either the MS SQL server GUI or through a web-
based interface. Using the Market Maker interface the maintainer can create hierarchical ontologies of
goods or services, define the attributes of each category and the matchmaking behavior of the agents on the
attribute level. The changes are reflected on the marketplace in real time, since no recompilation is
necessary.

Software agents in Market Maker will pro-actively evaluate and negotiate with interested buyers and
sellers, represented by their respective agents. Software agents can be created with any set of desired
behaviors, thereby enabling the consumer to have a virtual presence in the marketplace to further his or her
interest, while freeing the consumer from constant monitoring of market progress. This kinds of
marketplace introduces two major issues of trust among the users of the system:

1. The potential buyer has no physical access to the product of interest while he/she bids or negotiates.
Therefore the seller could misrepresent the condition or the quality of his/her product in order to get
more money.

2. The seller or buyer may decide not to abide by the agreement reached at the electronic marketplace
asking at some later time to renegotiate the price, or even refusing to commit the transaction. In order
to solve the above mentioned problems, we incorporate in the system a reputation brokering
mechanism, so that each user can actually customize his/her pricing strategies according to the risk
implied by the reputation values of the potential counterparts.

In this demonstration we show two reputation mechanisms:

1. Sporas is a simple reputation mechanism which can be implemented irrespectively of the number of
rated interactions, and

3535

2. Histos is a more complex reputation mechanism that assumes that the system has been somehow
bootstrapped (by using Sporas) so that there is an abundance of rated interactions to create a dense web
of pairwise ratings.

Sporas provides a reputation service based on the following principles:

1. New users start with a minimum reputation value, and they build up reputation throughout their
activity on the system.

2. The reputation value of a user should not fall below the reputation of a new user no matter how
unreliable the user is.

3. After each rating the reputation value of the user is updated based on the feedback provided by the
other party to reflect his/her trustworthiness in the latest transaction.

4. Two users may rate each other only once. If two users happen to interact more than once, the system
keeps the most recently submitted rating.

5. Users with very high reputation values experience much smaller rating changes after each update.

For the calculation of the personalized Histos reputation values, we represent the pairwise ratings in the
system as a directed graph, where nodes represent users and weighted edges represent the most recent
reputation rating given by one user to another, with direction pointing towards the rated user. If there exists
at least one connected path between two users, say from A to B, we can compute a more personalized
reputation value for B. We do that by finding all the connected paths of ratings from user A towards user
B. If user A has rated user B directly we use that rating alone to calculate the subjective opinion of user A
for user B. Otherwise we proceed to the next level in a Breadth First Search manner, and we recalculate
the subjective opinions of user A for each one of the users who are one edge further away from user A.
The calculation is repeated level by level, until we finally reach user B. We will demonstrate a
visualization of the reputational relations in the marketplace.

3636

MASMaS: a Multi-Agent Simulation Management System1

Hamilton Link (helink@sandia.gov)
Advanced Information Systems Lab

B 836 / MS 0455
Sandia National Laboratories

Albuquerque, NM 87185

We are demonstrating a multi-agent simulation management system (MASMaS),
developed recently at Sandia National Labs by the Advanced Information Systems Lab (AISL).
The agents form a collection of independent autonomous nodes in a network that are all
motivated to interact with people and collaborate with one another to complete tasks. The system
was developed using the Standard Agent Architecture (SAA), a framework for rapidly
developing collaborative networked multi-agent systems. The SAA also provides foundation
technology for the Border Trade Facilitation System (BTFS), submitted for demonstration at this
conference. In MASMaS, the agents interact with people to specify simulation tasks, collaborate
to perform team formation and divide up the task, run the individual simulations, and collect and
display the results when the user returns. Currently the simulator being run by the agents is being
used to support collective robotics research.

The working system demonstrates the agents interacting with humans to describe the
simulation batch run desired. Once any agent has been given such a description, the agent
contacts the other agents in the collective, who collaboratively form a team and establish a joint
persistent goal (JPG) to run a number of simulations and gather statistical data for the user. Work
allocation is decentralized, so the agents agree among themselves how the work should be most
appropriately allocated, rather than having a central authority figure make the decisions, because
the agent collective is a homogeneous community with no identifiable leader. The simulation run
by the agents at this time provides a virtual three-dimensional environment for situated actors
that can sense, move, and communicate. It is being used to develop decentralized control
algorithms that can be put into a collection of robots that then work together to achieve higher-
level goals. The discrete-time simulation kernel can simulate these generalized actors with a
variety of constraints on movement and communication. For example, the actors can be
represented as point masses or physical objects that can interfere with one another.

In addition to the particular application of the SAA to the simulation management task,
the demonstration showcases a number of other AISL core technology frameworks, including
dynamic object-based web page generation, object brokering, a persistent objectbase, and the
goal-based deliberative mechanism used by the agents. The SAA provides a default goal-based
reasoning mechanism by which its agents accept, reason about, and act on goals presented to
them. The framework is extended by adding new goals and goal satisfaction methods. The
default methods are primarily placeholders for extensions that give the agents utility in real
problem domains. We created the simulation agents by adding elicitation and analysis goals and
methods to the agents' repertoire. The agents collaborate with one another to share the task of
running a large number of simulations to explore regions of simulation parameter space. The
agents also assist humans in viewing and analyzing the results. Using KQML as a

1 This work was performed at Sandia National Laboratories, which is supported by the U.S. Department of Energy
under contract DE-AC04-94AL85000

3737

communications protocol and specialized goal classes that support the joint persistent goal (JPG)
model of collaboration, a group of agents are able to share the task of running a large number of
simulations with a variety of parameters to help collect data and analyze the results.

The agents interact with a person through a web browser, eliciting information for
generating random variates, determining the type of simulation to be run and any other data
needed to populate the simulation. The web interface system enables the agent to guide the user
through this process, constraining or requesting changes to the input before moving on. These
features are provided by a standard communication framework, called CHI (CLOS to HTML
Interface). CHI enables the rapid construction of web-based interfaces that permit agents to
initiate and conduct dynamic communication with human informants. To assist in this process
we have developed a software mechanism called HCHI (HTML to CHI) that converts HTML
into the appropriate nested CHI instances. The essence of CHI is automatic connection of form
input elements to named objects in the internal object-oriented environment. The connectivity
preserves state information so that an agent can conduct a session-based dialogue with a human,
preserving temporal and state information as necessary. The dynamic capabilities of CLOS also
permit classes to be defined at runtime, offering the possibility of interfaces designed
dynamically based on user input and discovered information.

We are using other AISL technologies as well, including DCLOS (Distributed CLOS), to
allow multiple agents to run transparently on several processes being executed by several CPU's
connected by a network, and SpireStore, our persistent objectbase, to store simulation results. A
key element of the simulation process is the “simulation seed,” an object containing not only the
specification of the parameter settings for the simulation run, but also the initialization seeds for
the necessary random variates so that the simulation run is entirely deterministic given its seed.
In practice, batch runs are created by building a batch object specifying a number of these
simulation seeds. The task is shared (once allocation has been decided upon) by creating several
different batch objects, the completion of all of which accomplish the batch goal. The batch task
is approximately linearizeable and fine-grained, which means that the task can be divided easily
(one simulation run is very like another). Sharing non-linearizeable tasks is a research area,
particularly when the tasks have interlocking dependencies. The seeds are then divided among
the cooperating agents in a way that allows approximately equal clock time on the task by each
agent involved in the collaboration based on past behavior on similar tasks. This is case-based
reasoning with Bayesian assumptions. Other areas of research are anytime processing, which
involves interrupting the collective more-or-less regardless of what it is doing to inquire about
the results of an ongoing distributed task, dynamic progress monitoring, and dynamic goal
redistribution. The ongoing AISL research agenda is also exploring individual agent integrity,
agent collective integrity, and propagation of learned behavior.

MASMaS represents ongoing research in team formation, distributed, decentralized load-
balancing, and collective behavior in response to failed commitments in the collective. Currently
the simulation interface is being developed to allow more detailed specification of the desired
simulation to be run and to allow a greater amount of control on the information presented when
the user returns – although the system already supports such interfaces, the user interface has not
been the primary direction of work. A case-based reasoning system could also be used to
populate the specification form in the first place as a labor-saving device. The simulator itself is
being developed to allow finer control of the resources it uses, including the addition of self-
monitoring capabilities to the simulation and dynamic data structures which adapt to time and
memory restrictions given the nature of data collections in the simulation.

3838

A Personal News Agent that Talks, Learns and Explains

Daniel Billsus and Michael J. Pazzani
Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425

{dbillsus, pazzani}@ics.uci.edu

Towards Portable, Intelligent Information
Devices
Most work on intelligent information agents has
thus far focused on systems that are accessible
through the World Wide Web. As demanding
schedules prohibit people from continuous access
to their computers, there is a clear demand for
information systems that do not require
workstation access or graphical user interfaces.
We present News Dude, a personal news agent
that is designed to become part of an intelligent,
IP-enabled radio. For example, an intelligent car
radio that learns about the driver’s interests is a
useful application of this technology. Our system
uses synthesized speech to read news stories, and
allows users to provide feedback via voice
commands. Based on this feedback, the system
uses machine learning algorithms to automatically
adapt to the user’s preferences and interests.

System Overview
We have implemented a Java Applet that uses
Microsoft’s Agent library to display an animated
character that reads news stories to the user.
Although our ultimate goal is to work towards a
speech-driven agent that does not require
graphical user interfaces, we use the web as a
medium that allows us to make the system
available to a large user base for data collection
and testing purposes. Furthermore, we believe that
there are a variety of useful applications for
speech-driven agent technology for the web. For
example, a talking news agent that reacts to voice
commands could prove useful for the visually
impaired.

Figure 1 shows the News Dude user interface.
Currently, the system provides access to stories
from six different news channels: Top Stories,
Politics, World, Business, Technology and Sports.
When the user selects a news channel, the Applet
connects to a news site on the Internet and starts
to download stories. Since the Applet is multi-

threaded, stories continue to download in the
background while the synthesizer is reading,
which typically allows filling a queue of stories to
be read without any waiting time. The user can
interrupt the synthesizer at any point and provide
feedback for the story being read. One of the
design goals for our system was to provide a
variety of feedback options that go beyond the
commonly used interesting/uninteresting rating
options. For example, we might want to tell the
agent that we already know about a certain topic,
or request information related to a certain story. In
addition, we would like to be able to ask the agent
for reasons why a certain story was rated as
interesting or uninteresting, just as we would ask a
friend about reasons for a particular
recommendation. In summary, the system
supports the following feedback options:
interesting, not interesting, I already know this,
tell me more, and explain.

