Page 1

Design Goals for Autonomous Synthetic Characters

John Laird
Artificial Intelligence Lab
University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
laird@umich.edu

1. Introduction

Synthetic characters in current computer games have limited reasoning abilities and fall short of human
players in many dimensions, often struggling to achieve even a modicum of artificial intelligence.
However, progress is being made. Characters in recent games, such as Half-Life, have moved to include
limited forms of cooperation, communication, and reasoning. Our work in developing a bot for Quake
using the Soar architecture tries to push even further to human-like behavior. However, as of yet there is
not a clear set of evaluation criteria for comparing various approaches. In this paper | attempt to explore
the design goals inherent to building synthetic autonomous characters for computer games. Many of my
observations are obvious and have been made before, but bringing them together in a structured form
should make it easier to analyze future systems. Some of the observations may be wrong given my
modest experience in building Al systems for computer games. So at the least | hope that this paper
stimulates discusses and refinement of these ideas.

In analyzing a synthetic character, its structure can be decomposed into three components, the
underlying architecture, the knowledge or program that generates behavior within the architecture, and
the interface of the architecture with the game environment. The architecture provides the set of fixed
mechanisms, such as control structures, memories, and primitive actions, which together define a
language for expressing knowledge that controls the character. Different architectures support different
computational frameworks, such as scripting languages, finite-state machines, neural nets, genetic
algorithms, and rule-based systems. Usually the architecture is designed to support the encoding of
knowledge for many different tasks, not just a specific character, although there may be certain task-
specific architectural primitives that are included to improve efficiency or expressibility. However, for
games it is not uncommon for the character architecture to be specific to a class of characters, where the
only knowledge is a set of parameters, such as strength, endurance, aggressiveness, that are set by the
game designer. Architectures have their own “complexity profile,” being able to perform some
calculations directly and very efficiently, while others require interpretation and significantly more
computational resources. Architectures have limits to the knowledge they can encode, so that certain
relations or computations can be impossible to express.

My interest is mainly in the relationship between different classes of architectures and the performance
they support as well as their associated development and maintenance costs. This relationship is
necessarily indirect because it is the combination of architecture and knowledge (program) that produces
behavior, determines performance, development times, and so on. However, if | look only at the
combination of architecture and knowledge, it is difficult to extract any general lessons that can be carried
over to other problems, tasks, characters, ...

In the remainder of this paper | attempt to explicate in more details the dimensions that are important for
evaluating both the performance of the characters and the development cycle.

Design Goals for Autonomous Synthetic Characters *AADRAFT****

Page 2

2. Performance

The capabilities and performance required of an autonomous character can be broken down into two
subcategories: behavioral capabilities and resource requirements. The first is essentially the space of
behaviors that the character can produce, while the second refers to the computational resources (CPU
and memory) required to generate that behavior.

2.1 Behavioral Capabilities

The behavioral capabilities of an agent cover its interaction with the world and the other characters. For
example, in a fighting games behavioral capabilities include the set of possible attacks and defenses that
can be used, the game conditions in which they are used, and how they are organized into sequences of
behavior. Thus, the variety and complexity of the agent’s behavioral capabilities determine the gameplay
experience for the user. These capabilities are determined both by the underlying architecture, which
determines the total space of possible behaviors, and the knowledge encoded for a character, which
determines the specific behaviors that the character will use and how they combine.

Before attempting to create a comprehensive list of desirable behaviors, it is worthwhile asking what is
our goal as developers for these characters. The most obvious and vague goal is to provide great
gameplay. Some developers and reviewers have suggested that the best games are those that support
multi-player interactions among human players. This leads to the conclusion that the Holy Grail for
character designers should be to produce characters whose behavior is indistinguishable from human
behavior. This is not a foregone conclusion because part of the attraction of human multi-player games is
the broader social milieu in which the game takes place — you are playing against friends. However given
the popularity of anonymous networked games, it is clear that people enjoy human-to-human games
without the background social aspects. Even though my group is attempting to create human-like
characters, for many games, non-human synthetic characters are more important than synthetic human
characters, where “life-like” or “believable” behavior is more important than human-like behavior (see
Bryan Loyall’s thesis, which includes an analysis of the requirements for believability and the illusion of
life).

To complicate the discussion further, many single player games use synthetic characters to further the
story, or to play roles that must be modulated by the overall game play — the characters are more like
actors in a real-time play with a director giving them instructions as the action unfolds. Pure autonomy
takes second place to performing specific, scripted behaviors at specific times or in specific circumstances.
This is just the tip of the iceberg in terms of customizing a synthetic character for a specific game or genre.

