
 M A Smith - May not be reproduced without permission

R e p r o d u c t i o n p r o h i b i t e d w i t h o u t p e r m i s s i o n o f t h e a u t h o r

√ r

Note: This is an example of comments, the more experienced programmer would probably miss out many of
the above comments as the effect of the code is easily understandable.

Comments that do not add to a reader’s understanding of the program code should be avoided. In some
circumstances the choice of meaning full names for memory locations is all that is required. As

begin
Deposit(My_Account, 100.00);
Other_Account := My_Account; --Copy and

 M A Smith - May not be reproduced without permission

Object-oriented Software in Ada 95 Second Edition

Object-oriented Software in Ada 95 Second Edition

Michael A. Smith
School of Computing
University of Brighton

 M A Smith - May not be reproduced without permission

Contents
CONTENTS ...IV

1.1 GLOSSARY OF TERMS USED .. XV

1 INTRODUCTION TO PROGRAMMING...1

1.1 COMPUTER PROGRAMMING ..1
1.2 PROGRAMMING LANGUAGES ..1
1.3 RANGE OF PROGRAMMING LANGUAGES ...2

1.3.1 Computer programming languages..2
1.3.2 The role of a compiler ...2

1.4 A SMALL PROBLEM ..3
1.5 SOLVING THE PROBLEM USING A CALCULATOR ..3

1.5.1 Making the solution more general ..4
1.6 SOLVING THE PROBLEM USING THE ADA 95 LANGUAGE...4

1.6.1 Running the program...6
1.7 THE DECLARE BLOCK..6
1.8 THE ROLE OF COMMENTS ..7
1.9 SUMMARY...8
1.10 A MORE DESCRIPTIVE PROGRAM ..8

1.10.1 Running the new program..9
1.11 TYPES OF MEMORY LOCATION ...9

1.11.1 Warning .. 10
1.12 REPETITION ..10
1.13 INTRODUCTION TO THE WHILE STATEMENT ..11

1.13.1 Conditions.. 12
1.13.2 A while statement in Ada 95.. 12
1.13.3 Using the while statement.. 13

1.14 SELECTION ..14
1.14.1 Using the if statement.. 15

1.15 SELF-ASSESSMENT ...16
1.16 PAPER EXERCISES ...17

2 SOFTWARE DESIGN ...18

2.1 THE SOFTWARE CRISIS ..18
2.2 A PROBLEM , THE MODEL AND THE SOLUTION..18

2.2.1 Responsibilities.. 19
2.3 OBJECTS...19

2.3.1 The car as an object.. 20
2.4 THE CLASS ..21
2.5 METHODS AND MESSAGES ..21
2.6 CLASS OBJECTS ...21
2.7 INHERITANCE...22
2.8 POLYMORPHISM ..23
2.9 SELF-ASSESSMENT ...23

3 ADA INTRODUCTION: PART 1...25

3.1 A FIRST ADA PROGRAM ..25
3.2 THE CASE OF IDENTIFIERS IN A PROGRAM ...26
3.3 FORMAT OF AN ADA PROGRAM ...26

3.3.1 Variable names.. 26
3.3.2 Comments ... 27

3.4 A LARGER ADA PROGRAM ..27
3.5 REPETITION: WHILE...28
3.6 SELECTION: IF...28
3.7 OTHER REPETITION CONSTRUCTS ...29

Contents v

3.7.1 for... 29
3.7.2 loop.. 30

3.8 OTHER SELECTION CONSTRUCTS ..31
3.8.1 case.. 31

3.9 INPUT AND OUTPUT ...32
3.10 ACCESS TO COMMAND LINE ARGUMENTS ..33

3.10.1 Putting it all together ... 34
3.11 A BETTER CAT PROGRAM ...34

3.11.1 Putting it all together ... 35
3.12 CHARACTERS IN ADA ..35
3.13 SELF-ASSESSMENT ...36
3.14 EXERCISES...37

4 ADA INTRODUCTION: PART 2...38

4.1 INTRODUCTION ...38
4.2 THE TYPE FLOAT..38

4.2.1 Other Integer and Float data types.. 39
4.3 NEW DATA TYPES ...39

4.3.1 Type conversions... 40
4.3.2 Universal integer .. 40
4.3.3 Constant declarations.. 40

4.4 MODIFIED COUNTDOWN PROGRAM ..41
4.5 INPUT AND OUTPUT IN ADA ..41
4.6 THE PACKAGE ADA.FLOAT_TEXT_IO...41

4.6.1 Output of floating point numbers ... 42
4.6.2 Input of floating point numbers .. 42

4.7 THE PACKAGE ADA.INTEGER_TEXT_IO..42
4.7.1 Output of integer numbers... 42
4.7.2 Input of integer numbers.. 43

4.8 CONVERSION BETWEEN FLOAT AND INTEGER TYPES..43
4.9 TYPE SAFETY IN A PROGRAM ...44
4.10 SUBTYPES..44

4.10.1 Types vs. subtypes ... 45
4.11 MORE ON TYPES AND SUBTYPES ...45

4.11.1 Root_Integer and Root_Real... 46
4.11.2 Type declarations: root type of type.. 46
4.11.3 Arithmetic with types and subtypes.. 47
4.11.4 Warning .. 47
4.11.5 Constrained and unconstrained types... 48
4.11.6 Implementation optimizations... 48

4.12 COMPILE-TIME AND RUN-TIME CHECKS ...49
4.12.1 Subtypes Natural and Positive .. 50

4.13 ENUMERATIONS..50
4.13.1 Enumeration values.. 51
4.13.2 The attributes 'Val and 'Pos.. 51

4.14 THE SCALAR TYPE HIERARCHY..52
4.14.1 The inbuilt types.. 53

4.15 ARITHMETIC OPERATORS ..53
4.15.1 Exponentiation .. 54
4.15.2 Monadic arithmetic operators .. 54

4.16 MEMBERSHIP OPERATORS ...54
4.17 USE OF TYPES AND SUBTYPES WITH MEMBERSHIP OPERATOR ...55
4.18 RELATIONAL OPERATORS..56
4.18.1 Boolean operators .. 56
4.18.2 Monadic Boolean operators.. 57

4.19 BITWISE OPERATORS...57
4.20 SELF-ASSESSMENT ...58

vi Contents

 M A Smith - May not be reproduced without permission

4.21 EXERCISES...59

5 PROCEDURES AND FUNCTIONS ..60

5.1 INTRODUCTION ...60
5.2 FUNCTIONS ...60

5.2.1 Local variables.. 61
5.2.2 Separate compilation of functions.. 61

5.3 PROCEDURES..62
5.3.1 Separate compilation of procedures.. 63

5.4 FORMAL AND ACTUAL PARAMETERS ..64
5.5 MODES OF A PARAMETER TO A FUNCTION OR PROCEDURE ...64

5.5.1 Example of mode in out .. 65
5.5.2 Putting it all together ... 65
5.5.3 Summary of access to formal parameters ... 66

5.6 RECURSION ...66
5.6.1 The procedure Write_Natural .. 67
5.6.2 Putting it all together ... 67

5.7 OVERLOADING OF FUNCTIONS...67
5.8 DIFFERENT NUMBER OF PARAMETERS ..69
5.9 DEFAULT VALUES AND NAMED PARAMETERS..69

5.9.1 Putting it all together ... 70
5.10 SELF-ASSESSMENT ...71
5.11 EXERCISES...71

6 PACKAGES AS CLASSES ..73

6.1 INTRODUCTION ...73
6.2 OBJECTS, MESSAGES AND METHODS ...74
6.3 OBJECTS, MESSAGES AND METHODS IN ADA ..74

6.3.1 An object for a bank account .. 75
6.3.2 The procedure Statement... 76
6.3.3 Putting it all together ... 76
6.3.4 Components of a package.. 76
6.3.5 Specification of the package ... 76
6.3.6 A class diagram showing a class.. 78
6.3.7 Representation of the balance of the account.. 78
6.3.8 Implementation of the package... 78
6.3.9 Terminology... 79

6.4 THE PACKAGE AS SEEN BY A USER ...79
6.5 THE PACKAGE AS SEEN BY AN IMPLEMENTOR ...79
6.6 THE CLASS ..80
6.7 CLAUSES WITH AND USE..80

6.7.1 To use or not to use the use clause .. 81
6.7.2 The package Standard... 81
6.7.3 Positioning of with and use in a package declaration .. 81
6.7.4 Conflict in names in a package .. 82

6.8 MUTATORS AND INSPECTORS ...82
6.9 TYPE PRIVATE ..83

6.9.1 Type limited private .. 83
6.10 INITIALIZING AN OBJECT AT DECLARATION TIME...84

6.10.1 By discriminant ... 84
6.10.2 Restrictions .. 85
6.10.3 By assignment.. 85
6.10.4 Restrictions .. 86

6.11 A PERSONAL ACCOUNT MANAGER ...86
6.12 CLASS TUI ..89
6.13 SELF-ASSESSMENT ...91
6.14 EXERCISES...92

Contents vii

7 DATA STRUCTURES ...94

7.1 THE RECORD STRUCTURE ..94
7.2 OPERATIONS ON A DATA STRUCTURE ...94

7.2.1 Other operations allowed on data structures... 95
7.3 NESTED RECORD STRUCTURES ..96
7.4 DISCRIMINANTS TO RECORDS ..96
7.5 DEFAULT VALUES TO A DISCRIMINANT ..97

7.5.1 Constrained vs. unconstrained discriminants.. 98
7.5.2 Restrictions on a discriminant.. 98

7.6 VARIANT RECORDS ..98
7.7 LIMITED RECORDS ...100
7.8 DATA STRUCTURE VS . CLASS ...100
7.9 SELF-ASSESSMENT ...100
7.10 EXERCISES...101

8 ARRAYS ... 102

8.1 ARRAYS AS CONTAINER OBJECTS ...102
8.2 ATTRIBUTES OF AN ARRAY...104
8.3 A HISTOGRAM ...104

8.3.1 Putting it all together ...107
8.4 THE GAME OF NOUGHTS AND CROSSES ...108

8.4.1 The class Board ...109
8.4.2 Implementation of the game ..109
8.4.3 Displaying the Board ...110
8.4.4 The class Board ...111
8.4.5 Putting it all together ...113

8.5 MULTIDIMENSIONAL ARRAYS ..113
8.5.1 An alternative way of declaring multidimensional arrays...114
8.5.2 Attributes of multidimensional arrays...115

8.6 INITIALIZING AN ARRAY..115
8.6.1 Multidimensional initializations...116

8.7 UNCONSTRAINED ARRAYS ..117
8.7.1 Slices of an array ..117
8.7.2 Putting it all together ...118

8.8 STRINGS ...118
8.9 DYNAMIC ARRAYS ...119

8.9.1 Putting it all together ...119
8.10 A NAME AND ADDRESS CLASS ...120

8.10.1 Putting it all together ...122
8.11 AN ELECTRONIC PIGGY BANK ..122
8.12 SELF-ASSESSMENT ...125
8.13 EXERCISES...126

9 CASE STUDY: DESIGN OF A GAME.. 127

9.1 REVERSI ...127
9.1.1 A program to play reversi..128

9.2 ANALYSIS AND DESIGN OF THE PROBLEM ...128
9.3 CLASS DIAGRAM ...130
9.4 SPECIFICATION OF THE ADA CLASSES ...130
9.5 IMPLEMENTATION OF THE MAIN CLASS GAME...132

9.5.1 Running the program..133
9.5.2 Example of a typical game ..133

9.6 IMPLEMENTATION OF THE OTHER CLASSES ..135
9.7 SELF-ASSESSMENT ...146
9.8 EXERCISES...146

10 INHERITANCE.. 147

viii Contents

 M A Smith - May not be reproduced without permission

10.1 INTRODUCTION ...147
10.2 TAGGED TYPES ..148

10.2.1 Terminology...148
10.3 THE CLASS INTEREST_ACCOUNT...148

10.3.1 Terminology...152
10.4 VISIBILITY RULES (NORMAL INHERITANCE)..152
10.5 CONVERTING A DERIVED CLASS TO A BASE CLASS ...152
10.6 ABSTRACT CLASS ...153

10.6.1 Putting it all together ...155
10.6.2 Visibility of base class methods..156

10.7 MULTIPLE INHERITANCE..156
10.7.1 Putting it all together ...159

10.8 INITIALIZATION AND FINALIZATION ..159
10.8.1 Implementation..161
10.8.2 Putting it all together ...162
10.8.3 Warning ..162

10.9 HIDING THE BASE CLASS METHODS ...163
10.9.1 Visibility rules (Hidden base class) ...164
10.9.2 Putting it all together ...164

10.10 SELF-ASSESSMENT ..164
10.11 EXERCISES ..165

11 CHILD LIBRARIES .. 166

11.1 INTRODUCTION ...166
11.1.1 Putting it all together ...167
11.1.2 Warning ..167

11.2 VISIBILITY RULES OF A CHILD PACKAGE ..168
11.3 PRIVATE CHILD ...169

11.3.1 Visibility rules of a private child package..169
11.4 CHILD PACKAGES VS . INHERITANCE ..169
11.5 SELF-ASSESSMENT ...170
11.6 EXERCISES...170

12 DEFINING NEW OPERATORS... 171

12.1 DEFINING OPERATORS IN ADA ...171
12.2 A RATIONAL ARITHMETIC PACKAGE..172

12.2.1 Ada specification of the package..172
12.2.2 Ada implementation of the package...173

12.3 A BOUNDED STRING CLASS ...176
12.3.1 Overloading = and /= ...177
12.3.2 Specification of the class Bounded_String ...177
12.3.3 Putting it all together ...180
12.3.4 Ada.Strings.Bounded a standard library...180
12.3.5 use type ..181

12.4 SELF-ASSESSMENT ...181
12.5 EXERCISES...181

13 EXCEPTIONS... 183

13.1 THE EXCEPTION MECHANISM ...183
13.2 RAISING AN EXCEPTION ...184
13.3 HANDLING ANY EXCEPTION ...184
13.4 THE CAT PROGRAM REVISITED ...186
13.5 A STACK ..186

13.5.1 Putting it all together ...188
13.5.2 Implementation of the stack ..188

13.6 SELF-ASSESSMENT ...189
13.7 EXERCISES...190

Contents ix

14 GENERICS .. 191

14.1 GENERIC FUNCTIONS AND PROCEDURES ..191
14.1.1 Advantages and disadvantages of generic units ..193

14.2 SPECIFICATION OF GENERIC COMPONENT ...194
14.3 GENERIC STACK ..195

14.3.1 Putting it all together ...197
14.3.2 Implementation techniques for a generic package..198

14.4 GENERIC FORMAL SUBPROGRAMS..198
14.4.1 Example of the use of the generic procedure G_3Order...200
14.4.2 Summary ...200

14.5 SORTING ..201
14.5.1 Efficiency..201

14.6 A GENERIC PROCEDURE TO SORT DATA ...202
14.6.1 Putting it all together ...203
14.6.2 Sorting records..203

14.7 GENERIC CHILD LIBRARY...204
14.7.1 Putting it all together ...206

14.8 INHERITING FROM A GENERIC CLASS ..206
14.8.1 Putting it all together ...207

14.9 SELF-ASSESSMENT ...208
14.10 EXERCISES ..208

15 DYNAMIC MEMORY ALLOCATION.. 209

15.1 ACCESS VALUES ...209
15.1.1 Access to an object via its access value..210
15.1.2 Lvalues and rvalues..210
15.1.3 Read only access ...211

15.2 DYNAMIC ALLOCATION OF STORAGE ..212
15.2.1 Problems with dynamically allocated storage...215

15.3 RETURNING DYNAMICALLY ALLOCATED STORAGE ...215
15.3.1 Summary: access all , access constant, access..216

15.4 USE OF DYNAMIC STORAGE ..216
15.4.1 Putting it all together ...219

15.5 HIDING THE STRUCTURE OF AN OBJECT (OPAQUE TYPE)...220
15.5.1 Putting it all together ...222
15.5.2 Hidden vs. visible storage in a class..223

15.6 ACCESS VALUE OF A FUNCTION ..223
15.6.1 Putting it all together ...224

15.7 ATTRIBUTES 'ACCESS AND 'UNCHECKED_ACCESS...225
15.8 SELF-ASSESSMENT ...226
15.9 EXERCISES...226

16 POLYMORPHISM.. 227

16.1 ROOMS IN A BUILDING..227
16.1.1 Dynamic binding ...228

16.2 A PROGRAM TO MAINTAIN DETAILS ABOUT A BUILDING..228
16.2.1 Putting it all together ...231

16.3 RUN-TIME DISPATCH ...232
16.4 HETEROGENEOUS COLLECTIONS OF OBJECTS ...232

16.4.1 An array as a heterogeneous collection..233
16.4.2 Additions to the class Office and Room ...233

16.5 A BUILDING INFORMATION PROGRAM ..235
16.5.1 Putting it all together ...236

16.6 FULLY QUALIFIED NAMES AND POLYMORPHISM ...237
16.7 PROGRAM MAINTENANCE AND POLYMORPHISM ...238
16.8 DOWNCASTING..238

x Contents

 M A Smith - May not be reproduced without permission

16.8.1 Converting a base class to a derived class...239
16.9 THE OBSERVE-OBSERVER PATTERN ...240

16.9.1 The Observer’s responsibilities..241
16.9.2 The responsibilities of the observable object ...241
16.9.3 Putting it all together ...242

16.10 USING THE OBSERVE-OBSERVER PATTERN ...244
16.10.1 The observed board object ..244
16.10.2 An observer for the class Board ...246
16.10.3 The driver code for the program of nought and crosses..246

16.11 SELF-ASSESSMENT ..247
16.12 EXERCISES ..248

17 CONTAINERS .. 249

17.1 LIST OBJECT ...249
17.1.1 List vs. array...251

17.2 METHODS IMPLEMENTED IN A LIST ..251
17.2.1 Example of use...251

17.3 SPECIFICATION AND IMPLEMENTATION OF THE LIST CONTAINER ...253
17.3.1 The list iterator..256
17.3.2 Relationship between a list and its iterator..260

17.4 LIMITATIONS OF THE LIST IMPLEMENTATION ..260
17.5 REFERENCE COUNTING...262
17.6 IMPLEMENTATION OF A REFERENCE COUNTING SCHEME...264

17.6.1 Ada specification...265
17.6.2 Ada implementation..266
17.6.3 Putting it all together ...268

17.7 A SET ..269
17.7.1 Putting it all together ...271

17.8 SELF-ASSESSMENT ...271
17.9 EXERCISES...272

18 INPUT AND OUTPUT.. 273

18.1 THE INPUT AND OUTPUT MECHANISM ...273
18.1.1 Putting it all together ...274

18.2 READING AND WRITING TO FILES ...275
18.3 READING AND WRITING BINARY DATA ...276
18.4 SWITCHING THE DEFAULT INPUT AND OUTPUT STREAMS ..278

18.4.1 Putting it all together ...278
18.5 SELF-ASSESSMENT ...279
18.6 EXERCISES...279

19 PERSISTENCE... 280

19.1 A PERSISTENT INDEXED COLLECTION ...280
19.1.1 Putting it all together ...282
19.1.2 Setting up the persistent object ...282

19.2 THE CLASS PIC ...282

20 TASKS ... 289

20.1 THE TASK MECHANISM ...289
20.1.1 Putting it all together ...290
20.1.2 Task rendezvous..291
20.1.3 The task’s implementation...292

20.2 PARAMETERS TO A TASK TYPE...293
20.2.1 Putting it all together ...294

20.3 MUTUAL EXCLUSION AND CRITICAL SECTIONS ...294
20.4 PROTECTED TYPE..295
20.5 IMPLEMENTATION..295

Contents xi

20.5.1 Barrier condition entry ..298
20.5.2 Putting it all together ...300

20.6 DELAY..300
20.7 CHOICE OF ACCEPTS..300

20.7.1 Accept alternative ...301
20.7.2 Accept time-out..301

20.8 ALTERNATIVES TO A TASK TYPE...302
20.8.1 As part of a package...302
20.8.2 As part of a program unit ..304

20.9 SELF-ASSESSMENT ...304
20.10 EXERCISES ..305

21 SYSTEM PROGRAMMING... 306

21.1 REPRESENTATION CLAUSE..306
21.1.1 Putting it all together ...307

21.2 BINDING AN OBJECT TO A SPECIFIC ADDRESS ..307
21.2.1 Access to individual bits ..308

21.3 SELF-ASSESSMENT ...310
21.4 EXERCISES...310

22 A TEXT USER INTERFACE... 311

22.1 SPECIFICATION ..311
22.2 API FOR TUI..312

22.2.1 To set up and close down the TUI ..312
22.2.2 Window API calls ..313
22.2.3 Dialog API calls ..313
22.2.4 User interaction with the TUI ...314
22.2.5 Classes used...314

22.3 AN EXAMPLE PROGRAM USING THE TUI...314
22.3.1 How it all fits together ...316
22.3.2 Putting it all together ...317

22.4 THE MENU SYSTEM ..317
22.5 NOUGHTS AND CROSSES PROGRAM ...320

22.5.1 The class Board ...320
22.5.2 Package Pack_Program ...322
22.5.3 Putting it all together ...326

22.6 SELF-ASSESSMENT ...326
22.7 EXERCISES...327

23 TUI: THE IMPLEMENTATION .. 328

23.1 OVERVIEW OF THE TUI ...328
23.1.1 Structure of the TUI ..329

23.2 IMPLEMENTATION OF THE TUI...329
23.2.1 Constants used in the TUI..330
23.2.2 Raw input and output ...330
23.2.3 Machine-dependent I/O..331
23.2.4 The class Screen ..333

23.3 THE CLASS ROOT_WINDOW...334
23.4 THE CLASSES INPUT_MANAGER AND WINDOW_CONTROL..335

23.4.1 Specification of the class Input_manager..335
23.4.2 Specification of the class Window_control ...335
23.4.3 Implementation of the class Input_manager ...336
23.4.4 Implementation of the class Window_control ..337

23.5 OVERLAPPING WINDOWS...340
23.6 THE CLASS WINDOW...340

23.6.1 Application API ...340
23.6.2 Window system API...341

xii Contents

 M A Smith - May not be reproduced without permission

23.6.3 The specification for the class Window ...341
23.6.4 Implementation of the class Window..343

23.7 THE CLASS DIALOG...348
23.7.1 Implementation of the class Dialog..349

23.8 THE CLASS MENU ...350
23.8.1 Implementation of the class Menu ...352

23.9 THE CLASS MENU_TITLE...354
23.9.1 Implementation of the class Menu_title ...354

23.10 SELF-ASSESSMENT ..355
23.11 EXERCISES ..355

24 SCOPE OF DECLARED OBJECTS .. 357

24.1 NESTED PROCEDURES ...357
24.1.1 Advantages of using nested procedures..359
24.1.2 Introducing a new lexical level in a procedure or function...359
24.1.3 Holes in visibility ..359
24.1.4 Consequences of lexical levels..359

24.2 SELF-ASSESSMENT ...360

25 MIXED LANGUAGE PROGRAMMING... 361

25.1 LINKING TO OTHER CODE ..361
25.2 SELECTED TYPES AND FUNCTIONS FROM INTERFACES.C...361

25.2.1 Integer, character and floating point types..361
25.2.2 C String type ..361
25.2.3 Selected functions..361

25.3 AN ADA PROGRAM CALLING A C FUNCTION ...362
25.3.1 Another example ...363

25.4 AN ADA PACKAGE IN C...363
25.5 LINKING TO FORTRAN AND COBOL CODE ...365

APPENDIX A: THE MAIN LANGUAGE FEATURES OF ADA 95... 366

SIMPLE OBJECT DECLARATIONS ...366
ARRAY DECLARATION ...366
TYPE AND SUBTYPE DECLARATIONS ...366
ENUMERATION DECLARATION ..366
SIMPLE STATEMENTS ..366
BLOCK..366
SELECTION STATEMENTS ..366
LOOPING STATEMENTS ..367
ARITHMETIC OPERATORS..367
CONDITIONAL EXPRESSIONS..367
EXITS FROM LOOPS ...367
CLASS DECLARATION AND IMPLEMENTATION ..368
INHERITANCE ..368
PROGRAM DELAY...369
TASK ..369
COMMUNICATION WITH A TASK ...369
RENDEZVOUS ..369
PROTECTED TYPE...370

APPENDIX B: COMPONENTS OF ADA... 371

B.1 RESERVED WORDS AND OPERATORS IN ADA 95...371
B.1.1 Reserved words..371
B.1.2 Operators..371

B.2 ATTRIBUTES OF OBJECTS AND TYPES ..371
B.2.1 Scalar objects ..371
B.2.2 Array objects and types..371

Contents xiii

B.2.3 Scalar objects and types ..372
B.2.4 Discrete objects ...372
B.2.5 Task objects and types..372
B.2.6 Floating point objects and types ..372

B.3 LITERALS IN ADA ...373
B.4 OPERATORS IN ADA 95..373

B.4.1 Priority of operators from high to low..374
B.5 ADA TYPE HIERARCHY ...374
B.6 IMPLEMENTATION REQUIREMENTS OF STANDARD TYPES ..375
B.7 EXCEPTIONS ...375

B.7.1 Pre-defined exceptions...375
B.7.2 I/O exceptions..376

B.8 ADA 95, THE STRUCTURE ...376
B.9 SOURCES OF INFORMATION ..376

B.8.1 Copies of the Ada 95 compiler..376
B.8.2 Ada information on the World Wide Web ...377
B.8.3 News groups...377
B.8.4 CD ROMs..377
B.8.5 Additional information on this book ..377

APPENDIX C: LIBRARY FUNCTIONS AND PACKAGES... 378

C.1 GENERIC FUNCTION UNCHECKED_CONVERSION..378
C.2 GENERIC FUNCTION UNCHECKED_DEALLOCATION...378
C.4 THE PACKAGE STANDARD ..378
C.5 THE PACKAGE ADA.TEXT_IO ...382
C.6 THE PACKAGE ADA.SEQUENTIAL_IO...389
C.7 THE PACKAGE ADA.CHARACTERS.HANDLING ..390
C.8 THE PACKAGE ADA.STRINGS.BOUNDED..391
C.9 THE PACKAGE INTERFACES.C ...397
C.10 THE PACKAGE ADA.NUMERICS ...399
C.11 THE PACKAGE ADA .NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS...399
C.12 THE PACKAGE ADA.COMMAND_LINE ...400
C.13 THE PACKAGE ADA.FINALIZATION..400
C.14 THE PACKAGE ADA.TAGS...401
C.15 THE PACKAGE ADA.CALENDAR ...401
C.16 THE PACKAGE SYSTEM..402

APPENDIX D: ANSWERS TO SELECTED EXERCISES .. 404

FROM CHAPTER 2 ...404
FROM CHAPTER 3 ...405
FROM CHAPTER 4 ...407
FROM CHAPTER 5 ...408
FROM CHAPTER 6 ...410
FROM CHAPTER 9 ...411
FROM CHAPTER 13 ...413
FROM CHAPTER 14 ...415
FROM CHAPTER 19 ...417

REFERENCES ... 419

26 INDEX.. 420

 M A Smith - May not be reproduced without permission

Preface
This book is aimed at students and programmers who wish to learn the object-oriented language Ada 95. The
book illustrates the language by showing how programs can be written using an object-oriented approach. The
book treats Ada 95 as a language in its own right and not just as an extension to Ada 83.

The first chapter provides an introduction to problem solving using an object-oriented design methodology.
The methodology illustrated in this introductory chapter is based on Fusion.

The next three chapters concentrate on the basic constructs in the Ada 95 language. In particular the use of
types and subtypes is encouraged. By using types and subtypes in a program the compiler can help spot many
errors and inconsistencies at compile-time rather than run-time.

The book then moves on to discuss the object-oriented features of the language, using numerous examples to
illustrate the ideas of encapsulation, inheritance and polymorphism. A detailed case study of the design and
implementation of a program using an object-oriented design methodology is included.

An introduction to the tasking features of Ada is included. Finally a text user interface API is developed to
illustrate in a practical way the use of object-oriented components in a program. Several programs that use this
interface are shown to illustrate the processes involved.

Exercises and self assessment questions are suggested for the reader at the end of each chapter to allow the
reader to practise the use of the Ada components illustrated and to help reinforce, the reader's understanding of the
material in the chapter. Answers to many of the practical exercises are given at the end of the book.

I would in particular like to thank Corinna for putting up with my many long hours in the ‘computer room’ and
her many useful suggestions on the presentation and style used for the material in this book.

Website

Support material for the book can be found on the Authors website:
http:// www.it.brighton.ac.uk/~mas. The material consists of further solutions, source code, artwork
and general information about Ada 95.

Michael A. Smith
Brighton, May 2001

M.A.Smith@brighton.ac.uk

xv Preface

 M A Smith - May not be reproduced without permission

The example programs shown in this book use the following conventions:

Item in program Example Convention used

Attribute of an object
or type

Integer'Last Starts with an upper-case letter.

Class package Class_cell is
 type Cell is
private

private

end Class_cell;

Is declared as a package prefixed
with the name ‘Class_’. The class
name is given to the private type
that is then used to elaborate
instances of the class.

Instance method:
function or procedure

Display(The:in Cell) The function or procedure is in
lowercase and the first parameter
passed to it is an instance of the
class which is named the .

Instance attribute:
a data item contained
in an object.

Balance: Float; Starts with an upper-case letter in
the private part of the package.

Class attribute:
a global data item that
is shared between all
instances of the class

The_Count: Integer; Starts with The_ and is declared in
the private part of the package.

Constant or
enumeration

Max Starts with an upper-case letter.

Function or procedure Deposit Starts with an upper-case letter..

Package Pack_Account Starts with ‘Pack_’.

Formal parameter Amount Starts with an upper-case letter.

Protected type protected type PT_Ex
is
 entry Put(i:in T);
 entry get(i:out T);
end PT_ex;

Starts with ‘PT_’

Reserved word procedure Is in bold lower-case.

Task type task type Task_Ex is
 entry Start;
end Task_Ex;

Starts with ‘Task_’.

Type or subtype Colour Starts with an upper-case letter.

Variable name Mine
P_Ch

Starts with an upper-case letter..
An access value for an item will
start with ‘P_’.

1.1 Glossary of terms used

Access type A type used to elaborate an access value

Access value The address of an object.

xvi Preface

 M A Smith - May not be reproduced without permission

Actual
parameter

The physical object passed to a function, procedure, entry or generic unit. For
example, in the following statement the actual parameter to the procedure Put
is Number.

Print(Number);

Ada 83 The version of the language that conforms to ANSI/MIL-STD 1815A
ISO/IEC 8652:1983, 1983. Ada 83 is superseded by Ada 95. The language is
named after Ada Augusta the Countess of Lovelace, daughter of the poet
Lord Byron and Babbage's ‘programmer’.

Ada 95 The version of the language that conforms to ANSI/ISO/IEC 8652:1995,
January 1995. The ISO standard was published on 15th February 1995. Ada
95 is now often referred to as Ada

Ada class In Ada the terminology class is used to describe a set of types. To avoid
confusion this will be termed an Ada class.

Allocator An allocator is used to claim storage dynamically from a storage pool. For
example, storage for an Integer is allocated dynamically with:

P_Int := new Integer;

Base class A class from which other classes are derived.

Class The specification of a type and the operations that are performed on an
instance of the type. A class is used to create objects that share a common
structure and behaviour.

The specification of a class Account is as follows:

package Class_Account is
 type Account is private;
 subtype Money is Float;

 function Balance (The:in Account) return Money;
 -- Other methods on an instance of an Account
private
 type Account is record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
end Class_Account;

Preface xvii

 M A Smith - May not be reproduced without permission

Class attribute A data component that is shared between all objects in the class. In effect it is
a global variable which can only be accessed by methods in the class. A class
attribute is declared in the private part of the package representing the class.
For example, the class attribute The_Interest_Rate in the class
Interest_Account is declared in the private part of the package as
follows:

package Class_Interest_Account is
 type Interest_Account is private;

 procedure Set_Rate(Rate:in Float);

private
 type Interest_Account is new Account with record
 Balance_Of : Money := 0.00;
 Accumulated_Interest : Money := 0.00;
 end record;

 The_Interest_Rate : Float := 0.00026116;
end Class_Interest_Account;

Class method A procedure or function in a class that only accesses class attributes. For
example, the method Set_Rate in the class Interest_Account which
sets the class attribute The_Interest_Rate is as follows:

 procedure Set_Rate(Rate:in Float) is
 begin
 The_Interest_Rate := Rate;
 end Set_Rate;

Note: As Set_Rate is a class method an instance of the class is not
passed to the procedure.

Controlled
object

An object which has initialization, finalization and adjust actions defined. A
limited controlled object only has initialization and finalization defined as
assignment is prohibited.

Discriminant The declaration of an object may be parameterized with a value. The value is
a discriminant to the type. For example, the declaration of corinna is
parameterized with the length of her name.

 type Person(Chs:Str_Range := 0) is record
 Name : String(1 .. Chs);
 Height : Height_Cm := 0;
 Sex : Gender;
 end record;

 Corinna : Person(7);

Dynamic-
binding

The binding between an object and the message that is sent to it is not known
at compile-time.

xviii Preface

 M A Smith - May not be reproduced without permission

Elaboration At run-time the elaboration of a declaration creates the storage for an object.
For example:

Mike : Account;

creates storage at run-time for the object Mike.

Encapsulation The provision of a public interface to a hidden (private) collection of data
procedures and functions that provide a coherent function

Formal
parameter

In a procedure, function, entry or generic unit the name of the item that has
been passed. For example, in the procedure print shown below the formal
parameter is Value.

procedure Print(Value:in Integer) is
begin
 -- body
end print;

Generic A procedure, function or package which is parameterized with a type or types
that are used in the body of the unit. The generic unit must first be
instantiated as a specific instance before it can be used. For example, the
package Integer_Io in the package Ada.Text_Io is parameterized
with the integer type on which I/O is to be performed. This generic unit must
be instantiated with a specific integer type before it can be used in a program.

Inheritance The derivation of a class (derived class) from an existing class (base class).
The derived class will have the methods and instance/class attributes in the
class plus the methods and instance/class attributes defined in the base class.
In Ada this is called programming by extension.
The class Interest_Account that is derived from the class Account is
specified as follows:

with Class_Account;
use Class_Account;
package Class_Interest_Account is

 type Interest_Account is new Account with private;

 procedure Set_Rate(Rate:in Float);
 procedure Calc_Interest(The:in out
 Interest_Account);
 private
 Daily_Interest_Rate: constant Float := 0.00026116;
 type Interest_Account is new Account with record
 Accumulated_Interest : Money := 0.00
 end record;
 The_Interest_Rate : Float := 0.00026116;
end Class_Interest_Account;

Preface xix

 M A Smith - May not be reproduced without permission

Instance
attribute

A data component contained in an object. In Ada the data components are
contained in a record structure in the private part of the package.

 type Account is record
 Balance_Of : Money := 0.00; --Instance attribute
 end record;

Instance method A procedure of function in a class that accesses the instance attributes (data
items) contained in an object. For example, the method Balance accesses
the instance attribute Balance_Of.

 function Balance(The:in Account) return Money is
 begin
 return The.Balance_Of;
 end Balance;

Instantiation The act of creating a specific instance of a generic unit. For example, the
generic package Integer_Io in the package Ada.Text_Io can be
instantiated to deliver the package Pack_Mark_Io which performs I/O on
the integer type Exam_Mark as follows:

 type Exam_Mark is range 0 .. 100;

 package Pack_Mark_Io is new
 Ada.Text_Io.Integer_Io(Exam_Mark);

Then a programmer can write

 Miranda : Exam_Mark;

 Pack_Mark_Io.Put(Miranda);

to write the contents of the Integer object Miranda.

Message The sending of data values to a method that operates on an object. For
example, the message 'deposit £30 in account Mike' is written in Ada as:

Deposit(Mike, 30);

Note: The object to which the message is sent is the first parameter.

Meta-class An instance of a meta-class is a class. Meta-classes are not supported in Ada.

Method Implements behaviour in an object. A method is implemented as a procedure
or function in a class. A method may be either a class method or an instance
method.

Multiple
inheritance

A class derived from more than one base class. Multiple inheritance is not
directly supported in Ada.

xx Preface

 M A Smith - May not be reproduced without permission

Object An instance of a class. An object has a state that is interrogated / changed by
methods in the class. The object mike that is an instance of Account is
declared as follows:

Mike: Account;

Overloading When an identifier can have several different meanings. For example, the
procedure Put in the package Ada.Text_Io has several different
meanings. Output an instance of a Character, output an instance of a
String.

Put("Hello Worl"); Put('d');

Overriding
Polymorphism The ability to send a message to an object whose type is not known at

compile-time. The method selected depends on the type of the receiving
object. For example the message 'Display' is sent to different types of
picture elements that are held in an array.

 Display(Picture_Element(I));

Rendezvous The interaction that occurs when two tasks meet to synchronize and possibly
exchange information.

Representation
clause

Directs the compiler to map a program item onto specific hardware features
of a machine. For example, location is defined to be at address
16#046C#.

 Mc_Address : constant Address :=
 To_Address(16#046C#);

 Location : Integer;
 for Location'Address use Mc_Address;

Static binding The binding between an object and the message that it is sent to it is known
at compile-time.

Type A type defines a set of values and the operations that may be performed on
those values. For example, the type Exam_Mark defines the values that may
be given for an exam in English.

 type Exam_Mark is range 0 .. 100;

 English : Exam_Mark

 M A Smith - May not be reproduced without permission

To my wife Corinna Lord, daughter Miranda and mother Margaret Smith

and guinea pig Delphi

1 Introduction to programming

 M A Smith - May not be reproduced without permission

1 Introduction to programming

A computer programming language is used by a programmer to express the solution to a problem in terms
that the computer system can understand. This chapter looks at how to solve a small problem using the
computer programming language Ada 95.

1.1 Computer programming
Solving a problem by implementing the solution using a computer programming language is a meticulous process.
In essence the problem is expressed in terms of a very stylized language in which every detail must be correct.
However, this is a rewarding process both in the sense of achievement when the program is completed, and
usually the eventual financial reward obtained for the effort.

Like the planet on which we live where there are many different natural languages, so the computer world also
has many different programming languages. The programming language Ada 95 is just one of the many computer
programming languages used today.

1.2 Programming languages
In the early days of computing circa 1950s, computer programs had to be written directly in the machine
instructions of the computer. Soon assembly languages were introduced that allowed the programmer to write
these instructions symbolically. An assembler program would then translate the programmer’s symbolic
instructions into the real machine code instructions of the computer. For example, to calculate the cost of a
quantity of apples using an assembly language the following style of symbolic instructions would be written by a
programmer:

LDA AMOUNT_OF_OF_APPLES ; Load into the accumulator # pounds
MLT PRICE_PER_POUND ; Multiply by cost per pound of apples
STA COST_OF_APPLES ; Save result

Note: Each assembly language instruction corresponds to a machine code instruction.

In the period 1957—1958 the first versions of the high-level languages FORTRAN & COBOL were developed. In
these high-level programming languages programmers could express many ideas in terms of the problem rather
than in terms of the machine architecture. A compiler for the appropriate language would translate the
programmer’s high level statements into the specific machine code instructions of the target machine. Advantages
of the use of a compiler include:

l Gains in programmer productivity as the solution is expressed in terms of the problem rather
than in terms of the machine.

l If written correctly, programs may be compiled into the machine instructions of many
different machines. Hence, the program may be moved between machines without having to
be re-written.

For example, the same calculation to calculate the cost of apples is expressed in FORTRAN as:

COST = PRICE * AMOUNT

2 Introduction to programming

 M A Smith - May not be reproduced without permission

1.3 Range of programming languages
Since the early days of computer programming languages the number and range of high level languages has
multiplied greatly. However, many languages have also effectively died through lack of use. A simplistic
classification of the current paradigms in programming languages is shown in the table below:

Type of language Brief characteristics of the language Example
Functional The problem is decomposed into individual

functions. To a function is passed read only data
values which the function transforms into a new
value. A function itself may also be passed as a
parameter to a function. As the input data to a
function is unchanged individual functions may be
executed simultaneously as soon as they have their
input data.

ML

Logic The problem is decomposed into rules specifying
constraints about a world view of the problem.

Prolog

Object-oriented The problem is decomposed into interacting
objects. Each object encapsulates and hides
methods that manipulate the hidden state of the
object. A message sent to an object evokes the
encapsulated method that then performs the
requested task.

Ada 95
Eiffel
Java
Smalltalk

Procedural The problem is decomposed into individual
procedures or subroutines. This decomposition is
usually done in a top down manner. In a top down
approach, once a section of the problem has been
identified as being implementable by a procedure,
it too is broken down into individual procedures.
The data however, is not usually part of this
decomposition.

C
Pascal

1.3.1 Computer programming languages

A computer programming language is a special language in which a high level description of the solution to a
problem is expressed. However, unlike a natural language, there can be no ambiguity or error in the description of
the solution to the problem. The computer is unable to work out what was meant from an incorrect description.
For example, in the programming language Ada 95, to print the result of multiplying 10 by 5 the following
programming language statement is written:

Put(10 * 5);

To the non programmer this is not an immediately obvious way of expressing: print the answer to 10
multiplied by 5.

1.3.2 The role of a compiler

The high-level language used to describe the solution to the problem, must first be converted to a form suitable for
execution on the computer system. This conversion process is performed by a compiler. A compiler is a program
that converts the high-level language statements into a form that a computer can obey. During the conversion
process the compiler will tell the programmer about any syntax or semantic mistakes that have been made when
expressing the problem in the high-level language. This process is akin to the work of a human translator who
converts a document from English into French so that a French speaker can understand the contents of the
document.

Once the computer program has been converted to a form that can be executed, it may then be run. It usually
comes as a surprise to many new programmers that the results produced from running their program is not what

Introduction to programming 3

 M A Smith - May not be reproduced without permission

they expected. The computer obeys the programming language statements exactly. However, in their formulation
the novice programmer has formulated a solution that does not solve the problem correctly.

1.4 A small problem

A local orchard sells some of its rare variety apples in its local farm shop. However, the farm shop has no electric
power and hence uses a set of scales which just give the weight of the purchased product. A customer buying
apples, fills a bag full of apples and takes the apples to the shop assistant who weighs the apples to determine their
weight in kilograms and then multiples the weight by the price per kilogram.

If the shop assistant is good at mental arithmetic they can perform the calculation in their head, or if mental
arithmetic is not their strong point they can use an alternative means of determining the cost of the apples.

1.5 Solving the problem using a calculator
For example, to solve the very simple problem of calculating the cost of 5.2 kilos of apples at £1.20 a kilo using a
pocket calculator the following 4 steps are performed:

Pocket calculator Step Steps performed

1 2 3

4 5 6 +

-7 8 9

0 .

S M / *

6.24

C

=

1

2

3

4

Enter the cost of a kilo of apples:
C 1 . 2 0

Enter the operation to be performed:
*

Enter the number of kilos to be bought:
5 . 2

Enter calculate
=

Note: The keys on the calculator are:
C Clear the display and turn on the calculator if off
S Save the contents of the display into memory
M Retrieve the contents of the memory
+ - * / Arithmetic operations

* Multiply / Division
+ plus - minus

= Calculate
When entered, these actions cause the calculation 1.20 * 5.2 to be evaluated and displayed. In solving the
problem, the problem is broken down into several very simple steps. These steps are in the ‘language’ that the
calculator understands. By obeying these simple instructions the calculator ‘solves’ the problem of the cost of 5.2
kilos of apples at £1.20 a kilo.

4 Introduction to programming

 M A Smith - May not be reproduced without permission

1.5.1 Making the solution more general

The calculation using the pocket calculator can be made more general by storing the price of the apples in the
calculator's memory. The price of a specific amount of apples can then be calculated by retrieving the stored price
of the apples and multiplying this retrieved amount by the quantity required. For example, to setup the price of
apples in the calculator's memory and calculate the cost of 4.1 kilos of apples, the process is as follows:

Pocket calculator Step Steps performed

1 2 3

4 5 6 +

-7 8 9

0 .

S M / *

4.92

C

=

1

2

3

4

5

6

Enter the cost of a kilo of apples:
C 1 . 2 0

Save this value to the calculator’s memory:
S

Retrieve the value from memory:
M

Enter the operation to be performed:
*

Enter the number of kilos to be bought:
4 . 1

Enter calculate
=

To calculate the price for each customer’s order of apples, only steps 3—6 need be repeated. In essence, a
generalized solution to the problem of finding the price of any quantity of apples has been defined and
implemented.

1.6 Solving the problem using the Ada 95 language

To solve the problem of calculating the cost of a quantity of apples using the programming language Ada 95, a
similar process to that used previously when using a pocket calculator is followed. This time, however, the
individual steps are as follows:

Step Description
1 Set the memory location Price_per_kilo to the cost per kilogram of the

apples.
2 Set the memory location Kilos_of_apples to the kilograms of apples

required.
3 Set the memory location Cost to the result of multiplying the contents of

memory location Price_per_kilo by the contents of the memory location
Kilos_of_apples.

4 Print the contents of the memory location Cost.

Note: Although a shorter sequence of steps can be written to calculate 1.2 multiplied by 5.2 the above
solution can easily be extended to allow the price of any number of kilograms of apples to be
calculated.

In Ada 95 like most programming languages when a memory location is required to store a value, it must first be
declared. This is done for many reasons, some of these reasons are:

l So that the type of items that are to be stored in this memory location can be specified. By
specifying the type of the item that can be stored the compiler can allocate the correct amount
of memory for the item as well as checking that a programmer does not accidentally try and
store an inappropriate item into the memory location.

Introduction to programming 5

 M A Smith - May not be reproduced without permission

l The programmer does not accidentally store a value into a memory location C0st when they
meant Cost. The programmer accidentally typed zero (0) when they meant the letter (o).

The sequence of steps written in pseudo English is transformed into the following individual Ada 95
statements which, when obeyed by a computer, will display the cost of 5.2 kilograms of apples at £1.20 a
kilogram.

Step Line Ada 95 statements

1
2

3

4

1
2
3

4
5

6

7

8

Price_per_kilo : Float;
Kilos_of_apples : Float;
Cost : Float;

Price_per_kilo := 1.20;
Kilos_of_apples := 5.2;

Cost:= Price_per_kilo*Kilos_of_apples;

Put(Cost);

New_Line;

Note: Words in bold type are reserved words in the Ada 95 language and cannot be used for the name of a
memory location.
The name of the memory location contains the character _ to make the name more readable. Spaces in
the name of a memory location are not allowed.
Each Ada 95 statement is terminated with a ;.
Multiplication is written as *.

The individual lines of code of the Ada 95 program are responsible for the following actions:

Line Description
1

2—3

4

5

6

7

8

Allocates a memory location called Price_per_kilo that is used to
store the price per kilogram of apples. This memory location is of type
Float and can hold any number that has decimal places.
Allocates memory locations: Kilos_of_apples and Cost.

Sets the contents of the memory location Price_per_kilo to 1.20. The
:= can be read as 'is assigned the value'.
Assign 5.2 to memory location Kilos_of_apples.

Sets the contents of the memory location Cost to the contents of the
memory location Price_per_kilo multiplied by the contents of the
memory location Kilos_of_apples.

Writes the contents of the memory location Cost onto the computer
screen.

Starts a new line on the computer screen.

This solution is very similar to the solution using the pocket calculator, except that individually named
memory locations are used to hold the stored values, and the calculation is expressed in a more human readable
form.

6 Introduction to programming

 M A Smith - May not be reproduced without permission

An animation of the above Ada 95 program is shown below. In the animation the contents of the memory
locations are shown after each individual Ada 95 statement is executed. When a memory location is declared in
Ada 95 inside a function its initial contents are undefined.

Ada 95 statements price � kilos � Cost
Price_per_kilo : Float;
Kilos_of_apples : Float;
Cost : Float;

U U U

Price_per_kilo := 1.20; 1.20 U U

Kilos_of_apples := 5.2; 1.20 5.2 U

Cost := Price_per_kilo *
 Kilos_of_apples;

1.20 5.2 6.24

Put(Cost); 1.20 5.2 6.24

Note: U indicates that the contents of the memory location are undefined.
� Due to lack of room in the title column the variable Price_per_kilo is represented by price
and Kilos_of_apples by kilos.

1.6.1 Running the program

The above lines of code, though not a complete Ada 95 program, form the core code for such a program. When
this code is augmented with additional peripheral code, compiled and then run, the output produced will be of the
form:

6.24

A person who knows what the program does, will instantly know that this represents the price of 5.2 kilograms
of apples at £1.20 a kilogram. However, this will not be obvious to a casual user of the program.

1.7 The declare block

In Ada a declaration is separated from an executable statement. One way of expressing this split is the declare
block that is specified as follows:

declare
 Cost : Float;
begin
 Cost := 5.2 * 1.20;
 Put(Cost);
end;

Note: By using this construct our Ada 95 programming statements are almost a complete program.

Introduction to programming 7

 M A Smith - May not be reproduced without permission

The section of a declare block are illustrated below in Figure 1.1

Declare

 Cost : Float;

Begin

 Cost := 5.2 * 1.20;
 Put(Cost);

end;

Declaration of variables used in
the code section.

Executable code

Figure 1.1 The declare block in Ada.

1.8 The role of comments

To make an Ada 95 program easier to read, comments may be placed in the program to aid the human reader of
the program. A comment starts with -- and extends to the end of the line. It is important however, to realize that
the comments you write in a program are completely ignored by the computer when it comes to run your program.
For example, the previous fragment of code could be annotated with comments as follows:

declare
 Price_Per_Kilo : Float; --Price of apples
 Kilos_Of_Apples : Float; --Apples required
 Cost : Float; --Cost of apples
begin
 Price_Per_Kilo := 1.20; --Set cost £1.20
 Kilos_Of_Apples := 5.2; --Kilos required

 Cost := Price_Per_Kilo * Kilos_Of_Apples; --Evaluate cost
 Put(Cost); --print the cost
 New_Line; --Print a new-line
end;

Note: This is an example of comments, the more experienced programmer would probably miss out many of
the above comments as the effect of the code is easily understandable.

Comments that do not add to a reader’s understanding of the program code should be avoided. In some
circumstances the choice of meaning full names for memory locations is all that is required. As a general rule, if
the effect of the code is not immediately obvious then a comment should be used to add clarity to the code
fragment.

8 Introduction to programming

 M A Smith - May not be reproduced without permission

1.9 Summary

The statements in the Ada 95 programming language seen so far are illustrated in the table below:

Ada 95 statement/declaration Description
Cost : Float; Declare a memory location called cost .
Cost := 1.2 * 5.2; Assign to the memory location cost the result

of evaluating 1.2 multiplied by 5.2.
Put("Hi!"); Print the message Hi!.
Put(Cost); New_Line; Print the contents of the memory location

Cost followed by a newline.

Statements of this form allow a programmer to write many different and useful programs.

1.10 A more descriptive program
By adding additional Ada 95 statements, the output from a program can be made clear to all who use the program.
For example, the program in Section 1.6 can be modified into the program illustrated below. In this program, a
major part of the program’s code is concerned with ensuring that the user is made aware of what the results mean.

Line Ada 95 statements
1
2
3
4
5
6
7
8

9
10
11

12
13
14

15
16
17
18

declare
 Price_Per_Kilo : Float; --Price of apples
 Kilos_Of_Apples: Float; --Apples required
 Cost : Float; --Cost of apples
begin
 Price_Per_Kilo := 1.20;
 Kilos_of_apples := 5.2;
 Cost := Price_per_kilo * Kilos_of_apples;

 Put("Cost of apples per kilo : ");
 Put(Price_per_kilo);
 New_Line;

 Put("Kilos of apples required K ");
 Put(Kilos_of_apples);
 New_Line;

 Put("Cost of apples £ ");
 Put(Cost);
 New_Line;
end

Introduction to programming 9

 M A Smith - May not be reproduced without permission

Line Description
1

2—4

5

6-8

9

10

11

12—14

15—17

18

Start a declare block.

Declare the variables used in this fragment of code.

Begin the code section of the block.

Calculate the cost of 5.2 kilograms of apples at £1.20 per kilogram.

Displays the message Cost of apples per kilo £ onto the
computer screen. The double quotes around the text message are used to
signify that this is a text message to be printed rather than the contents of
a memory location.

Displays the contents of the memory location Cost onto the computer
screen after the above message.

Starts a new line of output on the computer screen.

As for lines 7—9
but this time the message is Kilos of apples required K and the
memory location printed is Kilos_of_apples.

As for lines 7—9
but this time the message is Cost of apples £ and the
memory location printed is Cost.

End the declare block

1.10.1 Running the new program

With the addition of some extra lines of code, the above program can be compiled and then run on a computer
system. Once executed the following results will be displayed:

Cost of apples per kilo £ 1.2
Kilos of apples required K 5.2
Cost of apples £ 6.24

This makes it easy to see what the program has calculated.

1.11 Types of memory location
So far the type of the memory location used has been of type Float. A memory location of type Float can hold
any number that has a fractional part. However, when such a value is held it is only held to a specific number of
decimal places. Sometimes it is appropriate to hold numbers that have an exact whole value, e.g. a memory
location people that represents the number of people in a room. In such a case the memory location should be
declared to be of type Integer.

For example, the following fragment of code uses an Integer memory location to hold the number of people
in a room.

 Room : Integer; -- Memory location
 Room := 7; -- Assigned the number 7

10 Introduction to programming

 M A Smith - May not be reproduced without permission

The choice of the type of memory location used, will of course depend on the values the memory location is
required to hold. As a general rule, when an exact whole number is required, then a memory location of type
Integer should be used and when the value may have a fractional part then a memory location of type Float
should be used.

Memory location Assignment to memory location
People : Integer People := 2;
Weight : Float Weight := 7.52;

1.11.1 Warning

Ada 95 will not allow assignments or expressions that mix different types of memory locations or numbers. In
particular this means that you cannot assign a number with decimal places or implied decimal places to a location
that holds an integer value. Likewise, you cannot assign a whole number to a memory location that holds a
number with potential decimal places.

For example, the following assignment is invalid:

Memory location Invalid assignment Reason
People: Integer People := 2.1; You cannot assign a number

with a fractional part to a
memory location of type
Integer.

Weight : Float Weight := 2; You cannot assign an whole
number to a location that holds
a result with implied decimal
places.

People := people + weight; The right hand side mixes whole
numbers and numbers with
decimal places.

The reason for this initially rather severe restriction is to help prevent programming errors go undetected. For
example, if you accidentally stored a number with decimal places into a location that only contained a whole
number then the resultant loss of precision may result in an error in the logic of the program.

1.12 Repetition

So far, all the Ada 95 programs used in the examples have used straight line code. In straight line code the
program consists of statements that are obeyed one after another from top to bottom. There are no statements that
affect the flow of control in the program. This technique has allowed us to produce a solution for the specific case
of the cost of 5.2 kilograms of apples at £1.20 per kilogram.

Using this strategy, to produce a program to list the cost of apples for a series of different weights would
effectively involve writing out the same code many times. An example of this style of coding is illustrated below:

declare
 Price_Per_Kilo : Float; --Price of apples
 Kilos_Of_Apples: Float; --Apples required
 Cost : Float; --Cost of apples
begin
 Price_Per_Kilo := 1.20;

 Put("Cost of apples per kilo : ");
 Put(Price_Per_Kilo);
 New_Line;

 Put("Kilo's Cost");
 New_Line;

 Kilos_Of_Apples := 0.1;

Introduction to programming 11

 M A Smith - May not be reproduced without permission

 Cost := Price_Per_Kilo * Kilos_Of_Apples;
 Put(Kilos_Of_Apples);
 Put(" ");
 Put(Cost);
 New_Line;

 Kilos_Of_Apples := 0.2;

 Cost := Price_Per_Kilo * Kilos_Of_Apples;
 Put(Kilos_Of_Apples);
 Put(" ");
 Put(Cost);
 New_Line;

etc.

end;

Whilst this is a feasible solution, if we want to calculate the cost of 100 different weights this will involve
considerable effort and code. Even using copy and paste operations in an editor to lessen the typing effort, will
still involve considerable effort! In addition, the resultant program will be large and consume considerable
resources.

1.13 Introduction to the while statement

In Ada 95 a while statement is used to repeat program statements while a condition holds true. A while
statement can be likened to a rail track as illustrated in Figure 1.2. While the condition is true the flow of control
is along the true track. Each time around the loop the condition is re-evaluated. Then, when the condition is found
to be false, the false track is taken.

 Statements
 Executed while
 condition is true

False

True

Condition

Figure 1.2 The while statement as a rail track.

In a while loop the condition is always tested first. Due to this requirement if the condition initially evaluates
to false then the code associated with the while loop will never be executed.

12 Introduction to programming

 M A Smith - May not be reproduced without permission

1.13.1 Conditions

In the language Ada 95, a condition is expressed in a very concise format which at first sight may seem strange if
you are not used to a mathematical notation. For example, the conditional expression: ‘the contents of the memory
location count is less than or equal to 5’ is written as follows:

 count <= 5

Note: The memory location named count will need to be declared as:

 count : Integer;

The symbols used in a condition are as follows:

Symbol Means Symbol Means
< Less than <= Less than or equal to
= Equal to /= Not equal to
> Greater than >= Greater than or equal to

 If the following memory locations contain the following values:

Memory location Assigned the value
Temperature : Integer; Temperature := 15;
Weight : Float; Weight := 50.0;

then the following table shows the truth or otherwise of several conditional expressions written in Ada 95.

In English In Ada 95 Condition is
The temperature is less than 20 Temperature < 20 true
The temperature is equal to 20 Temperature = 20 false
The weight is greater than or equal to 30 Weight >= 30.0 true
20 is less than the temperature 20 < Temperature false

Note: As a memory location that holds a Float value represents a number that is held only to a certain
number of digits accuracy, it is not a good idea to compare such a value for equality = or not equality
/=.

1.13.2 A while statement in Ada 95

Illustrated below is a fragment of code that uses a while statement to write out the text message Hello five
times:

declare
 Count : Integer;
begin
 Count := 1; --Set count to 1

 while Count <= 5 loop --While count less than or equal 5
 Put("Hello"); --Print Hello
 New_Line;
 Count := Count + 1; --Add 1 to count
 end loop;
end;

Note: The statement: Count := Count + 1; adds 1 to the contents of Count and puts the result back
into the memory location Count.

Introduction to programming 13

 M A Smith - May not be reproduced without permission

In this code fragment, the statements between loop and end loop; are repeatedly executed while the
contents of Count are less than or equal to 5. The flow of control for the above while statement is illustrated in
Figure 1.3.

 Put("Hello");
 New_line;
 Count := Count + 1;

False

True

Count <= 5

Figure 1.3 Flow of control for a while statement in Ada 95.

1.13.3 Using the while statement

The real advantage of using a computer program accrues when the written code is repeated many times, thus
saving the implementor considerable time and effort. For example, if we wished to produce a table representing
the cost of different weights of apples, then a computer program is constructed that repeats the lines of Ada 95
code that evaluate the cost of a specific weight of apples. However, for each iteration of the calculation the
memory location that contains the weight of the apples is changed. A fragment of Ada 95 code to implement this
solution is illustrated below:

declare
 Price_Per_Kilo : Float; --Price of apples
 Kilos_Of_Apples: Float; --Apples required
 Cost : Float; --Cost of apples
begin
 Price_Per_Kilo := 1.20;

 Put("Cost of apples per kilo : ");
 Put(Price_Per_Kilo); New_Line;

 Put("Kilo's Cost"); New_Line;

 Kilos_Of_Apples := 0.1;

 while Kilos_Of_Apples <= 10.0 loop --While lines to print
 Cost := Price_Per_Kilo * Kilos_Of_Apples; --Calculate cost
 Put(Kilos_Of_Apples); --Print results
 Put(" ");
 Put(Cost);
 New_Line;
 Kilos_Of_Apples := Kilos_Of_Apples + 0.1; --Next value
 end loop;
end;

14 Introduction to programming

 M A Smith - May not be reproduced without permission

which when compiled with suitable peripheral code produces output of the form:

Cost of apples per kilo : 1.20
Kilo's Cost
0.1 0.12
0.2 0.24
0.3 0.36
0.4 0.48
0.5 0.60
0.6 0.72
0.7 0.84
0.8 0.96
0.9 1.08
1.0 1.12
1.1 1.32
1.2 1.44
1.3 1.56
...
 9.9 11.88
10.0 12.00

Note: Using Put(Price_Per_Kilo), Put(Kilos_Of_Apples) and Put(Price) will cause the
value to be output in scientific notation. To get the effect of the format shown above the Put statements
would need to be changed to:
Put(Price_Per_Kilo) -> Put(Price_Per_Kilo,Exp=>0,Aft=>2)
Put(Kilos_Of_Apples) -> Put(Kilos_Of_Apples,Exp=>0,Aft=>2)
Put(Cost) -> Put(Cost,Exp=>0,Aft=>2).
This is fully explained in Section 4.6.1.

1.14 Selection

The if construct is used to conditionally execute a statement or statements depending on the truth of a condition.
This statement can be likened to the rail track illustrated in Figure 1.4 in which the path taken depends on the truth
of a condition. However, unlike the while statement there is no loop back to re-execute the condition.

Statements
Executed if
condition is true

Condition

False
True

Figure 1.4 The if statement represented as a rail track.

Introduction to programming 15

 M A Smith - May not be reproduced without permission

For example, the following fragment of an Ada 95 program only prints out Hot! when the contents of the
memory location Temperature are greater than 30.

declare
 Temperature : Integer;
begin
 Temperature := 30;
 if Temperature > 30 then --If temperature greater than 30
 Put("Hot!"); --Say its hot
 New_Line;
 end if;
end;

In this code fragment, the statements between then and end if; are only executed if the condition
Temperature > 30 is true. The flow of control for the above fragment of code is illustrated in Figure 1.5.

Put("Hot!");
New_Line

Temperature > 30

False

True

Figure 1.5 The if statement represented as a rail track.

1.14.1 Using the if statement

The fragment of program code which was used earlier to tabulate a list of the price of different weights of apples
can be made more readable by separating every 5 lines by a blank line. This can be achieved by having a counter
count to count the number of lines printed and after the 5th line has been printed to insert a blank line. After a
blank line has been printed the counter count is reset to 0. This modified program is shown below:

declare
 Price_Per_Kilo : Float := 1.20;
 Kilos_Of_Apples : Float := 0.0;
 Cost : Float;
 Lines_Output : Integer := 0;
begin
 Put("Cost of apples per kilo : ");
 Put(Price_Per_Kilo); New_Line;
 Put("Kilo's Cost"); New_Line;
 while Kilos_Of_Apples <= 10.0 loop --While lines to print
 Cost := Price_Per_Kilo * Kilos_Of_Apples; --Calculate cost
 Put(Kilos_Of_Apples); --Print results
 Put(" ");
 Put(Cost);
 New_Line;
 Kilos_Of_Apples := Kilos_Of_Apples + 0.1; --Next value
 Lines_Output := Lines_Output + 1; --Add 1
 if Lines_Output >= 5 then --If printed group
 New_Line; -- Print line
 Lines_Output := 0; -- Reset count
 end if;
 end loop;
end;

16 Introduction to programming

 M A Smith - May not be reproduced without permission

which when compiled with additional statements would produce output of the form shown below:

Cost of apples per kilo : 1.20
Kilo's Cost
0.0 0.00
0.1 0.12
0.2 0.24
0.3 0.36
0.4 0.48

0.5 0.60
0.6 0.72
0.7 0.84
0.8 0.96
0.9 1.08

1.0 1.20
1.1 1.32
1.2 1.44
1.3 1.56
1.4 1.68

etc.

Note: Using Put(Price_Per_Kilo), Put(Kilos_Of_Apples) and Put(Price) will cause the
value to be output in scientific notation. To get the effect of the format shown above the Put statements
would need to be changed to:
Put(Price_Per_Kilo) -> Put(Price_Per_Kilo,Exp=>0,Aft=>2)
Put(Kilos_Of_Apples) -> Put(Kilos_Of_Apples,Exp=>0,Aft=>2)
Put(Cost) -> Put(Cost,Exp=>0,Aft=>2).
This is fully explained in Section 4.6.1.

1.15 Self-assessment
l What is a computer programming language?

l What do the following fragments of Ada 95 code do?

declare
 I : Integer;
begin
 I := 10;
 while I > 0 loop
 Put(I);
 I := I - 1;
 end loop;
 New_Line;
end;

declare
 Temperature : Integer;
begin
 Temperature := 10;
 if Temperature > 20 then
 Put("It's Hot!");
 end if;
 if Temperature <= 20 then
 Put("It's not so Hot!");
 end if;
 New_Line;
end;

Introduction to programming 17

 M A Smith - May not be reproduced without permission

l Write an Ada 95 fragment of code for the following conditions. In your answer show how any
memory location you have used has been declared.

l The temperature is less than 15 degrees centigrade.
l The distance to college is less than 15 kilometres.
l The distance to college is greater than or equal to the distance to the football ground.
l The cost of the bike is less than or equal to the cost of the hi-fi system.

1.16 Paper exercises

Write down on paper Ada 95 statements to implement the following. You do not need to run these solutions.

l Name
Write out your name and address.

l Weight
Calculate the total weight of 27 boxes of paper. Each box of paper weighs 2.4 kilograms.

l Name
Write out the text message "Happy Birthday" 3 times using a while loop.

l Times table
Print the 7 times table. The output should be of the form:
7 * 1 = 7
7 * 2 = 14
etc.

Hint: Write the Ada 95 code to print the line for the 3rd row, use a variable row of type Integer to
hold the value 3.
7 * 3 = 21

Enclose these statements in a loop that varies the contents of row from 1 to 12.

l Weight table
Print a table listing the weights of 1 to 20 boxes of paper, when each box weighs 2.4 kilograms.

l Times table
Print a multiplication table for all values between 1 and 5. The table to look like:
1 2 3 4 5
1 | 1 2 3 4 5
2 | 2 4 6 8 10
3 | 3 6 9 12 15
4 | 4 8 12 16 20
5 | 5 10 15 20 25

Hint: Write the Ada 95 code to print the line for the 2nd row, use a variable row of type Integer to
hold the value 2.

2 | 2 4 6 8 10
Enclose these statements in a loop that varies the contents of row from 1 to 5. Add statements to print

the heading:
1 2 3 4 5

 M A Smith - May not be reproduced without permission

2 Software design
This chapter looks at software production in the large. In particular it looks at problems that occur in the
development of large and not so large software systems. The notation used by UML (Unified Modelling
Language) is introduced as a mechanism for documenting and describing a solution to a problem that is to
be implemented on a computer system.

2.1 The software crisis
In the early days of computing, it was the hardware that was very expensive. The programs that ran on these
computers were by today’s standards incredibly small. In those distant times computers only had a very limited
amount of storage; both random access memory and disk storage.

Then it all changed. Advances in technology enabled computers to be built cheaper, with a far greater capacity
than previous machines. Software developers thought, “Great! We can build bigger and more comprehensive
programs”. Software projects were started with an increase in scope and great optimism.

Soon, with projects running over budget and not meeting their client’s expectations, the truth dawned: large
scale software construction is difficult. The early techniques that had been used in small scale software
construction did not scale up successfully for large scale software production.

This can be likened to using a bicycle to travel a short dis tance. Whilst this is adequate for the purpose, the use
of a bicycle is inappropriate if a long distance has to be travelled in a short space of time. You cannot just peddle
faster and faster.

2.2 A problem, the model and the solution

In implementing any solution to a problem, we must first understand the problem that is to be solved. Then, when
we understand the problem fully, a solution can be formulated.

There are many different ways of achieving an understanding of a problem and its solution. Usually, this
involves modelling the problem and its solution using either a standard notation or a notation invented by the
programmer. The advantage of using a standard notation is that other people may inspect and modify the
description of the problem and its proposed solution. For example, in building a house, an architect will draw up a
plan of the various components that are to be built. The client can view the plans and give their approval or
qualified approval subject to minor modifications. The builders can then use the plan when they erect the house.

Architect’s plan (model) Finished house

Writing a computer program involves the same overall process. First, we need to understand the task that the
computer program will perform. Then we need to implement a solution using the model that we have created.

An easy pitfall at this point is to believe that the model used for the solution of a small problem can be scaled
up to solve a large problem. For example, to cross a small stream we can put a log over the stream or if athletic we
can even jump over the stream. This approach to crossing a stream however, will not scale up to crossing a large
river. Likewise to build a 100-storey tower block, an architect would not simply take the plans for a 2-storey
house and instruct the builders to build some extra floors.

Software design 19

 M A Smith - May not be reproduced without permission

In software the same problems of scale exist; the techniques that we use to implement a small program cannot
usually be successfully used on a large programming project. The computer literature is full of examples of
software disasters that have occurred when a computer system has been started without a full understanding of the
problem that is to be solved.

2.2.1 Responsibilities

Since our earliest days we have all been told that we have responsibilities. Initially, these responsibilities are very
simple, but as we grow older so they increase. A responsibility is a charge, trust or duty of care to look after
something. At an early age this can be as simple as keeping our room neat and tidy. In later life, the range and
complexity of items that we have responsibility for, increases dramatically.

A student for example, has the responsibility to follow a course of study. The lecturer has the responsibility of
delivering the course to the students in a clear and intelligible manner. The responsibilities of the student and
lecturer are summarized in tabular form below:

Responsibilities of a student Responsibilities of a lecturer
Follow the course of study. Deliver the course.
Perform to the best of their ability
in the exam/assessment for the
course.

Set and mark the assessment for
the course.

Attend the exam board for the
delivered course.

Software too has responsibilities. For example, a text editor has the responsibility of entering the user’s typed
text correctly into a document. However, if the text that is entered into the text editor is incorrect or meaningless,
then the resultant document will also be incorrect. It is not the role of the text editor to make overall decisions
about the validity of the entered text.

In early computing literature, a common saying was “Garbage in, garbage out”. Even though the software
package implements its responsibilities correctly, the results produced may be at least meaningless, at worse
damaging if used.

2.3 Objects
The world we live in is composed of many different objects. For example, a person usually has access to at least
some of the following objects:

l A telephone.
l A computer.
l A car.

Each object has its own individual responsibilities. For example, some of the responsibilities associated with
the above objects are:

Object Responsibilities
Telephone l Establish contact with another phone point.

l Convert sound to/from electrical signals.
Computer l Execute programs.

l Provide a tcp/ip connection to the internet.
Car l Move

l Go faster/slower
l Turn left/right
l Stop.

A responsibility here, is a process that the object performs. For example, a car can move forwards or
backwards. However, the car has to be instructed by the driver to perform this task. The object is passive, and only
performs an action when instructed to do so.

20 Software design

 M A Smith - May not be reproduced without permission

2.3.1 The car as an object

A car is made up of many components or objects. From a user’s perspective some of the major objects that make
up a car are:

l The shell or body of the car.
l The engine.
l The gearbox.
l The clutch.
l The battery that provides electric power.

We can think of the body or shell of the car as a container for all the other objects, that when combined, form a
working car. These other objects are hidden from the driver of the car. The driver can, however, interact with
these objects by using the external interfaces that form part of the car shell. This arrangement of objects is
expressed diagrammatically using the UML notation in Figure 2.1.

1

1

1 1 1

111

Engine ClutchGearbox Battery

Car body

Figure 2.1 Objects that make up a car.

In Figure 2.1 the following style of notation is used:

Engine Denotes an object. In this specific case the car engine.

Engine

Piston

1

4

Denotes aggregation. The engine contains 4 pistons.
Note:

A B

Denotes aggregation, the component B is
contained in the container A.

A B

Denotes composition, in addition the
component B is created and destroyed by the
container A.

By using this notation, we can express the ‘part of’ relationship between objects. The engine, gearbox, clutch
and battery are ‘part of’ a car.

Software design 21

 M A Smith - May not be reproduced without permission

2.4 The class

In object-oriented terminology a class is used to describe all objects that share the same responsibilities and
internal structure. A class is essentially the collective name for a group of like objects. For example, the following
objects all belong to the class car:

Corinna’s red car Mike’s silver car Paul’s blue car

Although the objects differ in detail, they all have the same internal structure and responsibilities. Each object
is an instance of the class Car. The notation for a class is slightly different from that of an object. The UML
notation for a class and an object are illustrated below:

A class An object (an instance of a class)

Car Corinna’s car

Note: The name of the object is underlined.

It is important to distinguish between a class and an object. A very simple rule is that objects usually have a
physical representation, whereas classes are an abstract concept.

2.5 Methods and messages
A method implements a responsibility for a class. For example, some of the responsibilities for the class Car are
as follows.

Responsibilities of the class Car
l Start/stop engine
l Go faster/slower
l Turn left/right
l Stop.

An instance of the class Car is an object. By sending a message to the object a hidden method inside the
object (a responsibility of the class Car) is invoked to process the message. For example, the driver of the car by
pressing down on the accelerator, sends the message ‘go faster’. The implementation of this is for the engine
control system to feed more petrol to the engine. Normally however, the details of this operation are not of
concern to the driver of the car.

2.6 Class objects
We have looked at a car's shell as a container for objects and can look at a laptop computer as a container for
several computing devices or objects. A laptop computer is composed of:

l The shell of the laptop, that has external interfaces of a keyboard, touch pad and display
screen.

l The local disk drive.
l The network file system.
l The CPU.
l The sound and graphics chipset.

22 Software design

 M A Smith - May not be reproduced without permission

In this analysis, the networked file system is shared between many different laptops, each individual laptop
having access to the networked file system. In object-oriented terminology the networked file system is a class
object which is shared between all the notebooks.

The concept of a shared object is important as it allows all instances of a class to have access to the same
information. Thus, if one instance of a laptop computer creates a file on the network file system, the other
notebooks will be able to access the contents of this file.

 This arrangement of objects for a laptop computer can be expressed diagrammatically as illustrated using the
UML notation in Figure 2.2. Unfortunately in UML there is no way to show diagrammatically that a class item is
shared between many classes.

1

1

* 1 1

111

Local Disk CPUNetwork Disk Graphics

Lap top

Figure 2.2 Objects that make up a laptop computer from a user’s perspective.

Another interesting property of a class object, is that to access it you do not need an instance of the container
object. For example, the network file system can be used by devices other than the laptop computers.

2.7 Inheritance

A typical office will usually contain at least the following objects:

l A telephone.
l A fax machine with a telephone hand set.
l A computer.

Each of these objects has their own individual responsibilities. For example, some of the responsibilities of
these office objects are:

Object Responsibilities
Telephone l Establish contact with another phone point.

l Convert sound to/from electrical signals.
Fax machine with a
telephone hand set

l Establish contact with another phone point.
l Convert sound to/from electrical signals.
l Convert images to/from electrical signals.

Computer l Execute programs.
l Provide a tcp/ip connection to the internet.

Looking at these responsibilities shows that the telephone and fax machine share several responsibilities. The
fax machine has two of the responsibilities that the telephone has. We could say that a fax machine is a telephone
that can also send and receive images. Another way of thinking about this is that the fax machine can be used as if
it were only a telephone. This relationship between classes that represent all telephones and fax machines is
shown diagrammatically in Figure 2.3 using the UML notation. In this relationship a fax machine is inherited (or
formed from the components) of a telephone.

Software design 23

 M A Smith - May not be reproduced without permission

Inheritance diagram Responsibilities:

Telephone

Fax machine

Establish contact with another phone point.
Convert sound to/from electrical signals.

All the responsibilities of a telephone plus:
Convert images to/from electrical signals.

Figure 2.3 Relationship between a telephone and a fax machine.

Note: The superclass (telephone) is the class from which a subclass (fax machine) is inherited.
Inheritance requires you to take all the responsibilities from the superclass; you cannot selectively
choose to take only some. However, even though you inherit the responsibilities you do not need to use
them.

The inheritance relationship is an important concept in object-oriented programming as it enables new objects
to be created by specializing an existing object. In creating the new object, only the addition, responsibilities have
to be constructed. The development time for a new software object is reduced as the task of creating the inherited
responsibilities has already been done. This process leads to a dramatic reduction in the time and effort required to
create new software objects.

2.8 Polymorphism

In a collection of different objects if all the objects are capable of receiving a specific message then this message
may be sent to any object in the collection. The method executed when this message is received by an object will
depend on the type of the object that receives the message.

For example, in a group of individuals if you ask a person how to take part in their favourite sport, you will
probably get many different answers. In effect the message ‘How to take part in your favourite sport’ is
polymorphic in that the answer you get depends on the individual person you select to ask. A tennis player for
example, would give a different answer than a golfer.

2.9 Self-assessment

l Explain why the solution to a small problem may not always scale up to solve a much larger and
complex problem.

l What is a “Responsibility”?

l What are the responsibilities of:
l A video camera.
l An alarm clock.

l A traffic light.

l An actress playing the role of Olgar in the Three sisters by Chekov.

l What is the relationship between an object, message and a method?

24 Software design

 M A Smith - May not be reproduced without permission

l What classes do the following objects belong to?

apartment cat crayon crystal dog
guinea pig igloo house ink pen library
mansion office block pencil rabbit sheep

Identify which classes are subclassed from other classes?

l Identify several objects and classes around you at the moment. Can you find responsibilities that any
of the objects or classes have in common?

25 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

3 Ada introduction: Part 1

This chapter looks at some simple Ada programs, and presents the basic control structures of the
language. The data types Integer and Character are used to introduce these structures.

3.1 A first Ada program
The first program presented is a simple one that writes the message ‘Hello World’ onto the user’s terminal.

with Text_Io;
use Text_Io;
procedure Hello is
begin
 Put("Hello World"); New_Line;
end Hello;

Note: The example programs in this book are shown with reserved words in bold to aid readability. As the
name suggests, reserved words can only be used for their intended purpose. Strange error messages
can occur when a reserved word is inadvertently used by the programmer as the name of an object in a
program. Reserved words are entered as normal text when writing a program. Section B.1, Appendix B
lists all the reserved words in the Ada programming language.

When compiled and run, this program will display on a user’s terminal the message:

Hello World

In the above program, the reserved words begin and end are used to bracket the body of the procedure
Hello. In Ada, a procedure can be a self-contained program unit that may be independently compiled. In the
above example, the single procedure Hello forms a complete program that may be compiled and run by an
appropriate Ada compiling system.

The statement Put("Hello World"); is responsible for outputting the greeting to the terminal. Used in
conjunction with New_Line, which outputs a new line character to the terminal, these procedures are defined
and implemented by the library package Ada.Text_Io.

Note: The end keyword is followed by the name of the procedure, in this example helloworld. The
compiler checks for this to ensure that the procedure's extent agrees with the programmer’s view.

One of the important concepts in Ada is the idea of encapsulating items together to form a package which may
be re-used in other programs. The library package Ada.Text_Io is provided on Ada systems to allow the input
and output of textual information to and from the user’s program. This library package is introduced to a
procedure by means of the statements with Ada.Text_Io; use Ada.Text_Io; the details of which will
be explained later.

26 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

Figure 3.1 illustrates the components of an Ada program.

with Text_Io;
use Text_Io;

procedure Hello is
begin

 Put("Hello World"); New_Line;

end Hello;

Specify package Ada.Text_Io is to be
used in the procedure

Executed statements

Declaration and start of procedure
helloworld

End of procedure helloworld

Figure 3.1 Components of an Ada program.

3.2 The case of identifiers in a program

In Ada, the case of characters used in reserved words and identifiers is unimportant; the compiler will take begin
Begin or even BeGiN to mean exactly the same thing. The only place where the case of a letter matters is in
string and character constants. For example, the above program, could have been written as:

With Text_IO;
Use Text_IO;
Procedure HELLO is
Begin
 PUT("Hello World"); NEW_LINE;
End hello;

3.3 Format of an Ada program

In Ada, like in many other languages, white space is used mainly as a way of neatly laying out a program so that
everyone, including the author, may clearly see the structure and purpose of the statements. There are many
conventions for the layout of an Ada program and there are even programs which will reformat an Ada program
for you.

The program illustrated above could have been written as:

with Text_Io; use Text_Io; procedure Hello is begin
Put("Hello World"); New_Line; end Hello;

although it is now more difficult to see exactly what the code is supposed to achieve. The only place where white
space character(s) or a new line are needed, is between words that contain alphabetic characters. Naturally, any
strings that contain white space characters will be output containing these white space characters. However a
newline character is not allowed in a string literal.

A line of an Ada program can be up to 200 characters long and implementors may, if they wish, allow longer
lines. A consequence of this is that names of items in an Ada program are considered unique if the first 200
characters are different.

3.3.1 Variable names

A variable name must start with a letter and can then be followed by any number of letters and digits and the
underscore character. However, two underscore characters cannot occur next to each other and an underscore
character must not start or finish a variable name.

Ada introduction: Part 1 27

 M A Smith - May not be reproduced without permission

3.3.2 Comments

In Ada, comments may be introduced into a program by preceding the remainder of the line containing the
comment, with two - characters. For example, a possible comment to the above program might be:

-- This program writes the message
-- "Hello World" to a users terminal

3.4 A larger Ada program
A program to produce a countdown is shown below. In this program, various constructs which affect the flow of
control are introduced.

with Ada.Text_Io; --With package Text_Io
use Ada.Text_Io; --Use components
procedure Main is
 Count : Integer; --Declaration of count
begin
 Count := 10; --Set to 10
 while Count > 0 loop --loop while greater than 0
 if Count = 3 then --If 3 print Ignition
 Put("Ignition"); New_Line;
 end if;
 Put(Integer'Image(Count)); --Print current count
 New_Line;
 Count := Count - 1; --Decrement by 1 count
 delay 1.0; --Wait 1 second
 end loop;
 Put("Blast off"); New_Line; --Print Blast off
end Main;

In this program an integer variable count is declared which contains the current value of the countdown. This
is achieved with the declaration Count : Integer;. The Ada statement delay 1.0; causes a pause of one
second in the program.

Note: Declarations of items are allowed in any order in Ada 95.
Integer’Image(Count) delivers count as a character string. This is necessary as the
package Ada.Text_Io only implements input and output on a character or a string.

When run, this program will produce the following output:

 10
 9
 8
 7
 6
 5
 4
Ignition
 3
 2
 1
Blast off

This is similar to the commentary used during the take-off procedures of early space missions.

28 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

3.5 Repetition: while

while Count > 0 loop --loop while greater than 0

 -- Repeated statements

end loop;

The above construct repeatedly executes the statements between loop and end loop while the condition
count > 0 is true.

Note: The mandatory end loop terminates the while loop. In Ada, most constructs are terminated by
a mandatory termination keyword(s). This prevents the kind of errors that can occur in other
languages when an extra statement is added in the belief that it forms part of the construct. It also
allows the compiler to check that the user has constructed a program correctly by matching the start
and end of each construct.

3.6 Selection: if

 if Count = 3 then --If 3 print Ignition
 Put("Ignition"); New_Line;
 end if;

The if statement allows a statement or statements to be executed only if the condition is true. In the above
example, the statements Put("Ignition"); New_Line; will only be executed when count is equal to 3.

Note: The mandatory end if terminates the if statement.

An else part may also be included, in which case statement or statements which follow it are only obeyed if
the condition is false. For example:

 if Count = 3 then
 Put("Count is 3"); New_Line;
 else
 Put("Count is not 3"); New_Line;
 end if;

Note: The else part of an if statement is optional. However, if it is included it must be followed by at least
one statement.

The rather inelegant nested if structure below:

 if Count = 3 then
 Put("Count is 3"); New_Line;
 else
 if Count = 4 then
 Put("Count is 4"); New_Line;
 else
 Put("Count is not 3 or 4"); New_Line;
 end if;
 end if;

Ada introduction: Part 1 29

 M A Smith - May not be reproduced without permission

can be rewritten using the following elsif construct:

 if Count = 3 then
 Put("Count is 3"); New_Line;
 elsif Count = 4 then
 Put("Count is 4"); New_Line;
 else
 Put("Count is not 3 or 4"); New_Line;
 end if;

Note: For the statements in the else part to be obeyed, all the conditions in the if and elsif parts must
be false.
There may be many elsif components in an if statement, but only one else.

3.7 Other repetition constructs

3.7.1 for

In Ada, a loop may be constructed in which a variable is varied by one unit between two values. For example, the
code to print out the numbers from 1 to 10 can be written using a for statement as follows:

 for Count in 1 .. 10 loop --count declared here
 Put(Integer'Image(Count));
 end loop;
 New_Line;

When run, this would produce:

 1 2 3 4 5 6 7 8 9 10

Note: The variable count is declared by the for statement and is visible only for the extent of the for loop.
It is a read only item and therefore cannot be written to.

The values may be stepped through in reverse order by inserting the keyword reverse after the keyword in.
For example:

 for Count in reverse 1 .. 10 loop
 Put(Integer'Image(Count));
 end loop;
 New_Line;

When run, this would produce:

 10 9 8 7 6 5 4 3 2 1

30 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

Note: The range must evaluate to a possible list of values for the body of the for loop to be executed. For
example:

for Count in reverse 10 .. 1 loop
 Put(Integer'Image(Count));
 end loop;

would not execute the body of the for loop.

In the program below the two loops produce identical results:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 Count : Integer; --count as Integer object
 Count_To : constant Integer := 10; --integer constant
begin
 Count := 1;
 while Count <= Count_To loop --While loop
 Put(Integer'Image(Count));
 Count := Count + 1;
 end loop;
 New_Line;

 for Count in 1 .. Count_To loop --count declared here
 Put(Integer'Image(Count));
 end loop;
 New_Line;

end Main;

When run, this would produce:

 1 2 3 4 5 6 7 8 9 10
 1 2 3 4 5 6 7 8 9 10

Note: For the for loop a new count is declared which is visible only for the extent of the loop.

3.7.2 loop

Another way of writing the above loop is by using the infinite looping construct loop end loop. As this
construct repeats for ever, an exit mechanism is provided to short-circuit the loop. This escape mechanism is the
exit statement, which causes an immediate exit from the loop. Older programmers will recognise this as a
restricted version of the goto statement. The loops seen earlier in Sections 2.5 and 2.7.1 could have been
expressed using a loop construct as follows:

Ada introduction: Part 1 31

 M A Smith - May not be reproduced without permission

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 Count : Integer; --count as Integer object
 Count_To : constant Integer := 10; --integer constant
begin
 Count := 1;
 loop
 Put(Integer'Image(Count));
 exit when Count = Count_To; --Exit loop when ...
 Count := Count + 1;
 end loop;
 New_Line;
end Main;

When run, this would produce:

 1 2 3 4 5 6 7 8 9 10

The exit from the loop is accomplished by adding a condition to the exit statement, in this case when
Count = Count_To.

Note: The loop construct can be used when it is necessary to execute the code at least one-time.
An exit statement may be used to exit from a while loop and a for loop.

3.8 Other selection constructs

3.8.1 case

The previous series of if then else statements in Section 2.6 can be replaced by the following case
statement:

 case Count is
 when 3 => Put("Count is 3"); New_Line;
 when 4 => Put("Count is 4"); New_Line;
 when others => Put("Count is not 3 or 4"); New_Line;
 end case;

In Ada, a case statement must take account of all values that the control variable may take: hence the when
others component in the above statement. Had it not been present, then a compile-time error would have been
generated.

32 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

A character variable may be declared which can hold a character from the Ada character set. The following
case statement would print out a classification of the character held in the object Ch.