Challenges
Building an agent that learns about a user’s
interests in daily news stories poses several
challenges. Traditional Information Retrieval
approaches are not directly applicable to this
problem setting, because they assume the user has
a specific, well-defined information need. In our
setting, however, this is not the case. If at all, the
user’s query could be phrased as: “What is new in
the world that I do not yet know about, but should
know?” Computing satisfactory results for such a
query is non-trivial. The difficulty stems from the
range of topics that could interest the user, and the
user’s changing interest in these topics. We must
also take into account that it is the novelty of a
story that makes it interesting. Even though a
certain topic might match a user’s interests
perfectly, the user will not be interested in the
story if it has been heard before. Therefore, we
need to build a system that acquires a model of a
user’s multiple interests, is flexible enough to

3939

account for rapid interest changes, and keeps track
of information the user knows.

Technical Contributions
The system uses a combination of machine
learning techniques to induce a user’s interest
profile. This can be seen as a text classification
task, where a learning algorithm uses a set of rated
text documents, here news stories, to induce a
classifier that can label future stories with respect
to the user’s interests. Taking the domain-specific
challenges and requirements of our application
into account, the system uses three novel
techniques that extend text classification
algorithms previously reported in the literature.

1. Time-Coded Feedback – The system converts
a user’s rating to a fine-grained scale,
depending on the length of time the user
listened to a story.

2. Multi-Strategy User Modeling – The user
model consists of two separate models, one
for the user’s short-term interests, the other
for long-term interests. The short-term model
is based on a Nearest Neighbor classifier,
allowing for identification of previously rated

news threads with only a few rated stories.
The long-term model is based on a Naïve
Bayesian Classifier, using a general hand-
selected vocabulary, expressing common
reoccurring themes in daily news stories.

3. Concept Feedback – The agent can construct
explanations for its predictions and users can
critique these explanations. This form of
feedback can be incorporated into the learning
process, allowing for faster acquisition of
more accurate user models.

These techniques are described in detail in [1].

System Availability
The system is publicly available at
http://www.ics.uci.edu/~dbillsus/NewsDude
Comments and feedback are welcome.

References
[1] Billsus, D. and Pazzani, M. (1999). "A

Personal News Agent that Talks, Learns
and Explains" In Agents ’99: Proceedings
of the Third International Conference on
Autonomous Agents, ACM Press, May
1999.

Figure 1: News Dude User Interface

4040

Intelligent Interfaces for Decision-Theoretic Systems

Scott M. Brown
Crew Systems Interface Division
Air Force Research Laboratory

Wright-Patterson AFB, OH 45433
+1 937 255 8883

sbrown777@acm.org

Eugene Santos Jr.
Dept. of Computer Science & Engineering

University of Connecticut
Storrs, CT 06269-3155

eugene@eng2.uconn.edu
http://www.eng2.uconn.edu/cse/IDIS/

ABSTRACT
This demonstration presents PESKI, a probabilistic expert
system shell. PESKI provides users with an integrated
suite of knowledge elicitation tools for decision-theoretic
systems, from “standard” knowledge acquisition tools,
data mining tools, and verification and validation tools to
a distributed inference engine for querying knowledge in
the system. PESKI uses a number of techniques to reduce
the inherent complexity of developing a cohesive, real-
world knowledge-based system. In addition to providing
multiple communication modes for human-computer
interaction, the expert system knowledge representation is
endowed with the ability to detect problems with the
knowledge acquired and to alert the user to these possible
problems. Furthermore, we show PESKI's use of an
intelligent assistant to assist users with the acquisition of
knowledge and the use of the myriad of tools.

INTRODUCTION
Most everyday decisions involve some level of
uncertainty. Expert systems, also known as knowledge-
based systems, attempt to capture an expert’s knowledge
for use by non-experts. Among the advantages to using
expert systems are wide distribution, accessibility, and
preservation of scarce expertise, ease of modification,
consistency and explanation of the answers.
One of the greatest disadvantages to expert systems is
their construction. To aid experts in the arduous task of
designing expert systems, a number of expert systems
shells exist today. Most of these shells allow the expert
system designers to capture an expert’s knowledge, verify
and validate that knowledge, and query this knowledge,
i.e., perform inference. The tools available within a shell
vary between each shell. Some provide a graphical means
of acquiring knowledge from users. Most incorporate
some form of verification and validation of the
knowledge. However, none of these systems provide an
integrated suite of tools for acquiring knowledge, testing
that knowledge via verification and validation, and
inference. Furthermore, these systems typically require
complete information before they are of any use.
BAYESIAN KNOWLEDGE BASES
A Bayesian knowledge base (BKB) is a probabilistic
knowledge representation meeting the preceding qualities.
A BKB supports theoretically sound and consistent

probabilistic inference — even with incomplete
knowledge — with the intuitiveness of “if-then” rule
specification. The representation is similar to Bayesian
Networks; it is a directed graph capable of representing
uncertainty in knowledge via probabilistic relationships
between random variables (called components in PESKI).
However, Bayesian networks do not allow for
incompleteness.

Inherent in the BKB knowledge representation are several
consistency constraints endowing the resulting knowledge
base the ability to detect problems with the knowledge
acquired and alert the user to these possible problems. As
a result of these consistency constraints, all knowledge
elicited is validated against these constraints. Any
inconsistencies with the elicited knowledge results in a
status message to the user. Certain consistency constraint
violations can be corrected without user intervention, with
an appropriate status message displayed to the user. For
others violations, user intervention is required. Users may
correct the violation using one of the PESKI tools (e.g.,
knowledge acquisition, data mining, verification and
validation) discussed next.

THE PESKI ENVIRONMENT
PESKI (Probabilities, Expert Systems, Knowledge, and
Inference) is an integrated probabilistic knowledge-based
expert system shell utilizing Bayesian knowledge bases as
its knowledge representation. PESKI provides users with
knowledge acquisition, verification and validation, data
mining, and inference engine tools, each capable of
operating in various communication modes.

The architecture consists of four major components:

• Intelligent Interface Agent - translates English
questions into inference queries and translates the
analyses/inference results back into English; provides
for the communication exchange between the user
and the system; provides intelligent assistance to the
user.

• Inference Engine - contains the intelligent control
strategies for controlling the selection and application
of various inference engine algorithms (e.g. A*, 0-1
integer linear programming (ILP), genetic algorithms
(GAs)) to obtain conclusions to user queries based on
knowledge and facts in our knowledge base.

4141

• Explanation & Interpretation - keeps track of the
reasoning paths the inference engine used in reaching
its conclusions; allows the user to query the system
about how and why an answer was derived.

• Knowledge Acquisition & Maintenance - provides
the facility for automatically incorporating new or
updated expert knowledge into the knowledge base.

PESKI’s Integrated Tool Suite
We briefly describe the tools integrated into the PESKI
architecture.

• Knowledge Acquisition - PESKI uses the MACK tool
for knowledge acquisition. MACK contains routines
designed to automatically and incrementally confirm
consistency of the knowledge elicited from the expert
and provides assistance via knowledge base status
messages. Regular incremental checks preserve both
probabilistic validity and logical consistency by
flagging the inconsistent data points to the expert as
they are entered and presumably under his/her current
consideration.

• Verification & Validation - PESKI verification and
validation is performed using two tools - BVAL and
a graphical incompleteness tool. BVAL validates a
knowledge base against its requirements using a test
case-based approach. A test case is a set of evidence
and expected answers. A knowledge engineer
submits a test suite to the BVAL tool and BVAL
determines if the given evidence is supported by the
answers by submitting a query to the inference
engine and comparing the solution with the test
case’s expected answer. Under certain conditions, the
knowledge base can be corrected via reinforcement
learning of the probabilities. For those test cases that
indicate incompleteness exists not meeting the
conditions (typically a result of a missing causal
relationship between two random variables), the
graphical incompleteness tool may be used to
visualize the knowledge base incompleteness and
correct it. Figure 3 shows an example of the use of
this tool in PESKI. The tool uses data visualization of
the BKB and data mining to assist the user in
eliciting the needed knowledge.

• Inference Engine - The PESKI inference engine uses
a performance metric-based approach to intelligently
control a number of possible anytime and anywhere
inferencing algorithms (e.g., A*, genetic algorithms).
Results are returned to the user via the Explanation &
Interpretation subsystem of PESKI, as they become
available.

• Data Mining - PESKI uses a goal-directed
methodology for data mining for association rules
and incorporation of these rules into the knowledge
base. Data mining within PESKI can either be a

knowledge acquisition or verification and validation
process. In the latter case, an expert attempts to
correct problems discovered as a result of performing
verification and validation. In the former, using
empirical and/or legacy data, an expert is able to
mine for specific rules relating two or more database
attributes (i.e., random variables in the BKB).
Additionally, the data-mining tool can be used to find
new states of a random variable and to elicit the
probabilities of a single state.

Each tool in PESKI displays the current status of the
BKB, alerting the user to any problems with the
knowledge base. PESKI supports incremental knowledge
elicitation in a number of ways. During knowledge
acquisition, the user is alerted to any inconsistencies in
the BKB knowledge representation. For example, if the
user attempts to add a rule that creates a cycle in the
knowledge base, PESKI will display an error message to
the user.

Intelligent Assistance
Determining which tools to use given a particular
situation in PESKI is difficult for most users. The use of a
particular tool is dependent on a number of variables
including the context (e.g., a BKB constraint violation
exists) and user preferences for the tools and various
communication modes. Determining the correct tool to
use at the correct time can be a daunting task.

To aid users in efficiently utilizing the power of the
PESKI tool suite offered, we have integrated an
intelligent assistant into PESKI. The assistant takes the
form of an interface agent, “looking over the shoulder” of
the user. The overall goal of the assistant is to offer
timely, beneficial assistance to the user as he/she interacts
with PESKI. To accomplish this goal, an accurate
cognitive model of the user is maintained. The user model
captures the goals and needs of the user within the PESKI
environment, as well as possible system events that occur,
within a Bayesian network representation of the PESKI
environment. Additionally, a user profile is maintained on
each user of PESKI so assistance may be custom-tailored
to individual users. The interface agent determines the
how, when, what, and why of offering assistance to the
user by inferencing over the user model. The agent is
capable of offering assistance for such goals as which tool
to use to correct a BKB consistency constraint violation
as well as suggesting the user preferred communication
mode for a given tool.