In this section | will concentrate on the characteristics of behaviors that seem to be generally useful for
many games, with an emphasis on human-like behavior. Of course the point is for the observed behavior
to be human-like and it really is immaterial how the underlying implementation produces that behavior.
In games, the most profitable approach is usually to find computationally inexpensive approximations, or
as | like to say, “Cheat without getting caught.” However, if we look out a few years, | expect that the
approximations will have to get more and more detailed to produce more robust and believable behavior.
Each of the following capabilities defines a dimension of variability for creating synthetic characters and
research into any these characteristics would be useful. An important reference for modeling human
behavior is “Modeling Human and Organizational Behavior: Applications to Military Simulations,”
National Research Council, 1998. Unfortunately this comes off as a laundry list of capabilities. | need to
add more structure to this list.

1. Human sensing. The ability of a character to sense things in the environment should be similar to the
abilities of a human in the game. The character should not have superhuman abilities, such as seeing
through walls (unless the character is Superman) and should not have subhuman abilities (being
unable to hear someone running up from behind in a quiet room). Matching human sensing goes a

Design Goals for Autonomous Synthetic Characters *AADRAFT****

Page 3

long way to providing human-like behavior, with many of the complaints about characters in current
games coming from super or subhuman character sensing. Superhuman sensing is often used to
make up for weaknesses in the reasoning abilities of a character. Unfortunately, realistic models of
sensing can be very difficult and computationally expensive to implement. For example, a player
should be able to hide in a dark area of a game, so the sensing model must be able to detect light
levels. However, if the player is in a dark area but is in front of a bright hallway, the player will be
backlit and an outline of the player will be clearly visible. Similarly, it can be very difficult for a
human player to identify whether another player is friend or foe at large distances and few if any
synthetic characters have trouble with this. An underlying reason for the difficulty is that the internal
game data structures are organized for fast display of a scene and rely on the human visual system to
pick out relevant objects and their relations. It is infeasible to simulate the generation and processing
of an image for a synthetic character, so that character sensing must rely on models applied to
internal symbolic information.

2. Human actions. A character should be able to perform actions in the environment that correspond
roughly to what a human could do in a similar environment. For example, the Quake Il DLL allows
for instantaneous turning which is not possible for a human player. As with all aspects we are
discussing, this is tempered by the overall gameplay and the roles defined for the characters by the
game designer. Just because there is water, it is not necessary for a synthetic character to be able to
drink the water. Conversely, supernatural actions are appropriate in many fantasy games.

3. Human-level reaction times. Humans do not respond instantaneously to changes in their
environment, nor do they take arbitrarily long to respond (unless distracted). There are good
psychological models of human reaction times in sensing and action in human-computer interaction.
For example, it takes approximately 250 milliseconds to respond to a change on the screen.

4. Spatial reasoning. Many games are only 2D Cartesian grids where spatial reasoning is
straightforward. However, the topology of a game from the standpoint of a character can be complex
as obstacle, shortcuts, and a third dimension are added. Usually, the internal game representation can
be used by the character so that no additional model needs to be create internal to the character;
however, 2D & 3D spatial reasoning routines often need to be developed that compute relations such
as line-of-sight or shortest path. Often synthetic characters can bypass the need for spatial reasoning
by having important points (nodes) pre-computed and included in the environmental map. For
example, most level-designers for games like Quake annotate the level with nodes for where the
characters should travel. This simplifies the development of the characters, but also makes them less
general, as they are unable to easily respond to changes in the world.

5. Memory. Most current characters can be described as, “out of sight, out of mind.” As soon as an
enemy is out of sensor range, it is forgotten. If a discarded weapon is by-passed during a firefight, it
is not remembered for the future. This might work for one month-olds, but it leads to very unhuman-
like behavior. Thus, complex characters need to maintain memories of the world and have a model of
how the world changes over time. In Quake I, there are spawn points for weapons, health, and
armor. Whenever an item is picked up, a new one will be created automatically in 30 seconds.
Similarly, whenever a weapon is dropped (such as when a player is killed) it will disappear in 30
seconds if it is not picked up. Just as humans quickly learn these aspects of the game and use them in
their strategies, so must human-like synthetic characters.

6. Common Sense Reasoning. This is the most dreaded of all classes of reasoning in Al because it is
completely ill-defined. Using the knowledge about memory described above could be classified as
common-sense reasoning, although it is sort of Quake common-sense reasoning. Other types of
common-sense reasoning include knowing that doors can be opened and closed, locks have keys, and
that if you jump off a ledge you will fall. The only viable approach seems to be to determine what
knowledge is necessary for the tactics you wish to encode in your character and then encode the
necessary common-sense knowledge to support those tactics. This is insufficient if you wish to
develop characters that develop their own tactics. A related capability is broad, but shallow behavior.