 Ch := 'a';
 case Ch is
 when '0' | '1' | '2' | '3' | '4' |
 '5' | '6' | '7' | '8' | '9' =>
 Put("Character is a digit");
 when 'A' .. 'Z' =>
 Put("Character is upper case English letter");
 when 'a' .. 'z' =>
 Put("Character is lower case English letter");
 when others =>
 Put("Not an English letter or digit");
 end case;
 New_Line;

In this case statement two ways of combining case labels are introduced.

Case component Description Explanation
| Or For example, '0' | '1' will match the

character '0' or the character '1'
 .. Range For example, 'A' .. 'Z' will match any

character in the range Capital A to Capital Z.

The fragment of program code combined with appropriate declarations and compiled would produce when
run:

Character is lower case English letter

3.9 Input and output

In Ada, input and output are performed by a variety of standard packages. The full implications of the package
construct are discussed fully in Chapters 5 and 17 which describe in detail the I/O packages. For the moment, the
discussion about input and output will concentrate solely on character data.

Text is output to the terminal using the put procedure. This procedure may take a formal parameter which is
either a character or a character string. For example, to output hello the user could write either:

 Put("Hello");

or

 Put('h'); Put('e'); Put('l'); Put('l'); Put('o');

Note: A string is use to represent a sequence of characters. A string is enclosed in " " whilst a character is
enclosed in ' '. In this way the compiler can distinguish between a character 'A'and a string of a single
character "A".

Ada introduction: Part 1 33

 M A Smith - May not be reproduced without permission

To input a character into the variable ch of type Character, the user could write:

get(ch);

A simple program to copy its input, character-by-character to the output source, could be as follows:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Simple_Cat is
Ch : Character; --Current character
begin
 while not End_Of_File loop --For each Line
 while not End_Of_Line loop --For each character
 Get(Ch); Put(Ch); --Read / Write character
 end loop;
 Skip_Line; New_Line; --Next line / new line
 end loop;
end Simple_Cat;

The above program uses the following input and output functions or procedures.

Function/Procedure Effect
End_Of_File Delivers true when the end of the file is reached,

otherwise it delivers false.
End_Of_Line Delivers true when all the characters have been read

from the current input line, otherwise it delivers false.
NB. This does not include the new line character.

Skip_Line Positions the input pointer at the start of the next line.
Any information on the current line is skipped.

New_Line Write the new line character to the output stream
NB. On some systems new line is represented by two
characters when output.

If compiled to the executable file Simple_Cat, the same program could be run on a Unix or MSDOS system
to implement a simple software tool to print the contents of the file about_ada. To list the contents of the file
about_ada to the terminal using an MSDOS system, a user could type:

Simple_Cat < about_ada

Note: On a DOS or Unix system the command Simple_Cat < about_ada runs the program
Simple_Cat taking its input from the file about_ada.

3.10 Access to command line arguments

When a program is executed it is possible to access any arguments given on the same line as the program name.
For example, the following program echo has two command line arguments:

echo Hello there!

34 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

If the program echo is compiled with the package Ada.Command_Line then the programmer has available the
following function calls:

call of function Returns
Argument_Count The number of command line arguments. In this case,

two.
Argument(1) A string representing the first command line argument.

In this case “Hello”.
Argument(2) A string representing the second command line

argument. In this case “there!”.

Note: It would be an error detected at run-time to access argument(3).

The code for the program echo is as follows:

with Ada.Text_Io, Ada.Command_Line;
use Ada.Text_Io, Ada.Command_Line;
procedure Echo is
begin
 for I in 1 .. Argument_Count loop --For each argument
 Put(Argument(I)); -- Print it
 if I /= Argument_Count then -- If not last
 Put(" "); -- Print separator
 end if;
 end loop;
 New_Line;
end Echo;

Note: See how the package Ada.Command_Line has been used here.

3.10.1 Putting it all together

If compiled to the executable file echo, the program could be run on a Unix or MSDOS system to implement the
command echo as follows:

% echo Hello there!

Which when run would write:

Hello there!

3.11 A better cat program

By using, the package Ada.Command_line a better version of the cat program can be written. In this new
version the files to be listed to the terminal are specified after the executable program name.

The following procedures and functions are used to control the reading of data from a file.

Function/Procedure Effect
Open Opens an existing file. A file descriptor to this file is

returned as the result. A file descriptor is of type:
File_type in the package Ada.Text_Io.

Close Close the open file.

Ada introduction: Part 1 35

 M A Smith - May not be reproduced without permission

Function/Procedure Effect
End_Of_File
End_Of_Line
Skip_Line
Get

As previously described but this time the effect is not
on the normal input stream, but on the input of data
from a file. The extra first parameter denotes the file
descriptor attached to the file.

This new program is as follows:

with Ada.Text_Io, Ada.Command_Line;
use Ada.Text_Io, Ada.Command_Line;
procedure Cat is
 Fd : Ada.Text_Io.File_Type; --File descriptor
 Ch : Character; --Current character
begin
 if Argument_Count >= 1 then
 for I in 1 .. Argument_Count loop --Repeat for each file
 Open(File=>Fd, Mode=>In_File, --Open file
 Name=>Argument(I));
 while not End_Of_File(Fd) loop --For each Line
 while not End_Of_Line(Fd) loop --For each character
 Get(Fd,Ch); Put(Ch); --Read / Write character
 end loop;
 Skip_Line(Fd); New_Line; --Next line / new line
 end loop;
 Close(Fd); --Close file
 end loop;
 else
 Put("Usage: cat file1 ... "); New_Line;
 end if;
end Cat;

3.11.1 Putting it all together

Which when compiled to the executable file cat can be run as follows on an MSDOS or Unix system:

% cat file1.txt file2.txt

Note: If a file does not exist then the program will fail with an uncaught exception condition. Chapter 12
describes how such exceptional conditions may be caught and processed in a program.

3.12 Characters in Ada
In Ada there are two distinct types used for holding characters. These are:

Type An instance of this type
Character Can hold 256 distinct characters.

Characters with internal code 0-127 are from the ASCII
character set. The ASCII standard is equivalent to ISO
8859.

Wide_Character Can hold 65336 different characters.
The characters are defined in ISO 10646 BMP

Note: Many computer systems use the ASCII character set to represent data held internally or transmitted.
In Ada 83 variables of type Character are restricted to holding only 128 different character values
compared to Ada 95’s 256.

36 Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

These types are defined as enumeration types in the package standard. A consequence of this is that characters
like ‘A’ are enumerations of both Character and Wide_character. The effect is that a programmer cannot
write:

if 'A' = 'A' then ... end if;

as the character ‘A’ could belong to the type Character or Wide_Character which the compiler cannot
resolve from the statement.

3.13 Self-assessment

l What is the purpose of the package Ada.Text_Io?

l What are the disadvantages of the exit statement?

l Why did the designers of Ada make the control variable in a for loop read only?

l Why might the omission of when others in a case statement cause a compile-time error?

l Can every loop end loop statement be expressed as a while end loop statement which
does not have an exit statement? For example, the following program illustrates a loop end
loop:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 Count : Integer; -- Variable
 Count_To : constant Integer := 10; -- Integer constant
begin
 Count := 1;
 loop
 Put(Integer'Image(Count));
 exit when Count = Count_To; -- Exit loop when ...
 Count := Count + 1;
 end loop;
 New_Line;

end Main;

Is the converse true? Explain your answer.

l What are the major differences discussed so far between Ada and other programming languages
known to you?

l Why might an Ada 95 program using a Character variable not compile using an Ada 83 compiler?

l How may command line arguments be accessed from a program?

Ada introduction: Part 1 37

 M A Smith - May not be reproduced without permission

3.14 Exercises

Construct the following programs:

l Numbers
A program to print the first 20 positive numbers (1, 2, 3, etc.).

l Times table
A program to print out the 8 times table so that the output is in the following form:

8 * 1 = 8
8 * 2 = 16
8 * 3 = 24

 . . .
8 * 12 = 96

l Series
A program to print out numbers in the series 1 1 2 3 5 8 13 ... until the last term is greater then 10000.

l Character table
A program to print the characters represented by the numbers 32 to 126.

Hint:
If a variable number is of type Integer then Character'Val(number) will deliver the
character which is represented internally by the value contained in number.

l Table
A program to print out the square, cube and 4th power of the first 15 positive numbers.

Ada introduction: Part 1

 M A Smith - May not be reproduced without permission

4 Ada introduction: Part 2

This chapter looks at declarations and use of scalar data items in Ada. One of Ada's key contributions to
programming is the ability to declare data items that can only take a specific range of values. Ada’s strong
typing ensures that many errors in a program will be detected at compile rather than run-time.

4.1 Introduction
So far, only objects of type Integer or Character have been introduced. An Integer object stores a
number as a precise amount with no decimal places. The exact range of values that can be stored is
implementation defined. A user can find out this range by employing the attributes 'First and 'Last on the
type Integer. In addition the attribute 'Bits returns the size in bits of an Integer object. The following
program prints these attributes for an Integer type.

with Ada.Text_Io; use Ada.Text_Io;
procedure Main is
begin
 Put("Smallest Integer ");Put(Integer'Image(Integer'First)); New_Line;
 Put("Largest Integer ");Put(Integer'Image(Integer'Last)); New_Line;
 Put("Integer (bits) ");Put(Integer'Image(Integer'Size)); New_Line;
end Main;

Note: The attribute 'First is pronounced ‘tick first’.

When compiled and run on two different machines, this would produce:

Machine using a 16 bit word size Machine using a 32 bit word size

Smallest integer -32768
Largest integer 32767
Integer (bits) 16

Smallest integer -2147483648
Largest integer 2147483647
Integer (bits) 32

4.2 The type Float
An instance of the type Integer holds numbers to an exact value. In the solution of some problems the numbers
manipulated will not be an exact value. For example, a person's weight is 80.23 kilograms. The data type Float
elaborates an object which can hold a number which has decimal places. Thus in a program a person's weight can
be held in the object weight which is declared as follows:

Weight : Float := 80.23;

A Float is implemented as a floating point number. A floating point number holds a value to a specific
number of decimal digits. This will in many cases be an approximation to the exact value which the programmer
wishes to store. For example, a 1/3 will be held as 0.333 ... 33. The following table shows how various numbers
are effectively stored in floating point form to 6 decimal places:

Number Scientific notation Floating point form
80.23 0.8023 * 102 +802300 +02
0.008023 0.8023 * 10-2 +802300 -02
0.333333 0.333333 * 100 +333333 +00

Ada introduction: Part 2 39

 M A Smith - May not be reproduced without permission

Note: In reality the floating point number will be held in binary.

The main consequence of using a floating point number is that numbers are held to an approximation of their
true value. Calculations using floating point numbers will usually only give an approximation to the true answer.
However, in many cases this approximation will not cause any problems. An area where this approximation will
cause problems is when the value represents a monetary amount.

The attributes 'First, 'Last and 'Size may also be applied to objects of type Float. In addition the
attribute 'Digits returns the precision in decimal digits of a number stored in a Float object. For example, the
following program:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
begin
 Put("Smallest Float ");
 Put(Float'Image(Float'First)); New_Line;
 Put("Largest Float ");
 Put(Float'Image(Float'Last)); New_Line;
 Put("Float (bits) ");
 Put(Integer'Image(Float'Size)); New_Line;
 Put("Float (digits) ");
 Put(Integer'Image(Float'digits)); New_Line;
end Main;

Note: Float'Image delivers a string representing a floating point number in scientific notation.
when compiled and run on two different machines would produce:

Machine using a 32 bit word size Machine using a 64 bit word size

Smallest Float -3.40282E+038
Largest Float 3.40282E+038
Float (bits) 32
Float (digits) 6

Smallest Float -1.79769313486232E+308
Largest Float 1.79769313486232E+308
Float (bits) 64
Float (digits) 15

4.2.1 Other Integer and Float data types

Some implementations of Ada may provide data types that offer a greater precision than the in-built types of
Integer and Float. If these are provided they will be called Long_Integer, Long_Float ,
Long_Long_Integer etc.

4.3 New data types

Using an object of type Integer to hold numeric values may be a useful approach, but it does not lead to a
program that is machine independent. For example, during its execution a program could create values which
were not containable in a particular machine's Integer object. If this happened, then the program would fail
with a run-time error of ‘Constraint_Error’.

Ada provides an elegant solution to this problem. It allows a user to define a new data type, which has a
specific range of values. For example, the following declaration defines a new data type Distance which will
hold the distance between two places:

type Distance is range 0 .. 250_000;

Note: If the compiler cannot provide an object which can hold such a range, a compile-time error message
will be generated.

40 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

Distance is a new type, instances of which may not be mixed with instances of other types. The following
table shows some examples of type declarations in Ada.

Type declaration An instance of T will Declare
type T is range 0 .. 250_000; An object which can hold whole numbers in

the range 0 .. 250_000.
type T is digits 8; An object which can hold a floating point

number which has a precision of 8 digits.
type T is digits 8 range 0.0 .. 10.0; An object which can hold a floating point

number which has a precision of 8 digits and
can store numbers in the range 0.0 .. 10.0.

4.3.1 Type conversions

To convert between compatible scalar types the type name of the required type is used to convert an object to the
required type. For example, the following program converts an object of type Apples into an object of type
French_Apples.

procedure Main is
 type Apples is range 0 .. 100;
 type French_Apples is range 0 .. 100;
 Number : Apples;
 Number_From_France : French_Apples;
begin
 Number := 10;
 Number_From_France := French_Apples(Number);
end Main;

It is, however, up to the programmer to determine whether the conversion is meaningful. Conversion,
however, can only take place between types that are compatible.

4.3.2 Universal integer

To avoid tedious type conversion when dealing with constants, Ada has the concept of a universal integer. The
compiler will automatically convert a universal integer to an appropriate type when used in an arithmetic
expression. In Ada all integer numeric constants are regarded as being of type universal integer. Likewise all
floating point constants are regarded as a universal float.

4.3.3 Constant declarations

To make a program more readable, all values other than 0 or 1 should normally be given a symbolic name. This
helps to improve the readability of a program and allows the programmer to change the value by means of a single
textual change. For example, the capacity of a car park could be described as:

Max_Parking_Spaces: constant := 100;

This describes Max_Parking_Spaces as a universal integer. However, if the declaration had been:

Max_Parking_Spaces: constant Parking_Spaces := 100;

then Max_Parking_Spaces would be a constant of type Parking_spaces.

Note: The latter declaration will restrict the places where Max_Parking_Spaces can be used to only
those places where a value of type Parking_Spaces can occur.

Ada introduction: Part 2 41

 M A Smith - May not be reproduced without permission

4.4 Modified countdown program

The countdown program shown earlier in Section 3.4 can be rewritten, restricting count to the values 1 to 10 as
follows:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 type Count_Range is range 0 .. 10;
 Count : Count_Range := 10; --Declaration of count
begin
 for Count in reverse Count_Range loop
 if Count = 3 then --If 3 print Ignition
 Put("Ignition"); New_Line;
 end if;
 Put(Count_Range'Image(Count)); --Print current count
 New_Line;
 Delay 1.0; -- Wait 1 second
 end loop;
 Put("Blast off"); New_Line; --Print Blast off
end Main;

Note: Even though count is of type Count_range, it can be compared with the integer constant 3.
The use of the type Count_Range in the loop statement. This confines the loop to the range of
values that an instance of Count_Range can take.
The use of

Count_Range'Image(Count)
to deliver a character representation of the contents of count. Remember count is of type
Count_Range.

4.5 Input and output in Ada

One of the obstacles in writing programs in Ada is the complexity involved in outputting integer and floating
point numbers. To simplify this process Ada 95 provides the following packages:

l Ada.Integer_Text_Io for input and output of integer numbers.
l Ada.Float_Text_Io for input and output of floating point numbers.
l Ada.Text_Io for input and output of characters and strings.

Chapter 18 describes how specific packages in Ada.Text_Io are instantiated to output instances of other integer
and floating point types.

4.6 The package Ada.Float_Text_Io

The package Ada.Float_Text_Io is used to input and output floating point numbers.

42 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

4.6.1 Output of floating point numbers

A floating point number is output using the overloaded procedure Put, though by default this displays the number
in scientific notation. Extra parameters to Put are used to control the output form of the floating point number.
These parameters are used together or individually. The main parameters to control the format are named Fore,
Aft and Exp. For example, to output the contents of the Float object Num that contains 123.456 the following
versions of Put may be used:

Put statement Output Notes
Put(Num); 1.23456E+02 1
Put(Num, Fore=>4, Aft=>2, Exp=>0); 1.23 2
Put(Num, Fore=>4, Aft=>2, Exp=>3); 1.23E+02 3

Note: Section C.5, Appendix C contains a description of the package Ada.Text_Io and shows other forms
of the put statement. Section 5.9 describes in more detail how parameters to a procedure or function
may be named.

1 Scientific notation by default.
2 Aft =>2 Number of places after the decimal point.

Fore =>4 Number of places before the decimal point.
This includes any sign character such as -.

Exp =>0 No exponent hence non scientific notation.
3 Exp =>3 Scientific notation with three places for the exponent.

This includes any sign character such as -.

4.6.2 Input of floating point numbers

A floating point number is input using the overloaded procedure Get as follows:

Get statement Notes
Get(Num); 1
Get(Num, Width=>5 2

Notes:
1 Reads a floating point number from the input source. It is an error to read an integer number. This

procedure will skip any leading white space characters before reading the floting point number.
2 Width=> 5

Number of characters input when constructing the floating point number. If a line terminator is
encountered no more characters are input to form the number

4.7 The package Ada.Integer_Text_Io
The package Ada.Integer_Text_Io is used to input and output floating point numbers.

4.7.1 Output of integer numbers

.In the output of an integer number the parameters base and width can be used together or individually to
control the format of the output. For example, to output the contents of the Integer object Num which contains
42 the following versions of put may be used:

The put statement Output Notes
Put(Num); 42 1
Put(Num, Base=> 8, Width=>5); 8#52# 2

Notes:
1 Output in the default field width.
2 Base =>8 Output base: in this case octal.

Width =>5 Field width for the number.

Ada introduction: Part 2 43

 M A Smith - May not be reproduced without permission

4.7.2 Input of integer numbers

An integer is input using the overloaded procedure Get as follows:

Theget statement Notes
Get(Num); 1
Get(Num, Width=>5 2

Notes:
1 Reads an integer number from the input source. .This procedure will skip any leading white space

characters before reading the integer number.
2 Width=> 5

Number of characters input when constructing the integer number. If a line terminator is encountered
no more characters are input to form the number.

4.8 Conversion between Float and Integer types

Because Float and Integer are two separate types, instances of these types may not be mixed. This initially
can cause problems as often we informally mix whole numbers and ‘floating point numbers' together. For
example, the following program prints a conversion table for whole pounds to kilograms:

with Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io;
procedure Main is
begin
 for I in 1 .. 5 loop
 Put(I); Put(" Pounds = ");
 Put(Float(I) / 2.2046, Exp=>0, Aft=>2);
 Put(" Kilograms"); New_Line;
 end loop;
end Main;

Note: The explicit conversion Float(I) converts the Integer object I to an instance of a Float.

When run, this will give the following output:

 1 Pounds = 0.45 Kilograms
 2 Pounds = 0.91 Kilograms
 3 Pounds = 1.36 Kilograms
 4 Pounds = 1.81 Kilograms
 5 Pounds = 2.27 Kilograms

The conversion process may be used in reverse to convert a floating point number to an integer form. The
effect of this conversion is to round away from zero, so that:

Float object f contains Integer(f) delivers
1.5 2
1.3 1
-1.5 -2
-1.3 -1

44 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

4.9 Type safety in a program

By using the type mechanism, errors in a program can be detected at compile-time. For example, a program which
processes distances in miles and kilometres can be made safer by defining separate types for miles and kilometres
as follows:

 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;

Note: The range of values is adequate to accommodate any distance between two points on the earth.

A program which processes distances between cities could be defined as follows:

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
procedure Main is
 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;
 London_Paris : Miles;
 Paris_Geneva : Kilometres;
 London_Paris_Geneva: Kilometres;
begin
 London_Paris := 210.0; --Miles
 Paris_Geneva := 420.0; --Kilometres
 London_Paris_Geneva :=
 Kilometres(London_Paris * 1.609_344) + Paris_Geneva;
 Put("Distance london - paris - geneva (Kms) is ");
 Put(Float(London_Paris_Geneva), Aft=>2, Exp=>0);
 New_Line;
end Main;

Note: There is an explicit conversion of a distance in miles to kilometres using the type conversion
kilometres(london_paris * 1.609_344).
The contents of London_Paris_Geneva has been converted to a Float so that it can be printed
using the package Ada.Float_Text_Io. Chapter 17 describes how user defined types may be
output.
The parameters to put when outputting a floating point number control the number of decimal places
output and the format of the number. Section C.5, Appendix C lists the parameters used in outputting
numbers .

If by accident a programmer wrote:

London_Paris_Geneva := London_Paris + Paris_Geneva;

then the Ada compiler would detect a type mismatch at compile-time. London to Paris is in miles and Paris to
Geneva is in kilometres.

4.10 Subtypes
The type mechanism can on occasion, be restricting as a programmer wants the range checking provided by the
type mechanism but does not want to have to keep explicitly performing type conversions. A subtype of a type
provides the range checking associated with a type, but instances of a type and its subtypes may be freely mixed
in expressions.

Ada introduction: Part 2 45

 M A Smith - May not be reproduced without permission

For example, the speed of various forms of transport can be defined using the type and subtype mechanism as
follows:

 type Speed_Mph is range 0 .. 25_000;
 subtype Train_Speed is Speed_Mph range 0 .. 130;
 subtype Bus_Speed is Speed_Mph range 0 .. 75;
 subtype Cycling_Speed is Speed_Mph range 0 .. 30;
 subtype Person_Speed is Speed_Mph range 0 .. 15;

A subtype is derived from an existing type and constrains the values that can be assigned to an instance of the
subtype. The compiler will enforce this constraint either by performing a compile-time check or by generating
code to check the constraint at run-time. Of course, the subtype inherits all the operations that can be performed
on an instance of the type.

Instances of a type and its subtypes may be freely mixed in arithmetic, comparison and assignment operations.
For example, using the above type and subtypes declarations for the speed of various forms of transport, the
following code can be written:

with Ada.Text_Io;
use Ada.Text_Io;
procedure main is
 -- Type and subtype declarations for speeds
 T0715 : Train_Speed; --07:15 Brighton - London
 B0720 : Bus_Speed; --07:20 Brighton - London
begin
 T0715 := 55; --Average speed Brighton - London (Train)
 B0720 := 35; --Average speed Brighton - London (Bus)
 if T0715 > B0720 then
 Put("The train is faster then the bus");
 else
 Put("The bus is faster then the train");
 end if;
 New_Line;
end Main;

Note: It is of course an error to mix instances of subtypes which are derived from different types.

4.10.1 Types vs. subtypes

Criteria Types Subtype
Instances may be mixed with only instances of the

same type
only instances of a type
and subtypes derived
from the type

May have a constraint Yes Yes

4.11 More on types and subtypes

In Ada only subtypes have names. The consequence of this is that the declaration:

 type Speed_Mph is range 0 .. 25_000;

46 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

is effectively treated as:

 type Anonymous is -- implementation defined
 subtype Speed_Mph is Anonymous range 0 .. 25_000;

The anonymous type from which Speed_Mph is derived can be obtained by using the attribute 'Base. The
attribute 'Base refers to the anonymous base type from which a type or subtype has been originally derived. For
example, the range of the anonymous type from which Speed_Mph is derived is printed with the following code:

 Put("The base range of the type T2 is ");
 Put(Integer(T2'Base'First)); Put(" ..");
 Put(Integer(T2'Base'Last)); New_Line;

Note: An instance of the base type can be declared by using the type declaration Speed_mph'Base.

4.11.1 Root_Integer and Root_Real

The model of Ada's arithmetic is based on the anonymous types Root_Integer and Root_Real. These types
are in effect used as the base types from which all integer and real types are derived. The following table
summarizes the properties of Root_Integer and Root_Real.

Root type Range / precision
Root_Integer System.Min_Int .. System.Max_Int
Root_Real System.Max_Base_Digits

All the arithmetic operators are defined to operate on, and deliver instances of, their base type.

4.11.2 Type declarations: root type of type

In declaring a type for an integer, there are two distinct approaches that can be taken. These are illustrated by the
two type declarations for an Exam_mark.

type Exam_Mark is new Integer range 0 .. 100;
type Exam_Mark is range 0 .. 100;

The first declaration defines Exam_Mark to be a type derived from Integer with a permissible range of
values 0 .. 100. Its base type will consequently be that of root_integer as Exam_Mark is derived from
Integer.

The second declaration defines Exam_Mark to be a type, the values of which are in the range 0 .. 100. It is
derived from Root_Integer but the base range of the type does not have to be that of Root_Integer. Some
implementations may implement an instance of this type and its base type in a single byte.
The following table illustrates the base type of the types described above:

type Exam_Mark is Base type Minimum range of root
type

new Integer range 0 .. 100; Root_Integer System.Min_Int ..
System.Max_Int

range 0 .. 100; Implementation
defined

Implementation defined
but must hold 0 .. 100

Ada introduction: Part 2 47

 M A Smith - May not be reproduced without permission

When performing arithmetic with an instance of a type's base type, no range checks take place. This allows an
implementor to implement the base type in the most efficient or effective way for a specific machine. However,
the exception Constraint_Error will be generated if the resultant arithmetic evaluation leads to a wrong
result. For example, the exception Constraint_Error is generated if an overflow is detected when
performing calculations with the base type.

4.11.3 Arithmetic with types and subtypes

In a program dealing with a student's exam marks, the following program is written to average the marks for a
student taking English, Maths and Computing:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 type Exam_Mark is new Integer range 0 .. 100;
 English : Exam_Mark; --English exam mark
 Maths : Exam_Mark; --Maths " "
 Computing : Exam_Mark; --Computing " "
 Average : Exam_Mark; --

begin
 English := 72;
 Maths := 68;
 Computing := 76;
 Put("Average exam mark is ");
 Average := (English + Maths + Computing) / 3;
 Put(Exam_Mark'Image(Average)); New_Line;
end Main;

In executing the statement:

Average := (English+Maths+Computing) / 3;

the expression:

(English+Maths+Computing) / 3

will generate a result which is in the range 0 .. 100. However, the component of the statement
English+Maths+Computing will generate a temporary result which is outside the range of Exam_Mark.

In Ada the arithmetic operations are defined to process instances of the root types. In evaluating
English+Maths+Computing, English+Maths will deliver a temporary object of type Root_Enteger
(Exam_Mark'Base) which is then added to Computing. The result of the addition is divided by 3 at which
point a range check is performed on the temporary result before it is assigned to the object average.

Of course, for this to work the Root_Integer type must be sufficiently large to hold the sum of

English+Maths+Computing. Remember, this will be of type Root_Integer which has a range of -215 ..

215-1.
4.11.4 Warning

If the declaration for Exam_mark where replaced by:

type Exam_Mark is range 0 .. 100;

then the above program would fail with a Constraint_Error if the base type of Exam_Mark were to be
implemented in a single byte.

48 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

4.11.5 Constrained and unconstrained types

In Ada there are no named types only subtypes. The Integer and Float types are derived from
Root_Integer and Root_Float respectively. Range checks only apply to constrained subtypes, but
overflow checks always apply. For example, using the declaration of Exam_Mark:

type Exam_Mark is new Integer range 0 .. 100;

the following properties hold.

Declaration Instance is Commentary
Exam_Mark Constrained Constrained to the range 0 .. 100.

Exam_Mark'Base Unconstrained No range checks applied to assignment of
this variable. An implementor may allow
this to have a range greater than the base
range of the root type.

Declaration Instance is Commentary
Integer Constrained Constrained to the base range of Integer,

which is implementation dependent.
Integer'Base Unconstrained No range checks apply; may have a range greater

than Integer.

Note: Regardless of whether an item is constrained or unconstrained, overflow checks will always apply.
Thus, the result obtained will always be mathematically correct.
Take note of the difference between Integer and Integer'Base. Instances of the type Integer
are constrained to the base range of the type, whilst instances of Integer'Base are not.

4.11.6 Implementation optimizations

An Ada compiler is allowed to represent an instance of a base type to a greater precision than is necessary. For
example, with the following declarations:

type Exam_Mark is new Integer range 0 .. 100;
type Temporary is Exam_mark'Base;
English : Exam_Mark;
Total : Temporary

the variable Total may be implemented to hold numbers of a greater range than is allowed by an Integer
declaration. This is to allow compiler writers the opportunity to perform optimizations such as holding a variable
or intermediate result in a CPU register which may have a greater precision than the range of normal Integer
values. Of course, overflow checks will be performed at all times, so the mathematical result is always correct.

The danger is that a program which compiles and runs successfully using a particular compiler on a machine
may fail to run successfully when compiled with a different compiler on the same machine, even though both
compilers have the same range for an Integer.

Ada introduction: Part 2 49

 M A Smith - May not be reproduced without permission

4.12 Compile-time and run-time checks

The following program declares data types to represent: (a) the number of power points in a room, (b) the
capacity of a lecture room in seats, and (c) the capacity of a tutorial room, again in seats. In this program, various
assignments are made, some of which will fail to compile, some of which will fail in execution.

procedure Dec is
 type Power_Points is range 0 .. 6;
 type Room_Size is range 0 .. 120;
 subtype Lecture_Room is Room_Size range 0 .. 75;
 subtype Tutorial_Room is Room_Size range 0 .. 20;

 Points_In_504 : Power_Points; --Power outlets
 People_In_504 : Lecture_Room; --Size lecture room
 People_In_616 : Tutorial_Room; --Size tutorial room
begin
 Points_In_504 := 3; --OK
 Points_In_504 := 80; --Error / Warning

 People_In_504 := 15; --OK
 People_In_616 := People_In_504; --OK

 People_In_504 := Points_In_504; -- Type Mismatch

 People_In_504 := Lecture_Room(Points_In_504); --Force

 People_In_504 := 50; --OK
 People_In_616 := People_In_504; --Constraint error
end Dec;

The compilation or execution of the following lines will fail for the following reasons:

Line Reason for failure
Points_In_504:= 80; The range of values allowed for the object

Points_In_504 does not include 80.
This error will usually be detected at
compile-time.

People_In_504 := Points_In_504; The objects on the LHS and RHS of the
assignment statement are of different types
and will thus produce a compile-time error.

People_In_616 := People_In_504; Will cause a constraint error when
executed, as the object People_In_504
contains 50.
In this example, the error could in theory be
detected at compile-time.

Note: Depending on the quality of the compiler, some errors which in theory could be detected at compile-
time, will only be detected at run-time. Conversely possible run-time errors may be flagged through
warnings at compile time.

This shows the strength of Ada’s strong type checking: problems in a program can be identified at an early
stage of development. However, careful planning needs to be made when writing a program. Decisions about
which distinct data types to use and which data types should be a subtype of others are particularly important.

50 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

4.12.1 Subtypes Natural and Positive

The Ada language pre-defines the following subtypes:

 subtype Natural is Integer range 0 .. Integer'Last;
 subtype Positive is Integer range 1 .. Integer'Last;

4.13 Enumerations
In writing a program dealing with different classifications of an item it is good programming practice to give
meaningful names to each of the different classifications that an item may have. For example, in a program that
deals with colours, an incorrect approach would be to let each colour take a numeric value, as follows:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 Car_Colour : Integer;
begin
 Car_Colour := 1;
 case Car_Colour is
 when 1 => Put("A red car"); New_Line;
 when 2 => Put("A blue car"); New_Line;
 when 3 => Put("A green car"); New_Line;
 when others => Put("Should not occur"); New_Line;
 end case;
end Main;

Note: Remember the when others is required as a case statement and must cover all possible values.

This however, is not very elegant and can lead to confusion about which colour 1 represents. There is also the
danger that a non valid colour will be assigned to the object Car_Colour. By using an enumeration, specific
names can be given to the colours that a car may have. The declaration for the enumeration Colour is as follows:

type Colour is (Red,Blue,Green);

The type Colour is then used to elaborate objects which can only take the values of Red, Blue or Green.
The enumeration type Colour is used as follows in the re-writing of the previous code fragment:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 type Colour is (Red,Blue,Green);
 Car_Colour : Colour;
begin
 Car_Colour := Blue;

 case Car_Colour is
 when Red => Put("A red car"); New_Line;
 when Blue => Put("A blue car"); New_Line;
 when Green => Put("A green car"); New_Line;
 end case;
end Main;

Note: As the only possible values that can now be assigned to Car_Colour are either RedD, Blue or
Green, the case statement can be simplified.

Ada introduction: Part 2 51

 M A Smith - May not be reproduced without permission

4.13.1 Enumeration values

As well as symbolic names enumerations may also be character constants. For example, the type Character is
an enumeration made up of the characters in the standard ISO character set.

Thus the type Character is conceptually defined as:

type Character is (nul, soh, -- etc
 ' ', '!', '"', -- etc
 '@', 'A', 'B', 'C', -- etc
);

Note: The package standard contains conceptual definitions of all the pre-defined types. Section C.4,
Appendix C contains a listing of the package Standard.

A programmer can define his/her own enumerations containing characters. For example, the following is an
enumeration type declaration for a binary digit.

 type Binary_Digit is ('0','1');
 B_Digit : Binary_Digit := '0';

4.13.2 The attributes 'Val and 'Pos

The position of a specific enumeration in a type is delivered with the attribute 'Pos whilst the representation of
an enumeration n'th value is delivered by 'Val. These attributes are usefully used on the pre-defined enumeration
Character to deliver respectively the character code for a specific character and the character representing a
value. For example, the following program prints the character code for 'A' and the character representing
character code 99.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
begin
 Put("Character 'A' has internal code ");
 Put(Character'Pos('A')); New_Line;
 Put("Code 99 represents character ");
 Put(Character'Val(99)); New_Line;
end Main;

Which when compiled and run will print:

Character 'A' has internal code 65
Code 99 represents character c

52 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

4.14 The scalar type hierarchy

The types that are used in arithmetic operations are derived from the scalar types, with the only exception of the
enumerated types. Even though they are considered part of the hierarchy, they may not be used in arithmetic
operations. The type hierarchy is illustrated in Figure 4.1.

scalar

discrete

real

enumeration

integer
signed

modular

float

decimal

ordinary
fixed

Numeric types

Figure 4.1 Type hierarchy for the scalar types.

Component Example declaration Note
Scalar

discrete
Enumeration
Integer

Signed
Modular

Real
Fixed

Ordinary
Decimal

Float

type colour is (Red, Green, Blue);
type Miles is range 0 .. 10_000;

type Byte is mod 256;

type Miles is delta 0.1 range 0.0 .. 10.0;
type Miles is delta 0.1 digits 8;
type Miles is digits 8 range 0.0 .. 10.0;

1

2

3

4

Note 1 The enumeration types include the inbuilt types
Character, Wide_Character and Boolean.

Note 2 A modular type implements modular arithmetic. Thus, the following
fragment of code:

type Byte is mod 256;
count : Byte := 255;
begin
 count := count + 1;

would result in count containing 0.

Ada introduction: Part 2 53

 M A Smith - May not be reproduced without permission

Note 3 A fixed point number is effectively composed of two components: the
whole part and the fractional part stored in an integer value. This can
lead to more efficient arithmetic on a machine which does not have
floating point hardware or where the implementation of floating point
arithmetic is slow. It also provides a precise way of dealing with numbers
that have a decimal point.
An alternative notation for a decimal fixed point type is:

type Miles is delta 0.1 digits 8 range 0.0 .. 10.0;
However, even though all compilers must parse this type declaration they
only need to support it if the compiler implements the Information systems
Annex.

Note 4 A floating point number.
An alternative type declaration is:

type Miles is digits 8;
 which defines the precision 8 digits but not the range of values that may
be stored.

4.14.1 The inbuilt types

Ada provides the following inbuilt types.

Type Classification An instance of the type
Boolean Enumeration Holds either True or False.
Character Enumeration Holds a character based on the ISO 8859-1

character set. In which there are 256 distinct
characters.

Float Float Holds numbers which contain a decimal
place.

Integer Integer Holds whole numbers.
Wide_character Enumeration Holds a character based on the ISO 10646

BMP character set. In which there are 65536
distinct characters.

The implementation minimum values for these types are given in Section B.6, Appendix B.

4.15 Arithmetic operators

The arithmetic operators in Ada 95 are:

+ Addition
- Subtraction
* Multiplication
/ Division

The following arithmetic operators are defined on integer values only:

mod Modulus
rem Remainder
abs Returns the absolute value

The operators mod and rem are similar, and will give identical results when both operands have the same sign.
The operator rem gives a remainder corresponding to the integer division operation /. The consequence of this is
that as integer division truncates towards 0, the absolute value of the result will always be the same regardless of

54 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

the sign of the operands. mod meanwhile gives the remainder corresponding to a division with truncation towards
minus infinity.

The following tables illustrate the result of using mod and rem. With both operators an RHS (Right Hand
Side) of 0 will cause the exception Constraint_error to be raised. The resultant exception
Constraint_error is indicated by the message Err in the tables.

mod | -5 -3 0 3 5

 -5 | 0 -2 Err 1 0
 -3 | -3 0 Err 0 2
 0 | 0 0 Err 0 0
 3 | -2 0 Err 0 3
 5 | 0 -1 Err 2 0

rem | -5 -3 0 3 5

 -5 | 0 -2 Err -2 0
 -3 | -3 0 Err 0 -3
 0 | 0 0 Err 0 0
 3 | 3 0 Err 0 3
 5 | 0 2 Err 2 0

The operator abs delivers the absolute value of an interger quamtity.
4.15.1 Exponentiation

The operator ** is used to raise a real or integer value to a whole power, which must be greater or equal to zero.

** Exponentiation

The effect of using ** for different powers of integer values is shown in the table below. The exception
Constraint_error is raised for a negative RHS.

 ** | -3 -1 0 1 3

 -3 | Err Err 1 -3 -27
 -1 | Err Err 1 -1 -1
 0 | Err Err 1 0 0
 1 | Err Err 1 1 1
 3 | Err Err 1 3 27

The implementation of a ** b can be
performed by multiplication in any
order.
Hence a**4 could be implemented as
a*a*a*a or (a*a)**2.

4.15.2 Monadic arithmetic operators

The monadic integer arithmetic operators are as follows:

- Negation
+ Positive form

These deliver the negative and posative of an integer or floating point expression/number.

4.16 Membership operators

The membership operators are:

in is a member of
not in is not a member of

These operators check if a value is a member of a subtype or range. For example, to check if a letter belongs to
the upper case alphabetic characters the following code may be used:

Ada introduction: Part 2 55

 M A Smith - May not be reproduced without permission

if Ch in 'A' .. 'Z' then
 Put("Character is Upper Alphabetic"); New_Line;
end if;

Alternatively, to check if an item is not a member of the upper case alphabetic characters, the code would be:

if Ch not in 'A' .. 'Z' then
 Put("Character is not Upper Alphabetic"); New_Line;
end if;

The membership test can also be used to check if a value is in the range of a subtype. For example:

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 subtype Exam_Mark is Integer range 0 .. 100;
 Mark : Integer;
begin
 Get(Mark);
 if Mark in Exam_Mark then
 Put("Valid mark for exam"); New_Line;
 end if;

end Main;

Note: However, if Exam_mark had been declared as a type then a compile-time error would be generated,
as the type of operands of in are not compatible.

4.17 Use of types and subtypes with membership operator
A program to convert a person's height in inches to metres is shown below:

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Metres_In_Inch : constant Float := 0.0254; --Conversion
 Max_Height : constant Float := 120.0; --
 subtype Metres is Float range 0.0 .. Max_Height*Metres_In_Inch;
 subtype Inches is Float range 0.0 .. Max_Height;
 Height_Inches : Float; --Data
 Height_Metres : Metres; --Converted
begin
 Put("Enter person's height in Inches ");
 Get(Height_Inches); --Get data
 if Height_Inches in Inches then --Sensible
 Height_Metres := Height_Inches * Metres_In_Inch; --Convert
 Put("Height in Metres is ");
 Put(Height_Metres, Exp=>0, Aft=>2); New_Line;
 else
 Put("Height not valid"); New_Line; --Error
 end if;
end main;

In the program, subtypes have been used to help check the consistency of the input data and so that internal
consistency checks can be performed on calculations. The person's height is read into the variable
Height_Inches which is of type Float. Validation against the range of the subtype Inches is then
performed. The height in inches is then converted to metres and assigned to Height_Metres. As

56 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

Height_Metres is of subtype Metres, a range check is performed on the assigned value. No conversion is
required when Height_Metres is output as its type Metres is a subtype of Float.
An example of a user's interaction with the program is shown below:

Enter person's height in Inches 73.0
Height in Metres is 1.85

4.18 Relational operators

The logical comparison operators are:

= equal
/= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

The relational operators are used to establish the truth of a relationship between two values. The result is of type
Boolean. For example:

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Temperature : Integer; --Temperature in Centigrade
 Hot : Boolean; --Is it hot
begin
 Get(Temperature);
 if Temperature > 24 then
 Put("It's warm"); New_Line;
 end if;
 Hot := Temperature > 30;
 if Hot then
 Put("It's hot"); New_Line;
 end if;
end Main;

4.18.1 Boolean operators

Boolean values may be combined with the following operators:

and logical and Note: Both LHS and RHS evaluated
or logical or Note: Both LHS and RHS evaluated
and then logical and Note: RHS only evaluated if LHS TRUE
or else logical or Note: RHS only evaluated if LHS FALSE
xor Exclusive or,

True xor False => True False xor True => True
True xor True => False False xor False => False

Ada introduction: Part 2 57

 M A Smith - May not be reproduced without permission

For example, the following program prints a message on Christmas day.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Month, Day : Integer; --Date
begin
 Get(Day); Get(Month);
 if Day = 25 and Month = 12 then
 Put("Happy Christmas"); New_Line;
 end if;
end Main;

By using and then or or else only the minimal evaluations will be performed to determine the truth of
the Boolean expression. For example, the following two fragments of code are equal in effect:

if Month = 2 and then Day = 29 then
 -- The 29th of February
end if;

if Month = 2 then
 if Day = 29 then
 -- The 29th of February
 end if;
 end if;

Note: The RHS of the condition will only be evaluated if month = 2 is true.
In some cases the correct evaluation of the RHS of an and or or Boolean operator will depend on the
evaluation of the LHS of the operator.

Section B.4.1, Appendix B contains a list of the priority of all the operators.

4.18.2 Monadic Boolean operators

The inverse of a Boolean value is obtained by using the operator:

not not

This delivers the inverse of the Boolean expression or Boolean value. For example:

if not (Month = 2) then
 Put("Not February"); New_Line;
end if;

Note: The brackets are required as = has a lower priority than not.

4.19 Bitwise operators

These are used for operating on modular quantities. Most programs will only occasionally require the use of these
operators.

and bitwise and
or bitwise or
xor bitwise xor
not Inverse of bit pattern

For example, using the declarations:

58 Ada introduction: Part 2

 M A Smith - May not be reproduced without permission

 K : constant := 1024;
 type Word16 is mod 64 * K;
 Pattern : Word16;

the following code:

l sets the top nibble of the two byte word Pattern to zero.

Pattern := Pattern and 16#FFF#;

l sets bit 9 in the two byte word Pattern to 1.

Pattern := Pattern or 2#0000001000000000#;

Note: The constant to base 16 is 16#FFF# and to base 2 is 2#0000001000000000#. Section B.4,
Appendix B describes how to declare constants to different bases.

l Flips bit 9 in the two byte word Pattern . If bit 9 were a 1 it would now be a 0 and if it were a 0 it
would now be a 1.

Pattern := Pattern xor 2#0000001000000000#;

l Inverts the bits in the two byte word Pattern.

Pattern := not Pattern;

4.20 Self-assessment

l Why is it not always appropriate to hold a value using an instance of a Float?

l How in a program can you find out the smallest value that can be stored in an instance of
Long_Integer?

l What are the benefits of user defined types and subtypes in a program?

l Why does the following program fail?

procedure Main is
 type Miles is new Integer range 0 .. 100;
 type Kilometres is new Integer range 0 .. 100;
 London_Brighton : Miles := 50;
 To_Brighton : constant Kilometres := 2;
 Distance_To_London : Miles;
begin
 Distance_To_London := London_Brighton + To_Brighton;
End Main;

l What is the difference between a type and a subtype?

l Why are the concepts of universal integer and universal float important?

l How can you convert a value of one type to that of another?
l Using the type declarations:

Ada introduction: Part 2 59

 M A Smith - May not be reproduced without permission

type Miles is new Integer range 0 .. 10_00;
type Kilometres is range 0 .. 100;

what are the ranges of the following variables:

London_Brighton : Kilometres'Base;
London_New_York : Miles'Base;

l How can the use of enumerations help improve a program's clarity?

4.21 Exercises
Construct the following programs using types and subtypes where appropriate:

l Is prime
A program to say if a number is prime. A prime number is a positive number which is divisible by only
1 and itself.

l Series
A program to print out numbers in the series 1 1 2 3 5 8 13 ... until the last term is greater than 10000.

l Times table general case
Write a program to print a times table for any positive number.

You may wish to use the following approach.
The input procedure get may take its input from a string. The following statement: get(
argument(1), number, last); will convert the number held as characters in the string
‘argument(1)’ into an integer number in the variable number . The argument last denotes the
position in the string of the last character processed.

l Temperature
A program to convert a Fahrenheit temperature to Centigrade. The formula for converting between
Fahrenheit and Centigrade is:

Centigrade temperature = (Fahrenheit temperature - 32)/1.8

l Weight
A program to convert a person's weight input in pounds to kilograms.
Assume that there are 2.2046 pounds in a kilogram.

l Grades
A program to read in a student's name of 20 characters followed by his/her exam mark. The output to be
the student's name followed by grade. For example, marks in the range 10070 get an A grade, 60—69 a
B grade, 50—59 a C grade, 40—49 a D grade and 0—39 an F grade. Thus if the input was:

Andy 74
Bob 46
Charles 56
Dave 67

the output would be:

Andy A
Bob D
Charles C
Dave B

60 Procedures and functions

 M A Smith - May not be reproduced without permission

5 Procedures and functions

This chapter introduces procedures and functions. They allow a programmer the ability to abstract code
into subprogram units that then may be re-used in different parts of a program or even other programs.
This re-use of code, however, is at a very basic level. Other mechanisms, in particular the package, allow a
much greater flexibility in promoting code re-use in programs.

5.1 Introduction

A function or procedure is a grouping together of one or more Ada statements into a subprogram unit, which can
be called and executed from any appropriate part of a program. Functions and procedures allow a programmer a
degree of abstraction in solving a problem. However, related procedures and functions are more powerfully used
when combined with related data items to form a class. The concepts and uses of a class are discussed fully in
Chapter 6.

5.2 Functions

A function is a subprogram unit that transforms its input value or values into a single output value. For example, a
function to convert a distance in miles to Kilometres is shown below:

 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;

 function M_To_K_Fun(M:in Miles) return Kilometres is
 Kilometres_Per_Mile : constant := 1.609_344;
 begin
 return Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Fun;

Note: The function’s parameters may only import data into the function: they may not be used to export
information back to the caller’s environment. Thus, a function is a unit of code that transforms its input
into a new value that is returned to the caller.
As the parameter M can only be used to import data into the function, it may not be written to.

The major components of the above function are illustrated in Figure 5.1.

 function M_To_K_Fun(M:in Miles) return Kilometres is

 Kilometers_Per_Mile : constant := 1.609_344;

 begin

 return Kilometres(M * Kilometers_Per_Mile);

 end M_To_K_Fun;

Formal parameter to function Type of returned result

Returned value

Local variable

Figure 5.1 Major components of a function.

Procedures and functions 61

 M A Smith - May not be reproduced without permission

The function M_To_K_Fun is used in the following program that will print a conversion table for miles to
kilometres. In Ada, a function or procedure may be declared in the declaration section of a procedure or function.
By using this technique, the types for Miles and Kilometres can be made visible to both the function
M_To_K_Fun and the main body of code that implements the printing of the conversion table.

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
procedure Main is
 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;

 function M_To_K_Fun(M:in Miles) return Kilometres is
 Kilometres_Per_Mile : constant := 1.609_344;
 begin
 return Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Fun;

 No_Miles : Miles;

begin
 Put("Miles Kilometres"); New_Line;
 No_Miles := 0.0;
 while No_Miles <= 10.0 loop
 Put(Float(No_Miles), Aft=>2, Exp=>0); Put(" ");
 Put(Float(M_To_K_Fun(No_Miles)), Aft=>2, Exp=>0);
 New_Line;
 No_Miles := No_Miles + 1.0;
 end loop;
end Main;

When compiled, and run the above program will print the following results:

Miles Kilometres
 0.00 0.00
 1.00 1.61
 2.00 3.22
 3.00 4.83
 4.00 6.44
 5.00 8.05
 6.00 9.66
 7.00 11.27
 8.00 12.87
 9.00 14.48
10.00 16.09

5.2.1 Local variables

When a variable is declared inside a function, its lifetime is that of the function. When the function is entered,
space for any local variables is created automatically on a run-time stack. On exit from the function, the space
created for the local variables is returned to the system.

5.2.2 Separate compilation of functions

It is possible to compile the above function separately. However, if this is done the same types for Miles and
Kilometres must be used in both the main program and the function. One way of ensuring this is to use a
package that acts as a container for the types. This package is then made visible to both program units. The
following program illustrates this idea.

Firstly, the package that contains the types Miles and Kilometres is constructed.

62 Procedures and functions

 M A Smith - May not be reproduced without permission

package Pack_Types is
 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;
end Pack_Types;

Then this package is made visible to the function M_To_K_Fun.

with Pack_Types; use Pack_Types;
function M_To_K_Fun(M:in Miles) return Kilometres is
 Kilometres_Per_Mile : constant := 1.609_344;
begin
 return Kilometres(M * Kilometres_Per_Mile);
end M_To_K_Fun;

Finally, in the main procedure in addition to the normal input and output packages the package Pack_Types
and the function M_To_K_Fun are made visible.

with Ada.Text_Io, Ada.Float_Text_Io, Pack_Types, M_To_K_Fun;
use Ada.Text_Io, Ada.Float_Text_Io, Pack_Types;
procedure Main is
 No_Miles : Miles;
begin
 Put("Miles Kilometres"); New_Line; No_Miles := 0.0;
 while No_Miles <= 10.0 loop
 Put(Float(No_Miles), Aft=>2, Exp=>0); Put(" ");
 Put(Float(M_To_K_Fun(No_Miles)), Aft=>2, Exp=>0);
 New_Line; No_Miles := No_Miles + 1.0;
 end loop;
end Main;

Note: It is only required to with the function M_To_K_Fun. It would be an error to use the function
M_To_K_Fun.

5.3 Procedures
A procedure is a program unit that, unlike a function, does not return a result. If information has to be returned to
the calling environment this is done instead by writing to a formal parameter that has been declared as mode out.
Writing to the formal parameter of a procedure updates the value of the actual parameter passed to the procedure.
The full implications of modes of a parameter are discussed in Section 5.5.

 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;
 procedure M_To_K_Proc(M:in Miles; Res:out Kilometres) is
 Kilometres_Per_Mile : constant := 1.609_344;
 begin
 Res := Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Proc;

Note: A procedure can only export values back to the caller’s environment by writing to a parameter that has
mode out or in out.

Procedures and functions 63

 M A Smith - May not be reproduced without permission

The major components of a procedure are illustrated in Figure 5.2.

 procedure M_To_K_Proc(M:in Miles; Res:out Kilometres) is

 Kilometres_Per_Mile : constant := 1.609_344;

 begin
 Res := Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Proc

Formal parameters to procedure

Local variable

Figure 5.2 Components of an Ada procedure.

This procedure may then be used in a program as follows:

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
procedure Main is
 type Miles is digits 8 range 0.0 .. 25_000.0;
 type Kilometres is digits 8 range 0.0 .. 50_000.0;

 procedure M_To_K_Proc(M:in Miles; Res:out Kilometres) is
 Kilometres_Per_Mile : constant := 1.609_344;
 begin
 Res := Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Proc;

 No_Miles : Miles;
 No_Km : Kilometres;

begin
 Put("Miles Kilometres"); New_Line;
 No_Miles := 0.0;
 while No_Miles <= 10.0 loop
 Put(Float(No_Miles), Aft=>2, Exp=>0); Put(" ");
 M_To_K_Proc(No_Miles, No_Km);
 Put(Float(No_Km), Aft=>2, Exp=>0);
 New_Line;
 No_Miles := No_Miles + 1.0;
 end loop;
end Main;

when run, this program would produce the same output as the previous program that used a function to convert
miles to Kilometres.

5.3.1 Separate compilation of procedures

The same strategy as seen in Section 5.2.2 can be used to separately compile a procedure.

64 Procedures and functions

 M A Smith - May not be reproduced without permission

5.4 Formal and actual parameters

In describing the parameter passing mechanism the following terminology is used:

Terminology Commentary
Formal
parameter

The parameter used in the declaration of a function or
procedure. For example, in the function M_To_K_Fun the
formal parameter is M .

Actual
parameter

The object passed to the function or procedure when the
function or procedure is called. For example, in the procedure
M_To_K_Proc the actual parameters are No_Miles and
No_Km. An expression may also be passed as an actual
parameter to a function or procedure, provided the mode of the
formal parameter is not out (See Section 5.5).

In discussing functions and procedures it is important to distinguish between the actual parameter passed to a
function and the formal parameter used in the body of the code of the function or procedure. This relationship is
shown in Figure 5.3.

w i t h Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
p r o c e d u r e Main is
 t y p e Miles is d i g i t s 8 r a n g e 0.0 .. 25_000.0;
 t y p e Kilometres is d i g i t s 8 r a n g e 0.0 .. 50_000.0;

 f u n c t i o n M_To_K_Fun(M:in Miles) r e t u r n Kilometres is
 Kilometres_Per_Mile : c o n s t a n t := 1.609_344;
 b e g i n
 r e t u r n Kilometres(M * Kilometres_Per_Mile);
 end M_To_K_Fun;

 No_Miles : Miles;

b e g i n
 Put("Miles Kilometres"); New_Line;
 No_Miles := 0.0;
 w h i l e No_Miles <= 10.0 l o o p
 Put(Float(No_Miles), Aft=>2, Exp=>0); Put(" ");

 Put(Float(M_To_K_Fun(No_Miles)), Aft=>2, Exp=>0);

 New_Line;
 No_Miles := No_Miles + 1.0;
 end l o o p;
end Main;

Formal parameter to function

Actual parameter to function

Figure 5.3 Formal and actual parameters of a function.

5.5 Modes of a parameter to a function or procedure
In Ada, as in many languages, objects can be passed to a procedure in several different ways depending on how
the object is to be accessed. The simplest and by far the safest mode to use, is in. This allows an object to be
imported into the procedure, but the user is prevented by the compiler from writing to the object.

A procedure can export information to the actual parameter when the formal parameter is described by mode
out. Naturally, for this to happen, the actual parameter’s mode must allow the object to be written to. It must
therefore not be an expression or an object that has a mode of in only.

A function in Ada however, is only allowed to have parameters of mode in. The different ways that a
parameter may be passed to a function or procedure is summarized in the table below:

Procedures and functions 65

 M A Smith - May not be reproduced without permission

Mode Allowed as a
parameter to:

Effect

in a function or a
procedure.

The formal parameter is initialized to the contents of the actual
parameter and may only be read from.

in out only a procedure The formal parameter is initialized to the contents of the actual
parameter and may be read from or written to. When the
procedure is exited, the new value of the formal parameter
replaces the old contents of the actual parameter.

out only a procedure The formal parameter is not initialized to the contents of the
actual parameter and may be read from or written to. When the
procedure is exited, the new value of the formal parameter
replaces the old contents of the actual parameter.
In Ada 83 an out formal parameter may not be read from.

Note: The implementation of the above for simple objects is usually performed by copying the contents of the
object, whilst for large objects the compiler may implement this by using references to the actual
object.

5.5.1 Example of mode in out

A procedure swap which interchanges the contents of the actual parameters passed to it is as follows:

 procedure Swap(First:in out Integer; Second:in out Integer) is
 Temp : Integer;
 begin
 Temp := First;
 First := Second; Second := Temp;
 end Swap;

5.5.2 Putting it all together

The function swap may then be used in a program as follows:

with Ada.Text_Io, Ada.Integer_Text_Io, Swap;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Books_Room_1 : Integer;
 Books_Room_2 : Integer;
begin
 Books_Room_1 := 10; Books_Room_2 := 20;
 Put("Books in room 1 ="); Put(Books_Room_1); New_Line;
 Put("Books in room 2 ="); Put(Books_Room_2); New_Line;
 Put("Swap around"); New_Line;
 Swap(Books_Room_1, Books_Room_2);
 Put("Books in room 1 ="); Put(Books_Room_1); New_Line;
 Put("Books in room 2 ="); Put(Books_Room_2); New_Line;
end Main;

which when run produces:

Books in room 1 = 10
Books in room 2 = 20
Swap around
Books in room 1 = 20
Books in room 2 = 10

66 Procedures and functions

 M A Smith - May not be reproduced without permission

5.5.3 Summary of access to formal parameters

Formal parameter specified by:
(using as an example an
Integer formal parameter)

Write to
formal
parameter
allowed

Read from
formal
parameter

Can be used as a
parameter to

item: Integer r √ procedure or function
item: in Integer r √ procedure or function
item: in out Integer √ √ procedure only
item: out Integer √ √ procedure only

5.6 Recursion

Recursion is the ability of a procedure or function to make a call on itself from within its own code body. Whilst
this initially may seem a strange idea, it can lead to very elegant code sequences that otherwise would require
many more lines of code. In certain exceptional cases recursion is the only way to implement a problem.

An example of a recursive procedure to write a natural number using only character based output is sketched
in outline below:

Write a natural number: (write_natural)
l Split the natural number into two components

(a) The first digit (remainder when number divided by 10)
(b) The other digits (number divided by 10).

For example:
123 would be split into:

3 (first digit)
12 (other digits).

l If the other digits are greater than or equal to 10 then write the other digits by recursively
calling the code to write a decimal number.

l Output the first digit as a character.

The sequence of calls made is

Call Implemented as
write_natural(123) write_natural(12); output first digit 3
write_natural(12) write_natural(1); output first digit 2
write_natural(1) output first digit 1

This process is diagrammatically expressed in Figure 5.4.

21

Initial call

Split
recursive call on 12

Split
recursive call on 1

Split
but no recursive call required Unwind

1

12 3

123

Figure 5.4 Illustration of recursive calls to print the natural number 123.

Procedures and functions 67

 M A Smith - May not be reproduced without permission

The process works by solving a small part of the problem, in this case how to output a single digit, then re-
executing the code to solve the remainder of the problem, that is, to output the other digits. In this particular
example, the recursive call is made before the solution of the remainder of the problem. This still works as the
problem to be solved ‘the number to be output’ is reduced in size in each recursive call.

However, for recursion to work, the code must reduce the problem to be solved before recalling itself
recursively. If this does not take place then endless recursive calls will ensue, which will cause eventual program
failure when the system cannot allocate any more memory to support the recursion. Stack space is used on each
recursive call to store any parameters or local variables plus the function / procedure support information.

5.6.1 The procedure Write_Natural
The procedure write_natural's implementation is shown below:

with Ada.Text_Io; use Ada.Text_Io;
procedure Write_Natural(Num : Natural) is
 First_Digit : Natural; --Unit digit
 Other_Digits : Natural; --All except first digit
begin
 First_Digit := Num rem 10; --Split 1234 => 4
 Other_Digits := Num / 10; -- => 123
 if Num >= 10 then --Print other digits
 Write_Natural(Other_Digits); --Recursive call
 end if;
 Put(Character'Val(First_Digit + Character'Pos('0')));
end Write_Natural;

5.6.2 Putting it all together

The function Write_Natural could be used in a program as follows:

with Ada.Text_Io, Write_Natural;
use Ada.Text_Io;
procedure Main is
begin
 Write_Natural(123); New_Line;
 Write_Natural(12345); New_Line;
end Main;

which when run would produce:

123
12345

5.7 Overloading of functions
Overloading is a process that allows several items providing different facilities to have the same name. The
compiler chooses the appropriate definition to use from the context of its use.

This is best illustrated by an example where the overloaded item is a procedure. Firstly, three different
procedures are defined which each have a different action. The action is to identify and print the contents of their
single parameter.

68 Procedures and functions

 M A Smith - May not be reproduced without permission

with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;
procedure Answer_Is(N:in Integer;
 Message:in Boolean := True) is
begin
 if Message then Put("The answer = "); end if;
 Put(N, Width=>1);
 if Message then New_Line; end if;
end Answer_Is;

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Is_A_Int(An_Int:in Integer) is
begin
 Put("The parameter is an Integer: value = ");
 Put(An_Int, Width=>1); New_Line;
end Is_A_Int;

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
procedure Is_A_Float(A_Float:in Float) is
begin
 Put("The parameter is a Float: value = ");
 Put(A_Float, Aft=>2, Exp=>0); New_Line;
end Is_A_Float;

The individual procedures have unique names so that they can be identified and re-used in a program. This is a
consequence of each procedure being a separate compilation unit. However, Ada allows the renaming of a
procedure or function. By choosing the same name a user can overload a particular name with several different
definitions. For example, a program unit can be written which renames the three different procedure names
(Is_A_Int, Is_A_Float , Is_A_Char) with the same overloaded name Is_A.

with Is_A_Int, Is_A_Float, Is_A_Char;
procedure Main is
 procedure Is_A(The:in Integer) renames Is_A_Int;
 procedure Is_A(The:in Float) renames Is_A_Float;
 procedure Is_A(The:in Character) renames Is_A_Char;
begin
 Is_A('A');
 Is_A(123);
 Is_A(123.45);
end Main;

Note: It is possible to write several functions or procedures with the same name directly by using the package
construct.

When run this program would print the type and value of the argument passed to Is_A.

The parameter is a Character: value = A
The parameter is an Integer: value = 123
The parameter is a Float: value = 123.450

Of course, for this to happen, the actual function called must be different in each case. The name Is_A is
overloaded by three different functions. The binding between the called function and its body is worked out by the
compiler at compile-time using the signature of the different functions that have been overloaded to resolve any
conflicts.

Procedures and functions 69

 M A Smith - May not be reproduced without permission

5.8 Different number of parameters

As the compiler can distinguish between overloaded names, several functions that deliver the maximum or larger
of their parameters can be written. With re-use in mind the first function Max2 can be written which delivers the
maximum of the two Integer parameters passed to it.

function Max2(A,B:in Integer) return Integer is
begin
 if A > B then
 return A; --a is larger
 else
 return B; --b is larger
 end if;
end Max2;

This function Max2 can be re-used in a function Max3 that will deliver the larger of three parameters passed to it.

with Max2;
function Max3(A,B,C:in Integer) return Integer is
begin
 return Max2(Max2(A,B), C);
end Max3;

Then the following code can be written:

with Ada.Text_io, Ada.Integer_Text_Io, Max2, Max3;
use Ada.Text_io, Ada.Integer_Text_Io;
procedure Main is
 function Max(A,B:in Integer) return Integer renames Max2;
 function Max(A,B,C:in Integer) return Integer renames Max3;
begin
 Put("Larger of 2 and 3 is "); Put(Max(2,3)); New_Line;
 Put("Larger of 2 3 4 is "); Put(Max(2,3,4)); New_Line;
end Main;

Note: The use of renames to overload the name Max with 2 distinct function definitions.

which when run produces:

Larger of 2 and 3 is 3
Larger of 2 3 4 is 4

Note: The overloading of names in an Ada program can provide a simpler interface for a programmer.
However, the overuse of overloading can lead to programs that are difficult to maintain and debug.

5.9 Default values and named parameters

If a default value is given to a parameter, then it may be omitted by a programmer when they write the call to the
function or procedure.

For example, the function sum whose four parameters have a default value of zero returns the sum of these
parameters. The procedure Answer_Is prints the first parameter with an additional message when the second
parameter has the default value True.

70 Procedures and functions

 M A Smith - May not be reproduced without permission

function Sum(P1:in Integer := 0;
 P2:in Integer := 0;
 P3:in Integer := 0;
 P4:in Integer := 0) return Integer is
begin
 return P1 + P2 + P3 + P4;
end Sum;

with Ada.Text_Io, Ada.Integer_Text_io;
use Ada.Text_Io, Ada.Integer_Text_io;
procedure Answer_Is(N:in Integer;
 Message:in Boolean := True) is
begin
 if Message then Put("The answer = "); end if;
 Put(N, Width=>1);
 if Message then New_Line; end if;
end Answer_Is;

Note: Formal parameters to the function Sum are given a default value of 0, if a value has not been supplied
by a caller of the function.

Any actual parameter to a function or procedure may be specified either by position or by name. For example, the
second formal parameter to the function Answer_Is can be specified in the following ways:

 Answer_Is(27, True); -- By position
 Answer_Is(27, Message => False); -- By name

Note: If a parameter is specified by name, then all subsequent parameters must be specified by name.

5.9.1 Putting it all together

The procedures sum and Answer_Is can be used in a program as follows:

with Sum, Answer_Is;
procedure Main is
begin
 Answer_Is(Sum);
 Answer_Is(Sum(1, 2));
 Answer_Is(Sum(1, 2, 3));
 Answer_Is(Sum(1, 2, 3, 4), Message => False);
 New_Line;
end Main;

The code that is actually compiled for the procedure Main above is:

with Sum, Answer_Is;
procedure Main is
begin
 Answer_Is(Sum(0, 0, 0, 0), True);
 Answer_Is(Sum(1, 2, 0, 0), True);
 Answer_Is(Sum(1, 2, 3, 0), True);
 Answer_Is(Sum(1, 2, 3, 4), False);
 New_Line;
end Main;

which is more complex for the writer to construct and for a maintainer to follow.

Procedures and functions 71

 M A Smith - May not be reproduced without permission

Note: The syntax Message => False is used for specifying a parameter by name.
The syntax for the call of the function sum when no parameters are specified has no brackets. This can
lead to confusion as a reader of the code would not know from the context if sum was a simple
variable or a function call.

When run the above program produces:

The answer = 0
The answer = 3
The answer = 6
10

Note: Procedures and functions may be nested. The advantage of this approach is that a single program unit
may be decomposed into several smaller units and yet hide the internal decomposition.

5.10 Self-assessment

l From a programming safety point of view, what are the advantages of passing parameters by mode in
rather than by mode in out?

l Why is parameter passing using mode in out required, if values can already be passed back as the
result of a function?

l When might overloading of function names be used?

l What are the disadvantages of overloading names in a program?

l What is the difference between a function and a procedure? Can a procedure which exports several
values through the parameter mechanism be easily made into a function? Explain your answer.

5.11 Exercises

Construct the following subprograms and programs:

l The function What_Is_Char which accepts as a parameter a character and returns its ‘type’ as
defined by the enumeration :
type Char is (Digit, Punctuation, Letter, Other_Ch);

l Using the function What_Is_Char write a program to count the number of digits, letters and
punctuation characters in a text file.

Hint:
Nest the function What_Is_Char inside a procedure that processes input received by the program.

l Write a procedure Order3 which takes three parameters of type Float and re-orders the parameters
into ascending order.

72 Procedures and functions

 M A Smith - May not be reproduced without permission

l Write a program that finds the average of three rainfall readings taken during the last 24 hours. The
program should print the average of the samples plus the readings in ascending order. For example, if
the input data was:
4.0 6.0 5.0
then the program should produce output of the form:
Rainfall average is : 5.00
Data values (sorted) are : 4.00 5.00 6.00

 M A Smith - May not be reproduced without permission

6 Packages as classes

This chapter introduces the package construct. A package is an elegant way of encapsulating code and
data that interact together into a single unit. A package may be used in a variety of ways. This chapter,
however, will promote its use to define classes.

6.1 Introduction
The world in which we live is populated by many devices and machines that make everyday living easier and
more enjoyable. The TV, for instance, is viewed by almost every person in the country, yet few understand
exactly what happens inside ‘the box’. Likewise, there are many millions of motorists who drive regularly and do
not need a detailed knowledge of the workings of a car to make effective use of it.

To many people, their knowledge of a car is as shown in Figure 6.1. The exact details of what happens inside
the car are not important for most day-to-day driving.

In essence the world is populated with many objects which have an interface that allows the humblest of
persons to make effective use of the item. We sometimes criticize the interfaces as being ineffective and difficult
to use, yet in most cases we
would prefer to use the objects as they stand, rather than having to perform the task by other means.
 Likewise in the software world, there are objects that a user or programmer can make effective use of without
having to know how the object has been implemented. On a very simple level an Ada program may declare
objects to hold floating point numbers, which can then be used with arithmetic operations to sum, multiply, etc.
these values. Most programmers however, do not know the exact details of how these operations are performed;
they accept the interface provided by the programming language.

Actions required to drive an
automatic car.

Engine etc.

Brake

Steer

Accelerate

Figure 6.1 Basic understanding of working of an automatic car.

The details of what happens inside the car are not important for most day-to-day driving.
In essence the world is populated with many objects which have an interface that allows the humblest of

persons to make effective use of the item. We sometimes criticize the interfaces as being ineffective and difficult
to use, yet in most cases we would prefer to use the objects as they stand, rather than having to perform the task
by other means.

74 Packages as classes

 M A Smith - May not be reproduced without permission

 Likewise in the software world, there are objects that a user or programmer can make effective use of without
having to know how the object has been implemented. On a very simple level an Ada program may declare
objects to hold floating point numbers, which can then be used with arithmetic operations to sum, multiply, etc.
these values. Most programmers however, do not know the exact details of how these operations are performed;
they accept the interface provided by the programming language.

At one point it was fashionable for programming languages to provide a rich set of data types. The designers
of these languages hoped the data types provided would be adequate for all occasions. The problem was, and still
is, that no one language could ever hope to provide all the different types of item that a programmer may need or
wish to use.

Ada gives a programmer the ability to declare new data types, together with a range of operations that may be
performed on an instance of the type. Naturally, a programmer may also use types and operations on these types
that have been defined by other programmers.

6.2 Objects, messages and methods
A car can be thought of as an object. The car contains complex details and processes that are hidden from the
driver. For example, to make the car go faster the driver presses the accelerator pedal. The car receives the
message ‘go faster’ and evokes an internal method to speed up the engine.

In the above description of driving a car many object-oriented ideas have been used. These ideas are as
follows:

object An item that has a hidden internal structure. The hidden structure
is manipulated or accessed by messages sent by a user.

message A request sent to the object to obey one of its methods.

method A set of actions that manipulates or accesses the internal state of
the object. The detail of these actions is hidden from a user of the
object.

6.3 Objects, messages and methods in Ada
In Ada an object is an instance of either a user-defined type or an instance of one of the in-built types.

An object for a user-defined type can be imagined diagrammatically as Figure 6.2.

Messages sent to an object
which evoke methods that
access the internal hidden
data

Data

Method 2

Method 3

Method 1

Figure 6.2 Diagrammatic representation of an object.

A message is implemented as either a procedure or function call, the body of which is the method that is
evoked when the message is sent to the object. The user of the object has no knowledge of the implementation
code contained in the body of the procedure or function.

Note: The idea of binding code and data together in a unit that does not allow direct access to the data is
often referred to as encapsulation.

Packages as classes 75

 M A Smith - May not be reproduced without permission

6.3.1 An object for a bank account

Before looking in detail at the implementation of an object that represents a bank account, it is appropriate to
consider the messages that might be sent to such an object. For a very simple type of bank account these messages
would be:

l Deposit money into the account.
l Withdraw money from the account.
l Deliver the account balance.

The following program demonstrates the sending of these messages to an instance of an Account.

with Ada.Text_Io, Class_Account, Statement;
use Ada.Text_Io, Class_Account;
procedure Main is
 My_Account: Account;
 Obtain : Money;
begin
 Statement(My_Account);

 Put("Deposit £100.00 into account"); New_Line; --Deposit
 Deposit(My_Account, 100.00);
 Statement(My_Account);

 Put("Withdraw £80.00 from account"); New_Line; --Withdraw
 Withdraw(My_Account, 80.00, Obtain);
 Statement(My_Account);

 Put("Deposit £200.00 into account"); New_Line; --Deposit
 Deposit(My_Account, 200.00);
 Statement(My_Account);

end Main;

Note: The package Class_Account contains:
l The definition of the type Account plus the definition of the operations allowed on an instance of an

Account;
l The subtype Money used to define some of the parameters to messages sent to an instance of

Account.
l The procedure Statement is used to simplify the printing of a mini statement of the balance held in the

account.

The messages sent to an instance of an Account are: Deposit , Withdraw, Balance. For example, to
deposit £100 into My_Account the following procedural notation is used:

 Deposit(My_Account, 100.00);

This should be read as: send the message deposit to the object My_Account with an actual parameter of
100.00.

To withdraw money from the account a programmer would send the message Withdraw to the object
My_Account with two parameters, the amount to withdraw and a variable that is to be filled with the amount
actually withdrawn. The implementation of the method will check that the person has sufficient funds in their
account to allow the transaction to take place. This is written as:

 Withdraw(My_Account, 80.00, obtain);

Note: In reality the method is a normal Ada procedure that is passed as parameters, the object on which the
action is to take place, plus any additional information as successive parameters.

76 Packages as classes

 M A Smith - May not be reproduced without permission

6.3.2 The procedure Statement

The procedure Statement is responsible for printing a mini-statement about the contents of an account. This
procedure is defined as follow:

with Ada.Text_Io, Ada.Float_Text_Io, Class_Account;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Account;
procedure Statement(An_Account:in Account) is
begin
 Put("Mini statement: The amount on deposit is £");
 Put(Balance(An_Account), Aft=>2, Exp=>0);
 New_Line(2);
end Statement;

Note: The use of the method Balance to access the amount of money in the account.

6.3.3 Putting it all together

When compiled with an appropriate package body, the above program unit when run will produce the following
results:

Mini statement: The amount on deposit is £ 0.00

Deposit £100.00 into account
Mini statement: The amount on deposit is £100.00

Withdraw £80.00 from account
Mini statement: The amount on deposit is £20.00

Deposit £200.00 into account
Mini statement: The amount on deposit is £220.00

6.3.4 Components of a package

The package construct in Ada is split into two distinct parts. These parts contain the following object-oriented
components:

Ada package component Object-oriented component
Specification The type used to elaborate the object, plus the

specification of the messages that can be sent to an
instance of the type.

Implementation Implementation of the methods that are evoked when
a message is sent to the object.

6.3.5 Specification of the package

The specification defines what the packages does, but not how it performs the implementation. It is used by the
Ada compiler to check and enforce the correct usage of the package by a programmer.

The specification is split into two distinct parts: a public part and a private part. The public part defines the
messages that may be sent to an instance of an Account, whilst the private part defines the representation of the
type Account.

As the representation of Account is defined in the private part of the specification, a user of an instance of an
Account will not be allowed to access the internal representation. The user however, is allowed to declare and,
depending on the description of the type, assign and compare for equality and inequality. In this case the
description of the type is private and a user is allowed to declare, assign and compare for equality and inequality
instances of Account.

Packages as classes 77

 M A Smith - May not be reproduced without permission

package Class_Account is

 type Account is private;
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;

 procedure Deposit (The:in out Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance (The:in Account) return Money;

private
 type Account is record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
end Class_Account;

The component parts of the specification are illustrated in Figure 6.3.

package Class_Account is

type Account is private;

 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;

 procedure Deposit (The:in out Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance (The:in Account) return Money;

private

 type Account is record
 Balance_Of : Money := 0.00;
 end record;

end Class_Account;

Type used to declare
instance of the class

Types and
subtypes used
in messages

Messages that can be
sent to an instance of an
Account

Hidden representation of the internals of
an instance of an Account

Figure 6.3 Components of the specification part of a package.

The representation of Account (which is defined in the private part) is a subtype of a Float that will have
an initial value of 0.00. An Ada record groups together several type declarations into a single named type. In this
case the record type Account declares a single object called Balance_Of. The record type is more fully
discussed in Section 7.1.

Note: The type Account is defined in the public part of the specification as private. This means that a
user of an instance of the type cannot access the internal contents of the object. Apart from the methods
defined in the public part of the specification the only operations that a user can perform on this object
is to assign it to another instance of an Account or compare two instance of an Account with either
= or /=.

78 Packages as classes

 M A Smith - May not be reproduced without permission

6.3.6 A class diagram showing a class

A class diagram for the class Account using the UML notation is illustrated in Figure 6.4.

Class Diagram Components

Deposit

Withdraw

Balance

Balance_Of

Account The class Account is composed of the instance
variable:

Balance_Of
and the methods:

Deposit, Withdraw, and Balance.

Figure 6.4 Class diagram for the class Account.

6.3.7 Representation of the balance of the account

The package Class_Account represents internally the balance of the account as a subtype of a Float. A
Float is an inexact way of representing numbers, as only the most significant digits of the number will be
stored. Instances of a type declaration of the form type Money is delta 0.01 digits 8; would
provide a more reliable way of holding the balance of the account. However, this would require instantiation of a
specific package for input and output of objects of this type. To simplify the presentation of this package the
representation of the balance of the account is implemented as a subtype of a Float. After reading Chapters 14
and 18 the reader may wish to re-implement this package as a generic package which uses an instantiation of
Ada.Text_Io.Decimal_io.

6.3.8 Implementation of the package

The implementation of the package Class_Account is as follows:

package body Class_Account is

 procedure Deposit (The:in out Account; Amount:in Pmoney) is
 begin
 The.Balance_Of := The.Balance_Of + Amount;
 end Deposit;

 procedure Withdraw(The:in out Account; Amount:in Pmoney;
 Get:out Pmoney) is
 begin
 if The.Balance_Of >= Amount then
 The.Balance_Of := The.Balance_Of - Amount;
 Get := Amount;
 else
 Get := 0.00;
 end if;
 end Withdraw;

 function Balance(The:in Account) return Money is
 begin
 return The.Balance_Of;
 end Balance;

end Class_Account;

Note: The use of the overloaded name Get as a parameter to the procedure Withdraw.

Packages as classes 79

 M A Smith - May not be reproduced without permission

The body of the package contains the definition of the procedures and functions defined in the specification
part of the package. In accessing the Balance_Of contained in an instance of Account the . notation is used.
For example, in the function balance the result returned is obtained using the statement ‘return
The.Balance_Of;’. The . notation is used to access a component of an instance of a record type. In this case,
the instance of the record type is the object The and the component of the object is Balance_Of.

6.3.9 Terminology

The following terminology is used to describe the components of a class.

Terminology Example:
in class Account

Explanation

Instance
attribute

Balance_Of A data component of an object. In Ada this
will be a member of the type that is used to
declare the object.

Instance method
or just method

Deposit A procedure or function used to access the
instance attributes in an object.

Note: The terminology comes from the language Smalltalk.

6.4 The package as seen by a user
A user will normally only have access to the specification part of a package. This provides a specification of the
messages that can be sent to an object but does not show how the methods invoked by the messages have been
implemented. The implementation part will not normally be available, the implementor normally providing only a
compiled version of the package.

Unfortunately the details of the private type will normally be visible, though they cannot be accessed.

Note: The details of the private type can be made invisible to a user, but this involves some complexity. One
approach to this is shown in Section 15.5.

6.5 The package as seen by an implementor
When building a package the implementor should ensure:

l That a user of the package can make effective use of its facilities.
l That the only visible components are:

(a) The messages that can be sent to an object.
(b) The private type declaration that is used to elaborate an object.

The visibility hierarchy for the package Class_Account is shown in Figure 6.5.

Visibility Component is:

Visible to a client
of the package.

-

Invisible to a client
of the package

Balance_Of

Deposit

Withdraw

Balance

Implementation of
procedures and functions

In the public part of the
package specification.

-
In the private part of the
package specification.
-
In the body of the
package.

Figure 6.5 Visibility of methods and instance attributes of the package Class_Account.

80 Packages as classes

 M A Smith - May not be reproduced without permission

6.6 The class

In object-oriented programming one of the important ideas is that of the class. A class is the collective name for
all objects that share the same structure and behaviour. For example, in a program dealing with bank transactions,
all the objects that represent a particular type of bank account would belong to the same class.

The class construct in a programming language is used to define objects that share a common structure and
behaviour. Ada does not have a class construct.

However, Ada’s package construct can be used to simulate the class construct found in other object-oriented
programming languages. For example, a class Account is defined by the following package:

package Class_Account is

 type Account is private;

 procedure Deposit (The:in out Account; Amount:in Pmoney);
 -- Other methods in the class
private
 type Account is record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
end Class_Account;

package body Class_Account is
 -- Implementation of the procedures and functions
end Class_Account;

In defining a class, I use the following conventions:

l The class is defined in terms of a package which has the class name prefixed with Class_.

l The package has a single private type which takes the class name and is used to declare instances of
the class. Hence all instances of the class will share the same structure and behaviour.

l Procedures and functions are used to define the behaviour of the class. The first formal parameter to
the procedure or function is an instance of the class.

l The implementation of the private type is defined as a record type, the components of which define
the structure of the class.

6.7 Clauses with and use

The clauses ‘with Ada.Text_Io; use Ada.Text_Io;’ make available the contents of the package
Ada.Text_Io to the following program unit. The package Ada.Text_Io contains definitions for performing
input and output on character and string objects. The exact effect of these clauses are as follows:

l with Ada.Text_Io;
Make available to the unit all the public components of the package. However, when
components of the package are used in a program they must be prefixed with the package
name.

l use Ada.Text_Io;
Permit public components of the package to be used without having to prefix their name with
that of the package name.

Packages as classes 81

 M A Smith - May not be reproduced without permission

Thus without the use clause, the program to process bank transactions would become:

with Ada.Text_Io, Class_Account, Statement;
procedure Main is
 My_Account: Class_Account.Account;
 Obtain : Class_Account.Money;
begin
 Statement(My_Account);

 Ada.Text_Io.Put("Deposit £100.00 into account");
 Ada.Text_Io.New_Line;
 Class_Account.Deposit(My_Account, 100.00);
 Statement(My_Account);

 Ada.Text_Io.Put("Withdraw £80.00 from account");
 Ada.Text_Io.New_Line;
 Class_Account.Withdraw(My_Account, 80.00, Obtain);
 Statement(My_Account);

 Ada.Text_Io.Put("Deposit £200.00 into account");
 Ada.Text_Io.New_Line;
 Class_Account.Deposit(My_Account, 200.00);
 Statement(My_Account);

end Main;

Note: Some program guidelines will ban the use of a use clause.

6.7.1 To use or not to use the use clause

Using a use clause Not using a use clause

Program writing is simplified.

Confusion may arise as to which
package the item used is a component of.

A program must explicitly state which
package the component is taken from.
This can reduce the possibility of
program error due to accidental misuse.

6.7.2 The package Standard
In Ada the clause ‘with Standard; use Standard;’ is implicitly added to the start of each program unit.
The specification for the package Standard is shown in Appendix C, Section C.4. This package contains
definitions for the operators +, -, *, /, etc. However, the package Standard cannot be directly changed by a
programmer.

6.7.3 Positioning of with and use in a package declaration

Any with and use clauses that appear before a specification of a package are implicitly included for the body of
the package. If components of the with’ed and used packages are only used in the body of a package, then the
clauses with and use need only be specified for the body. For example, if in the class Account only the body
of the package used the package Pack_Useful then it could be written as:

82 Packages as classes

 M A Smith - May not be reproduced without permission

package Class_Account is
 -- rest of specification
end Class_Account;

with Pack_Useful;
use Pack_Useful;
package body Class_Account_Other is
 -- rest of implementation
end Class_Account;

One consequence of this approach is that the user of the package need not know what packages are used by the
implementation code.

6.7.4 Conflict in names in a package

A user may wish to use packages that contain items with the same name. For example, a user of the class
Class_Account also requires to use the class Class_Account_other. In both classes the name of the type
that is used to declare an instance of the class is Account. By prefixing the type name with the package name the
conflict is resolved.

with Class_Account, Class_Account_Other;
use Class_Account, Class_Account_Other;
procedure Main is
 My_Account :Class_Account.Account;
 Other_Account :Class_Account_Other.Account;
begin
 Deposit(My_Account,100.00);--statement in Class_account
 Deposit(My_Account,100.00);--statement in Class_account_other
end Main;

Note: Overload resolution is used to resolve which package the procedure statement is implemented in.

6.8 Mutators and inspectors

The methods in a class can either be inspectors or mutators. The role of each of these methods is illustrated in the
table below:

Method is a Role of method Example from class Account
Inspector Does not change the state of

the object.
Balance

Mutator Changes the state of the
object.

Withdraw
Deposit

Packages as classes 83

 M A Smith - May not be reproduced without permission

6.9 Type private

In the specification of the class Account seen in Section 6.3.4, the type of Account is private. This restricts
a user of an instance of the type to the following operations:

l Elaboration of an instance of the type.
l Assigning an instance of the type to another instance of the type.
l Comparing instances of the type for equality or inequality.
l Passing an instance of the type to a procedure of function.

A user of the type is prevented from reading or changing the internal contents other than by the actions of
methods in the class.

6.9.1 Type limited private

A user can be further restricted in the operations that they can perform on an instance of Account by declaring it
as limited private. This removes the user’s ability to assign or compare an instance of the type by default.
Naturally if in the class Account the comparison operations for equality or inequality are provided, then these
definitions will be used and will override the restriction. For example, if in the class Account the type Account
were defined as limited private, a user of an instance of an Account would be prevented from writing
the following:

with Class_Account;
use Class_Account;
procedure Main is
 My_Account : Account;
 Other_Account: Account;
 Obtain : Pmoney;
begin
 Deposit(My_Account, 100.00);
 Other_Account := My_Account; --Copy and
 Withdraw(Other_Account, 100.00, Obtain);--Withdraw 100.00

 Other_Account := My_Account; --Copy again and
 Withdraw(Other_Account, 100.00, Obtain);--Withdraw 100.00
end Main;

If Account in the class Account had been made limited private, its specifications would be:

package Class_Account is

 type Account is limited private;

 -- Methods (functions and procedures)

private
 type Account is limited record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
end Class_Account;

Note: The record declaration in the private part of the class is also of limited type.
In Ada 83 the use of limited in:

type Account is limited record
is not allowed.

84 Packages as classes

 M A Smith - May not be reproduced without permission

The more traditional reason for making a type limited is that a copy operation will not produce the expected
result for an instance of the type. Chapter 16 describes such a type that is built using dynamic storage.

The table below summarizes the allowable uses of private and limited private types .

Operation involving private limited private
Assignment √ r
Comparison using = and /= by default √ r
Parameter passing √ √ (see note)

Note: To pass an object as a parameter, a copy is not necessarily made.

6.10 Initializing an object at declaration time

In Ada it is possible to initialize an object when it is declared, although unfortunately there are restrictions to this
initialization. Essentially there are two strategies that can be employed. These strategies are:

l Use a discriminant to specify an initial value. The use of discriminants is fully covered in Section 7.4.

l Use an assignment statement to set the object to a specific value.

For example, the following modified class Account uses both these approaches to initialize an object on
declaration.

package Class_Account is
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;
 type Account(Number: Natural:= 0) is private;

 procedure Statement(The:in Account);
 procedure Deposit (The:in out Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance (The:in Account) return Money;
 procedure New_Number(The: in out Account; N:in Natural);
 function New_Account(N:in Natural;
 Amount:in Pmoney:=0.0) return Account;
private
 type Account(Number: Natural:= 0) is record
 Balance_Of : Float := 0.00;
 end record;
end Class_Account;

6.10.1 By discriminant

Here a type can be given a discriminant so that a whole family of types may be declared. The discriminant value is
held in an instance of the type. Section 7.4 describes in more detail the use of discriminants.