We are currently modifying the agent's architecture to
allow the agent to collaboratively elicit information from
the user based on what goals he/she is trying to achieve,
his/her preferences, and past actions. To that end, we are
adding “deep” domain knowledge of BKBs to the
interface agent's user model.

4242

Remote Agent Demonstration
Gregory A. Dorais

Caelum Research,
NASA Ames Research Center

MS 269-2, Moffett Field, CA 94035

650-604-4851

gadorais@ptolemy.arc.nasa.gov

James Kurien

NASA Ames Research Center
MS 269-2, Moffett Field, CA 94035

650-604-4745

kurien@ptolemy.arc.nasa.gov

Kanna Rajan
Caelum Research,

NASA Ames Research Center
MS 269-2, Moffett Field, CA 94035

650-604-0573

kanna@ptolemy.arc.nasa.gov

ABSTRACT
We describe the computer demonstration of the Remote Agent
Experiment (RAX). The Remote Agent is a high-level, model-
based, autonomous control agent being validated on the
NASA Deep Space 1 spacecraft.

Keywords
Model-based autonomous agents, model-based inference,
executives, planners, spacecraft.

1. INTRODUCTION
The Remote Agent (RA) is autonomous control software that
uses models to reason about the system that it controls and the
environment it is in. It does so to accomplish goals over
extended periods including diagnosing and recovering from
failures without contact with human operators. RA is being
validated on the NASA Deep Space 1 spacecraft (DS1) during
the Remote Agent Experiment (RAX) scheduled for mid-May,
1999. During RAX, RA will control DS1 and perform several
activities including taking pictures, thrusting the ion
propulsion engine, and diagnosing and recovering from
simulated failures. RA, its major components, and RAX have
been described in several papers [1][5][6][7][8][9]. This paper
describes a computer demonstration that was designed to aid
people unfamiliar with spacecraft and autonomous agent
technologies to better understand RA and RAX.

2. REMOTE AGENT ARCHITECTURE

Figure 1. Remote Agent Architecture

As illustrated in figure 1, RA consists of four components: the
Planner/Scheduler (PS), the Mission Manager (MM), the Smart
Executive (Exec), and the Mode Identification and

Reconfiguration module (MIR).

2.1 Planner/Scheduler and Mission Manager
The Planner/Scheduler (PS) generates the plans that RA uses
to control the spacecraft [5]. Given the initial spacecraft state
and goals, PS generates a set of synchronized high-level
activities that, once executed, will achieve the goals. Mission
goals are maintained by MM [1].

PS consists of a heuristic chronological-backtracking search
operating over a constraint-based temporal database [5]. PS
begins with an incomplete plan and expands it into a complete
plan by posting additional constraints in the database. These
constraints originate from the goals and from constraint
templates stored in a model of the domain. PS consults
domain-specific planning experts to access information that i s
not in its model. The temporal database and the facilities for
defining and accessing model information during search are
provided by the HSTS system [4].

2.2 Smart Executive
Exec is a reactive, goal-achieving, control system that i s
responsible for:

• Requesting and executing plans from the planner

• Requesting and executing failure recoveries from MIR

• Executing goals and commands from human operators

• Managing system resources

• Configuring system devices

• Reach and maintain an appropriate safe-mode as necessary

• System-level fault protection

Exec is goal-oriented rather than command-oriented. We define
a goal as a state of the system being controlled that must be
maintained for a specified length of time. For example, consider
the goal: keep device A on from time x to time y. If Exec were to
detect that device A is off during that period, it would perform
all the commands necessary to turn it back on. This ability i s
particularly useful in hostile environments where exogenous
events can cause devices to behave unpredictably.

Exec controls multiple processes in order to coordinate the
simultaneous execution of multiple goals that are often inter-
dependent. In order to execute each goal, Exec uses a model-
based approach to create a command procedure, which is often
complex, designed to robustly achieve the goal.

2.3 Mode Identification/Reconfiguration
The Livingstone inference engine provides the mode
identification (MI) and mode reconfiguration (MR)
functionality in MIR. To track the modes of system devices,
Livingstone eavesdrops on commands that are sent to the

Real-
Time

Execution

Fligh
t

H/W

Monitors
Planning Experts
(incl. Navigation)

Mode Id/
Reconfig

Mission
Manager

Smart
Executive

Planner/
Scheduler

Remote Agent
Ground
System

4343

spacecraft hardware by the Exec. As each command is executed,
Livingstone receives observations from spacecraftÕs sensors,
abstracted by monitors in the spacecraftÕs control software.
Livingstone combines these commands and observations with
declarative models of the spacecraft components to determine
the current state of the system and report it to the Exec. If any
such failures occur, Livingstone will be used to find a repair or
workaround that allows the plan to continue execution.

Livingstone uses algorithms adapted from model-based
diagnosis [2] to provide the above functions. The key idea
underlying model-based diagnosis is that a combination of
component modes is a possible description of the current state
of the spacecraft only if the set of models associated with these
modes is consistent with the observed sensor values. This
method does not require that all aspects of the spacecraft state
are directly observable, providing an elegant solution to the
problem of limited observability.

3. REMOTE AGENT EXPERIMENT
RAX was designed to demonstrate the capabilities of RA on
DS1. During RAX, RA will plan how to thrust DS1's ion
engine, when to take pictures of asteroids, and when to
communicate with Earth. False data will be injected at certain
times, unknown to RA, that simulate spacecraft failures. RA
will diagnose the cause of these failures and often will be able
to find an action that repairs the failure. Otherwise, RA will
put the spacecraft into a safe state and find a new plan that
accommodates the problem. In addition to operating on its
own, RA will demonstrate cooperation with mission
controllers by accepting new mission goals and advice on
health of the spacecraft.

4. REMOTE AGENT VISUALIZATION

Figure 3. The Remote Agent Demonstation Window

To demonstrate RA, we use a window, in figure 3, that shows
the messages as they pass between RA and the other spacecraft

software and between RA components. This visualization of
the RA can run in real-time while RA is running to show RAÕs
current state, or from a log file of a prior RA run.

The top part of the window has a circle for each component of
the RA and spacecraft flight software components RA
communicates with. For example, RA sends messages to the
attitude control system (ACS) to point the spacecraft toward
Earth for communication or toward an asteroid for imaging. A
small Òspeech balloonÓ travels back and forth between the
software components showing which two are currently
communicating. In the bottom portion of the window, the
current message being transmitted is converted into a
simplified English representation. Sensor observations from
the spacecraft to RA are shown as moving yellow spheres. In
figure 3, MIR is confirming to Exec that the main engine i s
ready. The demonstration shows a typical 6-day scenario
including the ground uplink the command for RA to start its
mission, PS interacting with the planning expert modules to
create three plans, Exec executing the plans, and MIR sending
diagnoses and recoveries to Exec.

5. ACKNOWLEDGMENTS
Our thanks to Bob Kanefsky for developing the visualization
software for the RAX demo and to the RAX team cited in [1].

6. REFERENCES
[1] Bernard, D.E., Dorais, G.A., Fry, C., Gamble Jr., E.B.,

Kanfesky, B., Kurien, J., Millar, W., Muscettola, N., Nayak,
P.P., Pell, B., Rajan, K., Rouquette, N., Smith, B., and
Williams, B.C. Design of the Remote Agent experiment for
spacecraft autonomy. Procs. of the IEEE Aerospace Conf.,
Snowmass, CO, 1998.

[2] de Kleer, J., and Williams, B. C. Diagnosis With
Behavioral Modes. Procs. of IJCAI-89, 1989.

[3] Gat, E., and Pell, B. Abstract Resource Management in an
Unconstrained Plan Execution System, Procs. of the IEEE
Aerospace Conf., Snowmass, CO, 1998.

[4] Muscettola, N. HSTS: Integrating planning and
scheduling, in Fox, M., and Zweben, M., (eds.), Intelligent
Scheduling, Morgan Kaufman, 1995.

[5] Muscettola, N., Smith, B., Chien, S., Fry, C., Rabideau, G.,
Rajan, K., and Yan, D. On-board Planning for
Autonomous Spacecraft, Procs. of i-SAIRAS, July 1997.

[6] Muscettola, N., Nayak, P.P., Pell, B.,Williams, B.C.,
Remote Agent: to boldy go where no AI system has gone
before. Artificial Intelligence, 103(1/2), August, 1998.

[7] Pell, B., Gamble, E., Gat, E., Keesing, R., Kurien, J., Millar,
W., Nayak, P.P., Plaunt, C., and Williams, B.C. A hybrid
procedural/deductive executive for autonomous spacecraft.
Procs. of Autonomous Agents, 1998.

[8] Pell, B., Gat, E., Keesing, R., Muscettola, N., and Smith, B.
Robust periodic planning and execution for autonomous
spacecraft. Procs. of IJCAI-97, 1997.

[9] Williams, B. C., and Nayak, P. A model-based approach to
reactive self-Configuring systems, Procs. of AAAI-96,
1996.

4444

Demonstration of Rational Communicative Behavior

in Coordinated Defense

Sanguk Noh and Piotr J. Gmytrasiewicz
Department of Computer Science and Engineering

University of Texas at Arlington
fnoh, piotrg@cse.uta.edu

1 Introduction

The primary goal of our demonstration is to show
our communication results for arti�cial and hu-
man agents interacting in a simulated air de-
fense domain. For arti�cial agents, we advocate
a decision-theoretic message selection mechanism
which maximizes the expected utility of the com-
municative decisions. Thus, the agents compute
the expected utility of alternative communicative
behaviors, and execute the one with the highest
value [2]. Our demonstration consists of our RMM
and human agents interacting in three di�erent
air defense scenarios in cases when communica-
tion is, and is not, available. We will show how
communication can bene�t the agents in coordi-
nation tasks, and compare performance of RMM
and human agents.

2 Demonstration Settings

In our implementation, the anti-air defense sim-
ulator with communication was written in Com-
mon LISP and built on top of the MICE simulator
[1]. Our demonstration is intended to compare the
performance achieved by RMM team with that of
human team, with and without communication,
in three di�erent scenarios.
In the anti-air defense domain, two defense

units are faced with an attack by seven incoming
missiles, as depicted in Figure 1. The warhead
sizes of missiles are 470, 410, 350, 370, 420, 450,
and 430 unit for missiles A through G, respec-
tively. The positions of defense units are �xed and
those of missiles are randomly generated. Each of
two defense units is assumed to be equipped with

three interceptors, if they are not incapacitated.
Thus, they can launch one interceptor at a given
state, and do it three times during a course of one
defense episode.