For example, to set My_Account with a specific account number the following code is written:

with Class_Account, Statement;
use Class_Account;
procedure Main is
 My_Account: Account(10001);
begin
 Deposit(My_Account, 200.00);
 Statement(My_Account);
 New_Number(My_Account, 10002);
 Statement(My_Account);
end Main;

Note: The discriminant value 10001 in the declaration of an instance of Account.
The use of the procedure Statement defined above.

Packages as classes 85

 M A Smith - May not be reproduced without permission

which when run, will produce:

Mini statement: Account £ 10001
The amount on deposit is £200.00

Mini statement: Account £ 10002
The amount on deposit is £200.00

6.10.2 Restrictions

The following restrictions apply, however:

l Only discrete objects or access values may be used as the discriminant value. If an access value is used
then the type must be limited.

l To change the discriminant value the whole record structure must be changed.

Thus the implementation of the procedure New_Number that allocates a new account number is:

 procedure New_Number(The: in out Account; N:in Natural) is
 begin
 The := Account'(N, The.Balance_Of);
 end New_Number;

Note: The whole record structure needs to be changed to change the discriminant. Chapter 7 discusses
record initialization in more detail.

6.10.3 By assignment

In this case the object is assigned an initial value when it is declared. For example, the following code sets
My_Account with an account number and initial balance:

with Class_Account, Statement;
use Class_Account;
procedure Main is
 My_Account : Account := New_Account(10001, 20.0);
begin
 Statement(My_Account);
end Mai3;

which when run, will produce:

Mini statement: Account £ 10001
The amount on deposit is £20.00

86 Packages as classes

 M A Smith - May not be reproduced without permission

6.10.4 Restrictions

The following restrictions apply, however.

l As an assignment is used, the type may not be limited.

l The effect of the assignment statement may have undesirable consequences. For an explanation of
these consequences, see Section 17.4.

6.11 A personal account manager

One of the applications on a PDA (Personal Digital Assistant) is a PAM (Personal Account Manager). The PAM
provides facilities for recording the transactions that take place on the user’s bank account. An example of the use
of the PAM is shown below:

[a] Deposit

[b] Withdraw

[c] Balance

Input selection: a

Amount to deposit : 10.00

[a] Deposit

[b] Withdraw

[c] Balance

Input selection: b
Amount to withdraw : 4.60

[a] Deposit

[b] Withdraw

[c] Balance

Input selection: c

Balance is 5. 40

The program can be constructed using two classes: Account shown in Section 6.3.4 and a new class TUI that
will implement the text interface. The responsibilities of the class TUI are:

Method Responsibility
Menu Set up the menu that will be displayed to the user. Each menu

item is described by a string.
Event Return the menu item selected by a user of the TUI.
Message Display a message to the user.
Dialog Solicit a response from the user.

Packages as classes 87

 M A Smith - May not be reproduced without permission

The Ada specification of the class TUI is:

package Class_TUI is

 type Menu_Item is (M_1, M_2, M_3, M_4, M_Quit);
 type TUI is private;

 procedure Menu(The:in out TUI; M1,M2,M3,M4:in String);
 function Event(The:in TUI) return Menu_Item;
 procedure Message(The:in TUI; Mes:in String);
 procedure Dialog(The:in TUI; Mes:in String; Res:out Float);
 procedure Dialog(The:in TUI; Mes:in String; Res:out Integer);
private
 -- Not a concern of the client of the class
end Class_TUI;

For example, if an instance of the TUI had been declared with:

Screen : TUI;

then, to setup the menu system:

[a] Print
[b] Calculate

Input selection:

the following code sequence would be used:

Menu(Screen, "Print", "Calculate", "", "");

Note: Null or empty menu items are not displayed.
A string may be of any length. However, to store a string the receiving object must be of the correct
size. Ada strings are fully discussed in Section 8.8.

The user’s response to this menu is elicited with the function event. The function event returns an
enumeration representing the menu item selected. For example, if the user selected option [b] then the code:

 case Event(Screen) is
 when M_1 => --Print
 when M_2 => --Calculate

associated with label M_2 would be obeyed.

Note: The selected menu item is indicated by an enumeration M_1 for menu item 1, M_2 for menu item 2, etc.

A programmer can display a message onto the TUI by using the procedure message which has the text to be
output as its second parameter. Likewise, a programmer can initiate a dialog with the user by using the procedure
dialog that returns a floating point number. The TUI currently only supports dialogs that solicit a floating point
number or integer number.

The fragment of code below illustrates the use of message and dialog interactions in a program which converts
miles to kilometres.

 Message(Screen, "Distance converter");
 Dialog (Screen, "Enter distance in miles", Miles);
 Message(Screen, "Distance in Kilometres is " &
 Float'Image(Miles * 1.6093));

Note: The operator & concatenates two strings into a single string. For example, "Hello" & " " &
"world" delivers the single string "Hello world".

88 Packages as classes

 M A Smith - May not be reproduced without permission

In constructing the main program for the personnel account manager, a nested function float_image is
used to simplify the construction of the program.

with Ada.Float_Text_Io, Class_Account, Class_TUI;
use Ada.Float_Text_Io, Class_Account, Class_TUI;
procedure Main is
 User : Account; --The users account
 Screen : TUI; --The display screen
 Cash : Money; --
 Received : Money; --

The nested function Float_Image converts a floating point number into an Ada string. This function is
provided so that the format of the number may be controlled.

 function Float_Image(F:in Float) return String is
 Res : String(1 .. 10); --String of 10 characters
 begin
 Put(Res, F, 2, 0); --2 digits - NO exp
 return Res;
 end Float_Image;

Note: The declaration of a string of 10 characters is filled with the character representation for the floating
point number res.
The procedure ‘Put(res, f, aft=>2, exp=>0);’ converts a floating point number into a
string.

Packages as classes 89

 M A Smith - May not be reproduced without permission

The main body of the program processes the option selected by the user.

begin
 loop
 Menu(Screen, "Deposit", "Withdraw", "Balance", "");
 case Event(Screen) is
 when M_1 => --Deposit
 Dialog(Screen, "Amount to deposit", Cash);
 if Cash <= 0.0 then
 Message(Screen, "Must be >= 0.00");
 else
 Deposit(User, Cash);
 end if;
 when M_2 => --Withdraw
 Dialog(Screen, "Amount to withdraw", Cash);
 if Cash <= 0.0 then
 Message(Screen, "Must be >= 0.00");
 else
 Withdraw(User, Cash, Received);
 if Received <= 0.0 then
 Message(Screen, "Not enough money");
 end if;
 end if;
 when M_3 => --Balance
 Message(Screen, "Balance is " &
 Float_Image(Balance(User)));
 when M_Quit => --Exit
 return;
 when others => --Not used
 Message(Screen, "Program error"); --oops
 end case;
 end loop;
end Main;

6.12 Class TUI

The full specification for the class TUI is:

package Class_TUI is

 type Menu_Item is (M_1, M_2, M_3, M_4, M_Quit);
 type TUI is private;

 procedure Menu(The:in out TUI; M1,M2,M3,M4:in String);
 function Event(The:in TUI) return Menu_Item;
 procedure Message(The:in TUI; Mes:in String);
 procedure Dialog(The:in TUI; Mes:in String; Res:out Float);
 procedure Dialog(The:in TUI; Mes:in String; Res:out Integer);
private
 type TUI is record
 Selection : Menu_Item := M_Quit;
 end record;
end Class_TUI;

In the implementation of the class TUI the most complex method is menu. This method is implemented as a
procedure that writes out the menu for the TUI and reads the user’s response. It will only complete when a valid
response has been received from the user. In the implementation of the procedure the technique of procedural
decomposition is used to simplify the code.

In procedural decomposition, a large body of code is split into several procedures or functions. This helps to
reduce complexity making construction and maintenance easier.

90 Packages as classes

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Float_Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io, Ada.Integer_Text_Io;
package body Class_TUI is
 procedure Menu(The:in out TUI; M1,M2,M3,M4:in String) is

 Selection : Character;
 Valid_Response : Boolean := False;

As a user may inadvertently select a null menu item, the procedure Set_Response is used to disallow such
an action.

 procedure Set_Response(Choice:in Menu_Item; Mes:in String) is
 begin
 if Mes /= "" then --Allowable choice
 The.Selection := Choice; Valid_Response := True;
 end if;
 end Set_Response;

The procedure Display_Menu_Item displays onto the TUI only non null menu items.

 procedure Display_Menu_Item(Prompt, Name:in String) is
 begin
 if Name/="" then
 Put(Prompt & Name); New_Line(2);
 end if;
 end Display_Menu_Item;

The main body of the procedure displays the menu on the screen and receives the selected menu choice from
the user. If an invalid response is received the menu is re-displayed and the user is asked again to select a menu
item.

 begin -- Menu
 while not Valid_Response loop
 Display_Menu_Item("[a] ", M1);
 Display_Menu_Item("[b] ", M2);
 Display_Menu_Item("[c] ", M3);
 Display_Menu_Item("[d] ", M4);
 Put("Input selection: "); Get(Selection); Skip_Line;
 case Selection is
 when 'a' | 'A' => Set_Response(M_1, M1);
 when 'b' | 'B' => Set_Response(M_2, M2);
 when 'c' | 'C' => Set_Response(M_3, M3);
 when 'd' | 'D' => Set_Response(M_4, M4);
 when 'e' | 'E' => Set_Response(M_Quit, "Quit");
 when others => Valid_Response := False;
 end case;
 if not Valid_Response then
 Message(The, "Invalid response");
 end if;
 end loop;
 end Menu;

The function Event returns the user’s selection.

 function Event(The:in TUI) return Menu_Item is
 begin
 return The.Selection;
 end;

Packages as classes 91

 M A Smith - May not be reproduced without permission

The procedure Message writes a string onto the screen.

 procedure Message(The:in TUI; Mes:in String) is
 begin
 New_Line; Put(Mes); New_Line;
 end Message;

The procedure Dialog solicits a response from the user.

procedure Dialog(The:in TUI; Mes:in String; Res:out Float) is
 begin
 New_Line(1); Put(Mes & " : ");
 Get(Res); Skip_Line;
 end Dialog;

 procedure Dialog(The:in TUI; Mes:in String; Res:out Integer) is
 begin
 New_Line(1); Put(Mes & " : ");
 Get(Res); Skip_Line;
 end Dialog;

end Class_TUI;

Note: In this case the response must be a floating point number or an integer number. Other overloaded
procedures can be provided for different forms of dialog.

6.13 Self-assessment

l Why should a program be split into many packages?

l What is a class?

l How do you declare an instance of a class in Ada?

l What is the difference between the declaration of a class and the declaration of an instance of that
class?

l When an instance of a class is declared, what happens?

l What is contained in a class?

l How can a user of a class request the execution of a method/function in that class?

l What are the advantages of holding data and the code that operates on the data together?

l Should a function in a class be private? Explain your answer.

l Should a data item in a class be public? Explain your answer.

l How should an implementor of a class allow access to instance attributes contained in an object?

92 Packages as classes

 M A Smith - May not be reproduced without permission

6.14 Exercises

Construct the following classes:

l Account_with_overdraft
Construct a class which represents an account on which a customer is allowed to go overdrawn. You
should restrict the amount the customer is allowed to go overdrawn. The methods of this class are:

Method Responsibility
Balance Deliver the balance of the account.
Deposit Deposit money into the account
Set_Overdraft_Limit Set the overdraft limit.
Statement Print a statement of the current balance of

the account.
Withdraw Withdraw money from the account.

l Cinema Performance Attendance
A class Performance, an instance of which represents the seats at a particular showing of a film, has
the following methods:

Method Responsibility
Book_seats Book n seats at the performance.
Cancel Unbook n seats.
Sales Return the value of the seats sold at this

performance.
Seats_Free Return the number of seats that are still

unsold.

Thus on an instance of Performance the following actions can be performed:

l Book a number of seats
l Find out the number of unsold seats at the performance
l Cancel the booking for n seats.
l Return the value of the seats sold at this performance.

l Library Book
A class to represent a book in a library, such that the following operations can be processed:

(a) Loan the book.

(b) Mark the book as being reserved. Only one outstanding reservation is allowed on a book.

(c) Ask if a book can be loaned. A book can only be loaned if it is not already on loan or is not
reserved.

(d) Return the book.

Packages as classes 93

 M A Smith - May not be reproduced without permission

Construct the following program:

l Cinema
A program to deal with the day-to-day administration of bookings for a cinema for a single day. Each
day there are three separate performances: an early afternoon performance at 1pm, an early evening
performance at 5pm and the main performance at 8.30pm.

The program should be able to handle the booking of cinema seats for any of these three performances
and supply details about the remaining seats for a particular performance.

Hints:
l Use the class TUI.
l Use three instances of the class Performance.
l Use a case statement.
l Use a procedure to process transactions on a particular performance.

 M A Smith - May not be reproduced without permission

7 Data structures

This chapter explores the use of data structures. A data structure is used to hold a collection of related data
items. This is implemented Ada with the construct record. However, data structures are a low-level
construct and in many instances, the use of a class will enable better quality code to be produced. As was
seen in the previous chapter a record is used to hold the hidden instance attributes in a class.

7.1 The record structure

In the construction of a program it is convenient to group like data items together. For example, details about a
person may consist of:

l The person’s name.
l Their height in centimetres.
l Their sex.

The record structure can be used to group these three distinct data items together into a new type called
Person. For example, the above description of a Person can be defined as follows:

 Max_Chs : constant := 10;
 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 end record;

Then an instance of a Person can be declared using the declaration:

 Mike : Person;

This is similar to a class declaration as seen in the previous chapter. However, all the members of the data
structure are visible to a user of the object Mike.

7.2 Operations on a data structure
The . notation is used to access individual members of a data structure. For example, to set up a description of the
person mike, the following code can be used.

 Mike.Name := "Mike ";
 Mike.Height := 183;
 Mike.Sex := Male;

Data structures 95

 M A Smith - May not be reproduced without permission

This initialization can be more elegantly expressed using a record aggregate which is then assigned to the
object mike.

 Mike := (Name=> "Mike ", Height=> 183, Sex=> Male);

Note: The construct:
(name => "Mike ", height => 183, sex => Male)
is a record aggregate.

The record aggregate can also be defined using the absolute position of the arguments or a mixture of absolute
and named arguments. For example, the following three assignments are all equal in effect.

 Corinna := ("Corinna ", 171, Female);
 Corinna := (Name=> "Corinna ", Sex=> Female, Height=> 171);
 Corinna := ("Corinna ", Sex=> Female, Height=> 171);

Note: A record aggregate must have all its components specified even if some components have default
values. Once a named parameter in an aggregate has been used, all parameters to the right must also
be named.
If there is only one member of the record aggregate then it must still be enclosed in brackets.

A data structure may be compared for equality or assigned. For example, using the declarations:

 Corinna, Mike, Miranda : Person;
 Taller : Person;

the following code can be written:

 Mike := (Name=>"Mike ", Height=>183, Sex=>Male);
 Corinna:= (Name=>"Corinna ", Height=>171, Sex=>Female);
 Miranda:= (Name=>"Miranda ", Height=>74, Sex=>Female);

 Taller := Mike;

 if mike = Taller then
 Put("Mike taller"); New_Line;
 end if;
 if Mike /= Taller and Corinna /= Taller then
 Put("Miranda taller"); New_Line;
 end if;

7.2.1 Other operations allowed on data structures

Chapter 12 describes how new meanings for the inbuilt operators in Ada can be defined. Using these techniques to
define an additional meaning for > between instances of a Person would allow the following to be written:

 if Mike > Corinna then
 Put("Mike taller"); New_Line;
 else
 Put("Corinna taller"); New_Line;
 end if;

96 Data structures

 M A Smith - May not be reproduced without permission

7.3 Nested record structures

A data structure declaration may be nested as in the following record declaration for a bus:

 type Bus is record
 Driver : Person; --Bus driver
 Seats : Positive; --Number of seats on bus
 end record;

 London : Bus;

Individual components are accessed using the . notation as follows:

 London.Driver.Name := "Jane ";
 London.Driver.Sex := Female;
 London.Driver.Height := 168;
 London.Seats := 46;

Note: The repeated . is used to access first the Driver and then the data members Name , Sex and
Height.

However, a record aggregate may also be used as shown below:

 London := (("Jane ", 168, Female), 46);

7.4 Discriminants to records

A record type may have a parameter (discriminant) whose value may be an instance of a discrete type or access
type. Access types are fully described in Chapter 15. For example, the data structure for a person can be defined
with a discriminant which specifies the number of characters for the String. This new definition for a Person
is shown below:

 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 subtype Str_Range is Natural range 0 .. 20;
 type Person(Chs: Str_Range) is record --Name length
 Name : String(1 .. Chs); --As String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender
 end record;

Note: The discriminant is a component of the record.

In the declaration of an instance of a Person the length of the String used for a person’s name is specified
after the type name as follows:

 Mike : Person(4); --Constrained
 Corinna: Person(7); --Constrained
 Younger: Person(10); --Constrained

Data structures 97

 M A Smith - May not be reproduced without permission

Then an assignment to an instance of Person is:

 Mike := (4, Name=>"Mike" , Height=>183, Sex=>Male);
 Corinna:= (7, Name=>"Corinna", Height=>171, Sex=>Female);

Note: The value of the discriminant must be specified in the record aggregate.

However, Mike, Corinna and Younger are not of the same type so the assignment:

 Younger := Corinna; -- Fail at run-time

will fail at run-time as the discriminants of the record are not identical. The object Younger contains a String
of length of 10 whilst the object Corinna contains a String of length 7.

7.5 Default values to a discriminant
A discriminant to a type may have a default value. If a value is not specified with the declaration of a
discriminated type then it is an unconstrained discriminated type. An instance of an unconstrained discriminated
type may be assigned or compared with other unconstrained discriminants of the same type name.

For example, if the data structure Person is now defined as:

 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 subtype Str_Range is Natural range 0 .. 20;
 type Person(Chs:Str_Range := 0) is record --Length of name
 Name : String(1 .. Chs); --Name as String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender
 end record;

then the following code can be written:

 declare
 Mike : Person; --Unconstrained
 Corinna: Person; --Unconstrained
 Younger: Person; --Unconstrained
 begin
 Mike := (4, Name=>"Mike" , Height=>183, Sex=>Male);
 Corinna:= (7, Name=>"Corinna", Height=>171, Sex=>Female);
 Younger := Corinna;

 if Corinna = Younger then
 Put("Corinna is younger"); New_Line;
 end if;
 end;

Note: It would still be an error to write:
 Corinna:=(10,name=>"Corinna",height=>171,sex=>Female);

as the length of "Corinna" is not 10 characters.

98 Data structures

 M A Smith - May not be reproduced without permission

7.5.1 Constrained vs. unconstrained discriminants

Using the last definition of type Person:

Declaration The object Mike is Comment
Mike: Person; Unconstrained The variable Mike may be

compared with or assigned any
other instance of Person.

Mike: Person(4); Constrained May only be assigned or
compared with another
Person(4).

7.5.2 Restrictions on a discriminant

A discriminant must be a discrete type or access type. If it is an access type then the record must be limited. This
unfortunately means that a Float cannot be used as a discriminant to a record.

7.6 Variant records
There will be occasions when a data structure contains data items that are mutually exclusive. For example, in a
description of a person who may be a Lecturer or a Student the data members are:

Data member Belongs to Description
Name Both a Lecturer

and a Student
The name of the person.

Class_Size Lecturer The size of the group that the lecturer
teaches.

Full_Time

Grade

Student Whether or not the student is full-time or
part-time.
The mark out of 100 that the student
gains at the end of the course.

In this example the storage for Class_Size can overlay all or part of the storage for Full_Time and
Grade as the components:

l Class_Size
l Full_Time and Grade

 of the data structure will not be used simultaneously.

This can be visualized as:

role -> Student Name Full_Time grade
role -> Lecturer Name Class_Size

Data structures 99

 M A Smith - May not be reproduced without permission

In Ada a variant record allows two or more data items to occupy the same physical storage. This will result in
a lower memory usage for the data in a program. However, access to the variant components must be carefully
controlled to prevent information being stored or extracted as the wrong type. For example, if the record
represents a lecturer then it should not be possible to access the component Full_Time as this is only present
when the record represents a student. Ada with its strict typing will prevent such occurrences.

The data structure to represent either a lecturer or a student is defined as:

 type Occupation is (Lecturer, Student);
 type Mark is range 0 .. 100;
 subtype Str_Range is Natural range 0 .. 20;
 type Person(Chs : Str_Range :=0;
 Role: Occupation:=Student) is record
 Name : String(1 .. Chs); --Name as string
 case Role is --Variant record
 when Lecturer => -- Remember storage overlaid
 Class_Size: Positive; --Size of taught class
 when Student =>
 Grade : Mark; --Mark for course
 Full_Time : Boolean := True; --Attendance mode
 end case;
 end record;

Note: If one discriminant item is given a default value than all discriminant items that follow must also be
given a default value.

Using the above declaration of Person allows the following assignments to be made:

declare
 Mike : Person; --Unconstrained
 Clive: Person; --Unconstrained
 Brian: Person(5,Student); --Constrained
begin
 Mike :=(4, Lecturer, Name=>"Mike", Class_Size=>36);
 Clive:=(5, Student, Name=>"Clive", Grade=>70,Full_Time=>True);
 -- insert --
end;

In Ada, this process is safe as the compiler will check and disallow access to a variant part which is not
specified by the discriminant. For example, if the following statements were inserted at the point -- insert -
- above, they would be flagged as invalid at either compile-time or run-time.

Invalid statement Reason
Clive.Role:= STUDENT Not allowed to change just a discriminant as this

would allow data to be modified/extracted as the
wrong type.
Detectable at compile-time.

Mike.Grade:= 0 Access to a component of the data structure
which is not active. Mike is a lecturer and hence
has no grade score.
Detected at run-time.

Brian := (5, Lecturer,
 Name=>"Brian",
 Class_Size=>36);

The object Brian is constrained to be a student.
Detectable at compile-time.

100 Data structures

 M A Smith - May not be reproduced without permission

7.7 Limited records

If a record is limited then the compiler will prevent assignment and comparison of an instance of the record. For
example, with the declaration:

 type Person is limited record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 end record;

 Mike : Person;
 Corinna: Person;

The following code will fail to compile:

 Mike := Corinna; --Fails to compile as record is limited

 if Corinna = Mike then --Fails to compile as record is limited
 Put("This is strange"); New_Line;
 end if;

7.8 Data structure vs. class

The table below summarizes the differences between a class and a data structure.

Data structure Class
A user of the construct can directly access
and change the internal structure.

√ r

Can be used where a normal type can be
used.

√ √

Code to manipulate the data encapsulated
with the construct.

r √

Representation of the data items is hidden
from the user.

r √

Thus to provide data hiding, a class must be used.

7.9 Self-assessment

l Explain how you can access an individual component of a record.

l What are the major differences between a class and an Ada record?

l Is the use of variant records safe in Ada? Explain your answer.

l What is the difference between an unconstrained and a constrained record declaration?

Data structures 101

 M A Smith - May not be reproduced without permission

7.10 Exercises

Construct the following:

l An Ada record to describe the computer you are using. This should include for example: the amount of
main memory, the amount of cache memory, the amount of disk space.

You may need a coding scheme for the size of memory components, as in the case of disk space this can
be a very large number.

l Generalize this record so that it can hold details about many different types of computer. Include a
variant part to allow for the following different types:

l A computer used for word processing, with no network devices or multimedia components.
l A mu ltimedia computer with sound and video capability.
l A workstation with a network and file server connections.

 M A Smith - May not be reproduced without permission

8 Arrays

This chapter introduces arrays that implement a collection facility for objects. With this facility, objects
are stored and retrieved using an index of a discrete type.

8.1 Arrays as container objects
An array is a collection of objects that can be accessed using an instance of a discrete type. For example, the
number of computer terminals in five rooms could be described with the following declaration:

Computers_In_Room : array (1 .. 5) of Natural;

Note: Computers_In_Room is a collection of Natural numbers and the integer numbers 1 through 5
are used to select a particular object in this collection.
The compiler will check that the subscript is valid. If it cannot be checked directly, code should be
inserted which will perform the check at run-time. The exception Constraint_error is raised if
the index is out of bounds.

The number of terminals in each room can be recorded in the collection Computers_In_Room by using an
array index to select a particular computer room. For example, to set the number of computers in room 1 to 20, 2
to 30, 3 to 25, 4 to 10 and 5 to 15, the following code can be used:

 Computers_In_Room(1) := 20;
 Computers_In_Room(2) := 30;
 Computers_In_Room(3) := 25;
 Computers_In_Room(4) := 10;
 Computers_In_Room(5) := 15;

This can be visualized diagrammatically as shown in Figure 8.1.

1 2 3 4 5

20 30 25 10 15

Index used to access contents of collection
computers_In_Room

Figure 8.1 Diagrammatic representation of an array.

Once information about the number of computers in each room has been set up, it can be printed with the
following code:

 for I in 1 .. 5 loop
 Put("Computers in room "); Put(I, Width=>1); Put(" is ");
 Put(Computers_In_Room(I), Width=>2); New_Line;
 end loop;

Arrays 103

 M A Smith - May not be reproduced without permission

which when combined with appropriate declarations and run, would produce the following results:

Computers in room 1 is 20
Computers in room 2 is 30
Computers in room 3 is 25
Computers in room 4 is 10
Computers in room 5 is 15

In the example above, any Integer object can be used as an index to the array. This freedom may lead to
program errors when a value other than the intended subscript is used. Unfortunately such an error would not be
detected until run-time. To allow Ada to perform strict type checking so that such an error may be caught at
compile-time, a separate type for the bounds of the array can be defined. This is achieved by defining a range type
that is then used to describe the bounds of the array. For example, the previous object Computers_In_Room
could have been defined as:

type Rooms_Index is range 1 .. 5;
type Rooms_Array is array (Rooms_Index) of Natural;

Computers_In_Room : Rooms_Array;

In the declaration the following types and subtypes have been defined:

Type / Subtype Description
Rooms_index A type used to define an object that is used to index

the array.
Rooms_array A type representing the array.

The range of elements in the array is defined by Rooms_Index or Rooms_Array'Range . In Ada the
attribute 'Range gives the bounds of an array object or array type. For example, using the above declarations, the
attribute 'Range would have the following values.

Attribute Description Value
Rooms_array'Range Equivalent to the range

Rooms_array'First ..
Rooms_array'Last

1 ..
5

Computers_In_Room'Range As above

Note: The type of the elements of the range will of course be Rooms_Index.

Using the above types and subtypes, the for loop which prints the number of computers in each room would
now become:

 Computers_In_Room : Rooms_array;

 -- Set up contents of Computers_In_Room

 for I in Computers_In_Room'Range loop
 Put("Computers in room "); Put(Integer(I), Width=>1);
 Put(" is "); Put(Computers_In_Room(I), Width=>2); New_Line;
 end loop;

Note: As the index i to the for loop is now of type Rooms_range it must be converted to an Integer
before it can be output using the procedure Put. Mechanisms to output objects of different discrete
types will be explored later in Chapter 18.

104 Arrays

 M A Smith - May not be reproduced without permission

A compile-time error message will be generated if the programmer incorrectly uses the above mechanism to
index the array, for example, when using an object which is neither of type Room_index nor a subtype of
Room_index.

8.2 Attributes of an array

As arrays in Ada are self-describing, various attributes can be extracted from an instance of an array. For example,
with the following declarations for the array Marks :

 type Marks_Index is new Character range 'a' .. 'f';
 type Marks_Array is array (Marks_Index) of Natural;
 Marks : Marks_Array;

a number of attributes can be extracted:

Attribute Description Value
Marks'Length A Universal integer representing the number of

elements in the one dimensional array.
6

Marks'First The first subscript of the array which is of type
Marks_Range

'a'

Marks'Last The last subscript of the array which is of type
Marks_Range

'f'

Marks'Range Equivalent to
Marks'First .. Marks'Last

'a'..'f'

Note: This would also be true for Marks_Array'Length etc.

A fuller description of the attributes that can be extracted from an object or type are given in Section B.2,
Appendix B.

8.3 A histogram
A program to print a histogram representing the frequency of individual letters occurring in a piece of text can be
developed by first implementing a class that performs the following operations on an instance of a Histogram.

Method Responsibility
Add_To Add a character to the histogram, recording the updated total number of characters.
Put Write a histogram to the output source representing the currently gathered data.
Reset Clear any previously gathered data, setting various internal objects to an initial state.

Using the class Histogram that has been implemented in the package Class_Histogram, code can be
written which will produce a histogram of the frequency of characters taken from the standard input:

Arrays 105

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Class_Histogram;
use Ada.Text_Io, Class_Histogram;
procedure Main is
 Ch:Character; --Current character
 Text_Histogram: Histogram; --Histogram object
begin
 Reset(Text_Histogram); --Reset to empty
 while not End_Of_File loop --For each line
 while not End_Of_Line loop --For each character
 Get(Ch); --Get current character
 Add_To(Text_Histogram, Ch); --Add to histogram
 end loop;
 Skip_Line; --Next line
 end loop;
 Put(Text_Histogram); --Print histogram
end Main;

The class histogram is defined by the following package specification:

package Class_Histogram is
 type Histogram is private;
 Def_Height : constant Positive := 14;
 procedure Reset(The:in out Histogram);
 procedure Add_To(The:in out Histogram; A_Ch:in Character);
 procedure Put(The:in Histogram; Height:in Positive:=Def_Height);
private
 type Alphabet_Index is new Character range 'A' .. 'Z';
 type Alphabet_Array is array (Alphabet_Index) of Natural;
 type Histogram is record
 Number_Of : Alphabet_Array := (others => 0);
 end record;
end Class_Histogram;

The histogram is calculated using the individual letter frequencies that are stored in an array of Naturals
indexed by the upper case letters 'A' .. 'Z'. The implementation is simplified by allowing each letter to index
directly the frequency count for the letter.

In the implementation of the class histogram shown below, the procedure reset is used to set the
individual frequency counts for each letter to 0.

with Ada.Text_Io, Ada.Float_Text_Io, Ada.Characters.Handling;
use Ada.Text_Io, Ada.Float_Text_Io, Ada.Characters.Handling;
package body Class_Histogram is

 procedure Reset(The:in out Histogram) is
 begin
 The.Number_Of := (others => 0); --Reset counts to 0
 end Reset;

The procedure Add_To uses the functions Is_Lower, To_Upper and Is_Upper which are contained in
the package Ada.Characters.Handling. A full description of these functions can be found in Section C.7,
Appendix C.

106 Arrays

 M A Smith - May not be reproduced without permission

 procedure Add_To(The:in out Histogram; A_Ch:in Character) is
 Ch : Character;
 begin
 Ch := A_Ch; --As write to ch
 if Is_Lower(Ch) then --Convert to upper case
 Ch := To_Upper(Ch);
 end if;

 if Is_Upper(Ch) then --so record
 declare
 C : Alphabet_Index := Alphabet_Index(Ch);
 begin
 The.Number_Of(C) := The.Number_Of(C) + 1;
 end;
 end if;

 end Add_To;

The histogram is displayed as a bar graph corresponding to the accuracy of the output device, which in this case is
an ANSI terminal. The size of the histogram is set by the defaulted parameter Height.

 procedure Put(The:in Histogram;
 Height:in Positive:=Def_Height) is
 Frequency : Alphabet_Array; --Copy to process
 Max_Height : Natural := 0; --Observed max
 begin
 Frequency := The.Number_Of; --Copy data (Array)
 for Ch in Alphabet_Array'Range loop --Find max frequency
 if Frequency(Ch) > Max_Height then
 Max_Height:= Frequency(Ch);
 end if;
 end loop;

 if Max_Height > 0 then
 for Ch in Alphabet_Array'Range loop --Scale to max height
 Frequency(Ch):=(Frequency(Ch)*Height)/(Max_Height);
 end loop;
 end if;

 for Row in reverse 1 .. Height loop --Each line
 Put(" | "); --start of line
 for Ch in Alphabet_Array'Range loop
 if Frequency(Ch) >= Row then
 Put('*'); --bar of hist >= col
 else
 Put(' '); --bar of hist < col
 end if;
 end loop;
 Put(" | "); New_Line; --end of line
 end loop;

 Put(" +----------------------------+"); New_Line;
 Put(" ABCDEFGHIJKLMNOPQRSTUVWXYZ "); New_Line;
 Put(" * = (approx) ");
 Put(Float(Max_Height) / Float(Height), Aft=>2, Exp=>0);
 Put(" characters "); New_Line;
 end Put;
end Class_Histogram;

Note: By implementing the printing of the histogram as part of the package Class_Histogram this
severely limits the cases when this code can be re-used.

Arrays 107

 M A Smith - May not be reproduced without permission

8.3.1 Putting it all together

When run with the following data:

Ada is a language developed for the American Department
of Defense.
Ada is named after the first programmer Ada (Byron) Lovelace
who helped Charles Babbage with his work on the analytical engine.
She was the daughter of the poet Lord Byron.

the program would produce the following output:

 | * |
 | * |
 | * |
 | * * |
 | * * |
 | * * |
 | * * |
 | * * |
 | * * * * * |
 | * ** * ** * * |
 | * ** * * ** * * |
 | * ** ** * ** *** |
 | ** ****** ***** *** |
 | ********* ***** *** * * |
 +----------------------------+
 ABCDEFGHIJKLMNOPQRSTUVWXYZ * = 2.071

Note: The exact number of characters shown for each * in the bar graph is guaranteed to be accurate only
for the most frequently occurring character.

108 Arrays

 M A Smith - May not be reproduced without permission

8.4 The game of noughts and crosses

The children’s game of noughts and crosses is played on a three-by-three grid of squares. Players either play X or
O. Each player takes it in turn to add their mark to an unoccupied square. The game is won when a player has
three of their marks in a row either diagonally, horizontally or vertically. If no unoccupied square remains, the
game is a draw (Figure 8.2).

X’s first move O’s first move X’s second move O’s second move

X X

O

X

O

X X

O

XO

X’s third move O’s third move X’s fourth move

X

O

X

O X X

O

X

O X

O

X

O

X

O X

O X

As can be seen
to go first is a
clear advantage.

Figure 8.2 A game of noughts and crosses

A program to display the current state of a game of noughts and crosses between two contestants is developed
with the aid of a class Board. The operations, Add, Valid, State, Cell , and Reset, can be performed on an
instance of Board.
The responsibilities of these methods is as follows:

Method Responsibility
Add Add the player’s mark to the board. The player’s move is

specified by a number in the range 1 to 9 and their mark by a
character.

Valid Return true if the presented move is valid. The method checks
that the move is in the range 1 to 9 and that the specified cell is
not occupied.

State Returns the state of the current game. Possible states are: Win,
Playable, and Draw.

Cell Returns the contents of a cell on the board. This method is
included so that the code that displays the board can be separated
from the code that manipulates the board.

Reset Reset the board back to an initial state.

Arrays 109

 M A Smith - May not be reproduced without permission

8.4.1 The class Board

The specification for the class Board is defined by the package Class_board as follows:

package Class_Board is

 type Board is private;
 type Game_State is (Win, Playable, Draw);

 procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character);
 function Valid(The:in Board; Pos:in Integer) return Boolean;
 function State(The:in Board) return Game_State;
 function Cell(The:in Board; Pos:in Integer)
 return Character;
 procedure Reset(The:in out Board);
 -- Not a concern of the client
end Class_Board;

8.4.2 Implementation of the game

Using the above package specification, the following code will facilitate the playing the game of noughts and
crosses between two human players. The procedure Display will display the state of the board onto the user’s
terminal. By factoring out the code to display the board, from the class Board the class can be re-used in other
programs that may use a different form of display, for example a GUI (Graphical User Interface).

with Class_Board, Ada.Text_Io, Ada.Integer_Text_Io, Display;
use Class_Board, Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Player : Character; --Either 'X' or 'O'
 Game : Board; --An instance of Class Board
 Move : Integer; --Move from user
begin
 Player := 'X'; --Set player
 while State(Game) = Playable loop --While playable
 Put(Player & " enter move (1-9) : "); -- move
 Get(Move); Skip_Line; -- Get move
 if Valid(Game, Move) then --Valid
 Add(Game, Move, Player); -- Add to board
 Display(Game); -- Display board
 case State(Game) is --Game is
 when Win =>
 Put(Player & " wins");
 when Playable =>
 case Player is --Next player
 when 'X' => Player := 'O'; -- 'X' => 'O'
 when 'O' => Player := 'X'; -- 'O' => 'X'
 when others => null; --
 end case;
 when Draw =>
 Put("It's a draw ");
 end case;
 New_Line;
 else
 Put("Move invalid"); New_Line; --for board
 end if;
 end loop;
 New_Line(2);
end Main;

110 Arrays

 M A Smith - May not be reproduced without permission

Note: That the case statement which effects the change between the player’s mark has a when others
clause. This is required as in theory a player can take any character value. The code for this
‘impossible’ eventuality is the null statement.

The character object player holds a representation of the current player’s mark, in this case either the
character 'X' or 'O'. The object player is initially set to 'X', and after each player's move is changed to the
other player’s mark.

8.4.3 Displaying the Board

The procedure Display uses the method Cell in class Board to help display a textual representation of the
board on the user’s terminal. The procedure Display is implemented as follows:

with Class_Board, Ada.Text_Io;
use Class_Board, Ada.Text_Io;
procedure Display(The:in Board) is
begin
 for I in 1 .. 9 loop
 Put(Cell(The, I));
 case I is --after printing counter
 when 3 | 6 => -- print Row Separator
 New_Line; Put("---------"); --
 New_Line;
 when 9 => -- print new line
 New_Line;
 when 1 | 2 | 4 | 5 | 7 | 8 => -- print Col separator
 Put(" | ");
 end case;
 end loop;
end Display;

The procedure Display prints the board on to the player’s terminal. The strategy for printing the board is to
print each cell followed by a character sequence appropriate for its position on the board. The text to be printed
after each square of the array sqrs has been printed is as follows:

Printed board showing
array index of cell in array
Sqrs

After printing cell: Text to be printed
(Using Ada.Text_Io)

1 | 2 | 3

4 | 5 | 6

7 | 8 | 9

1,2,4,5,7 and 8 Put(" | ");

3 and 6 New_Line;
Put("---------");
New_Line;

9 New_Line;

Arrays 111

 M A Smith - May not be reproduced without permission

8.4.4 The class Board

The full specification of the class Board is as follows:

package Class_Board is

 type Board is private;
 type Game_State is (Win, Playable, Draw);

 procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character);
 function Valid(The:in Board; Pos:in Integer) return Boolean;
 function State(The:in Board) return Game_State;
 function Cell(The:in Board; Pos:in Integer)
 return Character;
 procedure Reset(The:in out Board);
private
 subtype Board_Index is Integer range 1 .. 9;
 type Board_Array is array(Board_Index) of Character;
 type Board is record
 Sqrs : Board_Array := (others => ' '); --Initialize
 Moves : Natural := 0;
 end record;
end Class_Board;

The noughts and crosses board is represented by a single dimensional array of nine characters. The board is
initialized to all spaces with the assignment Board_grid := (others => ' '). This style of
initialization is explained in Section 8.6 Initializing an array. In defining the noughts and crosses board the
following type and subtype are used:

Type / Subtype Description
Board_Index A subtype used to describe an index object used to access

an element of the noughts and crosses board.
By making Board_Index a subtype of Integer,
Integers may be used as an index of the array.

Board_Array A type used to describe a noughts and crosses board.

The implementation of the class Board is defined in the body of the package Class_board as follows:

package body Class_Board is

The procedure add adds a counter either the character 'X'or 'O' to the board.

procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character) is
 begin
 The.Sqrs(Pos) := Piece;
 The.Moves := The.Moves + 1;
 end Add;

112 Arrays

 M A Smith - May not be reproduced without permission

The functions valid returns true if the square selected is not occupied by a previously played counter.

 function Valid(The:in Board; Pos:in Integer) return Boolean is
 begin
 return Pos in Board_Array'Range and then
 The.Sqrs(Pos) = ' ';
 end Valid;

Note: The use of and then so that the check on the board is only made if the position is valid.

The function Cell returns the contents of a cell on the noughts and crosses board. This method is used to
interrogate the state of the board, without having to know how the state is stored. Using this method, printing of
the state of the board can be separated from the code that manipulates the board.

 function Cell(The:in Board; Pos:in Integer) return Character is
 begin
 return The.Sqrs(Pos);
 end Cell;

The procedure Reset sets the state of the board back to its initial state.

 procedure Reset(The:in out Board) is
 begin
 The.Sqrs := (others => ' '); --All spaces
 The.Moves := 0; --No of moves
 end Reset;

The Procedure State returns the current state of play as represented by the board. A two-dimensional array
All_Win_Lines holds the co-ordinates of the eight possibles win lines. The co-ordinates in this array are used
to find any line that contains three cells either containing all X’s or O’s.

 function State(The:in Board) return Game_State is
 subtype Position is Integer range 1 .. 9;
 type Win_Line is array(1 .. 3) of Position;
 type All_Win_Lines is range 1 .. 8;
 Cells: constant array (All_Win_Lines) of Win_Line :=
 ((1,2,3), (4,5,6), (7,8,9), (1,4,7),
 (2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
 First : Character;
 begin
 for Pwl in All_Win_Lines loop --All Pos Win Lines
 First := The.Sqrs(Cells(Pwl)(1)); --First cell in line
 if First /= ' ' then -- Looks promising
 if First = The.Sqrs(Cells(Pwl)(2)) and then
 First = The.Sqrs(Cells(Pwl)(3)) then
 return Win; -- Found a win
 end if;
 end if;
 end loop;
 if The.Moves >= 9 then --Check for draw
 return Draw; -- Board full so draw
 else
 return Playable; -- Still playable
 end if;
 end State;

end Class_Board;

Arrays 113

 M A Smith - May not be reproduced without permission

8.4.5 Putting it all together

When compiled and run, a possible interaction between two players could be as follows:

X’s first move O’s first move X’s second move O’s second move

X | |

X | |

O

X | | X

O

X | O | X

O

X’s third move O’s third move X’s fourth move

X | O | X

X
O

X | O | X

X
O | O |

X | O | X

X
O | O | X

As can be seen
to go first is a
clear advantage.

8.5 Multidimensional arrays

Arrays can have any number of dimensions. For example, the noughts and crosses board could have been
represented by a two-dimensional array as follows:

 Size_TTT : constant := 3;
 subtype Board_Index is Integer range 1 .. Size_TTT;
 type Board_Array is
 array(Board_Index, Board_Index) of Character;
 type Board is record
 Sqrs : Board_Array := (others => (others => ' '));
 end record;
 The: Board;

Note: The two-dimensional initialization of the board to spaces is as follows:
sqrs : Board_grid:=(others => (others => ' '));
This type of initialization is explained in Section 8.6 Initializing an array.

With this representation of the board individual elements are accessed as follows:

 The.Sqrs(1,2) := 'X';
 The.Sqrs(2,3) := 'X';
 The.Sqrs(3,2) := 'X';

114 Arrays

 M A Smith - May not be reproduced without permission

Using the new representation of Board, a procedure for displaying the contents of the board would now become:

 procedure Display(The:in Board) is
 begin
 for I in Board_Array'Range(1) loop --For each Row
 for J in Board_Array'Range(2) loop -- For each column
 Put(The.Sqrs(I,J)); -- display counter;
 case J is -- column postfix
 when 1 | 2 => Put(" | ");
 when 3 => null;
 end case;
 end loop;
 case I is -- row postfix
 when 1 | 2 => New_Line; Put("----------"); New_Line;
 when 3 => New_Line;
 end case;
 end loop;
 end Display;

Note: The statement null has no action, but is necessary as a statement must follow a when clause. The
clause when 3 cannot be omitted as this would leave the case statement not covering all the possible
values for j.

8.5.1 An alternative way of declaring multidimensional arrays

Rather than declare the board as a two-dimensional array, it is also possible to declare the board as an array of
rows of the board. This is accomplished as follows:

 Size_TTT : constant := 3;
 subtype Board_Index is Integer range 1 .. Size_TTT;
 type Board_Row is array(Board_Index) of Character;
 type Board_Array is array(Board_Index) of Board_Row ;
 type Board is record
 Sqrs : Board_Array := (others => (others => ' '));
 end record;
 The: Board;

Note: This technique will scale to any number of dimensions.

Now to access the individual elements of the board a slightly different notation is used. The first subscript
selects the row and the second subscript selects the element within the row.

 The.Sqrs(1)(2) := 'X';
 The.Sqrs(2)(3) := 'X';
 The.Sqrs(3)(2) := 'X';

Note: The initialization of the two-dimensional array is performed in the same way in both cases.

Arrays 115

 M A Smith - May not be reproduced without permission

8.5.2 Attributes of multidimensional arrays

Like single dimensional arrays, various attributes can also be extracted from multidimensional arrays. For
multidimensional arrays it is, however, necessary to specify which dimension is to be interrogated. This is
achieved by appending the appropriate dimension to the attribute. For example, to find the number of elements in
the second dimension of the object Sqrs use The.Sqrs'Length(2). Section B.2, Appendix B lists attributes
that can be extracted from an object or type.

8.6 Initializing an array

A pixel on a true colour computer screen is represented by the three primary colours: red, blue, and green. Each
colour has an intensity ranging from 0 (dark) to 255 (bright). This is the RGB additive colour model used by
computer terminals and TVs, which is different from the CYMB subtractive colour model used in printing. In
Ada, a pixel could be represented by an array of three elements representing the intensities of the primary colours.
To represent the colour white, the intensity of each of the primary colours would be set to 255. A pixel can be
represented by the type Pixel_Array as follows:

 type Colour is (Red, Green, Blue);
 type Intensity is range 0 .. 255;
 type Pixel_Array is array(Colour) of Intensity;

A single point on the screen could be represented by the object dot as follows:

 Dot : Pixel_Array;

which could be initialized to black or white with the following assignments:

 Dot := (0, 0, 0); --Black
 Dot := (255, 255, 255); --White

The values can be named by using the subscript to the array as follows:

 Dot := (Red=> 255, Green=>255, Blue=>255); --White

An others clause can be used to let the remaining elements of the array take a particular value as in:

 Dot := Pixel_Array'(Red=>255, others=>0); --Red

Note: When the others clause is used, and at least one other element is given a value by a different means,
then the type of the constant must be specified. This is achieved by prefixing the constant with its type
name followed by a '.

Using a similar notation to that used in the case statement introduced in Section 3.8.1, a range of values may
also be specified:

 Dot := (Red=>255, Green=>255, Blue=>0); --Yellow
 Dot := (Red | Blue => 255, Green=>0); --Purple
 Dot := (Red .. Blue => 127); --Grey

116 Arrays

 M A Smith - May not be reproduced without permission

8.6.1 Multidimensional initializations

A cursor on a black and white screen can be defined by the following declaration of an object cursor_style :

 Bits_Cursor : constant Positive := 5;
 type Bit is new Integer range 0 .. 1;
 type Cursor_Index is new Positive range 1 .. Bits_Cursor;
 type Cursor is array(Cursor_Index,
 Cursor_Index) of Bit;

 Cursor_Style : Cursor;

Black is represented by 1

White is represented by 0

Figure 8.3 Black and white cursor.

The cursor as illustrated in Figure 8.3 could be set up in cursor_style with any of the following three
declarations:

l by initializing every cell in the cursor individually:

 Cursor_Style := Cursor'((1, 0, 0, 0, 1),
 (0, 1, 1, 1, 0),
 (0, 0, 1, 0, 0),
 (0, 1, 1, 1, 0),
 (1, 0, 0, 0, 1));

Note: The prefix to the array constant is optional in this case.
l by using an others clause to set up the white elements:

 Cursor_Style := Cursor'(1=> (1=>1, 5=>1, others => 0),
 2=> (2..4 =>1, others => 0),
 3=> (3=>1, others => 0),
 4=> (2..4 =>1, others => 0),
 5=> (1=>1, 5=>1, others => 0));

l by using | clauses to combine any identical initializations:

 Cursor_Style := Cursor'(1|5=> (1|5 =>1, others => 0),
 2|4=> (2..4=>1, others => 0),
 3 => (3 =>1, others => 0));

In a program using a colour monitor, the cursor could have been described as follows:

 Bits_Cursor: constant Positive := 5;
 type Colour is (Red, Green, Blue);
 type Intensity is range 0 .. 255;
 type Pixel_Array is array(Colour) of Intensity;

 type Cursor_Index is new Positive range 1 .. Bits_Cursor;
 type Cursor is array(Cursor_Index,
 Cursor_Index) of Pixel_Array;
 Cursor_Style : Cursor;

Arrays 117

 M A Smith - May not be reproduced without permission

The following code would be used to initialize the cursor to the colour grey:

 Cursor_Style :=
 Cursor'(1|5=> (1|5 => (others=>127), others => (others=>0)),
 2|4=> (2..4=> (others=>127), others => (others=>0)),
 3 => (3 => (others=>127), others => (others=>0)));

8.7 Unconstrained arrays

In earlier sections, the types used to represent an array have been constrained types. These can be used to create
only objects that have the specific bounds defined by the type declaration. Ada allows a user to define a type for
an array that can be constrained to represent a whole family of instances of arrays, where each member of the
family can potentially have different bounds. This mechanism is required when an array of arbitrary size is to be
passed as a parameter to a procedure or function. For example, a function sum that sums the contents of an array
passed to the function, can be written as follows:

 function Sum(List:in Numbers_Array) return Integer is
 Total : Integer := 0;
 begin
 for I in List'range loop --Depends on # of elements
 Total := Total + List(I);
 end loop;
 return Total;
 end Sum;

The type Numbers_Array is an unconstrained array that has the following definition:

type Numbers_Array is array (Positive range <>) of Integer;

This defines a type that can be used to elaborate array objects with Positive type bounds. For example, an
instance of the type Numbers_Array can be declared as follows:

Computers_In_In_Room :Numbers_Array(513..519) := (2,2,2,3,2,1,3);

Note: The specific bounds of Computers_In_Room, an instance of Numbers_Array needs to be
specified in the declaration.

8.7.1 Slices of an array

A slice of a one-dimensional array can be obtained by selecting elements from a contiguous range from within the
array. For example, to select the computers in rooms 517 to 519 from the object Computers_In_Room the
following slice of the array can be extracted: Computers_In_Rooms(517 .. 519).

Note: A slice can only be taken from a one-dimensional array.

118 Arrays

 M A Smith - May not be reproduced without permission

8.7.2 Putting it all together

A package Pack_Types is defined so that any program unit may use the constrained type declaration for
Numbers_Array to declare arrays of this type.

package Pack_Types is
 type Numbers_Array is array (Positive range <>) of Integer;
end Pack_Types;

Note: No body is required as the specification has no implementation part.

This is then used by a program to illustrate the use of the function sum.

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Types;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Types;
procedure Main is
 Computers_In_Room :Numbers_Array(513..519) := (2,2,2,3,2,1,3);

 -- The function sum

begin
 Put("The total number of computers is: ");
 Put(Sum(Computers_In_In_Room)); New_Line;

 Put("Computers in rooms 517, 518 and 519 is: ");
 Put(Sum(Computers_In_In_Room(517 .. 519))); New_Line;
end Main;

When compiled with the body of the function sum, the above program when run would print the results:

The total number of computers is: 15
Computers in rooms 517, 518 and 519 is: 6

8.8 Strings

The type String is a predefined, unconstrained array whose definition is:

type String is array (Positive range <>) of Character;

Arrays 119

 M A Smith - May not be reproduced without permission

This type is defined in the package Standard listed in Section C.4, Appendix C. A limitation of the String
type is that in the declaration of each instance of a string the number of characters that are to be assigned to that
particular string must be specified. For example, the following program writes out the name and address of the
University of Brighton.

procedure Main is
 type String is array (Positive range <>) of Character;
 Institution : String(1 .. 22);
 Address : String(1 .. 20);
 Full_Address: String(1 .. 44);
begin
 Institution := "University of Brighton";
 Address := "Brighton East Sussex";
 Full_Address:= Institution & ", " & Address;
 Put(Full_Address); New_Line;
end Main;

When run, this would print:

University of Brighton, Brighton East Sussex

Note: The concatenation operator & is used to deliver the join of two one-dimensional arrays.

8.9 Dynamic arrays

In Ada the bounds of an array need not be fixed at compile-time, as they can be specified by an object whose
value is not fixed until run-time. Such an array is known as a dynamic array. However, once elaborated, the
bounds of the dynamic array cannot be changed. Unlike many other languages, Ada allows a dynamic array to be
returned as the result of a function. For example, a function Reverse_String can be written which reverses
the characters passed to it. An implementation of the function Reverse_String is as follows:

 function Reverse_String(Str:in String) return String is
 Res : String(Str'Range); --Dynamic bounds
 begin
 for I in Str'Range loop
 Res(Str'First+Str'Last-I) := Str(I);
 end loop;
 return Res;
 end Reverse_String;

8.9.1 Putting it all together

The above function Reverse_String is used in the following program to illustrate the use of a dynamic array:

 with Ada.Text_Io, Reverse_String; use Ada.Text_Io;
 procedure Main is
 begin
 Put(Reverse_String("madam i'm adam")); New_Line;
 end Main;

120 Arrays

 M A Smith - May not be reproduced without permission

When run, this would deliver the following results:

mada m'i madam

Note: Even though dynamic arrays can be created, they can only be used to store an object that is type
compatible. In particular, the number and type of the elements in the receiving object must be the same
as in the delivered object.

8.10 A name and address class

A class for managing a person’s name and address has the following responsibilities.

Method Responsibility
Set Set the name and address of a person. The name and address

is specified with a / character separating each line.
Deliver_Line Deliver the n'th line of the address as a string.
Lines Deliver the number of lines in the address.

The specification for the class is as follows:

package Class_Name_Address is
 type Name_Address is tagged private;

 procedure Set(The:out Name_Address; Str:in String);
 function Deliver_Line(The:in Name_Address;
 Line:in Positive) return String;
 function Lines(The:in Name_Address) return Positive;
private
 Max_Chs : constant := 200;
 subtype Line_Index is Natural range 0 .. Max_Chs;
 subtype Line_Range is Line_Index range 1 .. Max_Chs;

 type Name_Address is tagged record
 Text : String(Line_Range); --Details
 Length : Line_Index := 0; --Length of address
 end record;
end Class_Name_Address;

Arrays 121

 M A Smith - May not be reproduced without permission

In the implementation of the class the method set stores the string given as a parameter into the instance
attribute Text. A check is made to see if the string is too long. If it is, the string is truncated and the procedure
recalled recursively with the shortened name.

package body Class_Name_Address is

 function Spaces(Line:in Positive) return String;

 procedure Set(The:out Name_Address; Str:in String) is
 begin
 if Str'Length > Max_Chs then
 Set(The, Str(Str'First .. Str'First+Max_Chs-1));
 else
 The.Text(1 .. Str'Length) := Str;
 The.Length := Str'Length;
 end if;
 end Set;

The function Deliver_Line returns a string representing the n'th line of the address with a staggered left
margin. Spaces for the staggered left margin are calculated and delivered by the function Spaces.

 function Deliver_Line(The:in Name_Address;
 Line:in Positive) return String is
 Line_On : Positive := 1;
 begin
 for I in 1 .. The.Length loop
 if Line_On = Line then
 for J in I .. The.Length loop
 if The.Text(J) = '/' then
 return Spaces(Line_On) & The.Text(I .. J-1);
 end if;
 end loop;
 return Spaces(Line_On) & The.Text(I..The.Length);
 end if;
 if The.Text(I) = '/' then Line_On := Line_On+1; end if;
 end loop;
 return "";
 end Deliver_Line;

The number of lines in an address is delivered by the function Lines. This function counts the number of '/'
characters in the string Text.

 function Lines(The:in Name_Address) return Positive is
 No_Lines : Positive := 1;
 begin
 for I in 1 .. The.Length loop
 if The.Text(I) = '/' then No_Lines := No_Lines + 1; end if;
 end loop;
 return No_Lines;
 end Lines;

122 Arrays

 M A Smith - May not be reproduced without permission

The function Spaces delivers a string of Line spaces.

 function Spaces(Line:in Positive) return String is
 Spaces_Are : String(1 .. Line) := (others=>' ');
 begin
 return Spaces_Are;
 end Spaces;

end Class_Name_Address;

8.10.1 Putting it all together

A program to illustrate the use of the class Name_Address is shown below:

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Name_Address;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure main is
 Name : Name_Address;
 Address : String := "A.N.Other/Brighton/East Sussex/UK";
begin
 Set(Name, Address);
 Put(Address); New_Line; Put("There are ");
 Put(Lines(Name)); Put(" lines"); New_Line;
 for I in 1 .. Lines(Name)+1 loop
 Put("Line #"); Put(I); Put(" ");
 Put(Deliver_Line(Name, I)); New_Line;
 end loop;
end Main;

which, when compiled and run, will produce the following output:

A.N.Other/Brighton/East Sussex/UK
There are 4 lines
Line # 1 A.N.Other
Line # 2 Brighton
Line # 3 East Sussex
Line # 4 UK
Line # 5

Note: The standard library packages Ada.Strings.Bounded and Ada.Strings.Unbounded
provide an elegant mechanism for handling strings of variable length. Section C.8, Appendix C lists the
members of the package Ada.Strings.Bounded.

8.11 An electronic piggy bank
Arrays are made up of objects of any type including instances of classes. For example, to implement a program to
deal with a small bank’s transactions, a class Piggy_Bank can be defined which has the following methods:

Method Responsibility
Deposit Deposit money into a named person’s account.
Withdraw Withdraw money from a named person’s account.

Balance Obtain the balance in a named person’s account.
New_Account Allocate a new account number.

Arrays 123

 M A Smith - May not be reproduced without permission

The Ada specification of the class Piggy_Bank is as follows:

with Class_Account;
use Class_Account;
package Class_Piggy_Bank is
 type Piggy_Bank is private; --Class
 subtype Money is Class_Account.Money; --Make visible
 subtype Pmoney is Class_Account.Pmoney; --Make visible

 procedure New_Account(The:in out Piggy_Bank; No:out Positive);
 procedure Deposit (The:in out Piggy_Bank; No:in Positive;
 Amount:in Pmoney);
 procedure Withdraw (The:in out Piggy_Bank; No:in Positive;
 Amount:in Pmoney; Get:out Pmoney);
 function Balance(The:in Piggy_Bank;
 No:in Positive) return Money;
 function Valid(The:in Piggy_Bank;
 No:in Positive) return Boolean;

private
 No_Accounts : constant := 10;
 subtype Accounts_Index is Integer range 0 .. No_Accounts;
 subtype Accounts_Range is Accounts_Index range 1 .. No_Accounts;
 type Accounts_Array is array (Accounts_Range) of Account;
 type Piggy_Bank is record
 Accounts: Accounts_Array; --Accounts in the bank
 Last : Accounts_Index := 0; --Last account
 end record;
end Class_Piggy_Bank;

Note: The number of accounts that can be held is fixed and is defined by the constant No_Accounts. In
Chapter 17, ways of storing a variable number of (in this case instances of Account) objects are
explored.

The following code uses the class Piggy_Bank to perform transactions on a newly allocated account:

with Ada.Text_io, Class_Piggy_Bank, Statement;
use Ada.Text_io, Class_Piggy_Bank;
procedure Main is
 Bank_Accounts: Piggy_Bank; --A little bank
 Customer : Positive; --Customer
 Obtain : Money; --Money processed
begin
 New_Account(Bank_Accounts, Customer);
 if Valid(Bank_Accounts, Customer) then
 Statement(Bank_Accounts, Customer);

 Put("Deposit £100.00 into account"); New_Line;
 Deposit(Bank_Accounts, Customer, 100.00);
 Statement(Bank_Accounts, Customer);

 Put("Withdraw £60.00 from account"); New_Line;
 Withdraw(Bank_Accounts, Customer, 60.00, Obtain);
 Statement(Bank_Accounts, Customer);

 Put("Deposit £150.00 into account"); New_Line;
 Deposit(Bank_Accounts, Customer, 150.00);
 Statement(Bank_Accounts, Customer);
 else
 Put("Customer number not valid"); New_Line;
 end if;
end Main;

124 Arrays

 M A Smith - May not be reproduced without permission

Note: The procedure Statement is shown later at the end of this section.

When compiled and run, the code would produce the following output:

Mini statement for account # 1
The amount on deposit is _ 0.00

Deposit _100.00 into account
Mini statement for account # 1
The amount on deposit is _100.00

Withdraw _60.00 from account
Mini statement for account # 1
The amount on deposit is _40.00

Deposit _150.00 into account
Mini statement for account # 1
The amount on deposit is _190.00

In the implementation of the package Class_Piggy_Bank shown below, the procedure New_Account
allocates an account number to a new customer.

package body Class_Piggy_Bank is

 procedure New_Account(The:in out Piggy_Bank; No:out Positive) is
 begin
 if The.Last = No_Accounts then
 raise Constraint_Error;
 else
 The.Last := The.Last + 1;
 end if;
 No := The.Last;
 end New_Account;

Note: The exception Constraint_Error is raised if no new accounts can be created. Chapter 14 shows
how a user defined exception can be raised.

The procedure and functions for Deposit, Withdraw and Balance call the appropriate code from the
package Class_Account.

 procedure Deposit (The:in out Piggy_Bank; No:in Positive;
 Amount:in Pmoney) is
 begin
 Deposit(The.Accounts(No), Amount);
 end Deposit;

 procedure Withdraw(The:in out Piggy_Bank; No:in Positive;
 Amount:in Pmoney; Get:out Pmoney) is
 begin
 Withdraw(The.Accounts(No), Amount, Get);
 end Withdraw;

 function Balance(The:in Piggy_Bank;
 No:in Positive) return Money is
 begin
 return Balance(The.Accounts(No));
 end Balance;

Arrays 125

 M A Smith - May not be reproduced without permission

The function valid checks the validity of an account number.

 function Valid(The:in Piggy_Bank;
 No:in Positive) return Boolean is
 begin
 return No in 1 .. The.Last;
 end Valid;
end Class_Piggy_Bank;

The procedure Statement prints a mini statement for the selected account. This is implemented as follows:

with Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io,
 Class_Piggy_Bank;
use Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io,
 Class_Piggy_Bank;
procedure Statement(Bank:in Piggy_Bank; No:in Positive) is
 In_Account : Money;
begin
 Put("Mini statement for account #");
 Put(No, Width=>3); New_Line;
 Put("The amount on deposit is £");
 In_Account := Balance(Bank, No);
 Put(In_Account, Aft=>2, Exp=>0);
 New_Line(2);
end Statement;

Note: By not having any input or output statements in the package Class_Piggy_Bank the package may be re-
used easily in other programs.

8.12 Self-assessment

l Can the index to an array be of type real?

l How can a programmer reduce the possibility of using an incorrect subscript value?

l Are there any restrictions on what type of objects can be used as array elements?

l Are there any limitations on how many dimensions an array might have?

l How is an array of objects declared?

l What is the difference between the two declarations for Board_Array below, and how may an
individual character be accessed in both cases?

 subtype Board_Index is Integer range 1 .. 3;
 type Board_Array is
 array(Board_Index, Board_Index) of Character;

 subtype Board_Index is Integer range 1 .. 3;
 type Board_Row is array(Board_Index) of Character;
 type Board_Array is array(Board_Index) of Board_Row ;

126 Arrays

 M A Smith - May not be reproduced without permission

8.13 Exercises

Construct the following programs:

l A program to play the game noughts and crosses.

Using as a base the code for the noughts and crosses program, implement a complete program that
checks for a win by a player. A win is when a player has three of their counters in a row, either
diagonally, horizontally or vertically.

l A program which maintains the records of books in a small school library.

Each book in the library has a class mark which is a number in the range
1 — 999. A person may:

(a) Take a book out of the library.
(b) Return a book to the library.
(c) Reserve a book that is out on loan.
(d) Enquire as to the status of a book.

The program should be able to handle the recording and extracting of information required by the above
transactions. In addition, a facility should be included which will provide a summary about the status of
the books in the library.

Hints:
l Define the class Book to represent individual books in the library.
l Define a class Library to represent the library. The hidden internal structure of Library

contains an array of Books.
l Re-use the class TUI to display a menu.

 M A Smith - May not be reproduced without permission

9 Case study: Design of a game

This chapter looks at the implementation of the game reversi. The problem is analysed using the fusion
methodology and from this analysis and design is developed a program to play the game of reversi
between two human players.

9.1 Reversi
In the game of reversi two players take it in turn to add counters to a board of 8-by-8 cells. Each player has a stack
of counters, black one side and white the other. One player’s counters are placed white side up, whilst the other
player’s are black side up. The object of the game is to capture all your opponent's counters. You do this by
adding one of your counters to the board so that your opponent's counter(s) are flanked by two of your counters.
When you do this, the counters you have captured are flipped over to become your counters. If you can't capture
any of your opponent's counters during your turn, you must pass and let your opponent go.

The game is won when you have captured all your opponent's counters. If neither player can add a counter to
the board, then the player with the most counters wins. If the number of counters for each player is equal, then the
game is a draw.

The initial starting position is set so that the 4 centre squares in the 8-by-8 board of cells is as illustrated in
Figure 9.1.

Figure 9.1 The 4 center squares of a reversi board..
On a reduced board of 4-by-4 cells a game might be as illustrated in Figure 9.2.

Black’s move White’s move

Black’s move White’s move Black’s move

128 Case study: Design of a game

 M A Smith - May not be reproduced without permission

White cannot go and has
to pass

Black’s move

No further moves can
be made. Blacks wins
with 9 counters against
white’s 1

Figure 9.2 A game of reversi.

9.1.1 A program to play reversi

A controller of the game (games master) asks each player in turn for a move. When a move is received from a
player, the board is asked to validate the move. If this is a valid move, the counter of the current player is added to
the board. The board is displayed and the new state of the board is evaluated. This process is repeated until either
the board is filled or neither player can make a move. The player making the last move is asked to announce the
result of the game.

The interactions by the controller with the system are shown in Figure 9.3

Player 1 Player 2

Board

counter counter

Figure 9.3 Interactions by the controller with the objects in the system.

9.2 Analysis and design of the problem

Using a design methodology based on a simplified version of fusion the above specification can be analysed and a
design created for an eventual implementation in Ada. In preparation for this, it is appropriate to identify the
objects and system actions from the written specification. An easy but incomplete way of identifying objects and
system actions is to identify the major nouns and verbs. The nouns in the specification become the objects and the
major verbs become the system actions.

With the major nouns indicated in bold type and the major verbs in bold italic type, the specification for the
game reversi can now be read as:

In the game of reversi two players take it in turn to add counters to a board of 8-by-8 cells . Each player has
a stack of counters black one side and white the other. One player’s counters are placed white side up, whilst the
other player’s are black side up. The object of the game is to capture all your opponent's counters. You do this
by adding one of your counters to the board so that your opponent's counter(s) are flanked by two of your
counters . When you do this, the counters you have captured are flipped over to become your counters . If you
can't capture any of your opponent's counters during you turn, you must pass and let your opponent go.

The game is won when you have captured all your opponent's counters. If neither player can add a counter
to the board, then the player with the most counters wins. If the number of counters for each player is equal,
then the game is a draw.

Case study: Design of a game 129

 M A Smith - May not be reproduced without permission

A controller of the game (games master) asks each player in turn for a move. When a move is received from a
player the board is asked to validate the move. If this is a valid move the counter of the current player is added
to the board. The board is displayed and the new state of the board is evaluated. This process is repeated until
either the board is filled or neither player can make a move. The player making the last move is asked to
announce the result of the game.

The major objects and verbs identified are:

Objects (nouns) Messages (verbs)
board
game
cell
counter
player
game

add
announce
ask
evaluated
capture
display
validate

The following messages are sent to individual objects:

board
Display a representation of the board.
Add a counter to the board.
Evaluate the current state of the board.
Validate a proposed move.

player
Announce the result of the game.
Ask for the next move.

cell
Add a counter into a cell on the board.

counter
Display a representation of the counter.

Play
Play the game.

It is more appropriate to deal with classes than to deal with objects. For example, Board is the class to which
the object board belongs. Using this approach the messages sent to these classes can be refined into the
following list:

Class Message Responsibility of method

Board Add Add a counter into the board.
Check_Move Check if a player can drop a counter

into a column.
Contents Return the contents of a cell.
Display Display a representation of the board.
Now_playing Say who is now playing on the board.
Set_Up Populate the board with the initial

contents.
Status Evaluate the current state of the

board.

Player Announce Announcing that the player has either
won or drawn the game.

Get_Move Get the next move from the player.
My_Counter Return the counter that the player

plays with.
Set Set a player to play with a particular

counter.

130 Case study: Design of a game

 M A Smith - May not be reproduced without permission

Cell Add Add a counter to a cell.
Display Display the contents of a cell.
Flip Flip the contents of a cell.
Holds Return the contents of a cell.
Initialize Initialize a cell.

Class Message Responsibility of method

Counter Display Display a counter.
Flip Flip a counter.
Rep Return the colour of a counter.
Set Set a counter to be black/white.

Game Play Play the game.

Note: Some of the original messages (verbs) have been renamed to a more specific name when producing this
list.

9.3 Class diagram
A class diagram for the game of draughts is shown below in Figure 9.4

Player Counter Cell

Board

Game

1

1

1

2 64

1

1 1 11

Figure 9.4 Relationship between the classes in the game of four counters.

9.4 Specification of the Ada classes

The Ada class specifications for the above classes are implemented as follows:

Class Ada specification

Game package Class_Game is
 type Game is private;
 procedure Play(The:in Game);
private

end Class_Counter;

Case study: Design of a game 131

 M A Smith - May not be reproduced without permission

Counter package Class_Counter is
 type Counter is private;
 type Counter_Colour is (Black, White);
 procedure Set(The:in out Counter; Rep:in Counter_Colour);
 procedure Display(The:in Counter);
 procedure Display_None(The:in Counter);
 procedure Flip(The:in out Counter);
 function Rep(The:in Counter) return Counter_Colour;
private

end Class_Counter;

Player package Class_Player is
 type Player is private;

 procedure Set(The:in out Player; C:in Counter_Colour);
 procedure Get_Move(The:in Player; Row,Column:out Integer);
 function My_Counter(The:in Player) return Counter;
 procedure Announce(The:in Player; What:in State_Of_Game);
private

end Class_Player;

Cell package Class_Cell is
 type Cell is private;
 type Cell_Holds is (C_White, C_Black, Empty);

 procedure Initialize(The:in out Cell);
 function Holds(The:in Cell) return Cell_Holds;
 procedure Add(The:in out Cell; Players_Counter:in Counter);
 procedure Display(The:in Cell);
 procedure Flip(The:in out Cell);
 function To_Colour(C:in Cell_Holds) return Counter_Colour;
private

end Class_Cell;

Board package Class_Board is

 type Board is private;
 type State_Of_Game is (Play, Win, Draw, Lose);
 type Move_Status is (Ok, Invalid, Pass);

 procedure Set_Up(The:in out Board);
 procedure Add(The:in out Board; X,Y:in Integer;
 Move_Is:in Move_Status);
 procedure Now_Playing(The:in out Board; C:in Counter_Colour);
 procedure Display(The:in Board);
 function Check_Move(The:in Board; X,Y:in Integer)
 return Move_Status;
 function Status(The:in Board) return State_Of_Game;
 function Contents(The:in Board; X,Y:in Integer)
 return Cell_Holds;
private

end Class_Board;

132 Case study: Design of a game

 M A Smith - May not be reproduced without permission

9.5 Implementation of the main class Game

Using the design carried out above, the specification of the class Game is :

with Class_Board, Class_Player, Class_Counter;
use Class_Board, Class_Player, Class_Counter;
package Class_Game is
 type Game is private;
 procedure play(The:in out Game);
private
 type Player_Array is array(Counter_Colour) of Player;
 type Game is record
 Reversi : Board; --The playing board
 Contestant : Player_Array;
 end record;
end Class_Game;

and the implementation is as follows:

package body Class_Game is

procedure Play(The:in out Game) is --Play reversi
 Current_State : State_Of_Game; --State of game
 Person : Counter_Colour; --Current player
 X, Y : Integer; --Move
 Move_Is : Move_Status; --Last move is
begin
 Set_Up(The.Reversi); --Set up board
 Set(The.Contestant(Black), Black); --Set player black
 Set(The.Contestant(White), White); --Set player white

Case study: Design of a game 133

 M A Smith - May not be reproduced without permission

 Current_State := Play; Person := Black; --Black starts

 Display(The.Reversi); --Initial board

 while Current_State = Play loop --Playable game
 Now_Playing(The.Reversi, Person); --set player

 loop --Get move
 Get_Move(The.Contestant(Person), X, Y);
 Move_Is:=Check_Move(The.Reversi, X, Y);--Validate
 exit when Move_Is=Ok or Move_Is=Pass; --OK
 end loop;

 Add(The.Reversi, X, Y, Move_Is); --Add move to board

 Display(The.Reversi); --Display new board
 Current_State := Status(The.Reversi); --State of play is

 if Current_State = Play then --Is still playable
 case Person is --next player
 when Black => Person := White;
 when White => Person := Black;
 end case;
 end if;

 end loop; --Next move

 Announce(The.Contestant(Person), Current_State); --Result

end Play;

end Class_Game;

9.5.1 Running the program

Then to run the game the following procedure is used to send the message Play to an instance of the class Game.

with Class_Game;
use Class_Game;
procedure Main is
 A_Game : Game;
begin
 Play(A_Game);
end Main;

9.5.2 Example of a typical game

A typical game might be:

134 Case study: Design of a game

 M A Smith - May not be reproduced without permission

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | O | | | |

| | | | O | X | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

Player X has 2 counters -
Player O has 2 counters
Please enter move X row column: 4 6

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | X | X | | |

| | | | O | X | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

Player X has 4 counters -
Player O has 1 counters
Please enter move O row column: 5 6

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | X | X | | |

| | | | O | O | O | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

Player X has 3 counters -
Player O has 3 counters
Please enter move O row column: 6 6

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | X | X | | |

| | | | O | X | X | | |

| | | | | | X | | |

| | | | | | | | |

| | | | | | | | |

Player X has 6 counters -
Player O has 1 counters
Please enter move O row column: 0 0

Case study: Design of a game 135

 M A Smith - May not be reproduced without permission

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | X | X | | |

| | | | O | X | X | | |

| | | | | | X | | |

| | | | | | | | |

| | | | | | | | |

Player X has 6 counters -
Player O has 1 counters
Please enter move X row column: 6 4

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | X | X | X | | |

| | | | X | X | X | | |

| | | | X | | X | | |

| | | | | | | | |

| | | | | | | | |

Player X has 8 counters -
Player O has 0 counters
Player X has won

9.6 Implementation of the other classes

The main program is implemented using the classes described earlier. The package Pack_Screen is responsible
for handling the machine specific action of clearing the screen. Using an ANSI terminal, its implementation is as
follows:

package Pack_Screen is
 procedure Screen_Clear; --Home clear screen
 procedure Screen_Home; --Home no clear screen
private
 Esc: constant Character := Character'Val(27);
end Pack_Screen;

The implementation of this package uses ANSI escape sequences to implement these procedures. If an ANSI
compatible terminal is not available, the bodies of these procedures can be changed to implement an appropriate
alternative.

with Text_Io; use Text_Io;
package body Pack_Screen is --Terminal dependent I/O
 procedure Screen_Clear is --Clear screen
 begin
 Put(Esc & "[2J"); --Escape sequence
 end Screen_Clear;
 procedure Screen_Home is --Home
 begin
 Put(Esc & "[0;0H"); --Escape sequence
 end Screen_Home;
end Pack_Screen;

The specification of the class Counter is as follows:

136 Case study: Design of a game

 M A Smith - May not be reproduced without permission

package Class_Counter is
 type Counter is private;
 type Counter_Colour is (Black, White);
 procedure Set(The:in out Counter; Rep:in Counter_Colour);
 procedure Display(The:in Counter);
 procedure Display_None(The:in Counter);
 procedure Flip(The:in out Counter);
 function Rep(The:in Counter) return Counter_Colour;
private
 type Counter is record
 Colour: Counter_Colour; --Colour of counter
 end record;
end Class_Counter;

The procedure Set sets a counter to a specific colour.

with Ada.Text_Io;
use Ada.Text_Io;
package body Class_Counter is
 procedure Set(The:in out Counter; Rep:in Counter_Colour) is
 begin
 The.Colour := Rep;
 end Set;

The procedure Display and Display_None respectively display the contents of a counter or no counter.

 procedure Display(The:in Counter) is
 begin
 case The.Colour is
 when Black => Put('X'); --Representation of a black piece
 when White => Put('O'); --Representation of a white piece
 end case;
 end Display;

 procedure Display_None(The:in Counter) is
 begin
 Put(' '); --Representation of NO piece
 end Display_None;

The procedure Flip flips a counter. By flipping a counter the other player’s colour is exposed, whilst the
procedure Rep returns the colour of the counter.

 procedure Flip(The:in out Counter) is
 begin
 case The.Colour is
 when Black => The.Colour := White; --Flip to White
 when White => The.Colour := Black; --Flip to Black
 end case;
 end Flip;

 function Rep(The:in Counter) return Counter_Colour is
 begin
 return The.Colour; --Representation of the counter colour
 end Rep;
end Class_Counter;

Case study: Design of a game 137

 M A Smith - May not be reproduced without permission

The specification for the class Cell which holds a counter is as follows:

with Class_Counter;
use Class_Counter;
package Class_Cell is
 type Cell is private;
 type Cell_Holds is (C_White, C_Black, Empty);

 procedure Initialize(The:in out Cell);
 function Holds(The:in Cell) return Cell_Holds;
 procedure Add(The:in out Cell; Players_Counter:in Counter);
 procedure Display(The:in Cell);
 procedure Flip(The:in out Cell);
 function To_Colour(C:in Cell_Holds) return Counter_Colour;
private
 type Cell_Is is (Empty_Cell, Not_Empty_Cell);
 type Cell is record
 Contents: Cell_Is := Empty_Cell;
 Item : Counter; --The counter
 end record;
end Class_Cell;

In the implementation of the package the procedure Initialize sets the contents of the cell to empty.

package body Class_Cell is
 procedure Initialize(The:in out Cell) is
 begin
 The.Contents := Empty_Cell; --Initialize cell to empty
 end Initialize;

The procedure Holds returns the contents of the cell which is defined by the enumeration type
Cell_Holds.

 function Holds(The:in Cell) return Cell_Holds is
 begin
 case The.Contents is
 when Empty_Cell => --Empty
 return Empty; -- No counter
 when Not_Empty_Cell => --Counter
 case Rep(The.Item) is
 when White => return C_White; -- white counter
 when Black => return C_Black; -- black counter
 end case;
 end case;
 end Holds;

The next three procedures implement:
l Adding of a new counter into a cell.
l Displaying the contents of a cell.
l Flipping the counter in the cell to the other colour.

 procedure Add(The:in out Cell; Players_Counter:in Counter) is
 begin
 The := (Not_Empty_Cell,Players_Counter);
 end Add;

138 Case study: Design of a game

 M A Smith - May not be reproduced without permission

 procedure Display(The:in Cell) is
 begin
 if The.Contents = Not_Empty_Cell then
 Display(The.Item); --Display the counter
 else
 Display_None(The.Item); --No counter
 end if;
 end Display;

 procedure Flip(The:in out Cell) is
 begin
 Flip(The.Item); --Flip counter
 end Flip;

The function To_Colour converts the enumeration Cell_Holds to the enumeration Counter_Colour .
This method is required so that the contents of a Cell can be processed as a Counter_Colour. The board
holds the colour of the current player. It is an error to ask for the colour of an empty cell.

 function To_Colour(C:in Cell_Holds) return Counter_Colour is
 begin
 case C is --Conversion of enum.
 when C_White => return White;
 when C_Black => return Black;
 when others => raise Constraint_Error;
 end case;
 end To_Colour;

end Class_Cell;

Note: The code associated with the when others clause will never be executed.

The package Class_Board is by far the most complex of the packages used in this implementation. As well
as several visible functions and procedures, it also has several private functions and procedures. The main
complexity occurs in the function Check_Move and the function add.

with Class_Counter, Class_Cell;
use Class_Counter, Class_Cell;
package Class_Board is

 type Board is private;
 type State_Of_Game is (Play, Win, Draw, Lose);
 type Move_Status is (Ok, Invalid, Pass);

 procedure Set_Up(The:in out Board);
 procedure Add(The:in out Board; X,Y:in Integer;
 Move_Is:in Move_Status);
 procedure Now_Playing(The:in out Board; C:in Counter_Colour);
 procedure Display(The:in Board);
 function Check_Move(The:in Board; X,Y:in Integer)
 return Move_Status;
 function Status(The:in Board) return State_Of_Game;
 function Contents(The:in Board; X,Y:in Integer)
 return Cell_Holds;

Case study: Design of a game 139

 M A Smith - May not be reproduced without permission

private
 Size: constant := 8; --8 * 8 Board
 subtype Board_Index is Integer range 1 .. Size; --

 type Board_Array is array (Board_Index, Board_Index) of Cell;
 type Score_Array is array (Counter_Colour) of Natural;
 type Move_Array is array (Counter_Colour) of Move_Status;

 type Board is record
 Sqrs : Board_Array; --Game board
 Player : Counter_Colour; --Current Player
 Opponent : Counter_Colour; --Opponent
 Score : Score_Array; --Running score
 Last_Move: Move_Array; --Last move is
 end record;
end Class_Board;

The body of Class_Board contains specifications of functions and procedures which are used in the
decomposition of the methods of the class Board.

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Screen;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Screen;
package body Class_Board is

 procedure Next(The:in Board; X_Co,Y_Co:in out Board_Index;
 Dir:in Natural; Res:out Boolean);
 function Find_Turned(The:in Board; X,Y: in Board_Index)
 return Natural;
 procedure Turn_Counters(The: in out Board; X,Y: in Board_Index;
 Total: out Natural);
 function No_Turned(The:in Board; O_X,O_Y:in Board_Index;
 Dir:in Natural;
 N:in Natural := 0) return Natural;
 procedure Capture(The:in out Board; X_Co, Y_Co:in Board_Index;
 Dir:in Natural);

The procedure setup populates the board with empty cells and the initial central grid of four counters.

 procedure Set_Up(The:in out Board) is
 Black_Counter: Counter; --A black counter
 White_Counter: Counter; --A white counter
 begin
 Set(Black_Counter, Black); --Set black
 Set(White_Counter, White); --Set white
 for X in The.Sqrs'range(1) loop
 for Y in The.Sqrs'range(2) loop
 Initialize(The.Sqrs(X,Y)); --To empty
 end loop;
 end loop;
 Add(The.Sqrs(Size/2, Size/2), Black_Counter);
 Add(The.Sqrs(Size/2, Size/2+1), White_Counter);
 Add(The.Sqrs(Size/2+1, Size/2), White_Counter);
 Add(The.Sqrs(Size/2+1, Size/2+1), Black_Counter);
 The.Score(Black) := 2; The.Score(White) := 2;
 end Set_Up;

140 Case study: Design of a game

 M A Smith - May not be reproduced without permission

The procedure Now_Playing records the colour of the current player. This information is used by
subsequent methods add and Check_Move.

 procedure Now_Playing(The:in out Board; C:in Counter_Colour) is
 begin
 The.Player := C; --Player
 case C is --Opponent
 when White => The.Opponent := Black;
 when Black => The.Opponent := White;
 end case;
 end Now_Playing;

The procedure Display displays a representation of the reversi board on the output device. For this
implementation of the game, the output device is an ANSI text-based terminal.

 procedure Display(The:in Board) is
 Dashes: String(1 .. The.Sqrs'Length*4+1) := (others=>'-');
 begin
 Screen_Clear; --Clear screen
 Put(Dashes); New_Line; --Top
 for X in The.Sqrs'range(1) loop
 Put("|"); --Cells on line
 for Y in The.Sqrs'range(2) loop
 Put(" "); Display(The.Sqrs(X,Y)); Put(" |");
 end loop;
 New_Line; Put(Dashes); New_Line; --Bottom lines
 end loop;
 New_Line;
 Put("Player X has ");
 Put(Integer(The.Score(Black)), Width=>2);
 Put(" counters"); New_Line;
 Put("Player O has ");
 Put(Integer(The.Score(White)), Width=>2);
 Put(" counters"); New_Line;
 end Display;

The function Check_Move checks the validity of a proposed move on the board. This function is decomposed
into the function Find_Turned which calculates the number of pieces that will be turned if a move is made into
the specified square.

 function Check_Move(The:in Board; X,Y:in Integer)
 return Move_Status is
 begin
 if X = 0 and then Y = 0 then
 return Pass;
 elsif X in Board_Index and then Y in Board_Index then
 if Holds(The.Sqrs(X, Y)) = Empty then
 if Find_Turned(The, X, Y) > 0 then
 return Ok;
 end if;
 end if;
 end if;
 return Invalid;
 end Check_Move;

Case study: Design of a game 141

 M A Smith - May not be reproduced without permission

The function Find_Turned finds the number of the opponent’s counters that would be turned for a
particular move. The strategy for Find_Turned is to sum the number of opponent's counters which will be
flipped in each compass direction. For any position on the board there are potentially eight directions to check.
The directions are illustrated in Figure 9.5.

1

2

3

7

6

5

8

4

Figure 9.5 Compass direction to check when a new counter is added to the board.

 function Find_Turned(The:in Board; X,Y: in Board_Index)
 return Natural is
 Sum : Natural := 0; --Total stones turned
 begin
 if Holds(The.Sqrs(X, Y)) = Empty then
 for Dir in 1 .. 8 loop --The 8 possible directions
 Sum := Sum + No_Turned(The, X, Y, Dir);
 end loop;
 end if;
 return Sum; --return total
 end Find_Turned;

The recursive function No_Turned counts the number of the opponent’s pieces that would be captured. This
may of course be zero.

 function No_Turned(The:in Board; O_X,O_Y:in Board_Index;
 Dir:in Natural;
 N:in Natural := 0) return Natural is
 Ok : Boolean; --Result from next
 Nxt: Cell_Holds; --Next in line is
 Col: Counter_Colour; --Counter colour
 X : Board_Index := O_X; --Local copy
 Y : Board_Index := O_Y; --Local copy
 begin
 Next(The, X,Y, Dir, Ok); --Next cell
 if Ok then --On the board
 Nxt := Holds(The.Sqrs(X,Y)); --Contents are
 if Nxt = Empty then --End of line
 return 0;
 else
 Col := To_Colour(Nxt); --Colour
 if Col = The.Opponent then --Opponents counter
 return No_Turned(The, X,Y, Dir, N+1); --Try next cell
 elsif Col = The.Player then --End of counters
 return N; --Counters turned
 end if;
 end if;
 else
 return 0; --No line
 end if;
 end No_Turned;

142 Case study: Design of a game

 M A Smith - May not be reproduced without permission

The procedure Next returns the position of the next cell in the current direction. If there is no such cell
because the edge of the board has been reached, then Res is set to False.

 procedure Next(The:in Board; X_Co,Y_Co:in out Board_Index;
 Dir:in Natural; Res:out Boolean) is
 X, Y : Natural;
 begin
 X := X_Co; Y := Y_Co; --May go outside Board_range
 case Dir is
 when 1 => Y:=Y+1; -- Direction to move
 when 2 => X:=X+1; Y:=Y+1; -- 8 1 2
 when 3 => X:=X+1; --
 when 4 => X:=X+1; Y:=Y-1; -- 7 * 3
 when 5 => Y:=Y-1; --
 when 6 => X:=X-1; Y:=Y-1; -- 6 5 4
 when 7 => X:=X-1; --
 when 8 => X:=X-1; Y:=Y+1; --
 when others => raise Constraint_Error;
 end case;
 if X in Board_Index and then Y in Board_Index then
 X_Co := X; Y_Co := Y; --
 Res := True; --Found a next cell
 else
 Res := False; --No next cell
 end if;
 end Next;

The procedure Add adds a player’s move to the board. Naturally this must be a valid move which has
previously been validated with the function Check_Move. The type of move is recorded so that a draw can be
detected when both players have passed on their last move.

 procedure Add(The:in out Board; X,Y:in Integer;
 Move_Is:in Move_Status) is
 Plays_With: Counter; --Current player's counter
 Turned : Natural; --Number counters turned
 begin
 Set(Plays_With, The.Player); --Set current colour
 The.Last_Move(The.Player) := Move_Is; --Last move is
 if Move_Is = Ok then --Not Pass
 Turn_Counters(The, X,Y, Turned); --and flip
 Add(The.Sqrs(X, Y), Plays_With); --to board
 The.Score(The.Player) :=
 The.Score(The.Player) + Turned + 1;
 The.Score(The.Opponent):=
 The.Score(The.Opponent) - Turned;
 end if;
 end Add;

Case study: Design of a game 143

 M A Smith - May not be reproduced without permission

The procedure Turn_Counters implements the turning of the opponents counters on the board. Naturally,
for this to be called, the move made must be valid.

 procedure Turn_Counters(The: in out Board; X,Y: in Board_Index;
 Total: out Natural) is
 Num_Cap : Natural := 0;
 Captured : Natural;
 begin
 if Holds(The.Sqrs(X, Y)) = Empty then
 for Dir in 1 .. 8 loop
 Captured := No_Turned(The, X, Y, Dir);
 if Captured > 0 then
 Capture(The, X, Y, Dir);
 Num_Cap := Num_Cap + Captured;
 end if;
 end loop;
 end if;
 Total := Num_Cap;
 end Turn_Counters;

The recursive procedure Capture implements the physical capture of the opponent’s counters. The strategy
is to flip the opponent’s counters in the current direction until a square containing the current player’s counters is
found.

 procedure Capture(The:in out Board; X_Co, Y_Co:in Board_Index;
 Dir:in Natural) is
 Ok : Boolean; --There is a next cell
 X, Y : Board_Index; --Coordinates of cell
 Nxt : Cell_Holds; --Next in line is
 begin
 X := X_Co; Y := Y_Co;
 Next(The, X, Y, Dir, Ok); --Calculate pos next cell
 if Ok then --Cell exists (Must)
 Nxt := Holds(The.Sqrs(X,Y));
 if To_Colour(Nxt) = The.Opponent then
 Flip(The.Sqrs(X, Y)); --Capture
 Capture(The, X, Y, Dir); --Implement capture
 else
 return; --End of line
 end if;
 else
 raise Constraint_Error; --Will never occur
 end if;
 end Capture;

144 Case study: Design of a game

 M A Smith - May not be reproduced without permission

The procedure Status returns the current state of the game. This may be a draw if both players have passed
on their last go.

 function Status (The:in Board) return State_Of_Game is
 begin
 if The.Score(The.Opponent) = 0 then
 return Win;
 end if;
 if (The.Sqrs'Length(1) * The.Sqrs'Length(2) =
 The.Score(The.Opponent)+The.Score(The.Player)) or
 (The.Last_Move(Black)=Pass and The.Last_Move(White)=Pass)
 then
 if The.Score(The.Opponent) = The.Score(The.Player)
 then return Draw;
 end if;
 if The.Score(The.Opponent) < The.Score(The.Player)
 then return Win;
 else
 return Lose;
 end if;
 end if;
 return Play;
 end;

Whilst not used, the function Contents is provided so that another user of the class Board could find the
contents of individual cells.

 function Contents(The:in Board; X,Y:in Integer)
 return Cell_Holds is
 begin
 return Holds(The.Sqrs(X, Y));
 end Contents;

end Class_Board;

The package Class_Player is responsible for communicating with the actual human player playing the
game.

with Class_Counter, Class_Board;
use Class_Counter, Class_Board;
package Class_Player is
 type Player is private;

 procedure Set(The:in out Player; C:in Counter_Colour);
 procedure Get_Move(The:in Player; Row,Column:out Integer);
 function My_Counter(The:in Player) return Counter;
 procedure Announce(The:in Player; What:in State_Of_Game);
private
 type Player is record
 Plays_With : Counter; --Player's counter
 end record;
end Class_Player;

Case study: Design of a game 145

 M A Smith - May not be reproduced without permission

In the implementation of the class Class_Player the procedure Set sets the colour for the player’s
counter.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
package body Class_Player is
 procedure Set(The:in out Player; C:in Counter_Colour) is
 A_Counter : Counter;
 begin
 Set(A_Counter, C); --Set colour
 The.Plays_With := A_Counter; --Player is playing with
 end Set;

The procedure Get_Move communicates with the human player using a simple text based interaction.

 procedure Get_Move(The:in Player; Row,Column:out Integer) is
 Valid_Move : Boolean := False;
 begin
 while not Valid_Move loop
 begin
 Put("Please enter move "); Display(The.Plays_With);
 Put(" row column : "); Get(Row); Get(Column);
 Valid_Move := True;
 exception
 when Data_Error =>
 Row := -1; Column := -1; Skip_Line;
 when End_Error =>
 Row := 0; Column := 0;
 return;
 end;
 end loop;
 end Get_Move;

Note: A player can pass a turn by entering a coordinate of 0, 0.

The counter that the player plays with is returned by the function My_Counter.

 function My_Counter(The:in Player) return Counter is
 begin
 return The.Plays_With;
 end My_Counter;

146 Case study: Design of a game

 M A Smith - May not be reproduced without permission

The procedure Announce communicates with the human player the result of the game.

 procedure Announce(The:in Player; What:in State_Of_Game) is
 begin
 case What is
 when Win =>
 Put("Player "); Display(The.Plays_With);
 Put(" has won");
 when Lose =>
 Put("Player "); Display(The.Plays_With);
 Put(" has lost");
 when Draw =>
 Put("It's a draw");
 when others =>
 raise Constraint_Error;
 end case;
 New_Line;
 end Announce;

end Class_Player;

9.7 Self-assessment

l What is the function of the class Player?

l What is the function of the class Cell?

l Could the recursive function no_turned in the class Board be written non-recursively?

l The procedure announce in the class Board has a case statement with a when others clause
that can never occur. Why is this clause necessary?

9.8 Exercises

l Better ‘reversi’
Modify the program to have a separate class for all input and output.

l Graphic ‘reversi’
The program could be modified by providing additional classes to present a graphical display of the
board. The display could enable the user to drop a counter into a cell selected by a using a mouse.
Describe the modifications required to implement this new version.

l Implementation of a graphic ‘Reversi’
Implement this new graphical version.

 M A Smith - May not be reproduced without permission

10 Inheritance

This chapter introduces the concept of inheritance in which an existing class can be specialized without
modifying the original class. By using this technique software re-use can become a practical consideration
when developing software. Thus a programmer can become a builder of software using previously
developed components.

10.1 Introduction

Inheritance is the ability to create a new class by using the methods and instance attributes from an existing class
in the creation of a new class. For example, a class Account that provides the methods deposit, withdraw,
balance, and statement can be used as the base for a new class that provides the ability to pay interest on the
outstanding balance in the account. The new class Interest_Account inherits all the methods and instance
attributes from the class Account and adds to these the new methods of Calc_Interest, Add_Interest,
and Set_Rate plus the instance attribute Accumulated_Interest. This is illustrated in Figure 10.1.

Class Account Class Interest_Account Actual components of
Class Interest_Account

Balance_Of

Deposit

Withdraw

Balance

Account

Add_Interest

Calc_Interest

Set_Rate

Accumulated_Interest

Interest_Account

Balance_Of
Accumulated_Interest

Deposit
Withdraw

Balance_Of
Add_Interest
Calc_Interest
Set_Rate

Interest_Account

Figure 10.1 components of Account and the derived class Interest_account.

Note: The class Interest_Account has the same visibility of components in the base class Account as
would a client of the class. In particular, it has no access to the private instance attributes of the base
class. Thus methods in the class Interest_Account cannot access the base class instance
attribute Balance_Of.

However, for a class type to be fully extended it must be declared as tagged. If a class type is not tagged
then it can only be extended by adding new methods. New instance attributes may not be added.

The consequence of this is that an implementor of a class must explicitly declare the class record type
tagged if new classes are to be derived from it.

148 Inheritance

 M A Smith - May not be reproduced without permission

10.2 Tagged types

A tagged record type declaration is very similar to an ordinary type declaration. For example, the
specification of a class Account shown in Section 6.3.4 can be amended to allow inheritance to take place. The
new specification for the class Account is as follows:

package Class_Account is
 type Account is tagged private;
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;

procedure Deposit(The:in out Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Account;
 Amount:in Pmoney; Get:out Pmoney);
 function Balance(The:in Account) return Money;
private
 type Account is tagged record
 Balance_Of : Money := 0.00; --Amount on deposit
 end record;
end Class_Account;

Note: The only difference from the previous class specification for Account is the inclusion of the keyword
tagged.

The implementation of the class Class_Account remains the same. This implementation is shown in
Section 6.3.6.

10.2.1 Terminology

Terminology Explanation
Base class / Super class A class from which other classes are derived from.
Derived class / Sub class A new class that specializes an existing class

10.3 The class Interest_account

From the class Account can be derived a new type of account that pays interest on the outstanding balance at the
end of each day. This new class will have the additional methods of:

Method Responsibility
Calc_Interest Calculate at the end of the day the interest due on the

balance of the account. This will be accumulated and
credited to the account at the end of the accounting period.

Add_Interest Credit the account with the accumulated interest for the
accounting period.

Set_Rate Set the interest rate for all instances of the class.

The method Set_Rate is special as it has the responsibility of setting the interest rate for all instances of the
class. This is implemented by setting the shared class attribute the_Interest_Rate. When a variable is
declared outside the class record type there is only a single instance of the attribute and this single class attribute is
shared between, and visible to all instances of the class. However, it is not visible outside the class as it is declared
within the private part of the package specification. This is illustrated in Figure 10.2

Inheritance 149

 M A Smith - May not be reproduced without permission

Two instances of the class Interest_Account sharing the same class attribute
the_interest_rate.

Deposit
Withdraw
Balance
Add_Interest
Calc_Interest
Set_Rate

balance_of
Accumulated_Interest

The_Interest_Rate

Deposit
Withdraw
Balance
Add_Interest
Calc_Interest
Set_Rate

balance_of
Accumulated_Interest

Figure 10.2 Illustration of a class global variable.

The Ada specification for the inherited class Class_Interest_Account is:

with Class_Account;
use Class_Account;
package Class_Interest_Account is

 type Interest_Account is new Account with private;

 procedure Set_Rate(Rate:in Float);
 procedure Calc_Interest(The:in out Interest_Account);
 procedure Add_Interest(The:in out Interest_Account);
private
 Daily_Interest_Rate: constant Float := 0.00026116; --10%
 type Interest_Account is new Account with record
 Accumulated_Interest : Money := 0.00; --To date
 end record;
 The_Interest_Rate : Float := Daily_Interest_Rate;
end Class_Interest_Account;

Note: The declaration of the class Interest_Account is defined as an extension to the existing class
Account. The specification for the additional procedures are defined in the public part of the
specification.
The class attribute The_Interest_Rate is shared amongst all the instances of the class
Interest_Account.
As the procedure set_rate only accesses class attributes, an instance of the class is not required as
a parameter. This type of method is referred to as a class method.

The class Interest_account contains:

l The following methods:

Defined in Class_Account Defined in Class_interest_account
Deposit Calc_Interest
Withdraw Add_Interest
Balance Set_Rate
Statement

l The following instance and class attributes:

Defined in Class_Account Defined in Class_interest_account
Balance_Of Accumulated_Interest

The_Interest_Rate

Note: Only accumulated_interest and The_Interest_Rate may be accessed by methods defined
in the class Interest_Account.

150 Inheritance

 M A Smith - May not be reproduced without permission

The implementation of the class Class_Interest_Account is:

package body Class_Interest_Account is

 procedure Set_Rate(Rate:in Float) is
 begin
 The_Interest_Rate := Rate;
 end Set_Rate;

 procedure Calc_Interest(The:in out Interest_Account) is
 begin
 The.Accumulated_Interest := The.Accumulated_Interest +
 Balance(The) * The_Interest_Rate;
 end Calc_Interest;

 procedure Add_Interest(The:in out Interest_Account) is
 begin
 Deposit(The, The.Accumulated_Interest);
 The.Accumulated_Interest := 0.00;
 end Add_Interest;

end Class_Interest_Account;

The procedure Statement will print a mini-statement for an Account

with Ada.Text_Io, Ada.Float_Text_Io, Class_Account;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Account;
procedure Statement(An_Account:in Account) is
begin
 Put("Mini statement: The amount on deposit is £");
 Put(Balance(An_Account), Aft=>2, Exp=>0);
 New_Line(2);
end Statement;

Inheritance 151

 M A Smith - May not be reproduced without permission

The two classes Account and Interest_Account can be used in a program to perform some simple bank
transactions. A program to illustrate the use of the new class Interest_Account and the original class
Account is shown below:

with Ada.Text_io,
 Class_Interest_Account, Class_Account, Statement;
use Ada.Text_io,
 Class_Interest_Account, Class_Account;
procedure Main is
 Mike :Account; --Normal Account
 Corinna :Interest_Account; --Interest bering account
 Obtained:Money;
begin
 Set_Rate(0.00026116); --For all instances of
 --interest bering accounts
 Statement(Mike);

 Put("Deposit £50.00 into Mike's account"); New_Line;
 Deposit(Mike, 50.00);
 Statement(Mike);

 Put("Withdraw £80.00 from Mike's account"); New_Line;
 Withdraw(Mike, 80.00, Obtained);
 Statement(Mike);

 Put("Deposit £500.00 into Corinna's account"); New_Line;
 Deposit(Corinna, 500.00);
 Statement(Account(Corinna));

 Put("Add interest to Corinna's account"); New_Line;
 Calc_Interest(Corinna);
 Add_Interest(Corinna);
 Statement(Account(Corinna));
end Main;

In this program, the procedure Statement takes as its parameter an instance of an Account. However, as
the account for Corinna is an instance of a Interest_Account it must first be converted to an instance of an
Account before it can be passed as an actual parameter to Statement. This is accomplished with a view
conversion Account(Corinna). The actual parameter passed to Statement is now viewed as if it were an
Account.

which, when compiled and run, would produce the following output:

Mini statement: The amount on deposit is £ 0.00

Deposit £50.00 into Mike's account
Mini statement: The amount on deposit is £50.00

Withdraw £80.00 from Mike's account
Mini statement: The amount on deposit is £50.00

Deposit £500.00 into Corinna's account
Mini statement: The amount on deposit is £500.00

Add interest to Corinna's account
Mini statement: The amount on deposit is £500.13

152 Inheritance

 M A Smith - May not be reproduced without permission

10.3.1 Terminology

The following terminology is used to describe the shared components of a class.

Terminology Example:
in class Interest_account

Explanation

Class attribute The_Interest_Rate A variable which is shared between
all members of the class.

Class method Set_Rate A procedure or function used to
access only class attributes.

10.4 Visibility rules (Normal inheritance)
The derived class can only access public methods of the base class. As instance attributes are declared in the
private part of the base class they are not accessible to the derived class. For example, the class
Interest_Account can access the methods Deposit, Withdraw, and Balance but cannot access the
instance attribute Balance_Of. The visibility of items in the base class and derived class is illustrated in Figure
10.3.

Key Base class visibility Derived class visibility

Visible to class and
client.

Visible to this class
only

Not visible to class or
client

Visible

Visible to class

Not visible

Visible

Visible to class

Not visible

Figure 10.3 Visibility of components in base and derived classes.

10.5 Converting a derived class to a base class

A derived class may be converted to its base class, the effect of which is to remove the instance attributes added
by the derived class. For example, in the following program Corinna’s interest bearing account is converted to a
normal account. However, a base class cannot be converted directly to a derived class.

with Class_Interest_Account, Class_Account, Statement;
use Class_Interest_Account, Class_Account;
procedure Main is
 Corinna : Interest_Account;
 New_Acc : Account;
begin
 Deposit(Corinna, 100.00);
 New_Acc := Account(Corinna); --derived -> base conversion
 Statement(Account(Corinna)); --Interest_account
 Statement(New_Acc); --Account
end Main;

Note: The effect of a conversion from a derived class to a base class is to remove the additional components
that have been defined in the derived class.

Inheritance 153

 M A Smith - May not be reproduced without permission

which when run, would give the following results:

Mini statement: The amount on deposit is £100.00

Mini statement: The amount on deposit is £100.00

10.6 Abstract class

If a class is to be used purely as a specification of the facilities that are to be provided by later derived classes,
then it can be made abstract. An abstract class therefore has no implementation part. For example, an abstract
specification of a bank account is as follows:

package Class_Abstract_Account is

 type Abstract_Account is abstract tagged null record;
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;

 procedure Deposit (The:in out Abstract_Account;
 Amount:in Pmoney) is abstract;
 procedure Withdraw (The:in out Abstract_Account;
 Amount:in Pmoney;
 Get:out Pmoney) is abstract;
 function Balance (The:in Abstract_Account)
 return Money is abstract;
end Class_Abstract_Account;

Note: An elaboration of an abstract class can never be made.

The keyword abstract is used to indicate:

l That the type is abstract, and hence no actual definition will be provided.

l That the methods (functions or procedures) are abstract and consequently there will be no
implementation part.

Note: As the type Abstract_account contains no instance attributes it has been left public. It could have
been defined as:

 type Abstract_account is abstract tagged private;

with the private part of the specification containing:

 type Abstract_account is abstract tagged null record;

The component ‘null record' is shorthand for :
‘record null end record’

154 Inheritance

 M A Smith - May not be reproduced without permission

The abstract class can then be used to derived specific types of bank account. In the following case it has been
used to derive a simple bank account.

with Class_Abstract_Account;
use Class_Abstract_Account;
package Class_Account is

 type Account is new Abstract_Account with private;
 subtype Money is Class_Abstract_Account.Money;
 subtype Pmoney is Class_Abstract_Account.Pmoney;
 procedure Deposit (The:in out Account; Amount:in Pmoney);
 procedure Withdraw (The:in out Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance (The:in Account) return Money;
private
 type Account is new Abstract_Account with record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
end Class_Account;

Note: Subtype has been used to make the subtypes Money and PMoney visible to clients of the class. If this
had not been done, users of the class would in most cases have to with and use the package
Class_abstract_account.

The implementation of which would be the same as the class Account shown in Section 6.3.5.
Once a class has been derived from an existing class it too may be used as a base class in deriving a new class.

For example, an account that allows a customer to only make three withdrawals in a week can be derived from
Class_Account as follows:

with Class_Account;
use Class_Account;
package Class_Account_Ltd is

 type Account_Ltd is new Account with private;

 procedure Withdraw (The:in out Account_Ltd;
 Amount:in Pmoney; Get:out Pmoney);
 procedure Reset(The:in out Account_Ltd);
private
 Withdrawals_In_A_Week : Natural := 3;
 type Account_Ltd is new Account with record
 Withdrawals : Natural := Withdrawals_In_A_Week;
 end record;
end Class_Account_Ltd;

Note: The derived class overloads the method Withdraw with a new specialized meaning. The method
Reset is used to set the number of withdrawals that may be made in the current week to three.

The implementation for the class is as follows:

package body Class_Account_Ltd is

Inheritance 155

 M A Smith - May not be reproduced without permission

The specialization of the procedure Withdraw calls the method withdraw in class Account to process the
withdrawal. To avoid infinite recursion, the parameter The is converted to type Account before it is passed as a
parameter to Withdraw. This is termed a view conversion. Overload resolution is then used to determine which
version of Withdraw to call.

 procedure Withdraw (The:in out Account_Ltd;
 Amount:in Pmoney; Get:out Pmoney) is
 begin
 if The.Withdrawals > 0 then --Not limit
 The.Withdrawals := The.Withdrawals - 1;
 Withdraw(Account(The), Amount, Get); --In Account
 else
 Get := 0.00; --Sorry
 end if;
 end Withdraw;

The function reset resets the number of withdrawals that may be made in the current week.

 procedure Reset(The:in out Account_Ltd) is
 begin
 The.Withdrawals := Withdrawals_In_A_Week;
 end Reset;

end Class_Account_Ltd;

10.6.1 Putting it all together

A program to illustrate the use of the class Class_Account_ltd is shown below:

with Class_Account, Class_Account_ltd, Statement;
use Class_Account, Class_Account_ltd;
procedure Main is
 Mike : Account_Ltd;
 Obtain: Money;
begin
 Deposit(Mike, 300.00); --In credit
 Statement(Account(Mike));
 Withdraw(Mike, 100.00, Obtain); --Withdraw some money
 Withdraw(Mike, 10.00, Obtain); --Withdraw some money
 Withdraw(Mike, 10.00, Obtain); --Withdraw some money
 Withdraw(Mike, 20.00, Obtain); --Withdraw some money
 Statement(Account(Mike));
end Main;

Note: The with and use of the package Class_Account so that the subtype Money is directly visible.
The procedure Statement seen earlier is used to print a mini statement.

which when run, produces the following output:

Mini statement: The amount on deposit is £300.00

Mini statement: The amount on deposit is £180.00

Note: The final withdrawal of £20 is not processed as three withdrawals have already been made this week.

156 Inheritance

 M A Smith - May not be reproduced without permission

10.6.2 Visibility of base class methods

It is of course possible to call the base class method withdraw directly using:

 Withdraw(Account(Mike), 20.00, Obtain); --Cheat

as the Class Account is visible. This could have been prevented by not with’ing and use’ing the package
Class_Account. This had been done to make the subtype Money directly visible. Remember Money is
defined in the class Account (it has not been made visible to class Account_Ltd) so that both classes
Account and Account_Ltd can be with’ed and use’ed in the same unit.

To avoid the possibility of the accidental use of withdraw in the base class the above program could have
been written as:

with Class_Account, Class_Account_Ltd, Statement;
use Class_Account;
procedure Main is
 Mike : Account_Ltd;
 Obtain: Class_Account.Money;
begin
 Deposit(Mike, 300.00); --In credit
 Statement(Account(Mike));
 Withdraw(Mike, 100.00, Obtain); --Withdraw some money
 Withdraw(Mike, 10.00, Obtain); --Withdraw some money
 Withdraw(Mike, 10.00, Obtain); --Withdraw some money
 Withdraw(Mike, 20.00, Obtain); --Withdraw some money
 Statement(Account(Mike));
end Main;

Note: The package Class_Account has been used explicitly to access the subtype Money.

10.7 Multiple inheritance

Multiple inheritance is the ability to create a new class by inheriting from two or more base classes. For example,
the class Named_Account, a named bank account, can be created from the class Account and the class
Name_Address. The class Account is described in Section 6.3.4 and the class Name_Address is described
in Section 8.10 The inheritance diagram for the class Named_Account is illustrated in Figure 10.4.

Named_Account

Account Name_Address

Figure 10.4 Inheritance diagram for a named bank account.

The responsibilities of the class Named_Account are all those of the classes Account and
Name_Address plus the additional responsibility to print the person's name with their printed statement. The
new responsibility of printing a statement with the account holder's name overrides the responsibility of printing a
statement in Account . The methods in the three classes are:

In Class Named_Account In Class Account In Class Name_Address
Deposit Set
Withdraw Print_Name
Balance Print_Address

Inheritance 157

 M A Smith - May not be reproduced without permission

Note: The methods of the class Named_Account will be all the methods of an Account plus all the
methods of Name_Address plus any methods of Named_Account itself.

Unfortunately multiple inheritance is not directly supported in Ada 95. However, an easy work around is to
define the class Named_Account whose instance attributes are instances of the classes Account and
Name_Address. The public methods of the class Named_Account have the same specification as the
combined methods of Account and Named_Account except that the type of object operated on is an instance
of the class Named_Account.

The specification for the class Named_Account is shown below:

with Class_Account, Class_Name_Address;
use Class_Account, Class_Name_Address;
package Class_Named_Account is

 type Named_Account is tagged private;
 subtype Pmoney is Class_Account.Pmoney;
 subtype Money is Class_Account.Money;

 procedure Set(The:out Named_Account; Str:in String);
 function Deliver_Line(The:in Named_Account;
 Line:in Positive) return String;
 function Lines(The:in Named_Account) return Positive;
 procedure Deposit(The:in out Named_Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Named_Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance(The:in Named_Account) return Pmoney;
private
 type Named_Account is tagged record
 Acc : Account; --An account object
 Naa : Name_Address; --A Name and address object
 end record;
end Class_Named_Account;

Note: To allow a client of the class Named_Account to directly use the subtype Money in the class
Account the declaration :

subtype Money is Class_Account.Money;
has been added to the class.

The implementation of the class Named_Account is split into three distinct parts:

l The implementation of the methods in Name_Address.
l The implementation of the methods in Account.
l The implementation of the methods of Named_Account itself.

The implementation of the methods in Named_Account which are inherited from Name_Address are as
follows:

158 Inheritance

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
package body Class_Named_Account is

 procedure Set(The:out Named_Account; Str:in String) is
 begin
 Set(The.Naa, Str);
 end Set;

 function Deliver_Line(The:in Named_Account;
 Line:in Positive) return String is
 begin
 return Deliver_Line(The.Naa, Line);
 end Deliver_Line;

 function Lines(The:in Named_Account) return Positive is
 begin
 return Lines(The.Naa);
 end Lines;

The implementation of the methods in Named_Account which are inherited from Account are as follows:

procedure Deposit(The:in out Named_Account; Amount:in Pmoney) is
 begin
 Deposit(The.Acc, Amount);
 end Deposit;

 procedure Withdraw(The:in out Named_Account; Amount:in Pmoney;
 Get:out Pmoney) is
 begin
 Withdraw(The.Acc, Amount, Get);
 end Withdraw;

 function Balance (The:in Named_Account) return Pmoney is
 begin
 return Balance(The.Acc);
 end Balance;
end Class_Named_Account;

A procedure Statement to print a mini statement of the state of an instance of a Named_Account is defined
as follows:

with Ada.Text_Io, Ada.Float_Text_Io, Class_Named_Account;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Named_Account;
procedure Statement(An_Account:in Named_Account) is
begin
 Put("Statement for : "); Put(Deliver_Line(An_Account, 1)); New_Line;
 Put("Mini statement: The amount on deposit is £");
 Put(Balance(An_Account), Aft=>2, Exp=>0);
 New_Line(2);
end Statement;

Note: Again by not permiting an input or output operations to be part of the class, the scope for its potential
re-use is increased.

Inheritance 159

 M A Smith - May not be reproduced without permission

10.7.1 Putting it all together

A program to illustrate the use of the class Named_Account is shown below:

with Class_Named_Account, Statement;
use Class_Named_Account;
procedure Main is
 Mike : Named_Account;
 Get : Money;
begin
 Set (Mike, "A.N.Other/Brighton/UK");
 Deposit (Mike, 10.00);
 Statement(Mike);
 Withdraw (Mike, 5.00, Get);
 Statement(Mike);
end Main;

which when run, produces the following output:

Statement for : A.N.Other
Mini statement: The amount on deposit is £10.00

Statement for : A.N.Other
Mini statement: The amount on deposit is £ 5.00

10.8 Initialization and finalization
When an instance of a class is created, there can be static initialization of the instance or class attributes in the
object. For example, in the class Account in Section 6.3.4 the initial amount in the account was set to £0.00
when an instance of the class was elaborated. However, this initialization is limited to a simple assignment. In
some cases a more complex initialization is required.

Consider the case of a bank account that records an audit trail of all transactions made on the account. The
audit trail consists of a record written to disk for each transaction made on the account. The audit trail file
descriptor is shared between all instances of the class and is initialized by the first elaboration of an instance of the
class. The file descriptor is closed when the last instance of the class is finalized.

By inheriting from the package Ada.Finalization user defined initialization and finalization can be
defined for a class. This takes the form of two user defined procedures Initialize and Finalize which are
called respectively when an instance of the class is elaborated and when an instance of the class is destroyed. For
example, the point when initialization and finalization take place is annotated on the following fragment of code.

 procedure Ex5 is
 Mike : Account_At; --Initialization on mike
 begin
 Deposit(Mike, 100.00);
 declare
 Corinna : Account_At; --Initialization on corinna
 begin
 Deposit(Corinna, 100.00);
 --Finalization on corinna
 end;
 --Finalization on mike
 end Ex5;

160 Inheritance

 M A Smith - May not be reproduced without permission

The responsibilities for the Class Account_At that provides an audit trail are as follows:

Method Responsibility
Withdraw Withdraw money from the account and write an audit trail

record.
Deposit Deposit money into the account and write an audit trail record.
Balance Return the amount in the account and write an audit trail

record.
Initialize If this is the only active instance of the class Account then

open the audit trail file.
Finalization If this is the last active instance of the class Account then

close the audit trail file.

The specification for the class Account_At that creates an audit trail of all transactions is:

with Ada.Text_Io, Ada.Finalization;
use Ada.Finalization;
package Class_Account_At is

 type Account_At is new Limited_Controlled with private;
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;

 procedure Initialize(The:in out Account_At);
 procedure Finalize (The:in out Account_At);

 procedure Deposit(The:in out Account_At; Amount:in Pmoney);
 procedure Withdraw(The:in out Account_At;
 Amount:in Pmoney; Get:out Pmoney);
 function Balance(The:Account_At) return Money;
private

 type Account_At is new Limited_Controlled with record
 Balance_Of : Money := 0.00; --Amount on deposit
 Number : Natural := 0;
 end record;
 The_Audit_Trail: Ada.Text_Io.File_Type; --File handle
 The_Active : Natural := 0; --No of accounts
end Class_Account_At;

Note: Account_At is inherited from Limited_Controlled that is defined as a limited type. Thus
assignments of instances of Account_At are not allowed.

The variables The_Audit_Trail and The_Active are shared amongst all instances of the class. These
variables contain respectively the open file descriptor and the number of active instances of the class.

In a program using the class Class_Account_At, the number of active instances of the class are required so
that the file descriptor The_Audit_Trail may be initialized when the first instance of the class is elaborated
and closed when the last active instance of the class goes out of scope.

Inheritance 161

 M A Smith - May not be reproduced without permission

10.8.1 Implementation

The procedure Initialize is called whenever an instance of Account_At is elaborated. This procedure
checks if this is the first elaboration, determined by the reference count The_Active. If it is the first concurrent
elaboration then the audit trail file log.txt is opened in append mode and associated with the file descriptor
The_Audit_Trail.

with Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io, Ada.Float_Text_Io;
package body Class_Account_At is

 procedure Initialize(The:in out Account_At) is
 begin
 The_Active := The_Active + 1; --Another object
 if The_Active = 1 then -- first time for class
 Open(File=>The_Audit_Trail,
 Mode=>Append_File, Name=>"log.txt");
 end if;
 end Initialize;

The procedure Finalize is called when the elaborated storage for an instance of Account_At goes out of
scope. The reference count of the number of active instantiations of Account_At is checked and when the last
concurrent instance goes out of scope the file descriptor The_Audit_Trail is closed.

 procedure Finalize(The:in out Account_At) is
 begin
 if The_Active = 1 then Close(The_Audit_Trail); end if;
 The_Active:=The_Active-1;
 end Finalize;

The rest of the implementation follows very closely the previous implementation of the class Account with the
additional functionality of writing the audit trail record for each transaction performed.

 procedure Deposit(The:in out Account_At; Amount:in Pmoney) is
 begin
 The.Balance_Of := The.Balance_Of + Amount;
 Audit_Trail(The, " Deposit : Amount = ", Amount);
 end Deposit;

 procedure Withdraw(The:in out Account_At;
 Amount:in Pmoney; Get:out Pmoney) is
 begin
 if The.Balance_Of >= Amount then
 The.Balance_Of := The.Balance_Of - Amount;
 Get := Amount;
 else
 Get := 0.00;
 end if;
 Audit_Trail(The, " Withdraw : Amount = ", Get);
 end Withdraw;

 function Balance(The:in Account_At) return Money is
 begin
 Audit_Trail(The, " Balance : Balance = ", The.Balance_Of);
 return The.Balance_Of;
 end Balance;

end Class_Account_At;

162 Inheritance

 M A Smith - May not be reproduced without permission

10.8.2 Putting it all together

The following short test program demonstrates the working of the class Account_At.

with Class_Account_At, Statement;
use Class_Account_At;
procedure Main is
 Bank : array (1 .. 10) of Account_At;
 Obtain: Money;
begin
 Deposit(Bank(1), 100.00); --Deposit 100.00
 Withdraw(Bank(1), 80.00, Obtain);--Withdraw 80.00
 Deposit(Bank(2), 200.00); --Deposit 200.00
end Main;

Note: The procedure Initialize will be called ten times when the object Bank is elaborated, once for
each element of the array. Likewise when the object Bank is finalized, the procedure Finalize will
be called ten times, once for each element of the array.

This when compiled and run will generate the file log.txt which contains the audit trail of all transactions
made. The contents of the audit trail file are illustrated below:

Deposit : 100.00
Withdraw : 80.00
Deposit : 200.00

10.8.3 Warning

There are two base types in Ada.Finalization from which user defined initialization and finalization is
facilitated. These are Controlled and Limited_Controlled the properties of which are:

Type in Ada.Finalization Properties
Controlled Allow user defined initialization and

finalization for inheriting types. Instances of
these types may be assigned.

Limited_Controlled Allow user defined initialization and
finalization for inheriting types. Instances of
these types may not be assigned.

When the base type for a class is Controlled then as part of an assignment operation Finalization is
called on the target of the assignment. This will result in Finalization being called at least twice on an
object. The procedure Finalization is called once when an object is assigned too and once when its storage is
de-allocated. Thus if you use Controlled as the base type, the code for Finalization must allow for such
an eventuality. The code for Finalization in the class Account_At cannot be called twice. The exact
details of how to use Controlled are explained in Chapter 17.

Inheritance 163

 M A Smith - May not be reproduced without permission

10.9 Hiding the base class methods
The base class methods may be hidden in a class by defining the inheritance only in the private part of the
specification. For example, a restricted type of account that only allows a statement to be printed and money to be
deposited into the account can be created.

For this type of account we wish to prevent the user from calling base class methods. Remember that normally
with inheritance the base class members are visible. Even if a base class method is overloaded in the derived class
it can still be called.
The specification of the class Restricted_Account is:

with Class_Account;
use Class_Account;
package Class_Restricted_Account is

 type Restricted_Account is private;
 subtype Money is Class_Account.Money;
 subtype Pmoney is Class_Account.Pmoney;

 procedure Deposit(The:in out Restricted_Account;
 Amount:in Pmoney);
private
 type Restricted_Account is new Account with record
 null;
 end record;
end Class_Restricted_Account;

Note: The use of subtype to make the types from class Account visible.

The implementation of the class is:

package body Class_Restricted_Account is

 procedure Deposit(The:in out Restricted_Account;
 Amount:in Pmoney) is
 begin
 Deposit(Account(The), Amount);
 end Deposit;

end Class_Restricted_Account;

Here the base class methods are called from within the body of the derived class methods. Remember the body
of the package can see the methods of the base class.

164 Inheritance

 M A Smith - May not be reproduced without permission

10.9.1 Visibility rules (Hidden base class)

The visibility of items in the base class and derived class is illustrated in Figure 10.5.

Key Base class visibility Derived class visibility

Visible to class and
client.

Visible to this class
only

Not visible to class or
client

Visible

Visible to class

Not visible

Visible

Visible to class

Not visible

Figure 10.5 Visibility of components in base and derived classes.

The consequence of this is that any methods from the base class that a client of the derived class may wish to
use have to be explicitly made available by providing an appropriate procedure or function in the derived class.

10.9.2 Putting it all together

The program below illustrates the use of this restricted account.

with Statement;
procedure Main is
 Corinna :Restricted_Account; --Can only deposit
Begin
 Statement(Corinna);
 Deposit(Corinna, 50.00);
 Statement(Corinna);
end Ex1;

which when compiled with a suitable definition for the procedure Statement would produce output of the
form::

Mini statement: The amount on deposit is £ 0.00

Mini statement: The amount on deposit is £50.00

10.10 Self-assessment

l How can the use of inheritance save time in the production of software?

l Can any previously defined class be used as a base class from which other classes are derived?

l Can a derived class see the private data attributes of the base class? Explain why this is so.

l What is the purpose of the pre-defined package Ada.Finalization?

Inheritance 165

 M A Smith - May not be reproduced without permission

l For an object o which is an instance of a derived class, how does a programmer call the method m in
the base class which has been overloaded by another method m in the derived class?

l Why can the code of Finalization in the class Account_At not be called twice?

10.11 Exercises
 Construct the following:

l Employee_Pay
A class Employee_Pay which represents a person’s salary has the following methods:

Method Responsibility
Set_hourly_rate Set the hourly rate.
Add_hours_worked Accumulate the number of hours worked so far.
Pay Deliver the pay for this week.
Reset Reset the hours worked back to zero.
Hours_Worked Deliver the number of hours worked so far this

week.
Pay_rate Deliver the hourly pay rate.

Tax is to be deducted at 20% of total pay.

l Test
A program to test the class Employee_Pay.

l Better_Employee_Pay
A class Better_Employee_Pay which represents a person’s salary. This extends the class
Employee_Pay to add the additional methods of:

Method Responsibility
Set_Overtime_Pay Set the overtime pay rate.
Normal_Pay_Hours Set the number of hours in a week that have to be

worked before the overtime pay rate is applied.
Pay Deliver the pay for this week. This will consist of

the hours worked at the normal pay rate plus the
hours worked at the overtime rate.

l Test
A program to test the class Better_employee_pay.

l Employee_Pay_With_Repayment.
A class Employee_Pay_With_Repayment which represents a person’s salary after the deduction
of the weekly repayment of part of a loan for travel expenses. This extends the class
Better_employee_pay to add the additional methods of:

Method Responsibility
Set_Deduction Set the weekly deduction
Pay Deliver the pay for this week. This will include

the deduction of the money for the employee
loan if possible.

Remember to include the possibility of an employee not being able to repay the weekly repayment of
their loan as they have not worked enough hours.

l test
A program to test the class Employee_Pay_With_Repayment.

 M A Smith - May not be reproduced without permission

11 Child libraries

This chapter introduces child libraries. A child library is a way of adding to an existing package without
changing the original package. In addition, a child of an existing package is allowed to access the private
components of the parent. By using child libraries a large package or class can be split into manageable
components.

11.1 Introduction
In developing software, extensions to an existing class are occasionally required which modify or access the
private instance attributes. This is not possible with inheritance as an inheriting class is not allowed to access
private instance attributes of the base class. Rather than change the code of the class directly, a child library of the
class can be created which is a separate entity that is allowed to access private components of a package.

The original class is not re-compiled, and thus does not need re-testing. However, the combined parent and
child library needs to be tested as the child library can modify private instance or class attributes of the parent.

This is similar in effect to inheritance, in that new methods are added to an existing class. The class type
however, may not be extended. For example, the class Interest_account (in Section 10.3) can have an
additional method inspect_interest added which will allow inspection of the accumulating interest that is
to be added to the account at the end of the accounting period. This is implemented as a child package whose
specification is as follows:

package Class_Interest_Account.Inspect_Interest is
 function Interest_Is(The:in Interest_Account)
 return Money;
end Class_Interest_Account.Inspect_Interest;

The child package name is defined as two components, the original package name followed by the name of the
child package. In this case the two components are Class_Interest_Account.Inspect_Interest.

The implementation of these is as follows:

package body Class_Interest_Account.Inspect_Interest is

 function Interest_Is(The:in Interest_Account)
 return Money is
 begin
 return The.Accumulated_Interest;
 end Interest_Is;

end Class_Interest_Account.Inspect_Interest;

Note: You can access private components of the parent package.

This specialization of an interest bearing account could not be created by inheriting from the class
Interest_account as accumulated_interest is a private instance attribute of the class
Interest_account. Access to this variable breaks the encapsulation of the class Interest_account.

The intent is for child packages to allow the specialization of an existing package without having to change the
parent. In particular, the parent will not need re-testing but the combined parent and child must be tested as the
child package may affect the working of the parent.

Exceptions 167

 M A Smith - May not be reproduced without permission

11.1.1 Putting it all together

The package Interest_account and its child inspect_interest are used as follows:

with Ada.Text_Io, Ada.Float_Text_Io, Class_Account,
 Class_Interest_Account, Class_Interest_Account.Inspect_Interest,
 Statement;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Account,
 Class_Interest_Account, Class_Interest_Account.Inspect_Interest;
procedure Main is
 My_Account: Interest_Account;
 Obtained : Money;
begin
 Statement(My_Account);
 Put("Deposit 100.00 into account"); New_Line;
 Deposit(My_Account, 100.00); --Day 1
 Calc_Interest(My_Account); --End of day 1
 Calc_Interest(My_Account); --End of day 2
 Statement(My_Account); --Day 3
 Obtained := Interest_Is(My_Account); --How much interest
 Put("Interest accrued so far : £");
 Put(Obtained, Aft=>2, Exp=>0); New_Line;
end Main;

Note: When a child is included, its ancestors are automatically with’ed.
When run it will produce the following output:

Mini statement: The amount on deposit is £ 0.00

Deposit 100.00 into account
Mini statement: The amount on deposit is £100.00

Interest accrued so far : £ 0.05

11.1.2 Warning

A child package breaks the encapsulation rules of a package. In particular a child package can access the private
data components of its parent package. In accessing the private instance attributes of a class, the child package
may compromise the integrity of the parent package.

168 Child libraries

 M A Smith - May not be reproduced without permission

11.2 Visibility rules of a child package
The private part of a child package can access all components of its ancestors, even the private components.
However, the visible part of a child package has no access to the private components of its ancestors. This is to
prevent possible renaming allowing a client direct access to the private components of one of the child’s
ancestors.

A child package allows a programmer the ability to extend an existing package without the need to change or
re-compile the package.

For example, Figure 11.1 illustrates a hierarchy of package specifications rooted at package P. The ancestor of
packages P.C2 and P.C1 is package P, whilst the ancestors of package P.C2.G1 are the packages P.C2 and P.

Visible Spec.

Private Spec.

Body

Visible Spec.

Private Spec.

Body

Visible Spec.

Private Spec.

Body

Visible Spec.

Private Spec.

Body

P

P.C1 P.C2

P.C2.G1

Parent

Child Child

Grand child

Figure 11.1 Illustration of the hierarchy of child units.

Key Package specification Package body
Components
of a package
in this case
package P.

package P is
 -- Visible specification.
private
 -- Private specification.
end P;

package body P is
 -- Body of package
end P;

Can access in -> P P.C1 P.C2 P.C2.G1
P.C1
Visible specification

Visible spec.
l

Visible spec.
when
with’ed

Visible spec.
when
with’ed

P.C1
Private specification

Visible spec.
Private spec. l

Visible spec.
when
with’ed

Visible spec.
when
with’ed

P.C2.G1
Visible specification

Visible spec. Visible spec.
when
with’ed

Visible spec.
l

P.C2.G1
Private specification

Visible spec.
Private spec.

Visible spec.
when
with’ed

Visible spec.
Private spec. l

Note: A with clause for a child package implies a with clause for all its ancestors.

Exceptions 169

 M A Smith - May not be reproduced without permission

11.3 Private child

A private child package is like a normal child package except that it is only visible within the sub-tree, which has
an ancestor as its root. A private child can be used to hide implementation details from a user of the parent
package. A private child package is specified by prefixing the reserved word package with the word private

11.3.1 Visibility rules of a private child package

If in Figure 11.1 P.C2 is a private child then the visibility of components is as illustrated in the table below.

Can access in -> P P.C2 P.C1
P.C2
Visible specification

Visible spec.
l

Visible spec.
when
with’ed

P.C2
Private specification

Visible spec.
Private spec. l

Visible spec.
when
with’ed

P.C1
Visible specification

Visible spec. No access
l

P.C1
Private specification

Visible spec.
Private spec. No access l

Note: The private part of a child package has access to all components of its parent, even the private
components.

11.4 Child packages vs. inheritance

The following table summarizes the differences between the use of a child package and inheritance.

Ability to Child package Inheritance
Create a new package r √
Extend a base package by adding new
procedures and functions

√ √

Extend a type in the base package r √ (see note)
Access private components in the base
package

√ r

Override existing procedures and functions in
the base package

r √

Note: Must be tagged in the base class.

The danger in the use of child libraries is that they can subvert the data hiding of a class. For example, the
class Interest_account hides the representation of, and prevents access to the
accumulated_interest. A child library of the class Interest_account can allow a client of the class
the ability to change or inspect this hidden variable.

170 Child libraries

 M A Smith - May not be reproduced without permission

11.5 Self-assessment

l How can the use of child libraries save time in the production of software?

l Why is a child library’s public specification not allowed to access components in a parent’s private
specification?

l What is the difference between a normal child package and a private child package?

l What is the difference between the use of a child package and the use of inheritance to build on
existing code?

11.6 Exercises

 Construct the following:

l Money
A class which manipulates amounts of money held in pounds and pence. This class should allow the
following operations to be performed on an instance of the class Money
l Add monetary amounts using the operator +.
l Subtract monetary amounts using the operator -.

l Conversion
A child library of the package Class_money which allows the conversion of an amount in pounds to
dollars, francs and ECU (European Currency Unit).

 M A Smith - May not be reproduced without permission

12 Defining new operators

This chapter shows how the predefined operators in Ada can be overloaded with a new meaning.

12.1 Defining operators in Ada
The existing operators in Ada can be overloaded with a new meaning. These new operators have the same
precedence as their existing counterparts. For example, to trace every executed integer + operation in a program,
the operator + can be overloaded by a function that writes trace information to the terminal before delivering the
normal integer addition. This is implemented by the following function:

 function "+" (F:in Integer; S:in Integer) return Integer is
 begin
 Put("[Performing "); Put(F, Width=>1);
 Put(" + "); Put(S, Width=>1); Put("]");
 return Standard."+"(F, S);
 end "+";

Note: To perform the inbuilt + the functional notation for the plus operation must be used. This is written as
Standard."+"(f, s). In Ada, the inbuilt operators are considered to belong to the package
Standard which is automatically made visible to all program units.
Section C.4, Appendix C gives the specification for the package standard.

The above function can be used to trace the use of + in the following program:

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 function "+" (F:in Integer; S:in Integer) return Integer is
 begin
 Put("[Performing "); Put(F, Width=>1);
 Put(" + "); Put(S, Width=>1); Put("]");
 return Standard."+"(F, S);
 end "+";
begin
 Put("The sum of 1 + 2 is: "); Put (1+2); New_Line;
 Put("The sum of 1 + 2 is: ");
 Put(Standard."+"(1,2), Width=>1); New_Line;
 Put("The sum of 1 + 2 is: ");
 Put("+"(1,2), Width=>1); New_Line;
end Main;

Note: As the package Standard is considered to be included with all program units. To achieve the effect
of tracing each use of +, the overloaded function "+" has to be a nested function of the program unit.

The sum of 1 + 2 is: [Performing 1 + 2]3
The sum of 1 + 2 is: 3
The sum of 1 + 2 is: [Performing 1 + 2]3

Note: The way of directly using the operator + defined in the package Standard
'Standard."+"(1,2)’.
The function notation for the use of the operator + "+"(1,2).

172 Child libraries

 M A Smith - May not be reproduced without permission

12.2 A rational arithmetic package

If precise arithmetic with rational numbers is required the Ada language can be extended by the inclusion of a
package that provides a new type Rational. Instances of this type may be used as if they were normal numeric
values such as integer.

The following extension to the language Ada is created by defining the class Rational. This class defines
the following operations: +, -, * on an instance of a Rational number.

The responsibilities of this class are as follows::

Method Responsibility
+ Delivers the sum of two rational numbers as a rational number.
- Delivers the difference of two rational numbers as a rational

number.
* Delivers the product of two rational numbers as a rational

number.
/ Delivers the division of two rational numbers as a rational

number.

In addition the following methods are used to create a rational constant and to help output a rational number in
a canonical form.

Method Responsibility
Rat_Const Creates a rational number from two Integer numbers.
Image Returns a string image of a rational number in the canonical

form ‘a b/c’. For example:
Put(Image(Rat_Const(3,2)));

 would print
1 1/2

12.2.1 Ada specification of the package

The specification of the package is as follows:

package Class_Rational is
 type Rational is private;

 function "+" (F:in Rational; S:in Rational) return Rational;
 function "-" (F:in Rational; S:in Rational) return Rational;
 function "*" (F:in Rational; S:in Rational) return Rational;
 function "/" (F:in Rational; S:in Rational) return Rational;

 function Rat_Const(F:in Integer;
 S:in Integer:=1) return Rational;
 function Image(The:in Rational) return String;
private
 type Rational is record
 Above : Integer := 0; --Numerator
 Below : Integer := 1; --Denominator
 end record;
end Class_Rational;

Exceptions 173

 M A Smith - May not be reproduced without permission

Using the above package, the following code can be written:

with Ada.Text_Io, Class_Rational;
use Ada.Text_Io, Class_Rational;
procedure Main is
 A,B : Rational;
begin
 A := Rat_Const(1, 2);
 B := Rat_Const(1, 3);

 Put("a = "); Put(Image(A)); New_Line;
 Put("b = "); Put(Image(B)); New_Line;
 Put("a + b = "); Put(Image(A+B)); New_Line;
 Put("a - b = "); Put(Image(A-B)); New_Line;
 Put("b - a = "); Put(Image(B-A)); New_Line;
 Put("a * b = "); Put(Image(A*B)); New_Line;
 Put("a / b = "); Put(Image(A/B)); New_Line;
end Main;

which when run will deliver the following output:

a = 1/2
b = 1/3
a + b = 5/6
a - b = 1/6
b - a = -1/6
a * b = 1/6
a / b = 1 1/2

12.2.2 Ada implementation of the package

The internal function sign makes sure that only the top part of the rational number may be negative. By ensuring
this form, the processing of rational numbers is simplified in later code.

 package body Class_Rational is

 function Sign(The:in Rational) return Rational is
 begin
 if The.Below >= 0 then -- -a/b or a/b
 return The;
 else -- a/-b or -a/-b
 return Rational'(-The.Above, -The.Below);
 end if;
 end Sign;

174 Child libraries

 M A Smith - May not be reproduced without permission

The internal function simplify reduces the rational number to its simplest form. Thus the rational number
4/8 is reduced to 1/2.

 function Simplify(The:in Rational) return Rational is
 Res: Rational := The;
 D : Positive; --Divisor to reduce with
 begin
 if Res.Below = 0 then --Invalid treat as 0
 Res.Above := 0; Res.Below := 1;
 end if;
 D := 2; --Divide by 2, 3, 4 ...
 while D < Res.Below loop
 while Res.Below rem D = 0 and then Res.Above rem D = 0 loop
 Res.Above := Res.Above / D;
 Res.Below := Res.Below / D;
 end loop;
 D := D + 1;
 end loop;
 return Res;
 end Simplify;

Note: It is left to the reader to improve the efficiency of the algorithm used.

The standard operators of +, -, / , and * are overloaded to allow these standard operations to be performed
between instances of rational numbers.

 function "+" (F:in Rational; S:in Rational) return Rational is
 Res : Rational;
 begin
 Res.Below := F.Below * S.Below;
 Res.Above := F.Above * S.Below + S.Above * F.Below;
 return Simplify(Res);
 end "+";

 function "-" (F:in Rational; S:in Rational) return Rational is
 Res : Rational;
 begin
 Res.Below := F.Below * S.Below;
 Res.Above := F.Above * S.Below - S.Above * F.Below;
 return Simplify(Res);
 end "-";

 function "*" (F:in Rational; S:in Rational) return Rational is
 Res : Rational;
 begin
 Res.Above := F.Above * S.Above;
 Res.Below := F.Below * S.Below;
 return Simplify(Res);
 end "*";

 function "/" (F:in Rational; S:in Rational) return Rational is
 Res : Rational;
 begin
 Res.Above := F.Above * S.Below;
 Res.Below := F.Below * S.Above;
 return Simplify(Res);
 end "/";

Note: Additional definitions of these standard operators would need to be provided if it was required to be
able to perform operations such as Rat_Const(1,2) + 1.
In this particular case a definition of + between a rational and an integer would also need to be
provided.

Exceptions 175

 M A Smith - May not be reproduced without permission

The function Rat_Const is used to construct a constant rational number. The second formal parameter may
be omitted when converting a whole number into a rational number.

 function Rat_Const(F:in Integer;
 S:in Integer:=1) return Rational is
 begin
 if F = 0 then
 return Rational'(0,1);
 else
 return Simplify(Sign(Rational'(F, S)));
 end if;
 end Rat_Const;

Note: A rational constant could have been created by overloading the operator / between two integers to
deliver a rational number. The disadvantage of this approach is that the two distinct meanings for /
must be distinguished between in a program section.

176 Child libraries

 M A Smith - May not be reproduced without permission

The function Image returns a string representing a rational number in canonical form. The strategy used is to
use the inbuilt function Integer’Image to convert a number into a character string. However, as this leaves a
leading space for the sign character an internal function Trim is provided to strip off the leading character from
such a string.

The nested function To_String delivers a string representation in canonical form of a positive rational
number. By using a single case of recursion this function can deal with the case when a rational number is of the
form “a b/c”.

function Image(The:in Rational) return String is
 Above : Integer := The.Above;
 Below : Integer := The.Below;

 function Trim(Str:in String) return String is
 begin
 return Str(Str'First+1 .. Str'Last);
 end Trim;

 function To_String(Above, Below : in Integer)
 return String is
 begin
 if Above = 0 then --No fraction
 return "";
 elsif Above >= Below then --Whole number
 return Trim(Integer'Image(Above/Below)) & " " &
 To_String(Above rem below, Below);
 else
 return Trim(Integer'Image(Above)) & "/" &
 Trim(Integer'Image(Below));
 end if;
 end To_String;

 begin
 if Above = 0 then
 return "0"; --Zero
 elsif Above < 0 then
 return "-" & To_String(abs Above, Below); ---ve
 else
 return To_String(Above, Below); --+ve
 end if;
 end Image;

end Class_Rational;

12.3 A bounded string class

A partial solution to overcome the fixed size limitations of Ad strings is to use a discriminated record that can
hold a string of any length up to a pre-defined maximum. The responsibilities of the class Bounded_String
which holds a variable length string is as follows:

Method Responsibility
Operator:
&

Concatenate an Ada string or a Bounded_String to
a Bounded_string.

Operators:
 > >= < <= =

Compare instancies of Bounded_string.

To_String Convert an instance of a Bounded_String to an Ada
string.

To_Bounded_String Convert an Ada string to an instance of a
Bounded_string.

Slice Deliver a slice of a Bounded_string.

Exceptions 177

 M A Smith - May not be reproduced without permission

12.3.1 Overloading = and /=

The operators = and /= are provided automatically by the Ada system for comparing for equality or not equality.
However, if a user redefines the = operator with a function that returns a Boolean value, the Ada system
automatically provides the definition of /= as simply not = .

If the operator = is overloaded by a function that returns a value other than a Boolean, then the user must
explicitly provide an overload definition for /= if it is to be used.

12.3.2 Specification of the class Bounded_String

The Ada specification of the class Bounded_String is shown below:

package Class_Bounded_String is
 type Bounded_String is private;

 function To_Bounded_String(Str:in String)
 return Bounded_String;

 function To_String(The:in Bounded_String) return String;

 function "&" (F:in Bounded_String; S:in Bounded_String)
 return Bounded_String;
 function "&" (F:in Bounded_String; S:in String)
 return Bounded_String;
 function "&" (F:in String; S:in Bounded_String)
 return Bounded_String;

 function Slice(The:in Bounded_String;
 Low:in Positive; High:in Natural)
 return String;

 function "=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean;

 function ">" (F:in Bounded_String; S:in Bounded_String)
 return Boolean;
 function ">=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean;
 function "<" (F:in Bounded_String; S:in Bounded_String)
 return Boolean;
 function "<=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean;

private
 Max_String: constant := 80;
 subtype Str_Range is Natural range 0 .. Max_String;
 type A_Bounded_String(Length: Str_Range := 0) is record
 Chrs: String(1 .. Length); --Stored string
 end record;
 type Bounded_String is record
 V_Str : A_Bounded_String;
 end record;
end Class_Bounded_String;

In the specification of the class Bounded_String a discriminated record is used. This discriminated record
A_Bounded_String will store strings up to length MAX_STRING characters. The discriminate length is
used to specify the upper bound of the string, and has a default value of 0. An instance of Bounded_String
may be assigned another instance of Bounded_String that may have a different discriminate value.

178 Child libraries

 M A Smith - May not be reproduced without permission

Note: The discriminated record will usually be implemented by allocating the maximum amount of storage.
Setting MAX_STRING to 10_000 in the package would allow for most eventualities, but would waste
large amounts of storage.
As the operator = is overloaded by a function which returns a Boolean value then the operator /= is
automatically created.

In the implementation of the package Class_Bounded_String shown below, the procedure
To_Bounded_String is used to convert a ‘normal’ Ada string into an instance of a Bounded_string.

package body Class_Bounded_String is

 function To_Bounded_String(Str:in String)
 return Bounded_String is
 begin
 return (V_Str=>(Str'Length, Str));
 end To_Bounded_String;

The function To_String delivers a normal Ada string from a Bounded_String.

 function To_String(The:in Bounded_String) return String is
 begin
 return The.V_Str.Chrs(1 .. The.V_Str.Length);
 end To_String;

The function Slice allows slices to be taken off an instance of a Bounded_String.

 function Slice(The:in Bounded_String;
 Low:in Positive; High:in Natural)
 return String is
 begin
 if Low <= High and then High <= The.V_Str.Length then
 return The.V_Str.Chrs(Low .. High);
 end if;
 return "";
 end Slice;

Exceptions 179

 M A Smith - May not be reproduced without permission

The overloaded definitions of &, >, >= , <, <= allow the normal Ada comparison operators to be used with
instances of a Bounded_String. The operators for = are used by the Ada system to provide the definition of
/=. The implementation for & allows concatenation between instances of a Bounded_String and a normal
Ada string. This is achieved by overloading & with three different definitions as follows:

 function "&" (F:in Bounded_String; S:in Bounded_String)
 return Bounded_String is
 begin
 return (V_Str=>(F.V_Str.Chrs'Length + S.V_Str.Chrs'Length,
 F.V_Str.Chrs & S.V_Str.Chrs));
 end "&";

 function "&" (F:in Bounded_String; S:in String)
 return Bounded_String is
 begin
 return (V_Str=>(F.V_Str.Chrs'Length + S'Length,
 F.V_Str.Chrs & S));
 end "&";

 function "&" (F:in String; S:in Bounded_String)
 return Bounded_String is
 begin
 return (V_Str=>(F'Length + S.V_Str.Chrs'Length,
 F & S.V_Str.Chrs));
 end "&";

The implementation for the relational operators however, only allows comparison between instances of a
Bounded_String. Their implementation is as follows:

 function ">" (F:in Bounded_String; S:in Bounded_String)
 return Boolean is
 begin
 return F.V_Str.Chrs > S.V_Str.Chrs;
 end ">";

 function ">=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean is
 begin
 return F.V_Str.Chrs >= S.V_Str.Chrs;
 end ">=";

 function "<" (F:in Bounded_String; S:in Bounded_String)
 return Boolean is
 begin
 return F.V_Str.Chrs < S.V_Str.Chrs;
 end "<";

 function "<=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean is
 begin
 return F.V_Str.Chrs <= S.V_Str.Chrs;
 end "<=";

180 Child libraries

 M A Smith - May not be reproduced without permission

The implementation of = is as follows:

 function "=" (F:in Bounded_String; S:in Bounded_String)
 return Boolean is
 begin
 return F.V_Str.Chrs = S.V_Str.Chrs;
 end "=";

end Class_bounded_string;

Note: To compare an instance of a Bounded_String and an instance of an Ada string a user would have
to convert the Ada string to a Bounded_String. For example:
Name : Bounded_String;
if Name > To_Bounded_String("Brighton") then

12.3.3 Putting it all together

procedure Main is
 Town, County, Address : Bounded_String;
begin
 Town := To_Bounded_String("Brighton");
 County := To_Bounded_String("East Sussex");

 Address := Town & " " & County;

 Put(To_String(Address)); New_Line;
 Put(Slice(County & " UK", 6, 14));
 New_Line;

end Main;

When run, this would produce the following results:

Brighton East Sussex
Sussex UK

12.3.4 Ada.Strings.Bounded a standard library

In the standard library there is a package Ada.Strings.Bounded which the above class Bounded_String
is based on. The generic library package Ada.Strings.Bounded.Generic_bounded_length allows
the maximum length of the stored string to be defined by a user of the package. Chapter 13 describes the concepts
of generics. Appendix C.8 lists the specification of the library package Ada.Strings.Bounded.

Exceptions 181

 M A Smith - May not be reproduced without permission

12.3.5 use type

A modified form of the use clause allows operators from a package to be used without having to prefix the
operator with the package name. Other components however, from the package need to be prefixed with the
package name when used. This modified form of the use clause is use type which is followed by the type name
whose operators can be used without prefixing them by the package name. For example, the following program
requires all components in the package Bounded_String except for operators to be prefixed with the package
name.

with Ada.Text_Io, Class_Bounded_String;
use type Class_Bounded_String.Bounded_String;
procedure Main is
 Town : Class_Bounded_String.Bounded_String :=
 Class_Bounded_String.To_Bounded_String("Brighton");
 County: Class_Bounded_String.Bounded_String :=
 Class_Bounded_String.To_Bounded_String("E Sussex");
begin
 Ada.Text_Io.Put(
 Class_Bounded_String.To_String(Town & " " & County)
);
end Main;

12.4 Self-assessment

l What operators can be overloaded with a new meaning in Ada?

l Can a user invent new operators? For example, could a user define the monadic operator ++ to add
one to an integer?

l Why might excessive use of overloading the standard operators lead to a program that is difficult to
follow?

l Why is the function rat_const needed in the class Rational?

l How can a user guarantee to use the definition for the operator + in the package standard?

12.5 Exercises

Construct the following class:

182 Child libraries

 M A Smith - May not be reproduced without permission

l A very large integer number class.

which stores an integer number to 200 digits.

Method Responsibility
+ Delivers the sum of two very long integer numbers as a

very long integer number.
- Delivers the difference between two very long integer

numbers as a very long integer number.
VLN_const Creates a very long integer number from an Integer .
Image Return a string representation of a very large number.

A user of the class Class_Very_Large_Number can write:

with Ada.Text_Io, Class_Very_Large_Number;
use Ada.Text_Io, Class_Very_Large_Number;
procedure Main is
 Max_Fibonacci : constant := 50;
 type Fibonacci_Index is range 1 .. Max_Fibonacci;
 type Fibonacci_Array is array (Fibonacci_Index)
 of VNL;
 Fibonacci_Numbers: Fibonacci_Array;
begin
 Fibonacci_Numbers(1) := VLN_Const(1);
 Fibonacci_Numbers(2) := VLN_Const(1);
 for I in Fibonacci_Index range 3 .. Max_Fibonacci loop
 Fibonacci_Numbers(I) := Fibonacci_Numbers(I-1) +
 Fibonacci_Numbers(I-2);
 end loop;

 Put("First "); Put(Max_Fibonacci, Width=>2);
 Put(" terms in the fibonacci sequence is"); New_Line;
 for I in Fibonacci_Array'range loop
 Put(Image(Fibonacci_Numbers(I)));
 New_Line;
 end loop;

end Main;

which would print out the first 50 terms of the Fibonacci series.

Hint:
l Use an array to store the 200 digits of the number.

 M A Smith - May not be reproduced without permission

13 Exceptions

This chapter looks at the way errors and exceptions are handled by the Ada system. Unlike many
languages, Ada allows the user to capture and continue processing after an error or user-defined exception
has occurred.

13.1 The exception mechanism

When writing code for an application it is tedious to have to keep testing for exceptional conditions such as ‘Data
store full’. The likely outcome is that the user will not test for the exception. Ada provides the elegant solution of
allowing code to raise an exception that can be caught by a user of that code. If the user does not provide an
exception handler, the exception is propagated upwards to the potential caller of the user’s code. If no one has
provided an exception handler, then the program will fail with a run-time message of the form ‘Exception
Data store full not handled’.

The following program reads in an Integer number from the user and prints the corresponding character
represented by this number in the Ada character set.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Number : Integer; --Number read in
 Ch : Character; --As a character
begin
 loop
 begin
 Put("Enter character code : "); --Ask for number
 exit when End_Of_File; --EOF ?
 Get(Number); Skip_Line; --Read number
 Put("Represents the character ["); --Valid number
 Put(Character'Val(Number));
 Put("]"); --Valid character
 New_Line;
 exception
 when Data_Error =>
 Put("Not a valid Number"); Skip_Line; --Exception
 New_Line;
 when Constraint_Error =>
 Put("Not representable as a Character]"); --Exception
 New_Line;
 when End_Error =>
 Put("Unexpected end of data"); New_Line; --Exception
 exit;
 end;
 end loop;
end Main;

In this program the following exceptions may occur:

Exception Explanation
Constraint_Error An invalid value has been supplied.
Data_Error The data item read is not of the expected type.
End_Error During a read operation the end of file was detected.

Section B.7, Appendix B gives a full list of the exceptions that can occur during the running of an Ada
program.

184 Child libraries

 M A Smith - May not be reproduced without permission

A user may interact with the program as shown below.

Enter character code : 65
Represents the character [A]
Enter character code : Invalid
Not a valid Number
Enter character code : 999
Represents the character [Not representable as a Character]
Enter character code : ^D

Note: The user input is shown in bold type.
^D represents the end of file character, which on an unix system is control – d.

13.2 Raising an exception

An exception is raised by way of the raise statement. For example, to raise the exception
Constraint_Error the following statement is executed:

raise Constraint_Error;

Naturally, a user-defined exception can be raised. Firstly, the exception to be raised is declared:

Unexpected_Condition : Exception;

then the exception can be raised with:

raise Unexpected_Condition;

13.3 Handling any exception

It is possible to capture an exception without knowing its name by the use of a when others clause in an
exception handler. For example, the additional handler:

 when others =>
 Put("Exception caught"); New_Line;

could have been included with the previous program to capture any unexpected exceptions. If information is
required about the exception then the handler can include a name for the exception. For example:

 when The_Event: others =>
 Put("Unexpected exception is ");
 Put(Exception_Name(The_Event)); New_Line;

Exceptions 185

 M A Smith - May not be reproduced without permission

Note: The object Event is declared as:

 Event : Exception_Ocurrence;

and is defined in the package Ada.Exceptions.

In the above exception handler the exception is known by the name event. Information about the exception is
obtained by using the following functions:

Function
(Defined in Ada.Exceptions)

Returns as a string:

Exception_Name(event) In upper case the exception name starting
with the root library unit.

Exception_Information(event) Detailed information about the exception.
Exception_Message(event) A short explanation of the exception.

Other functions and procedures in Ada.Exceptions are:

Function / procedure Action
Reraise_Occurrence(event) A procedure which re-raises the exception

event.
Raise_Exception(e,"Mess") A procedure which raises exception e with

the message "Mess".

186 Child libraries

 M A Smith - May not be reproduced without permission

13.4 The cat program revisited

The program to concatenate the contents of files previously seen in Section 3.11 can now be re-written to give a
sensible error message to the user when an attempt is made to list a file that does not exist. In this program the
following exception occur:

Exception Explanation
Name_Error File does not exist.
Status_Error File is already open.

This new program is:

with Ada.Text_Io, Ada.Command_Line;
use Ada.Text_Io, Ada.Command_Line;
procedure Cat is
 Fd : Ada.Text_Io.File_Type; --File descriptor
 Ch : Character; --Current character
begin
 if Argument_Count >= 1 then
 for I in 1 .. Argument_Count loop --Repeat for each file
 begin
 Open(File=>Fd, Mode=>In_File, --Open file
 Name=>Argument(I));
 while not End_Of_File(Fd) loop --For each Line
 while not End_Of_Line(Fd) loop--For each character
 Get(Fd,Ch); Put(Ch); --Read / Write character
 end loop;
 Skip_Line(Fd); New_Line; --Next line / new line
 end loop;
 Close(Fd); --Close file
 exception
 when Name_Error =>
 Put("cat: " & Argument(I) & " no such file");
 New_Line;
 when Status_Error =>
 Put("cat: " & Argument(I) & " all ready open");
 New_Line;
 end;
 end loop;
 else
 Put("Usage: cat file1 ... "); New_Line;
 end if;
end Cat;

13.5 A stack
A stack is a structure used to store and retrieve data items. Data items are pushed onto the structure and retrieved
in reverse order. This is commonly referred to as ‘first in last out’. This process is illustrated in Figure 13.1

Stack

Push(1) Push(2) Pop() Pop()

2 1

1 1 1

2

After sending
message

2

1 1 1

Figure 13.1 Example of operations on a stack.

Exceptions 187

 M A Smith - May not be reproduced without permission

A program to demonstrate the operation of a stack is developed with the aid of a class Stack. The operations
Push, Pop and Reset can be performed on an instance of Stack . The responsibilities of these methods are as
follows:

Method Responsibility
Push Push the current item onto the stack.

The exception Stack_error will be raised if this cannot be done.
Pop Return the top item on the stack, whereupon the item is removed from the

stack. The exception Stack_error will be raised if this cannot be
done.

Reset Resets the stack to an initial state of empty.

The Ada specification of the class Stack is as follows:

package Class_Stack is
 type Stack is private; --Copying allowed
 Stack_Error: exception; --When error

 procedure Reset(The:in out Stack);
 procedure Push(The:in out Stack; Item:in Integer);
 procedure Pop(The:in out Stack; Item:out Integer);
private

 Max_Stack: constant := 3;
 type Stack_Index is range 0 .. Max_Stack;
 subtype Stack_Range is Stack_Index range 1 .. Max_Stack;
 type Stack_Array is array (Stack_Range) of Integer;

 type Stack is record
 Elements: Stack_Array; --Array of elements
 Tos : Stack_Index := 0; --Index
 end record;

end Class_Stack;

In the specification of the class, Stack the actual representation used for the stack is an array. The array
representing the stack is indexed from 1 .. Max_Stack. However, so that an empty stack can be represented
the variable holding the index to the current element in the stack TOS is allowed to hold the value 0 to represent
an empty stack. Hence, in the specification of the array the following types and subtypes are used.

Type/subtype Responsibility
Stack_Index A type representing the index used to access the stack. As this is

also used to represent an empty stack, it includes the value 0,
which is not a valid index of the stack.

Stack_Range A subtype used to represent the valid range of indexes in the
stack.

Stack_array The type used to declare the array representing the stack.

The following simple program demonstrates the operation of a stack. The program reads a line of text that
consists of the following tokens:

Token Meaning
+Number Push Number

Add Number to the stack.
- Pop

Remove the top item from the stack and print the removed item.

188 Child libraries

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack;
procedure Main is
 Number_Stack : Stack; --Stack of numbers
 Action : Character; --Action
 Number : Integer; --Number processed
begin
 while not End_Of_File loop
 while not End_Of_Line loop
 begin
 Get(Action);
 case Action is --Process action
 when '+' =>
 Get(Number); Push(Number_Stack,Number);
 Put("push number = "); Put(Number); New_Line;
 when '-' =>
 Pop(Number_Stack,Number);
 Put("Pop number = "); Put(Number); New_Line;
 when others =>
 Put("Invalid action"); New_Line;
 end case;
 exception
 when Stack_Error =>
 Put("Stack_error"); New_Line;
 when Data_Error =>
 Put("Not a number"); New_Line; Skip_Line;
 when End_Error =>
 Put("Unexpected end of file"); New_Line; exit;
 end;
 end loop;
 Skip_Line;
 end loop;
 Reset(Number_Stack);
end Main;

13.5.1 Putting it all together

When compiled with a suitable package body the above program when run with the following data:

+1+2+3+4----

will produce the following output:

push number = 1
push number = 2
push number = 3
Stack_error
Pop number = 3
Pop number = 2
Pop number = 1
Stack_error

13.5.2 Implementation of the stack

The implementation of the package uses the procedure reset to set the stack to a defined state, in this case
empty.

Exceptions 189

 M A Smith - May not be reproduced without permission

package body Class_Stack is

 procedure Reset(The:in out Stack) is
 begin
 The.Tos := 0; --Set TOS to 0 (Non existing element)
 end Reset;

The exception Stack_Error is raised by the procedure Push if an attempt is made to add a new item to a
full stack.

 procedure Push(The:in out Stack; Item:in Integer) is
 begin
 if The.Tos /= Max_Stack then
 The.Tos := The.Tos + 1; --Next element
 The.Elements(The.Tos) := Item; --Move in
 else
 raise Stack_Error; --Failed
 end if;
 end Push;

The procedure Pop similarly raises the exception Stack_Error if an attempt is made to extract an item
from an empty stack.

 procedure Pop(The:in out Stack; Item :out Integer) is
 begin
 if The.Tos > 0 then
 Item := The.Elements(The.Tos); --Top element
 The.Tos := The.Tos - 1; --Move down
 else
 raise Stack_Error; --Failed
 end if;
 end Pop;

end Class_Stack;

13.6 Self-assessment

l When should an exception be used?

l What happens when an exception is not caught in a user program?

l How can a program catch all exceptions which might be generated when executing a code sequence?

l Can a user program raise one of the system’s exceptions such as Constraint_error?

190 Child libraries

 M A Smith - May not be reproduced without permission

13.7 Exercises

Construct the following class which uses exceptions:

l Average
This class has the following methods:

Method Responsibility
Add Add a new data value.
Average Deliver the average of the data values held.
Reset Reset the object to its initial state.

The exception No_Data is raised when an attempt is made to calculate the average of zero numbers.

 M A Smith - May not be reproduced without permission

14 Generics

This chapter looks at generics that enable parameterized re-usable code to be written. The degree of re-
useability, however, will depend on the skill and foresight of the originator.

14.1 Generic functions and procedures
The main problem in re-using code of previously written functions or procedures is that they are restricted to
process specific types of values. For example, the function order developed as an exercise in Chapter 5 will only
work for Float values. To be really useful to a programmer, this procedure should work for all objects for which
a ‘greater than’ value can be defined. Ada allows the definition of generic functions or procedures. In this, the
actual type(s) that are to be used are supplied by the user of the function or procedure. This is best illustrated by
an example:

generic --Specification
 type T is (<>); --Any discrete type
procedure G_Order(A,B:in out T); --Prototype ord

procedure G_Order(A,B:in out T) is --Implementation ord
 Tmp : T; --Temporary
begin
 if A > B then --Compare
 Tmp := A; A := B; B := Tmp; -- Swap
 end if;
end G_Order; --

The declaration of a generic function or procedure is split into two components: a specification part that
defines the interface to the outside world, and an implementation part that defines the physical implementation. In
the specification part, the type(s) that are to be used in the procedure are specified between the generic and the
prototype line of the function or procedure. In this example a single type T is to be supplied. The type T must be
one of Ada’s discrete types. The ‘(<>)’ in the declaration ‘type T is (<>)’ specifies this restriction. A full
list of the restricted types to which a generic parameter can be constrained to are given in Section 14.2.

To use this procedure the user must first instantiate a procedure that will operate on a particular type. This is
accomplished by the declaration:

 procedure Order is new G_Order(Natural); --Instantiate order

which defines a procedure order which will put into ascending order its two Natural parameters. It would, of
course, be an error detected at compile-time to use the procedure order with any parameter of a type other than a
Natural or a subtype of a Natural.

192 Child libraries

 M A Smith - May not be reproduced without permission

Another generic procedure G_3Order can be written which will order its three parameters. This new procedure
uses an instantiation of the procedure G_Order internally.

generic --Specification
 type T is (<>); --Any discrete type
procedure G_3Order(A,B,C:in out T); --Prototype ord

with G_Order;
procedure G_3Order(A,B,C:in out T) is --Implementation ord
 procedure Order is new G_Order(T); --Instantiate order
begin
 Order(A, B); --S L -
 Order(B, C); --? ? L
 Order(A, B); --S M L
end G_3Order; --

Note: The generic parameter T can only be a member of the discrete types. This is achieved with the
declaration of the type T as ‘type T is (<>)’.
The procedure order in the procedure G_3Order is an instantiation of the generic procedure
G_Order with an actual parameter of type T.

Figure 14.1 illustrates the components of a generic procedure.

procedure G_Order(A,B:in out T) is
 Tmp : T;
begin
 -- Code of generic procedure
end G_Order;

Specification of
generic procedure

Implementation of
generic procedure

The formal type specifies the
category of types to which the
generic parameter can belong

Generic

 type T is (<>);

procedure G_Order(A,B:in out T);

Figure 14.1 Components of a generic procedure declaration.

Exceptions 193

 M A Smith - May not be reproduced without permission

The above generic procedures G_Order and G+3Order allow the following code to be written:

with Ada.Text_Io, Ada.Integer_Text_Io, G_3Order;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 procedure Order is new G_3Order(Natural); --Instantiate
 Room1 : Natural := 30; --30 Square metres
 Room2 : Natural := 25; --25 Square metres
 Room3 : Natural := 20; --20 Square metres
begin
 Order(Room1, Room2, Room3);
 Put("Rooms in ascending order of size are "); New_Line;
 Put(Room1); New_Line;
 Put(Room2); New_Line;
 Put(Room3); New_Line;
end Main;

which would produce the following results when run:

Rooms in ascending order of size are
 20
 25
 30

14.1.1 Advantages and disadvantages of generic units

Advantages l Facilitate re-use by allowing an implementor to write
procedures or functions which process objects of a type
determined by the user of the procedure or function.

Disadvantages l Extra care must be exercised in writing the procedure or
function. This will undoubtedly result in a greater cost
to the originator.

l The implementation of the generic procedure, function
or package may not be as efficient as a direct
implementation. The compiler may generate only one
sequence of code to handle all instances of the generic
procedure, function or package.

194 Child libraries

 M A Smith - May not be reproduced without permission

14.2 Specification of generic component

The formal type specification constrains the actual type passed as a parameter to belong to a particular category of
types. Examples of these categories are listed in the table below:

Formal type specification
type T

In
Ada 83

Actual parameter can belong to
the following types

Note

is private √ Any non limited type. 1
is limited private √ Any type. 2
is tagged r Any non limited tagged type. 1
is limited tagged r Any tagged type. 2
is (<>) √ Any discrete type, constrained type. 1,5
(<>) is private r Any discrete or indefinite non

limited type.
2,3

(<>) is limited
private

r Any discrete or indefinite type. 2,3

is mod <> r Any modular type. 1
is range <> √ Any integer type. 1
is digits <> √ Any float type. 1
is delta <> √ Any fixed ordinary type. 1
is delta <> digits <> r Any fixed decimal type. 1
is access √ Any access type. 4
with procedure ... √ procedure matching the signature. 6
with package ... r package matching the signature. 6

Note 1 The formal parameter in the generic unit is restricted to a use compatible with the actual parameter.

Note 2 The formal parameter is restricted to operations which are compatible with a limited type. Thus,
assignment of, and the default comparison for equality and not equality are prohibited.

Note 3 Cannot be used to declare an indefinite type without declaring its range. For example, the indefinite
type:
type String is array (Positive range <>) of Character;
cannot be declared without specifying the range.

Note 4 Access types are covered in chapter 14.
May also be is access all or is access constant

Note 5 Ada 83 has the well-known problem that an indefinite type may be used as a formal parameter. If the
formal parameter is used to declare an object in the body of the generic unit, then on the instantiation
of the unit an error message will be generated from the body of the generic unit.

Note 6 Used to specify a procedure, function or package that is used in the body of the generic unit.

Exceptions 195

 M A Smith - May not be reproduced without permission

14.3 Generic stack

The stack illustrated in Section 13.5 can be built as a generic package. First, the specification of the package that
contains the generic components is defined:

generic
 type T is private; --Can specify any type
 Max_Stack:in Positive := 3; --Has to be typed / not const
package Class_Stack is
 type Stack is tagged private;
 Stack_Error: exception;

 procedure Reset(The:in out Stack);
 procedure Push(The:in out Stack; Item:in T);
 procedure Pop(The:in out Stack; Item:out T);
private

 type Stack_Index is new Integer range 0 .. Max_Stack;
 subtype Stack_Range is Stack_Index
 range 1 .. Stack_Index(Max_Stack);
 type Stack_Array is array (Stack_Range) of T;

 type Stack is tagged record
 Elements: Stack_Array; --Array of elements
 Tos : Stack_Index := 0; --Index
 end record;

end Class_Stack;

Note: The constant Max_Stack must be given a type because it is passed as a generic parameter.
The implementation of the package follows the same strategy as seen in Section 13.5.2 except that the

constant that defines the size of the stack is now typed. The body of the package takes this into account by
converting the constant object Max_Stack into an object of type Stack_Index. The body of the package is
implemented as follows:

package body Class_Stack is

 procedure Push(The:in out Stack; Item:in T) is
 begin
 if The.Tos /= Stack_Index(Max_Stack) then
 The.Tos := The.Tos + 1; --Next element
 The.Elements(The.Tos) := Item; --Move in
 else
 raise Stack_Error; --Failed
 end if;
 end Push;

196 Child libraries

 M A Smith - May not be reproduced without permission

The procedure pop returns the top item on the stack.

 procedure Pop(The:in out Stack; Item: out T) is
 begin
 if The.Tos > 0 then
 Item := The.Elements(The.Tos); --Top element
 The.Tos := The.Tos - 1; --Move down
 else
 raise Stack_Error; --Failed
 end if;
 end Pop;

The procedure reset resets the stack to empty.

 procedure Reset(The:in out Stack) is
 begin
 The.Tos := 0; --Set TOS to 0 (Non existing element)
 end Reset;

end Class_Stack;

A generic package cannot be used directly. First an instantiation of the package must be made for a specific
type. For example, to instantiate an instance of the above package Class_Stack to provide an Integer stack,
the following declaration is made:

with Class_Stack;
pragma Elaborate_All(Class_Stack);
package Class_Stack_Int is new Class_Stack(Integer);

Note: As the size of the stack is not specified the default value of 3 is used.
The pragma to cause an eloboration of the generic package. This causes the compiler to generate a
specific instance of the package.

The newly created package Class_Stack_Int can then be used in a program.

Exceptions 197

 M A Smith - May not be reproduced without permission

14.3.1 Putting it all together

The new package Class_stack_int is tested by the following program unit which is identical to the code
seen in Section 13.5 except the with’ed and used’ed package is Class_Stack_Int rather than
Class_Stack..

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack_Int;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack_Int;
procedure Main is
 Number_Stack : Stack; --Stack of numbers
 Action : Character; --Action
 Number : Integer; --Number processed
begin
 while not End_Of_File loop
 while not End_Of_Line loop
 begin
 Get(Action);
 case Action is --Process action
 when '+' =>
 Get(Number); Push(Number_Stack,Number);
 Put("push number = "); Put(Number); New_Line;
 when '-' =>
 Pop(Number_Stack,Number);
 Put("Pop number = "); Put(Number); New_Line;
 when others =>
 Put("Invalid action"); New_Line;
 end case;

 exception
 when Stack_Error =>
 Put("Stack_error"); New_Line;
 when Data_Error =>
 Put("Not a number"); New_Line; Skip_Line;
 when End_Error =>
 Put("Unexpected end of file"); New_Line; exit;
 end;
 end loop;
 Skip_Line;
 end loop;

 Reset(Number_Stack);
end Main;

When run with the following data:

+1+2+3+4----

the following results will be produced:

push number = 1
push number = 2
push number = 3
Stack_error
Pop number = 3
Pop number = 2
Pop number = 1
Stack_error

198 Child libraries

 M A Smith - May not be reproduced without permission

1.1.2 Implementation techniques for a generic package

The implementation of a generic package is usually performed by one of the following mechanisms:

l A new package is generated for each unique instantiation of the generic package. This is sometimes
referred to as the macro implementation.

l A single code body is used which can cater for different formal types.

14.4 Generic formal subprograms

When specifying a generic formal type, the compiler must know how to perform operations on an instance of this
type. For example, if the formal type is specified as private, then any Ada private type can be used. The
implementor of the body of the generic package may wish to use instances of this type in a comparison. For
example, as part of a logical expression:

if Instance_Of_Formal_Type > Another_Instance_Of_Formal_type then
 ...
end if;

For this to be allowed, the type passed must allow, in this case, for the ">" operation to be performed between
instances of the generic type. To enforce this contract the specification part of the generic procedure, function or
package must include a generic formal parameter for the ">" logical operation. Remember, the type passed may
not have ">" defined between instances of the type. For example, the class Account does not provide any
comparison operators between instances of an Account.

The following generic procedure which orders its formal parameters of type private is defined with a
formal subprogram specification for ">" .

generic --Specification
 type T is private; --Any non limited type
 with function ">" (A, B:in T)
 return Boolean is <>; --Need def for >
procedure G_Order(A,B:in out T); --Prototype G_Order

procedure G_Order(A,B:in out T) is --Implementation G_Order
 Tmp : T;
begin
 if A > B then --Compare
 Tmp := A; A := B; B := Tmp; --Swap
 end if;
end G_Order; --

The generic formal subprogram:

 with function ">" (A, B:in T)
 return Boolean is <>; --Need def for >

specifies that on instantiation of the package, a definition for ">" between instances of the formal parameter T
must be provided. The <> part of the generic formal subprogram specifies that this formal parameter has as a
default value of the current definition for ">" at the point of instantiation of the generic.

Exceptions 199

 M A Smith - May not be reproduced without permission

Thus, an instantiation of a procedure order to order two Natural values would be:

with G_Order;
 procedure Order is new G_Order(Natural); --Instantiate

Note: The default value for the function ">" is the current definition for ">" between Naturals at the point
of instantiation. If the operator ">" has not been overloaded it will be the intrinsic function defined in
Standard for ">" .
Naturally, if the operator ">" is not defined between instances of the formal type T, a compile-time
error message will be generated.

If the generic formal subprogram had been of the form:

with function ">" (A, B:in T)
 return Boolean; --Need def for >

then the formal parameter does not have a default value and therefore an actual parameter for a function with
signature function (a, b:in T) must be specified on the instantiation. In this case the instantiation of order
would be:

with G_Order;
 procedure Order is new G_Order(Natural, ">"); --Instantiate

Note: If the function ">" has not been overloaded then the function used will be the intrinsic function for ">"
in the package Standard.
If the instantiation had been :

with G_Order;
 procedure Order is new G_Order(Natural, "<");

Then the items would be ordered in descending order.