Figure 1: A complex air defense scenario.

For all settings, each defense unit is initially as-
sumed to have the following uncertainties (beliefs)
in its knowledge base:

� The other battery is fully functional and has
both long and short range interceptors with prob-
ability 60%;
� The other battery is operational and has only
long range interceptors with probability 20% (In
this case, it can shoot down only distant missiles,
which are higher than a speci�c altitude.);

1

4545

� The other battery has been incapacitated by en-
emy �re with probability 10%;
� The other battery is unknown with probability
10%.

In each demonstrated scenario we allow for one-
way communication at a time between defense
units. Thus, if both agents want to send messages,
the speaker is randomly picked in the RMM team,
and the human team ips a coin to determine who
will be allowed to talk. The listener is silent and
can only receive messages. Each of human sub-
jects is presented with the scenarios, and is given
a description of what is known and what is uncer-
tain in each case. They are then asked to indicate
which of the 11 messages is the most appropriate
in each case. In all of the anti-air defense scenar-
ios, each battery is assumed to have a choice of
the following communicative behaviors:

� \No communication."
� \I'll intercept missile A."
� � �
� \I'll intercept missile G."
� \I have both long and short range interceptors."
� \I have only long range interceptors."
� \I'm incapacitated."

Given the uncertainties and the communicative
behaviors, we set up three di�erent scenarios. For
each scenario, RMM and human agents intercept
incoming targets with and without communica-
tion, respectively. We demonstrate their target se-
lection sequences in all settings by retrieving them
from http://dali.uta.edu.

To evaluate the quality of the agents' perfor-
mance, we express the results in terms of (1) the
number of selected targets, i.e., targets the defense
units attempted to intercept, and (2) the total ex-
pected damage to friendly forces after all six inter-
ceptors were launched. The total expected dam-
age is de�ned as a sum of the residual warhead
sizes of the attacking missiles. Thus, if a missile
was targeted for interception, then it contributed
f(1�Probability of Hit)�warhead sizeg to the

total damage. If a missile was not targeted, it
contributed all of its warhead size value to the
damage.

3 Conclusion

Our demonstration presents the implementation
and evaluation of the decision-theoretic message
selection used by automated agents coordinat-
ing in an anti-air defense domain. We measure
the increase in performance achieved by ratio-
nal communicative behavior in the RMM team,
and compare it to the performance of the human-
controlled defense batteries. The results are intu-
itive: as expected, communication improves the
coordinated performance achieved by the teams.
An interesting aspect of the demonstration is that
it shows the di�erences between the communica-
tive behaviors exhibited by RMM and human
agents. While human communicative behaviors
are often similar to those selected by the RMM
agents, there are telling di�erences that, in our ex-
perimental runs, allow the RMM team to achieve
a slightly better performance. It may be that the
di�erences in processing of probabilistic informa-
tion about the uncertainties involved explain why
decision making achieved by arti�cial agents tends
to be somewhat superior to that of human agents.

References

[1] E. H. Durfee and T. A. Montgomery. MICE:
A exible testbed for intelligent coordina-
tion experiments. In Proceedings of the 1989

Distributed AI Workshop, pages 25{40, Sept.
1989.

[2] S. Noh and P. J. Gmytrasiewicz. Implementa-
tion and evaluation of rational communicative
behavior in coordinated defense. To appear in
Proceedings of the Third International Confer-

ence on Autonomous Agents, May 1999.

2

4646

ROPE: Role Oriented Programming Environment for Multiagent Systems

Micheal Becht, Jürgen Klarmann, Matthias Muscholl
{becht, klarmann, muscholl}@informatik.uni-stuttgart.de

1 OVERVIEW OF THE ROPE PROJECT
ROPE is a programming environment and architecture for
the development of agent based cooperative applications
using a role based approach.

Figure 1 shows the components developed in the ROPE
project. Since we aim to describe cooperation ROPE bases
on a general model of cooperation.

To be able to describe cooperation processes graphically
yet with well defined formal semantics we have developed
a formal specification language extending high level petri
nets ([Becht et al., 1998], [Klarmann et al., 1998]).

Our goal has been to develop a distributed MA environ-
ment and not a simulation running on a single machine.
The ROPE engine provides all the necessary code for the
distributed execution of a cooperation process, thereby
imposing very few requirements on the participating
agents.

The development environment consists of a visual
editor to graphically design cooperation processes. Addi-
tional editors allow to specify the behavior of the elements
of a cooperation net. The transitionEditor is used to
specify the firing behaviour of transitions through edge
annotations and guards. The stateEditor is used to specify
which types of roles are available in a certain state. The
roleEditor is used to specify the interface between the roles
and the cooperation net and how the required behavior has
to be provided by the agents. The agents have to supply an
application dependent service interface to be able to take
part in a cooperation process.

A generator which transforms cooperation processes
described in the specification language to a “ready to run”
cooperation process can be invoked and the running coop-
eration proceess can be monitored from within the envi-
ronment. A detailed design methodology on how to
develop specific cooperation processes is left for future
work.

2 MODEL AND LANGUAGE
The aim of our cooperation model and the specification

language is to support transformable corporate structures1.
Transformability requires that it must be possible to
change the organizational structure without the need to
restructure the tasks and vice versa. It should be possible to
insert new cooperation processes without changing the
agents and without changing the running cooperation proc-
esses or stopping and restarting the whole system. It
should also be possible to replace agents taking part in a
cooperation process by other agents and to add new or
change running cooperation processes.

To fulfil these requirements we introduce our key
concepts in section 2.1. Further design decisions lead to
the implementation of ROPE. They are summarized in
section 2.2.

2.1 Key concepts
The characteristic feature of ROPE is its strong emphasis
on the role concept. It is introduced for satisfying the
agent’s requirements mentioned above.

Roles provide a well defined interface (Role-Agent
Interface) between agents and cooperation processes,
which enables an agent to read and follow the normative
rules given by the cooperation process even if not known
to the agent before.

In the specification of a cooperation process we intro-
duce a role as an abstraction of an agent. The agent carries
out the actions initiated by the role. The fundamental idea
is to decouple the organization of the agents in the multi-
agent system from the structure of cooperation processes.
By that, changes in the agent organization do not affect the
cooperation process specification and vice versa2. This is
the prerequisite for more transformable agent cooperation.

We understand cooperation as a process which is
controlled by normative rules to which the cooperating
partners commit themselves, when accepting a certain
role. The rules are defined with respect to the cooperation,
using a global view which is independent from certain
agents.

Figure 1. Components of ROPE.

ROPE-Engine

Generator

Design

Visual
Editor

S
pecification

M
odel

Language Method

ROPE-Engine

Generator

Design

Development
Environment

S
pe

ci
fic

at
io

n

C
oo

pe
ra

tio
n

M
od

el

La
ng

ua
ge

Method

1 See http://www.sfb467.uni-stuttgart.de for more informa-
tion on the joint research project SFB 467 „Transformable
Corporate Structures in Multi-Variant Serial Production”

2 In fact we see the organization structure of agents as long-
term cooperation processes.

4747

On a more concrete view we understand a cooperation
process as a set of stages which model interactions. In a
running cooperation process one or more stages are active.
After the goal of a stage has been reached the control
proceeds to one or more successive stages. The precondi-
tion of a stage is given by the goals of the preceding stages.

During the execution of a cooperation process an agent
can change its role. This allows to have small roles
designed for a particular purpose and are therefore easy to
maintain.

2.2 Design decisions
Implementing the key concepts we had to make design
decisions, which are explained in the following.

Because the functionality of an application domain is
considered as stable we base our model on the existence of
a service model which has to be developed specific to a
certain application-domain. A service may be concrete,
leaving no possibility for interpretation, or may be more
abstract, requiring intelligence and autonomy for execu-
tion. Additionally services have primitives for asking the
service provider to make a decision.

An agent then provides a set of services describing its
capabilities and permissions. The service interface is inde-
pendent of programming languages and allows to execute
roles as clients remote from agents as servers.

Capabilities of agents are realized as services. Therefore
a role specifies the services needed by an agent. The obli-
gation is specified by an action related to a role. The action
describes how the required services have to be used. A role
entering a stage executes its action on the services
provided by the agent.

In detail an instantiated role runs asynchronously to its
agent. It is responsible for the coordination part of a task
and thereby controls the agent accordingly. The responsi-
bility of the agent is to supply the role with knowledge and
decisions that enables the role to fulfil its part.

The last design decision concerns the specification
language. Because we want to describe cooperation proc-
esses and their normative rules prescriptively, we use a
high-level petri net class (predicate-transition nets) which
is extended by the role concept.

Petri nets are known to be suitable for modelling
discrete, event based, distributed systems. In our extension
we model an agent playing a role as a token. Therefore we
are able to describe the dynamic behaviour of interacting
agents. Different types of tokens are used to represent
different types of roles. Roles export certain local states of
their action, so that guard expressions of transitions can be
specified as boolean functions over these states. Guard
expressions describe goals of interactions.

The advantage of this choice is the adequacy. Tokens
allow a good visualization of the distributed state in a
cooperation process and thereby simplify the design and

test of agent cooperation. Communication between roles is
either performed directly between roles in a stage or is
done during the firing of a transition.

To summarize, a ROPE multiagent application consists
of a multiagent layer implementing the functionality of the
application and a cooperation layer on top specifying all
cooperation networks and roles needed for cooperation.

Our design goal is to have an entirely distributed system
avoiding a single point of failure.

3 ACKNOWLEDGEMENT
Peter Burger, Thorsten Gurzki, Jens Hoffmann, Ulrich
Frank.

4 REFERENCES
[Becht et al., 1998] Becht, M.; Muscholl, M; Levi, P.:

Transformable Multi-Agent Systems: A Specification
Language for Cooperation Processes. In: Proceedings
of the World Automation Congress, ISOMA’98, May
10-14, 1998, Anchorage, Alaska, USA, Jamshidi, M.;
de Silva, C. W.; Pierrot, F.; Fathi, Bien, Z.; and Kamel,
M., 1998.