200 Child libraries

 M A Smith - May not be reproduced without permission

14.4.1 Example of the use of the generic procedure G_3Order

A program to order the height of three people is shown below. In this program, a record of type Person is
created for each of the individuals. A specific instance of the generic procedure G_3Order is created to order
these records into ascending height order.

with Ada.Text_Io, G_3Order;
use Ada.Text_Io;
procedure Main is
 Max_Chs : constant := 7;
 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 end record;

 function Gt(First,Second:in Person) return Boolean is
 begin
 return First.Height > Second.Height;
 end Gt;

 procedure Order is new G_3Order(Person, Gt); --Instantiate
 Person1 : Person := ("Corinna", 171, Female);
 Person2 : Person := ("Miranda", 74, Female);
 Person3 : Person := ("Mike ", 183, Male);

begin
 Order(Person1, Person2, Person3);
 Put("List of people in ascending height order are"); New_Line;
 Put(Person1.Name); New_Line;
 Put(Person2.Name); New_Line;
 Put(Person3.Name); New_Line;
end Main4;

which when run would print:

List of people in ascending height order are
Miranda
Corinna
Mike

14.4.2 Summary

The following table summarizes the effect of different subprogram specifications for a formal parameter.

Generic formal subprogram Explanation
with function ">" (a, b:in T)
 return Boolean is <>;

Has a default value of the current
definition of ">" at the point of
instantiation of the generic subprogram.

with function ">" (a, b:in T)
 return Boolean;

Takes the value of the formal parameter
">" at the point of instantiation of the
generic subprogram.

with procedure exec is exec; Takes the value of the formal parameter
at the point of definition of the generic
subprogram.

Exceptions 201

 M A Smith - May not be reproduced without permission

14.5 Sorting

Some of the simplest sorting algorithms are based on the idea of a bubble sort. In an ascending order bubble sort,
consecutive pairs of items are compared, and arranged if necessary into their correct ascending order. The effect
of this process is to move the larger items to the end of the list. However, in a single pass through the list only the
largest item not already in the correct position will be guaranteed to be moved to the correct position. The process
of passing through the list exchanging consecutive items is repeated until all the items in the list are in the correct
order. For example, the following list of numbers is to be sorted into ascending order:

20 10 17 18 15 11

The first pass of the bubble sort compares consecutive pairs of numbers and orders each pair into ascending
order. This is illustrated in Figure 14.2 below.

20

10

17

18

15

11

20

10

17

18

15

11

20

10

17

18

15

11

20

10

17

18

15

11

20

10

17

18

15

11 20

10

17

18

15

11

Figure 14.2 The first pass of the bubble sort.
Each pass through the list of numbers moves the larger numbers towards the end of the list and the smaller

numbers towards the start of the list. However, only one additional number in the list is guaranteed to be in the
correct position. The result of cumulative passes through the list of numbers is illustrated in the table below.

List of numbers Commentary

20 10 17 18 15 11
The original list.

10 17 18 15 11 20
After the 1st pass through the list.

10 17 1815 11 20
After the 2nd pass through the list.

10 17 1815 11 20
After the 3rd pass through the list.

10 17 181511 20
After the 4th pass through the list.

The process is repeated until there have been no swaps during a single pass through the list. Thus, after the 4th
pass an additional pass through the list will be made in which no changes will occur. This indicates that the list is
sorted.

14.5.1 Efficiency

This variation on the bubble sort is not a very efficient algorithm, as in the worse case it will take n passes through
the list to rearrange the data into ascending order, where n is the size of the list. Each pass through the list will
result in n-1 comparisons.

The big O notation is used to give an approximation of the order of an algorithm. For this modified bubble sort
the order (number of comparisons) will be approximately O(n2). For a small amount of data this is not important,
but if n is large then the number of comparisons will be very large, and hence the time taken to sort the data will
be lengthy.

202 Child libraries

 M A Smith - May not be reproduced without permission

14.6 A generic procedure to sort data

A generic sort procedure using the above variation of the bubble sort algorithm has the following specification:

generic
 type T is private; --Any non limited type
 type Vec_Range is (<>); --Any discrete type
 type Vec is array(Vec_Range) of T;
 with function ">"(First, Second:in T) return Boolean is <>;
procedure Sort(Items:in out Vec);

The generic formal parameters for the procedure Sort are:

Formal parameter Description
type T is private; The type of data item to be sorted.
type Vec_Range is (<>); The type of the index to the array.
type Vec is array(Vec_Range) of T; The type of the array to be sorted.
with function ">"(First,Second:in T)
 return Boolean is <>;

A function that the user of the
generic procedure provides to
compare pairs of data items.

The implementation of the generic procedure is:

procedure Sort(Items:in out Vec) is
 Swaps : Boolean := True;
 Tmp : T;
begin
 while Swaps loop
 Swaps := False;
 for I in Items'First .. Vec_Range'Pred(Items'Last) loop
 if Items(I) > Items(Vec_Range'Succ(I)) then
 Swaps := True;
 Tmp := Items(Vec_Range'Succ(I));
 Items(Vec_Range'Succ(I)) := Items(I);
 Items(I) := Tmp;
 end if;
 end loop;
 end loop;
end Sort;

Note: Passes through the data are repeated until there are no more swaps.
The use of 'Succ delivers the next index. Remember the array might have an index of an enumeration
type, so + cannot be used.

Exceptions 203

 M A Smith - May not be reproduced without permission

14.6.1 Putting it all together

The following program illustrates the use of the generic procedure sort to sort a list of characters into ascending
order.

with Ada.Text_Io, Sort;
use Ada.Text_Io;
procedure Main is

 type Chs_Range is range 1 .. 6;
 type Chs is array(Chs_Range) of Character;

 procedure Sort_Chs is new Sort (
 T => Character,
 Vec_Range => Chs_Range,
 Vec => Chs,
 ">" => ">");
 Some_Characters : Chs := ('q', 'w', 'e', 'r', 't', 'y');
begin
 Sort_Chs(Some_Characters);
 for I in Chs_Range loop
 Put(Some_Characters(I)); Put(" ");
 end loop;
 New_Line;
end Main;

Note: The actual parameters used in the instantiation of the procedure sort_chs.

When run, this will print:

e q r t w y

14.6.2 Sorting records

A program to sort an array of records is shown below. In this program each record represents a person’s name and
height. First, the declaration of the type Person which is:

with Ada.Text_Io, Sort;
use Ada.Text_Io;
procedure Main is
 Max_Chs : constant := 7;
 type Height_Cm is range 0 .. 300;
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 end record;
 type People_Range is (First, Second, Third, Forth);
 type People is array(People_Range) of Person;

204 Child libraries

 M A Smith - May not be reproduced without permission

Then the declaration of two functions: the function Cmp_Height that returns true if the first person is taller
than the second and the second function Cmp_Name that returns true if the first person’s name collates later in the
alphabet than the second.

 function Cmp_Height(First, Second:in Person) return Boolean is
 begin
 return First.Height > Second.Height;
 end Cmp_Height;

 function Cmp_Name(First, Second:in Person) return Boolean is
 begin
 return First.Name > Second.Name;
 end Cmp_Name;

Two instantiations of the generic procedure sort are made, the first to sort people into ascending height
order, the second to sort people into ascending name order.

 procedure Sort_People_Height is new Sort (
 T => Person,
 Vec_Range => People_Range,
 Vec => People,
 ">" => Cmp_Height);

 procedure Sort_People_Name is new Sort (
 T => Person,
 Vec_Range => People_Range,
 Vec => People,
 ">" => Cmp_Name);

The body of the program which orders the friends into ascending height and name order is:

 Friends : People := (("Paul ", 146), ("Carol ", 147),
 ("Mike ", 183), ("Corinna", 171));
begin
 Sort_People_Name(Friends); --Name order
 Put("The first in ascending name order is ");
 Put(Friends(First).Name); New_Line;
 Sort_People_Height(Friends); --Height order
 Put("The first in ascending height order is ");
 Put(Friends(First).Name); New_Line;
end Main;

which when run will print:

The first in ascending name order is Carol
The first in ascending height order is Paul

14.7 Generic child library

The stack seen in Section 13.5 can be extended to include the additional methods of:

Method Responsibility
Top Return the top item of the stack without removing it from the stack.
Items Return the current numbers of items in the stack.

Exceptions 205

 M A Smith - May not be reproduced without permission

An efficient implementation is to access the private instance attributes of the class Stack directly. This can be
done by creating a child package of the generic package Class_Stack. However, as the parent class is generic, its
child package must also be generic. The specification of this generic child package is as follows:

generic
package Class_Stack.Additions is
 function Top(The:in Stack) return T;
 function Items(The:in Stack) return Natural;
private
end Class_Stack.Additions;

Note: As the child can see the components of the parent, it can also see any generic types.
The implementation of the class is then:

package body Class_Stack.Additions is

 function Top(The:in Stack) return T is
 begin
 return The.Elements(The.Tos);
 end Top;

 function Items(The:in Stack) return Natural is
 begin
 return Natural(The.Tos);
 end Items;

end Class_Stack.Additions;

A generic child of a package is considered to be declared within the generic parent. Thus, to instantiate an
instance of the parent and child the following code is used:

with Class_Stack;
 pragma Elaborate_All(Class_Stack);
 package Class_Stack_Pos is new Class_Stack(Positive,10);

with Class_Stack_Pos, Class_Stack.Additions;
 pragma Elaborate_All(Class_Stack_Pos, Class_Stack.Additions);
 package Class_Stack_Pos_Additions is
 new Class_Stack_Pos.Additions;

Note: The name of the instantiated child package is an Ada identifier.

206 Child libraries

 M A Smith - May not be reproduced without permission

14.7.1 Putting it all together

The following program tests the child library:

with Ada.Text_Io, Ada.Integer_Text_Io,
 Class_Stack_Pos, Class_Stack_Pos_Additions;
use Ada.Text_Io, Ada.Integer_Text_Io,
 Class_Stack_Pos, Class_Stack_Pos_Additions;
procedure Main is
 Numbers : Stack;
begin
 Push(Numbers, 10);
 Push(Numbers, 20);
 Put("Top item "); Put(Top(Numbers)); New_Line;
 Put("Items "); Put(Items(Numbers)); New_Line;
end Main;

which when run gives these results:

Top item 20
Items 2

14.8 Inheriting from a generic class

The class Stack seen in Section 13.5 and its generic child seen in Section 14.7 can be extended to include the
additional method of:

Method Responsibility
Depth Return the maximum depth that the stack reached.

The specification for the new class Better_Stack is:

with Class_Stack, Class_Stack.Additions;
generic
 type T is private;
 Max_Stack:in Positive := 3; --Has to be typed / not const
package Class_Better_Stack is
 package Class_Stack_T is new Class_Stack(T,Max_Stack);
 package Class_Stack_T_Additions is new Class_Stack_T.Additions;

 type Better_Stack is new Class_Stack_T.Stack with private;

 procedure Push(The:in out Better_Stack; Item:in T);
 function Max_Depth(The:in Better_Stack) return Natural;
private
 type Better_Stack is new Class_Stack_T.Stack with record
 Depth : Natural := 0;
 end record;
end Class_Better_Stack;

Note: Be aware of the instantiation of the base class Stack and its generic child within the body of the
inheriting class.
The procedure push is overloaded so that it can record the maximum depth reached.

Exceptions 207

 M A Smith - May not be reproduced without permission

The implementation of this inherited class is:

package body Class_Better_Stack is

 procedure Push(The:in out Better_Stack; Item:in T) is
 D : Natural;
 begin
 Class_Stack_T.Push(Class_Stack_T.Stack(The), Item);
 D := Class_Stack_T_Additions.Items(Class_Stack_T.Stack(The));
 if D > The.Depth then
 The.Depth := The.Depth + 1;
 end if;
 end Push;

 function Max_Depth(The:in Better_Stack) return Natural is
 begin
 return The.Depth;
 end Max_Depth;

end Class_Better_Stack;

14.8.1 Putting it all together

An instantiation of the class Better_stack for Positive numbers is created with the declaration:

with Class_Better_Stack;
 pragma Elaborate_All(Class_Better_Stack);
 package Class_Better_Stack_Pos is
 new Class_Better_Stack(Positive,10);

This is then used in a small test program of the new class as follows:

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Better_Stack_Pos;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Better_Stack_Pos;
procedure Main is
 Numbers : Better_Stack;
 Res : Positive;
begin
 Put("Max depth "); Put(Max_Depth(Numbers)); New_Line;
 Push(Numbers, 10);
 Push(Numbers, 20);
 Put("Max depth "); Put(Max_Depth(Numbers)); New_Line;
 Push(Numbers, 20);
 Put("Max depth "); Put(Max_Depth(Numbers)); New_Line;
 Pop(Numbers, Res);
 Put("Max depth "); Put(Max_Depth(Numbers)); New_Line;
 null;
end Main;

which when run produces the following results:

Max depth 0
Max depth 2
Max depth 3
Max depth 3

208 Child libraries

 M A Smith - May not be reproduced without permission

14.9 Self-assessment

l How do generic functions and packages help in producing re-usable code?

l Why can an implementor specify the possible types that can be used as a generic parameter to their
package, procedure or function?

l What mechanism(s) prevent a user supplying an inappropriate type as a generic parameter, for
example, an instance of the class Account to a generic sort procedure? This would be inappropriate
as the comparison operator ">" is not defined between instances of an Account.

14.10 Exercises
Construct the following procedure:

l Sort (Better)
Modify the sort package so that a pass through the data does not consider items that are already in the
correct order.

Construct the following classes:

l Store
A store for data items which has as its generic parameters the type of the item stored and the type of the
index used. The generic specification of the class is:

generic
 type Store_index is private; --
 type Store_element is private; --
package Class_store is
 type Store is limited private; -- NO copying
 Not_there, Full : exception;

 procedure add (the:in out Store;
 index:in Store_index;
 item:in Store_element);
 function deliver(the:in Store;
 index:in Store_index)
 return Store_element;
private
 --
end Class_store;

l Better Store
By adding to the class store, provide a class which will give a user of the class information about how
many additional items may be added before the store fills up.

 M A Smith - May not be reproduced without permission

15 Dynamic memory allocation

This chapter shows how storage can be allocated and de-allocated arbitrarily by a program. An
undisciplined use of this facility can lead to programs that are difficult to debug and fail in unpredictable
ways.

15.1 Access values

Ada allows the access value of an object to be taken. An access value is a pointer or reference to an object which
can be manipulated and used to access the original object. An access value is usually implemented as the physical
address of the object in memory. For example, the declaration shown below elaborates storage for an object which
is to hold an integer value.

 People : aliased Integer;

Note: In the declaration of people the prefix aliased denotes that an access value of the object people
may be taken. If the prefix is omitted the access value of the object may not be taken.

The storage for people can be visualized as illustrated in Figure 15.1.

People 24

Figure 15.1 Storage for an instance of an Integer object.

To store a value into the Integer object, a normal assignment statement is used:

 People := 24;

whilst the declaration:

 type P_Integer is access all Integer;

 P_People : P_Integer;

uses the access type P_Integer to declare an object P_People to hold an access value for an integer object. In
the declaration of the access type P_Integer the keyword all signifies that read and write access may be
made to the object described by the access value. The following code assigns to p_people the access value of
people:

 P_People := People'Access; --Access value for people

Note: The attribute 'Access is used which delivers from an object its access value.
Access is used both as a keyword and as an attribute name.
The attribute 'Access can only be used when the object will exist for all the life-time of the access value.
See Section 15.7 for a more detailed explanation of the consequences of this requirement.

210 Polymorphism

 M A Smith - May not be reproduced without permission

The storage for P_People can be visualized as illustrated in Figure 15.2.

P_People People24

Figure 15.2 Storage for P_People after it has been assigned the access value of people.

15.1.1 Access to an object via its access value

To access an object via its access value requires the use of .all which de-references the access value. This may
be thought of as an indirection operator. For example, the following program accesses the object people by
using the access value for People stored in the object P_People.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 type P_Integer is access all Integer;
 People : aliased Integer;
 P_People : P_Integer;
begin
 People := 24;
 P_People := People'Access; --Access value for people
 Put("The number of people is : "); Put(P_People.all);
 New_Line;
End Main;

Note: In the declaration of P_integer, access all signifies that read and write access may be made to the
object via its access value.

which when run, would produce:

The number of people is : 24

The ideas described above have their origins in low-level assembly language programming where the address
of an item may be freely taken and manipulated. Ada provides a more disciplined way of implementing these
concepts.

15.1.2 Lvalues and rvalues

In working with access values it is convenient to think about the lvalue and rvalue of an object. The lvalue is the
access value of the object, whilst the rvalue is the contents of the object. For example, in the statement:

 value := amount;

the object amount will deliver its contents, whilst the object value will deliver its access value so that the
rvalue of amount may be assigned to it. The names lvalue and rvalue are an indication of whether the object is
on the left or the right-hand side of an assignment statement.

Dynamic memory allocation 211

 M A Smith - May not be reproduced without permission

In a program it is usual to deal with the contents or rvalue of an object. The access value of an object is its
lvalue. For example, after the following fragment of code has been executed:

declare
 type P_Integer is access all Integer;
 type P_P_Integer is access all P_Integer;
 P_P_People : P_P_Integer;
 P_People : aliased P_Integer;
 People : aliased Integer;
begin
 People := 42;
 P_People := People'Access;
 P_P_People := P_People'Access;

end;

the following expressions will deliver the contents of the object people:

Expression Diagram
People People

24

P_People.all P_People People

24

P_P_People.all.all P_People People

24

P_P_People

In a similar way the following statements will assign 42 to the object people.

Statement Explanation
People := 42; Straight-forward assignment.
P_People.all := 42; Single level of indirection.
P_P_People.all.all := 42; Double level of indirection.

15.1.3 Read only access

Access to an object via an access value may be restricted to read only by replacing all with constant in the
declaration of the access type. For example, in the following fragment of code, only read access is allowed to
People when using the access value held in P_People.

declare
 type P_Integer is access constant Integer;
 People : aliased Integer;
 P_People : P_Integer;
begin
 People := 24;
 P_People := People'Access; --Access value for people
 Put("The number of people is : "); Put(P_People.all);
 New_Line;
end;

212 Polymorphism

 M A Smith - May not be reproduced without permission

15.2 Dynamic allocation of storage

The process described so far has simply used existing storage; the real power of access values accrue when
storage is claimed dynamically from a storage pool. In Ada terminology an allocator is used to allocate storage
dynamically from a storage pool. For example, storage can be allocated dynamically by using the allocator new as
follows:

declare
 Max_Chs : constant := 7;
 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 end record;
 type P_Person is access Person; --Access type
 P_Mike : P_Person;
begin
 P_Mike := new Person'("Mike ", 183, Male);
end;

Note: As the storage for a Person is always allocated dynamically from a specific storage pool, an access
type that declares an object to hold an access value of a Person may be declared without the keyword
all or constant.

The expression:

 new Person'("Mike ", 183, Male);

returns the access value to dynamically allocated storage for a person initialized with the values given in the
record aggregate. This could also have been written as:

 P_Mike := new Person;
 P_Mike.all := Person'("Mike ", 183, Male);

Dynamic memory allocation 213

 M A Smith - May not be reproduced without permission

One way of managing dynamically allocated storage is to form a daisy chain of the allocated storage. The
usual approach when implementing this technique is to include with the record component a value which can hold
the access value of the next item in the daisy chain. The end of the chain is indicated by the value null. The
value null is special as it is considered the null value for any access type. The Ada system will guarantee that no
allocated access value can ever have the value null.

The code below forms a daisy chain of two items of storage which represent individual people.

declare
 Max_Chs : constant := 7;
 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;
 type Person; --Incomplete declaration
 type P_Person is access Person; --Access type
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 Next : P_Person;
 end record;
 People : P_Person;
begin
 People := new Person'("Mike ", 183, Male, null);
 People.Next := new Person'("Corinna", 171, Female, null);

end;

Note: P_Person and Person are mutually dependent upon each other as both contain a reference to each
other. To fit in with the rule that all items must be declared before they can be used, Ada introduces the
concept of a tentative declaration. This is used when Person is defined as 'type Person;'. The
full declaration of person is defined a few lines further down.

The resultant data structure is illustrated in Figure 15.3.

Mike 183 Male

Corinna 171 Female null

People

Figure 15.3 Daisy chain of two people.

In the above code the daisy chain of people could have been created with the single assignment statement:

People := new Person'("Mike ", 183, Male,
 new Person'("Corinna", 171, Female, null));

214 Polymorphism

 M A Smith - May not be reproduced without permission

An iterative procedure to print the names of people represented in this chain is:

 procedure Put(Crowd: in P_Person) is
 Cur : P_Person := Crowd;
 begin
 while Cur /= null loop
 Put(Cur.Name); Put(" is ");
 Put(Integer(Cur.Height), Width=>3); Put("cm and is ");
 if Cur.Sex = Female then
 Put("female");
 else
 Put("male");
 end if;
 New_Line;
 Cur := Cur.Next;
 end loop;
 end Put;

whilst a recursive version of the above procedure is written as::

 procedure Put(Cur: in P_Person) is
 begin
 if Cur /= null then
 Put(Cur.Name); Put(" is ");
 Put(Integer(Cur.Height), Width=>3); Put("cm and is ");
 if Cur.Sex = Female then
 Put("female");
 else
 Put("male");
 end if;
 New_Line;
 Put(Cur.Next);
 end if;
 end Put;

When executed:

declare
 -- Declarations omitted for brevity
 People : P_Person;
begin
 People := new Person'("Mike ", 183, Male,
 new Person'("Corinna", 171, Female, null));
 Put(People);
end;

with either of the above procedures Put the code would produce the following results:

Mike is 183cm and is male
Corinna is 171cm and is female

when called to print people.

Dynamic memory allocation 215

 M A Smith - May not be reproduced without permission

15.2.1 Problems with dynamically allocated storage

The use of dynamically allocated storage can result in errors which can be difficult to track down in a program.
Some of the potential problems associated with dynamic storage allocation are tabled below:

Problem Result
Memory leak The storage that is allocated is not always returned to the

system. For a program which executes for a long time,
this can result in eventual out of memory error messages.

Accidentally using the same
storage twice for different data
items.

This will result in corrupt data in the program and
probably a crash which is difficult to understand.

Corruption of the chained data
structure holding the data.

Most likely a program crash will occur some time after
the corruption of the data structure.

Time taken to allocate and de-
allocate storage is not always
constant.

There may be unpredictable delays in a real-time system.
However, a worst case Figure can usually be calculated.

15.3 Returning dynamically allocated storage

In Ada there are two processes used for returning dynamically allocated storage to the system. These are:

l The Ada run-time system implicitly returns storage once the type that was used to elaborate the storage
goes out of scope.

l The programmer explicitly calls the storage manager to release dynamically allocated storage which
is no longer active. This returned storage is then immediately available for further allocation in the
program.

The advantages and disadvantages of the two processes described above are as follows:

Process Advantages Disadvantages
Storage reclamation
implicitly managed
by the system.

No problem about de-
allocating active storage.

May result in a program
consuming large amounts of
storage even though its
actual use of storage is
small. In extreme cases this
may prevent a program from
continuing to run.

Storage de-
allocation explicitly
initiated by a
programmer.

Prevents inactive storage
consuming program address
space.

If the programmer makes an
error in the de-allocation
then this may be very
difficult to track down.

Note: The process of explicitly returning storage to the run-time system is described in Section 15.4.
As storage de-allocation can be an error-prone process, the best strategies are to either:

l Let the Ada run-time system do the de-allocation automatically for you.

l Hide allocation and de-allocation of storage in a class. The methods of the class can then be tested in
isolation. The fully tested class can then be incorporated into a program.

216 Polymorphism

 M A Smith - May not be reproduced without permission

15.3.1 Summary: access all, access constant, access

The following table summarizes the choice and restrictions that apply to the use of access values.

Note Declaration (T is an Integer type) Example of use
1 type P_T is access all T;

a_t : aliased T;
a_pt: P_T;

a_pt := a_t'Access;
a_pt.all := 2;

2 type P_T is access constant T;
a_t : aliased constant T := 0;
a_pt: P_T;

a_pt := a_t'Access;
Put(a_pt.all);

3 type P_T is access T;
a_pt: P_T;

a_pt := new T;
a_pt.all := 2;

Note 1: Used when it is required to have both read and write access to a_t using the access value held in
a_pt. The storage described by a_t may also be dynamically created using an allocator.

Note 2: Used when it is required to have only read access to a_t using the access value held in a_pt. The
storage described by a_t may also be dynamically created using an allocator.

Note 3: Used when the storage for an instance of a T is allocated dynamically. Access to an instance of T can
be read or written to using the access value obtained from new.
This form may only be used when an access value is created with an allocator (new T).

15.4 Use of dynamic storage
The Stack package shown in Section 14.3 could be rewritten using dynamic storage allocation. In rewriting this
package, the user interface to the package has not been changed. Thus, a user of this package would not need to
modify their program.

There is however, one important difference and this is that as the implementation of the stack uses linked
storage as the implementation stands it cannot be correctly copied. To prevent a user of the package from
attempting to copy an instance of a stack the type Stack is created as a limited type.

generic
 type Stack_Element is private; --

package Class_Stack is
 type Stack is limited private; --NO copying
 Stack_Error : exception;

 procedure Push(The:in out Stack; Item:in Stack_Element);
 procedure Pop(The:in out Stack; Item :out Stack_Element);
 procedure Reset(The:in out Stack);
private

 type Node; --Mutually recursive def
 type P_Node is access Node; --Pointer to a Node
 pragma Controlled(P_Node); --We do deallocation

 type Node is record --Node holds the data
 Item : Stack_Element; --The stored item
 P_Next : P_Node; --Next in list
 end record;

 type Stack is record
 P_Head : P_Node := null; --First node in list
 end record;
end Class_Stack;

Note: The compiler directive pragma Controlled(P_Node) to inform the compiler that the
programmer will explicitly perform the storage de-allocation for data allocated with the type P_Node.

Dynamic memory allocation 217

 M A Smith - May not be reproduced without permission

The package body is as follows:

with Unchecked_Deallocation;
pragma Elaborate_All(Unchecked_Deallocation);
package body Class_Stack is

 procedure Dispose is
 new Unchecked_Deallocation(Node, P_Node);

The procedure Dispose is an instantiation of the generic package Unchecked_Deallocation that
returns space back to the heap. The parameters to the generic package Unchecked_Deallocation are of two
types: firstly, the type of the object to be disposed, and secondly, the access type for this object.

Note: This procedure does little error checking. It is important not to dispose of storage which is still active.
The empty list is represented by the p_head containing the null pointer. The null pointer is used to

indicate that currently the object P_Head does not point to any storage. This can be imagined as Figure 15.4.

P_Head

Figure 15.4 A location containing the null access value or pointer.

When an item (in this case an Integer) has been added to the stack it will look like Figure 15.5.

P_Head

3

Value P_Next

Figure 15.5 A stack containing one element.

To access the component value the . operator is used.

Note: The compiler will generate the appropriate code to reference value. In this case it will involve a de-
referencing through the pointer held in P_Head.

P_Head.Item = 3;

The function Push creates a new element and chains this into a linked list of elements which hold the items
pushed onto the stack.

The chain of elements after adding 3 and
2 to an instance of an Integer Stack

The chain of elements after pushing 1 on
to an instance of an Integer Stack

P_Head

2

3

P_Head

2

3

1

218 Polymorphism

 M A Smith - May not be reproduced without permission

 procedure Push(The:in out Stack; Item:in Stack_Element) is
 Tmp : P_Node; --Allocated node
 begin
 Tmp := new Node'(Item=>Item, P_Next=>The.P_Head);
 The.P_Head := Tmp;
 end Push;

Pop extracts the top item from the stack, and then releases the storage for this element back to the system.

The chain of elements after adding 3 and
2 to an instance of the Stack

The chain of elements after popping the
top element

P_Head

2

3

P_Head

2

3

Tmp

 procedure Pop(The:in out Stack; Item :out Stack_Element) is
 Tmp : P_Node; --Free node
 begin
 if The.P_Head /= null then --if item then
 Tmp := The.P_Head; --isolate top node
 Item := The.P_Head.Item; --extract item stored
 The.P_Head := The.P_Head.P_Next; --Relink
 Dispose(Tmp); --return storage
 else
 raise Stack_Error; --Failure
 end if;
 end Pop;

The procedure reset pops all existing elements from the stack. Remember the procedure pop releases the
storage for the held item.

 procedure Reset(The:in out Stack) is
 Tmp : Stack_Element;
 begin
 while The.P_Head /= null loop --Re-initialize stack
 Pop(The, Tmp);
 end loop;
 end Reset;

end Class_Stack;

Dynamic memory allocation 219

 M A Smith - May not be reproduced without permission

15.4.1 Putting it all together

The following code tests the implementation of the previously compiled Class_Stack . Firstlly an instance of
an Integer stack is instantiated.

with Class_Stack;
 pragma Elaborate_All(Class_Stack);
 package Class_Stack_Int is new Class_Stack(Integer);

Then this package, is used in the following program that tests the stack implementation.

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack_Int;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Stack_Int;
procedure Main is
 Number_Stack : Stack; --Stack of numbers
 Action : Character; --Action
 Number : Integer; --Number processed
begin
 Reset(Number_Stack); --Reset stack to empty
 while not End_Of_File loop
 while not End_Of_Line loop
 begin
 Get(Action);
 case Action is --Process action
 when '+' =>
 Get(Number); Push(Number_Stack,Number);
 Put("push number = "); Put(Number); New_Line;
 when '-' =>
 Pop(Number_Stack,Number);
 Put("Pop number = "); Put(Number); New_Line;
 when others =>
 Put("Invalid action"); New_Line;
 end case;
 exception

 when Stack_Error =>
 Put("Stack_error"); New_Line;
 when Data_Error =>
 Put("Not a number"); New_Line;
 when End_Error =>
 Put("Unexpected end of file"); New_Line; exit;
 end;
 end loop;
 Skip_Line;
 end loop;

 Reset(Number_Stack);
end Main;

When run with the data:

+1+2+3+4-----

220 Polymorphism

 M A Smith - May not be reproduced without permission

this program will produce the following results:

push number = 1
push number = 2
push number = 3
push number = 4
Pop number = 4
Pop number = 3
Pop number = 2
Pop number = 1
Pop: Exception Stack_error

This is essentially the same driver code as used on the previous implementation of a stack. This time,
however, the stack is using dynamically allocated storage.

15.5 Hiding the structure of an object (opaque type)
So far, even though a client of a class cannot access the instance attributes of an instance of the class the client can
still see the type and names of the instance attributes used in the object in the specification of the class. The
instance attributes in an object can be hidden by moving the data declarations to the implementation part of the
class. The specification part of the class will now contain an access value to a data structure whose contents are
defined in the implementation part of the class.

If the specification part of the class no longer defines how much storage is to be used then the storage for an
object must be allocated dynamically. The reason for this is that the compiler will not know how much storage to
allocate for an object. Remember that the implementation part may have been separately compiled. The
specification part of the class defines an access value which points to the storage for the object’s instance
attributes. For example, the class for a bank account can now be defined as:

with Ada.Finalization;
use Ada.Finalization;
package Class_Account is
type Account is new Limited_Controlled with private;
 subtype Money is Float;
 subtype Pmoney is Float range 0.0 .. Float'Last;
 procedure Initialize(The:in out Account);
 procedure Finalize (The:in out Account);
 procedure Deposit (The:in out Account; Amount:in Pmoney);
 procedure Withdraw (The:in out Account; Amount:in Pmoney;
 Get:out Pmoney);
 function Balance (The:in Account) return Money;

private
 type Actual_Account; --Details In body
 type P_Actual_Account is access all Actual_Account;
 type Account is new Limited_Controlled with record
 Acc : P_Actual_Account; --Hidden in body
 end record;
end Class_Account;

Note: Apart from the user-defined initialization and finalization, the procedure and function specification is
the same as seen in Section 6.3.4.
The declaration for the type Actual_Account is tentative.
The base type of the class is Limited_Controlled. Thus assignments of instances of Account
are prevented..

Dynamic memory allocation 221

 M A Smith - May not be reproduced without permission

A benifit of the approach taken above is that a client of the class only needs to relink with any new
implementation code even though the implementor of the class has changed the data in the object.

The implementation of the revised class Account is as follows:

with Unchecked_Deallocation;
package body Class_Account is

 pragma Controlled(P_Actual_Account); -- We do deallocation
 type Actual_Account is record --Hidden declaration
 Balance_Of : Money := 0.00; --Amount in account
 end record;

The code for Initialize allocates the storage for the object automatically when an instance of the class is
created. The body of finalize releases the storage when the object goes out of scope.

 procedure Dispose is
 new Unchecked_Deallocation(Actual_Account, P_Actual_Account);

 procedure Initialize(The:in out Account) is
 begin
 The.Acc := new Actual_Account; --Allocate storage
 end Initialize;

 procedure Finalize (The:in out Account) is
 begin
 if The.Acc /= null then --Release storage
 Dispose(The.Acc); The.Acc:= null; --Note can be called
 end if; -- more than once
 end Finalize;

The code for Deposit, Withdraw and Balance are similar to the previous implementation of Account.

 procedure Deposit (The:in out Account; Amount:in Pmoney) is
 begin
 The.Acc.Balance_Of := The.Acc.Balance_Of + Amount;
 end Deposit;

 procedure Withdraw(The:in out Account; Amount:in Pmoney;
 Get:out Pmoney) is
 begin
 if The.Acc.Balance_Of >= Amount then
 The.Acc.Balance_Of := The.Acc.Balance_Of - Amount;
 Get := Amount;
 else
 Get := 0.00;
 end if;
 end Withdraw;

function Balance(The:in Account) return Money is
 begin
 return The.Acc.Balance_Of;
 end Balance;

end Class_Account;

Note: The automatic de-referencing of The.

222 Polymorphism

 M A Smith - May not be reproduced without permission

15.5.1 Putting it all together

The revised version of the class Account can be used in the same way as previously. In this program, the
procedure Statement seen earlier in Section 6.3.2 is used to print details about an individual account.

with Ada.Text_Io, Class_Account, Statement;
use Ada.Text_Io, Class_Account;
procedure Main is
 My_Account:Account;
 Obtain :Money;
begin
 Statement(My_Account);

 Put("Deposit £100.00 into account"); New_Line;
 Deposit(My_Account, 100.00);
 Statement(My_Account);

 Put("Withdraw £80.00 from account"); New_Line;
 Withdraw(My_Account, 80.00, Obtain);
 Statement(My_Account);

 Put("Deposit £200.00 into account"); New_Line;
 Deposit(My_Account, 200.00);
 Statement(My_Account);
end Main;

which when run, would produce:

Mini statement: The amount on deposit is £ 0.00

Deposit _100.00 into account
Mini statement: The amount on deposit is £100.00

Withdraw _80.00 from account
Mini statement: The amount on deposit is £20.00

Deposit _200.00 into account
Mini statement: The amount on deposit is £220.00

Note: The class Account allows the assignment of an instance of an Account. The consequences of this
are that two objects will share the same storage. Section 17.4 explores and discusses this in detail and
shows a solution to the problem.

Dynamic memory allocation 223

 M A Smith - May not be reproduced without permission

15.5.2 Hidden vs. visible storage in a class

The main benefit of this approach is that a client of the class does not need to recompile their code when the
storage structure of the class is changed. The client code only needs to be relinked with the new implementation
code. This would usually occur when a new improved class library is provided by a software supplier. Naturally,
this assumes that the interface with the library stays the same.
The pros and cons of the two approaches are:

Criteria Hidden storage Visible storage
Compilation efficiency Fewer resources required,

as only a recompile of the
class and then a re-link
need to be performed.

Greater as all units that use
the class need to be
recompiled.

Run-time efficiency Worse as there is the
dynamic storage allocation
overhead.

No extra run-time
overhead.

Client access to data
components of an object.

None None

Note: The extra cost of re-compiling and re-linking all units of a program may be marginal when compared
with just re-linking.

15.6 Access value of a function
The access value of a function or procedure may also be taken. This allows a function or procedure to be passed as
a parameter to another function or procedure. For example, the procedure apply applies the function passed as a
parameter to all elements of the array. The implementation of this function is shown in the fragment of code
below:

 type P_Fun is access function(Item:in Float) return Float;
 type Vector is array (Integer range <>) of Float;

 procedure Apply(F:in P_Fun; To:in out Vector) is
 begin
 for I in To'range loop
 To(I) := F(To(I));
 end loop;
 end Apply;

Note: The de-referencing is done automatically when the function f is called. This could have been done
explicitly with F.all(To(I)). This explicit de-referencing is, however, required if the called
function or procedure has no parameters.

The first parameter to the procedure apply can be any function which has the signature:
function(Item:in Float) return Float;

Two such functions are:

 function Square(F:in Float) return Float is
 begin
 return F * F;
 end Square;

 function Cube(F:in Float) return Float is
 begin
 return F * F * F;
 end Cube;

224 Polymorphism

 M A Smith - May not be reproduced without permission

15.6.1 Putting it all together

Using the above declarations the following program can be written:

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
procedure Main is
 type P_Fun is access function(Item:in Float) return Float;
 type Vector is array (Integer range <>) of Float;

 -- Body of the procedures apply, square and float

 procedure Put(Items:in Vector) is
 begin
 for I in Items'Range loop
 Put(Items(I), Fore=>4, Exp=>0, Aft=>2); Put(" ");
 end loop;
 end Put;
begin
 Numbers := (1.0, 2.0, 3.0, 4.0, 5.0);
 Put("Square list :");
 Apply(Square'access, Numbers);
 Put(Numbers); New_Line;
 Numbers := (1.0, 2.0, 3.0, 4.0, 5.0);
 Put("cube list :");
 Apply(Cube'access, Numbers);
 Put(Numbers); New_Line;
end Ex2;

which when run, will produce the following results:

Square list : 1.00 4.00 9.00 16.00 25.00
cube list : 1.00 8.00 27.00 64.00 125.00

Note: A program is not allowed to take the address of a predefined operator such as Standard."+". This
is to ease compiler implementation.

Dynamic memory allocation 225

 M A Smith - May not be reproduced without permission

15.7 Attributes 'Access and 'Unchecked_Access

The access value of an object may only be taken if the object is declared at the same lexical level or lower than the
type declaration for the access value. If it is not, then a compile time error message will be generated when an
attempt is made to take the object’s access value. This is to prevent the possibility of holding an access value for
an object which does not exist. For example, in the following program:

procedure Main is
 Max_Chs : constant := 7;
 type Height_Cm is range 0 .. 300;
 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 end record;
 Mike : aliased Person := Person'("Mike ",156);
begin
 declare
 type P_Person is access all Person; --Access type
 P_Human: P_Person;
 begin
 P_Human:= Mike'access; --OK
 declare
 Clive : aliased Person := Person'("Clive ", 160);
 begin
 P_Human := Clive'Access;
 end;
 Put(P_Human.Name); New_Line; --Clive no loner exists
 P_Human := Mike'access; --Change to Mike
 end;
end Main;

a compile time error message is generated for the line:

 P_Human := Clive'Access; -- Compile time error

as the object Clive does not exist for all the scope of the type P_Person. In fact, there is a serious error in the
program, as when the line:

 Put(P_Human.Name); New_Line; -- Clive no longer exists

is executed, the storage that p_human points to does not exist. Remember the scope of clive is the declare
block.

In some circumstances the access value of an object declared in an inner block to the access type declaration is
required. If this is so, then the compiler checking can be subverted or overridden by the use of
'Unchecked_Access. Thus, the following code can be written:

procedure Main is
 -- Declaration of Person, P_Person, Mike etc.
begin
 P_Human:= Mike'Access; -- OK
 declare
 Clive : aliased Person := Person'("Clive ", 160);
 begin
 P_Human := Clive'Unchecked_Access;
 Put(P_Human.Name); New_Line; -- Clive
 end;
 P_Human:= Mike'Access; --Change to Mike
 Put(P_Human.Name); New_Line; --Mike
end Main;

Of course the compiler can no longer help the programmer in detecting possible inconstancies.

226 Polymorphism

 M A Smith - May not be reproduced without permission

15.8 Self-assessment

l What is an access type? What is an access value?

l How is dynamic storage allocated?

l What mechanisms are available to return dynamically allocated storage?

l Why is dynamic storage allocation often considered a potential problem area in a program?

l How do you pass a procedure as a parameter to another procedure?

l Why is it essential to be able to call the procedure Finalize in the class Account more than once
on the same object?

l What is the difference between 'Access and 'Unchecked_Access?

15.9 Exercises

Construct the following:

l Store
A store for data items which has as its generic parameters the type of the item stored and the type of the
index used. The generic specification of the class is:

generic
 type Store_index is private; --
 type Store_element is private; --
package Class_store is
 type Store is limited private; -- NO copying
 Not_there, Full : exception;

 procedure add (the:in out Store;
 index:in Store_index;
 item:in Store_element);
 function deliver(the:in Store;
 index:in Store_index)
 return Store_element;
private
 --
end Class_store;

The implementation of the store uses a linked structure.

l Queue
The class Queue implements a data structure in which items are added to the rear of the queue and
extracted from the front. Implement this generic class using dynamic storage allocation.

 M A Smith - May not be reproduced without permission

16 Polymorphism

In the processes described so far, when a message is sent to an object, the method executed has been
determinable at compile-time. This is referred to as static binding. If the type of an object that a message
is sent to is not known until run-time, the binding between the method and the message is dynamic.
Dynamic binding leads to polymorphism, which is when a message sent to an object causes the execution
of a method that is dependent on the type of the object.

16.1 Rooms in a building
A partial classification of the different types of accommodation found in an office building is shown in Figure
16.1.

Room

Office

Executive
Office

Store Room

Figure 16.1 Partial classification of types of accommodation in a building.

The type of accommodation in each part of the building can be modelled using the Ada inheritance
mechanism. First, a class Room to describe a general room is created. This class is then used as the base class for
a series of derived classes that represent more specialized types of room. For example, an executive office is a
more luxurious office, perhaps with wall-to-wall carpets and an outside view.

Each class derived from the class Room, including Room , has a function describe which returns a
description of the accommodation.

A program is able to send the message describe to an instance of any type of accommodation and have the
appropriate code executed. This is accomplished with function name overloading.

Figure 16.2 illustrates the call of a function describe on an instance of a class derived from Room.

Room

Office

Executi
ve
Office

Store
Room

Room

Office

Executive
Office

Store
Room

Describe

Figure 16.2 Call of describe on any instance of an object derived from Room.

228 Polymorphism

 M A Smith - May not be reproduced without permission

16.1.1 Dynamic binding

Ada introduces the concept of a class-wide type to describe a tagged type and any type derived from the tagged
type. The class-wide type is treated as an unconstrained type and is written T'Class, where T is a tagged type.
For example, using the above hierarchy of types:

Class wide type Can describe an instance of the following types
Room'Class Room, Office, Executive_Office

or Store_Room
Office'Class Office or Executive_Office
Executive_Office'Class Executive_Office
Store_Room'Class Store_Room

Note: This is a departure from Ada’s normal strict type checking, as any derived type of T can be implicitly
converted to T'Class.
A class-wide type T'Class is considered to be an unconstrained type which must be initialized and
is then only allowed to hold instances of the initialization type.

When a message such as describe is sent to an object of the class-wide type Room'Class the compiler
does not know at compile-time which method to execute. The decision as to which method to execute must be
determined at run-time by inspecting the object’s tag. An object’s tag describes its type. The mechanism of
dynamic binding between an object and the message sent to it is referred to in Ada terminology as a run-time
dispatch.
The object’s tag can be explicitly examined using the attribute 'Tag. For example:

 if W422'Tag = W414'Tag then
 Put("Areas are the same type of accommodation");
 New_Line;
 end if;

16.2 A program to maintain details about a building

A program that maintains details about a building stores individual details about rooms and offices. The details
stored about a room include a description of its location. For an office, the details stored are all those for a room,
plus the number of people who will occupy the room. The program will be required to give details about the
individual areas in the building that may be a room or an office.

The responsibilities of a Room are as follows:

Method Responsibility
Initialize Store a description of the room.
Describe Deliver a string containing a description of the room.
Where Deliver the room’s number.

Polymorphism 229

 M A Smith - May not be reproduced without permission

This can be implemented as an Ada class specification as follows:

with B_String; use B_String;
package Class_Room is
 type Room is tagged private;

 procedure Initialize(The:in out Room; No:in Positive;
 Mes:in String);
 function Where(The:in Room) return Positive;
 function Describe(The:in Room) return String;
private
 type Room is tagged record
 Desc : Bounded_String; --Description of room
 Number: Positive; --Room number
 end record;
end Class_Room;

Note: The package B_string is an instantiation of the package Ada.Strings.Bounded. For example:

with Ada.Strings.Bounded;
use Ada.Strings.Bounded;
package B_String is new Generic_Bounded_Length(80);

The implementation of the class is:

with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;
package body Class_Room is

 procedure Initialize(The:in out Room;
 No:in Positive; Mes:in String) is
 begin
 The.Desc := To_Bounded_String(Mes);
 The.Number := No;
 end Initialize;

 function Where(The:in Room) return Positive is
 begin
 return The.Number;
 end Where;

 function Describe(The:in Room) return String is
 Num : String(1 .. 4); --Room number as string
 begin
 Put(Num, The.Number);
 return Num & " " & To_String(The.Desc);
 end Describe;

end Class_Room;

The responsibilities of an Office are those of the Room plus:

Method Responsibility
Initialize Store a description of the office plus the number of

occupants.
Describe Returns a String describing an office.
No_Of_People Return the number of people who occupy the room.

230 Polymorphism

 M A Smith - May not be reproduced without permission

The specification for a class Office extends the specification for a class Room as follows:

with Class_Room; use Class_Room;
package Class_Office is
 type Office is new Room with private;

 procedure Initialize(The:in out Office; No:in Positive;
 Desc:in String; People:in Natural);
 function Deliver_No_Of_People(The:in Office) return Natural;
 function Describe(The:in Office) return String;
private
 type Office is new Room with record
 People : Natural := 0; --Occupants
 end record;
end Class_Office;

In the implementation of the class Office the procedure Initialize calls the inherited Initialize
from class Room to store the description of the office. Remember the storage for the description in class Room is
inaccessible to the class Office.

with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;
package body Class_Office is

 procedure Initialize(The:in out Office; No:in Positive;
 Desc:in String; People:in Natural) is
 begin
 Initialize(The, No, Desc);
 The.People := People;
 end Initialize;

The function Deliver_No_Of_People returns the number of people who occupy the office.

 function Deliver_No_Of_People(The:in Office) return Natural is
 begin
 return The.People;
 end Deliver_No_Of_People;

The function describe is overloaded with a new meaning. In the implementation of the method
Describe, a call is made to the method Describe in the class Room. To call the function Describe in the
class Room, the function is passed an instance of Office viewed as a Room. This is referred to as a view
conversion — the view changes, not the object. If this had not been done, a recursive call to describe in the
class Office would have been made.

 function Describe(The:in Office) return String is
 No : String(1 .. 4); --the.people as string
 begin
 Put(No, The.People);
 return Describe(Room(The)) &
 " occupied by" & No & " people";
 end Describe;

end Class_Office;

Polymorphism 231

 M A Smith - May not be reproduced without permission

16.2.1 Putting it all together

The above classes can be combined into a program which prints details about various rooms or offices in a
building. The program is as follows:

with Ada.Text_Io, Class_room, Class_Office;
use Ada.Text_Io, Class_room, Class_Office;
procedure Main is
 W422 : Room;
 W414 : Office;

The procedure about can take either an instance of a Room or an Office as a parameter. This is achieved
by describing the parameter as Room'Class. The parameter of type Room'Class will match an instance of
Room plus an instance of any type which is derived directly or indirectly from a Room .

In the procedure about the call to the function Describe(Place) is not resolvable at compile-time, as
the object place may be either a Room or an Office. At run-time when the type of Place is known to the
system, this call can be resolved. Thus, either Describe in the class Room or Describe in the class Office
will be called.

 procedure About(Place:in Room'Class) is
 begin
 Put("The place is"); New_Line;
 Put(" " & Describe(Place)) ; --Run time dispatch
 New_Line;
 end About;

Note: One way to implement the dynamic binding is for the object to contain information about which
function Describe is to be called. This information can then be interrogated at run-time to allow the
appropriate version of the function Describe to be executed. By careful optimization, the overhead
of dynamic binding can be limited to a few machine cycles.

The body of the test program Main is:

begin
 Initialize(W414, 414, "4th Floor west wing", 2);
 Initialize(W422, 422, "4th Floor east wing");

 About(W422); --Call with a room
 About(W414); --Call with an Office

end Main;

Note: The call to about with an instance of a Room and an Office is possible because the type of the
formal parameter is Room'Class.

232 Polymorphism

 M A Smith - May not be reproduced without permission

When run, this program will produce the following output:

The place is
 422 4th Floor east wing
The place is
 414 4th Floor west wing occupied by 2 people

16.3 Run-time dispatch

For run-time dispatching to take place:

l The function or procedure must have a tagged type as a formal parameter.
l In the call of the function or procedure the actual parameter corresponding to the tagged type must be

an instance of a class-wide type.

For example, the call to the function describe(place) in the procedure about will be a dispatching call.
If the actual class-wide type can represent two or more different typed objects which have procedures or

functions with the same parameters, except the parameter for the class type, then polymorphism can take place.
For example, in class Room and class Office, the function describe has the same signature except for the
parameter with the class type.

In class Room function Describe(The:in Room) return String;
In class Office function Describe(The:in Office) return String;

The signatures of the functions and procedures in the class Room and the class Office are:

In class Room In class Office
Initialize(Room,String) Initialize(Office,String)
Describe(Room) -> String Describe(Office) -> String

No_Of_People(Room) -> Integer
Initialize(Office,String,Natural)

Note: The function initialize(Office,String) in class Office is inherited from the class Room.

16.4 Heterogeneous collections of objects

The real benefits of polymorphism accrue when a heterogeneous collection of related items is created. For
example, a program which maintains details about accommodation in a building could use an array to hold objects
which represent the different types of accommodation. Unfortunately, this technique cannot be implemented
directly in Ada, as the size of individual members of the collection may vary. The solution in Ada is to use an
array of pointers to the different kinds of object which represent the accommodation. In Ada, a pointer is referred
to as an access value. An access value is usually implemented as the physical address in memory of the referenced
object. An array of access values to objects of type Room and Office is illustrated in Figure 16.3.

Polymorphism 233

 M A Smith - May not be reproduced without permission

Figure 16.3 Heterogeneous collection of Rooms and Offices .

R
o
o
m

O
f
f
i
c
e

O
f
f
i
c
e

O
f
f
i
c
e

R
o
o
m

R
o
o
m

O
f
f
i
c
e

O
f
f
i
c
e

16.4.1 An array as a heterogeneous collection

A heterogeneous collection of different types of accommodation can be modelled in an array. The array will
contain for each type of accommodation a pointer to either an instance of a Room or an instance of an Office.
For example:

 type P_Room is access all Room'Class;
 type Rooms_Array is array (1 .. 15) of P_Room;

Note: P_Room is an access type which can declare an object which can hold the access value for a Room or
any type derived from a Room.
The keyword null is a predefined value to indicate that the object contains no access value.

The heterogeneous collection is then built using an array of P_Room. The object’s access value is used when
entering a description of the accommodation into the heterogeneous array. For example, to enter details about
room 414 into the heterogeneous array, the following code can be used.

 declare
 P : P_Room;
 Accommodation: Rooms_Array;
 begin
 P := new Room;
 Initialize(P.all, 422, "4th Floor east wing");
 Accommodation(1) := P;
 end;

This inelegant code sequence is required as the instance attributes of the class Room are hidden and hence the
construct:

Accommodation(1) := new Office(414, "4th Floor east wing" ,2);
cannot be used.

16.4.2 Additions to the class Office and Room

To simplify later code, the classes Room and Office are extended to include additional methods to return an
access value to an initialized object. These additional methods are:

Method Responsibility
Build_Room Deliver an access value to a dynamically created Room.
Build_Office Deliver an access value to a dynamically created Office.

234 Polymorphism

 M A Smith - May not be reproduced without permission

A child package is used to implement this extension to the classes. The specification for the child package of
Room is:

package Class_Room.Build is
 type P_Room is access all Room'Class;

 function Build_Room(No:in Positive;
 Desc:in String) return P_Room;
end Class_Room.Build;

whilst its implementation is:

package body Class_Room.Build is

 function Build_Room(No:in Positive;
 Desc:in String) return P_Room is
 P : P_Room;
 begin
 P := new Room; Initialize(P.all, No, Desc);
 return P;
 end Build_Room;

end Class_Room.Build;

The specification for the child package of Office is:

with Class_Room, Class_Room.Build;
use Class_Room, Class_Room.Build;
package Class_Office.Build is

 function Build_Office(No:in Positive; Desc:in String;
 People:in Natural) return P_Room;
end Class_Office.Build;

The implementation of the package is:

package body Class_Office.Build is

 type P_Office is access all Office;

 function Build_Office(No:in Positive; Desc:in String;
 People:in Natural) return P_Room is
 P : P_Office;
 begin
 P := new Office; Initialize(P.all, No, Desc, People);
 return P.all'access;
 end Build_Office;
end Class_Office.Build;

Note: The function Build_Office returns an access value to a Room.

Polymorphism 235

 M A Smith - May not be reproduced without permission

16.5 A building information program

A class Building, which is used as a container to store and retrieve details about the accommodation in a
building, has the following responsibilities:

Method Responsibility
Add Add a description of a room.
About Return a description of a specific room.

The Ada specification for the class Building is:

with Class_Room, Class_Room.Build;
use Class_Room, Class_Room.Build;
package Class_Building is

 type Building is tagged private;

 procedure Add(The:in out Building; Desc:in P_Room);
 function About(The:in Building; No:in Positive) return String;

private
 Max_Rooms : constant := 15;
 type Rooms_Index is range 0 .. Max_Rooms;
 subtype Rooms_Range is Rooms_Index range 1 .. Max_Rooms;
 type Rooms_Array is array (Rooms_Range) of P_Room;

 type Building is tagged record
 Last : Rooms_Index := 0; --Last slot allocated
 Description : Rooms_Array; --Rooms in building
 end record;
end Class_Building;

The procedure Add adds new data to the next available position in the array.

package body Class_Building is

 procedure Add(The:in out Building; Desc:in P_Room) is
 begin
 if The.Last < Max_Rooms then
 The.Last := The.Last + 1;
 The.Description(The.Last) := Desc;
 else
 raise Constraint_Error;
 end if;
 end Add;

Note: The exception Constraint_Error is raised if there is no more free space in the array.

236 Polymorphism

 M A Smith - May not be reproduced without permission

The function about uses a linear search to find the selected room number. If the room number does not exist,
the returned string contains the text "Sorry room not known".

 function About(The:in Building; No:in Positive) return String is
 begin
 for I in 1 .. The.Last loop
 if Where(The.Description(I).all) = No then
 return Describe(The.Description(I).all);
 end if;
 end loop;
 return "Sorry room not known";
 end About;
end Class_Building;

Note: Chapter 17 explores more sophisticated container implementations.
The appending of .all to an access value causes the object described by the access value to be
delivered.

16.5.1 Putting it all together

The classes Room, Office and Building can be used to build a program to allow visitors to a building to find
out details about individual rooms. The program is split into two procedures. The first procedure declares and sets
up details about individual rooms in the building.

with Ada.Text_Io,Ada.Integer_Text_Io,Class_Room,Class_Room.Build,
 Class_Office, Class_Office.Build, Class_Building;
use Ada.Text_Io,Ada.Integer_Text_Io,Class_Room,Class_Room.Build,
 Class_Office, Class_Office.Build, Class_Building;
procedure Set_Up(Watts:in out Building) is
begin
 Add(Watts, Build_Office(414, "4th Floor west wing", 2));
 Add(Watts, Build_Room (422, "4th Floor east wing"));
end Set_Up;

The second procedure interrogates the object watts to find details about individual rooms.

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Building, Set_Up;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Building;
procedure Main is
 Watts : Building; --Watts Building
 Room_No : Positive; --Queried room
begin
 Set_Up(Watts); --Populate building
 loop
 begin
 Put("Inquiry about room: "); --Ask
 exit when End_Of_File;
 Get(Room_No); Skip_Line; --User response
 Put(About(Watts, Room_No));
 New_Line; --Display answer
 exception
 when Data_Error =>
 Put("Please retype the number"); --Ask again
 New_Line; Skip_Line;
 end;
 end loop;
end Main;

Note: The program does not release the storage for the descriptions of the individual rooms and offices.

Polymorphism 237

 M A Smith - May not be reproduced without permission

An example interaction using the program would be as follows:

Inquiry about room: 414
414 4th Floor west wing occupied by 2 people
Inquiry about room: 422
422 4th Floor east wing
Inquiry about room: 999
Sorry room not known
^D

Note: The user’s input is indicated by bold type.

16.6 Fully qualified names and polymorphism
When using polymorphism and fully qualified names, the base class package name is used to qualify the
polymorphic function or procedure. For example, the class Building specification could have been written as:

with Class_Room, Class_Room.Build;
package Class_Building is

 type Building is tagged private;
 procedure Add(The:in out Building;
 Desc:in Class_Room.Build.P_Room);
 function About(The:in Building; No:in Positive) return String;

private
 Max_Rooms : constant := 15;
 type Rooms_Index is range 0 .. Max_Rooms;
 subtype Rooms_Range is Rooms_Index range 1 .. Max_Rooms;
 type Rooms_Array is array (Rooms_Range) of
 Class_Room.Build.P_Room;

 type Building is tagged record
 Last : Rooms_Index := 0; --Last slot allocated
 Description : Rooms_Array; --Rooms in building
 end record;
end Class_Building;

:

238 Polymorphism

 M A Smith - May not be reproduced without permission

Whilst the implementation would have been written as:

package body Class_Building is

 procedure Add(The:in out Building;
 Desc:in Class_Room.Build.P_Room) is
 begin
 if The.Last < Max_Rooms then
 The.Last := The.Last + 1;
 The.Description(The.Last) := Desc;
 else
 raise Constraint_Error;
 end if;
 end Add;

 function About(The:in Building; No:in Positive) return String is
 begin
 for I in 1 .. The.Last loop
 if Class_Room.Where(The.Description(I).all) = No then
 return Class_Room.Describe(The.Description(I).all);
 end if;
 end loop;
 return "Sorry room not known";
 end About;
end Class_Building;

Note: The call of the function Describe is written as:
Class_Room.Describe(The.Description(I).all).

16.7 Program maintenance and polymorphism

To modify the above program so that details about executive offices in the building are also displayed would
involve the following changes:

l The creation of a new derived class Executive_office.

l The modification of the procedure set_up so that details of the executive offices in the building are
added to the collection object watts.

No other components of the program would need to be changed. In carrying out these modifications, the following
points are evident:

l Changes are localized to specific parts of the program.

l The modifier of the program does not have to understand all the details of the program to carry out
maintenance.

l Maintenance will be easier.

Thus, if a program using polymorphism is carefully designed, there can be considerable cost saving when the
program is maintained/updated.

16.8 Downcasting

Downcasting is the conversion of an instance of a base class to an instance of a derived class. This conversion is
normally impossible as extra information needs to be added to the base type object to allow it to be turned into an
instance of a derived type. However, in a program it is possible to describe the access value of an instance of a
derived type as the access value of the base type. This will usually occur when a heterogeneous collection is
created. The data members of a heterogeneous collection, though consisting of many different types, are each
defined as an access value of the base type of the collection.

Polymorphism 239

 M A Smith - May not be reproduced without permission

The conversion from a base type to a derived type must, of course be possible. For example, the following
code copies the offices in the heterogeneous array accommodation into the array Offices.

with Ada.Text_Io,Ada.Integer_Text_Io,Class_Room, Class_Room.Build,
 Class_Office, Class_Office.Build, Ada.Tags;
use Ada.Text_Io,Ada.Integer_Text_Io,Class_Room, Class_Room.Build,
 Class_Office, Class_Office.Build, Ada.Tags;
procedure Main is
 Max_Rooms : constant := 3;
 type Rooms_Index is range 0 .. Max_Rooms;
 subtype Rooms_Range is Rooms_Index range 1 .. Max_Rooms;
 type Rooms_Array is array (Rooms_Range) of P_Room;
 type Office_Array is array (Rooms_Range) of Office;
 Accommodation : Rooms_Array; --Rooms and Offices
 Offices : Office_Array; --Offices only
 No_Offices : Rooms_Index;

begin
 Accommodation(1):=Build_Office(414, "4th Floor west wing", 2);
 Accommodation(2):=Build_Room (518, "5th Floor east wing");
 Accommodation(3):=Build_Office(403, "4th Floor east wing", 1);

 No_Offices := 0;
 for I in Rooms_Array'range loop
 if Accommodation(I).all'Tag = Office'Tag then
 No_Offices := No_Offices + 1;
 Offices(No_Offices) := Office(Accommodation(I).all); --
 end if;
 end loop;

 Put("The offices are:"); New_Line;
 for I in 1 .. No_Offices loop
 Put(Describe(Offices(I))); New_Line;
 end loop;

end Main;

Note: The use of 'Tag to allow the selection of objects of type Office.

This when run, will give the following results:

The offices are:
 414 4th Floor west wing occupied by 2 people
 403 4th Floor east wing occupied by 1 people

16.8.1 Converting a base class to a derived class

It is possible to convert a base class to a derived class by adding the extra data attributes to an instance of the base
class. However, for this to be performed the programmer must have access to the base class components. The
implication of this is that the encapsulation of the base class has been broken. In the example below, an instance
of Account is converted to an instance of an Account_Ltd.

240 Polymorphism

 M A Smith - May not be reproduced without permission

with Ada.Tags;
use Ada.Tags;
procedure Main is
 Withdrawals_In_A_Week : constant Natural := 3;
 subtype Money is Float;
 type Account is tagged record
 Balance_Of : Money := 0.00; --Amount in account
 end record;
 type Account_Ltd is new Account with record
 Withdrawals : Natural := Withdrawals_In_A_Week;
 end record;
 Normal : Account;
 Restricted : Account_Ltd;
begin
 Normal := (Balance_Of => 20.0);
 Restricted := (Normal with 4);
 Restricted := (Normal with Withdrawals => 4);
end Main;

Note: with is used to extend normal, an instance of an Account, into restricted, an instance of an
Account_Ltd.
The components may be named:
restricted := (normal with withdrawals => 4);
If there are no additional components, with null record is used to form the extension.

16.9 The observe-observer pattern

A danger in writing any program is that input and output of data values become entangled in the body of the code
of the program. When this happens the program becomes less easy to maintain and will require major changes if
the format of the input or output changes. By separating the input and output from the functionality of the program
allows a cleaner solution to be formulated.

The model-view paradigm in essence consists of:

l An observer: An object that has responsibility for displaying a representation of another
object.

l The observed: An object that has one or more observers who will display the state of the
object.

In the game of noughts and crosses, for example, the observed object would be the object representing the
board. The observer would be an object that has responsibility for displaying a representation of the board onto
the computer screen. There could be several implementations of the observer, depending on how the information
is to be displayed. For example, the observer may be implemented to display the board as a:

l Textual representation: When a console application is written.

l As a graphical image: When an application with a graphical interface is developed.

This separation of responsibility is illustrated in Figure 16.4. In which the observed object oxo is interrogated
by the object oxo_observer so that it can display a graphical representation of the noughts and crosses board
on the computer screen.

Polymorphism 241

 M A Smith - May not be reproduced without permission

ObserverObserved

Sqrs : Board_Array

oxo oxo_observer

Screen

Figure 16.4 Oxo observer and observed oxo board.

The observed object oxo is unaware of how its representation will be displayed, whilst the observer object
oxo_observer is unaware of how the observed object oxo represents and manipulates the board.

16.9.1 The Observer’s responsibilities

An observer class for an object is required to inherit from the type Observer and override the method Update
with code that will display the state of the observed object.

Method Responsibility
Update Display the state of the observed object.

An implementor of an Observer class overrides the method Update with a method that displays an
appropriate representation of the observed object passed as a formal parameter to the method. The method
Update is called when the state of the object being observed changes and an update of the representation of the
objects state is required.

The Ada specification of this responsibility is:

 type Observer is tagged private;

 procedure Update(The:in Observer; What:in Observable'Class);

Note: The object being observed (What) is passed as it base representation. This object will need to be
converted back into its true type before it can be interrogated.

16.9.2 The responsibilities of the observable object

An observable class for an object is required to inherit from the type Observable so that the following methods
may be made available to it.

Method Responsibility
Add_Observer Add an observer to the observable object.
Delete_Observer Removes an observer.
Notify_Observers If the object has changed, tells all observers to update

their view of the object.
Set_Changed Sets a flag to indicate that the object has changed.

242 Polymorphism

 M A Smith - May not be reproduced without permission

The Ada specification of this responsibility is:

 type Observable is tagged private;

 type P_Observer is access all Observer'Class;

 procedure Add_Observer (The:in out Observable;
 O:in P_Observer);
 procedure Delete_Observer(The:in out Observable;
 O:in P_Observer);
 procedure Notify_Observers(The:in out Observable'Class);
 procedure Set_Changed(The:in out Observable);

Note: Observers are manipulated by using their access values, rather than the instance of the observer object
directly.

16.9.3 Putting it all together

The complete class specifications for the observer and observable classes are combined into a single package as
follows:

package Class_Observe_Observer is
 type Observable is tagged private;
 type Observer is tagged private;

 type P_Observer is access all Observer'Class;

 procedure Add_Observer (The:in out Observable;
 O:in P_Observer);
 procedure Delete_Observer(The:in out Observable;
 O:in P_Observer);
 procedure Notify_Observers(The:in out Observable'Class);
 procedure Set_Changed(The:in out Observable);

 procedure Update(The:in Observer; What:in Observable'Class);
private
 Max_Observers : constant := 10;
 subtype Viewers_Range is Integer range 0 .. Max_Observers;
 subtype Viewers_Index is Viewers_Range range 1 .. Max_Observers;
 type Viewers_Array is array(Viewers_Index) of P_Observer;
 type Observable is tagged record
 Viewers : Viewers_Array := (Others => null);
 Last : Viewers_Range := 0;
 State_Changed : Boolean := True;
 end record;

 type Observer is tagged null record;

end Class_Observe_Observer;

Note: Unfortunately as the methods of the classes Observer and Observable are mutually
interdependent it is not possible to easily separate this package into two distinct packages.

The implementation of the package Class_Observe_Observer is as follows:

package body Class_Observe_Observer is

Polymorphism 243

 M A Smith - May not be reproduced without permission

The method Add_Observer adds the access value of an observer to the array Viewers. The exception
Constraint_Error is raised if this operation cannot be accomplished due to lack of space.

 procedure Add_Observer(The:in out Observable;
 O:in P_Observer) is
 begin
 for I in 1 .. The.Last loop --Check for empty slot
 if The.Viewers(I) = null then
 The.Viewers(I) := O; --Populate
 return;
 end if;
 end loop;
 if The.Last >= Viewers_Index'Last then --Extend
 raise Constraint_Error; -- Not enough room
 else
 The.Last := The.Last + 1; -- Populate
 The.Viewers(The.Last) := O;
 end if;
 end Add_Observer;

The inverse method Delete_Observer removes an observer for the observed object.

 procedure Delete_Observer(The:in out Observable;
 O:in P_Observer) is
 begin
 for I in 1 .. The.Last loop --For each observer
 if The.Viewers(I) = O then --Check if to be removed
 The.Viewers(I) := null;
 end if;
 end loop;
 end Delete_Observer;

When the model of the object (the observed) has changed and it is required to redisplay a representation of it
the method Notify_Observers is called. This calls the Update method in each observer.

 procedure Notify_Observers(The:in out Observable'Class) is
 begin
 for I in 1 .. The.Last loop --For each observer
 if The.Viewers(I) /= null then -- call it's
 Update(The.Viewers(I).all, The);-- update method
 end if;
 end loop;
 The.State_Changed := True; --
 end Notify_Observers;

Note: The second parameter is the observed object that is to be displayed by the Update method.

The method Set_Changed simply records that the state of the observed object has changed.

 procedure Set_Changed(The:in out Observable) is
 begin
 The.State_Changed := True;
 end Set_Changed;

244 Polymorphism

 M A Smith - May not be reproduced without permission

The method Update is overridden by an observed with appropriate code to display the state of the observable
object. This object is passed as the second parameter to the method.

 procedure Update(The:in Observer; What:in Observable'Class) is
 begin
 null; --Should be overridden
 end Update;

end Class_Observe_Observer;

Note: The parameter What is of type Observable'Class so that re-dispatching can take place.

16.10 Using the observe-observer pattern

The following is an implementation of the game of noughts and crosses using the observe-observer pattern.

16.10.1 The observed board object

The class Board that implements the board for the game of noughts and crosses is now defined as:

with Class_Observe_Observer;
use Class_Observe_Observer;
package Class_Board is

 type Board is new Observable with private;
 type Game_State is (Win, Playable, Draw);

 procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character);
 function Valid(The:in Board; Pos:in Integer) return Boolean;
 function State(The:in Board) return Game_State;
 function Cell(The:in Board; Pos:in Integer) return Character;
 procedure Reset(The:in out Board);
private
 subtype Board_Index is Integer range 1 .. 9;
 type Board_Array is array(Board_Index) of Character;
 type Board is new Observable with record
 Sqrs : Board_Array := (others => ' '); --Initialize
 Moves : Natural := 0;
 end record;
end Class_Board;

Note: Apart from inheriting from the class Observable, this code is identical to that seen in Section 8.4.1.
The implementation of the class Board is defined in the body of the package Class_Board as follows:

package body Class_Board is

The procedure add adds a counter either the character 'X'or 'O' to the board.

procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character) is
 begin
 The.Sqrs(Pos) := Piece;
 end Add;

Polymorphism 245

 M A Smith - May not be reproduced without permission

The functions valid returns true if the square selected is not occupied by a previously played counter.

 function Valid(The:in Board; Pos:in Integer) return Boolean is
 begin
 return Pos in Board_Array'Range and then
 The.Sqrs(Pos) = ' ';
 end Valid;

The function Cell returns the contents of a cell on the noughts and crosses board. This method is used to
interrogate the state of the board, without having to know how the state is stored. Using this method printing of
the state of the board can be separated from the code that manipulates the board.

 function Cell(The:in Board; Pos:in Integer) return Character is
 begin
 return The.Sqrs(Pos);
 end Cell;

The procedure Reset sets the state of the board back to its initial state.

 procedure Reset(The:in out Board) is
 begin
 The.sqrs := (others => ' '); --All spaces
 The.moves := 0; --No of moves
 end reset;

The function state returns the current state of the board.

 function State(The:in Board) return Game_State is
 subtype Position is Integer range 1 .. 9;
 type Win_Line is array(1 .. 3) of Position;
 type All_Win_Lines is range 1 .. 8;
 Cells: constant array (All_Win_Lines) of Win_Line :=
 ((1,2,3), (4,5,6), (7,8,9), (1,4,7),
 (2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
 First : Character;
 begin
 for Pwl in All_Win_Lines loop --All Pos Win Lines
 First := The.Sqrs(Cells(Pwl)(1)); --First cell in line
 if First /= ' ' then -- Looks promising
 if First = The.Sqrs(Cells(Pwl)(2)) and then
 First = The.Sqrs(Cells(Pwl)(3)) then return Win;
 end if;
 end if;
 end loop;
 if The.Moves >= 9 then --Check for draw
 return Draw; -- Board full
 else
 return Playable; -- Still playable
 end if;
 end State;

end Class_Board;

246 Polymorphism

 M A Smith - May not be reproduced without permission

16.10.2 An observer for the class Board

The specification for the class Display_Board that will display a representation of the board contains the
single method Update that has responsibility for displaying a representation of the board on a text output
device.

with Class_Observe_Observer, Class_Board, Ada.Text_Io;
use Class_Observe_Observer, Class_Board, Ada.Text_Io;
package Class_Display_Board is

 type Display_Board is new Observer with private;

 procedure Update(The:in Display_Board; B:in Observable'Class);
private
 type Display_Board is new Observer with record
 null;
 end record;
end Class_Display_Board;

The implementation of the class Display_Board is shown below. The main point of interest is the conversion
of the second parameter B into an instance of a Board. This is required as the object is passed as an instance of
the class Observable. This down conversion will be checked to make sure that this object is an instance of Board.

package body Class_Display_Board is

 procedure Update(The:in Display_Board; B: in Observable'Class) is
 begin
 for I in 1 .. 9 loop
 Put(Cell(Board(B), I)); --Its really a Board
 case I is --after printing counter
 when 3 | 6 => -- print Row Separator
 New_Line; Put("---------"); --
 New_Line;
 when 9 => -- print new line
 New_Line;
 when 1 | 2 | 4 | 5 | 7 | 8 => -- print Col separator
 Put(" | ");
 end case;
 end loop;
 end Update;

end Class_Display_Board;

16.10.3 The driver code for the program of nought and crosses

Polymorphism 247

 M A Smith - May not be reproduced without permission

The driver program for the game of noughts and crosses follows the same style as seen earlier in Section 8.4.5.

with Class_Board, Class_Display_Board,
 Ada.Text_Io, Ada.Integer_Text_Io, Class_Observe_Observer;
use Class_Board, Class_Display_Board,
 Ada.Text_Io, Ada.Integer_Text_Io, Class_Observe_Observer;
procedure Main is
 Player : Character; --Either 'X' or 'O'
 Game : Board; --An instance of Class Board
 Move : Integer; --Move from user
begin
 Player := 'X'; --Set player

An instance of an observer of the board is passed to the method Add_Observer so that it can be displayed.

 Add_Observer(Game, new Display_Board);

Note: As a pointer to the object is required, a dynamic instance of the object is created for simplicity of code.
Naturally, this could have been done by taking the access value of a non-dynamic instance.

The code for the logic of the game asks each player in turn for a move, when a player has entered a valid
move, the method Notify_Observers is used to request a display of the new state of the board.

 while State(Game) = Playable loop --While playable
 Put(Player & " enter move (1-9) : "); -- move
 Get(Move); Skip_Line; -- Get move
 if Valid(Game, Move) then --Valid
 Add(Game, Move, Player); -- Add to board
 Notify_Observers(Game);
 case State(Game) is --Game is
 when Win =>
 Put(Player & " wins");
 when Playable =>
 case Player is --Next player
 when 'X' => Player := 'O'; -- 'X' => 'O'
 when 'O' => Player := 'X'; -- 'O' => 'X'
 when others => null; --
 end case;
 when Draw =>
 Put("It's a draw ");
 end case;
 New_Line;
 else
 Put("Move invalid"); New_Line; --for board
 end if;
 end loop;
 New_Line(2);
end Main;

16.11 Self-assessment

l What is the difference between static and dynamic binding?

l What is an object’s tag?

l What is a heterogeneous collection of objects? How are heterogeneous collections of objects created
and used in Ada?

l What is a view conversion? Why are view conversions required?

248 Polymorphism

 M A Smith - May not be reproduced without permission

l How does the use of polymorphism help in simplifying program maintenance?

l Can you convert a derived class to a base class? Can you convert a base class to a derived class? Are
these conversions safe? Explain your answer.

16.12 Exercises

Construct the following:

l The class Executive_Office which will extend a normal office by including biographical details
about the occupants. For example, ‘Ms Miranda Smith, Programming manager’.

l A new information program for a building which will include details about rooms, offices and executive
offices. You should try and re-use as much code as possible.

l A program to record transactions made on different types of bank account. For example, the program
should be able to deal with at least the following types of account:

l A deposit account on which interest is paid.

l An account on which no interest is paid and the user is not allowed to be overdrawn.

 M A Smith - May not be reproduced without permission

17 Containers

This chapter describes the implementation and use of container objects. A container object is a store for
objects created in a program. The container will allow a programmer a greater flexibility in storing data
items than Ada’s array construct.

17.1 List object

A list is a container on which the following operations may be performed:

l Insert a new object into the list at any point.
l Delete an existing object from the list.
l Iterate through the objects held in the list in either a forward or reverse direction.

Note: The number of items held in the list is dependent purely on available storage.

The list object is based on pointer semantics. A ‘pointer’ is used in this context as an iterator which steps
through the elements of the list. For example, a list of three integers and an iterator on the list is illustrated in
Figure 17.1.

List Iterator

1 2 3

Figure 17.1 A list and its iterator.

Figure 17.2 shows the same list after inserting 99 before the current position of the iterator.

List Iterator

1 99 2 3

Figure 17.2 After inserting 99 into the container.

A demonstration program to show the capabilities of the list is illustrated below. In this demonstration
program, a list is filled with the numbers 1 .. 10. The strategy for filling the list is to insert the numbers in reverse
order into the list. The insert function inserts an item before the current position of the iterator.

After the list has been filled, it is then printed, using the iterator to move from the first item in the list to the
list.

250 Containers

 M A Smith - May not be reproduced without permission

with Class_List;
 pragma Elaborate_All(Class_List);
 package Class_List_Nat is new Class_List(Natural);

with Class_List_Nat, Class_List.Iterator;
 pragma Elaborate_All(Class_List_Nat, Class_List.Iterator);
 package Class_List_Nat_Iterator is new Class_List_Nat.Iterator;

with Ada.Text_Io, Ada.Integer_Text_Io, Class_List_Nat,
 Class_List_Nat_Iterator;
use Ada.Text_Io, Ada.Integer_Text_Io,
 Class_List_Nat, Class_List_Nat_Iterator;
procedure Main is
 Numbers : List;
 Numbers_It : List_Iter;
 Value : Integer;
begin
 Value := 1;
 While Value <= 10 loop
 Last(Numbers_It, Numbers); --Set iterator Last
 Next(Numbers_It); --Move beyond last
 Insert(Numbers_It, Value); --Insert before
 value := Value + 1; --Increment
 end loop;

 First(Numbers_It,Numbers); --Set to start
 while not Is_End(Numbers_It) loop --Not end of list
 Put(Deliver(Numbers_It) , Width=>3); -- Print
 Next(Numbers_It); --Next item
 end loop;
 New_Line;
end Main;

Note: When an instance of this list is created there is no need to specify the number of items that will be held
in the list.

The list Numbers has an iterator Numbers_It which is set initially to point to the last element of the list by:

 Last(Numbers_It, Numbers); --Set iterator Last

The iterator is then moved beyond the last item so that a new number may be inserted at the end of the list.

 Next(Numbers_It); --Move beyond last
 Insert(Numbers_It, Value); --Insert before

In printing the numbers in the list the iterator Numbers_It is moved through the elements of the list. The
function Is_End delivers true when the end of the list is reached. The procedure Next moves the iterator to the
potentially next item in the list. If the current item ‘pointed at’ by the iterator in the list is the last item then a call
to Is_End will now deliver true. The current item that the iterator is ‘pointing at‘ is delivered using the function
Deliver.

The code to print the contents of the list is:

 First(Numbers_It,Numbers); --Set to start
 while not Is_End(Numbers_It) loop --Not end of list
 Put(Deliver(Numbers_It) , Width=>3); -- Print
 Next(Numbers_It); --Next item
 end loop;

Containers 251

 M A Smith - May not be reproduced without permission

This mirrors closely the mechanism used to access sequentially the elements of an array in Ada.
The list is implemented as a generic class list and its generic child Iterator. The two classes allow the

elaboration of:

l The object numbers which is the list of natural numbers.
l The object num_it, an iterator which is used to step through the objects held in the list.

17.1.1 List vs. array

Criteria List Array
The number of items held can be increased
at run-time.

√ r

Deletion of an item leaves no gap when the
items are iterated through.

√ r

Random access is very efficient. r √

Note: Ada array’s bounds are fixed once the declaration is elaborated.

17.2 Methods implemented in a list
The methods that are implemented in an instance of the class list are as follows:

Method Responsibility
Initialize Initialize the container.
Finalize Finish using the container object.

Adjust Used to facilitate a deep copy.
= Comparison of a list for equality.

Note: A full explanation of adjust can be found in Section 17.3.

Whilst the methods that are implemented in an instance of the class List_Iter are:

Method Responsibility
Initialize Initialize the iterator.
Finalize Finish using the iterator object.
Deliver Deliver the object held at the position indicated by the iterator.
First Set the current position of the iterator to the first object in the

list.
Last Set the current position of the iterator to the last object in the list.
Insert Insert into the list an object before the current position of the

iterator.
Delete Remove and dispose of the object in the list which is specified

by the current position of the iterator.
Is_end Deliver true if the iteration on the container has reached the end.

Next Move to the next item in the container and make that the current
position.

Prev Move to the previous item in the container and make that the
current position.

17.2.1 Example of use

The following program illustrates the use of a list. In this program natural numbers are read and inserted in
ascending order into a list. The contents of the list are then printed.

252 Containers

 M A Smith - May not be reproduced without permission

The strategy used for inserting individual numbers in ascending order into the list is as follows:

l Search through the list to find the position of the first number in the list that has a value greater than
the number to be inserted.

l The new number is then inserted into the list before this number. Remember that insertions are always
done before the current item.

with Class_List;
 pragma Elaborate_All(Class_List);
 package Class_List_Nat is new Class_List(Natural);

with Class_List_Nat, Class_List.Iterator;
 pragma Elaborate_All(Class_List_Nat, Class_List.Iterator);
 package Class_List_Nat_Iterator is new Class_List_Nat.Iterator;

with Ada.Text_Io, Ada.Integer_Text_Io, Class_List_Nat,
 Class_List_Nat_Iterator;
use Ada.Text_Io, Ada.Integer_Text_Io,
 Class_List_Nat, Class_List_Nat_Iterator;

procedure Main is
 Numbers : List;
 Numbers_It : List_Iter;
 Num,In_List: Natural;
begin
 First(Numbers_It, Numbers); --Setup iterator

 while not End_Of_File loop --While data
 while not End_Of_Line loop
 Get(Num); --Read number
 First(Numbers_It,Numbers); --Iterator at start
 while not Is_End(Numbers_It) loop --scan through list
 In_List := Deliver(Numbers_It);
 exit when In_List > Num; --Exit when larger no.
 Next(Numbers_It); --Next item
 end loop;
 Insert(Numbers_It, Num); -- before curent number
 end loop;
 Skip_Line; --Next line
 end loop;

The list is printed out by the following code:

 Put("Numbers sorted are: ");
 First(Numbers_It,Numbers); --Set at start
 while not Is_End(Numbers_It) loop
 In_List := Deliver(Numbers_It); --Current number
 Put(In_List); Put(" "); -- Print
 Next(Numbers_It); --Next number
 end loop;
 New_Line;
end Main;

Which when run with the following data:

10 8 6 2 4

Containers 253

 M A Smith - May not be reproduced without permission

will produce the following results:

Numbers sorted are: 2 4 6 8 10

17.3 Specification and implementation of the list container
The specification of the container list is split between a parent package Class_list which contains details of
the container and a child package Class_list.Iterator which contains details of the iterator. The
specification for the container is:

with Ada.Finalization, Unchecked_Deallocation;
use Ada.Finalization;
generic
 type T is private; --Any type
package Class_List is
 type List is new Controlled with private;

 procedure Initialize(The:in out List);
 procedure Initialize(The:in out List; Data:in T);
 procedure Finalize(The:in out List);
 procedure Adjust(The:in out List);
 function "=" (F:in List; S:in List) return Boolean;
private
 type Node; --Tentative declaration
 type P_Node is access all Node; --Pointer to Node

 type Node is record
 Prev : P_Node; --Previous Node
 Item : T; --The physical item
 Next : P_Node; --Next Node
 end record;

 type List is new Controlled with record
 First_Node : aliased P_Node := null; --First item in list
 Last_Node : aliased P_Node := null; --First item in list
 end record;

end Class_List;

The implementation of the List container object uses a linked list to hold the data items. This data structure
will allow for a possibly unlimited number of data items to be added as well as the ability to add or remove items
from any point in the list. When an instance of the container colours holds three items (Red, Green, Blue) the data
structure representing the data would be as shown in Figure 17.3.

Red Green Blue

Colours

Prev

Item

Next
First_Node

Last_Node

Figure 17.3 Object colours holding the three colours Red, Green and Blue.

Note: The object Colours holds a pointer to the root of the linked list.
Adding items to the list is performed by the iterator.

254 Containers

 M A Smith - May not be reproduced without permission

The implementation of the class list is shown below. In the implementation the internal procedure
Release_Storage is used to release all of the storage of the list. This procedure uses the internal procedure
Dispose_Node to actually release individual elements of storage.

package body Class_List is

 procedure Dispose_Node is
 new Unchecked_Deallocation(Node, P_Node);

 procedure Release_Storage(The:in out List) is
 Cur : P_Node := The.First_Node; --Pointer to curr node
 Tmp : P_Node; --Node to dispose
 begin
 while Cur /= null loop --For each item in list
 Tmp := Cur; --Item to dispose
 Cur := Cur.Next; --Next node
 Dispose_Node(Tmp); --Dispose of item
 end loop;
 end Release_Storage;

The overloaded procedures Initialize set up either an empty list or a list of one item. The first version of
Initialize will be automatically called whenever an instance of List is elaborated. Remember that List is
a controlled type.

procedure Initialize(The:in out List) is
 begin
 The.First_Node := null; --Empty list
 The.Last_Node := null; --Empty list
 end Initialize;

 procedure Initialize(The:in out List; Data:in T) is
 begin
 The.First_Node := new Node'(null, Data, null);
 The.Last_Node := The.First_Node;
 end Initialize;

The procedure Finalize, which is called when an instance of a List goes out of scope, releases any
storage used in holding objects in the list. This process is decomposed into the internal procedure
Release_Storage which performs the actual return of the storage as it iterates along the linked list.

 procedure Finalize(The:in out List) is
 begin
 if The.First_Node /= null then
 Release_Storage(The);
 The.First_Node := null;
 end if;
 end Finalize;

Containers 255

 M A Smith - May not be reproduced without permission

When an instance of class List is assigned, only the direct storage contained in the record list will be
copied. This will not physically duplicate the storage contained in the list, but only copy the pointers to the list.
When a controlled object is assigned, the procedure Adjust is called after the assignment has been made. The
procedure Adjust is used to perform any additional actions required on an assignment. The exact effect of
assigning a controlled object is as follows:

Assignment of controlled objects Actions that take place on assignment

A := B;
Anon := B;
 Adjust(Anon);
 Finalize(A);
A := Anon;
 Adjust(a);
 Finalize(Anon);

Action on assignment Commentary
Anon := B Make a temporary anonymous copy anon.
 Adjust(Anon); Adjustments required to be made after copying the

direct storage of the source object B to Anon.
 Finalize(A); Finalize the target of the assignment.
A := Anon; Perform the physical assignment of the direct

components of the anon object.
 Adjust(A); Adjustments required to be made after copying the

direct storage of the Anon object.

Finalize(Anon);
Finalize the anonymous object Anon.

Note: If the object’s storage does not overlap, which will be the usual case, then the compiler may implement
the following optimization:
Finalize(A); A := B; Adjust(A);
Look at the effect of the assignment A := A; to see why this optimization may not be performed when
the object’s storage overlaps.
If the source and target are the same, then the operation may be skipped.