[Klarmann et al., 1998] Klarmann, J.; Becht, M;
Muscholl, M.: Modellierung flexibler Workflows mit
teilausführbaren Aktivitäten (in german). In: Proceed-
ings of the D-CSCW’98 Workshop “Flexibilität und
Kooperation in Workflow-Management-Systemen”,
University of Münster, Angewandte Mathematik und
Informatik, Technical Report No. 18/98-I, pp. 44-55

4848

Autonomous Mars Rovers: Sequence Generation, Testing, and Execution

Project lead: John Bresina
Sequence generation: Corin Anderson, Ted Blackmon, John Bresina, Laurent Nguyen, David E. Smith
On-board architecture: John Bresina, Keith Golden, Katherine Smith, Trey Smith, Rich Washington
Simulation and visualization: Ted Blackmon, Vineet Gupta, Eric Zbinden

1 Introduction

The Pathfinder mission demonstrated the potential for robotic Mars exploration, but at the same time indi-
cated the need for increased rover autonomy. The highly ground-intensive control with infrequent communi-
cation and high latency limited the effectiveness of the Sojourner rover. When failures occurred, Sojourner
often sat idle for extended periods of time, awaiting further commands from earth. Significant advances
in rover autonomy are needed to cope with increasing task complexity and greater execution uncertainty
that will be inherent in future missions. In order to increase the flexibility and robustness of Mars rovers,
we have developed a contingent sequence language, a contingent planner/scheduler to support generation of
such sequences, and an onboard executive system that can execute contingent sequences, manage resources,
and perform fault diagnosis. These work together with user interface and visualization tools for specifying
goals and refining schedules. A realistic simulator can take the place of the rover for testing and visualizing
sequences.

Executive
Mode

identification

state
estimate

se
ns

or

in
fo

rm
at

io
n

com
m

ands

up
lin

ke
d

se

qu
en

ce

Ground

Rover

com
m

and

status

Planner/Scheduler

Rover
operator

Rover operator
interface

Scientist
interfaceScientists

science goals
schedule

Rover real-time
system

or
simulator

Figure 1: Rover architecture.

49

2 Rover Autonomy System

2.1 Sequence preparation

In our current rover system, the scientists specify high-level goals by interacting with a 3D VR interface,
MarsMap. These goals are then given to the contingency planner/scheduler, CPS, which generates a tempo-
rally flexible schedule along with contingency plans to deal with possible execution failures and serendipitous
science opportunities. The contingent schedule is refined through interaction with the scientist PI and rover
operators.

To account for execution uncertainty, CPS can actively plan for, and take advantage of, possible contin-
gencies. Thus, if an operation takes longer than a certain amount of time, or the power remaining drops
below a specified value, a different pre-planned sequence of operations can be performed. Building contin-
gency plans is, in general, intractable, so contingency planners tend to be slow. To overcome this problem,
CPS employs the Just-in-Case (JIC) approach. The basic idea of JIC is to take an existing schedule and
look for the places where it is most likely to fail. The JIC scheduler then generates alternative schedules for
each of those situations.

2.2 Robust sequence execution

Once the ground personnel have produced a schedule, it is sent to the on-board conditional executive,
CX. CX is responsible for interpreting the command sequence, monitoring plan execution, and potentially
selecting alternative plan branches if the situation changes. A plan consists of a nominal sequence and a
set of contingent branches. The nominal sequence is the sequence that will be executed if there are no
deviations from the a priori expectations of the environment and actions. The contingent branches specify
alternative courses of action. Within any contingent branch there may be further contingent branches, hence
the primary plan is a tree of alternative courses of action. In addition, CX has a library of alternate plans,
which are applicable at any time their conditions are satisfied. Enabling events may include unexpected
opportunities, plan failures, or conditions such as resource shortfalls and component degradation.

The Mode Identification component (MI) eavesdrops on commands sent by CX to the rover. As each
command is executed, MI receives observations from low-level monitors, which extract qualitative information
from the rover sensors. For example, a current monitor may map the continuous-valued current into the
set of qualitative values low, nominal, high. MI is informed whenever the qualitative value returned by a
monitor changes. Based on monitor inputs, the commands executed on the rover, and a declarative model
of the rover, MI infers the most likely current state. MI also provides a layer of abstraction to the executive,
allowing plans to be specified in terms of component modes, rather than in terms of low-level sensor values.

2.3 Rover simulation for visualization and verification

For sequence testing and visualization, a rover simulator can replace the actual rover. The simulator receives
and sends messages compatible with the rover real-time software, so the rest of the system can operate with
no knowledge of whether the sequences are being executed on the real rover or in simulation. Currently
the simulator is being used to visualize sequence execution, but it could be used as well to produce more
accurate estimates of resource usage within the sequence-preparation process.

The core of the simulation is a hybrid discrete-continuous model of rover kinematics. This model operates
in conjunction with the MarsMap VR software, which uses a 3-D terrain model generated from stereo images.
The terrain model and the kinematics model combine to produce realistic sensor information, as well as
realistic pose information for visualization. The simulated rover can be viewed using the MarsMap software.

3 Conclusion

The particular characteristics of Mars rover operation require a significant level of rover autonomy and
an ability to handle resource constraints and unpredictable events. We have designed an architecture for
rover autonomy that includes contingency planning on ground and flexible, robust execution of conditional
sequences on board. The on-board executive draws on model-based fault diagnosis and dynamic resource
management to maximize its science return. The architecture is supported by a suite of visualization and
simulation tools for sequence development and verification.

50

Sensible Agents: Demonstration of Dynamic Configuration of Agent

Organizations for Responsive Planning Operations

K. Suzanne Barber
The Laboratory for Intelligent Processes and Systems

Electrical and Computer Engineering
The University of Texas

Austin, TX 78712
barber@mail.utexas.edu

Research Overview

Decision makers must often respond to dynamic and
unexpected events. Additionally, decisions rarely occur in
isolation. A decision-maker must not only assess its own
possible actions but also the behaviors and resources of
others possessing the ability to either assist with planning
and execution, accidentally interfere, or maliciously
interfere. Dynamic Adaptive Autonomy (DAA) is the
fundamental technology of Sensible Agents that permits a
decision making agent (responsible for planning and
execution) to react, adjust, and respond to unpredictable
environments. Sensible Agents can (1) assess current and
potential roles others play in interactions, and (2) establish
beneficial roles in these interactions. To address these
issues, dynamic configuration of decision-making agent
organizations is a must. Most current agent-based systems
assign organizational problem-solving structures a priori.
Previous research has addressed agent modification;
organizational self-design (Ishida et al., 1992), partial
global planning (Durfee, 1996), dynamic participation in
agent groups or teams (Decker and Sycara, 1997; Tambe,
1997), and dynamic, market-based task allocation (Smith,
1980).

DAA provides control strategies to form, modify, and
dissolve cooperative problem-solving agreements with
other agents in a robust and flexible manner. As a member
of a problem-solving organization, Sensible Agents
establish their role in interacting with others by selecting
an autonomy level for each goal they intend to pursue: (1)
Command drivenÑagent does not plan but obeys orders
given by another agent, (2) ConsensusÑagent works as a
team member to devise plans, (3) Locally Autonomous /
MasterÑthe agent plans alone, unconstrained by other
agents, and may or may not give orders to command-driven
followers.

SPECTRUM OF AUTONOMY

Command-
driven

Consensus
Locally

Autonomous /
Master

Each Sensible Agent (Barber and Martin, 1999) is
composed of the following components: (1) the Action
Planner; (2) the Perspective Modeler; (3) the Conflict
Resolution Advisor; and (4) the Autonomy Reasoner.
Domain-specific information, processing rules, and state
are restricted to the Action Planner module, while
remaining modules are domain-independent.

Sensible Agents are capable of performing: (1) trade-off
assessment regarding the impact of local decision-making
and goal satisfaction on system objectives, (2) their own
behaviors by planning for a goal (local or system) and/or
executing actions to achieve the goal, (3) group behaviors
by forming binding autonomy agreements (e.g. consensus
groups, master agent planning for group of command-
driven agents) (4) self-organization by determining the best
problem-solving organization, autonomy level, to
optimally satisfy a goal, and (5) preferential learning for
associating autonomy levels to situations. Dynamic
adaptive autonomy assignments allow the most appropriate
distributed agent ensembles to be defined for resource
management and task performance in a dynamic or
unpredictable environment.

Demonstration

The Sensible Agent (SA) Testbed provides an
infrastructure of well-defined, publicly available interfaces
where distributed agents operate and communicate. The
end-user can interact with the testbed from the viewpoint
of (1) the environment, by defining scenarios and injecting
contingencies, or (2) the decision maker, by participating in
planning and execution and receiving assistance from other
Sensible Agents.

Sensible Agent capabilities will be demonstrated in the
naval radar frequency management (NRFM) domain. This
domain requires maintaining a set of position and
frequency relationships among geographically distributed
radars such that radar interference is minimized. Radar
interference occurs primarily when two or more radars are
operating in close proximity at similar frequencies. For a
typical group of naval ships, it may take hours or days for a
human assisted by a rule-based system to determine an
optimal position and frequency. Unfortunately, the
environment typically changes much faster than the human
can respond. Local decisions impact the entire system,

5151

requiring tradeoffs between local goal (e.g. keep my radars
interference free) and system goals (e.g. keep radars in my
group of ships interference free).

The NRFM Sensible Agent demonstration is used to
determine the performance of Sensible Agents under
different problem solving organizations. Agents monitor a
naval radar for interference from external sources, and, if
interference is detected, attempt to eliminate it by working
alone or with others (Goel et al., 1998). Several different
operating scenarios are demonstrated. Each Sensible
Agent has the following capabilities:
Communication: the ability to send messages to another
agent and to asynchronously respond to sent messages.
Communication takes the form of (1) requesting
information, (2) reporting a conflict, (3) supplying
information, or (4) reporting a solution to a conflict.
Sensing: the ability to sense the position of other ships.
Agents can also sense their level of interference, but cannot
sense the source. If an agent detects interference it initiates
problem solving to minimize the interference.
Environmental modeling: the ability to maintain an
internal, local, model of the agentÕs world, separate from
the simulation model of the world. Each agent is aware of
the initial state of the system (ship positions and
frequencies), however as the simulation progresses, an
agentÕs local model may deviate from the world model.
The agents use communication and sensing to update their
local models.
Planning: the ability to plan at each of the autonomy levels
described above. Successful planning for this problem
hinges on an agentÕs ability to determine interference-free
frequency assignments. Agents do this by modeling the
spectrum of available frequencies and the necessary
frequency differences (delta frequencies) for each known
pair of radars. Agents then attempt to make assignments
that meet all delta-frequency constraints within the
restricted frequency space. Three algorithms are available
to each agentÕs planner and are associated with the
appropriate autonomy level classification.