The procedure Adjust is used to create a new duplicate copy of the storage in the list. The contents of the
target in the assignment are updated to point to this newly created copy. Hence, there are now two identical copies
of the linked list:

l The linked list in the Target.
l The linked list in the Source .

procedure Adjust(The:in out List) is
 Cur : P_Node := The.First_Node; --Original list
 Lst : P_Node := null; --Last created node
 Prv : P_Node := null; --Previously created node
 Fst : P_Node := null; --The first node

 begin
 while Cur /= null loop
 Lst := new Node'(Prv, Cur.Item, null);
 if Fst = null then Fst := Lst; end if;
 if Prv /= null then Prv.Next := Lst; end if;
 Prv := Lst;
 Cur := Cur.Next; --Next node
 end loop;
 The.First_Node := Fst; --Update
 The.Last_Node := Lst;
 end Adjust;

256 Containers

 M A Smith - May not be reproduced without permission

When comparing two lists, the physical storage of the list needs to be compared, rather than the access values
which point to the storage for the list. Remember, two lists may contain equal contents yet be represented by
different physical lists.

 function "=" (F:in List; S:in List) return Boolean is
 F_Node : P_Node := F.First_Node; --First list
 S_Node : P_Node := S.First_Node; --Second list
 begin
 while F_Node /= null and S_Node /= null loop
 if F_Node.Item /= S_Node.Item then
 return False; --Different items
 end if;
 F_Node := F_Node.Next; S_Node := S_Node.Next;
 end loop;
 return F_Node = S_Node; --Both NULL if equal
 end "=";

Note: When = is overloaded, /= is also overloaded with the definition of not =.
This is true for = which returns a Boolean value.

17.3.1 The list iterator

The specification for the iterator, which is implemented as a child package of the package Class_List, is:

generic
package Class_List.Iterator is

 type List_Iter is limited private;

 procedure First(The:in out List_Iter; L:in out List);
 procedure Last(The:in out List_Iter; L:in out List);

 function Deliver(The:in List_Iter) return T;
 procedure Insert(The:in out List_Iter; Data:in T);
 procedure Delete(The:in out List_Iter);
 function Is_End(The:in List_Iter) return Boolean;
 procedure Next(The:in out List_Iter);
 procedure Prev(The:in out List_Iter);
private
 type P_P_Node is access all P_Node;
 type List_Iter is record
 Cur_List_First: P_P_Node := null; --First in chain
 Cur_List_Last : P_P_Node := null; --Last in chain
 Cur_Node : P_Node := null; --Current item
 end record;
end Class_List.Iterator;

Note: The child package Class_List.Iterator must be generic as its parent is generic.

Containers 257

 M A Smith - May not be reproduced without permission

When the iterator Colours_It has been set at the start of the list Colours, the resulting data structure is as
illustrated in Figure 17.4.

Red Green Blue

Colours

Cur_List_Last

Cur_List_First

Cur_Node

Colours_It

Figure 17.4 The interrelationship between the two objects colours and colours_it.

Note: The iterator holds pointers to the root, current and previous positions in the container.

In the implementation of the iterator for the list, the procedure, first and last set pointers in the iterator to
the first or last object in the list respectively.

package body Class_List.Iterator is

 procedure Dispose_Node is
 new Unchecked_Deallocation(Node, P_Node);

 procedure First(The:in out List_Iter; L:in out List) is
 begin
 The.Cur_Node := L.First_Node; --Set to first
 The.Cur_List_First:= L.First_Node'Unchecked_Access;
 The.Cur_List_Last := L.Last_Node'Unchecked_Access;
 end First;

 procedure Last(The:in out List_Iter; L:in out List) is
 begin
 The.Cur_Node := L.Last_Node; --Set to last
 The.Cur_List_First:= L.First_Node'Unchecked_Access;
 The.Cur_List_Last := L.Last_Node'Unchecked_Access;
 end Last;

Note: The use of 'Unchecked_Access to deliver the access value of the positions of the first and last
access values of items in the list.

The access values of the first and last nodes in the list are recorded in the iterator so that they may be updated
should an insertion or deletion take place at the start or the end of the list.

The procedure Deliver returns a copy of the current item pointed at by the iterator.

 function Deliver(The:in List_Iter) return T is
 begin
 return The.Cur_Node.Item; --The current item
 end Deliver;

Note: It is an error to try and deliver the contents of an non-existant element of the list.

258 Containers

 M A Smith - May not be reproduced without permission

The code for Insert is complex due to the necessity of handling insertion at different places in the linked
list. In particular, the list’s access values to the physical storage of the list will need to be updated. Remember, the
iterator only knows about the current position in the list.

In the implementation of Insert there are four distinct cases to handle when a data item is inserted. This is
summarized in the table below:

Position Commentary
On an empty list Will need to update the list’s access values

Cur_List_First and Cur_List_Last as
well as update the current position Cur_Node in
the iterator.

Beyond the last item in the list Will need to update the list’s access value
Cur_List_Last as well as update the current
position Cur_Node in the iterator.

Before the first item Will need to update the list’s access value
Cur_List_First.

In the middle of the list No updating required to the list’s access values
nor the current position of the iterator.

The implementation of the insert procedure is as follows:

procedure Insert(The:in out List_Iter; Data:in T) is
 Tmp : P_Node;
 Cur : P_Node := The.Cur_Node; --Current element
 First : P_P_Node := The.Cur_List_First;
 Last : P_P_Node := The.Cur_List_Last;
 begin
 if Cur = null then --Empty or last item
 if First.all = null then -- Empty list
 Tmp := new Node'(null, Data, null);
 First.all := Tmp;
 Last.all := Tmp;
 The.Cur_Node := Tmp;
 else -- Last
 Tmp := new Node'(Last.all, Data, null);
 Last.all.Next := Tmp;
 Last.all := Tmp;
 The.Cur_Node := Tmp;
 end if;
 else
 Tmp := new Node'(Cur.Prev, Data, Cur);
 if Cur.Prev = null then --First item
 First.all := Tmp;
 else
 Cur.Prev.Next := Tmp;
 end if;
 Cur.Prev := Tmp;
 end if;
 end Insert;

Containers 259

 M A Smith - May not be reproduced without permission

In the implementation of Delete there are two different pointers to fix: the forward pointer and the previous
pointer in the linked list. Each of these cases leads to further specializations depending on whether the object
deleted is the first, last or middle object in the list.

procedure Delete(The:in out List_Iter) is
 Cur : P_Node := The.Cur_Node; --Current element
 First : P_P_Node := The.Cur_List_First;
 Last : P_P_Node := The.Cur_List_Last;
 begin
 if Cur /= null then --Something to delete
 if Cur.Prev /= null then --Fix forward pointer;
 Cur.Prev.Next := Cur.Next; -- Not first in chain
 else
 First.all := Cur.Next; -- First in chain
 if First.all = null then
 Last.all := null; -- Empty list
 end if;
 end if;
 if Cur.Next /= null then --Fix backward pointer;
 Cur.Next.Prev := Cur.Prev; -- Not last in chain
 else
 Last.all := Cur.Prev; -- Last in chain
 if Last.all = null then
 First.all := null; -- Empty list
 end if;
 end if;

 if Cur.Next /= null then --Fix current pointer
 The.Cur_Node := Cur.Next; -- next
 elsif Cur.Prev /= null then
 The.Cur_Node := Cur.Prev; -- previous
 else
 The.Cur_Node := null; -- none empty list
 end if;
 Dispose_Node(Cur); --Release storage
 end if;
 end Delete;

The function Is_End returns true when the iterator is moved beyond the end of the list, or beyond the start of
the list.

 function Is_End(The:in List_Iter) return Boolean is
 begin
 return The.Cur_Node = null; --True if end
 end Is_End;

260 Containers

 M A Smith - May not be reproduced without permission

The procedure Next and Prev move the iterator on to the next / previous item in the list. If the iterator is not
currently pointing at an item, the iterator is unmodified. The end of the list is indicated by the iterator pointing to a
null value. By inspecting the list this case can be distinguished from the case of an empty list.

 procedure Next(The:in out List_Iter) is
 begin
 if The.Cur_Node /= null then --
 The.Cur_Node := The.Cur_Node.Next; --Next
 end if;
 end Next;

 procedure Prev(The:in out List_Iter) is
 begin
 if The.Cur_Node /= null then --
 The.Cur_Node := The.Cur_Node.Prev; --Previous
 end if;
 end Prev;

end Class_List.Iterator;

Note: If you move the iterator to beyond the first element with prev then it is your responsibility to reset the
iterator’s position. The class list will consider the position at the end of the list.

17.3.2 Relationship between a list and its iterator

The list on which the iterator navigates must be writable. This is because the iterator may be used to insert or
delete an item in the list. Another solution would have been to have two distinct iterators for read and write
operations on the list.

17.4 Limitations of the list implementation
A limitation of this implementation is that a list object is physically duplicated when it is assigned. This is referred
to as a deep copy of an object. A deep copy of an object can involve the use of considerable time and storage
space.

There are two options for the implementation of assignment. These options are summarized in the table below:

Type of copy Commentary
Deep copy The whole physical data structure is duplicated.
Shallow copy Only the pointer held directly in the object is duplicated.

For example, consider the data structure Original representing a list of colours held as a linked list. This is
illustrated in Figure 17.5 which shows the memory layout for the list container Original which holds the three
colours Red, Green and Blue.

Original

Green BlueRed

Figure 17.5 Illustration of the memory layout for a linked list of three colours.

Containers 261

 M A Smith - May not be reproduced without permission

A deep copy of this structure:

List original, copy;

copy := original; -- Deep copy

would give the memory layout as illustrated in Figure 17.6.

Original

Green BlueRed

Copy

Green BlueRed

Figure 17.6 Effect of the deep Copy := Original;.

A shallow copy :

List original, copy;

copy := original; -- Shallow copy

would produce the memory layout as illustrated in Figure 17.7.

Original

Copy

Green BlueRed

Figure 17.7 Effect of the shallow copy copy := original;

The major problem with the shallow copy is that serious errors will occur in a program if a change to the original
data structure is made. This is because the copy will change as well. Worse, if the storage for the Original
object is released, then the
object Copy will be unsafe as it now points to storage that is no longer considered active by the Ada run-time
system.

262 Containers

 M A Smith - May not be reproduced without permission

Ada's assignment statement performs a bit by bit copy of the source to the destination, which is a shallow
copy. If a deep copy is required, then the assignment operator must be overloaded with a new meaning. The
solution taken in the class List was to make assignment and comparison of a container perform a deep copy, and
a shallow equality operation.

17.5 Reference counting

One solution to the problems encountered with a shallow copy is to implement a reference counting scheme. In a
reference counting scheme, an additional component is held which is the number of active references to the data
structure. A consequence of using this scheme is that additional code needs to be executed on an assignment. For
example, the previously described list would be stored as illustrated in Figure 17.8.

Figure 17.8 A reference counted list.

Red Green Blue

Original

1 references

Note: The root of the list now contains the number of references that are made to this data structure.

When a shallow copy is made, for example, with the assignment:

copy := original;

the resulting data structure will be as illustrated in Figure 17.9.

Red Green Blue

Original

2 references

Copy

Figure 17.9 Two objects sharing the same physical storage.

The actions that take place for the shallow copy ‘copy := original;’ are:

Containers 263

 M A Smith - May not be reproduced without permission

l If the objects overlap (share the same storage):

Action on assignment Commentary
 Anon := Original; Perform the assignment:

 'Anon := Original;'
Adjust(Anon); Increment the reference count for the object

Anon.
Finalize(Copy); Decrement by one the reference count for the

object Copy.
If this is now zero, release the storage that the
object Copy points to.

 Copy := Anon; Perform the assignment:
 'Copy := Original;'

Adjust(Copy); Increment the reference count for the object
Copy.

Finalize(Anon); Decrement by one the reference count for the
object Anon.
If this is now zero release the storage that the
object Anon points to.

l If the objects do not overlap, the following optimization may be performed:

Action on assignment Commentary
Finalize(Original); Decrement by one the reference count for the

object Original.
If this is now zero, release the storage that the
object Original points to.

 Copy := Original; Perform the assignment:
 'Copy := Original;'

Adjust(Copy); Increment the reference count for the object
Copy.

Note: The compiler may generate no code if the target and the source are the same.

When a reference counted item is passed as a parameter to a function or procedure by value, for example:

Procedure Call of procedure

procedure Put(L:in List) is
begin

end Put;

declare
 Colours : List;
Begin
 Put(Colours);
end;

then only the following actions are performed:

Put(Colours) Commentary
 L := Colours; Perform the assignment of colours to the

formal parameter:
 'L := colours;'

Adjust(L); Increment the reference count for the actual
parameter L.

Note: When the procedure put is exited, finalize will be called on the formal parameter l.

264 Containers

 M A Smith - May not be reproduced without permission

17.6 Implementation of a reference counting scheme

A wrapper class for an object that will implement a reference counting has the following major methods:

Method Responsibility
Initialize Initialize an object contained in the reference counting wrapper

object.
Deliver Deliver the contents of the object wrapped by the reference

counting object.
Deliver_Ref Deliver the access value of the object wrapped by the reference

counting object.
Unique Make the target of an assignment a unique copy.

An example of the use of an instantiation Class_Account_Rc of this generic class is shown below. Firstly,
two wrapped instances of the class Account are elaborated.

Original,Copy : Class_Account_Rc.Object;

The normal assignment operation now delivers a shallow copy:

 Copy := Original; --Shallow copy

To make the object Copy not share storage with the object Original the method Unique is used as follows:

 Unique(Copy); --Deep copy

Containers 265

 M A Smith - May not be reproduced without permission

17.6.1 Ada specification

The Ada specification for this generic class is as follows:

with Ada.Finalization;
use Ada.Finalization;
generic
 type T is private; --The type
 Null_Value:in T; --Identity element
package Class_Object_Rc is
 type Object is new Controlled with private;
 type P_T is access all T;

 procedure Initialize(The:in out Object);
 procedure Initialize(The:in out Object; Data:in T);
 procedure Finalize(The:in out Object);
 procedure Adjust(The:in out Object);
 function Deliver(The:in Object) return T;
 function Deliver_Ref(The:in Object) return P_T;
 procedure Unique(The:in out Object);
private
 procedure Build_Storage (The:in out Object; Value:in T);
 procedure Release_Storage(The:in out Object);

 type Descriptor;
 type P_Descriptor is access all Descriptor;

 type Descriptor is record
 Refs : Natural; --References to this data
 Object : aliased T; --The physical data
 end record;

 type Object is new Controlled with record
 P_Desc : P_Descriptor:= null; --Descriptor for a number
 end record;

end Class_Object_Rc;

So that an object can be reference counted, a new class is instantiated with parameters of the object’s type and
the null value for the type. For example, to reference count instances of the class Account, the following
instantiation would be made:

with Class_Account;
package Pack_Consts is
 Null_Account: Class_Account.Account;
end Pack_Consts;

with Pack_Consts, Class_Object_Rc, Class_Account;
package Class_Rc_Account is
 new Class_Object_Rc(Class_Account.Account,
 Pack_Consts.Null_Account);

Note: In this instantiation, the null value for the type is simply an instance of Account, which contains a
zero balance.

266 Containers

 M A Smith - May not be reproduced without permission

17.6.2 Ada implementation

The implementation of the class is shown below. In this, the internal procedure Build_Storage is responsible
for allocating a new storage element. Whilst the internal procedure Release_Storage is responsible for
releasing storage when its reference count is zero.

with Unchecked_Deallocation;
package body Class_Object_Rc is
 procedure Build_Storage (The:in out Object; Value:in T) is
 begin
 The.P_Desc := new Descriptor'(1,Value);
 end Build_Storage;

 procedure Dispose is
 new Unchecked_Deallocation(Descriptor, P_Descriptor);

 procedure Release_Storage(The:in out Object) is
 begin
 The.P_Desc.Refs := The.P_Desc.Refs-1;
 if The.P_Desc.Refs = 0 then
 Dispose(The.P_Desc);
 else
 null;
 end if;
 end Release_Storage;

The procedure Initialize builds storage for a record which holds the data item and the reference count for
the data item. Initially this reference count will be zero.

 procedure Initialize(The:in out Object) is
 begin
 Build_Storage(The, Null_Value);
 end Initialize;

 procedure Initialize(The:in out Object; Data:in T) is
 begin
 Build_Storage(The, Data);
 end Initialize;

The procedure finalize is decomposed into the procedure Release_Storage which releases the
storage for the managed data item only when the reference count goes to zero.

 procedure Finalize(The:in out Object) is
 begin
 if The.P_Desc /= null then
 Release_Storage(The);
 The.P_Desc := null;
 end if;
 end Finalize;

Containers 267

 M A Smith - May not be reproduced without permission

The procedure Adjust is automatically called whenever an assignment or implied assignment of a controlled
object takes place. The reason for this is that when an assignment of an object managed by this class is made,
there are now two references to the object. The procedure adjust has the responsibility of managing this
process, which it does by increasing the reference count to the object by 1.

 procedure Adjust(The:in out Object) is
 begin
 The.P_Desc.Refs := The.P_Desc.Refs+1;
 end Adjust;

Remember, when an assignment of a controlled object is made, the following sequence of events occurs:

Assignment of controlled objects Actions that take place

A := B;
Anon := B;
 Adjust(Anon);
 Finalize(A);
A := Anon;
 Adjust(A);
 Finalize(Anon);

Note: When the storage for the source and target do not overlap, this process can be optimized by the
compiler to:
Finalize(A); A := B; Adjust(A);

The function Deliver returns a copy of the managed object

 function Deliver(The:in Object) return T is
 begin
 return The.P_Desc.Object;
 end Deliver;

whilst the function deliver_ref returns an access value to the managed object.

 function Deliver_Ref(The:in Object) return P_T is
 begin
 return The.P_Desc.Object'access;
 end Deliver_Ref;

The procedure unique converts the object managed by the class into a unique copy. This may involve a deep
copy of the managed object.

 procedure Unique(The:in out Object) is
 Tmp : P_Descriptor;
 begin
 if The.P_Desc.Refs > 1 then
 The.P_Desc.Refs := The.P_Desc.Refs-1;
 Tmp := new Descriptor'(1,The.P_Desc.Object);
 The.P_Desc := Tmp;
 end if;
 end Unique;
end Class_Object_Rc;

268 Containers

 M A Smith - May not be reproduced without permission

17.6.3 Putting it all together

The program below illustrates the use of the package Class_Object_Rc to provide a reference counted
Account class. Firstly, the generic package Class_Account_Rc is used to create the specific package
Class_Account_Rc.

with Class_Account;
package Pack_Consts is
 Null_Account: Class_Account.Account;
end Pack_Consts;

with Pack_Consts, Class_Object_Rc, Class_Account;
 package Class_Account_Rc is
 new Class_Object_Rc(Class_Account.Account,
 Pack_Consts.Null_Account);

Then the class Account_Rc is used in the following example program to illustrates a deep and a shallow
copy.

with Ada.Text_Io, Ada.Float_Text_Io,
 Class_Account, Class_Account_Rc, Statement;
use Ada.Text_Io, Ada.Float_Text_Io,
 Class_Account, Class_Account_Rc;
procedure Main is
 Original,Copy : Class_Account_Rc.Object;
begin
 Deposit(Deliver_Ref(Original).all, 100.00);
 Put("copy := original; (Shallow copy)"); New_Line;
 Copy := Original; --Shallow copy
 Statement(Deliver_Ref(Original).all); --The same object
 Statement(Deliver_Ref(Copy).all); -- " "
 Put("Make copy unique (Deep copy if necessary)"); New_Line;
 Unique(Copy); --Deep copy
 Deposit(Deliver_Ref(Copy).all, 20.00); --copy only
 Statement(Deliver_Ref(Original).all); --Unique object
 Statement(Deliver_Ref(Copy).all); -- " "
end Main;

Note: all is used to de-reference the access value returned by the function Deliver_Ref.
The procedure Statement is the previously seen procedure in Section 6.3.2 that prints a mini-
statement for a bank account.

When the above program is compiled and run the output produced is as follows::

Mini statement: The amount on deposit is £100.00

Mini statement: The amount on deposit is £100.00

Make copy unique (Deep copy if necessary)
Mini statement: The amount on deposit is £100.00

Mini statement: The amount on deposit is £120.00

Containers 269

 M A Smith - May not be reproduced without permission

17.7 A set
Using as a base class the class List, a class to represent a set can be easily created using inheritance. The class
Set has the following responsibilities:

Method Responsibility
Put Display the contents of the set.
+ Form the union of two sets.
Set_Const Return a set with a single member.
Members Return the numbers of items in the set.

The Ada specification for the class Set is as follows:

with Class_List, Class_List.Iterator;
pragma Elaborate_All(Class_List, Class_List.Iterator);
generic
 type T is private;
 with procedure Put(Item:in T) is <>;
 with function ">" (First,Second:in T) return Boolean is <>;
 with function "<" (First,Second:in T) return Boolean is <>;
package Class_Set is
 type Set is private;
 procedure Put(The:in Set);
 function "+"(F:in Set; S:in Set) return Set;
 function Set_Const(Item: in T) return Set;
 function Members(The:in Set) return Positive;
private
 package Class_List_T is new Class_List(T);
 package Class_List_T_Iterator is new Class_List_T.Iterator;
 type Set is new Class_List_T.List with record
 Elements : Natural := 0; --Elements in set
 end record;
end Class_Set;

Note: On instantiation of the class, a procedure put and definitions for > and < must be provided, either
explicitly or implicitly.

In the implementation of the class, the procedure put lists in a canonical form the elements of the set.

with Ada.Text_Io;
use Ada.Text_Io;
package body Class_Set is
 use Class_List_T, Class_List_T_Iterator;

 procedure Put(The:in Set) is
 It : List_Iter;
 C_The : List := List(The);
 begin
 Put("("); First(It, C_The);
 for I in 1 .. The.Elements loop
 Put(Deliver(It)); Next(It);
 if I /= The.Elements then Put(","); end if;
 end loop;
 Put(")");
 end Put;

270 Containers

 M A Smith - May not be reproduced without permission

A simple merging process is used to form the union of two sets.

function "+" (F:in Set; S:in Set) return Set is
 Res_It : List_Iter;
 F_It,S_It : List_Iter;
 Res : Set;
 F_List, S_List: List;
 begin
 F_List := List(F); S_List := List(S);
 First(F_It, List(F_List));
 First(S_It, List(S_List));
 First(Res_It, List(Res));

 while (not Is_End(F_It)) or (not Is_End(S_It)) loop
 if Is_End(F_It) then
 Next(Res_It); Insert(Res_It, Deliver(S_It));
 Next(S_It);
 elsif Is_End(S_It) then
 Next(Res_It); Insert(Res_It, Deliver(F_It));
 Next(F_It);
 elsif Deliver(F_It) < Deliver(S_It) then
 Next(Res_It); Insert(Res_It, Deliver(F_It));
 Next(F_It);
 elsif Deliver(F_It) > Deliver(S_It) then
 Next(Res_It); Insert(Res_It, Deliver(S_It));
 Next(S_It);
 elsif Deliver(F_It) = Deliver(S_It) then
 Next(Res_It); Insert(Res_It, Deliver(F_It));
 Next(F_It); Next(S_It);
 end if;
 Res.Elements := Res.Elements + 1;
 end loop;
 return Res;
 end "+";

Note: The copying of an instance of a set to a list object so that it can be manipulated.

The procedure Set_Const returns a set with a single element, whilst the function members returns the
number of elements in the set.

 function Set_Const(Item: in T) return Set is
 Res : Set;
 begin
 Initialize(Res, Item); Res.Elements := 1;
 return Res;
 end Set_Const;

 function Members(The:in Set) return Positive is
 begin
 return The.Elements;
 end Members;

end Class_Set;

Containers 271

 M A Smith - May not be reproduced without permission

17.7.1 Putting it all together

The program below illustrates the use of a set to record the ingredients in a sandwich.

package Pack_Types is
 type Filling is (Cheese, Onion, Ham, Tomato);
end Pack_Types;

with Ada.Text_Io, Pack_Types;
use Ada.Text_Io, Pack_Types;
procedure Put_Filling(C:in Filling) is
begin
 Put(Filling'Image(C));
end Put_Filling;

with Pack_Types, Class_Set, Put_Filling;
use Pack_Types;
pragma Elaborate_All(Class_Set);
package Class_Set_Sandwich is
 new Class_Set(T => Pack_Types.Filling, Put => Put_Filling);

with Pack_Types, Ada.Text_Io, Ada.Integer_Text_Io, Class_Set_Sandwich;
use Pack_Types, Ada.Text_Io, Ada.Integer_Text_Io, Class_Set_Sandwich;
procedure Main is
 Sandwich : Class_Set_Sandwich.Set;
begin
 Sandwich := Sandwich + Set_Const(Cheese);
 Sandwich := Sandwich + Set_Const(Onion) ;
 Put("Contents of sandwich are : ");
 Put(Sandwich); New_Line;
 Put("Number of ingredients is : ");
 Put(Members(Sandwich)); New_Line;
 null;
end Main;

Note: The instantiation of the class Class_Set_Sandwich uses the default definitions of > and < taken
from the environment.
An instantiation of a class which is inherited from Controlled must be at the library level.

which when run, will produce the following results:

Contents of sandwich are : (CHEESE,ONION)
Number of ingredients is : 2

17.8 Self-assessment

l What is the purpose of an iterator?

l When inheriting from Controlled, the user can provide the following procedures:
Finalize, Initialize, and Adjust.

What is the purpose of these procedures?

l If A and B are controlled objects, what happens when the assignment:
A := B;

is made?

l What is the difference between a deep and a shallow copy?

272 Containers

 M A Smith - May not be reproduced without permission

l What are the semantics of an assignment in Ada for the following assignments:

(a) The assignment of an instance of an Integer?
(b) The assignment of an instance of a linked list?

l With the container Class_List, what would be the effect of using an iterator to the container when
the storage for the container object has gone out of scope?

l What should happen to the iterator when an item is added to a container on which it is iterating?

17.9 Exercises

Construct the following class:

l Class_Better_Set
A class to implement a better set. A set is an ordered collection of unique items. The operations allowed
on a set are:

l Forming the intersection of two sets.
l Forming the union of two sets.
l Forming the set difference of two sets.
l Testing if an element is a member of the set.

 M A Smith - May not be reproduced without permission

18 Input and output

This chapter describes how input and output of objects other than Float, Integer or Character
may be performed.

18.1 The input and output mechanism

In Ada input and output operations are strongly typed. This can cause initial problems as only a mechanism for
inputting or outputting instances of:

l Character and String Ada.Text_Io
l Integer Ada.Integer_Text_io
l Float Ada.Float_Text_Io

are explicitly provided. The full definition of these packages in given in Appendix C.
The package Ada.Text_Io contains generic packages for outputting Float, Integer, String, Fixed

or Enumeration types. For example, to output instances of the following types:

 type Memory is range 0 .. Max_Mem; --Integer
 type Cpu is (I64, I32, PowerPc); --Enum
 type Mips is digits 8 range 0.0 .. Max_Mips; --Float
 type Clock is delta 0.01 range 0.0 .. Max_Clock; --Fixed

the following packages would need to be instantiated:

 package Class_Mem_Io is new Ada.Text_Io.Integer_Io(Memory);
 package Class_Cpu_Io is new Ada.Text_Io.Enumeration_Io(Cpu);
 package Class_Mips_Io is new Ada.Text_Io.Float_Io(Mips);
 package Class_Clock_Io is new Ada.Text_Io.Fixed_Io(Clock);

Note: Each of the generic packages has as its generic parameter the type that is to be output.

274 Input and output

 M A Smith - May not be reproduced without permission

18.1.1 Putting it all together

The above generic packages are used in the following program that prints out details about the internal
specification of a CPU:

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 Max_Mem : constant := 4096; --Mb
 Max_Mips : constant := 12000.0; --Mips
 Max_Clock : constant := 4000.0; --Clock

 type Memory is range 0 .. Max_Mem; --Integer
 type Cpu is (I64, I32, PowerPc); --Enum
 type Mips is digits 8 range 0.0 .. Max_Mips; --Float
 type Clock is delta 0.01 range 0.0 .. Max_Clock; --Fixed

 Mc_Mem : Memory; --Main memory
 Mc_Cpu : Cpu; --Type of CPU
 Mc_Mips : Mips; --Raw MIPS
 Mc_Clock : Clock; --Clock frequency

 package Class_Mem_Io is new Ada.Text_Io.Integer_Io(Memory);
 package Class_Cpu_Io is new Ada.Text_Io.Enumeration_Io(Cpu);
 package Class_Mips_Io is new Ada.Text_Io.Float_Io(Mips);
 package Class_Clock_Io is new Ada.Text_Io.Fixed_Io(Clock);

The body of the procedure illustrated below writes out details about the computer.

begin
 declare
 use Class_Mem_Io, Class_Mips_Io, Class_Clock_Io, Class_Cpu_Io;
 begin
 Mc_Mem := 512; Mc_Cpu := I64;
 Mc_Mips := 3000.0; Mc_Clock := 1000.0;

 Put("Memory:"); Put(Mc_Mem); New_Line;
 Put("CPU :"); Put(Mc_Cpu); New_Line;
 Put("Mips :"); Put(Mc_Mips); New_Line;
 Put("Clock :"); Put(Mc_Clock); New_Line;

 Put("Memory:"); Put(Mc_Mem, Width=>3); New_Line;
 Put("CPU :"); Put(Mc_Cpu, Width=>7, Set=>Upper_Case);
 New_Line;
 Put("Mips :"); Put(Mc_Mips, Fore=>3, Aft=>2, Exp=>0);
 New_Line;
 Put("Clock :"); Put(Mc_Clock,Fore=>3, Aft=>2, Exp=>0);
 New_Line;
 end;
end Main;

When compiled and run the output from this program is as follows:

Memory: 512
CPU :I64
Mips : 3.0000000E+03
Clock : 1000.00
Memory:512
CPU :I64
Mips :3000.00
Clock :1000.00

Input and output 275

 M A Smith - May not be reproduced without permission

18.2 Reading and writing to files

The following program copies input typed in at a terminal to the file named file.txt. The object Fd is
associated with the newly created file file.txt and is used as a file descriptor in all writing to the text file.

with Text_Io;
use Text_Io;
procedure Main is
 Fd : Text_Io.File_Type; --File descriptor
 File_Name: constant String:= "file.txt";--Name
 Ch : Character; --Character read
begin
 Create(File=>Fd, Mode=>Out_File, Name=>File_Name);
 while not End_Of_File loop --For each Line
 while not End_Of_Line loop --For each character
 Get(Ch); Put(Fd, Ch); --Read / Write character
 end loop;
 Skip_Line; New_line(Fd); --Next line / new line
 end loop;
 Close(Fd);
exception
 when Name_Error =>
 Put("Cannot create " & File_Name); New_Line;
end Main;

Note: The exception Name_Error is generated if the file cannot be created.
The data in the file file.txt is read by the following program, which copies the contents of the file to the

terminal:

with Text_Io;
use Text_Io;
procedure Main is
 Fd : Text_Io.File_Type; --File descriptor
 File_Name: constant String:= "file.txt";--Name
 Ch : Character; --Character read
begin
 Open(File=>Fd, Mode=>In_File, Name=>File_Name);
 while not End_Of_File(Fd) loop --For each Line
 while not End_Of_Line(Fd) loop --For each character
 Get(Fd, Ch); Put(Ch); --Read / Write character
 end loop;
 Skip_Line(Fd); New_Line; --Next line / new line
 end loop;
 Close(Fd);
exception
 when Name_Error =>
 Put("Cannot open " & File_Name); New_Line;
end Main;

Note: The exception Name_Error is generated if the file cannot be opened.

276 Input and output

 M A Smith - May not be reproduced without permission

The following program appends instances of Number, one of the integer types to the end of the file
file.txt:

with Text_Io;
use Text_Io;
procedure Main is
 type Number is range 1 .. 10;
 Fd : Text_Io.File_Type; --File descriptor
 File_Name: constant String:= "file.txt";--Name
 package Pack_Number_Io is new Text_Io.Integer_Io(Number);
begin
 Open(File=>Fd, Mode=>Append_File, Name=>File_Name);
 for I in Number loop
 Pack_Number_Io.Put(Fd, I); New_Line(Fd);
 end loop;
 Close(Fd);
exception
 when Name_Error =>
 Put("Cannot append to " & File_Name); New_Line;
end Main;

18.3 Reading and writing binary data

Any instance of a type may be read and written to a file using the package Ada.Sequential_io. By using this
package, binary images of objects may be read and written. For example, the following code writes instances of
the data structure Person to the file people.txt. Firstly the Package_Types defines the data structure
Person used to represent an individual person.

package Pack_Types is
 Max_Chs : constant := 10;
 type Gender is (Female, Male);
 type Height_Cm is range 0 .. 300;

 type Person is record
 Name : String(1 .. Max_Chs); --Name as a String
 Height : Height_Cm := 0; --Height in cm.
 Sex : Gender; --Gender of person
 end record;

 type Person_Index is range 1 .. 3;
 subtype Person_Range is Person_Index;
 type Person_Array is array (Person_Range) of Person;
end Pack_Types;

Input and output 277

 M A Smith - May not be reproduced without permission

Then the following example program writes instance of Person to the file people.txt.

with Text_Io, Pack_Types, Sequential_Io;
use Text_Io, Pack_Types;
procedure Main is
 File_Name: constant String:= "people.txt";--Name
 People : Person_Array;
 package Io is new Sequential_Io(Person);
begin
 declare
 Fd : Io.File_Type; --File descriptor
 begin
 People(1) := (Name=>"Mike ", Sex=>Male, Height=>183);
 People(2) := (Name=>"Corinna ", Sex=>Female, Height=>171);
 People(3) := (Name=>"Miranda ", Sex=>Female, Height=> 74);
 Io.Create(File=>Fd, Mode=>Io.Out_File, Name=>File_Name);
 for I in Person_Range loop
 Io.Write(Fd, People(I));
 end loop;
 Io.Close(Fd);
 exception
 when Name_Error =>
 Put("Cannot create " & File_Name); New_Line;
 end;
end Main;

Note: The package Ada.Text_Io is used to provide the definition of the exception Name_Error.
When using the generic package Ada.Sequential_Io, the procedures read and write are used
to perform the input and output operations.

To read back the data written to the file people.txt the following example program is used:

with Text_Io, Pack_Types, Sequential_Io;
use Text_Io, Pack_Types;
procedure Main7 is
 File_Name: constant String:= "people.txt";--Name
 People : Person_Array;
 package Io is new Sequential_Io(Person);
begin
 declare
 Fd : Io.File_Type; --File descriptor
 begin
 Io.Open(File=>Fd, Mode=>Io.In_File, Name=>File_Name);
 for I in Person_Range loop
 Io.Read(Fd, People(I));
 Put(People(I).Name);
 Put(Height_Cm'Image(People(I).Height));
 if People(I).Sex = Male then
 Put(" Male");
 else
 Put(" Female");
 end if;
 New_Line;
 end loop;
 Io.Close(Fd);
 exception
 when Name_Error =>
 Put("Cannot open " & File_Name); New_Line;
 end;
end Main7;

278 Input and output

 M A Smith - May not be reproduced without permission

Which when run would print the following results:

Mike 183 Male
Corinna 171 Female
Miranda 74 Female

18.4 Switching the default input and output streams

It is possible to switch the default input or output stream to another stream using the following procedures in the
package Ada.Text_Io. The effect is to change the source or sink from which input and output will come from
or go to when using the normal input and output procedures put and get without a File parameter.

Procedure Sets the default
Set_Input (File:in File_Type) Input file descriptor.
Set_OutPut(File:in File_Type) Output file descriptor.
Set_Error (File:in File_Type) Error file descriptor.

As the file descriptor is of type limited private, it may not be directly assigned. However, an access value of
the file descriptor can be saved. The following functions return an access value of the standard input and output
file descriptors:

Function Returns the access
Standard_Input return File_Access; Value of the input file descriptor.
Standard_Output return File_Access; Value of the output file descriptor.
Standard_Error return File_Access; Value of the error file descriptor.

18.4.1 Putting it all together

The program first saves an access value to the original default input stream. Then it switches the default input
stream to be the file file.txt . After reading and printing the contents of this file the default, input stream is
switched back to its original value and the contents of the stream are read and written out.

with Ada.Text_Io; use Ada.Text_Io;
procedure Main is
 Fd : Ada.Text_Io.File_Type; --File descriptor
 P_St_Fd : Ada.Text_Io.File_Access; --Access value of Standard
 Ch : Character; --Current character
begin
 P_St_Fd := Standard_Input; --Acess value of standard fd
 Open(File=>Fd, Mode=>In_File, Name=>"file.txt");
 Set_Input(Fd);
 while not End_Of_File loop --For each Line
 while not End_Of_Line loop -- For each character
 Get(Ch); Put(Ch); -- Read / Write character
 end loop;
 Skip_Line; New_Line; -- Next line / new line
 end loop;
 Close(Fd); --Close file
 Set_Input(P_St_Fd.all);
 while not End_Of_File loop --For each Line
 while not End_Of_Line loop --For each character
 Get(Ch); Put(Ch); --Read / Write character
 end loop;
 Skip_Line; New_Line; --Next line / new line
 end loop;
end Main;

Note: Notice how .all has been used to de-reference the access value when using the procedure
Set_Input.

Input and output 279

 M A Smith - May not be reproduced without permission

18.5 Self-assessment

l What is the purpose of the package Ada.Sequential_io?

l How can you detect if a file does not exist in Ada?

l How might input and output in Ada be simplified for the novice user?

l How can you write an instance of a record to a file?

18.6 Exercises

Construct the following program:

l Copy
A program to copy a file. A user should be able to run your program by typing:

new_copy old_file new_file

l Upper case
A program to convert a file in upper and lower case to all upper case. A user should be able to run your
program by typing:

to_upper_case file

Note: The program should create an intermediate file then delete the original file and rename the
intermediate file to the original file name. This operation should be safe.

 M A Smith - May not be reproduced without permission

19 Persistence
This chapter shows how to create persistent objects. A persistent object will have a life-time beyond the
life-time of the program that created it.

19.1 A persistent indexed collection

The life-time of an object in Ada depends on its declaration, but its life-time will never exist beyond that of the
program. For an object to exist beyond the life-time of an individual execution of a program requires the object’s
state to be saved to disk, allowing the object’s state to be restored in another program. The above process makes
the object persistent. Normally this process is visible to a programmer.

For example, a program to print the IDC (International Dialling Code) for countries selected by a user could
use a persistent object to hold IDC details for individual countries. These details could be amended by the user of
the program and the changes would be retained for subsequent re-running of the program.

A program of this kind could uses the persistent object Tel_List that is an instance of the class Pic
(Persistent Indexed Collection). The class Pic implements a persistent indexed collection of data items. The
index can be an arbitrary value as can the data stored with the index.
The responsibilities of the class PIC are as follows:

Method Responsibility
Initialize Initialize the object.

When the object is initialized with an identity, the state of the
named persistent object is restored into the object.

Finalize If the object has an identity, save the state of the object under
this name.

Add Add a new data item to the object.
Extract Extract the data associated with an index.
Update Update the data associated with an index.
Set_Name Set the identity of the object.
Get_Name Return the identity of the object.

The package Pack_types contains string definitions for the Country and the IDC.

package Pack_Types is
 subtype Country is String(1 .. 12); --Country
 subtype Idc is String(1 .. 6); --International Dialling Code
end Pack_Types;

The Class Tel_List is an instantiation of the generic class Pic.

with Class_Pic, Pack_Types;
use Pack_Types;
 pragma Elaborate_All(Class_Pic);
 package Class_Tel_List is new Class_Pic(Country, Idc, ">");

Note: The generic class Pic is described in Section 19.2.

Persistence 281

 M A Smith - May not be reproduced without permission

A program to implement this telephone aid would be as follows:

with Ada.Text_Io, Pack_Types, Class_Tel_List;
use Ada.Text_Io, Pack_Types, Class_Tel_List;
procedure Main is
 Tel_List : Pic;
 Action : Character;
 Name : Country;
 Tel : Idc;
begin
 Initialize(Tel_List, "tel_list.per");
 while not End_Of_File loop
 begin
 Get(Action); --Action to perform
 case Action is
 when '+' => --Add
 Get(Name); Get(Tel);
 Add(Tel_List, Name, Tel);
 when '=' => --Extract
 Get(Name);
 Extract(Tel_List, Name, Tel);
 Put("IDC for "); Put(Name);
 Put(" is "); Put(Tel); New_Line;
 when '*' => --Update
 Get(Name); Get(Tel);
 Update(Tel_List, Name, Tel);
 when others => --Invalid action
 null;
 end case;
 exception

 when Not_There => --Not there
 Put("Name not in directory"); New_Line;
 when Mainists => --Exists
 Put("Name already in directory"); New_Line;
 end;
 Skip_Line;
 end loop;
end Main;

Note: When the object Tel_List is initialized it is named with an identity which is the file used to hold its
saved state. Using this file the state of the object can be restored so allowing the object to have life
beyond a single program run.

282 Persistence

 M A Smith - May not be reproduced without permission

19.1.1 Putting it all together

When compiled with the class Tel_list and the package Pack_types an example interaction using the
program would be as follows:

=UK -- Previously stored
IDC for UK is 44
 New Zealand 64 -- Add IDC for New Zealand
 Sweden 46 -- Add IDC for Sweden
 Portugal 3510 -- Invalid IDC
=Portugal -- Lookup IDC for Portugal
IDC for Portugal is 3510
 Portugal 351 -- Try to add new IDC for Portugal
Name already in directory
*Portugal 351 -- Correct invalid IDC
=Portugal -- Lookup IDC for Portugal
IDC for Portugal is +351

Note: The user’s input is indicated by bold type.
The actions allowed are:
+ Add country and IDC to collection
= Extract IDC for country
* Change IDC for existing country

19.1.2 Setting up the persistent object

The following program creates the initial persistent collection:

with Ada.Text_Io, Class_Tel_List;
use Ada.Text_Io, Class_Tel_List;
procedure Main is
 Tel_List : Pic;
begin
 Put("Creating Telephone list"); New_Line;
 Set_Name(Tel_List, "tel_list.per");
 Add(Tel_List, "Canada ", "+1 ");
 Add(Tel_List, "USA ", "+1 ");
 Add(Tel_List, "Netherlands ", "+31 ");
 Add(Tel_List, "Belgium ", "+32 ");
 Add(Tel_List, "France ", "+33 ");
 Add(Tel_List, "Gibraltar ", "+350 ");
 Add(Tel_List, "Ireland ", "+353 ");
 Add(Tel_List, "Switzerland ", "+41 ");
 Add(Tel_List, "UK ", "+44 ");
 Add(Tel_List, "Denmark ", "+45 ");
 Add(Tel_List, "Norway ", "+47 ");
 Add(Tel_List, "Germany ", "+49 ");
 Add(Tel_List, "Australia ", "+61 ");
 Add(Tel_List, "Japan ", "+81 ");
end Main;

19.2 The class PIC
The class Pic (Persistent Indexed Collection) implements an indexed collection as a binary tree. An identity is
given to an instance of the class PIC so that when the object’s life-time ends, its state will be saved to disk. The
file name used to save the state is the object’s identity.

The specification for the class PIC is as follows:

Persistence 283

 M A Smith - May not be reproduced without permission

with Ada.Strings.Unbounded, Ada.Finalization;
use Ada.Strings.Unbounded, Ada.Finalization;
generic
 type Index is private; --Index for record
 type Data is private; --Data for record
 with function ">"(F:in Index; S:in Index) return Boolean;
package Class_Pic is
 Not_There, Mainists, Per_Error : exception; --Raised Exceptions
 type Pic is new Limited_Controlled with private;
 procedure Initialize(The:in out Pic);
 procedure Initialize(The:in out Pic; Id:in String);
 procedure Finalize(The:in out Pic);
 procedure Discard(The:in out Pic);
 procedure Set_Name(The:in out Pic; Id:in String);
 function Get_Name(The:in Pic) return String;

 procedure Add(The:in out Pic; I:in Index; D:in Data);
 procedure Extract(The:in out Pic; I:in Index; D:in out Data);
 procedure Update(The:in out Pic; I:in Index; D:in out Data);

private
 type Leaf; --Index + Data
 type Subtree is access Leaf; --
 type Pic is new Limited_Controlled with record
 Tree : Subtree := null; -- Storage
 Obj_Id : Unbounded_String; -- Name of object
 end record;

 function Find(The:in Subtree; I:in Index) return Subtree;
 procedure Release_Storage(The:in out Subtree);

end Class_Pic;

Note: The declaration of the type leaf is a forward declaration so that the type Subtree, a pointer to a
leaf can be declared. The type leaf is fully declared in the package body.

The two generic parameters, Index and Data represent the type of the index used to access the stored data.
As this generic class will need to compare indices for ">" to establish the position of an index in the binary tree, a
definition for ">" must be provided by the user of the class. Remember, the index may be of a type for which the
operation ">" is not defined between two instances of Index. This forces the user of the package to provide
implicitly or explicitly an implementation for the comparison function ">".

The implementation of the class Pic uses the data structure Element to hold the index and the data
associated with the index. The data structure Leaf represents a leaf of the binary tree which is composed of a left
and right pointer plus the data structure Element.

with Unchecked_Deallocation, Sequential_Io;
package body Class_Pic is

 type Element is record --
 S_Index: Index; --The Index
 S_Data : Data; --The Data
 end record;

 type Leaf is record --
 Left : Subtree; --Possible left node
 Rec : Element; --Index + data
 Right : Subtree; --Possible right node;
 end record;

284 Persistence

 M A Smith - May not be reproduced without permission

For example, after the following data is added to the data structure:

Country IDC
Canada +1
USA +1
Belgium +32
Germany +49

the resultant tree would be as illustrated in Figure 19.1.

Left

Canada

Belgium +32 USA +1

Germany

+1

+49

Right

Rec

S_Index S_Data

Tree Obj_Id

Figure 19.1 Binary tree holding four data items.

The rules for adding items to a binary tree are:

If the current pointer to a leaf is null:
l Insert the item at this point.

If the current pointer to a leaf is not null.
l If the index of the item to be inserted is less than the current index, then recursively call add on the

left hand subtree.
l If the index of the item to be inserted is larger than the current index, then recursively call add on the

right hand subtree.
For example, if the IDC of Norway were added, the resultant tree would be as illustrated in Figure 19.2.

Left

Canada

Belgium +32 USA +1

Germany

+1

+49

Right

Rec

S_Index S_Data

Tree Obj_Id

Norway +47

Figure 19.2 Binary tree after adding the country Norway.

Persistence 285

 M A Smith - May not be reproduced without permission

The process to add the country Norway to the tree is:

Step Current leaf contents Action
1 Canada Try inserting at RHS leaf.
2 USA Try inserting at LHS leaf.
3 Germany Try inserting at RHS leaf.
4 Empty Insert new leaf (Norway).

The package sequential_io is used to hold the saved state of the binary tree. This is simply a file of
records of type Element. An instantiation of this package io is created to allow input and output to take place
on instances of Element.

 package Io is new Sequential_Io(Element);

The procedure initialize sets the binary tree to a defined empty state.

 procedure Initialize(The:in out Pic) is
 begin
 The.Tree := null; --No storage
 end Initialize;

Note: This is not necessary as the elaboration of an instance of the class will set the tree to null as its
initial value.

The procedure Initialize is called to restore the state of the binary tree from a file. The second parameter
to the procedure Initialize is the object’s identity. The state of the object is held in a file with the same name
as the object’s name. This procedure reads in the stored index and data items and uses the procedure Add to
rebuild the tree. The rebuilding of the tree re-creates an exact copy of the structure of the saved tree. This is due to
the way the index and data items were stored. The process of saving the state of the binary tree is implemented in
the procedure Finalize.

 procedure Initialize(The:in out Pic; Id:in String) is
 Per : Io.File_Type; --File descriptor
 Cur : Element; --Persistent data record element
 begin
 Set_Name(The, Id); --Name object
 Io.Open(Per, Io.In_File, Id); --Open saved state
 while not Io.End_Of_File(Per) loop --Restore saved state
 Io.Read(Per, Cur);
 Add(The, Cur.S_Index, Cur.S_Data);
 end loop;
 Io.Close(Per);
 exception --Return real exception
 when others => raise Per_Error; -- as sub code
 end Initialize;

The procedure Finalize saves the state of an object which has an identity just before the object is
destroyed. The data from the binary tree is saved in the order:

l Item held in the current node.
l The contents of the left-hand side.
l The contents of the right-hand side.

This unusual ordering saves the index and data item of the leftmost leaves nearest the root first. Thus, when the
data is restored the structure of the tree will be the same. For example, if the data structure, illustrated in Figure
19.2 were saved, then the order of saving the data would be:

286 Persistence

 M A Smith - May not be reproduced without permission

Canada, Belgium, USA, Germany, Norway.

When added to a binary tree, this would recreate the tree structure present in the original object.

 procedure Finalize(The:in out Pic) is
 Per : Io.File_Type; --File descriptor
 procedure Rec_Finalize(The:in Subtree) is --Save state
 begin
 if The /= null then --Subtree save as
 Io.Write(Per, The.Rec); -- Item
 Rec_Finalize(The.Left); -- LHS
 Rec_Finalize(The.Right); -- RHS
 end if;
 end Rec_Finalize;
 begin
 if To_String(The.Obj_Id) /= "" then --If save state
 Io.Create(Per, Io.Out_File,
 To_String(The.Obj_Id));
 Rec_Finalize(The.Tree);
 Io.Close(Per);
 end if;
 Release_Storage(The.Tree);
 exception --Return real exception
 when others => raise Per_Error; -- as sub code
 end Finalize;

The procedure Discard disassociates the object identity from the object and resets the state of the tree to
empty. This procedure should be used when the object’s state is not required to be saved to disk.

 procedure Discard egin
 Set_Name(The, ""); --No name
 Release_Storage(The.Tree); --Release storage
 end Discard;

 procedure Set_Name(The:in out Pic; Id:in String) is
 begin
 The.Obj_Id := To_Unbounded_String(Id); --Set object name
 end Set_Name;

 function Get_Name(The:in Pic) return String is
 begin
 return To_String(The.Obj_Id); --Name of object
 end Get_Name;

Persistence 287

 M A Smith - May not be reproduced without permission

The procedure Add uses the classic recursive mechanism for adding data items to a binary tree. The process is
to add the data item to an empty leaf of the tree. If this is not possible then the current leaf’s data item is compared
to the data item to be inserted. Depending on how the comparison collates the process is recursively called on
either the left or the right-hand subtree.

 procedure Add(The:in out Pic; I:in Index; D:in Data) is
 procedure Add_S(The:in out Subtree; I:in Index; D:in Data) is
 begin
 if The = null then
 The := new Leaf'(null, Element'(I,D), null);
 else
 if I = The.Rec.S_Index then --Index all ready exists
 raise Mainists;
 elsif I > The.Rec.S_Index then --Try on RHS
 Add_S(The.Right, I, D);
 else --LHS
 Add_S(The.Left, I, D);
 end if;
 end if;
 end Add_S;
 begin
 Add_S(The.Tree, I, D);
 end Add;

The procedures Extract and Update respectively read a data value and update a data value using the
supplied index. Both these procedures use the function Find to find the leaf in which the data item to be accessed
is held.

 procedure Extract(The:in out Pic; I:in Index; D:in out Data) is
 Node_Is : Subtree;
 begin
 Node_Is := Find(The.Tree, I); --Find node with iey
 D := Node_Is.Rec.S_Data; --return data
 end Extract;

 procedure Update(The:in out Pic; I:in Index; D:in out Data) is
 Node_Is : Subtree;
 begin
 Node_Is := Find(The.Tree, I); --Find node with iey
 Node_Is.Rec.S_Data := D; --Update data
 end Update;

288 Persistence

 M A Smith - May not be reproduced without permission

The procedure Find uses a recursive descent of the tree to find the selected index. If the index is not found,
then the exception Not_There is raised.

 function Find(The:in Subtree; I:in Index) return Subtree is
 begin
 if The = null then raise Not_There; end if;
 if I = The.Rec.S_Index then
 return The; --Found
 else
 if I > The.Rec.S_Index
 then return Find(The.Right, I); --Try RHS
 else return Find(The.Left, I); --Try LHS
 end if;
 end if;
 end Find;

As the tree is built using dynamic storage, the storage must be released. The procedure Release_Storage
carries out this task:

 procedure Dispose is
 new Unchecked_Deallocation(Leaf, Subtree);

 procedure Release_Storage(The:in out Subtree) is
 begin
 if The /= null then --Not empty
 Release_Storage(The.Left); --Free LHS
 Release_Storage(The.Right); --Free RHS
 Dispose(The); --Dispose of item
 end if;
 The := null; --Subtree root NULL
 end Release_Storage;

end Class_Pic;

Note: The implicit garbage collector could be used, but this would only be called when the instance of the
class Pic went out of scope. If this object is serially re-used then storage used by the program could
become excessive.

 M A Smith - May not be reproduced without permission

20 Tasks

This chapter describes the Ada task mechanism that allows several threads of execution to take place in a
program simultaneously. This facilitates the construction of real-time programs that can process messages
generated from multiple sources in an orderly manner.

20.1 The task mechanism

A program may have sections of code that can be executed concurrently as they have no interaction or
dependency. For example, the calculation of the factorial of an integer number and the determination of whether a
number is prime, may be done concurrently as separate threads of execution. This can be implemented by means
of a task type within a package. When elaborated, an instance of the task type will execute as a separate thread.
Communication between the executing threads is performed using the entry construct which allows a rendezvous
to be made between two concurrently executing threads. At the rendezvous, information may be interchanged
between the tasks.

The specification for two packages is given below. The first package defines a task to calculate the factorial of
a positive number and the second determines whether or not a positive number is a prime.

package Pack_Factorial is
 task type Task_Factorial is --Specification
 entry Start(F:in Positive); --Rendezvous
 entry Finish(Result:out Positive); --Rendezvous
 end Task_Factorial;
end Pack_Factorial;

package Pack_Is_A_Prime is
 task type Task_Is_Prime is --Specification
 entry Start(P:in Positive); --Rendezvous
 entry Finish(Result:out Boolean); --Rendezvous
 end Task_Is_Prime;
end Pack_Is_A_Prime;

Note: The rendezvous Start is used to pass data to the task and the rendezvous Finish is used to pass the
result back.

A task is created using the normal Ada elaboration mechanism. To create an instance of the task
Task_Factorial the following declaration is used:

 Thread_1 : Task_Factorial;

290 Tasks

 M A Smith - May not be reproduced without permission

The task will start executing as an independent thread as soon as the block surrounded by the declaration is
entered. A rendezvous with this executing task to pass it the number 5, is written as follows:

 Thread_1.Start(5); --Start factorial calculation

Note: This can be thought of as sending the message Start with a parameter of 5 to the task Thread_1.

The tasks described above may be used as follows:

with Ada.Text_Io, Ada.Integer_Text_Io,
 Pack_Factorial, Pack_Is_A_Prime;
use Ada.Text_Io, Ada.Integer_Text_Io,
 Pack_Factorial, Pack_Is_A_Prime;
procedure Main is
 Thread_1 : Task_Factorial;
 Thread_2 : Task_Factorial;
 Thread_3 : Task_Is_Prime;
 Factorial: Positive;
 Prime : Boolean;

begin
 Thread_1.Start(5); --Start factorial calculation
 Thread_2.Start(7); --Start factorial calculation
 Thread_3.Start(97); --Start is_prime calculation

 Put("Factorial 5 is ");
 Thread_1.Finish(Factorial); --Obtain result
 Put(Factorial); New_Line;

 Put("Factorial 7 is ");
 Thread_2.Finish(Factorial); --Obtain result
 Put(Factorial); New_Line;

 Put("97 is a prime is ");
 Thread_3.Finish(Prime); --Obtain result
 if Prime then --
 Put("True"); -- and print
 else
 Put("False");
 end if;
 New_Line;
end Main;

Note: The tasks start executing as soon as the begin of the block in which they are elaborated is entered.
The rendezvous point Start is used to control this wayward behaviour.

This is in essence a client-server relationship between the main program, the client, which requests a service
from the server tasks.

20.1.1 Putting it all together

When run, this would deliver the following results:

Factorial 5 is 120
Factorial 7 is 5040
97 is a prime is True

Tasks 291

 M A Smith - May not be reproduced without permission

The execution of the above program can be visualized as Figure 20.1

Main program thread

Thread_1 {Factorial(5)}

Thread_2 {Factorial(7)}

Thread_3 {Prime(97)}

Figure 20.1 Illustration of active threads in the above program.

Once started, each of the threads will execute concurrently until the Finish rendezvous is encountered,
which is used to deliver the result to the initiator of the tasks.

Note: The actual implementation of the concurrency will depend on the underlying architecture, both
software and hardware, of the platform on which the program is executed.

20.1.2 Task rendezvous

The rendezvous mechanism is used for:

l synchronizing two separate threads so that information may be exchanged.
l synchronizing the execution of two threads.

A rendezvous is achieved by one task having an entry statement and the other task performing a call on this
entry. For example, the code for a rendezvous to pass a Positive number to the task object thread_1 the
code would be:

Main program (client) which
elaborates thread1

Body of task Thread_1 (server)

Thread_1.Start(5);
accept Start(F:in Positive) do
 Factorial := F;
end Start;

To achieve this effect, one of the threads of control will be suspended until the other thread catches up. Then at
the rendezvous, data, in this case the number 5, is transferred between the tasks. The code between do and end is
executed with the client task suspended. After the code between do and end has been executed both tasks resume
their independent execution.

This rendezvous between the two tasks is illustrated in Figure 20.2 in which the main program task
rendezvous with an instance of the task Factorial.

292 Tasks

 M A Smith - May not be reproduced without permission

r e s u m e

data
interchange

Thread_1.Start(5)

r e n d e z v o u s r e n d e z v o u s

r e s u m e

accept Start(F:in Positive) do
 Factorial := F;
end Start;

Figure 20.2 Illustration of a rendezvous.

Other variations on the rendezvous are:

Variation Client Server task

No information passed. Thread_1.Start; accept Start;

No information passed but
Thread_1 executes statements
during the rendezvous.

Thread_1.Start; accept Start do
 Statements;
end Start;

20.1.3 The task’s implementation

In the body of the package Pack_Factorial shown below, the task Task_Factorial uses two rendezvous
points:

l Start to obtain the data to work on.
l Finish to deliver the result.

When the task’s thread of control reaches the end of the task body, the task terminates. Any attempted
rendezvous with a terminated task will generate the exception Task_Error.

package body Pack_Factorial is
 task body Task_Factorial is --Implementation
 Factorial : Positive;
 Answer : Positive := 1;
 begin
 accept Start(F:in Positive) do --Factorial
 Factorial := F;
 end Start;
 for I in 2 .. Factorial loop --Calculate
 Answer := Answer * I;
 end loop;
 accept Finish(Result:out Positive) do --Return answer
 Result := Answer;
 end Finish;
 end Task_Factorial;
end Pack_Factorial;

Tasks 293

 M A Smith - May not be reproduced without permission

Likewise, the task Task_Is_Prime in the package Pack_Is_A_Prime receives and delivers data to
another thread of control.

package body Pack_Is_A_Prime is
 task body Task_Is_Prime is --Implementation
 Prime : Positive;
 Answer: Boolean := True;
 begin
 accept Start(P:in Positive) do --Factorial
 Prime := P;
 end Start;
 for I in 2 .. Prime-1 loop --Calculate
 if Prime rem I = 0 then
 Answer := False; exit;
 end if;
 end loop;
 accept Finish(Result:out Boolean) do --Return answer
 Result := Answer;
 end Finish;
 end Task_Is_Prime;
end Pack_Is_A_Prime;

20.2 Parameters to a task type
In the previous example, the rendezvous Start is used to pass initial values to the task. This can be done
explicitly, when the task is created by using a discriminated task type. However, the discriminant must be a
discrete type or access type. For example, the specification of the task Task_Factorial can be defined as
follows:

package Pack_Factorial is
 task type Task_Factorial(F:Positive) is --Specification
 entry Finish(Result:out Positive); --Rendezvous
 end Task_Factorial;
end Pack_Factorial;

Then an instance of the task can be elaborated as follows:

 Thread_1 : Task_Factorial(7); --Task is

The body of the task type is now:

package body Pack_Factorial is
 task body Task_Factorial is --Implementation
 Answer : Positive := 1;
 begin
 for I in 2 .. F loop --Calculate
 Answer := Answer * I;
 end loop;
 accept Finish(Result:out Positive) do --Return answer
 Result := Answer;
 end Finish;
 end Task_Factorial;
end Pack_Factorial;

Note: The discriminant to the task type is not specified in the body.

294 Tasks

 M A Smith - May not be reproduced without permission

20.2.1 Putting it all together

Using the new definition of the task type in the package Pack_factorial the following code can now be
written:

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
procedure Main is
 Num : Positive;
begin
 Num := 7;

 declare
 Factorial: Positive; --Answer
 Thread_1 : Task_Factorial(Num); --Task is
 begin
 --Do some other work as well
 Put("Factorial "); Put(Num); Put(" is ");
 Thread_1.Finish(Factorial); --Obtain result
 Put(Factorial); New_Line;
 end;

end Main;

20.3 Mutual exclusion and critical sections

In many cases of real time working, sections of code must not be executed concurrently. The classic example is
the adding or removing of data in a shared buffer. For example, to perform a copy operation between two separate
devices a shared buffer can be used to even out the differences in response-time. This can be illustrated
diagrammatically as shown in Figure 20.3.

R e a d e r
task

W r i t e r
taskD i s k

B u f f e r

D i s k

Figure 20.3 Illustration of copy with a buffer to even out the differences in read and write rates.

The problem is how to prevent both the read and write tasks accessing the buffer simultaneously, causing the
consequential corruption of indices and data. The solution is to have the buffer as an instance of a protected type.

Tasks 295

 M A Smith - May not be reproduced without permission

20.4 Protected type

In essence, an instance of a protected type is an object whose methods have strict concurrency access rules. A
protected object, an instance of a protected type, is composed of data and the procedures and functions that access
the data. The table below summarizes the concurrent access rules for procedures and functions in a protected
object.

Unit Commentary Access
procedure A procedure will only execute when no other

units are being executed. If necessary the
procedure will wait until the currently executing
unit(s) have finished.

Read and write.

function A function may execute simultaneously with
other executing functions. However, a function
cannot execute if a procedure is currently
executing.

Read only.

entry Like a procedure but may also have a barrier
condition associated with the entry. If the barrier
condition is false the entry is queued until the
barrier becomes true.

Read and write

20.5 Implementation
The implementation of a program to perform an efficient copy using an in store buffer to even out differences in
response rates can be implemented as two tasks and a protected object, as illustrated in Figure 20.4.

R e a d e r
task

W r i t e r
task

P u t Get

D i s k

B u f f e r

D i s k

Figure 20.4 Copy implemented using two tasks and a protected object buffer.

The responsibilities of the components are as follows:

Name Object is Responsibilities
Task_Reader Task Read data from the file and then pass the data to the buffer.

Note: The task will block if the buffer is full.
Task_Writer Task Take data from the buffer task and write the data to the file.

Note: The task will block if there is no data in the buffer.
PT_Buffer Protected

type
Serialize the storing and retrieving of data to and from a
buffer.

Note: The blocking is achieved with a guard to the accept statement. This is described in the section on
guarded accepts.

296 Tasks

 M A Smith - May not be reproduced without permission

A package Pack_types is defined to allow commonly-used types to be conveniently kept together.

with Ada.Text_Io;
use Ada.Text_Io;
package Pack_Types is
 type P_File_Type is access all Ada.Text_Io.File_Type;
 Eot : constant Character := Character'Val(0);
 Cr : constant Character := Character'Val(15);
 Queue_Size : constant := 3;

 type Queue_No is new Integer range 0 .. Queue_Size;
 type Queue_Index is mod Queue_Size;
 subtype Queue_Range is Queue_Index;
 type Queue_Array is array (Queue_Range) of Character;
end Pack_Types;

Note: The above package is used to define the type P_File_Type which is used by several other program
units.

The specification for the buffer protected type is as follows:

with Pack_Types;
use Pack_Types;
package Pack_Threads is
 protected type PT_Buffer is --Task type specification
 entry Put(Ch:in Character; No_More:in Boolean);
 entry Get(Ch:in out Character; No_More:out Boolean);
 private
 Elements : Queue_Array; --Array of elements
 Head : Queue_Index := 0; --Index
 Tail : Queue_Index := 0; --Index
 No_In_Queue : Queue_No := 0; --Number in queue
 Fin : Boolean := False; --Finish;
 end PT_Buffer ;

 type P_PT_Buffer is access all PT_Buffer ;

The Ada specification for the reader and writer tasks are as follows:

 task type Task_Read(P_Buffer:P_PT_Buffer ;
 Fd_In:P_File_Type) is
 entry Finish;
 end Task_Read;

 task type Task_Write(P_Buffer:P_PT_Buffer ;
 Fd_Out:P_File_Type) is
 entry Finish;
 end Task_Write;
end Pack_Threads;

Note: To allow the reader and writer tasks to communicate with the buffer, a reference to the buffer protected
object is passed to these tasks. A reference to the buffer protected object has to be passed as a
protected object is of limited type.
The same strategy is used to pass an instance of File_Type.

Tasks 297

 M A Smith - May not be reproduced without permission

The implementation of the above program is split into two procedures. The procedure Do_Copy does the
actual work of copying between the two files.

with Ada.Text_Io, Pack_Threads, Pack_Types;
use Ada.Text_Io, Pack_Threads, Pack_Types;
procedure Do_Copy(From:in String; To:in String) is
 type State is (Open_File, Create_File);
 Fd_In : P_File_Type := new Ada.Text_Io.File_Type;
 Fd_Out : P_File_Type := new Ada.Text_Io.File_Type;
 Mode : State := Open_File;
begin
 Open(File=>Fd_In.all, Mode=>In_File, Name=>From);
 Mode := Create_File;
 Create(File=>Fd_Out.all, Mode=>Out_File, Name=>To);
 declare
 Buffers : P_PT_Buffer := new PT_Buffer ;
 Reader : Task_Read(Buffers, Fd_In);
 Writer : Task_Write(Buffers, Fd_Out);
 begin
 Reader.Finish; Close(Fd_In.all); --Finish reader task
 Writer.Finish; Close(Fd_Out.all); --Finish writer task
 end;
exception
 when Name_Error =>
 case Mode is
 when Open_File =>
 Put("Problem opening file " & From); New_Line;
 when Create_File =>
 Put("Problem creating file " & To); New_Line;
 end case;
 when Tasking_Error =>
 Put("Task error in main program"); New_Line;
end Do_Copy;

Note: Explicit de-referencing of instances of a File_Type is achieved using .all.
The procedure copy extracts the arguments for the copy operation.

with Ada.Text_Io, Ada.Command_Line, Do_Copy;
use Ada.Text_Io, Ada.Command_Line;
procedure Copy is
begin
 if Argument_Count = 2 then
 Do_Copy (Argument(1), Argument(2));
 else
 Put("Usage: copy from to"); New_Line;
 end if;
end Copy;

When a pointer to a protected type (for example, PT_Buffer) is elaborated, no object is created. The
creation of an instance of the protected type PT_Buffer is performed using new as follows:

 Buffers : P_PT_Buffer := new PT_Buffer ;

Note: As a protected object is limited, using an access value is one way of making the protected object visible
to several program units.

298 Tasks

 M A Smith - May not be reproduced without permission

The implementation of the reader task is then:

with Ada.Text_Io;
use Ada.Text_Io;
package body Pack_Threads is

 task body Task_Read is --Task implementation
 Ch : Character;
 begin
 while not End_Of_File(Fd_In.all) loop
 while not End_Of_Line(Fd_In.all) loop
 Get(Fd_In.all, Ch); --Get character
 P_Buffer.Put(Ch, False); --Add to buffer
 end loop;
 Skip_Line(Fd_In.all); --Next line
 P_Buffer.Put(Cr, False); --New line
 end loop;
 P_Buffer.Put(Eot, True); --End of characters

 accept Finish;
 exception
 when Tasking_Error =>
 Put("Exception in Task read"); New_Line;
 end Task_Read;

The rendezvous Finish is used by the reader to indicate that there is no more data.

Note: As tasking errors are not propagated beyond the task, a specific exception handler is used to detect this
eventuality.
The character constant Cr is used to indicate the newline character.

Similarly, the writer task is implemented as follows:

 task body Task_Write is --Task implementation
 Last : Boolean := False; --No more data
 Ch : Character; --Character read
 begin
 loop
 P_Buffer.Get(Ch, Last); --From buffer
 exit when Last; --No more characters
 if Ch = Cr then
 New_Line(Fd_Out.all); --New line
 else
 Put(Fd_Out.all, Ch); --Character
 end if;
 end loop;
 accept Finish; --Finished
 exception
 when Tasking_Error =>
 Put("Exception in Task write"); New_Line;
 end Task_Write;

20.5.1 Barrier condition entry

The protected type uses one additional facility, that of a barrier entry. If the buffer becomes full, a mechanism is
needed to prevent further data being added. The barrier:

 entry Put(Ch:in Character; No_More:in Boolean)
 when No_In_Queue < Queue_Size is

Tasks 299

 M A Smith - May not be reproduced without permission

to the entry prevents the entry being processed until there is room in the buffer. If the buffer is full then the
reader task is suspended (blocked) until a successful get entry is made. The guards for an entry statement are
re-evaluated after a successful call on the protected object. The full implementation of the protected type
PT_Buffer is as follows:

 protected body PT_Buffer is

The queue is implemented in sequential store with the two indices head and tail keeping track of the
current extraction and insertion points respectively. A count of the active cells used in the buffer is held in
no_in_queue. Figure 20.5 illustrates the queue after adding the characters ‘t’, ‘e’, ‘x’, ‘t’.

TailHead

T e x t

Figure 20.5 Queue holding the characters ‘text’.
The procedure Put in the body of the protected object adds new data to the queue. Data can only be added to

the queue when there is room. The index Tail marks the position of the next data item to be added. When no
more data is available to add to the queue the variable Fin is set to true.

 entry Put(Ch:in Character; No_More:in Boolean)
 when No_In_Queue < Queue_Size is
 begin
 if No_More then --Last
 Fin := True; --Set flag
 else
 Elements(Tail) := Ch; --Add to queue
 Tail := Tail+1; --Next position
 No_In_Queue := No_In_Queue + 1; --
 end if;
 end;

The procedure Get extracts data from the queue. The head indexes the data item at the front of the queue.
The parameter eof is set to true when no more data is available. This is different from a temporary unavailability
of data due to the reader task blocking.

 entry Get(Ch:in out Character; No_More:out Boolean)
 when No_In_Queue > 0 or else Fin is
 begin
 if No_In_Queue > 0 then --Item available
 Ch := Elements(Head); --Get item
 Head := Head+1; --Next position
 No_In_Queue := No_In_Queue - 1; --
 No_More := False; --Not end
 else
 No_More := True; --End of items
 end if;
 end;

 end PT_Buffer ;

end Pack_Threads;

Note: When all the data has been exhausted from the buffer, the procedure get will return false in its second
parameter.

300 Tasks

 M A Smith - May not be reproduced without permission

20.5.2 Putting it all together

When the above program is compiled and run it will perform a copy operation using the internal buffer to even
out differences between the speed of the input and output streams. For example, to copy the contents of from to
the file to a user can type:

copy from to

20.6 Delay
Execution of a program can be delayed for a specific number of seconds or until a specific time is reached. For
example, to implement a delay of 2.5 seconds in a program the following delay statement is used.

 delay 2.5;

Note: The delay time is of type Duration, which has a range of 0.0 .. 86_400.0 and is defined in the
package Ada.Calendar. The specification of the package Ada.Calendar is contained in Section
C.15, Appendix C.

To delay until a specific time the until form of the delay statement is used. To delay part of a program until
the 1st January 2000 the following statement is used:

 delay until Time_Of(2010,1,1,0.0); -- Until 1 Jan 2010

Note: The package Ada.Calendar contains the definition for Time_Of which returns the date as an
instance of Time.

20.7 Choice of accepts
The select construct is used to select between several different possible rendezvous. The form of the select
construct is as follows:

select -- Choice of accepts
 accept option1 do
 ...
 end;
or
 accept option2 do
 ...
 end;

end select;

This can be used when a task can have more than one rendezvous made with it from several different sources.
For example, a task controlling output to a terminal may be accessed by either a text interface for information
messages, or a block image interface for pictorial data. The select construct causes a wait until one of the
specified rendezvous is made.

Tasks 301

 M A Smith - May not be reproduced without permission

Note: A protected type may be simulated by using a task which consists of a loop in which a select statement
is embedded. Each rendezvous within the select statement will then have its execution serialized.
For example:

loop
 select -- Serialization of code
 accept option1 do end;
 or
 accept option1 do end;
 end select;
end loop;

20.7.1 Accept alternative

An else part may be added to a select statement. The statements after the else will be obeyed if a
rendezvous cannot be immediately made with any of the accept statements in the select construct.

select -- Choice of accepts
 accept option1 do
 ...
 end;
else
 Statements; -- Only executed if no call on an
 -- accept immediately satisfied
end select

20.7.2 Accept time-out

The select construct may also include a time-out delay after which, if there is no accept called following the
statements, the delay will be executed. The format of this variation of the select construct is:

select -- Choice of accepts
 accept option1 do
 ...
 end;

or
 delay TIME; -- Time out delay in seconds
 Statements; -- Only executed if no call on an
 -- accept within TIME seconds
end select;

Note: There may be only one delay alternative and no else part.

This construct can be used to implement a watchdog task that will report an error if it has not been polled for a
certain time. This watchdog task can act as a safety measure to report that the software is not performing as
expected. An implementation of a simple watchdog timer is as follows:

package Pack_Watchdog is
 task type Task_Watchdog is --Specification
 entry Poll; --Rendezvous
 entry Finish; --Rendezvous
 end Task_Watchdog;
end Pack_Watchdog;

302 Tasks

 M A Smith - May not be reproduced without permission

The entry Poll is called at regular intervals to prevent the watchdog task from reporting an error. The task is
terminated by a call to Finish. The implementation of the task is as follows:

with Ada.Text_Io;
use Ada.Text_Io;
package body Pack_Watchdog is
 task body Task_Watchdog is --Implementation
 begin
 loop
 select
 accept Poll; --Successful poll
 or
 accept Finish; --Terminate
 exit;
 or
 delay 0.2; --Time out
 Put("WARNING Watchdog failure");
 New_Line;
 exit;
 end select;
 delay 0.0001; --Cause task switch
 end loop;
 end Task_Watchdog;
end Pack_Watchdog;

If a poll is not received every 0.1 seconds then the task will report a warning to the user.

20.8 Alternatives to a task type

Tasks do not have to be defined as a task type. They can be defined as a package or even as part of a program
unit.

20.8.1 As part of a package

A task can be specified as a package. In this format, there is less flexibility as now there can only be one instance
of the task. For example, the task to calculate a factorial could have been specified as follows:

package Pack_Factorial is
 task Task_Factorial is --Specification
 entry Start(F:in Positive); --Rendezvous
 entry Finish(Result:out Positive); --Rendezvous
 end Task_Factorial;
end Pack_Factorial;

Tasks 303

 M A Smith - May not be reproduced without permission

the implementation of which is:

package body Pack_Factorial is
 task body Task_Factorial is --Implementation
 Factorial : Positive;
 Answer : Positive := 1;
 begin
 Put("Pack_factorial"); New_Line;
 accept Start(F:in Positive) do --Factorial
 Factorial := F;
 end Start;
 for I in 2 .. Factorial loop --Calculate
 Answer := Answer * I;
 end loop;
 accept Finish(Result:out Positive) do --Return answer
 Result := Answer;
 end Finish;
 end Task_Factorial;
end Pack_Factorial;

The code to interact with this task in a package would be as follows:

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
procedure Main is
 Factorial: Positive;
begin
 Task_Factorial.Start(5); --Start factorial calculation
 --Task running

 Put("Factorial 5 is ");
 Task_Factorial.Finish(Factorial); --Obtain result
 Put(Factorial); New_Line;
end Main;

Note: If this form is used, then the task will come into immediate existence as soon as the program is
executed.
Only one instance of the factorial task can be created.

304 Tasks

 M A Smith - May not be reproduced without permission

20.8.2 As part of a program unit

package Pack_Factorial is
 task type Task_Factorial(F:Positive) is --Specification
 entry Finish(Result:out Positive); --Rendezvous
 end Task_Factorial;
end Pack_Factorial;

--[pack_factorial.adb] Implementation
package body Pack_Factorial is
 task body Task_Factorial is --Implementation
 Answer : Positive := 1;
 begin
 for I in 2 .. F loop --Calculate
 Answer := Answer * I;
 end loop;
 accept Finish(Result:out Positive) do --Return answer
 Result := Answer;
 end Finish;
 end Task_Factorial;
end Pack_Factorial;

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
procedure Main is
 Num : Positive;
begin
 Num := 7;

 declare
 Factorial: Positive; --Answer
 Thread_1 : Task_Factorial(Num); --Task is
 begin
 --Do some other work as well
 Put("Factorial "); Put(Num); Put(" is ");
 Thread_1.Finish(Factorial); --Obtain result
 Put(Factorial); New_Line;
 end;

end Main;

Note: The task will come into existence as soon as the program unit is executed.

20.9 Self-assessment

l What is a thread or task in a programming language?

l What Ada construct can be used to implement a thread or task?

l How is information passed between two threads? Explain why a special construct is required for this
activity.

l What is the difference between a task type and a normal type?

l What is the difference between execution of a procedure and execution of a function in a protected
type?

l What happens when a task type is elaborated?

Tasks 305

 M A Smith - May not be reproduced without permission

l How can a task select the current rendezvous that is made with it, from a number of possible
rendezvous?

l Why might a program need to employ a watchdog timer?

l How might a constantly running Ada program execute some code at a particular time of the day?

20.10 Exercises

Construct the following:

l Fibonacci task
A thread or task which will calculate the n’th term of the Fibonacci series. The rendezvous with this task
are:

l Calculate(n); -- What term to find;
l Deliver(res); -- The result.

l Factorial
A thread or task which will calculate the factorial of a supplied value. The task should allow multiple
serial calculations to be requested. The rendezvous with this task are:

l Calculate(n); -- What term to find;
l Deliver(res); -- The result;
l Finish; -- Terminate the task.

l Fast copy
A program to perform an optimal block copy using an intermediate buffer of disk blocks to even out any
differences in speed between the input and output streams.

l Communication link
A program to allow the sending of data between two computer systems using a serial port. The program
should be able to inform the user if the other machine has not responded within the last two minutes.

 M A Smith - May not be reproduced without permission

21 System programming

This chapter shows how access can be made to the low-level facilities of the Ada language. This
facilitates the construction of programs which interact with the system host system directly.

21.1 Representation clause
An enumeration may be given a specific value by a representation clause. For example, the following
enumerations, defined for the type Country:

type Country is (USA, France, UK, Australia);

may each be given their international telephone dialling code with the following representation clause:

type Country is (USA, France, UK, Australia);
for Country use (USA=> 1, France=> 33, UK=> 44, Australia=> 61);

Thus, internally the enumeration France would be represented by the number 33.

Note: The values given to each enumeration must be in ascending order and unique.

However, even though the enumerations may have non-consecutive representations, attributes of the
enumeration will be as if there had been no representation clause. For example:

Expression Delivers
Country’Succ(USA) France
Country’Pred(Australia) UK
Country’Pos(France) 1
Country’Val(2) UK

To access the value of the enumeration requires the use of the generic package Unchecked_Conversion
that will deliver an object as a different type without any intermediate conversions. The only restriction with the
use of the generic function Unchecked_Conversion is that the source and destination objects must be of the
same size.

In this case this can be ensured by informing the compiler of the size in bits required to use for the
representation of an object of type Country. For example, to set the size for the enumeration Country to be the
same size as the type Integer the following representation clause would be used:

type Country is (USA, France, UK, Australia);
for Colour'Size use Integer'Size;
for Country use (USA=> 1, France=> 33, UK=> 44, Australia=> 61);

Note: The attribute 'Size delivers the size in bits of an instance of the type.

System programming 307

 M A Smith - May not be reproduced without permission

21.1.1 Putting it all together

To print the international telephone code for France the following code can be used:

with System, System.Storage_Elements;
use System, System.Storage_Elements;
procedure Main is
 type Country is (USA, France, UK, Australia);
 for Colour'Size use Integer'Size;
 for Country use (USA=>1, France=>33, UK=>44, Australia=>61);

 function Idc is new Unchecked_Conversion(Country, Integer);
begin
 Put("International dialling code for France is ");
 Put(Idc(France));
 New_Line;
end Main;

which when run, would produce the following results:

International dialling code for France is 33

It would also be convenient to also include Canada in the Country enumeration for telephone codes.
However, as Canada has the same country code as the USA, this cannot be done directly. The reason for this is
that two enumerations may not have the same physical representation. The way round this is to define a renaming
for Canada as follows:

function Canada return Country renames USA;

which defines Canada as a function that returns the enumeration USA as its result.

21.2 Binding an object to a specific address

In some limited situations it is necessary to read or write from absolute locations in memory. In the historic
operating system MS DOS the time of day is stored in locations (in hexadecimal) 46E and 46C. The exact
specification of what is stored is as follows:

Location (hexadecimal) Contents
046E - 046F The time of day in hours.
046C - 046D The ticks past the current hour.

Each tick is 5/91 seconds.

An object may be bound to an absolute location with the for use clause. For example, to bind the integer
variable Time_High to the absolute location 16#46E# the following declaration can be used:

 Time_High_Address : constant Address := To_Address(16#046C#);

 type Time is range 0 .. 65365; --Unsigned
 for Time'Size use 16; -- in 2 bytes

 Time_High: Time;
 for Time_High'Address use Time_Low_Address;

Note: Time is a type describing a 16 bit unsigned integer.
The address 16#046E# must be of type Address that is defined in the package System. The child
package System.Storage_elements contains the function to_address which converts an
integer into an address.

308 System programming

 M A Smith - May not be reproduced without permission

A program to print the current time of day in hours, minutes and seconds in a programming running under the
DOS operating system is as follows:

with System, System.Storage_Elements,
 Ada.Text_Io, Ada.Integer_Text_Io;
use System, System.Storage_Elements,
 Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Time_High_Address : constant Address := To_Address(16#046C#);
 Time_Low_Address : constant Address := To_Address(16#046E#);
 type Seconds_T is range 0 .. 1_000_000_000; --up to 65k * 5
 type Time is range 0 .. 65365; --Unsigned
 for Time'Size use 16; -- in 2 bytes
 Time_Low : Time;
 for Time_Low'Address use Time_High_Address;
 Time_High: Time;
 for Time_High'Address use Time_Low_Address;
 Seconds : Seconds_T;
begin
 Put("Time is ");
 Put(Time'Image(Time_High)); Put(" :"); --Hour
 Seconds := (Seconds_T(Time_Low) * 5) / 91;
 Put(Seconds_T'Image(Seconds/60)); Put(" :"); --Mins
 Put(Seconds_T'Image(Seconds rem 60)); --Seconds
 New_Line;
end Main;

which when run on a DOS system would produce output of the form:

Time is 17 : 54 : 57

Note: For this to work, the generated code must be able to access these low locations in DOS.

21.2.1 Access to individual bits

On an MS DOS system memory address 16#0417# contains the status of various keyboard settings. Individual
bits in this byte indicate the settings (set or not set) for the scroll lock, number lock, caps and insert keys. The
layout of this byte is illustrated in Figure 21.1.

I n s e r t C a p s
l o c k

N u m b e r
l o c k

S c r o l l
l o c k

7 6 5 4 3 2 1 0

B i t p o s i t i o n L e a s t s i g n i f i c a n tM o s t s i g n i f i c a n t

Figure 21.1 Keyboard status on an MSDOS system.

System programming 309

 M A Smith - May not be reproduced without permission

The following demonstration program prints out the status of the insert, caps lock, and number lock keys:

with System, System.Storage_Elements,
 Ada.Text_Io, Ada.Integer_Text_Io;
use System, System.Storage_Elements,
 Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Keyboard_Address : constant Address := To_Address(16#417#);
 type Status is (Not_Active, Active);
 for Status use (Not_Active => 0, Active => 1);
 for Status'Size use 1;

The above declarations define the enumeration Status to occupy a single bit. The next set of declarations
define Keyboard_Status and access to the individual bits that make up the status byte. This is defined using a
record structure with a representation clause for the specific layout of the bits.

 type Keyboard_Status is
 record
 Scroll_Lock : Status; --Scroll lock status
 Num_Lock : Status; --Num lock status
 Caps_Lock : Status; --Caps lock status
 Insert : Status; --Insert status
 end record;

 for Keyboard_Status use
 record
 Scroll_Lock at 0 range 4..4; --Storage unit 0 Bit 4
 Num_Lock at 0 range 5..5; --Storage unit 0 Bit 5
 Caps_Lock at 0 range 6..6; --Storage unit 0 Bit 6
 Insert at 0 range 7..7; --Storage unit 0 Bit 7
 end record;
 Keyboardstatus_Byte : Keyboard_Status;
 for Keyboardstatus_Byte'Address use Keyboard_Address;

The representation clause Scroll_Lock at 0 range 4..4 requests that the object Scroll_Lock be
stored at an offset of 0 storage locations from the start of the record at bit position 4.

Note: On a PC the storage unit size is one byte.
The bits selected may be outside the storage unit.

The body of the program which interrogates these individual bits using the individual record components of
Keyboard_Status_Byte is:

begin
 if Keyboardstatus_Byte.Insert = Active then
 Put("Insert mode set"); New_Line;
 else
 Put("Insert mode not set"); New_Line;
 end if;
 if Keyboardstatus_Byte.Caps_Lock = Active then
 Put("Caps lock set"); New_Line;
 else
 Put("Caps lock not set"); New_Line;
 end if;
 if Keyboardstatus_Byte.Num_Lock = Active then
 Put("Number lock set"); New_Line;
 else
 Put("Number lock not set"); New_Line;
 end if;
end Main;

310 System programming

 M A Smith - May not be reproduced without permission

which when run on an MSDOS system with none of these keys set would print:

Insert mode not set
Caps lock not set
Number lock not set

Note: For this to work, the generated code must be able to access these low locations in DOS.

21.3 Self-assessment

l Using a representation clause, the following enumeration for Country defines the IDC(International
Dialling Code) for a small selection of countries.

 type Country is (USA, France, UK, Australia);
 for Country'Size use Integer'Size;
 for Country use (USA=> 1, France=> 33,
 UK=> 44, Australia=> 61);

What do the following deliver?

(a) Country'Pos(USA)
(b) Country'Val(2).

l How can the IDC of France be extracted from the enumeration for France?

l As Canada has the same IDC as the USA, how can an enumeration for Canada be included in the list
of countries above?

l How can the variable Cost be declared so that its address maps on to the byte at absolute location
040 in programs address space?

21.4 Exercises

Construct the following:

l Memory dump
A program which prints in hexadecimal the contents of the bottom 100 locations of the current program.

 M A Smith - May not be reproduced without permission

22 A text user interface

This chapter defines an API (Application Program Interface) for use by an application program that reads
and writes textual information to and from windows on a VDU screen. The TUI (Text User interface) uses
the metaphor of non-overlapping windows. The application program is written using an event-driven
regime. In this way, call-back functions are written to implement services requested by a user of the
application.

The next chapter describes in detail the implementation of the TUI.

22.1 Specification

A TUI (Text User Interface) provides various types of non-overlapping windows on a VDU screen. The windows
provided are:

l A text window into which characters from the Ada type Character can be written.
l A dialog window that provides a mechanism for a user to enter character data. Associated with a dialog

window is a function that is called on completion of the user’s entered data.
l A menu window from which a user can select a menu item from a list of available options.