An agent attempting to resolve interference in a locally
autonomous fashion will plan alone. The agent will use its
internal world model to find a frequency that is likely to be
interference-free. The frequencies of other radars in the
system are modeled as constraints on the search process. If
no frequencies are found, searching continues at regular
time intervals until one is found or a random ÒdeadlockÓ
time limit is reached. If the agent determines that the
system is in deadlock (with respect to its interference
state), it will choose a random frequency to pull the system
out of deadlock. Note that agents acting in a locally
autonomous fashion do not communicate in order to plan.
However, if communication is available, locally
autonomous agents may request and receive state
information from other agents.

Only the master plans in a master/command-driven
relationship. When the master or its command-driven
agents are experiencing interference, the master attempts to
eliminate the interference through iterative assignments.

First, it chooses its own frequency in the manner described
above, but without considering the frequencies of its
command-driven agents as constraints. It then determines
an interference-free frequency for each command-driven
agent, adding frequencies to its constraint list, until all
assignments have been made. If no set of satisfying
assignments is found, the planning process is restarted.
Once a solution has been found, the assignments are passed
to the command-driven agents. Command-driven agents
may report back to the master if they are still experiencing
interference after the assignment. This may occur when
the masterÕs internal model does not match the world state.

Each agent involved in consensus interaction plays an
equal part in determining frequency assignments. First,
each agent independently carries out the master/command-
driven planning algorithm with the other members of the
consensus group treated as command-driven agents. At the
conclusion of this planning phase, each agent proposes its
solution to the rest of the consensus group during a
synchronization phase. Along with this proposal, each
agent includes an estimate (based on its internal model) of
the expected interference for each radar. Each consensus
member deterministically selects the proposal with the
least amount of estimated interference, and the agents
assign frequencies accordingly.

Acknowledgements

The research was funded in part by The Texas Higher
Education Coordinating Board Advanced Technology
Program, The National Science Foundation and The Naval
Surface Warfare Center.

References

Barber, K. S. and Martin, C. E. 1999. Applying Dynamic Planning
Frameworks to Agent Goals. Accepted to AAAI-SSS99 Agents with
Adjustable Autonomy. Palo Alto, CA.

Decker, K. S. and Sycara, K. P. 1997. Intelligent Adaptive Information
Agents. Journal of Intelligent Information Systems 9(3): 239-260.

Durfee, E. H. 1996. Planning in Distributed Artificial Intelligence. In
Foundations of Distributed Artificial Intelligence, Sixth-Generation
Computer Technology Series, O'Hare, G. M. P. and Jennings, N. R.,
Eds. New York: John Wiley & Sons, Inc., 231-245.

Goel, A., Liu, T. H., White, E., and Barber, K. S. 1998. Implementing
Sensible Agents in a Distributed Simulation Environment. In
Proceedings of the 1998 Western Multi-Conference. San Diego, CA.

Ishida, T., Gasser, L., and Yokoo, M. 1992. Organization Self-Design of
Distributed Production Systems. IEEE Transactions on Knowledge
and Data Engineering 4(2): 123-134.

Smith, R. G. 1980. The Contract Net Protocol: High-level
Communication and Control in a Distributed Problem-Solver. IEEE
Transactions on Computers 29(12): 1104-1113.

Tambe, M. 1997. Towards Flexible Teamwork. Journal of Artificial
Intelligence Research 7: 83-124.

5252

ScienceIndex
(formerly CiteSeer)

Intelligently Augmented Search and Browsing of Scientific Literature on
the Web

Kurt D. Bollacker, Steve Lawrence and C. Lee Giles
NEC Research Institute

Princeton, NJ 08540
http://www.neci.nec.com/

The future of scientific literature is expected to take the form of sophisticated digital libraries, of
which the World Wide Web is one of the largest. Finding relevant scientific publications on the
Web is often a challenge because of the problems of poor organization, inadequate search tools, and
the large amount of literature available. ScienceIndex is a system that greatly enhances the ability
of users to locate, search through, browse among, and be kept up to date on interesting Web based
scientific publications. The NEC Research Institute has made the ScienceIndex software freely
available and is providing a prototype service for public use.

ScienceIndex Features:

Location and Search

� Autonomous location of articles
ScienceIndex uses search engines and crawling to efficiently locate papers on the Web.

� Autonomous Citation Indexing (ACI)
ScienceIndex uses ACI to autonomously create a citation index, similar to the Science Cita-
tion Index, which can be used for literature search and evaluation. Compared to traditional
citation indices, ACI provides improvements in cost, availability, comprehensiveness, effi-
ciency, and timeliness.

� Query-sensitive summaries
ScienceIndex provides the context of how query terms are used in articles instead of a generic
summary, improving the efficiency of search.

� Full-text indexing
ScienceIndex indexes the full-text of the entire articles and citations. Full boolean, phrase and
proximity search is supported.

� Name disambiguation
ScienceIndex allows using author initials to narrow a citation search.

Browsing and Analysis

� Citation context
ScienceIndex can show the context of citations to a given paper, allowing a researcher to
quickly and easily see what other researchers have to say about an article of interest.

5353

� Citation statistics
ScienceIndex provides a count of citations to a particular paper including how many different
sites cite each paper and identifies self-citations.

� Related documents
ScienceIndex locates related documents using citation and word based measures and displays
an active and continuously updated bibliography for each document.

� Overlapping documents
ScienceIndex shows the percentage of matching sentences between documents.

� Citation graph analysis
ScienceIndex analyzes the graph of citations, e.g. to provide hubs and authorities ranking (a
la Kleinberg).

Timeliness

� Awareness and tracking
ScienceIndex provides automatic e-mail and Web based notification of new citations to given
papers, as well as tracking of specific authors, title keywords, and related papers. ScienceIn-
dex learns from user activity to enhance user profiles and recommend new potential keywords
of interest. Collaborative filtering is used to leverage information from other users’ profiles.

� Up-to-date
ScienceIndex continuously updates from the Web so as to insure database freshness.

Public Availability

� For more details, to get a copy of the ScienceIndex software, or to use a demonstration
ScienceIndex service focusing on machine learning and artificial intelligence literature, see
http://www.scienceindex.com/ or write toscienceindex@research.nj.nec.com .

References

Steve Lawrence, Kurt Bollacker, and C. Lee Giles. Autonomous citation matching. In Oren Etzioni,
editor,Proceedings of the Third International Conference on Autonomous Agents, New York, 1999.
ACM Press.

Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and autonomous citation index-
ing. IEEE Computer, 1999. accepted for publication.

C. Lee Giles, Kurt Bollacker, and Steve Lawrence. CiteSeer: An automatic citation indexing system.
In Ian Witten, Rob Akscyn, and Frank M. Shipman III, editors,Digital Libraries 98 - The Third
ACM Conference on Digital Libraries, pages 89–98, Pittsburgh, PA, June 23–26 1998. ACM Press.

Kurt Bollacker, Steve Lawrence, and C. Lee Giles. CiteSeer: An autonomous Web agent for
automatic retrieval and identification of interesting publications. In Katia P. Sycara and Michael
Wooldridge, editors,Proceedings of the Second International Conference on Autonomous Agents,
pages 116–123, New York, 1998. ACM Press.

5454

SETA: an agent architecture for
personalized Web stores

Project: User Adaptive Web-based Systems

http://www.di.unito.it/~seta/www/seta-uk.htm

Dipartimento di Informatica (University of Torino, Italy)

Ä Main features of the system:

• A multi-agent system for electronic commerce on the Web, offering personalized
interactions with the users

• An intelligent guide through products sold in the on-line shop (the system
suggests the items most suited to the customerÕs needs)

• Dynamic generation of product descriptions, where both the amount and the form
of the information is tailored to the user's profile

Ä Main Methodologies:

Human-Computer Interaction ♦ User Modeling ♦ Distributed Agent-based Systems
♦ Knowledge-Based Systems

UMC

Dialog
Mgr

Session
Mgr

Personalization
Agent

Stereotype KB
Users DB

Products DB
Product
Taxonomy

Users
DB Mgr

Products
DB Mgr

Shopping
Cart MgrUM

Context-j

Product
ExtractorUM

Context-i
Sessions
i and j

Virtual store
Architecture

5555

Ä Ongoing work:

• Although the current prototype is instantiated in the telecommunication domain,
the system can be configured to present products in other sales domains
(two configuration tools are currenly available to design the systemsÕs knowedge
bases. Moreover, an editor to modify part of the electronic shop interface is under
development).

Ä Technical details:

Development language: Java

System Architecture: Three Tier Application

Ø First level: Java-enabled browsers

• User Interface: Java Applets, HTML

Ø Second level:

• Java Servlet, supporting the interface to the Web

• Voyager, for agents communication
• Server: Java Web Server

Ø Third level: databases, accessible through the Java JDBC
• The communication between the agents and the DB Managers is supported by Remote

Method Invocation

II level

I level

III level

Product DataBase

Agents

User DataBase

Session
Mgr

SUN Solaris
JDK 1.1, Java Web Server 1.1, Voyager

WINDOWS NT, JDK 1.1, ODBC driver

i-user
Browser

j-user
Browser

Unix Workstations,
PC/Windows, Mac
Netscape, MS Explorer

W
e
b
S
e
r
v
e
r

Hardware and software
architecture

5656

sicsDAIS. A Dynamic Agent Interaction System

Introduction

User-computer interaction has changed in the history of computing; from batch
systems to command line based systems and on to directly manipulated graphical
systems. There is now a need for a new change, a need to incorporate delegation.
Delegation gives users the option to offload tasks to software systems Ð agents Ð that
perform the tasks for the user. This enables users to perform tasks that are difficult to
perform using graphical user interfaces, tasks such as searching and retrieving data in
large distributed networks or scheduled tasks that depend on future events.

In a near future, users will have to interact with multiple agents. The question is what
this interaction will be like.