For example, a demonstration application that converts miles into kilometres uses the TUI to input and display
data as follows:

 +----------------------------------+
 | |
 | Miles to kilometres |
 | |
 +----------------------------------+

#--------------------+ +----------------------------------+
Dialog	Miles		Distance in miles = 50.00
--------------------		Distance in Kms = 80.47	
50.0*			
+--------------------+ +----------------------------------+

Note: A # in the top left-hand corner of a window signifies which window has the focus for input.

The interface for this program consists of three distinct windows:

l A text window which displays the title of the program
“Miles to kilometres”

l A dialog window that solicits input from the user. In this distance in miles to be converted into
kilometres.

l A text window to display of the results of the conversion.

The TUI interface for writing to windows is modelled on the procedure Put in the package Ada.Text_Io.
Associated with an instance of a Dialog window is a call-back function that implements the functionality of the
user interaction. This is often referred to as an event-driven metaphor.

The dialog window's call-back function is executed when a user has finished inputting data into the program.
For example, in the miles to kilometres program the dialog window's call-back function is executed when a user
presses return completing the entry of the miles to be converted into kilometres. The call-back function calculates
the conversion to kilometres and displays the answer in the result’s window.

312 A Text user interface

 M A Smith - May not be reproduced without permission

22.2 API for TUI

The API (Application Program Interface) for the TUI consists of a set of function and procedure calls. These are
implemented as methods in the classes used to form the complete TUI interface. These window classes form an
inheritance hierarchy illustrated in Figure 22.1.

Window

Dialog
Menu

Title_Menu

Figure 22.1 Window hierarchy.

The API calls for a Window are inherited to form the base API calls for a Menu and Dialog. Likewise, the
base API calls for a Title_Menu are inherited from a Menu.

22.2.1 To set up and close down the TUI

The following procedures are responsible for setting up and closing down the TUI system. These API calls are
independent of any window and thus do not require as a parameter an actual instance of a window. These methods
are class methods of the class Input_manager.

function / procedure Note
Window_Prolog; Set up the environment for the TUI. This must be called

outside the block in which windows are elaborated.
Window_Start; After initializing any program-generated windows, start the

application by allowing a user to interact with the program.
Window_Epilog; Close down the window system. This must be called

outside the block in which the windows are elaborated.

For example, the structure of a program using the TUI is:

procedure Main is
begin
 Window_Prologue; -- Set-up window system
 declare
 -- Declaration of windows used in
 -- the program
 begin
 -- Initialization of windows
 -- used in program
 Window_Start; -- Start the user interaction
end;
 Window_Epilog; -- Close window system
end Main;

A Text user interface 313

 M A Smith - May not be reproduced without permission

Note: The reason for this structure is to allow initialization code for any declared windows to be run after the
window system has been initiated by the procedure Window_Prolog and to allow any finalization
code for the elaborated windows to be executed before the procedure Window_Epilog is called.
To avoid simultaneous access to a window, program initialization of a window must occur before the
user is allowed to interact with the system.

22.2.2 Window API calls

A text window is created with a declaration of the form:

Win : Window;

A text window can be created and written to using the following API calls:

Notes Function / procedure
1 procedure Framework(The:in out Window;

 ABS_X_CRD, ABS_Y_CRD: POSITIVE;
 Max_X_Crd, Max_Y_Crd: Positive;
 Cb:in P_Cbf := null);

2 procedure Put(The:in out Window; Mes:in String);
2 procedure Put(The:in out Window;Ch:in Character);
2 procedure Put(The:in out Window; N:in Integer);
3 Procedure Position(The:in out Window;X,Y:in Positive);
4 procedure Clear(The:in out Window);
5 procedure New_Line(The:in out Window);
6 procedure Make_Window(The:in out Window; Mo:in Mode);

Notes:
1 Sets the absolute position and size of the window on the screen.

The top left hand corner position is at: (abs_x_crd, abs_y_crd)
The bottom right hand corner position is at:
 (abs_x_crd+max_x_crd-1, abs_y_crd+max_y_crd-1)

2 Displays information in a window. These functions are modelled after the procedures in
Ada.Text_Io.

3 Sets the current output position in the window.
4 Clears the window to all spaces.
5 Writes a newline to the window. This will cause the information in the window to scroll up if the

current position is at the last line of the window.
6 Makes the displayed window visible or invisible.

22.2.3 Dialog API calls

A dialog window is created with a declaration of the form:

Diag : Dialog;

314 A Text user interface

 M A Smith - May not be reproduced without permission

A dialog window is inherited from a Window and as well as all the API calls of a Window has the following
additional API call:

Note Function / procedure
1 procedure Framework (The:in out Dialog;

 Abs_X, Abs_Y:in Positive;
 Max_X: in Positive;
 Name:in String; Cb:in P_Cbf);

Note:
1 Sets the absolute position of the window on the screen. The size of the window is set with max_x. The

call-back function cb will be called after the user has constructed a message in the dialog box . This is
initiated by the user entering the Enter character (return key). When the Enter character is received
the Dialog window calls the call-back function with a string parameter containing the user’s entered
text. The signature of the call-back function is:

function Cb(Mes:in String) return String

where mes is the message typed by the user.
22.2.4 User interaction with the TUI

A user of an application program that is built using the TUI API has the following switch characters defined:

Switch character Description
TAB Swaps the focus for user input to another window on

the VDU screen. The active window is indicated by a #
in the top left hand corner.

ESC Activates the menu system.
The menu system is described in detail in Section 22.4.

^E Terminates the TUI session. All windows will be closed
and the user returned to the environment which initiated
the program.

A switch character is used to activate a specific window on the system or cause a global effect.

22.2.5 Classes used

The TUI API is contained in the following classes:

API for Contained in the package Notes
A window Class_Window -
A dialog box Class_Dialog Plus the API inherited from a

Window.
A Menu bar Class_Menu Plus the API inherited from a

Window.
A Menu Title Class_Menu_Title Plus the API inherited from a

Menu
The TUI set up Class_Input_Manager Controls the input sent to the

TUI.

22.3 An example program using the TUI
A short program to illustrate the use of many of the API calls is shown below. This example program converts a
distance in miles entered by the user into kilometres. The package Pack_Program contains the procedure Main
that implements this program.

A Text user interface 315

 M A Smith - May not be reproduced without permission

with Class_Window;
use Class_Window;
package Pack_Program is
 procedure Main;
private
 P_Result : P_Window;
end Pack_Program;

The call-back function User_Input is executed when a user has entering the distance in miles and then
pressed Enter. This entered distance is converted to a floating point number using the procedure get in
Ada.Float_Text_Io to convert a string into an instance of a Float. If the number is not valid or an error in
the calculation occurs, then an appropriate message is displayed to the user.

with Ada.Text_Io, Ada.Float_Text_Io;
use Ada.Text_Io, Ada.Float_Text_Io;
with Class_Input_Manager, Class_Window, Class_Dialog;
use Class_Input_Manager, Class_Window, Class_Dialog;
package body Pack_Program is
 function User_Input(Cb_Mes:in String) return String is
 Miles : Float; --Miles input by user
 Last : Positive; --
 Str_Kms: String(1 .. 10); --As a string in Kms
 Str_Mls: String(1 .. 10); --As a string in Miles
 Begin

 begin
 Get(Cb_Mes & ".", Miles, Last);
 Put(Str_Kms, Miles * 1.609_344, Aft=>2, Exp=>0);
 Put(Str_Mls, Miles, Aft=>2, Exp=>0);
 Put(P_Result.all, "Distance in Miles = ");
 Put(P_Result.all, Str_Mls); New_Line(P_Result.all);
 Put(P_Result.all, "Distance in Kms = ");
 Put(P_Result.all, Str_Kms); New_Line(P_Result.all);
 exception
 when Data_Error =>
 Put(P_Result.all, " Not a valid number");
 New_Line(P_Result.all);
 when others =>
 Put(P_Result.all, " [Calculation error]");
 New_Line(P_Result.all);
 end;
 return "";
 end User_Input;

Note: The call-back function returns a string as its result. This provides a mechanism for returning
information to the environment which called it. In this particular case, no information is returned.
.A decimal point (.0) is appended to the user's input to allow a user to enter an integer value and still
have the number processed correctly.
The package Ada.Text_Io is required for the exception Data_Error.

In the procedure Main the three windows that will be displayed are declared. Then the call-back function
User_Input is associated with dialog window and the program executes and waits for a user interaction.

316 A Text user interface

 M A Smith - May not be reproduced without permission

 procedure Main is
 begin
 Window_Prologue; --Setup window system
 declare
 Result : aliased Window; --Result window
 Input : Dialog; --Input Window
 Title : Window; --title Window
 begin
 Framework(Title, 20, 1, 36, 5); --Title Window
 Framework(Result, 30, 10, 36, 5); --Result Window

 Position(Title, 8, 2);
 Put(Title, "Miles to kilometres");
 Framework(Input, 5, 10, 22, --Input Window
 "Miles", User_Input'access);
 P_Result := Result'Unchecked_Access;

 Window_Start; --Start the user interaction
 end;
 Window_Epilogue; --Close window system
 end Main;

end Pack_Program;

Note: The call to window_prolog initializes the TUI system.

22.3.1 How it all fits together

In the procedure Main the API framework is called to set the size and position of the various windows on the
screen. This initialization is done before a user of the application is allowed to interact with the system.

 begin
 Framework(Title, 20, 1, 36, 5); --Title Window
 Framework(Result, 30, 10, 36, 5); --Result Window

 Position(Title, 8, 2);
 Put(Title, "Miles to kilometres");
 Framework(Input, 5, 10, 22, --Input Window
 "Miles", User_Input'access);

Note: The access value of the function User_Input is passed to the function Framework that sets up the
call-back function.
The title window top left hand corner is at position (20,1) and the bottom right-hand corner at
(20+36-1,1+5-1).

The access value of the Results window is assigned to P_Result so that it can be accessed by the call-
back function User_Input. Remember, the call-back function must be at the library level.

 P_Result := Result'Unchecked_Access;

Note: As the type used to declare the access value for a window is at the library level,
'Unchecked_Access is required to be used. This is used to override the error that there is a
potential inconsistency in using a library level variable (P_Result) to hold the access value of a
local variable (Result).

The event-driven component part of the program is activated by a call to the procedure Window_Start.
From this point onwards the program flow is driven by the user interacting with windows displayed on the
terminal screen. Eventually the user will terminate the program, at which point the procedure Window_Start
will return.

A Text user interface 317

 M A Smith - May not be reproduced without permission

 Window_Start; --Start the user interaction

 The procedure Window_Epilog closes down the system. This must be called outside the block in which the
instances of the windows were elaborated. This is to allow the finalization code to be called on the elaborated
windows before Window_Epilog is called.

 end;
 Window_Epilogue; --Close window system
end Main;

22.3.2 Putting it all together

When compiled with the TUI API library code, the screen display with added annotations to show which call of
framework was used, together with position information is shown below:

framework(title, 20, 1, 36, 5);

 +----------------------------------+
 | |
 | Miles to kilometres |
 | |
 +----------------------------------+

#--------------------+ +----------------------------------+
Dialog	Miles		

*			
+--------------------+ +----------------------------------+

framework(result, 30, 10, 36, 5);

framework(input, 5, 10, 22, "Miles", user_input'Access);

(20,1)

(30+36-1,10+5-1)

(5,10) (30,10)

After a user has typed in a distance of 50 miles to be converted to kilometres the screen will display:
 +----------------------------------+
 | |
 | Miles to kilometres |
 | |
 +----------------------------------+

#--------------------+ +----------------------------------+
Dialog	Miles		Distance in miles = 50.00
--------------------		Distance in Kms = 80.47	
50.0*			
+--------------------+ +----------------------------------+

22.4 The menu system

The menu system is based on the metaphor of a menu title bar at the top of the screen which changes as new menu
options are selected. When a user selects away from the menu bar, the menu bar is returned to the top level of the
menu hierarchy. The menu system is activated by typing the switch character ESC.

318 A Text user interface

 M A Smith - May not be reproduced without permission

For example, a menu title bar of two items:

Menu Component Effect
About Prints information about the program
Reset Resets the program to an initial state

would be displayed as:

 +---------------------+
 |*About | Reset |
 +---------------------+

The character * indicates the current menu item. To select this menu item the user presses the selection key
Enter. To change the current menu item the Arrow keys are used to move between the various options. Left arrow
moves left and right arrow moves right the selected component. The effect of going right at the right-most menu
item or left at the left-most menu item is to wrap around to the next item.

In addition to the API of a Window , the Menu and Menu_Title API have the additional method of:

Note Function / procedure
1 procedure Framework(The:in out Menu'Class;

 M1:in String:=""; W1:in P_Menu:=null; Cb1:in P_Cbf:=null;
 M2:in String:=""; W2:in P_Menu:=null; Cb2:in P_Cbf:=null;
 M3:in String:=""; W3:in P_Menu:=null; Cb3:in P_Cbf:=null;
 M4:in String:=""; W4:in P_Menu:=null; Cb4:in P_Cbf:=null;
 M5:in String:=""; W5:in P_Menu:=null; Cb5:in P_Cbf:=null;
 M6:in String:=""; W6:in P_Menu:=null; Cb6:in P_Cbf:=null);

Note:
1. This sets up a menu title bar or a menu title. The first parameter can be an instance of either a Menu

or a Menu_Title. Each menu item in the menu bar has three parameters:

l The displayed name of the menu item.
l A possible pointer to another menu bar.
l A possible pointer to a call-back function which is to be called when the menu is selected.

The second and third parameter are mutually exclusive. Thus, you can have either another menu bar
or a call-back function.
As the menu bar is always at the top of the screen its position is not selected. It would of course be an
error to have a window overlapping the menu bar.
The type P_Cbf is defined as:

function Cb(Mes:in String) return String
String;

A Text user interface 319

 M A Smith - May not be reproduced without permission

The following frameworks are used to set up a menu system with a main menu title bar and a selectable secondary
menu bar tied to the main menu item Print.

with Class_Input_Manager, Class_Menu, Class_Menu_Title,
 Laser, Ink_Jet, About;
use Class_Input_Manager, Class_Menu, Class_Menu_Title;
procedure Main is
begin
 Window_Prologue;
 declare
 Menu_Bar : Menu_Title;
 Printer_Type : aliased Menu;
 begin
 Framework(Printer_Type,
 "Laser", null, Laser'access,
 "Ink jet", null, Ink_Jet'access);
 Framework(Menu_Bar,
 "About", null, About'access,
 "Print", Printer_Type'Unchecked_Access, null);
 Window_Start;
 end;
 Window_Epilogue;
end Main;

Note: The call-back functions Laser, Ink_Jet, and About process a user request when the appropriate
menu option is selected.
The use of 'Unchecked_Access to deliver the access value of printer_type.

When the above code is incorporated into a program the menu system would display as follows:

Main menu bar Secondary menu bar

 +---------------------+
 | About |*Print |
 +---------------------+

 +---------------------+
 |*Laser | Ink jet |
 +---------------------+

Note: The secondary menu bar will overwrite the main menu bar regardless of the number of items in the
main menu.

320 A Text user interface

 M A Smith - May not be reproduced without permission

22.5 Noughts and crosses program

Using the GUI system the following layout can be created to graphically represent the game of noughts and
crosses.

 +---------------------+
 |*About | Reset |
 +---------------------+
 +--+
 | Noughts and crosses |
 +--+

 #--------------------+ +-----------+
 |Dialog| Move (1-9) | | | |
 |--------------------| | 7 | 8 | 9 |
 |* | | --------- |
 +--------------------+ | 4 | 5 | 6 |
 | --------- |
 +--------------------+ | 1 | 2 | 3 |
 | Player X | | |
 +--------------------+ +-----------+

Menu Bar

Dialog
Window

Window

The layout uses most of the componants in the GUI system. These are:

l A menu bar.
Used to help control the game allows the user to select who starts and details about the game.

l A Dialog window.
Used by the player of the game to enter moves.

l Several Windows that display information about the current state of the game.

22.5.1 The class Board
A program to play the game of noughts and crosses using the TUI API interface is composed of a class Board
that has the following methods:

Method Responsibility
Add Add a piece to the board.
Reset Reset the board to empty.
State Return the state of the board.
Update Update onto a window the state of the board.
Valid Check if the move is valid.

The Ada specification for the class Board is:

A Text user interface 321

 M A Smith - May not be reproduced without permission

package Class_Board is

 type Board is private;
 type Game_State is (Win, Playable, Draw);

 procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character);
 function Valid(The:in Board; Pos:in Integer) return Boolean;
 function State(The:in Board) return Game_State;
 function Cell(The:in Board; Pos:in Integer) return Character;
 procedure Reset(The:in out Board);
private
 subtype Board_Index is Integer range 1 .. 9;
 type Board_Array is array(Board_Index) of Character;
 type Board is record
 Sqrs : Board_Array := (others => ' '); --Initialize
 Moves : Natural := 0;
 end record;
end Class_Board;

Note: It would have been elegant to re-use the previous noughts and crosses class for Board but the
functionality is too dissimilar to make this a practical proposition. Code re-use is not always possible!

In the implementation of the class the function Valid returns True if the suggested noughts and crosses
move is valid.

package body Class_Board is

 function Valid(The:in Board; Pos:in Integer) return Boolean is
 begin
 return Pos in Board_Array'Range and then
 The.Sqrs(Pos) = ' ';
 end Valid;

The procedure Add is responsible for adding a new piece onto the board..

 procedure Add(The:in out Board; Pos:in Integer;
 Piece:in Character) is
 begin
 The.Sqrs(Pos) := Piece;
 end Add;

The function State returns the enumeration Win, Draw or Playable depending on the current state of the
game. The constant array cells holds all possible win lines and the main body of the code uses the values held
in this array to determine the current state of the game.

322 A Text user interface

 M A Smith - May not be reproduced without permission

 function State(The:in Board) return Game_State is
 subtype Position is Integer range 1 .. 9;
 type Win_Line is array(1 .. 3) of Position;
 type All_Win_Lines is range 1 .. 8;
 Cells: constant array (All_Win_Lines) of Win_Line :=
 ((1,2,3), (4,5,6), (7,8,9), (1,4,7),
 (2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
 First : Character;
 begin
 for Pwl in All_Win_Lines loop --All Pos Win Lines
 First := The.Sqrs(Cells(Pwl)(1)); --First cell in line
 if First /= ' ' then -- Looks promising
 if First = The.Sqrs(Cells(Pwl)(2)) and then
 First = The.Sqrs(Cells(Pwl)(3)) then return Win;
 end if;
 end if;
 end loop;
 if The.Moves >= 9 then --Check for draw
 return Draw; -- Board full
 else
 return Playable; -- Still playable
 end if;
 end State;

The procedure Cell returns the contents of a cell on the playing board.

function Cell(The:in Board; Pos:in Integer) return Character is
 begin
 return The.Sqrs(Pos);
 end Cell;

The procedure reset resets the board to its initial empty state.

 procedure Reset(The:in out Board) is
 begin
 The.sqrs := (others => ' '); --All spaces
 The.moves := 0; --No of moves
 end reset;

end Class_Board;

22.5.2 Package Pack_Program

The package Pack_Program contains the publicly visible procedure Play that will play the GUI based game
against two human opponents. In the private part of the package, the procedure Play is broken down into further
procedures and functions. The variables in the private part of the specification will be visible to all these
procedure and functions.

These variables define windows that are used in the playing of the game of noughts and crosses.

A Text user interface 323

 M A Smith - May not be reproduced without permission

with Class_Board, Class_Window;
use Class_Board, Class_Window;
package Pack_Program is
 procedure Play;
private
 Game : Board; --The board
 P_Win_Brd : P_Window; --Window to display OXO board in
 P_Win_Bnr : P_Window; --Window to display Banner in
 P_Win_R : P_Window; --Window to display commentary in
 Player : Character; --Either 'X' or 'O'
end Pack_Program;

The private part of the package is as follows:

with Ada.Integer_Text_Io,
 Class_Dialog, Class_Menu, Class_Input_Manager, Class_Menu_Title;
use Ada.Integer_Text_Io,
 Class_Dialog, Class_Menu, Class_Input_Manager, Class_Menu_Title;
package body Pack_Program is

The procedure Play sets up the various windows used to display the game.

 procedure Play is
 begin
 Window_Prologue; --Setup window system
 declare
 Win_Brd : aliased Window; --Board Window
 Win_R : aliased Window; --Result Window
 Win_Bnr : aliased Window; --title Window
 Win_Usr : aliased Dialog; --Input Window
 Ttt_Reset: aliased Menu; --Reset menu
 Ttt_Menu : Menu_Title; --Title menu

The various windows on the screen are then initialized to their fixed co-ordinate positions.

 begin
 Framework(Win_Bnr, 1, 4, 52, 3); --Banner
 Framework(Win_Brd, 32, 8, 13, 9); --OXO board
 Framework(Win_R, 9, 14, 22, 3); --Results

The menu bar sequence is then defined with the following frameworks:

 Framework(Ttt_Reset,
 "X start", null, Reset_X'access,
 "O start", null, Reset_O'access);

 Framework(Ttt_Menu,
 "About", null, About'access,
 "Reset", Ttt_Reset'Unchecked_Access, null);

Following the initialization of global variables the writing of various introductory messages is performed:

324 A Text user interface

 M A Smith - May not be reproduced without permission

 Position(Win_Bnr, 17, 1);
 Put(Win_Bnr, "Noughts and crosses");

 Framework(Win_Usr, 9, 8, 22,
 "Move (1-9)", User_Input'access);

 Player := 'X'; --Set player
 P_Win_Brd := Win_Brd'Unchecked_Access; --OXO Board
 P_Win_Bnr := Win_Bnr'Unchecked_Access; --Banner
 P_Win_R := Win_R'Unchecked_Access; --Commentary

 Display_Board(P_Win_Brd); --Empty board
 New_Line(Win_R); --Clear
 Put(Win_R, " Player " & Player); --Players turn is

 Put(Win_Usr, ""); --Cursor

The user is only then allowed to start playing the game.

 Window_Start; --Start the user interaction
 end;
 Window_Epilogue; --Close window system
 end Play;

The procedure Display_Board writes the initial representation of the board into a GUI window on the
screem.

 procedure Display_Board(Win:in P_Window) is
 begin
 Position(Win.all, 1, 2);
 Put(Win.all, " 7 | 8 | 9"); New_Line(Win.all);
 Put(Win.all, " ---------"); New_Line(Win.all);
 Put(Win.all, " 4 | 5 | 6"); New_Line(Win.all);
 Put(Win.all, " ---------"); New_Line(Win.all);
 Put(Win.all, " 1 | 2 | 3"); New_Line(Win.all);
 end Display_Board;

The procedure Update updates the representation of the board by adding the current move to it. Rather than
re-display the board in its entirety only the square that has changed is re-written.

 procedure Update(Move:in Integer; Win:in P_Window) is
 type Co_Ordinate is (X , Y);
 type Cell_Pos is array (Co_Ordinate) of Positive;
 type Board is array (1 .. 9) of Cell_Pos;
 Pos: constant Board := ((2,6), (6,6), (10,6),
 (2,4), (6,4), (10,4),
 (2,2), (6,2), (10,2));
 begin
 Position(Win.all, Pos(Move)(X), Pos(Move)(Y));
 Put(Win.all, Cell(Game, Move)); --Display counter;
 end Update;

The function User_Input is a call-back function that is called when a player has entered their move into the
Dialog window

A Text user interface 325

 M A Smith - May not be reproduced without permission

function User_Input(Cb_Mes:in String) return String is
 Move: Integer; Last: Positive;
 begin
 Clear(P_Win_R.all); --Clear
 Get(Cb_Mes, Move, Last); --to int
 if Valid(Game, Move) then --Valid
 Add(Game, Move, Player); --to board
 Update(Move, P_Win_Brd);
 case State(Game) is --Game is
 when Win =>
 Put(P_Win_R.all, " " & Player & " wins");
 when Playable =>
 case Player is --Next player
 when 'X' => Player := 'O'; -- 'X' => 'O'
 when 'O' => Player := 'X'; -- 'O' => 'X'
 when others => null; --
 end case;
 Put(P_Win_R.all, " Player " & Player);
 when Draw =>
 Put(P_Win_R.all, " It's a draw ");
 end case;
 else
 Put(P_Win_R.all, " " & Player & " Square invalid");
 end if;
 return "";
 exception
 when others =>
 Put(P_Win_R.all, " " & Player & " re-enter move");
 return "";
 end User_Input;

Note: The exception is used to handle invalid input from a user.
The menu system has three call-back functions, the first and second (Reset_X and Reset_O) reset the board

to empty and start the game for either X or O.

 procedure Re_Start(First_Player:in Character) is
 begin
 Player := First_Player; --Start with
 Reset(Game); --Reset Board
 Display_Board(P_Win_Brd); --Display
 Clear(P_Win_R.all); --Status info
 Put(P_Win_R.all, " Player " & Player); --Player name
 end Re_Start;

 function Reset_X(Cb_Mes:in String) return String is
 begin
 Re_Start('X'); return "";
 end Reset_X;

 function Reset_O(Cb_Mes:in String) return String is
 begin
 Re_Start('O'); return "";
 end Reset_O;

Note: The common code is factored out in the procedure re_start.

The third call-back function displays information about the program in the window represented by the handle
P_Win_Bnr.

326 A Text user interface

 M A Smith - May not be reproduced without permission

 function About(Cb_Mes:in String) return String is
 begin
 Clear(P_Win_Bnr.all); Position(P_Win_Bnr.all, 17, 1);
 Put(P_Win_Bnr.all, "Written in Ada 95");
 return "";
 end About;

22.5.3 Putting it all together

When compiled and linked with the TUI API code the opening screen layout is as follows:

 +---------------------+
 |*About | Reset |
 +---------------------+
 +--+
 | Noughts and crosses |
 +--+

 #--------------------+ +-----------+
 |Dialog| Move (1-9) | | | |
 |--------------------| | 7 | 8 | 9 |
 |* | | --------- |
 +--------------------+ | 4 | 5 | 6 |
 | --------- |
 +--------------------+ | 1 | 2 | 3 |
 | Player X | | |
 +--------------------+ +-----------+

After the following moves have been made:

X’s move Commentary O’s move Commentary
5 Claim the centre square 2 Not the correct move
9 Setting up a win 3 Block the X’s
1 Two win lines 9 Block one of them
4 Win with three X’s

the screen layout will be:

 +---------------------+
 |*About | Reset |
 +---------------------+
 +--+
 | Noughts and crosses |
 +--+

 #--------------------+ +-----------+
 |Dialog| Move (1-9) | | | |
 |--------------------| | X | 8 | O |
 |* | | --------- |
 +--------------------+ | X | X | 6 |
 | --------- |
 +--------------------+ | X | O | O |
 | X Wins | | |
 +--------------------+ +-----------+

22.6 Self-assessment

A Text user interface 327

 M A Smith - May not be reproduced without permission

l What is a call-back function and how is it used?

l How might the reversi program shown in Chapter 8 be modified so that it can be used with the TUI
interface? To what extent is code re-use possible from the original version?

22.7 Exercises

Construct the following programs:

l Currency converter
A program to allow a user to convert between two currencies. The program should allow the input of the
current currency rate.

l Reversi program
Re-implement the reversi program to use the TUI interface or any graphical interface that is available.

l Draughts program
Implement the game of draughts to use the TUI interface or any graphical interface that is available.

 M A Smith - May not be reproduced without permission

23 TUI: the implementation

This chapter looks at the implementation of the TUI (Text User Interface) described in Chapter 21. An
ANSI terminal or environment that supports ANSI terminal emulation is used as the output screen on
which the TUI is implemented.

23.1 Overview of the TUI
The TUI is composed of the following window types: Window, Dialog, Menu and Title_menu. These
windows have the following properties:

Type of window Explanation
Window A plain scrolling window into which text can be

written.
Dialog A dialog window into which the user can enter text. The

text is passed to a call-back function.
Menu A menu pane, from which a user can select a menu

option. The menu option selected either calls a call-back
function or selects a new menu pane.

Title_menu The root of a series of menu panes which overlay each
other.

Note: A call-back function is an Ada function called in response to user input.

The relationship between the different types of windows is shown in the inheritance hierarchy illustrated in
Figure 23.1.

W i n d o w

D i a l o g
M e n u

T i t l e _ m e n u

R o o t _ W i n d o w

Figure 23.1 Inheritance diagram of the types of window in the TUI.

TUI the implementation 329

 M A Smith - May not be reproduced without permission

23.1.1 Structure of the TUI

In essence the TUI is composed of the following components:

Component Description
Windows A collection of heterogeneous windows created in the application

program.
Event loop The main processing loop for the program. The event loop obtains the

next character from the user and determines which window this should
be passed on to.

Display The displayable representation of the windows in the system. This is an
ANSI terminal compatible display area.

The relationship between these components is illustrated in Figure 23.2.

DisplayTUI

A r r a y o f a c t i v e
w i n d o w s

E v e n t l o o p

I n t e r n a l s t r u c t u r e o f t h e T U I

S e e n b y t h e u s e r o f
t h e p r o g r a m

W i n d o w

W i n d o wU s e r i n p u t

Application
Program

C a l l b a c k
f u n c t i o n s

S e t - u p

T U I A P I

Figure 23.2 Structure of a program using the TUI.
A user of a program which employs the TUI classes interacts with a program by looking at the display,

selecting a window capable of receiving input and then sending one or more character(s) to this window. The
window selected by the user processes each character independently. For example, a dialog window will
accumulate the characters sent to it, displaying the characters as they are received. Then, when the end of message
character is received, the whole text string is passed to the call-back function associated with the dialog window.
The call-back function implements a service requested by the user.

An application programmer using the TUI’s API to implement a program, first constructs the windows used in
the program. The application programmer then passes control to the input manager. The input manager accepts
input from the user of the application and sends the input onto the window that has the input focus. Text sent to a
window may cause the execute of a call-back function provided by the application programmer. The call-back
functions implement the functionality of the program.

23.2 Implementation of the TUI

At the heart of the TUI is an event loop that receives characters from the user and dispatches the received
characters to the appropriate window. This process is managed by an instance of the class Input_manager.

The input manager accesses the individual windows using an instance of the class Window_control. An
instance of class Window_control stores windows in a linear list, the top window in the list representing the
window that has the input focus.

Associated with each window is its switch character. A switch character typed by the user selects the window
associated with this switch character as the window for input focus. As several windows may have the same
switch character, the search mechanism will cycle through windows that have the same switch character.

If the typed character is not a switch character, the character is sent to the window that is the focus for the
input.

330 TUI the implementation

 M A Smith - May not be reproduced without permission

23.2.1 Constants used in the TUI

The TUI uses several constants to define the state of the TUI and its environment. The size of the screen and the
maximum size of windows created on the screen are defined by:

package Pack_Constants is
 Vdt_Max_X : constant := 79; --Columns on VDT
 Vdt_Max_Y : constant := 25; --Lines on VDT
 Window_Max_X : constant := 79; --MAX columns window
 Window_Max_Y : constant := 25; --MAX lines window

Various special characters that can be sent to or are used by the TUI, have the following values:

 C_Cursor : constant Character := '*';
 C_Blank : constant Character := ' ';
 C_Win_A : constant Character := '#';
 C_Win_Pas : constant Character := '+';
 C_Exit : constant Character := Character'Val(05); --^E
 C_Where : constant Character := Character'Val(255);
 C_Action : constant Character := Character'Val(13); --cr
 C_Switch : constant Character := Character'Val(09); --ht
 C_Menu : constant Character := Character'Val(27); --esc
 C_Del : constant Character := Character'Val(08); --^B

Various internal states and representations of actions are defined in the list below. In this list, the arrow keys
that a user presses to interact with the TUI are internally defined as a single character. This is to simplify the
internal code that processes the key's representations.

 C_No_Char : constant Character := Character'Val(00);

 C_Left : constant Character := Character'Val(12); --^L
 C_Right : constant Character := Character'Val(18); --^R
 C_Up : constant Character := Character'Val(21); --^U
 C_Down : constant Character := Character'Val(04); --^D
end Pack_Constants;

23.2.2 Raw input and output

The TUI works on the assumption that a character is sent immediately to the screen without any internal
processing or buffering. Likewise, the TUI receives each character as it is typed without any internal buffering or
processing.

An Ada package specification and possible implementation are shown below. In this implementation, a library
procedure C_No_Echo written in the language C is used to turn off the echoing of the character that is read
immediately from the keyboard.

TUI the implementation 331

 M A Smith - May not be reproduced without permission

package Raw_Io is
 procedure Get_Immediate(Ch:out Character);
 procedure Put(Ch:in Character);
 procedure Put(Str:in String);
end Raw_Io;

with Interfaces.C, Ada.Text_Io;
use Interfaces.C, Ada.Text_Io;
package body Raw_Io is

 First_Time : Boolean := True;

 procedure Get_Immediate(Ch:out Character) is
 procedure C_No_Echo;
 pragma Import (C, C_No_Echo, "c_no_echo"); --Turn off echo
 begin
 if First_Time then
 C_No_Echo; First_Time := False;
 end if;
 Ada.Text_Io.Get_Immediate(Ch);
 if Character'Pos(Ch) = 10 then --Real Return ch
 Ch := Character'Val(13);
 end if;
 end Get_Immediate;

 procedure Put(Ch:in Character) is --Raw write
 begin
 Ada.Text_Io.Put(Ch); Ada.Text_Io.Flush;
 end Put;

 procedure Put(Str:in String) is --Raw write
 begin
 Ada.Text_Io.Put(Str); Ada.Text_Io.Flush;
 end Put;

end Raw_Io;

Note: The Ada reference manual does not define whether get_immediate echoes the read character.
Chapter 25 describes how this package raw_io may be written in another language.

23.2.3 Machine-dependent I/O

In association with the package raw_io, the package Pack_md_io provides higher level machine specific input
procedures. For output, these allow the use of the overloaded procedures put on a character and a string. For
input, the responsibility is slightly more complex as the arrow keys are mapped onto an internal representation.
The responsibilities for the procedures in the package Pack_md_io are:

Procedure Responsibility
Put(Ch :in Character); Write Ch immediately to the output screen.
Put(Str:in String); Write Str immediately to the output screen.
Get_Immediate
 (ch:out Character);

Read a character immediately from the
keyboard. Do not echo this character onto the
screen.

The specification for this package is:

package Pack_Md_Io is
 procedure Put(Ch :in Character); --Put char
 procedure Put(Str:in String); --Put string
 procedure Get_Immediate(Ch:out Character); --no echo
end Pack_Md_Io;

332 TUI the implementation

 M A Smith - May not be reproduced without permission

The implementation code for Get_Immediate is shown mapping the three-character ANSI sequence for the
arrow keys into an internal single character to representation. The actual character (s) generated will depend on
the operating environment. The arrow key presses are mapped upon input into the character constants C_LEFT,
C_RIGHT, C_UP and C_DOWN so that they can be processed in the program in a machine-independent way.

with Raw_Io, Pack_Constants;
use Raw_Io, Pack_Constants;
package body Pack_Md_Io is
 procedure Put(Ch:in Character) is
 begin
 Raw_Io.Put(Ch);
 end Put;

 procedure Put(Str:in String) is
 begin
 Raw_Io.Put(Str);
 end Put;

procedure Get_Immediate(Ch:out Character) is
 Esc: constant Character := Character'Val(27);
 begin
 Raw_Io.Get_Immediate(Ch);
 if Ch = Esc then --ESC
 Raw_Io.Get_Immediate(Ch); --[
 if Ch = '[' then
 Raw_Io.Get_Immediate(Ch);
 case Ch is
 when 'A' => Ch := C_Up; --A - Up arrow
 when 'B' => Ch := C_Down; --B - Down arrow
 when 'C' => Ch := C_Right; --C - Right arrow
 when 'D' => Ch := C_Left; --D - Left arrow
 when others => Ch := '?'; --? - Unknown
 end case;
 end if;
 end if;
 end Get_Immediate;

end Pack_Md_Io;

Note: In the implementation of get_immediate the arrow keys are converted into an internal single
character. The implementation for Raw_Io that I used returns three characters when an arrow key is
pressed.
One way of simplifying this procedure is to make the user of the TUI use the following control keys for
arrow movements.

Character Meaning
^L Same as left arrow key
^R Same as right arrow key

^U ^D Same as up arrow / down arrow key

These definitions can, of course, be changed by modifying the definitions of C_Up etc. in the package
Pack_Constants.

TUI the implementation 333

 M A Smith - May not be reproduced without permission

23.2.4 The class Screen

The package Class_screen implements cursor positioning and output to an ANSI compatible display screen.
The responsibilities of the class are:

Method Responsibility
Clear_Screen Clears all the screen.
Position_Cursor Position the cursor at x, y on the screen.
Put Write information to the current position on the screen.

Note: The co-ordinate system for the screen is shown in Figure 23.3.

1,1 80,1

1,24 80,24

x

y

Figure 23.3 Co-ordinate system for the screen.

The class specification for Class_screen is:

package Class_Screen is
 procedure Put(Ch :in Character); --Put char
 procedure Put(Str:in String); --Put string
 procedure Clear_Screen; --Clear screen
 procedure Position_Cursor(Col:in Positive; Row:in Positive);
private
end Class_Screen;

Note: As there is only one instance of a screen the class Screen contains all class methods.

The implementation of the class Screen uses the standard ANSI escape sequence to position the cursor onto
a text terminal. The overloaded procedures put call the relevant put procedure in Pack_md_io.

with Pack_Md_Io; use Pack_Md_Io;
package body Class_Screen is
 Prefix: constant String := Character'Val(27) & "[";
 procedure Put(N:in Positive); --Write decimal number

 procedure Put(Ch :in Character) is
 begin
 Pack_Md_Io.Put(Ch);
 end Put;

 procedure Put(Str:in String) is
 begin
 Pack_Md_Io.Put(Str);
 end Put;

If an ANSI terminal is not available then the bodies of the procedures Clear_Screen and
Position_Cursor will need to be amended to reflect the characteristics of the user's terminal or output
environment.

334 TUI the implementation

 M A Smith - May not be reproduced without permission

 procedure Clear_Screen is --Clear screen
 begin
 Put(Prefix & "2J");
 end Clear_Screen;

 procedure Position_Cursor(Col:in Positive; Row:in Positive) is
 begin
 Put(Prefix); Put(Row); Put(";"); Put(Col); Put("H");
 end Position_Cursor;

The procedure Put, when used to write a positive number without any leading or trailing spaces, is
implemented as a recursive procedure. This procedure is used in the package by the public procedure
Position_Cursor.

 procedure Put(N:in Positive) is --Write decimal number
 begin
 if N >= 10 then Put(N / 10); end if;
 Put(Character'Val(N rem 10 + Character'Pos('0')));
 end Put;

end Class_Screen;

23.3 The class Root_window

A root window is the class from which all other windows are eventually derived. Its purpose is to define the
minimum responsibilities that any type of window must implement. These minimum responsibilities are:

Method Responsibility
Send_To Send a character to the window.
Switch_To Inform the window that it is to become the focus

for input.
Switch_Away Inform the window that it is to lose the focus of

input.
Refresh If appropriate, re-display the window.
About Return information about a window.

Note: There is no requirement that a window has a physical form. Thus, a root window does not need to
provide a mechanism for writing into the displayable window.

As no concrete instance of a root window is required, the specification for the class Root_window is
abstract. This abstract class will be specialized into the various forms of displayable windows on the screen.

TUI the implementation 335

 M A Smith - May not be reproduced without permission

with Ada.Finalization;
use Ada.Finalization;
package Class_Root_Window is
 type Root_Window is abstract tagged limited private;
 type P_Root_Window is access all Root_Window'Class;
 type Attribute is (Top, Bottom, Left, Right, Abs_X, Abs_Y);

 procedure Send_To(The:in out Root_Window;
 Ch:in Character) is abstract;
 procedure Switch_To(The:in out Root_Window) is abstract;
 procedure Switch_Away(The:in out Root_Window) is abstract;
 function About(The:in Root_Window;
 B:in Attribute) return Natural is abstract;
private
 type Root_Window is
 abstract new Limited_Controlled with null record;

end Class_Root_Window;

23.4 The classes Input_manager and Window_control

23.4.1 Specification of the class Input_manager

The input manager controls all interactions between a user and the displayed windows. Currently the only input
device is the keyboard. The responsibilities of the input manager are:

Method Responsibility
Window_Prolog Set up the initial window environment.
Window_Start Start the windowing system by accepting input

from a user of the TUI.
Window_Epilog Close down the windowing system.

The Ada specification for the class Input_manager is:

with Ada.Finalization;
use Ada.Finalization;
package Class_Input_Manager is
 type Input_Manager is abstract tagged limited private;
 procedure Window_Prologue; --Initialize window system
 procedure Window_Start; --Start taking user input
 procedure Window_Epilogue; --Clean up
private
 type Input_Manager is
 abstract new Limited_Controlled with null record;
end Class_Input_Manager;

Note: As there is only one screen the class Input_Manager has all class methods.
23.4.2 Specification of the class Window_control

The class Window_Control has overall control of the windows displayed on the TUI screen. The
responsibilities of this class are:

Method Responsibility
Add_To_List Add a new window to the list of managed

windows.
Remove_From_List Remove a window from the list of managed

windows.

336 TUI the implementation

 M A Smith - May not be reproduced without permission

Top Make the supplied window the top window. The
top window in the list is the focus for input.

Find Search the controlled windows for a window which
has the supplied character as its switch character.

Send_To_Top Send a character to the topmost window
Switch_To_Top Prepare the top window as the focus of input.
Switch_Away_From_Top Prepare a window to have the focus of input

removed from it.
Write_To Write to supplied window. Information has already

been clipped to fit into the window.
Hide_Win Remove the window from the screen.
Window_Fatal Report a serious error in the TUI system.

The Ada specification for this class is:

with Ada.Finalization, Class_Root_Window;
use Ada.Finalization, Class_Root_Window;
package Class_Window_Control is

 type Window_Control is abstract tagged limited private;
 procedure Add_To_List(P_W:in P_Root_Window; Ch:in Character);
 procedure Remove_From_List(P_W:in P_Root_Window);
 procedure Top(P_W:in P_Root_Window);
 procedure Find(P_W:out P_Root_Window; Ch:in Character);

 procedure Send_To_Top(Ch:in Character);
 procedure Switch_To_Top;
 procedure Switch_Away_From_Top;

 procedure Write_To(P_W:in P_Root_Window;
 X,Y:in Positive; Mes:in String);
 procedure Hide_Win(P_W:in P_Root_Window);
 procedure Window_Fatal(Mes:in String);

private
 type Window_Control is
 abstract new Limited_Controlled with null record;
 Max_Items : constant := 10;
 type Active_Window is record --Active window
 P_W : P_Root_Window; --Window
 A_Ch: Character; --Activate character
 end record;

 subtype Window_Index is Natural range 0 .. Max_Items;
 subtype Window_Range is Window_Index range 1 .. Max_Items;
 type Window_Array is array (Window_Range) of Active_Window;

 The_Last_Win: Window_Index := 0; --Last active window
 The_Windows : Window_Array; --All windows
end Class_Window_Control;

Note: As there is only one screen, the class Window_Control has all class methods.

Associated with each window is its switch character. When typed by a user this switch character activates the
window as the focus for input.

23.4.3 Implementation of the class Input_manager

TUI the implementation 337

 M A Smith - May not be reproduced without permission

The Input_manager is started by window_prolog which clears the screen ready for the construction of the
individual windows.

with Pack_Constants, Pack_Md_Io, Class_Screen,
 Class_Window_Control, Class_Root_Window;
use Pack_Constants, Pack_Md_Io, Class_Screen,
 Class_Window_Control, Class_Root_Window;
package body Class_Input_Manager is

 procedure Window_Prologue is
 begin
 Clear_Screen;
 end Window_Prologue;

The procedure Window_Start starts the window system by accepting input from the user and sending this
input a character at a time to the active window. The input character is first tested (using the procedure find) to
see if it is a window switch character. If it is, then the selected window is made the new focus for input.

 procedure Window_Start is
 P_W : P_Root_Window; --A window
 Ch : Character; --Current Char
 begin
 loop
 Get_Immediate(Ch); --From Keyboard
 exit when Ch = C_Exit;
 Find(P_W, Ch); --Active window
 if P_W /= null then --Window activation
 Switch_Away_From_Top; -- No longer active
 Top(P_W); -- Make p_w top
 Switch_To_Top; -- & make active
 Send_To_Top(C_Where); --In selected window
 else --
 Send_To_Top(Ch); --Give to top window
 end if;
 end loop;
 Pack_Md_Io.Put(Character'Val(0)); --Capture output
 end Window_Start;

The window epilog is currently a null procedure as no specific shutdown action is required.

 procedure Window_Epilogue is
 begin
 null;
 end Window_Epilogue;
end Class_Input_Manager;

23.4.4 Implementation of the class Window_control

In the implementation of the class Window_Control the managed windows are held in an array. If the user of
the TUI creates too many windows then the procedure Window_Fatal will be called. The procedure
Add_To_List adds a new window to the list of controlled windows.

338 TUI the implementation

 M A Smith - May not be reproduced without permission

with Class_Screen;
use Class_Screen;
package body Class_Window_Control is

 procedure Add_To_List(P_W:in P_Root_Window; Ch:in Character) is
 begin
 if The_Last_Win < Max_Items then
 The_Last_Win := The_Last_Win + 1;
 The_Windows(The_Last_Win) := (P_W, Ch);
 else
 Window_Fatal("Cannot register window");
 end if;
 end Add_To_List;

A window is removed from the list of controlled windows by the following procedure:

 procedure Remove_From_List(P_W:in P_Root_Window) is
 begin
 for I in 1 .. The_Last_Win loop --Look at
 if The_Windows(I).P_W = P_W then --Found
 for J in I .. The_Last_Win-1 loop --Delete
 The_Windows(J) := The_Windows(J+1); -- move up
 end loop;
 The_Last_Win := The_Last_Win - 1; exit; --Finish
 end if;
 end loop;
 end Remove_From_List;

The procedure Top makes the supplied window P_W the top window and hence the focus for input from a
user.

 procedure Top(P_W:in P_Root_Window) is
 begin
 for I in 1 .. The_Last_Win loop --
 if The_Windows(I).P_W = P_W then --Found
 declare
 Tmp : Active_Window := The_Windows(I);
 begin
 for J in I .. The_Last_Win-1 loop --Move down
 The_Windows(J) := The_Windows(J+1);
 end loop;
 The_Windows(The_Last_Win) := Tmp; --New top
 end;
 exit;
 end if;
 end loop;
 end Top;

The procedure Find searches the controlled windows for a window with the supplied Ch as its switch
character. If Ch is a windows switch character then a pointer to the window is returned.

TUI the implementation 339

 M A Smith - May not be reproduced without permission

 procedure Find(P_W:out P_Root_Window; Ch:in Character) is
 begin
 P_W := null;
 for I in 1 .. The_Last_Win loop
 if The_Windows(I).A_Ch = Ch then
 P_W := The_Windows(I).P_W;
 exit;
 end if;
 end loop;
 end Find;

When a character is received from a user of the TUI, and it is not a window switch character, it is sent to the
top window.

 procedure Send_To_Top(Ch:in Character) is
 begin
 if The_Last_Win >= 1 then
 Send_To(The_Windows(The_Last_Win).P_W.all, Ch);
 end if;
 end Send_To_Top;

When the focus of input is changed, the newly selected window is forewarned that it will become the focus for
input by sending it the message Switch_To_Top. This allows the window to change its appearance to indicate
that it is the current focus for input.

 procedure Switch_To_Top is
 begin
 if The_Last_Win >= 1 then
 Switch_To(The_Windows(The_Last_Win).P_W.all);
 end if;
 end Switch_To_Top;

Likewise when the focus of input is taken away from a window it is forewarned by the message
Switch_Away_From_Top.

 procedure Switch_Away_From_Top is
 begin
 if The_Last_Win >= 1 then
 Switch_Away(The_Windows(The_Last_Win).P_W.all);
 end if;
 end Switch_Away_From_Top;

The procedure Write_To writes text to the physical screen. The window is interrogated for its absolute
position on the screen so that the physical position to write the text to can be calculated. As no window currently
overlaps, no extra clipping needs to be performed.

 procedure Write_To(P_W:in P_Root_Window;
 X,Y:in Positive; Mes:in String) is
 Abs_X_Crd : Positive := About(P_W.all, Abs_X);
 Abs_Y_Crd : Positive := About(P_W.all, Abs_Y);
 begin
 Position_Cursor(Abs_X_Crd+X-1, Abs_Y_Crd+Y-1);
 Class_Screen.Put(Mes);
 end Write_To;

340 TUI the implementation

 M A Smith - May not be reproduced without permission

A window is removed from the screen with the procedure Hide_Win. As no windows overlap in this
implementation, the area that the window occupies is overwritten with spaces.

 procedure Hide_Win(P_W:in P_Root_Window) is
 Abs_X_Crd : Positive := About(P_W.all, Abs_X);
 Abs_Y_Crd : Positive := About(P_W.all, Abs_Y);
 Width : Positive := About(P_W.all, Top);
 Height : Positive := About(P_W.all, Left);
 Spaces : String(1 .. Width) := (others => ' ');
 begin
 for H in 1 .. Height loop
 Position_Cursor(Abs_X_Crd, Abs_Y_Crd+H-1);
 Class_Screen.Put(Spaces);
 end loop;
 end Hide_Win;

The next procedure is concerned with processing a fatal error. The implementation simply writes the error
message directly onto the TUI screen.

 procedure Window_Fatal(Mes:in String) is
 begin
 Position_Cursor(1, 1);
 Put("Window fatal error: "& Mes);
 end Window_Fatal;

end Class_Window_Control;

23.5 Overlapping windows

Though not implemented here, only minor code changes are required to allow overlapping windows on the output
screen. The order in which windows are held in the class attribute the_windows can be used to indicate the
overlapping order as viewed on the screen. For example, the bottom window in the list The_Windows is
overlapped by all other windows. The top window in the list overlaps all the other windows displayed on the
screen. An implementation of overlapping windows requires extra code to be added to Switch_To_Top,
Write_To, and Hide_Win in the class Window_Control to perform any necessary clipping.

23.6 The class Window

A window object has two main responsibilities:

l To provide an application program interface API for a user program.
l To provide a system API for the manipulation of a window.

23.6.1 Application API

The application API is available to an application program using the TUI to display and process information to
and from a window.

Method Responsibility
Clear Clear the window to spaces.
Framework Create the framework for a window.
Make_window Make the window visible or invisible.

TUI the implementation 341

 M A Smith - May not be reproduced without permission

New_Line Move to the next line in the window. This may
involve a rack up of the text in the window.

Position Move to a new position for subsequent output to
the window.

Put Write information into a window.

23.6.2 Window system API

The system API should not normally be required by an application program. This API is used internally by the
TUI system to manage the windows on the screen.

Method Responsibility
About Return information about the window.
Call_Call_Back Call the call-back function for this window.
Create Create a raw window.
De_Register De-register the window with the Input_manager.
Finalize Destruction of a window.
Initialize Controlled initialization of a window.
Mark_Border Set border to indicate state of window active, or

inactive.
Refresh Re-display the window.
Register Register window on screen.
Send_To Send a character to the window for processing.
Set_Call_Back Set a call-back function for this window.
Switch_Away Make window non active.
Switch_To Make window active.

23.6.3 The specification for the class Window

The specification is as follows:

with Pack_Constants, Class_Root_Window, Class_Window_Control;
use Pack_Constants, Class_Root_Window, Class_Window_Control;
package Class_Window is
 type Window is new Root_Window with private;
 type P_Window is access all Window;

 type Mode is (Visible, Invisible);
 type P_Cbf is access function(Str:in String) return String;

Construction of a window is performed by:

 procedure Initialize(The:in out Window);
 procedure Finalize(The:in out Window);

 procedure Framework(The:in out Window;
 Abs_X_Crd, Abs_Y_Crd: Positive;
 Max_X_Crd, Max_Y_Crd: Positive;
 Cb:in P_Cbf := null);
 procedure Create (The:in out Window;
 Abs_X_Crd, Abs_Y_Crd: Positive;
 Max_X_Crd, Max_Y_Crd: Positive);

A call-back function is set and executed with:

342 TUI the implementation

 M A Smith - May not be reproduced without permission

 procedure Set_Call_Back(The:in out Window; Cb:in P_Cbf);
 function Call_Call_Back(The:in Window;
 Str:in String) return String;

User output to a window is written using:

 procedure Put(The:in out Window; Mes:in String);
 procedure Put(The:in out Window; Ch:in Character);
 procedure Put(The:in out Window; N:in Integer);

 procedure Position(The:in out Window; X,Y:in Positive);
 procedure Clear(The:in out Window);
 procedure New_Line(The:in out Window);
 procedure Refresh(The:in out Window);

 procedure Make_Window(The:in out Window; Mo:in Mode);
 procedure Mark_Border(The:in out Window;
 A_Border:in Attribute;
 Pos:in Positive; Ch:in Character);

Details about a window are obtained using:

function About(The:in Window; B:in Attribute) return Natural;

The window is controlled by:

 procedure Switch_Away(The:in out Window);
 procedure Switch_To(The:in out Window);
 procedure Send_To(The:in out Window; Ch:in Character);

 procedure Register(P_W:in P_Root_Window; Ch:in Character);
 procedure De_Register(P_W:in P_Root_Window);

The instance attributes of the class are:

TUI the implementation 343

 M A Smith - May not be reproduced without permission

private
 subtype Y_Cord is Positive range 1 .. Vdt_Max_Y;
 subtype X_Cord is Positive range 1 .. Vdt_Max_X;

 subtype Line_Index is X_Cord range 1 .. Window_Max_X;
 subtype Line_Range is Line_Index;
 subtype Line is String(Line_Range);

 subtype Pane_Index is Y_Cord range 1 .. Window_Max_Y;
 subtype Pane_Range is Pane_Index;
 type Pane_Array is array (Pane_Range) of Line;

 type Window is new Root_Window with record
 Abs_X : X_Cord := 1; --The position on the vdt
 Abs_Y : Y_Cord := 1; --The position on the vdt
 C_X : X_Cord := 1; --Current position in window
 C_Y : Y_Cord := 1; --Current position in window
 Max_X : X_Cord := 5; --X size of window (+Border)
 Max_Y : Y_Cord := 5; --Y size of window (+Border)
 Pane : Pane_Array; --Copy of window in memory
 Mode_Of : Mode := Invisible;--Invisible window by default
 Call_Back: P_Cbf := null; --Call back function
 end record;
end Class_Window;

23.6.4 Implementation of the class Window

In the implementation of the class Window the procedure put is used internally to write to a specific area on the
screen.

package body Class_Window is

 procedure Put(The:in out Window;
 X,Y:in Positive; Mes:in String);

The controlled procedure finalize removes a window from the screen and de-registers the window from
the input manager.

 procedure Initialize(The:in out Window) is
 begin
 null;
 end Initialize;

 procedure Finalize(The:in out Window) is
 begin
 Make_Window(The, Invisible);
 De_Register(The'Unchecked_Access);
 end Finalize;

The procedure create sets up the window to be at a defined position on the screen. Some simple validation
is performed. If this fails, the procedure windows_fatal is called.

344 TUI the implementation

 M A Smith - May not be reproduced without permission

 procedure Create(The:in out Window;
 Abs_X_Crd, Abs_Y_Crd: Positive;
 Max_X_Crd, Max_Y_Crd: Positive) is
 begin
 if Max_X_Crd < 3 or else Max_X_Crd > Window_Max_X or else
 Max_Y_Crd < 3 or else Max_Y_Crd > Window_Max_Y or else
 Abs_X_Crd + Max_X_Crd - 1 > Vdt_Max_X or else
 Abs_Y_Crd + Max_Y_Crd - 1 > Vdt_Max_Y then
 Window_Fatal("Creation window parameter error");
 end if;
 declare
 Top_Bottom: String(1..Max_X_Crd) := (others => '-');
 Spaces : String(2 .. Max_X_Crd-1) := (others => ' ');
 begin
 Top_Bottom(1) := '+'; Top_Bottom(Max_X_Crd) := '+';
 The.Max_X := Max_X_Crd - 2; --For border
 The.Max_Y := Max_Y_Crd - 2; --For border
 The.Abs_Y := Abs_Y_Crd; --Abs position screen
 The.Abs_X := Abs_X_Crd; --
 The.Pane(1)(1..Max_X_Crd) := Top_Bottom; --Clear / set up
 for Y in 2 .. Max_Y_Crd-1 loop
 The.Pane(Y)(1..Max_X_Crd):= '|'&Spaces&'|';
 end loop;
 The.Pane(Max_Y_Crd)(1..Max_X_Crd) := Top_Bottom;
 Position(The, 1, 1); --Top left hand corner
 end;
 end Create;

The user callable procedure framework defines the position of the window on the screen. This procedure
uses create to do most of the initialization of the window.

 procedure Framework(The:in out Window;
 Abs_X_Crd, Abs_Y_Crd: Positive;
 Max_X_Crd, Max_Y_Crd: Positive;
 Cb:in P_Cbf := null) is
 begin
 Create(The, Abs_X_Crd, Abs_Y_Crd, Max_X_Crd, Max_Y_Crd);
 Make_Window(The, Visible);
 if Cb /= null then
 Set_Call_Back(The, Cb);
 Register(The'Unchecked_Access, C_Switch);
 else
 Register(The'Unchecked_Access, C_No_Char);
 end if;
 end Framework;

The call-back function is set by set_call_back and is called via call_call_back .

 procedure Set_Call_Back(The:in out Window; Cb:in P_Cbf) is
 begin
 The.Call_Back := Cb;
 end Set_Call_Back;

 function Call_Call_Back(The:in Window;
 Str:in String) return String is
 begin
 if The.Call_Back /= null then
 return The.Call_Back(Str);
 end if;
 return "No call back function";
 end;

Note: The value returned by the call-back function is a string.

TUI the implementation 345

 M A Smith - May not be reproduced without permission

The procedure put writes text into the selected window from the currently selected position. If the text will
not fit in the window it is clipped to fit the window. The text is then added to the stored image of the window.
Then, if the window is visible it is written to the screen.

 procedure Put(The:in out Window; Mes:in String) is
 Add : Natural;
 begin
 Add := Mes'Length; --Length
 if Add + The.C_X > The.Max_X then --Actual characters
 Add := The.Max_X - The.C_X + 1; -- to add
 end if;
 if Add >= 1 then --There are some
 The.Pane(The.C_Y+1)(The.C_X+1 .. The.C_X+Add)
 := Mes(1 .. Add);
 if The.Mode_Of = Visible then --Add to screen
 Put(The, The.C_X+1, The.C_Y+1, Mes(1 .. Add));
 end if;
 The.C_X := The.C_X + Add;
 else
 Put(The, The.C_X+1, The.C_Y+1, "");
 end if;
 end Put;

The two following procedures use the above put procedure to write a character and a natural number into the
window:

 procedure Put(The:in out Window; Ch:in Character) is
 begin
 Put(The, "" & Ch); --Convert to string
 end Put;

 procedure Put(The:in out Window; N:in Integer) is
 begin
 Put(The, Integer'Image(N)); --Convert to string
 end Put;

The procedure Clear clears a window to spaces. The border of the window is, however, left intact.

 procedure Clear(The:in out Window) is
 Empty : String(1 .. The.Max_X) := (others => ' ');
 begin
 Position(The, 1, 1); --Top right hand corner
 for Y in 1 .. The.Max_Y loop --Clear text
 Put(The, Empty); New_Line(The);
 end loop;
 end Clear;

The procedure New_Line implements the writing of a new line in the selected window. This may result in the
information in the window being scrolled. Scrolling is implemented by refreshing the whole window after
changing the contents of the remembered window.

346 TUI the implementation

 M A Smith - May not be reproduced without permission

 procedure New_Line(The:in out Window) is
 begin
 if The.C_Y >= The.Max_Y then --Scroll text
 for Y in 2 .. The.Max_Y loop -- Copy up
 The.Pane(Y) := The.Pane(Y+1);
 end loop;
 The.Pane(The.Max_Y+1)(2..The.Max_X+1):= (others=>' ');
 Refresh(The); -- refresh
 else
 The.C_Y := The.C_Y + 1; --Next line
 end if;
 The.C_X := 1; --At start
 end New_Line;

The procedure Position allows a user to set the current writing position in the window.

 procedure Position(The:in out Window; X,Y:in Positive) is
 begin
 if X <= The.Max_X and Y <= The.Max_Y then
 The.C_X := X; The.C_Y := Y;
 end if;
 end Position;

The procedure Refresh re-draws the whole of the window on the screen.

 procedure Refresh(The:in out Window) is
 begin
 if The.Mode_Of = Visible then --Visible
 for Y in 1 .. The.Max_Y+2 loop --Text
 Put(The, 1, Y,
 The.Pane(Y)(1 .. The.Max_X+2)); --include border
 end loop;
 Put(The, ""); --Cursor
 end if;
 end Refresh;

A window can be made visible or invisible by the procedure make_window.

 procedure Make_Window(The:in out Window; Mo:in Mode) is
 begin
 if The.Mode_Of /= Mo then --Change so
 The.Mode_Of := Mo; --Set new mode_of
 case Mo is
 when Invisible => --Clear from screen
 Hide_Win(The'Unchecked_Access);--Hide window
 when Visible => --Redraw on screen
 Refresh(The);
 end case;
 end if;
 end Make_Window;

The style of the border may be changed by mark_border. A window may be customized to a style to suit
the user by using this procedure.

TUI the implementation 347

 M A Smith - May not be reproduced without permission

 procedure Mark_Border(The:in out Window;
 A_Border:in Attribute;
 Pos:in Positive; Ch:in Character) is
 A_Y, A_X : Positive;
 begin
 case A_Border is
 when Top => A_X := Pos; A_Y := 1;
 when Bottom => A_X := Pos; A_Y := The.Max_Y+2;
 when Left => A_X := 1; A_Y := Pos;
 when Right => A_X := The.Max_X+2; A_Y := Pos;
 when others => null;
 end case;
 if A_X <= The.Max_X+2 and then A_Y <= The.Max_Y+2 then
 The.Pane(A_Y)(A_X) := Ch; --Store
 if The.Mode_Of = Visible then --Update on screen
 Put(The, A_X, A_Y, Ch & "");
 Put(The, "");
 end if;
 end if;
 end Mark_Border;

The procedure about returns details about the various attributes of a window.

 function About(The:in Window; B:in Attribute) return Natural is
 begin
 case B is
 when Top | Bottom => return The.Max_X+2;
 when Left | Right => return The.Max_Y+2;
 when Abs_X => return The.Abs_X;
 when Abs_Y => return The.Abs_Y;
 when others => return 0;
 end case;
 end;

Whilst publicly visible, the following procedures are not intended to be used by an application programmer. These
procedures are used by the event loop to allow a window to:

l Clean up before the focus of user input is removed from the window.
l Prepare for the focus of user input to be directed at the window.

The effect of these procedures is to mark the window with a visual indicator of its state.

 procedure Switch_Away(The:in out Window) is
 begin
 Mark_Border(The, Top, 1, C_Win_Pas);
 end Switch_Away;

 procedure Switch_To(The:in out Window) is
 begin
 Mark_Border(The, Top, 1, C_Win_A);
 end Switch_To;

When a user types a character which is not recognized by the system as a switch character it is sent to the
window which has the focus for input. The procedure Send_To receives this character. The procedure is simply
null, because an instance of a Window does not process user input.

348 TUI the implementation

 M A Smith - May not be reproduced without permission

 procedure Send_To(The:in out Window; Ch:in Character) is
 begin
 null;
 end Send_To;

The window is registered with the input manager by the procedure register and de-registered with
De_Register.

 procedure Register(P_W:in P_Root_Window;
 Ch:in Character) is
 begin
 Switch_Away_From_Top; --Register window focus
 Add_To_List(P_W, Ch); --Register window
 Switch_To_Top; --Make focus
 end Register;

 procedure De_Register(P_W:in P_Root_Window) is
 begin
 Top(P_W); --Make top
 Switch_Away_From_Top; -- prepare for demise
 Remove_From_List(P_W); --De register window
 Switch_To_Top; --Make focus
 end De_Register;

The next procedure is used internally by the class to write directly to a position in a window on the screen.
This procedure uses Write_To in the class Window_Control to perform the actual write.

 procedure Put(The:in out Window;
 X,Y:in Positive; Mes:in String) is
 begin
 Write_To(The'Unchecked_Access, X, Y, Mes);
 end Put;

end Class_Window;

23.7 The class Dialog

A normal window is specialized to a dialog window by overloading the following windows methods with new
responsibilities:

Method Responsibility
Framework Set up the window as a dialog box.
Send_To Process user input sent to the dialog window.

The Ada specification for the class Dialog is as follows:

TUI the implementation 349

 M A Smith - May not be reproduced without permission

with Pack_Constants, Class_Root_Window, Class_Window;
use Pack_Constants, Class_Root_Window, Class_Window;
package Class_Dialog is
 type Dialog is new Window with private;

 procedure Framework (The:in out Dialog;
 Abs_X, Abs_Y:in Positive;
 Max_X: in Positive;
 Name:in String; Cb:in P_Cbf);

 procedure Send_To(The:in out Dialog; Ch:in Character);
private
 subtype Message is String(1 .. Window_Max_X);
 type Dialog is new Window with record
 Dialog_Pos: Positive := 1; --Position in input message
 Dialog_Len: Positive := 1; --Length of dialogue message
 Dialog_Mes: Message := (others => ' '); --Input message
 end record;
end Class_Dialog;

23.7.1 Implementation of the class Dialog

The implementation of the class dialog is:

package body Class_Dialog is

The procedure Framework constructs the style of the dialog window and registers the window with the input
manager so that user input may be directed to the window:

 procedure Framework(The:in out Dialog;
 Abs_X, Abs_Y:in Positive;
 Max_X:in Positive;
 Name:in String; Cb:in P_Cbf) is
 Dashes : String(1 .. Max_X) := (others=>'-');
 begin
 Create(The, Abs_X, Abs_Y, Max_X, 5);
 The.Dialog_Len := Max_X-2; --User input
 The.Dialog_Pos := 1; --In Dialog
 Set_Call_Back(The, Cb); --Call back fun
 Put(The, "Dialog| "); Put(The, Name); --Dialog title
 Position(The, 1, 2); Put(The, Dashes); --Line
 Position(The, 1, 3); Put(The, C_Cursor);--Cursor
 Make_Window(The, Visible);
 Register(The'Unchecked_Access, C_Switch); --Activation Chr
 end Framework;

For example, the fragment of code:

 declare
 Input : Dialog; --Input Window
 begin
 Framework(Input, 5, 10, 22, --Input Window
 "Miles", User_Input'access);
 end;

would produce the following dialog box whose top left-hand corner on the screen is at position (5,10):

350 TUI the implementation

 M A Smith - May not be reproduced without permission

#--------------------+
|Dialog| Miles |
|--------------------|
|* |
+--------------------+

User input sent to the dialog window is processed by the procedure send_to. This stores characters in the
string Dialog_Mes. When the user enters C_ACTION this causes a call to an application programmer written
call-back function with the string Dialog_Mes as its parameter. The character C_ACTION is the normal Enter
character on the keyboard.

procedure Send_To(The:in out Dialog; Ch:in Character) is
 Spaces : String(1 .. About(Window(The),Top)) := (others => ' ');
 Res : String(1..0);
 begin
 case Ch is
 when C_Where =>
 Put(The, "");
 when C_Action =>
 Res := Call_Call_Back(The,
 The.Dialog_Mes(1..The.Dialog_Pos-1))(1..0);
 The.Dialog_Pos := 1;
 The.Dialog_Mes := (others => ' ');
 Position(The, 1, 3); --Start
 Put(The, C_Cursor & Spaces); --Clear
 Position(The, 2, 3); --Cursor
 Put(The, ""); --Cursor
 when C_Del =>
 if The.Dialog_Pos > 1 then --Can delete
 The.Dialog_Pos := The.Dialog_Pos - 1; --Make avail.
 The.Dialog_Mes(The.Dialog_Pos):= ' '; --Remove
 Position(The, The.Dialog_Pos, 3);
 Put(The, C_Cursor & " "); --Overwrite
 Position(The, The.Dialog_Pos, 3);
 Put(The, ""); --Cursor
 end if;

 when others =>
 if The.Dialog_Pos <= The.Dialog_Len then
 if Ch in ' ' .. '~' then --Add to
 The.Dialog_Mes(The.Dialog_Pos) := Ch; --Save ch
 Position(The, The.Dialog_Pos, 3);
 Put(The, The.Dialog_Mes(The.Dialog_Pos));
 Put(The, C_Cursor);
 The.Dialog_Pos := The.Dialog_Pos + 1;
 end if;
 end if;
 end case;
 end Send_To;
end Class_Dialog;

23.8 The class Menu

A normal window is specialized to a menu window by overloading the following procedures:

Method Responsibility
Framework Set up the window as a menu window.
Send_To Process user input sent to the menu window.

and adding the procedures:

TUI the implementation 351

 M A Smith - May not be reproduced without permission

Method Responsibility
Set_Up Set up the window as a menu window.
Menu_Spot Highlight the selected menu item.

The specification of the class Menu is as follows:

with Class_Root_Window, Class_Window;
use Class_Root_Window, Class_Window;
package Class_Menu is
 type Menu is new Window with private;
 type P_Menu is access all Menu;

 procedure Framework(The:in out Menu'Class;
 M1:in String:=""; W1:in P_Menu:=null; Cb1:in P_Cbf:=null;
 M2:in String:=""; W2:in P_Menu:=null; Cb2:in P_Cbf:=null;
 M3:in String:=""; W3:in P_Menu:=null; Cb3:in P_Cbf:=null;
 M4:in String:=""; W4:in P_Menu:=null; Cb4:in P_Cbf:=null;
 M5:in String:=""; W5:in P_Menu:=null; Cb5:in P_Cbf:=null;
 M6:in String:=""; W6:in P_Menu:=null; Cb6:in P_Cbf:=null);

 procedure Set_Up(The:in out Menu; Active:in Positive);
 procedure Menu_Spot(The:in out Menu; Ch:in Character);
 procedure Send_To(The:in out Menu; Ch:in Character);

 Max_Menu : constant Positive := 10;
 subtype Menu_Item is String(1 .. Max_Menu);

 procedure Get_Menu_Name(The:in Menu; I:in Positive;
 N:out Menu_Item);
 procedure Get_Cur_Selected_Details(The:in P_Menu;
 W:out P_Menu; Cb:out P_Cbf);

The private part of the specification contains details about how a menu item is stored. A menu consists of the
names of menu items and associated with each name is either a call-back function or a link to another menu item.

private
 type Direction is (D_Reverse, D_Forward);
 procedure Next(The:in out Menu; Dir:in Direction);

 type Menu_Desc is record --A menu is:
 Name: Menu_Item; --Name of menu item
 P_M : P_Menu; --Menu window
 Fun : P_Cbf; --Call back function
 end record;

 Max_Menu_Items : constant := 6; --Maximum menu items

 type Menus_Index is range 0 .. Max_Menu_Items;
 subtype Menus_Range is Menus_Index range 1 .. Max_Menu_Items;
 type Menus is array (Menus_Range) of Menu_Desc;

 type Menu is new Window with record
 Number : Menus_Index := 0; --Number of menu items
 Cur_Men : Menus_Index := 1; --Currently selected item
 Menu_Set : Menus; --Components of a menu
 end record;
end Class_Menu;

352 TUI the implementation

 M A Smith - May not be reproduced without permission

23.8.1 Implementation of the class Menu

The implementation of the class is:

with Pack_Constants;
use Pack_Constants;
package body Class_Menu is

The procedure Set_Up populates the displayed menu window with the names of the menu items.

 procedure Set_Up(The:in out Menu;
 Active:in Positive) is
 Me: Menu_Item;
 begin
 Create(The, 1, 1, (1+Max_Menu)*Active+1, 3);
 for I in 1 .. Active loop --Display menu names
 Get_Menu_Name(The, I, Me);
 Put(The, Me); Put(The, "|");
 null;
 end loop;
 Menu_Spot(The, C_Cursor); --Mark current
 end Set_Up;

In the procedure Framework the class type is described as Menu'Class. This is so that a run-time dispatch
will be performed on inherited procedures or functions in any class derived from this class.

 procedure Framework(The:in out Menu'Class;
 M1:in String:=""; W1:in P_Menu:=null; Cb1:in P_Cbf:=null;
 M2:in String:=""; W2:in P_Menu:=null; Cb2:in P_Cbf:=null;
 M3:in String:=""; W3:in P_Menu:=null; Cb3:in P_Cbf:=null;
 M4:in String:=""; W4:in P_Menu:=null; Cb4:in P_Cbf:=null;
 M5:in String:=""; W5:in P_Menu:=null; Cb5:in P_Cbf:=null;
 M6:in String:=""; W6:in P_Menu:=null; Cb6:in P_Cbf:=null
) is
 Spaces : Menu_Item := (others => ' ');
 Active : Menus_Index := 1;
 procedure Set_Up(Mi:in String; Wi:in P_Menu;
 Cb:in P_Cbf; N:in Menus_Index) is
 begin
 if Mi /= "" then Active := N; end if; --A menu item
 The.Menu_Set(N) :=
 (" "&Mi&Spaces(1 .. Max_Menu-1-Mi'Length), Wi, Cb);
 end Set_Up;
 begin
 Set_Up(M1, W1, Cb1, 1); Set_Up(M2, W2, Cb2, 2);
 Set_Up(M3, W3, Cb3, 3); Set_Up(M4, W4, Cb4, 4);
 Set_Up(M5, W5, Cb5, 5); Set_Up(M6, W6, Cb6, 6);
 The.Number := Active;
 Set_Up(The, Positive(Active));
 end Framework;

Note: The procedure set_up which is called from within framework constructs the internal
representation for the window.

The procedure menu_spot highlights the menu item selected.

TUI the implementation 353

 M A Smith - May not be reproduced without permission

 procedure Menu_Spot(The:in out Menu; Ch:in Character) is
 begin
 Position(The, (Max_Menu+1)*(Positive(The.Cur_Men)-1)+1, 1);
 Put(The, Ch);
 end Menu_Spot;

When user input is focused at the menu window, the arrow keys cause a new menu item to be selected.

 procedure Send_To(The:in out Menu; Ch:in Character) is
 begin
 Menu_Spot(The, C_Blank);
 case Ch is
 when C_Right => Next(The, D_Forward);
 when C_Left => Next(The, D_Reverse);
 when others => null;
 end case;
 Menu_Spot(The, C_Cursor);
 end Send_To;

The actual calculation of the menu item selected is performed by the procedure next.

 procedure Next(The:in out Menu; Dir:in Direction) is
 begin
 case Dir is
 when D_Forward =>
 The.Cur_Men := The.Cur_Men rem The.Number + 1;
 when D_Reverse =>
 if The.Cur_Men = 1
 then The.Cur_Men := The.Number;
 else The.Cur_Men := The.Cur_Men-1;
 end if;
 end case;
 end Next;

The procedure get_menu_item returns the name of the menu item selected:

 procedure Get_Menu_Name(The:in Menu; I:in Positive;
 N:out Menu_Item) is
 begin
 N := The.Menu_Set(Menus_Index(I)).Name;
 end Get_Menu_Name;

whilst get_cur_selected_details returns a pointer to the selected potential window and call-back
function.

 procedure Get_Cur_Selected_Details(The:in P_Menu;
 W:out P_Menu; Cb:out P_Cbf) is
 begin
 W := The.Menu_Set(The.Cur_Men).P_M;
 Cb := The.Menu_Set(The.Cur_Men).Fun;
 end Get_Cur_Selected_Details;

end Class_Menu;

354 TUI the implementation

 M A Smith - May not be reproduced without permission

23.9 The class Menu_title
A Menu window is specialized to a Menu_title window by overloading the following procedures:

Method Responsibility
Set_Up Set up the window as a menu title window.
Send_To Process user input sent to the menu title window.
Switch_Away Return to the base window.

The Ada specification of the class is:

with Class_Root_Window, Class_Window, Class_Menu;
use Class_Root_Window, Class_Window, Class_Menu;
package Class_Menu_Title is
 type Menu_Title is new Menu with private;
 type P_Menu_Title is access all Menu_Title;

 procedure Set_Up(The:in out Menu_Title; Active:in Positive);
 procedure Send_To(The:in out Menu_Title; Ch:in Character);
 procedure Switch_Away(The:in out Menu_Title);
private

 Max_Act_Menu : constant := 6; --Maximum depth of menus
 type Act_Index is range 0 .. Max_Act_Menu;
 subtype Act_Range is Act_Index range 1 .. Max_Act_Menu;
 type Act_Menus is array (Act_Range) of P_Menu;

 type Menu_Title is new Menu with record
 Act_Menu : Act_Menus; --Stack of displayed menus
 Menu_Index: Act_Index := 0; --Top of menu stack
 end record;
end Class_Menu_Title;

23.9.1 Implementation of the class Menu_title

In the implementation of the class Menu_title:

with Pack_Constants;
use Pack_Constants;
package body Class_Menu_Title is

the procedure set_up is called from the inherited procedure framework in the class Menu. This is because the
call of the procedure set_up is a dispatching call. Remember, the first parameter to the procedure framework
is of type Menu'Class.

 procedure Set_Up(The:in out Menu_Title; Active:in Positive) is
 Me: Menu_Item;
 begin
 Create(The, 1, 1, (1+Max_Menu)*Active+1, 3); --Fixed size
 Make_Window(The, Visible);
 The.Act_Menu(1) := Menu(The)'Unchecked_Access;--Title menu
 The.Menu_Index := 1;
 for I in 1 .. Active loop --Get menu
 Get_Menu_Name(The, I, Me); -- name
 Put(The, Me); Put(The, "|"); -- write
 end loop;
 Register(The'Unchecked_Access, C_Menu); --Register
 Menu_Spot(The, C_Cursor); --Cursor on
 end Set_Up;

TUI the implementation 355

 M A Smith - May not be reproduced without permission

The procedure send_to implements the selection of either a new menu bar or the call of a call-back function.

 procedure Send_To(The:in out Menu_Title; Ch:in Character) is
 Current, Next : P_Menu;
 Proc : P_Cbf;
 Res : String(1..0);
 begin
 Current := The.Act_Menu(The.Menu_Index); --Active menu
 Get_Cur_Selected_Details(Current, Next, Proc);
 case Ch is
 when C_Where =>
 Put(Current.all, "");
 when C_Action =>
 if Next /= null and The.Menu_Index < Max_Act_Menu then
 Make_Window(Current.all, Invisible); --Hide cur.
 The.Menu_Index := The.Menu_Index + 1; --
 The.Act_Menu(The.Menu_Index) := Next; --New menu
 Make_Window(Next.all, Visible); --Reveal
 else
 if Proc /= null then --Call
 Res := Proc("Action")(1 .. 0);
 end if;
 end if;
 when others =>
 Send_To(Current.all , Ch); --Treat as normal menu
 end case;
 end Send_To;

The procedure Switch_Away replaces the current menu with the top level menu bar. Naturally this
replacement is only performed if the displayed menu is not the top level menu.

 procedure Switch_Away(The:in out Menu_Title) is
 begin
 Mark_Border(The, Top, 1, C_Win_Pas); --Now inactive
 if The.Menu_Index > 1 then --Not top level menu
 Make_Window(The.Act_Menu(The.Menu_Index).all, Invisible);
 The.Menu_Index := 1;
 Make_Window(The.Act_Menu(1).all, Visible); --Top level
 end if;
 end Switch_Away;

end Class_Menu_Title;

23.10 Self-assessment

l What changes in the implementation of the TUI would be required to allow for overlapping windows?

l The TUI execution is currently serial, in that messages sent to a window are performed before control
is returned to the input event loop. What would be the effect of letting code associated with a window
execute as a separate task?

23.11 Exercises

Extend the TUI by providing the following new types of window:

l A window to which Integer and Float numbers may be written

356 TUI the implementation

 M A Smith - May not be reproduced without permission

This will allow the output of formatted numeric data as well as textual data.

l A radio button dialog window

This will allow a user to create programs in which one of several options may be selected. For example,
the conversion program shown in Section 22.3 could allow the distance to be input in feet, yards or
miles.

l A check box dialog window

This will allow a user to create programs in which several different options may be selected.

l Noughts and crosses

In the previous chapter, in Section 22.5, an example program to play the game noughts and crosses was
shown. A user entering a square has to press Enter to have the move accepted. Devise and implement a
new version where the keystroke for a position is sufficient to activate a call-back function in the
application code.

l Overlapping windows

Modify the TUI so that overlapping windows are allowed. A user of the program should also be able to
move the windows on the screen.

Build an application framework for the TUI.

l An application framework allows a user to design the layout of screens used in the program without
having to write any code. The application framework will have an interface similar to a drawing editor
and allows an application programmer to position the different types of window onto a screen. Then
when the user is satisfied with the layout, the application framework program produces an Ada program
skeleton of the application.

Graphical Representation

l Modify the TUI so that the screen display is more graphical. You may wish to add procedures and
functions that allow for bit mapped data to be written to a window.

 M A Smith - May not be reproduced without permission

24 Scope of declared objects

This chapter describes the access rules for objects and types declared in an Ada program. In Ada the scope
or visibility of an item depends on the current lexical position in which the item is introduced.

24.1 Nested procedures
In Ada, nesting of procedures to an arbitrary level is allowed. Each nested procedure introduces a new lexical
level. For example, the following program is made up of two procedures Outer and Inner. The lexical level for
each line is shown as a comment.

 procedure Outer is --+1
 Outer_Int : Integer; -- 1
 procedure Inner is -- 1
 Inner_Int: Integer; -- +2
 begin -- 2
 Outer_Int := 1; -- 2
 Inner_Int := 2; -- 2
 end Inner; -- -2
 begin -- 1
 Outer_Int := 1; -- 1
 end Outer; ---1

Note: + indicates that a new lexical level has been started.
- indicates that the current lexical level is about to end.

The procedure Outer is at lexical level 1 and the procedure Inner is at lexical level 2. Code that is at a
specific lexical level can access items declared either at that lexical level or declared at a lower surrounding
lexical level. For example, in the procedure Inner the integer objects Inner_Int and Outer_Int can both
be accessed. However, in the procedure Outer only the integer object Outer_Int can be accessed. Access to
procedures and functions follow the same rules.

It is important to realize that only items that are in a surrounding lower lexical level may be accessed. For
example, the following nonsensical program illustrates the variables and procedures that may be accessed at any
point in the program.

358 Scope of declared items

 M A Smith - May not be reproduced without permission

 procedure Proc_1_1 is --+1
 Int_1_1 : Integer; -- 1
 procedure Proc_2_1 is -- 1
 Int_2_1 : Integer; -- +2
 procedure Proc_3_1 is -- 2
 Int_3_1 : Integer; -- +3
 begin -- 3
 Int_1_1 := 11; Int_2_1 := 21; Int_3_1 := 31; -- 3
 Proc_1_1; Proc_2_1; Proc_3_1; -- 3
 end Proc_3_1; -- -3
 begin -- 2
 Int_1_1 := 11; Int_2_1 := 21; -- 2
 Proc_1_1; Proc_2_1; Proc_3_1; -- 2
 end Proc_2_1; -- -2
 procedure Proc_2_2 is -- 1
 Int_2_2: Integer; -- +2
 begin -- 2
 Int_1_1 := 11; Int_2_2 := 22; -- 2
 Proc_1_1; Proc_2_1; Proc_2_2; -- 2
 end Proc_2_2; -- -2
 begin -- 1
 Int_1_1 := 11; -- 1
 Proc_1_1; Proc_2_1; Proc_2_2; -- 1
 end Proc_1_1; ---1

Note: The comment after each line indicates the lexical level of the line.
A procedure or function, though introducing a new lexical level, is a declaration of a name at the
current lexical level. The parameters of the procedure or function are of course at the next lexical
level.

The layout of the above program can be schematically visualized diagrammatically as Figure 24.1:

 Proc_1_1
Int_1_1

Int_2_1

Int_3_1

Int_2_2

 Proc_2_1

 Proc_3_1

 Proc_2_2

1 2 3 Lexical level

Figure 24.1 Lexical levels in an Ada program.

The procedure Proc_3_1 can access the following items:

Procedure Can access procedures Can access variables
Proc_3_1 Proc_1_1

Proc_2_1
Proc_3_1

Int_1_1
Int_2_1
Int_3_1

However, the procedure Proc_2_2 cannot be accessed as this is declared after the end of Proc_3_1. The
variable Int_2_2 cannot be accessed as even though it is at a lower lexical level it is not in a surrounding lexical
level.

The procedure Proc_2_2 can access the following items:

Procedure Can access procedures Can access variables

Scope of declared items 359

 M A Smith - May not be reproduced without permission

Proc_2_2 Proc_1_1
Proc_2_1
Proc_2_2

Int_1_1
Int_2_2

However, the variable Int_2_1 cannot be accessed as, even though it is at the same lexical level, it is not in a
surrounding lexical level.

24.1.1 Advantages of using nested procedures

Using a nested procedure structure allows a user to hide names used in the solution of different parts of a problem.
This helps reduce the pollution of the global name space with items that only have a very limited scope.

24.1.2 Introducing a new lexical level in a procedure or function

The construct declare ... begin ... end; introduces a new lexical level in a procedure or function. For
example, in the following program:

 procedure Outer is --+1
 Outer_Int : Integer; -- 1
 procedure Inner is -- 1
 Inner_Int: Integer; -- +2
 begin -- 2
 declare -- 2
 I : Integer; -- +3
 begin -- 3
 I := 2; -- 3
 end; -- -3
 Inner_Int := 1; -- 2
 Outer_Int := 2; -- 2
 end Inner; -- -2
 begin -- 1
 Inner; -- 1
 end Outer; ---1

the integer object I is at lexical level 3 and can only be accessed within the begin ... end; of the block defined
by the declare statement.

24.1.3 Holes in visibility

Because names can be overloaded, a hole in the visibility of an item can be created. For example, in the following
program the variable i declared immediately in the procedure main is not visible for the extent of the enclosing
begin end in the declare block.

 with Ada.Text_Io, Ada.Integer_Text_Io;
 use Ada.Text_Io, Ada.Integer_Text_Io;
 procedure Ex5 is
 I : Integer := 1; --First I declaration
 begin
 Put(I); --Accesses first I => 1
 declare
 I : Integer := 2; --Second I declaration
 begin
 Put(I); --Accesses second I => 2
 end;
 Put(I); --Accesses first I => 1
 end Ex5;

24.1.4 Consequences of lexical levels

360 Scope of declared items

 M A Smith - May not be reproduced without permission

There is a performance penalty to pay for this flexibility in accessing items at different lexical levels. This penalty
is mostly evident in the lengthy code required to perform procedure entry and exit. Optimizing compiles can
drastically simplify the code required for entry and exit to a procedure or function when only a simple nesting
structure is used.

The main code complexity arises because procedures and functions may be called recursively. A recursive
procedure or function will create each time it is called a new stack frame.

The use of the class construct can drastically reduce the need to use heavily nested procedures.

24.2 Self-assessment
l How might a whole in the visibility of a variable in a program be created.

l Why cannot a procedure or function be called which is in an inner block to the current calling position.

l What procedures and integer variables can code in the body of the procedures Main, Proc_A,
Proc_B, and Proc_C access in the following program.

 procedure Main is
 A : Integer;
 procedure Proc_A is
 B : Integer;
 procedure Proc_B is
 C : Integer;
 begin
 --Code;
 end Proc_B;
 procedure Proc_C is
 D : Integer;
 begin
 --Code;
 end Proc_C;
 begin
 --Code;
 end Proc_A;
 E : Integer;
 begin
 --Code
 end Main;

 M A Smith - May not be reproduced without permission

25 Mixed language programming

This chapter describes how code written in another language can be called from an Ada program. This
allows the Ada programmer to take advantage of the wealth of code previously written in other languages.