One possible form of interaction is through a common, mainly graphical interface for
all the agents. In such a system, users will access the agentsÕ individual graphical user
interfaces to receive information and describe and deploy tasks, while the interface
application provides means for the agents to cooperate and coordinate their efforts by
communicating and sharing data. Agents provide their own interfaces to SICS
Dynamic Agent Interaction System (sicsDAIS)1 as smaller versions of themselves,
much as mobile agents, and sicsDAIS coordinates the presentations of these.

sicsDAIS [1] is an example of a model of one interface for many agents. It is the
central point where the user interacts with all agents, but it is not a pre-defined
interaction, since agents can dynamically come and go, and the methods of interaction
can change.

This approach is alternative to two other approaches. In the first, all agents provide
their own disparate interfaces to the user. This makes coordination and sharing of data
between agents difficult. In the second, there is one interface for all agents and all
agents must conform to this interface without exception. This constrains agents in
their expressiveness of the interface and it makes an open system difficult to achieve.

As opposed to FIPAÕs suggestions for user-agent interaction in [2], we choose to view
the interaction process between the user and agents as initiated and controlled by the
user. The FIPA document describes the interaction as a dialog, between agents and
the user, that is controlled by the agents.

Content handlers

sicsDAIS is a stand-alone Java application for simultaneous interaction with multiple
agents. It combines the distributed interfaces Ð content handlers Ð of networked
agents into one easily accessible user interface. It is a mainly graphical approach to
interaction with multiple agents although content handlers may employ any means
and modalities for interacting with users.

Agents are represented in the interface by the smaller content handlers Ð graphical
units of Java code that may be combined in the interface to achieve the overall
presentation or interaction experience for the user.

1

5757

At any given moment in the course of interaction with agents, a content handler may
represent a single agent or multiple agents. Conversely, several content handlers may
work together to represent a single agent.

Some content handlers may even be considered ÒorphansÓ, as they have no direct ties
to any agents. Some of these may be invisible and they act behind the scenes in
sicsDAIS, performing functions such as modeling of the user or synchronization of
other content handlers or agents.

sicsDAIS

The sicsDAIS system provides several functions for content handlers and agents:

• Layout. The layout engine in sicsDAIS performs automatic layout of content
handlers in the interface according to specifications from the agents.

• Data exchange. Blackboard like data exchange is available in sicsDAIS. It
includes on-change notification triggers.

• Event registry. Content handlers, and through these, agents, can log all events in
the system (as well as react to them).

• Event handling model. Basic Java level events in content handlers are mapped to
sicsDAIS level events. Thus a third party may use a pre-constructed content
handler to achieve any functionality as a result of an interface event in Java Ð
without modifying the Java code of the content handler. The modification is done
to the script that is tied to the corresponding sicsDAIS level event. Several content
handlers (and thus agents) can be scripted to react to such events. Content
handlers may change the event mappings during run time.

• Exception handling. sicsDAIS provides global exception handling for all content
handlers. Content handlers (and agents) may register to receive notification and to
handle any exceptions Ð even exceptions of other content handlers.

• Scripting language. Internal communication within sicsDAIS and between content
handlers is provided using a scripting language that is interpreted at runtime.
Scripts can be modified on the fly by content handlers (and thereby agents).

• Dynamic method invocation (as part of the scripting language). Methods in
content handlers may be called while evaluating scripts.

References

1. Espinoza, F., sicsDAIS: Managing user interaction with multiple agents, in Department of
Computer and Systems Sciences. 1998, Stockholm University/Royal Institute of Technology:
Stockholm, Sweden.

2. Miyazaki, Y., Pohl, W., Aparicio, M., Human Agent Interaction (DRAFT), . 1998: Geneva,
Switzerland.

5858

STALKER: A Hierarchical Approach to Wrapper Induction �

Ion Muslea, Steve Minton, and Craig Knoblock
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292-6695

fmuslea, minton, knoblockg@isi.edu

Abstract

With the tremendous amount of information that
becomes available on the Web on a daily basis,
the ability to quickly develop information agents
has become a crucial problem. A vital compo-
nent of any Web-based information agent is a set
of wrappers that can extract the relevant data
from semistructured information sources. Our
novel approach to wrapper induction is based on
the idea of hierarchical information extraction,
which turns the hard problem of extracting data
from an arbitrarily complex document into a se-
ries of easier extraction tasks. We introduce an
inductive algorithm, stalker, that generates ex-
traction rules based on user-labeled training ex-
amples. Labeling the training data represents
the major bottleneck in using wrapper induction
techniques, and our experimental results show
that stalker can learn high-accuracy extraction
rules based on just a handful of examples.

1 Introduction
With the expansion of the Web, computer users have
gained access to a large variety of comprehensive in-
formation repositories. However, the Web is based
on a browsing paradigm that makes it di�cult to re-
trieve and integrate data from multiple sources. The
most recent generation of information agents (e.g.,
WHIRL (Cohen 1998), or Ariadne (Knoblock et al.

1998)) address this problem by enabling information
from pre-speci�ed sets of Web sites to be accessed
via database-like queries. Information agents gen-
erally rely on wrappers to extract information from

�This work was supported in part by USC's Integrated
Media Systems Center (IMSC) - an NSF Engineering Re-
search Center, by the National Science Foundation under
grant number IRI-9610014, by the U.S. Air Force under
contract number F49620-98-1-0046, by the Defense Logis-
tics Agency, DARPA, and Fort Huachuca under contract
number DABT63-96-C-0066, and by a research grant from
General Dynamics Information Systems. The views and
conclusions contained in this paper are the authors' and
should not be interpreted as representing the o�cial opin-
ion or policy of any of the above organizations or any person
connected with them.

semistructured Web pages (a page is semistructured if
the desired information can be located using a concise,
formal grammar). Each wrapper consists of a set of
extraction rules and the code required to apply those
rules. Some systems, such as tsimmis (Chawathe et

al. 1994) and araneus (Atzeni, Mecca, & Merialdo
1997) depend on humans to write the necessary gram-
mar rules. However, there are several reasons why this
is undesirable. Writing extraction rules is tedious, time
consuming and requires a high level of expertise. These
di�culties are multiplied when an application domain
involves a large number of existing sources or the for-
mat of the source documents changes over time.
In order to cope with these problems, Kushmer-

ick(Kushmerick 1997) introduced the concept of wrap-
per induction, which is based on the idea of learning
extraction rules based on user-provided examples of
extraction tasks. In this demonstration, we present
stalker(Muslea, Minton, & Knoblock 1999), which is
a new machine learning method for wrapper construc-
tion that enables unsophisticated users to painlessly
turn Web pages into relational information sources.

2 Hierarchical Information Extraction

Because Web pages are intended to be human read-
able, there are some common conventions for struc-
turing HTML pages. The information on a page of-
ten exhibits some hierarchical structure; furthermore,
semistructured information is often presented in the
form of lists of tuples, with explicit separators used
to distinguish the di�erent elements. For example, the
document in Figure 1 provides a typical Zagat's restau-
rant description; besides the restaurant name, rating
(i.e., food, decor, service, and cost), cuisine, and re-
view, the document also includes a list of addresses
and phone numbers.
With these observations in mind, we developed the

embedded catalog (EC) formalism, which can describe
the structure of a wide-range of semistructured doc-
uments. The EC description of a page is a tree-like
structure in which the leaves are the items of inter-
est for the user (i.e., they represent the relevant data).
The internal nodes of the EC tree represent lists of

5959

Figure 1: A Sample Document from Zagat's.

k-tuples (e.g., lists of addresses and phone numbers),
where each item in the k-tuple can be either a leaf or
an embedded list. In Figure 2 we show the EC descrip-
tion of a typical Zagat's document, which can be seen
as a 7-tuple that includes a list of addresses, where
each individual address is a 4-tuple street, city,

area-code, and phone-number

Given the EC description of a document together
with an extraction rule attached to each edge and a list
iteration rule associated with each list node, a wrap-
per can extract any item of interest (i.e., any leaf) by
simply determining the path P from the root to the
corresponding leaf and by successively extracting each
node x 2 P from its parent p. In order to extract x

from p, the wrapper applies the extraction rule r that
is attached to the edge(p; x); if p is a list node, the
wrapper has to apply �rst the iteration rule that de-
composes p into individual tuples, and then it applies
r to each extracted tuple.

Our wrapper induction tool is based on the stalker
learning algorithm. A graphical user interface allows
the user to provide the EC description and to label the
items to be extracted from a few sample documents.
Based on this information, stalker generates all the
necessary extraction rules that are required in order to
fully specify the wrapper.

Our approach to wrapper induction has two major
advantages. First of all, the hierarchical extraction
based on the EC tree allows our agent to wrap in-
formation sources that have arbitrary many levels of
embedded data. Second, as each node is extracted
independently of its siblings, our approach does not
rely on there being a �xed ordering of the items, and
we can easily handle extraction tasks from documents
that may have missing items or items that appear in
various orders. Consequently, in the context of using
an inductive algorithm that generates the extraction

ZAGAT Document

name food decor service cost LIST(Addresses) review

street city area−code phone−number

Figure 2: EC description for Zagat's documents.

rules, our approach turns an extremely hard problem
into several simpler ones: rather then �nding a single
extraction rule that takes into account all possible item
orderings and becomes more complex as the depth of
the EC tree increases, we create several simpler rules
that deal with the easier task of extracting each item
from its EC tree parent.

3 Conclusions and Future Work

The primary contribution of our work is to turn a po-
tentially hard problem { learning extraction rules {
into a problem that is extremely easy in practice (i.e.,
typically very few examples are required). In order
to further improve our wrapper induction system, we
plan to use active learning techniques to minimize the
amount of labeling that the user has to perform.

References

Atzeni, P.; Mecca, G.; and Merialdo, P. 1997. Semi-
structured and structured data in the web: going back
and forth. Proceedings of ACM SIGMOD Workshop

on Management of Semi-structured Data 1{9.

Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ire-
land, K.; Papakonstantinou, Y.; Ullman, J.; and
Widom., J. 1994. The tsimmis project: integration
of heterogeneous information sources. 10th Meeting
of the Information Processing Society of Japan 7{18.

Cohen, W. 1998. A web-based information system
that reasons with structured collections of text. Pro-
ceedings of Autonomous Agents AA-98 400{407.

Knoblock, C.; Minton, S.; Ambite, J.; Ashish, N.;
Margulis, J.; Modi, J.; Muslea, I.; Philpot, A.; and
Tejada, S. 1998. Modeling web sources for informa-
tion integration. Proceedings of the Fifteenth National
Conference on ASrti�cial Intelligence 211{218.

Kushmerick, N. 1997. Wrapper induction for infor-
mation extraction. PhD Thesis, Dept. of Computer

Science, U. of Washington, TR UW-CSE-97-11-04.

Muslea, I.; Minton, S.; and Knoblock, C. 1999. A
hierarchical approach to wrapper induction. Third

International Conference on Autonomous Agents.

6060

DEMONSTRATION DESCRIPTION

We wil l demonstrate Watson, the first in a class of systems called Information
Management Assistants (IMAs). IMAs observe users interact with everyday applications
and then anticipate their information needs using a model of the task at hand. IMAs then
automatically fulfill these needs using the text of the document the user is manipulating
and knowledge of how to form queries to traditional information retrieval systems (e.g.,
Internet search engines, newspaper archives, etc.). IMAs automatically query
information systems on behalf of users as well as provide an interface by which the user
can pose queries explicitly. Because IMAs are aware of the user’s task, they can
augment their explicit query with terms representative of the context of this task.

Watson is the first of the IMAs we have implemented. Watson is a client-side
application that observes users as they browse the Web with Internet Explorer or
compose documents in Microsoft Word. When a user visits a page (in Explorer) or
changes a document significantly (in Word), Watson attempts to find documents related
documents. Watson uses the text of the document at hand to construct a query that is sent
to online information sources (e.g., Alta Vista, ProQuest, etc.). The query is composed of
terms from the document that are structurally significant and have a high frequency of
occurrence. When the results of Watson’s query are returned, Watson removes redundant
entries by clustering them according to several inexpensive heuristic similarity metrics.
Watson then presents a representative from each cluster in a window for the user to
browse.

Watson also attends to structural cues in documents in order to recognize
opportunities to perform special-purpose search. For example, in Microsoft Word, when
a user inserts a caption with no image to fill it, Watson retrieves images from an image
search engine using the text of the caption inserted. Watson attends to specific structures
in Web documents, as well . For example, when a user encounters a page containing a
street address, Watson provides the user with access to a map of that location. These
examples are part of an overall strategy of analyzing the regularities of Watson’s domain
of interaction in order to identify structural artifacts that indicate specific information
needs.

Finally, Watson allows the user to enter explicit queries. When a user submits a
query to Watson, it combines the new query terms with the query it previously
constructed for finding related documents, and sends the combined query to information
sources. In this way, Watson brings the implicit context of the user’s current task to bear
directly on the process of servicing a user’s explicit query.

Watson’s performance at finding related web pages was consistently better than
frequent users of Internet search engines in an initial informal study. In general, we have
been very excited with Watson’s performance. It has been able to achieve dramatic
results by augmenting explicit information requests with frequently elided contextual
information. This is a great improvement over the performance of typical information
retrieval systems working on their own. Moreover, Watson, and IMAs in general,
significantly extend the functionality of everyday applications by integrating them
seamlessly into a ubiquitous just-in-time information environment, providing resources to
the user without requiring the construction of an explicit request. In these ways, we
believe IMAs provide a compell ing new framework for research in intell igent

6161

information retrieval and contribute significantly to advancing the state of the art in
human interaction with information systems.

Watson is part of an overall agenda driving research at the Intelligent Information
Laboratory. Our goal is to create systems that compliment user activity in everyday
environments by understanding their behavior in order to predict and fulfil l their needs.
Tied to this view of the world is the notion that queries to information systems, and term
vectors, in general, should be treated as first class representational objects that can be
modified and transformed by knowledge-based systems in service of a user’s information
need. Vector space representations of documents are particularly good for computing
document to document similarity. Work on Watson shows that coupling such a
representation with semantic knowledge of a particular task produces promising results.

During this demonstration, we will allow audience members to try out Watson first
hand. Users will be allowed to browse and write, evaluating the suggestions Watson
gives for themselves.

References

Budzik, J., and Hammond, K. 1999. Real Time Heuristic Analysis for Just-in-time
Information Environments. In review, AAA I ’ 99.

Budzik, J., and Hammond, K. 1999. Just-In-Time Information Environments. In review,
AAA I ‘ 99.

Hammond, K., and Budzik, J. 1999. Watson: An Information Management Assistant. In
review, Eighth International World-Wide Web Conference.

Budzik, J; Hammond, K.; Marlow, C.; and Scheinkman, A. 1998. Anticipating
Information Needs: Everyday Applications as Interfaces to Internet Information Sources.
In Proc. WebNet ’98: World Conference on the WWW, Internet and Intranet.

Papers are available online at http://www.infolab.nwu.edu/~jlbudzik/watson/

6262

Introduction
The construction of multi-agent systems involves long development times and requires solutions to some considerable
technical difficulties. Hence we believe that dedicated methodologies and industrial-strength, reusable agent components are
required. This has motivated our development of the ZEUS toolkit, a library of software components and tools that facilitate
the rapid design, development and deployment of agent systems.

Our demonstration illustrates the three main functional components of the ZEUS toolkit, the Agent Component Library that
makes possible fully featured multi-agent applications, the Agent Building Software that facilitates their construction, and the
Visualisation tools that permit the applications to be observed and, where necessary, debugged.

7KH�$JHQW�&RPSRQHQW�/LEUDU\

The agent component library is a collection of software components that implement the functionality necessary for multi-
agent systems. Amongst the components provided with the ZEUS toolkit there are:

• A TCP/IP-based message passing mechanism capable of transmitting KQML and FIPA ACL performatives.

• A library of predefined co-ordination strategies, represented in the form of recursive transition network graphs; these
include several variants on contract-net, and auction protocols for more commercially oriented behaviour.

• A co-ordination engine that drives agent interactions by executing co-ordination strategies.

• Support for several types of organisational relationships within agent societies.

• A general purpose planning and scheduling mechanism to support goal-driven intelligent behaviour.

• Support for agent competencies in terms of primitive actions, summary plans, forward chaining rules and self-
executing behaviour scripts.

• Representations to store and exchange information on tasks and ontology concepts.

• An agent-to-legacy system interface to facilitate inter-operability with existing software systems.

• Full implementations of three different utility agents that provide runtime support services: agent name-to-network
location resolution (Name Servers), service discovery (Facilitators) and persistent storage (Database Proxies).

By providing a set of high quality, pre-written and pre-tested agent components, we hope to liberate developers from the
minutiae of agent technology, allowing them to concentrate on solving their application’s problems instead.

6363

 7KH�$JHQW�%XLOGLQJ�6RIWZDUH

The ZEUS toolkit provides an integrated suite of editors that guide developers through the stages of our comprehensive agent
development methodology. During this process developers describe the agents within their application, how they interact,
and the tasks they perform. Amongst the tools are:

• An Ontology Editor for defining the concepts, attributes and constraints within a domain.

• An Agent Definition Editor for describing agents logically, e.g. their tasks, initial resources, planning abilities etc.

• A Task Description Editor for describing the attributes of tasks and for graphically composing summary tasks.

• An Organisation Editor for defining the organisational relationships between agents, and agents’ beliefs about the
abilities of other agents.

• A Co-ordination Editor for selecting the set of co-ordination protocols with which each agent will be equipped, and
the strategies that influence the agent's behaviour.

Once defined the ZEUS Code Generator tool can automatically convert the agent definitions into executable Java source
code, enabling applications built with ZEUS to run on any hardware platform

7KH�9LVXDOLVDWLRQ�7RROV

The Visualisation Tools collect information on agent activity, interpret it and display various aspects in real-time. This is an
attempt to solve the inherently diffi cult problem of analysing and debugging a multi-agent system where all of the data,
control and active processes are distributed; to this end the following tools are supplied:

• A Society Viewer that shows all known agents, their organisational relationships and the messages they exchange.

• A Reports Tool that shows the society-wide decomposition/distribution of active tasks and the execution states of
the various tasks.

• An Agent Viewer that enables the internal states of agents to be observed and monitored.

• A Control Tool that is used to remotely review and/or modify the internal states of individual agents.

• A Statistics Tool that displays individual agent and society-wide statistics in a variety of formats.

The multi-perspective approach provided by the visualisation tools gives users the flexibilit y to choose what is visualised,
how it is visualised and when it is visualised. In addition, as well as viewing events as they happen, the Visualiser tools can
save agent sessions for offline analysis using their 'Video Replay’ faciliti es.

Further information and a link to download the ZEUS toolkit can be found on our web site at:

http://www.labs.bt.com/projects/agents/

Contact Information

Dr. Divine Ndumu
MLB1, PP12,
BT Laboratories,
Martlesham Heath, Suffolk,
United Kingdom, IP5 3RE

Email: ndumudt@info.bt.co.uk
Telephone: +44 (01473) 605666

Dr. Jaron Collis
MLB1, PP12,
BT Laboratories,
Martlesham Heath, Suffolk,
United Kingdom, IP5 3RE

Email: jaron@info.bt.co.uk
Telephone: +44 (01473) 605462

6464

	Arguing and Cooperating Agents
	An Adaptive Interactive Agent for Route Advice
	Learning to remove Internet advertisements
	Adele: A Web-Based Pedagogical Agent
	Agent aided aircraft maintenance
	Asynchronous Teams of Agents for Optimization and Decision-Support
	The Bond Agent Framework
	BTFS: The Border Trade Facilitation system
	A Collaborative Spoken-Language Desktop Agent
	DESIRE Software Environment for Compositional Development of Multi-Agent Systems
	Agent-based Electronic Mall e-Marketplace
	FM 1.00 A test-bed for Trading Agents in e-Auctions
	Training Agents to Recognize Text by Example
	PROJECT JAMES
	LARKS: Matchmaking Among Software Agents in CyberSpace
	LiveMarks: Collaborative Information Gathering
	MailCat: An Intelligent Assistant for Organizing E-Mail
	Market Maker
	MASMaS: a Multi-Agent Simulation Management System
	A Personal News Agent that Talks, Learns and Explains
	Intelligent Interfaces for Decision-Theoretic Systems
	Remote Agent Demonstration
	Demonstration of Rational Communicative Behavior in Coordinated Defense
	ROPE: Role Oriented Programming Environment for Multiagent Systems
	Autonomous Mars Rovers: Sequence Generation, Testing, and Execution
	Sensible Agents: Demonstration of Dynamic Configuration of Agent Organizations for Responsive Planning Operations
	ScienceIndex
	SETA: an agent architecture for personalized Web stores
	sicsDAIS. A Dynamic Agent Interaction System
	STALKER: A Hierarchical Approach to Wrapper Induction
	Watson: demonstration description
	The ZEUS agent-building tool-kit