25.1 Linking to other code

The designers of Ada 95 realised that if the language was to prosper then it must co-exist in a world where code
was written in languages other than Ada. Ada provides mechanisms that allow code written in the programming
languages C, Fortran and COBOL to be directly called. Other languages such as C++ may also be called using the
C interface.

25.2 Selected types and functions from Interfaces.C

The following are a selection of types and functions from the package Interfaces.C. This Ada package
allows the calling of functions written in the C language. In particular mechanisms are provided to convert
between instance of Ada types and instances of C types.

25.2.1 Integer, character and floating point types

By using the following types an Ada variable or expression can be converted to a form compatible with the C
language.

Integer Types Char types Floating point types
Int
Short
Long
Size_T

Char
Wchar_T

C_Float
Double
Long_Double.

For example to pass the integer value Item as a parameter to a C function that expects a long double the
following expression can be used: Long_Double(Item).

25.2.2 C String type

The following declaration:

type Char_Array is Array (Size_T range <>) of aliased Char;

is used to declare a C array of characters. In C an array of characters terminated by the null character is used to
represent a string. For example, the following will declare a string Name containing the text "Miranda" that
may be passed to a C function that requires a C string parameter.

Name : constant Char_Array := "Miranda" & nul;

Note: The use of nul to represent the null character. Remember null is an Ada reserved word.
25.2.3 Selected functions

Character conversions:

362 Mixed language programming

 M A Smith - May not be reproduced without permission

function To_C (Item : in Character) return Char;
function To_Ada (Item : in Char) return Character;

String conversions:

function To_C (Item : in String;
 Append_Nul:in Boolean := True)
 return char_array;
function To_Ada (Item: in char_array;

 Trim_Nul : in Boolean := True)
 return String;

25.3 An Ada program calling a C function

The following Ada program calls the C function triple. The C function triple returns as an integer value triple
the integer value passed to it. Firstly an interface function Triple is constructed that calls the C function
triple.

with Interfaces.C;
use Interfaces.C;
function Triple(N:in Integer) return Integer is
 function C_Triple(N:in Int) return Int;
 pragma Import (C, C_Triple, "c_triple");
begin
 return Integer(C_Triple(Int(N)));
end Triple;

Note: The use of the type defined in Interfaces.C s:
Int Represents a C int
Integer The Ada integer type.

In the Ada interface function the pragma import is used to request the compiler to link to an externally
written procedure or function. In this case the function c_triple written in C.

This interface function triple is then called from a simple test program.

with Ada.Text_Io, Ada.Integer_Text_Io, Triple;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
begin
 Put("3 Tripled is "); Put(Triple(3)); New_Line;
end Main;

The implementation of the function c_triple in C is:

int c_triple(int n) /* function to triple argument */
{
 return n + n + n;
}

The above code when compiled and linked will produce the following output.

Mixed language programming 363

 M A Smith - May not be reproduced without permission

3 Tripled is 9

25.3.1 Another example

The C library function strlen returns the number of characters in a C string. This function is easily called
using the Ada function To_C which will convert an Ada string into a C string. For example, the following test
program calls the C function strlen to deliver the number of characters in the Ada string "Brighton".

with Interfaces.C, Ada.Text_Io;
use Interfaces.C, Ada.Text_Io;
procedure Main is

 function Strlen(Str:in String) return Integer is
 function C_Strlen(C_Str:in char_array) return Int;
 pragma Import (C, C_Strlen, "strlen");
 begin
 return Integer(C_Strlen(To_C(Str, Append_Nul => True)));
 end Strlen;

 place : constant String := "Brighton";
begin
 Put("The length of the string [" & place & "] is " &
 Integer'Image(strlen(place)) & " characters long");
 New_Line;
end Main;

Note: The need to specify that a null character is appended to the string before the call to the C strlen
function.

The above test program when complied and run will produce the following results:

The length of the string [Brighton] is 8 characters long

25.4 An Ada package in C

In Section 23.2.2, in the implementation of the class TUI, the package Raw_Io was used as the interface
between the end user and the program. This package is responsible for the raw I/O between the user and the
program. It is special in that information cannot be buffered and data must be made immediately available to a
program without being echoed back onto the terminal.

This package can be written in part in Ada, but the function Get_Immediate that does not echo its character
has to be written in C.

Method Responsibility
Get_Immediate Read a character from the keyboard, but do not echo it

onto the screen.
Put Write a character or String to the screen with no

buffering. Thus the user will see the written text
immediately.

 The Ada specification of this package is:

364 Mixed language programming

 M A Smith - May not be reproduced without permission

package Raw_Io is
 procedure Get_Immediate(Ch:out Character);
 procedure Put(Ch:in Character);
 procedure Put(Str:in String);
end Raw_Io;

and its implementation is as follows:

with Interfaces.C, Ada.Text_Io;
use Interfaces.C, Ada.Text_Io;
package body Raw_Io is

 First_Time : Boolean := True;

 procedure Get_Immediate(Ch:out Character) is
 procedure C_No_Echo;
 pragma Import (C, C_No_Echo, "c_no_echo"); --Turn off echo
 begin
 if First_Time then
 C_No_Echo; First_Time := False;
 end if;
 Ada.Text_Io.Get_Immediate(Ch);
 if Character'Pos(Ch) = 10 then --Real Return ch
 Ch := Character'Val(13);
 end if;
 end Get_Immediate;

 procedure Put(Ch:in Character) is --Raw write
 begin
 Ada.Text_Io.Put(Ch); Ada.Text_Io.Flush;
 end Put;

 procedure Put(Str:in String) is --Raw write
 begin
 Ada.Text_Io.Put(Str); Ada.Text_Io.Flush;
 end Put;

end Raw_Io;

The function c_no_echo is a C function that turns off the echoing of characters input to the user program.
The implementation in C of this function is as follows:

Mixed language programming 365

 M A Smith - May not be reproduced without permission

/*
 * Set the terminal mode to -echo -icanon
 * Terminal mode reset when the character ^E is received
*/

#include <termios.h>
#include <unistd.h>

static tcflag_t c_lflag;
static int fd = 1; /* STDOUT_FILENO; */
static struct termios termios_data;

void c_no_echo()
{
 tcgetattr(fd, &termios_data);
 c_lflag = termios_data.c_lflag;
 termios_data.c_lflag = termios_data.c_lflag & (~(ECHO|ICANON|ECHOCTL));
 tcsetattr(fd, TCSANOW, &termios_data);
}

The function c_get_char is a C function that returns the next character input by the user. When the character
^E is received subsequent characters input will be echoed. The implementation in C of this function is as follows:

char c_get_char()
{
 char c;

 c = getchar();
 if (c == '\005')
 {
 termios_data.c_lflag = c_lflag;
 tcsetattr(fd, TCSANOW, &termios_data);
 }
 return (char) (c & 0xFF); /* Ordinary character */
}

Note: The use of control-e to return the stream back to its normal state.

25.5 Linking to FORTRAN and COBOL code

By using the package Interface.Fortran, subprograms written in FORTRAN may be called. By using the
package Interface.COBOL subprograms written in COBOL may be called.

 M A Smith - May not be reproduced without permission

Appendix A: The main language features of Ada 95

Simple object declarations

 ch : Character; -- An 8 bit character
 i : Integer; -- A whole number
 f : Float; -- A floating point number

Array declaration

 Computers_In_Room : array (1 .. 10) of Natural;

Type and subtype declarations

 type Money is delta 0.01 digits 8; --
 subtype Pmoney is Money range 0.0 .. Money'Last; --+ve Money

Enumeration declaration

 type Colour is (Red, Green, Blue);

Simple statements

 Sum := 2 + 3;
 Deposit(Mine, 100.00);

Block

 declare
 Ch : Character;
 begin
 Ch := 'A'; Put(Ch);
 end;

Selection statements

Appendix A 367

 M A Smith - May not be reproduced without permission

 if Temp < 15 then Put("Cool"); end if;

 if Temp < 15 then Put("Cool"); else Put("Warm"); end if;

 case Number is
 when 2+3 => Put("Is 5");
 when 7 => Put("Is 7");
 when others => Put("Not 5 or 7");
 end case;

Looping statements

 while Raining loop --While raining
 Work; -- Perform work
 end loop; --

 loop --Repeat
 Work; -- Perform work
 exit when Sunny; -- exit from loop when sunny
 end loop; --

 for I in 1 .. 10 loop --Vary I from 1 to 10
 Put(I); New_Line; -- Write I
 end loop; --

Arithmetic operators

 Res := A + B; --plus
 Res := A - B; --minus
 Res := A * B; --multiplication
 Res := A / B; --Division
 Res := A mod B; --Modulus
 Res := A rem B; --Remainder

Conditional expressions

 if A = B then --Equal to
 if A > B then --Greater than
 if A < B then --Less than
 if A /= B then --Not equal
 if A >= B then --Greater
 -- or equal
 if A <= B then --Less
 -- or equal
 if A in 1 .. 10 then

if Wet and Jan then -- and
if Dry and Feb then -- or

if Wet and Jan and then --
if Dry and Feb and then --

 if Temp > 15 and Dry then

Note: When using and then or or else the conditional expression will only be evaluated as far as
necessary to produce the result of the condition. Thus in the if statement:
 if fun_one or else fun_two then
fun_two will not be called if fun_one delivered true.

Exits from loops

368 Appendix A

 M A Smith - May not be reproduced without permission

The following code will execute until the condition sunny is met.

 loop --Repeat
 Work; -- Perform work
 exit when Sunny; -- exit from loop when sunny
 end loop; --

Class declaration and implementation

package Class_Account is
 type Account is tagged private;

 type Money is delta 0.01 digits 8; --
 subtype Pmoney is Money range 0.0 .. Money'Last; --+ve Money

 procedure Deposit(The:in out Account; Amount:in Pmoney);
 procedure Withdraw(The:in out Account;
 Amount:in Pmoney; Get:out Pmoney);
 function Balance(The:in Account) return Money;
private
 type Account is tagged record --Instance variables
 Balance_Of : Money := 0.00; --Amount on deposit
 Min_Balance : Money := 0.00; --Minimum Balance
 end record;
end Class_Account;

package body Class_Account is

 procedure Deposit(The:in out Account; Amount:in Pmoney) is
 begin
 The.Balance_Of := The.Balance_Of + Amount;
 end Deposit;

 -- Procedures withdraw and balance

end Class_Account;

Inheritance

with Class_Account;
use Class_Account;
package Class_Interest_Account is

 type Interest_Account is new Account with private;

 type Imoney is digits Money'digits+2; --

 procedure End_Of_Day(The:in out Interest_Account);
 procedure Interest_Credit(The:in out Interest_Account);
 procedure Interest_Accumulate(The:in out Interest_Account;
 Amount: in Imoney);
private
 Daily_Interest_Rate: constant Imoney := 0.000133680617;
 type Interest_Account is new Account with record
 Accumulated_Interest : Imoney := 0.00; --To date
 end record;
 The_Interest_Rate : Imoney := Daily_Interest_Rate;
end Class_Interest_Account;

Appendix A 369

 M A Smith - May not be reproduced without permission

package body Class_Interest_Account is

 procedure Interest_Credit(The:in out Interest_Account) is
 begin
 Deposit(The, Money(The.Accumulated_Interest)); --Rounds
 The.Accumulated_Interest := 0.00;
 end Interest_Credit;

 -- Procedure calc_interest

end Class_Interest_Account;

Program delay

delay n.m seconds delay until a_time;

delay n.m;
declare
 use Ada.Calendar;
begin
 delay until time_of(2000,1,1,0.0);
 -- 24 Hours
end;

Task

 task type Task_Factorial is --Specification
 entry Start(F:in Positive); --Rendezvous
 entry Finish(R:out Positive); --Rendezvous
 end Task_Factorial;

 task body Task_Factorial is --Implementation
 Fact : Positive; Answer : Positive := 1;
 begin
 accept Start(F:in Positive) do Fact := F; end Start;
 for I in 2 .. Fact loop Answer := Answer * I; end loop;
 accept Finish(R:out Positive) do R:=Answer; end Finish;
 end Task_Factorial;

Communication with a task

procedure Main is
 Factorial : Task_Factorial;
 Res : Natural;
begin
 Factorial.Start(5); Put("Factorial 5 is ");
 Factorial.Finish(Res); Put(Res, Width=>4); New_Line;
end Main;

Rendezvous

select statement select with else select with delay

370 Appendix A

 M A Smith - May not be reproduced without permission

select
 accept option1 do
 ...
 end;
or
 accept option2 do
 ...
 end;

end select;

select
 accept ...

else
 statements;

end select;

select
 accept ...

or
 delay n.m;
 statements;

end select;

Protected type

 protected type PT_Buffer is --Task type specification
 entry Put(Ch:in Character);
 entry Get(Ch:out Character);
 private
 -- variables which cannot be simultaneous accessed
 end PT_Buffer;

 protected body PT_Buffer is

 entry Put(Ch:in Character)
 when No_In_Queue < Queue_Size is
 begin
 . . .
 end Put;

 entry Get(Ch:in out Character)
 when No_In_Queue > 0 is
 begin
 . . .
 end Get;

 M A Smith - May not be reproduced without permission

Appendix B: Components of Ada

B.1 Reserved words and operators in Ada 95

B.1.1 Reserved words

abort abs abstract accept access aliased
all and array at begin body
case constant declare delay delta digits
do else elsif end entry exception
exit for function generic goto if
in is limited loop mod new
not null of or others out
package pragma private procedure protected raise
range record rem renames requeue return
reverse select separate subtype tagged task
terminate then type until use when
while with xor

B.1.2 Operators

:= = /= > < >=
<= + - * / rem
mod ** not abs & and
or and then or else in not in xor

Note: Some of the operators are represented by reserved words.

B.2 Attributes of objects and types

B.2.1 Scalar objects

Attribute � Description Type of result
S'Max 1 Delivers the max of the two

arguments.
S'Base

S'Min 2 Delivers the min of the two
arguments.

S'Base

� 1 S'Max denotes a function with specification:
function S'Max(left, right: S'Base) return S'Base;
This is for all scalar types S.

� 2 S'Min may be used in a similar way to S'Max

B.2.2 Array objects and types

Attribute � Description Type of result
O'First 1 Delivers the lower bound of the

first array index
Type of array index

372 Appendix B

 M A Smith - May not be reproduced without permission

O'First(n) 1 Delivers the lower bound of the
n’th array index

Type of array index

O'Last 1 Delivers the upper bound of the
first array index

Type of array index

O'Last(n) 1 Delivers the upper bound of the
n’th array index

Type of array index

O'Length 1 Delivers the number of elements
in the first array index

Universal Integer

O'Length(n) 1 Delivers the number of elements
in the n’th array index

Universal Integer

O'Range 1 Delivers the first array index
range

O'First .. O'Last

O'Range(n) 1 Delivers the n’th array index
range

O'First(n) ..
O'Last(n)

� 1 Only an instance of an unconstrained array may be interrogated using the attribute.

B.2.3 Scalar objects and types

Attribute � Description Type of result
O'First Delivers the lower bound of the

object or type
Of the type of O

O'Last Delivers the upper bound of the
object or type

Of the type of O

B.2.4 Discrete objects

Attribute � Description Type of result
O'Succ(val) 1 Delivers the successor of val

which is a value in the base type
of T.
The exception
Constraint_error is raised
if the successor of O’Last is
taken.

Of the base type of
T

O'Pred(val) 1 Delivers the predecessor of val
which is a value in the base type
of T.
The exception
Constraint_error is raised
if the predecessor of O’First is
taken.

Of the base type of
T

� 1 The attribute will only work on an instance of discrete object and not on a discrete type.

B.2.5 Task objects and types

Attribute � Description Type of result
O'Callable 1 Returns TRUE if the task object

is callable
Boolean

O'Storage_size The storage units required for
each activation of the task

Universal Integer

O'Terminated 1 Returns TRUE if the task is
terminated

Boolean

� 1 The attribute will only work on an instance of task object and not on a task type.
B.2.6 Floating point objects and types

Attribute Description Type of result

Appendix B 373

 M A Smith - May not be reproduced without permission

T'Digits The decimal precision. Universal Integer

T'Model_epsilon The absolute value of the
difference between 1.0 and the
next representable number above
1.0.

Universal real

T'Safe_first The lower bound of the safe
range of T,

Of type T

T'Safe_last The upper bound of the safe
range of T,

Of type T

B.3 Literals in Ada

An integer can be expressed in any base from 2 to 16 by prefixing the number by its base. For example, the
number 42 to base 10 can be written as:

2#101010# 4#222# 8#52# 10#42# 16#2A#

Note: The use of #’s to bracket the number.

In a number the underscore character can be used to improve readability. Usually this will be used to separate a
number into groups of three digits.

1_00 1_234.567_
8

3.141_596 1_000_000

The number 12.34 can be written as:

0.123_4E2 1.234E1

a numeric literal is of the type universal_integer or universal_real , which allows the literal to be
used freely with any appropriate type.

B.4 Operators in Ada 95

Operator Operand(s) Result
and
or
xor

Boolean
1D Boolean array
modular

Boolean
1D Boolean array
modular

and then
or else

Boolean Boolean

< <= > >= scalar
1D discrete array

Boolean
Boolean

= /= any non limited operands Boolean
in
not in

scalar in range
scalar not in range

Boolean

& 1D array & 1D array
1D array & element
element & 1D array
element & element

1D array
1D array
1D array
1D array

374 Appendix B

 M A Smith - May not be reproduced without permission

+ - (monadic)
+ - (dyadic)

numeric
numeric

Same as operands
Same as operands

* integer * integer
floating * floating
fixed * integer
integer * fixed
universal fixed * universal fixed
root real * root integer
root integer * root real

integer
floating
fixed
fixed
universal fixed
root real
root real

/ integer / integer
floating / floating
fixed / integer
universal fixed / universal fixed
root real / root integer

integer
floating
fixed
universal fixed
root real

mod rem integer integer
** integer ** integer (>= 0)

floating ** integer (>= 0)
integer
floating

not Boolean
1D Boolean array
modular

Boolean
1D Boolean array
modular

abs numeric numeric

Note: In the table 1D is a shorthand for a one dimensional array.

B.4.1 Priority of operators from high to low

and or xor and then or else Logical operators High
= /= < <= > >= Relational operators
+ - * / & Dyadic arithmetic

join operator
+ - Monadic arithmetic operators
* / mod rem Dyadic arithmetic operators
** abs not The others Low

B.5 Ada type hierarchy

Appendix B 375

 M A Smith - May not be reproduced without permission

All types

Elementary types

Composite types

access

scalar

discrete

real

enumeration

integer
signed

modular

float

decimal

ordinary
fixed

array

record

protected

task

Numeric types

B.6 Implementation requirements of standard types

Type Min value Max value Notes
Integer -32768 32767
Long_Integer -2147483648 2147483647 1
Float 6 dec. places
Long_float 11 dec. places 2

Min Value The minimal value that mu st be representable (smaller values are allowed).

Max Value The maximum value that must be representable (larger numbers are allowed).

Note: 1 Should be provided by an implementation if the target machine supports 32bit or longer arithmetic.

Note: 2 May be provided.

B.7 Exceptions
B.7.1 Pre-defined exceptions

Exception Explanation
Constraint_Error Raised when an attempt is made to assign a value to a

variable which does not satisfy a constraint defined on
the variable.

Storage_Error Raised when a program tries to allocate more memory
than is available to it.

Program_Error Raised when an attempt is made to execute an
erroneous action. For example, leaving a function
without executing a return statement.

376 Appendix B

 M A Smith - May not be reproduced without permission

Tasking_Error Raised when an error occurs in a task.

B.7.2 I/O exceptions

Exception Explanation
Data_Error Raised when a get on a numeric object finds the input is

not a valid value of this numeric type.
End_Error Raised when an attempt is made to read past the end of

the file.
Mode_Error Raised when an inappropriate operation is attempted on

a file.
Name_Error Raised if the name used in an open call does not match

a file in the external environment.
Status_Error Raised when an operation is attempted on a file that has

not been opened or created.
Use_Error Raised if the attempted operation is not possible on the

external file.

B.8 Ada 95, the structure
The Ada 95 programming language is split into two distinct sections: a core language that must be implemented
and a series of annexes that may or may not be implemented. The annexes extend the language into problem
specific areas. The annexes to the language are:

Annex Name Contents of annex:
C System programming The provision of features that will allow the

interfacing of an Ada program to external
environments. For example, the interfacing of
Ada code to a peripheral device or to components
of the operating system interface.

D Real time systems The provision of features that will allow the
control of real-time processes.

E Distributed systems The provision of features that will allow a system
to extend beyond a single address space in a
single machine.

F Information systems The provision of features that will allow an Ada
program to communicate with programs or
systems written in C or COBOL.

G Numerics The provision of features that will allow the
construction of numerically intense applications

H Safety and security Restrictions to the language to minimize
insecurities and areas in which compromises to
validation and verification would be made.

Note: The annexes rarely extend the syntax of the language; rather they provide extra packages to enable the
particular area to be performed.

B.9 Sources of information

B.8.1 Copies of the Ada 95 compiler

The main internet site for copies of the GNAT Ada 95 compiler is cs.nyu.edu. The latest version of the
compiler for a multitude of machines is held in the directory pub/gnat.

Appendix B 377

 M A Smith - May not be reproduced without permission

B.8.2 Ada information on the World Wide Web

Some of the sites offering information about Ada on the World Wide Web are:

URL (Uniform Resource Locator) Commentary
http://lglwww.epfl.ch/Ada/ A wealth of information about Ada.

Has links to other sites.
http://sw-eng.falls-
church.va.us/

The Ada Information Clearinghouse.
Many Ada documents, including the
reference manual and rational.

http://wuarchive.wustl.edu/
languages/ada/

The PAL (Public Ada Library): lots of
Ada-related software.

http://www.acm.org/sigada/ The ACM SIGAda home page

Note: The URL should be typed all on one line:

B.8.3 News groups

The usenet newsgroup comp.lang.ada contains a lively discussion about Ada related topics.
B.8.4 CD ROMs

Walnut Creek produce a CD ROM of Ada-related information including the GNAT compiler. For more
information e-mail info@cdrom.com . Alternatively see the WWW page http://www.cdrom.com/.

B.8.5 Additional information on this book

The WWW page http://www.brighton.ac.uk/ada95/home.html contains additional information
and programs not in this book.

 M A Smith - May not be reproduced without permission

Appendix C: Library functions and packages

The list of library functions and packages is reproduced from the Ada 95 Reference Manual ANSI/ISO/IEC-
8652:1995. The following copyright notice appears in the manual:

Copyright © 1992,1993,1994,1995 Intermetrics, Inc.

This copyright is assigned to the U.S. Government. All rights reserved.

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included unmodified in any
copy. Compiled copies of standard library units and examples need not contain this copyright notice so long as
the notice is included in all copies of source code and documentation.

In reproducing the subset of the library functions and packages in the Ada library, the author has made
changes to layout, case, and font. This was accomplished by using various software tools and so minor changes
may have been introduced without the author's knowledge.

C.1 Generic function Unchecked_Conversion

The generic function Unchecked_Conversion performs a conversion between two dissimilar types. The size
of the storage occupied by an instance of the types must be the same.

generic
 type Source(<>) is limited private;
 type Target(<>) is limited private;
function Ada.Unchecked_Conversion(S : Source) return Target;
pragma Convention(Intrinsic, Ada.Unchecked_Conversion);
pragma Pure(Ada.Unchecked_Conversion);

C.2 Generic function Unchecked_Deallocation
The generic function Unchecked_Deallocation releases storage for storage claimed by an allocator back to
the pool of free storage.

generic
 type Object(<>) is limited private;
 type Name is access Object;
procedure Ada.Unchecked_Deallocation(X : in out Name);
pragma Convention(Intrinsic, Ada.Unchecked_Deallocation);
pragma Preelaborate(Ada.Unchecked_Deallocation);

 C.4 The Package Standard

Appendix C 379

 M A Smith - May not be reproduced without permission

package Standard is
 pragma Pure(Standard);

 type Boolean is (False, True);

 --The predefined relational operators for this type are as follows:

 --function "=" (Left, Right : Boolean) return Boolean;
 --function "/=" (Left, Right : Boolean) return Boolean;
 --function "<" (Left, Right : Boolean) return Boolean;
 --function "<=" (Left, Right : Boolean) return Boolean;
 --function ">" (Left, Right : Boolean) return Boolean;
 --function ">=" (Left, Right : Boolean) return Boolean;

 --The predefined logical operators and the predefined logical
 --negation operator are as follows:

 --function "and" (Left, Right : Boolean) return Boolean;
 --function "or" (Left, Right : Boolean) return Boolean;
 --function "xor" (Left, Right : Boolean) return Boolean;

 --function "not" (Right : Boolean) return Boolean;

 --The integer type root_integer is predefined.
 --The corresponding universal type is universal_integer.

 type Integer is range implementation-defined;

 subtype Natural is Integer range 0 .. Integer'Last;
 subtype Positive is Integer range 1 .. Integer'Last;

 --The predefined operators for type Integer are as follows:
 --function "=" (Left, Right : Integer'Base) return Boolean;
 --function "/=" (Left, Right : Integer'Base) return Boolean;
 --function "<" (Left, Right : Integer'Base) return Boolean;
 --function "<=" (Left, Right : Integer'Base) return Boolean;
 --function ">" (Left, Right : Integer'Base) return Boolean;
 --function ">=" (Left, Right : Integer'Base) return Boolean;

 --function "+" (Right : Integer'Base) return Integer'Base;
 --function "-" (Right : Integer'Base) return Integer'Base;
 --function "abs" (Right : Integer'Base) return Integer'Base;

 --function "+" (Left, Right : Integer'Base) return Integer'Base;
 --function "-" (Left, Right : Integer'Base) return Integer'Base;
 --function "*" (Left, Right : Integer'Base) return Integer'Base;
 --function "/" (Left, Right : Integer'Base) return Integer'Base;
 --function "rem" (Left, Right : Integer'Base) return Integer'Base;
 --function "mod" (Left, Right : Integer'Base) return Integer'Base;

 --function "**" (Left : Integer'Base; Right : Natural) return Integer'Base;

 --The specification of each operator for the type
 --root_integer, or for any additional predefined integer
 --type, is obtained by replacing Integer by the name of the type
 --in the specification of the corresponding operator of the type
 --Integer. The right operand of the exponentiation operator
 --remains as subtype Natural.

 --The floating point type root_real is predefined.
 --The corresponding universal type is universal_real.

380 Appendix C

 M A Smith - May not be reproduced without permission

 type Float is digits implementation-defined;

 --The predefined operators for this type are as follows:

 --function "=" (Left, Right : Float) return Boolean;
 --function "/=" (Left, Right : Float) return Boolean;
 --function "<" (Left, Right : Float) return Boolean;
 --function "<=" (Left, Right : Float) return Boolean;
 --function ">" (Left, Right : Float) return Boolean;
 --function ">=" (Left, Right : Float) return Boolean;

 --function "+" (Right : Float) return Float;
 --function "-" (Right : Float) return Float;
 --function "abs" (Right : Float) return Float;

 --function "+" (Left, Right : Float) return Float;
 --function "-" (Left, Right : Float) return Float;
 --function "*" (Left, Right : Float) return Float;
 --function "/" (Left, Right : Float) return Float;

 --function "**" (Left : Float; Right : Integer'Base) return Float;

 --The specification of each operator for the type root_real, or for
 --any additional predefined floating point type, is obtained by
 --replacing Float by the name of the type in the specification of the
 --corresponding operator of the type Float.

 --In addition, the following operators are predefined for the root
 --numeric types:

 function "*" (Left : root_integer; Right : root_real)
 return root_real;

 function "*" (Left : root_real; Right : root_integer)
 return root_real;

 function "/" (Left : root_real; Right : root_integer)
 return root_real;

 --The type universal_fixed is predefined.
 --The only multiplying operators defined between
 --fixed point types are

 function "*" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;

 function "/" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;

 --The declaration of type Character is based on the standard ISO 8859-1 character set.

 --There are no character literals corresponding to the positions forcontrolcharacters.
 --They are indicated in italics in this definition. See 3.5.2.

Appendix C 381

 M A Smith - May not be reproduced without permission

 type Character is

 (nul, soh, stx, etx, eot, enq, ack, bel,
 bs, ht, lf, vt, ff, cr, so, si,

 dle, dc1, dc2, dc3, dc4, nak, syn, etb,
 can, em, sub, esc, fs, gs, rs, us,

 ' ', '!', '"', '#', '$', '%', '&', ''',
 '(', ')', '*', '+', ',', '-', '.', '/',

 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '_ ']', '̂ ', '_',

 '̀ ', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '', '|', '', '~', del,

 reserved_128, reserved_129, bph, nbh,
 reserved_132, nel, ssa, esa,

 hts, htj, vts, pld, plu, ri, ss2, ss3,

 dcs, pu1, pu2, sts, cch, mw, spa, epa,

 sos, reserved_153, sci, csi,
 st, osc, pm, apc,

...);

 --The predefined operators for the type Character are the same as for
 --any enumeration type.

 --The declaration of type Wide_Character is based on the standard ISO 10646 BMP character set.
 --The first 256 positions have the same contents as type Character. See 3.5.2.

 type Wide_Character is (nul, soh ... FFFE, FFFF);

 package ASCII is ... end ASCII; --Obsolescent; see J.5

 --Predefined string types:

 type String is array(Positive range <>) of Character;
 pragma Pack(String);

 --The predefined operators for this type are as follows:

 -- function "=" (Left, Right: String) return Boolean;
 -- function "/=" (Left, Right: String) return Boolean;
 -- function "<" (Left, Right: String) return Boolean;
 -- function "<=" (Left, Right: String) return Boolean;
 -- function ">" (Left, Right: String) return Boolean;
 -- function ">=" (Left, Right: String) return Boolean;

382 Appendix C

 M A Smith - May not be reproduced without permission

 -- function "&" (Left: String; Right: String) return String;
 -- function "&" (Left: Character; Right: String) return String;
 -- function "&" (Left: String; Right: Character) return String;
 -- function "&" (Left: Character; Right: Character) return String;

 type Wide_String is array(Positive range <>) of Wide_Character;
 pragma Pack(Wide_String);

 --The predefined operators for this type correspond to those for String

 type Duration is delta implementation-defined range implementation-defined;

 --The predefined operators for the type Duration are the same as for
 --any fixed point type.

 --The predefined exceptions:

 Constraint_Error: exception;
 Program_Error : exception;
 Storage_Error : exception;
 Tasking_Error : exception;

end Standard;

C.5 The Package Ada.Text_Io

In the package Ada.Standard the following parameter arguments are used:

Parameter name Purpose
aft The number of digits after the decimal place
base The base of the number.
exp The number of characters in the exponent. For the

number 123.45678:
exp=>0 would give a format of => 123.45678
exp=>2 would give a format of => 1.2345678E+2
exp=>4 would give a format of => 1.2345678E+002

file file_type:
 The file descriptor which is read from or written to.
file_access:
 The access value of the file_type.

fore The number of digits before the decimal place
form Form of the created output file.
item The item to be read / written.
last The last character read from the string.
mode The mode of the operation read, write or append.
name The name of the file as a String.
width The number of characters to be read / written

Appendix C 383

 M A Smith - May not be reproduced without permission

package Ada.IO_Exceptions is
 pragma Pure(IO_Exceptions);

 Status_Error : exception;
 Mode_Error : exception;
 Name_Error : exception;
 Use_Error : exception;
 Device_Error : exception;
 End_Error : exception;
 Data_Error : exception;
 Layout_Error : exception;

end Ada.IO_Exceptions;

384 Appendix C

 M A Smith - May not be reproduced without permission

with Ada.IO_Exceptions;
package Ada.Text_IO is

 type File_Type is limited private;

 type File_Mode is (In_File, Out_File, Append_File);

 type Count is range 0 .. implementation-defined;
 subtype Positive_Count is Count range 1 .. Count'Last;
 Unbounded : constant Count := 0; --line and page length

 subtype Field is Integer range 0 .. implementation-defined;
 subtype Number_Base is Integer range 2 .. 16;

 type Type_Set is (Lower_Case, Upper_Case);

 --File Management

 procedure Create (File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open(File : in File_Type) return Boolean;

 --Control of default input and output files

 procedure Set_Input (File : in File_Type);
 procedure Set_Output(File : in File_Type);
 procedure Set_Error (File : in File_Type);

 function Standard_Input return File_Type;
 function Standard_Output return File_Type;
 function Standard_Error return File_Type;

 function Current_Input return File_Type;
 function Current_Output return File_Type;
 function Current_Error return File_Type;

 type File_Access is access constant File_Type;

 function Standard_Input return File_Access;
 function Standard_Output return File_Access;
 function Standard_Error return File_Access;

 function Current_Input return File_Access;
 function Current_Output return File_Access;
 function Current_Error return File_Access;

--Buffer control
 procedure Flush (File : in out File_Type);
 procedure Flush;

Appendix C 385

 M A Smith - May not be reproduced without permission

 --Specification of line and page lengths

 procedure Set_Line_Length(File : in File_Type; To : in Count);
 procedure Set_Line_Length(To : in Count);

 procedure Set_Page_Length(File : in File_Type; To : in Count);
 procedure Set_Page_Length(To : in Count);

 function Line_Length(File : in File_Type) return Count;
 function Line_Length return Count;

 function Page_Length(File : in File_Type) return Count;
 function Page_Length return Count;

 --Column, Line, and Page Control

 procedure New_Line (File : in File_Type;
 Spacing : in Positive_Count := 1);
 procedure New_Line (Spacing : in Positive_Count := 1);

 procedure Skip_Line (File : in File_Type;
 Spacing : in Positive_Count := 1);
 procedure Skip_Line (Spacing : in Positive_Count := 1);

 function End_Of_Line(File : in File_Type) return Boolean;
 function End_Of_Line return Boolean;

 procedure New_Page (File : in File_Type);
 procedure New_Page;

 procedure Skip_Page (File : in File_Type);
 procedure Skip_Page;

 function End_Of_Page(File : in File_Type) return Boolean;
 function End_Of_Page return Boolean;

 function End_Of_File(File : in File_Type) return Boolean;
 function End_Of_File return Boolean;

 procedure Set_Col (File : in File_Type; To : in Positive_Count);
 procedure Set_Col (To : in Positive_Count);

 procedure Set_Line(File : in File_Type; To : in Positive_Count);
 procedure Set_Line(To : in Positive_Count);

 function Col (File : in File_Type) return Positive_Count;
 function Col return Positive_Count;

 function Line(File : in File_Type) return Positive_Count;
 function Line return Positive_Count;

 function Page(File : in File_Type) return Positive_Count;
 function Page return Positive_Count;

 --Character Input-Output

 procedure Get(File : in File_Type; Item : out Character);
 procedure Get(Item : out Character);

 procedure Put(File : in File_Type; Item : in Character);
 procedure Put(Item : in Character);

 procedure Look_Ahead (File : in File_Type;
 Item : out Character;
 End_Of_Line : out Boolean);

386 Appendix C

 M A Smith - May not be reproduced without permission

 procedure Look_Ahead (Item : out Character;
 End_Of_Line : out Boolean);

 procedure Get_Immediate(File : in File_Type;
 Item : out Character);
 procedure Get_Immediate(Item : out Character);

 procedure Get_Immediate(File : in File_Type;
 Item : out Character;
 Available : out Boolean);
 procedure Get_Immediate(Item : out Character;
 Available : out Boolean);

 --String Input-Output

 procedure Get(File : in File_Type; Item : out String);
 procedure Get(Item : out String);

 procedure Put(File : in File_Type; Item : in String);
 procedure Put(Item : in String);

 procedure Get_Line(File : in File_Type;
 Item : out String;
 Last : out Natural);
 procedure Get_Line(Item : out String; Last : out Natural);

 procedure Put_Line(File : in File_Type; Item : in String);
 procedure Put_Line(Item : in String);

--Generic packages for Input-Output of Integer Types

 generic
 type Num is range <>;
 package Integer_IO is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

 end Integer_IO;

 generic
 type Num is mod <>;
 package Modular_IO is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

Appendix C 387

 M A Smith - May not be reproduced without permission

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

 end Modular_IO;
 --Generic packages for Input-Output of Real Types

 generic
 type Num is digits <>;
 package Float_IO is

 Default_Fore : Field := 2;
 Default_Aft : Field := Num'Digits-1;
 Default_Exp : Field := 3;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Float_IO;

 generic
 type Num is delta <>;
 package Fixed_IO is

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get(File : in File_Type;
 Item : out Num;

388 Appendix C

 M A Smith - May not be reproduced without permission

 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Fixed_IO;

 generic
 type Num is delta <> digits <>;
 package Decimal_IO is

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Decimal_IO;

 --Generic package for Input-Output of Enumeration Types

 generic
 type Enum is (<>);
 package Enumeration_IO is

 Default_Width : Field := 0;
 Default_Setting : Type_Set := Upper_Case;

 procedure Get(File : in File_Type;
 Item : out Enum);

Appendix C 389

 M A Smith - May not be reproduced without permission

 procedure Get(Item : out Enum);

 procedure Put(File : in File_Type;
 Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);
 procedure Put(Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

 procedure Get(From : in String;
 Item : out Enum;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Enum;
 Set : in Type_Set := Default_Setting);
 end Enumeration_IO;

--Exceptions

 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
 Layout_Error : exception renames IO_Exceptions.Layout_Error;
private
 ... --not specified by the language
end Ada.Text_IO;

C.6 The Package Ada.Sequential_io

In the package Ada.Sequential_io the following parameter arguments are used:

Parameter name Purpose
file file_type:

 The file descriptor which is read from or written to.
form Form of the created output file.
mode The mode of the operation read, write or append.
name The name of the file as a String.

390 Appendix C

 M A Smith - May not be reproduced without permission

with Ada.IO_Exceptions;
generic
 type Element_Type(<>) is private;
package Ada.Sequential_IO is

 type File_Type is limited private;

 type File_Mode is (In_File, Out_File, Append_File);

 --File management

 procedure Create(File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete(File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open(File : in File_Type) return Boolean;

 --Input and output operations

 procedure Read (File : in File_Type; Item : out Element_Type);
 procedure Write (File : in File_Type; Item : in Element_Type);

 function End_Of_File(File : in File_Type) return Boolean;

 --Exceptions

 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;

private
 ... --not specified by the language
end Ada.Sequential_IO;

C.7 The Package Ada.Characters.Handling

Appendix C 391

 M A Smith - May not be reproduced without permission

package Ada.Characters.Handling is
 pragma Preelaborate(Handling);

--Character classification functions

 function Is_Control (Item : in Character) return Boolean;
 function Is_Graphic (Item : in Character) return Boolean;
 function Is_Letter (Item : in Character) return Boolean;
 function Is_Lower (Item : in Character) return Boolean;
 function Is_Upper (Item : in Character) return Boolean;
 function Is_Basic (Item : in Character) return Boolean;
 function Is_Digit (Item : in Character) return Boolean;
 function Is_Decimal_Digit (Item : in Character) return Boolean
 renames Is_Digit;
 function Is_Hexadecimal_Digit (Item : in Character) return Boolean;
 function Is_Alphanumeric (Item : in Character) return Boolean;
 function Is_Special (Item : in Character) return Boolean;
--Conversion functions for Character and String

 function To_Lower (Item : in Character) return Character;
 function To_Upper (Item : in Character) return Character;
 function To_Basic (Item : in Character) return Character;

 function To_Lower (Item : in String) return String;
 function To_Upper (Item : in String) return String;
 function To_Basic (Item : in String) return String;

--Classifications of and conversions between Character and ISO 646

 subtype ISO_646 is
 Character range Character'Val(0) .. Character'Val(127);

 function Is_ISO_646 (Item : in Character) return Boolean;
 function Is_ISO_646 (Item : in String) return Boolean;

 function To_ISO_646 (Item : in Character;
 Substitute : in ISO_646 := ' ')
 return ISO_646;

 function To_ISO_646 (Item : in String;
 Substitute : in ISO_646 := ' ')
 return String;

--Classifications of and conversions between Wide_Character and Character.

 function Is_Character (Item : in Wide_Character) return Boolean;
 function Is_String (Item : in Wide_String) return Boolean;

 function To_Character (Item : in Wide_Character;
 Substitute : in Character := ' ')
 return Character;

 function To_String (Item : in Wide_String;
 Substitute : in Character := ' ')
 return String;

 function To_Wide_Character (Item : in Character) return Wide_Character;

 function To_Wide_String (Item : in String) return Wide_String;

end Ada.Characters.Handling;

C.8 The Package Ada.Strings.Bounded

In the package Ada.Strings.Bounded the following parameter arguments are used:

392 Appendix C

 M A Smith - May not be reproduced without permission

Parameter name Purpose
drop = Left (Compressing to the right)

= Right (Compressing to the left)
= Error (Strings Length_error propagated)

going = Forward (Forward search)

with Ada.Strings.Maps;
package Ada.Strings.Bounded is
 pragma Preelaborate(Bounded);

 generic
 Max : Positive; --Maximum length of a Bounded_String
 package Generic_Bounded_Length is

 Max_Length : constant Positive := Max;

 type Bounded_String is private;

 Null_Bounded_String : constant Bounded_String;

 subtype Length_Range is Natural range 0 .. Max_Length;

 function Length (Source : in Bounded_String) return Length_Range;

Appendix C 393

 M A Smith - May not be reproduced without permission

 --Conversion, Concatenation, and Selection functions

 function To_Bounded_String (Source : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function To_String (Source : in Bounded_String) return String;

 function Append (Left, Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Bounded_String;
 Right : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in String;
 Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Bounded_String;
 Right : in Character;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Character;
 Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Append (Source : in out Bounded_String;
 New_Item : in Bounded_String;
 Drop : in Truncation := Error);

 procedure Append (Source : in out Bounded_String;
 New_Item : in String;
 Drop : in Truncation := Error);

 procedure Append (Source : in out Bounded_String;
 New_Item : in Character;
 Drop : in Truncation := Error);

 function "&" (Left, Right : in Bounded_String)
 return Bounded_String;

 function "&" (Left : in Bounded_String; Right : in String)
 return Bounded_String;

 function "&" (Left : in String; Right : in Bounded_String)
 return Bounded_String;

 function "&" (Left : in Bounded_String; Right : in Character)
 return Bounded_String;

 function "&" (Left : in Character; Right : in Bounded_String)
 return Bounded_String;

 function Element (Source : in Bounded_String;
 Index : in Positive)
 return Character;

 procedure Replace_Element (Source : in out Bounded_String;
 Index : in Positive;
 By : in Character);

394 Appendix C

 M A Smith - May not be reproduced without permission

 function Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

 function "=" (Left, Right : in Bounded_String) return Boolean;
 function "=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function "<" (Left, Right : in Bounded_String) return Boolean;

 function "<" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "<" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function "<=" (Left, Right : in Bounded_String) return Boolean;

 function "<=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "<=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function ">" (Left, Right : in Bounded_String) return Boolean;

 function ">" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function ">" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function ">=" (Left, Right : in Bounded_String) return Boolean;

 function ">=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function ">=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 --Search functions

 function Index (Source : in Bounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Index (Source : in Bounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in Bounded_String;

Appendix C 395

 M A Smith - May not be reproduced without permission

 Going : in Direction := Forward)
 return Natural;

 function Count (Source : in Bounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Count (Source : in Bounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Count (Source : in Bounded_String;
 Set : in Maps.Character_Set)
 return Natural;

 procedure Find_Token (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership;
 First : out Positive;
 Last : out Natural);

 --String translation subprograms

 function Translate (Source : in Bounded_String;
 Mapping : in Maps.Character_Mapping)
 return Bounded_String;

 procedure Translate (Source : in out Bounded_String;
 Mapping : in Maps.Character_Mapping);

 function Translate (Source : in Bounded_String;
 Mapping : in Maps.Character_Mapping_Function)
 return Bounded_String;

 procedure Translate (Source : in out Bounded_String;
 Mapping : in Maps.Character_Mapping_Function);

 --String transformation subprograms

 function Replace_Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Replace_Slice (Source : in out Bounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error);

 function Insert (Source : in Bounded_String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Insert (Source : in out Bounded_String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

396 Appendix C

 M A Smith - May not be reproduced without permission

 function Overwrite (Source : in Bounded_String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Overwrite (Source : in out Bounded_String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

 function Delete (Source : in Bounded_String;
 From : in Positive;
 Through : in Natural)
 return Bounded_String;

 procedure Delete (Source : in out Bounded_String;
 From : in Positive;
 Through : in Natural);

--String selector subprograms

 function Trim (Source : in Bounded_String;
 Side : in Trim_End)
 return Bounded_String;
 procedure Trim (Source : in out Bounded_String;
 Side : in Trim_End);

 function Trim (Source : in Bounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set)
 return Bounded_String;

 procedure Trim (Source : in out Bounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set);

 function Head (Source : in Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error)
 return Bounded_String;
 procedure Head (Source : in out Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error);

 function Tail (Source : in Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Tail (Source : in out Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error);
--String constructor subprograms
 function "*" (Left : in Natural;
 Right : in Character)
 return Bounded_String;

 function "*" (Left : in Natural;
 Right : in String)
 return Bounded_String;

 function "*" (Left : in Natural;

Appendix C 397

 M A Smith - May not be reproduced without permission

 Right : in Bounded_String)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in Character;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;
 private
 ... --not specified by the language
 end Generic_Bounded_Length;

end Ada.Strings.Bounded;

C.9 The Package Interfaces.C

package Interfaces.C is
 pragma Pure(C);

 --Declarations based on C's <limits.h>

 CHAR_BIT : constant := implementation-defined; --typically 8
 SCHAR_MIN : constant := implementation-defined; --typically -128
 SCHAR_MAX : constant := implementation-defined; --typically 127
 UCHAR_MAX : constant := implementation-defined; --typically 255

 --Signed and Unsigned Integers
 type int is range implementation-defined;
 type short is range implementation-defined;
 type long is range implementation-defined;

 type signed_char is range SCHAR_MIN .. SCHAR_MAX;
 for signed_char'Size use CHAR_BIT;

 type unsigned is mod implementation-defined;
 type unsigned_short is mod implementation-defined;
 type unsigned_long is mod implementation-defined;

 type unsigned_char is mod (UCHAR_MAX+1);
 for unsigned_char'Size use CHAR_BIT;

 subtype plain_char is implementation-defined;

 type ptrdiff_t is range implementation-defined;

 type size_t is mod implementation-defined;

398 Appendix C

 M A Smith - May not be reproduced without permission

 --Floating Point

 type C_float is digits implementation-defined;

 type double is digits implementation-defined;

 type long_double is digits implementation-defined;

 --Characters and Strings

 type char is <implementation-defined character type>;

 nul : constant char := char'First;

 function To_C (Item : in Character) return char;

 function To_Ada (Item : in char) return Character;

 type char_array is array (size_t range <>) of aliased char;
 pragma Pack(char_array);
 for char_array'Component_Size use CHAR_BIT;

 function Is_Nul_Terminated (Item : in char_array) return Boolean;

 function To_C (Item : in String;
 Append_Nul : in Boolean := True)
 return char_array;

 function To_Ada (Item : in char_array;
 Trim_Nul : in Boolean := True)
 return String;

 procedure To_C (Item : in String;
 Target : out char_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char_array;
 Target : out String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 --Wide Character and Wide String

 type wchar_t is implementation-defined;

 wide_nul : constant wchar_t := wchar_t'First;

 function To_C (Item : in Wide_Character) return wchar_t;
 function To_Ada (Item : in wchar_t) return Wide_Character;

 type wchar_array is array (size_t range <>) of aliased wchar_t;

 pragma Pack(wchar_array);

 function Is_Nul_Terminated (Item : in wchar_array) return Boolean;

 function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return wchar_array;

 function To_Ada (Item : in wchar_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

 procedure To_C (Item : in Wide_String;
 Target : out wchar_array;

Appendix C 399

 M A Smith - May not be reproduced without permission

 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in wchar_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 Terminator_Error : exception;

end Interfaces.C;

C.10 The Package Ada.Numerics

package Ada.Numerics is
 pragma Pure(Numerics);
 Argument_Error : exception;
 Pi : constant :=
 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
 e : constant :=
 2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;
end Ada.Numerics;

C.11 The Package Ada.Numerics.generic_elementary_functions

generic
 type Float_Type is digits <>;
package Ada.Numerics.Generic_Elementary_Functions is
 pragma Pure(Generic_Elementary_Functions);

 function Sqrt (X : Float_Type'Base) return Float_Type'Base;
 function Log (X : Float_Type'Base) return Float_Type'Base;
 function Log (X, Base : Float_Type'Base) return Float_Type'Base;
 function Exp (X : Float_Type'Base) return Float_Type'Base;
 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base;

 function Sin (X : Float_Type'Base) return Float_Type'Base;
 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cos (X : Float_Type'Base) return Float_Type'Base;
 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Tan (X : Float_Type'Base) return Float_Type'Base;
 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cot (X : Float_Type'Base) return Float_Type'Base;
 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base;

 function Arcsin (X : Float_Type'Base) return Float_Type'Base;
 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arccos (X : Float_Type'Base) return Float_Type'Base;
 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base:= 1.0) return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;

400 Appendix C

 M A Smith - May not be reproduced without permission

 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base:= 1.0) return Float_Type'Base;
 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;

 function Sinh (X : Float_Type'Base) return Float_Type'Base;
 function Cosh (X : Float_Type'Base) return Float_Type'Base;
 function Tanh (X : Float_Type'Base) return Float_Type'Base;
 function Coth (X : Float_Type'Base) return Float_Type'Base;
 function Arcsinh (X : Float_Type'Base) return Float_Type'Base;
 function Arccosh (X : Float_Type'Base) return Float_Type'Base;
 function Arctanh (X : Float_Type'Base) return Float_Type'Base;
 function Arccoth (X : Float_Type'Base) return Float_Type'Base;

end Ada.Numerics.Generic_Elementary_Functions;

C.12 The Package Ada.Command_line

package Ada.Command_Line is
 pragma Preelaborate(Command_Line);

 function Argument_Count return Natural;

 function Argument (Number : in Positive) return String;

 function Command_Name return String;

 type Exit_Status is implementation-defined integer type;

 Success : constant Exit_Status;
 Failure : constant Exit_Status;

 procedure Set_Exit_Status (Code : in Exit_Status);

private
 ... --not specified by the language
end Ada.Command_Line;

C.13 The Package Ada.Finalization

package Ada.Finalization is
 pragma Preelaborate(Finalization);

 type Controlled is abstract tagged private;

 procedure Initialize(Object : in out Controlled);
 procedure Adjust (Object : in out Controlled);
 procedure Finalize (Object : in out Controlled);

 type Limited_Controlled is abstract tagged limited private;

 procedure Initialize(Object : in out Limited_Controlled);
 procedure Finalize (Object : in out Limited_Controlled);
private
 ... --not specified by the language
end Ada.Finalization;

Appendix C 401

 M A Smith - May not be reproduced without permission

C.14 The Package Ada.Tags

package Ada.Tags is
 type Tag is private;

 function Expanded_Name(T : Tag) return String;
 function External_Tag(T : Tag) return String;
 function Internal_Tag(External : String) return Tag;

 Tag_Error : exception;

private
 ... --not specified by the language
end Ada.Tags;

C.15 The Package Ada.Calendar

package Ada.Calendar is
 type Time is private;

 subtype Year_Number is Integer range 1901 .. 2099;
 subtype Month_Number is Integer range 1 .. 12;
 subtype Day_Number is Integer range 1 .. 31;
 subtype Day_Duration is Duration range 0.0 .. 86_400.0;

 function Clock return Time;

 function Year (Date : Time) return Year_Number;
 function Month (Date : Time) return Month_Number;
 function Day (Date : Time) return Day_Number;
 function Seconds(Date : Time) return Day_Duration;

 procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration);

 function Time_Of(Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration := 0.0)
 return Time;

402 Appendix C

 M A Smith - May not be reproduced without permission

 function "+" (Left : Time; Right : Duration) return Time;
 function "+" (Left : Duration; Right : Time) return Time;
 function "-" (Left : Time; Right : Duration) return Time;
 function "-" (Left : Time; Right : Time) return Duration;

 function "<" (Left, Right : Time) return Boolean;
 function "<="(Left, Right : Time) return Boolean;
 function ">" (Left, Right : Time) return Boolean;
 function ">="(Left, Right : Time) return Boolean;

 Time_Error : exception;

private
 ... --not specified by the language
end Ada.Calendar;

C.16 The Package System

package System is
 pragma Preelaborate(System);

 type Name is implementation-defined-enumeration-type;
 System_Name : constant Name := implementation-defined;

 --System-Dependent Named Numbers:

 Min_Int : constant := root_integer'First;
 Max_Int : constant := root_integer'Last;

 Max_Binary_Modulus : constant := implementation-defined;
 Max_Nonbinary_Modulus : constant := implementation-defined;

 Max_Base_Digits : constant := root_real'Digits;
 Max_Digits : constant := implementation-defined;

 Max_Mantissa : constant := implementation-defined;
 Fine_Delta : constant := implementation-defined;

 Tick : constant := implementation-defined;

Appendix C 403

 M A Smith - May not be reproduced without permission

 --Storage-related Declarations:
 type Address is implementation-defined;
 Null_Address : constant Address;

 Storage_Unit : constant := implementation-defined;
 Word_Size : constant := implementation-defined * Storage_Unit;
 Memory_Size : constant := implementation-defined;

 --Address Comparison:
 function "<" (Left, Right : Address) return Boolean;
 function "<="(Left, Right : Address) return Boolean;
 function ">" (Left, Right : Address) return Boolean;
 function ">="(Left, Right : Address) return Boolean;
 function "=" (Left, Right : Address) return Boolean;
 --function "/=" (Left, Right : Address) return Boolean;
 --"/=" is implicitly defined
 pragma Convention(Intrinsic, "<");
 --and so on for all language-defined subprograms in this package

 --Other System-Dependent Declarations:
 type Bit_Order is (High_Order_First, Low_Order_First);
 Default_Bit_Order : constant Bit_Order;

 --Priority-related declarations (see D.1):
 subtype Any_Priority is Integer range implementation-defined;
 subtype Priority is Any_Priority
 range Any_Priority'First .. implementation-defined;
 subtype Interrupt_Priority is Any_Priority
 range Priority'Last+1 .. Any_Priority'Last;

 Default_Priority : constant Priority :=
 (Priority'First + Priority'Last)/2;

private
 ... --not specified by the language
end System;

 M A Smith - May not be reproduced without permission

Appendix D: Answers to selected exercises

From chapter 2

A program to print the first 20 numbers.

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
begin
 for I in 1 .. 20 loop
 Put(Integer'Image(I)); New_Line;
 end loop;
end Main;

A program to print the 8 times table.

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
begin
 for I in 1 .. 12 loop
 Put(" 8 * "); Put(Integer'Image(I)); Put(" = ");
 Put(Integer'Image(I*8)); New_Line;
 end loop;
end Main;

A program to print numbers in the Fibonacci series.

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
 First, Second, Next : Integer;
begin
 First := 0;
 Second := 1;
 Put(Integer'Image(1)); New_Line;
 while Second < 10000 loop
 Put(Integer'Image(Second)); New_Line;
 Next := First + Second;
 First := Second;
 Second := Next;
 end loop;
end Main;

A program to print a character table.

Appendix D 405

 M A Smith - May not be reproduced without permission

with Ada.Text_Io;
use Ada.Text_Io;
procedure Main is
begin
 for I in 32 .. 127 loop
 Put("Character "); Put(Character'Val(I));
 Put(" is represented by code "); Put(Integer'Image(I));
 New_Line;
 end loop;
end Main;

From chapter 3

A program to print an arbitrary time table in the range 1 .. 20.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 subtype Valid_Times_Table is Integer range 1 .. 20;
 Table, Last : Integer;
begin
 if Argument_Count >= 1 then
 Get(Argument(1), Table, Last);
 if Table in Valid_Times_Table then
 Put("The "); Put(Table, Width=>2);
 Put(" times table is"); New_Line;
 for I in 1 .. 12 loop
 Put(Table, Width=>2); Put(" * ");
 Put(I, Width=>2); Put(" = ");
 Put(I*Table, Width=>3); New_Line;
 end loop;
 else
 Put("Number not valid"); New_Line;
 end if;
 else
 Put("No argument specified"); New_Line;
 end if;
end Main;

A program to determine if a number is prime or not.

406 Appendix D

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Num : Integer;
begin
 Put("Please enter number : "); Get(Num);
 Put("Number is ");
 if Num in Positive then
 for I in 2 .. Num-1 loop
 if (Num/I)*I = Num then
 Put("not ");
 exit;
 end if;
 end loop;
 Put("prime"); New_Line;
 else
 Put("Require a positive number"); New_Line;
 end if;
end Main;

A program to covert a temperature in Fahrenheit to centigrade.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 subtype Centigrade is Float range -32.0/1.8 .. 212.0/1.8;
 subtype Fahrenheit is Float range 0.0 .. 212.0;
 Temp : Float;
begin
 Put("Please enter temperature in Fahrenheit ");
 Get(Temp);
 if Temp in Fahrenheit then
 Put("Temperature in Centigrade is ");
 Put((Temp -32.0) / 1.8, Exp=>0, Aft=>2); New_Line;
 else
 Put("Temperature not valid"); New_Line;
 end if;
end Main;

A program to print student marks as grades.

Appendix D 407

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 Name_Length : constant Positive := 20;
 type Name_Range is range 1 .. Name_Length;
 Ch : Character;
 Mark: Integer;
begin
 while not End_Of_File loop
 for I in Name_Range loop
 Get(Ch); Put(Ch);
 end loop;
 Get(Mark);
 case Mark is
 when 0 .. 39 => Put("F");
 when 40 .. 49 => Put("D");
 when 50 .. 59 => Put("C");
 when 60 .. 69 => Put("B");
 when 70 ..100 => Put("A");
 when others => Put("Invalid data");
 end case;
 Skip_Line; New_Line;
 end loop;
end Main;

From chapter 4

A program to print statistics on the number of different types of character in a file.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 type Char is (Digit, Punctuation, Letter, Other_Ch);

 function What_Is_Char(Ch:in Character) return Char is
 begin
 case Ch is
 when 'a' .. 'z' | 'A' .. 'Z' => return Letter;
 when '0' .. '9' => return Digit;
 when ',' | '.' | ';' | ':' => return Punctuation;
 when others => return Other_Ch;
 end case;
 end What_Is_Char;

 No_Letters : Natural := 0;
 No_Digits : Natural := 0;
 No_Punct_Chs : Natural := 0;
 No_Other_Chs : Natural := 0;
 Ch : Character;
begin

408 Appendix D

 M A Smith - May not be reproduced without permission

 while not End_Of_File loop
 while not End_Of_Line loop
 Get(Ch);
 case What_Is_Char(Ch) is
 when Letter => No_Letters := No_Letters + 1;
 when Digit => No_Digits := No_Digits + 1;
 when Punctuation => No_Punct_Chs := No_Punct_Chs + 1;
 when Other_Ch => No_Other_Chs := No_Other_Chs + 1;
 end case;
 end loop;
 Skip_Line;
 end loop;
 Put("Letters are "); Put(No_Letters); New_Line;
 Put("Digits are "); Put(No_Digits); New_Line;
 Put("Punctuation chs are "); Put(No_Punct_Chs); New_Line;
 Put("Other chs are "); Put(No_Punct_Chs); New_Line;
end Main;

Note: This only works for the English character set.

A program to print the average of three rainfall readings.

with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;
procedure Main is
 procedure Order3(A,B,C:in out Float) is
 procedure Order2(F,S:in out Float) is
 Tmp : Float;
 begin
 if F > S then
 Tmp := F; F := S; S := Tmp;
 end if;
 end Order2;
 begin
 Order2(A, B); --S L ? (a, b, correct order)
 Order2(B, C); --? ? L (c is largest)
 Order2(A, B); --S M L (a, b, c ordered)
 end Order3;
 First,Second,Third : Float;
begin
 Put("Input 3 rainfall reading ");
 Get(First); Get(Second); Get(Third); --Data
 Put("Rainfall average is : ");
 Put((First+Second+Third)/3.0, Exp=>0, Aft=>2); --Average
 New_Line;
 Order3(First, Second, Third); --Order
 Put("Data values (sorted) are : "); --List
 Put(First, Exp=>0, Aft=>2); Put(" ");
 Put(Second, Exp=>0, Aft=>2); Put(" ");
 Put(Third, Exp=>0, Aft=>2); Put(" ");
 New_Line;
end Main;

From chapter 5
A class Performance that represents the number of seats at a cinema performance.

Appendix D 409

 M A Smith - May not be reproduced without permission

package Class_Performance is

 type Performance is private;
 subtype Money is Float;

 procedure Book_Seats(The:in out Performance; N:in Natural);
 procedure Cancel(The:in out Performance; N:in Natural);
 function Sales(The:in Performance) return Money;
 function Seats_Free(The:in Performance) return Natural;

private
 Max_Seats : constant Natural := 200;
 Seat_Price: constant Money := 4.50;
 type Performance is record
 Seats_Left : Natural := Max_Seats;
 end record;
end Class_Performance;

package body Class_Performance is

 procedure Book_Seats(The:in out Performance; N:in Natural) is
 begin
 if The.Seats_Left >= N then
 The.Seats_Left := The.Seats_Left - N;
 end if;
 end Book_Seats;

 procedure Cancel(The:in out Performance; N:in Natural) is
 begin
 The.Seats_Left := The.Seats_Left + N;
 end Cancel;

 function Sales(The:in Performance) return Money is
 begin
 return Float(Max_Seats-The.Seats_Left) * Seat_Price;
 end Sales;

 function Seats_Free(The:in Performance) return Natural is
 begin
 return The.Seats_Left;
 end Seats_Free;

end Class_Performance;

A program to deal with the day-to-day administration for a cinema which has three performances.

410 Appendix D

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Float_Text_Io, Class_Performance, Class_Tui;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Performance, Class_Tui;
procedure Main is
 procedure Process(Per:in out Performance; Name:in String) is
 function Money_Image(M:in Money) return String is
 Res : String(1 .. 10); --String of 10 characters
 begin
 Put(Res, M, Aft=>2, Exp=>0); --2 digits - NO exp
 return Res;
 end Money_Image;
 Screen : Tui; --The TUI screen
 Tickets : Integer; --Tickets being processed
 begin
 loop
 Message(Screen, "Performance is " & Name);
 Menu(Screen, "Book", "Cancel", "Seats free", "Sales");
 case Event(Screen) is
 when M_1 => --Book
 Dialog(Screen, "Number of seats to book", Tickets);
 if Tickets>0 and then Tickets<=Seats_Free(Per) then
 Book_Seats(Per, Tickets);
 else
 Message(Screen, "Not a valid number of tickets");
 end if;
 when M_2 => --Cancel
 Dialog(Screen, "Number of seats to return", Tickets);
 if Tickets > 0 then
 Cancel(Per, Tickets);
 else
 Message(Screen, "Not a valid number of tickets");
 end if;

 when M_3 => --Free
 Message(Screen, "Number of seats free is" &
 Integer'Image(Seats_Free(Per)));
 when M_4 => --Value
 Message(Screen, "Value of seats sold is £" &
 Money_Image(Sales(Per)));
 when M_Quit => --Exit
 exit;
 end case;
 end loop;
 end Process;

 Afternoon, Early_Evening, Evening : Performance;
 Main_Menu : Tui;
begin
 loop
 Menu(Main_Menu, "Afternoon", "Early Evening", "Evening", "");
 case Event(Main_Menu) is
 when M_1 => Process(Afternoon, "Afternoon");
 when M_2 => Process(Early_Evening, "Early evening");
 when M_3 => Process(Evening, "Evening");
 when M_Quit => exit;
 when others => Message(Main_Menu, "Try again");
 end case;
 end loop;
end Main;

From chapter 6
A fragment of code showing a data structure that represents a computer system.

Appendix D 411

 M A Smith - May not be reproduced without permission

declare
 Kb : constant := 1; --In Kilobyte units
 Mb : constant := 1024; --In Kilobyte units
 Gb : constant := 1024*Mb; --In Kilobyte units
 type Main_Memory is range 0 .. 64*Mb;
 type Cache_Memory is range 0 .. 2*Mb;
 type Disk_Memory is range 0 .. 16*Gb;
 type Video_Memory is range 0 .. 8*Mb;
 type Computer is (Pc, Workstation, Multimedia);
 type Network is (Either, Ring);

 type Computer_System(Type_Of:Computer:=Pc) is record
 Main : Main_Memory; --In Megabytes
 Cache: Cache_Memory; --In Kilobytes
 Disk : Disk_Memory; --In Megabytes
 case Type_Of is
 when Workstation =>
 Connection : Network;
 when Multimedia =>
 Display_Memory: Video_Memory;
 when Pc =>
 null;
 end case;
 end record;
 My_Computer: Computer_System(Pc);
 At_Work : Computer_System;
begin
 My_Computer := (Pc, 256*Mb, 512*Kb, 18*Gb);
 At_Work := (Pc, 128*Mb, 512*Kb, 6*Gb);
end;

Note: Kb, Mb, and Gb are scaled so that the number is representable.

From chapter 9

package Pack_Types is
 subtype Money is Float range 0.0 .. Float'Last;
 subtype Hours is Float range 0.0 .. 24.0*7.0;
 Tax : constant Float := 0.8;
end Pack_Types;

with Pack_Types; use Pack_Types;
package Class_Emp_Pay is

 type Emp_Pay is tagged private;

 procedure Set_Hourly_Rate(The:in out Emp_Pay; R:in Money);
 procedure Add_Hours_Worked(The:in out Emp_Pay; H:in Hours);
 function Pay(The:in Emp_Pay) return Money;
 procedure Reset(The:in out Emp_Pay);
 function Hours_Worked(The:in Emp_Pay) return Hours;
 function Pay_Rate(The:in Emp_Pay) return Money;

private
 type Emp_Pay is tagged record
 Worked : Hours := 0.0; --Hours worked in week
 Rate : Money := 0.0; --Rate per hour
 end record;
end Class_Emp_Pay;

412 Appendix D

 M A Smith - May not be reproduced without permission

package body Class_Emp_Pay is

 procedure Set_Hourly_Rate(The:in out Emp_Pay; R:in Money) is
 begin
 The.Rate := R;
 end Set_Hourly_Rate;

 procedure Add_Hours_Worked(The:in out Emp_Pay; H:in Hours) is
 begin
 The.Worked := The.Worked + H;
 end Add_Hours_Worked;

 function Pay(The:in Emp_Pay) return Money is
 begin
 return The.Rate * The.Worked * Tax;
 end Pay;

 procedure Reset(The:in out Emp_Pay) is
 begin
 The.Rate := 0.0; The.Worked := 0.0;
 end Reset;

 function Hours_Worked(The:in Emp_Pay) return Hours is
 begin
 return The.Worked;
 end Hours_Worked;

 function Pay_Rate(The:in Emp_Pay) return Money is
 begin
 return The.Rate;
 end Pay_Rate;

end Class_Emp_Pay;

with Pack_Types, Class_Emp_Pay;
use Pack_Types, Class_Emp_Pay;
package Class_Better_Emp_Pay is

 type Better_Emp_Pay is new Emp_Pay with private;

 procedure Set_Overtime_Pay(The:in out Better_Emp_Pay;
 R:in Money);
 procedure Normal_Pay_Hours(The:in out Better_Emp_Pay;
 H:in Hours);
 function Pay(The:in Better_Emp_Pay) return Money;

private
 type Better_Emp_Pay is new Emp_Pay with record
 Normal_Hours : Hours := 0.0; --Normal pay hours
 Over_Time_Pay : Money := 0.0; --Overtime rate
 end record;
end Class_Better_Emp_Pay;

Appendix D 413

 M A Smith - May not be reproduced without permission

package body Class_Better_Emp_Pay is

 procedure Set_Overtime_Pay(The:in out Better_Emp_Pay;
 R:in Money) is
 begin
 The.Over_Time_Pay := R;
 end Set_Overtime_Pay;

 procedure Normal_Pay_Hours(The:in out Better_Emp_Pay;
 H:in Hours) is
 begin
 The.Normal_Hours := H;
 end Normal_Pay_Hours;

 function Pay(The:in Better_Emp_Pay) return Money is
 Get : Money;
 begin
 if Hours_Worked(The) > The.Normal_Hours then
 Get := The.Normal_Hours * Pay_Rate(The) +
 (Hours_Worked(The)-The.Normal_Hours)*The.Over_Time_Pay;
 return Get * Tax;
 else
 return Pay(Emp_Pay(The));
 end if;
 end Pay;

end Class_Better_Emp_Pay;
with Ada.Text_Io, Ada.Float_Text_Io, Class_Emp_Pay, Class_Better_Emp_Pay;
use Ada.Text_Io, Ada.Float_Text_Io, Class_Emp_Pay, Class_Better_Emp_Pay;
procedure Main is
 Mike : Emp_Pay;
 Corinna : Better_Emp_Pay;
begin
 Set_Hourly_Rate(Mike, 10.00);
 Add_Hours_Worked(Mike, 40.0);
 Put("Mike gets : "); Put(Pay(Mike), Exp=>0, Aft=>2);
 New_Line;
 Set_Hourly_Rate(Corinna, 10.00);
 Set_Overtime_Pay(Corinna, 11.00);
 Normal_Pay_Hours(Corinna, 30.0);
 Add_Hours_Worked(Corinna, 40.0);
 Put("Corinna gets : "); Put(Pay(Corinna), Exp=>0, Aft=>2);
 New_Line;
end Main;

From chapter 13
A program to use a generic data store. The specification for the class Store is

414 Appendix D

 M A Smith - May not be reproduced without permission

generic
 type Store_Index is private; --
 type Store_Element is private; --
package Class_Store is
 type Store is limited private; --NO copying
 Not_There, Full : exception;

 procedure Add (The:in out Store;
 Index:in Store_Index;
 Item:in Store_Element);
 function Deliver(The:in Store;
 Index:in Store_Index)
 return Store_Element;
private
 Max_Store : constant := 10;
 type Store_R_Index is range 0 .. Max_Store;
 subtype Store_R_Range is Store_R_Index range 1 .. Max_Store;
 type Store_Record is record
 Index: Store_Index; --Index
 Item : Store_Element; --Data item
 end record;
 type Store_Array is array(Store_R_Range) of Store_Record;
 type Store is limited record
 Data : Store_Array;
 Items: Store_R_Index := 0;
 end record;

end Class_Store;

A possible implementation of the Class Store is:

package body Class_Store is

 procedure Add (The:in out Store;
 Index:in Store_Index;
 Item:in Store_Element) is
 begin
 if The.Items < Max_Store then
 The.Items := The.Items + 1;
 The.Data(The.Items) := (Index, Item);
 else
 raise Full;
 end if;
 end Add;

 function Deliver(The:in Store;
 Index:in Store_Index)
 return Store_Element is
 begin
 for I in 1 .. Store_R_Range(Max_Store) loop
 if The.Data(I).Index = Index then
 return The.Data(I).Item;
 end if;
 end loop;
 raise Not_There;
 end Deliver;
end Class_Store;

package Pack_Types is
 subtype Name is String(1..5);
end Pack_Types;

Appendix D 415

 M A Smith - May not be reproduced without permission

The instantiation of a store package to hold student names and exam marks is:

with Class_Store, Pack_Types;
 package Class_Store_Int_Str is
 new Class_Store(Pack_Types.Name, Integer);

A simple test program for this package is:

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Store_Int_Str;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Store_Int_Str;
procedure Main is
 Marks : Store;
begin
 Add(Marks, "Andy ", 50);
 Add(Marks, "Bob ", 65);
 Add(Marks, "Clark", 73);
 Add(Marks, "Dave ", 54);
 Put("Mark for Bob is ");
 Put(Deliver(Marks, "Bob "), Width=> 3); New_Line;
 Put("Mark for Dave is ");
 Put(Deliver(Marks, "Dave "), Width=> 3); New_Line;
end Main;

From chapter 14
A queue implemented using dynamically allocated storage. The specification of the class Queue:

with Ada.Finalization;
use Ada.Finalization;
generic
 type T is private; --Can specify any type
package Class_Queue is
 type Queue is new Limited_Controlled with private;
 Queue_Error: exception;

 procedure Add(The:in out Queue; Item:in T);
 procedure Sub(The:in out Queue; Item:out T);
 procedure Finalize(The:in out Queue);
private
 type Node; --Mutually recursive def
 type P_Node is access Node; --Pointer to a Queue
 pragma Controlled(P_Node); --We do deallocation

 type Node is record --Node holds the data
 Item : T; --The stored item
 P_Next : P_Node; --Next in list
 end record;

 type Queue is new Limited_Controlled with record
 Head : P_Node := null; --Head of Queue
 Tail : P_Node := null; --Tail of Queue
 No_Of : Natural:= 0; --Number in queue
 end record;
end Class_Queue;

The implementation of the class Queue.

416 Appendix D

 M A Smith - May not be reproduced without permission

with Unchecked_Deallocation;
package body Class_Queue is

 procedure Dispose is
 new Unchecked_Deallocation(Node, P_Node);

 procedure Add(The:in out Queue; Item:in T) is
 Tmp : P_Node := new Node'(Item, null);
 begin
 if The.No_Of > 0 then
 The.Tail.P_Next := Tmp; --Chain in
 else
 The.Head := Tmp; --Also head
 end if;
 The.Tail := Tmp; --New Tail
 The.No_Of := The.No_Of + 1; --Inc no.
 end Add;

 procedure Sub(The:in out Queue; Item :out T) is
 Tmp : P_Node;
 begin
 if The.No_Of > 0 then
 Item := The.Head.Item; --Recovered item
 Tmp := The.Head; --Node finished with
 The.Head := The.Head.P_Next; --new head
 Dispose(Tmp); --Free storage
 The.No_Of := The.No_Of - 1; --1 less in queue
 else
 raise Queue_Error; --Error
 end if;
 end Sub;

 procedure Finalize(The:in out Queue) is
 Discard : T;
 begin
 for I in 1 .. The.No_Of loop --Free storage
 Sub(The, Discard);
 end loop;
 end Finalize;

end Class_Queue;

The instantiation of an integer instance of the class Queue.

with Class_Queue;
package Class_Queue_Int is new Class_Queue(Integer);

A small test program to test the class Queue.

Appendix D 417

 M A Smith - May not be reproduced without permission

with Ada.Text_Io, Ada.Integer_Text_Io, Class_Queue_Int;
use Ada.Text_Io, Ada.Integer_Text_Io, Class_Queue_Int;
procedure Main is
 Number_Queue : Queue; --Queue of numbers
 Action : Character; --Action
 Number : Integer; --Number processed
begin
 while not End_Of_File loop
 while not End_Of_Line loop
 begin
 Get(Action);
 case Action is --Process action
 when '+' =>
 Get(Number); Add(Number_Queue,Number);
 Put("add number = "); Put(Number); New_Line;
 when '-' =>
 Sub(Number_Queue,Number);
 Put("remove number = "); Put(Number); New_Line;
 when others =>
 Put("Invalid action"); New_Line;
 end case;
 exception
 when Queue_Error =>
 Put("Exception Queue_error"); New_Line;
 when Data_Error =>
 Put("Not a number"); New_Line;
 when End_Error =>
 Put("Unexpected end of file"); New_Line; exit;
 end;
 end loop;
 Skip_Line;
 end loop;
end Main;

From chapter 19

A task type which allows repeated calculations of a factorial value to be made is:

package Pack_Factorial is
 task type Task_Factorial is --Specification
 entry Calculate(F:in Natural); --Rendezvous
 entry Deliver(Res:out Natural); --Rendezvous
 entry Finish; --Rendezvous
 end Task_Factorial;
end Pack_Factorial;

418 Appendix D

 M A Smith - May not be reproduced without permission

package body Pack_Factorial is
 task body Task_Factorial is --Implementation
 Factorial : Natural;
 Answer : Natural := 1; --Initial value
 begin
 loop
 select --Store in buffer
 accept Calculate(F:in Natural) do --Factorial
 Factorial := F;
 end Calculate;
 Answer := 1;
 begin
 for I in 2 .. Factorial loop --Calculate
 Answer := Answer * I;
 end loop;
 exception
 when Constraint_Error =>
 Answer := 0;
 end;
 accept Deliver(Res:out Natural) do --Return answer
 Res := Answer;
 end Deliver;
 or --Get from buffer
 accept Finish; --Finished
 exit;
 end select;
 end loop;

 end Task_Factorial;
end Pack_Factorial;

A short test program for this task is:

with Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
use Ada.Text_Io, Ada.Integer_Text_Io, Pack_Factorial;
procedure Main is
 Fac : Task_Factorial; --Factorial task
 Num : Integer; --To caclulate
 Answer : Integer; --Result of calculation
begin
 while not End_Of_File loop
 while not End_Of_Line loop
 Get(Num);
 Fac.Calculate(Num);
 Put("Factorial "); Put(Num, Width=>2); Put(" is ");
 Fac.Deliver(Answer);
 Put(Answer, Width=> 2); New_Line;
 end loop;
 Skip_Line;
 end loop;
 Fac.Finish; --Terminate task
end Main;

 M A Smith - May not be reproduced without permission

References
Intermetrics (1995) Ada 95 Rational, Intermetrics, Inc, Cambridge, Massachusetts.

Intermetrics (1995) Ada 95 Reference Manual , Intermetrics, Inc, Cambridge, Massachusetts.

Taylor, B. (1995) Ada 95 Compatibility Guide in Ada Yearbook 1995 (Ed Mark Ratcliffe), IOS press, pp. 260-
313.

Whitaker, W.A. (1993) Ada - The Project. ACM SIGPLAN Notices, 28(3), 299-331.

 M A Smith - May not be reproduced without permission

Index
-, 54
& operator, 119
*, 53
**, 54
..

case statement, 32
/, 53
/=, 56
|

case statement, 32
+, 54
<, 56
<=, 56
=, 56
>, 56
>=, 56
abstract class, 153
accept, 292
access, 216

all, 211, 216
Class', 233

constant, 216
value of a function, 223

access constant, 211
actual parameter, 64
Ada

case sensitivity, 26
format of a program, 26

adjust, 255, 267
assignment, 267

aggregate
record, 95

aliased
example, 209

all
access, 211, 216

allocator, 212
example, 212

and, 56
and then, 56
append

to file, 276
array

initializing, 115
slice, 118
unconstrained, 117

array dynamic, 119
arrays, 102
assignment

adjust, 267
attribute

Access’, 209
Callable', 372
Class', 231

Digits', 373
First', 371
Float'Digits, 39
Float'First.i.attribute

Float'Last, 39
Float'Last, 39
Float'Size.i.attribute

Float'Digits, 39
Integer'First.i.attribute

Integer'Last, 38
Integer'Last, 38
Integer'Size, 38
Last', 372
Length', 372
Max', 371
Min', 371
Model_epsilon', 373
Pos’, 306
Pred', 372
Pred’, 306
Range', 372
Safe_first', 373
Safe_last', 373
Storage_size', 372
Succ', 372
Tag', 228
Terminated', 372
Unchecked_Access’, 225
Val’, 306

attributes
on a discrete object, 372
on a floating point object and type, 372
on a scalar object and type, 372
on a task object and type, 372
on an array, 104, 371

base class, 148
bitwise operator

and, 57
or, 57

Boolean
example, 56, 57

case, 31
child library, 166

example, 167
generic, 205
visibility, 169

class, 80
abstract, 153
base, 148
derived, 148
hiding the structure, 220
instance attribute, 79
instance method, 79
UML notation, 21, 78

Index 421

 M A Smith - May not be reproduced without permission

'class, 233
Class

attribute, 152
method, 152

collection
heterogeneous, 232

Command line
arguments, 34

compile-time
consistency check, 49

composition
UML notation, 20

conflict
use of names in package, 82

constant
access, 216
data structure, 95
declaration, 40

typed, 40
constant Integer, 30
constrained

record, 99
constrained and unconstrained types

scalar, 48
construct

declare, 45
controlled

adjust, 255
finalization, 255

controlled object, 159
adjust, 267
example, 160
finalize, 161
initialize, 161

conversion
derived -> base class, 239
derived to base class, 152
Float to Integer, 43
Integer to Float, 43
scalar types, 40
view, 230

converting
base class -> derived class, 240

copy
deep, 261
input to output, 33

create
file, 275

Currency converter , 327
data structure

constant, 95
data structures

access to members, 94
record, 94

data_error
exception, 183

declaration

tentative, 213
declare

construct, 45
deep copy, 261
delay

accept, 301
derived class, 148

visibility rules, 152
design

identifying objects, 128
discriminant

default value, 97
record structure, 96

downcasting
example, 239

dynamic allocation of storage, 212
dynamic array, 119
dynamic binding, 228
else, 28

select, 301
elsif, 29
encapsulation, 74
end_error

exception, 183
end_of_file, 33, 34, 35
end_of_line, 33, 34
enumeration, 50

Character, 51
io, 273

exception
Constraint_error, 375
data_error, 183
Data_error, 376
end_error, 183
End_error, 376
example, 183
Mode_error, 376
name_error, 275
Name_error, 186, 376
others, 184

name of, 184
program_error, 375
Status_error, 186, 376
Storage_error, 375
Use_error, 376

exit, 31
finalization, 159
Controlled, 162
Limited_Controlled, 162

finalize, 267
first'

attribute array, 104
fixed

io, 273
float

io, 273
Float, 38

422 Appendix D

 M A Smith - May not be reproduced without permission

for, 29
formal parameter, 64
function, 60

access value, 223
local variables, 61
program unit, 60

fusion, 128
generic

child library, 205
formal subprograms, 198
inheritance, 206
instantiation, 191, 199
package, 195
procedure, 191
procedure example, 193
with, 198, 199

guard to entry, 298
heterogeneous collections, 232
hiding base class methods, 163
identifying objects, 128
if, 28
in, 54

parameter, 64, 66
in out

parameter, 64, 66
inheritance, 147

generic, 206
initialization & finalization, 159
multiple, 156
UML notation, 23

initialization, 159
Controlled, 162
Limited_Controlled, 162
using

assignment, 85
discriminant, 84

initializing
array, 115

input
character, 33

input output
detailed examples, 273

inspector, 82
instance

method, 79
Instance

attribute, 79
instantiation

generic function, 191
generic package, 199

integer
io, 273

Integer
constant, 30

intermediate results in expression, 47
io

append to file, 276

create file, 275
of data structures, 277
open file, 275

iteration
printing list, 214

iterator for list, 249
last'

attribute array, 104
length'

attribute array, 104
Lexical levels

declare, 359
example, 357
wholes in visibility, 359

library package
unchecked_deallocation, 217

limited
record, 100

limited private, 83
list, 249
local variables, 61
loop, 31
message, 74
methodology

fusion, 128
mixed langauge

program, 362
multidimensional arrays, 113
multiple inheritance, 156
mutator, 82
name_error

exception, 275
natural

subtype, 50
new_line, 33
not, 57
not in, 54
object, 74

example of use, 75
UML notation, 20, 21

Observable, 241, 242
Observe-observer

implementation, 242
specification, 242

observe-observer pattern, 240
Observer, 241
open

file, 275
operator

dyadic, 53
monadic, 54

&, 119
*, 53
**, 54
., 94
/, 53
/=, 56

Index 423

 M A Smith - May not be reproduced without permission

+
dyadic, 53
monadic, 54

<, 56
<=, 56
=, 56
>, 56
>=, 56
and, 56, 57
and then, 56
in, 54
mod, 53
not, 57
not in, 54
or, 56, 57
or else, 56
overloading, 171
rem, 53

or, 56
or (select), 300
or else, 56
others

case statement, 31
exception, 184

out
parameter, 64, 66

output
string, 32

overloading, 67
operators, 171
renames, 68

package
as a class, 80
child library, 166
example

Class_account, 220
Class_account_ot, 160
Class_board, 109, 111, 138
Class_board (TUI), 321
Class_building, 235
Class_cell, 137
Class_counter, 136
Class_dialog, 349
Class_histogram, 105
Class_input_manager, 335
Class_interest_account, 150
Class_list, 250, 252, 253
Class_menu, 351
Class_menu_title, 354
Class_named_account, 157
Class_object_rc, 265
Class_Office, 230
Class_piggy_bank, 123
Class_player, 144
Class_rational, 172
Class_Restricted_account, 163
Class_room, 229

Class_root_window, 335
Class_screen, 135, 333
Class_Set, 269
Class_stack, 187, 195
Class_string, 177
Class_tui, 87, 89
Class_window, 341
Class_window_control, 336
Pack_factorial, 289
Pack_is_a_prime, 289
Pack_md_io, 331
Pack_threads, 296
raw_io, 331

implementation, 76, 78
specification, 76, 77
standard, 81
use, 81

Ada.Characters, 106
with, 81

parameter
actual, 64
by name, 70
by position, 70
default values to, 70
formal, 64
in, 64, 66
in out, 64, 66
out, 64, 66
variable number, 69

polymorphism, 228
package names, 237
parameter to procedure, 231

Pos’
attribute, 306

positive
subtype, 50

Pred'
attribute, 306

private, 83
in a class, 77

procedure, 62
example

sort, 202
program unit, 62

program
case sensitivity, 26
hello world, 25
mixed language, 362

protected type, 296
put

float parameters, 42, 43
integer parameters, 42

range'
attribute array, 104

record
limited, 100
variant, 99

424 Appendix D

 M A Smith - May not be reproduced without permission

record aggregate, 95
record structure

discriminant, 96
nested, 96

recursion, 66
printing list, 214

reference counting, 262
renames, 68
rendezvous, 291
representation clause

physical address, 308, 309
specific value enumeration, 306

reverse, 29
root integer, 46
root real, 46
run time dispatch, 232
run-time

consistency check, 49
scalar

Image, 41
type hierarchy, 52

scientific notation, 38
select, 300

or, 300
sequentual_io

package, 277
skip_line, 33
slice of an array, 118
standard

package, 81
standard types, 375
statement

accept, 292
case, 31
for, 29

reverse, 29
if, 28
if else, 28

nested, 28
if elsif, 29
loop, 31

exit, 31
select, 300
select delay, 301
select else, 301
when entry, 298
while, 28

storage
dynamic allocation, 212

storage pool, 212
string

type, 118
subprogram

generic, 198
subtype, 45

natural, 50

positive, 50
Succ'

attribute, 306
tagged type, 148
task

example of use, 289
rendezvous, 291

task type, 289
tentative declaration, 213
thread, 289, 290
TUI

skeleton layout, 312
type, 45, 74

protected, 296
tagged, 148
task, 289
the intermediate results, 47
type safety, 44

example, 44
type string, 118
types

implementation size, 375
UML

class notation, 21
composition notation, 20
inheritance notation, 23
object notation, 20, 21

unchecked_deallocation, 217
use of, 221

unconstrained
record, 97, 99

unconstrained array, 117
universal integer, 40
use

example, 81
positioning in a package, 82
use type, 181

Val’
attribute, 306

variant
record, 99

view conversion, 230
visibility

wholes, 359
visibility rules

derived class, 152
when

case statement, 31
while, 28
with

example, 81
generic, 198, 199
positioning in a package, 82
record extension, 240

www
information, 377