Design Goals for Autonomous Synthetic Characters *AADRAFT****

10.

11.

12.

13.

14.

15.

Page 4

Goals. Characters must have a purpose, some goal they are trying to achieve. Often there will be
multiple goals, and the character must decide which one to pursue in a given situation, or better yet,
how to select actions to pursue multiple goals. The goals should drive the actions of the character.
Tactics. A character should have a variety of tactics or methods that can applied to achieving goals.
Planning. Planning provides the ability to try out actions internal, discover consequences, avoid
death and destruction. Many of the benefits of planning can compiled into a knowledge base when
you know the world and goals beforehand, but it can simplify the construction of a character if it can
plan on its own.

Communication and coordination. For many games, the underlying goals for the characters require
that they cooperate with other characters, and possibly the human player. The characters need to
communicate in realistic ways and coordinate their behavior as would humans — well, but not
necessarily perfectly when there is uncertainty or limited communication.

Learning. For most games, learning can be avoided. It is only an issue for characters that have
prolonged interactions with the human players. Even in those cases, what it more important than
learning is the appearance of learning. Learning is sometimes difficult to implement and can lead to
unexpected and undesirable behavior unless carefully controlled. Instead, it is safer and usually
easier to implement different levels of behavior available for a character to use as it experiences the
world. However, very simple learning is often important to have the characters adapt to the player,
such as gathering data on the types of tactics the human uses and adjusting the synthetic characters
responses accordingly.

Unpredictable behavior. As with all of the capabilities covered in this section, non-determinism itself
is less important than the illusion of unpredictability. It also depends on context. When there is only
one right thing to do, then being predictable is fine. However, when there are multiple actions that
can be performed, all with similar value, a random selection can eliminate predictability. However, if
a character has a sufficiently broad and rich set of fine-grained responses, its behavior may be very
difficult to predict. One thing to keep in mind is that although much of human behavior appears
unpredictable, when it is analyzed carefully, there are significant regularities in human responses to
specific situations.

Personality. Personality can be thought of what distinguishes one character from another above and
beyond gross characteristics such as physical build and general mental capability. It establishes a
“style” that influences many activities. What underlies the style? One theory (Barrick and Mount,
1991) is that there are five factors: openness, conscientiousness, extroversion, agreeableness, and
neuroticism that determine overall personality. However, mapping this onto the behavior of a
synthetic character is clearly an art.

Emotions. Unfortunately, there are no comprehensive computational models of how emotions impact
behavior. What are the triggers for anger? How does anger impact other behaviors? However, as
with personality, the expression and influence of emotion may be critical to creating the illusion of
human behavior.

Physiological Stressors. In addition to emotions, there are other physiological changes that happen to
people that in turn impacts their behavior. In computer games, there is often a collective component
of health, although the level of health rarely changes the behavior of a character (synthetic or human)
except when it goes to 0 (and the player dies). Other stressors include fatigue (which negatively
impacts reaction time and error rate), heat, chemicals, radiation, ...

2.2 Computational Resources
Clearly less is better; although with the continued exponential speed improvements of computers and
decreases in memory costs, there are more resources becoming available for Als in computer games.

1.

CPU: As the underlying architecture and knowledge increases in complexity, the amount of
processing required to produce behavior invariably increases. At one extreme, behavior can be
produced by the execution of raw C code or via indexing into a lookup table to find a predefined

Design Goals for Autonomous Synthetic Characters *AADRAFT****

Page 5

response. At the other extreme, behavior generation might require planning across multiple entities

that must be spread across multiple cycles of the game, where a cycle, or frame, consists of an update

of the drawing system (20-60 frames/sec.). As the number of entities being simulated increases, the
amount of CPU available for an individual entity decreases, although every entity usually will not be
activated every cycle. Thus, games that have large numbers of entities are forced to have very simple
behaviors at the individual entity level. However, overall performance can be improved by creating
groups of entities, such as military platoons or companies, where more resources can be applied to
planning and executing the behavior of the groups. Al systems can expect between 5-10% of the CPU,
although this depends on the type of game. Turn-based strategy games can use significantly more
than real-time shooters.

2. Memory: There are three types of memory costs.

a) Runtime-Architecture: this is the amount of storage required to hold the code that executes the Al
architecture. For purely compiled languages, this could be zero - there is no runtime
interpretation. The runtime architecture is a fixed cost independent of amount of knowledge and
runtime state. It may or may not be shared across multiple entities. In Soar, for example, the cost
of the architecture is approximately 1Mbyte, which can be partially shared across multiple
entities.

b) Long-term behavioral knowledge/program: This is the storage required to hold the behavioral
knowledge, tactics, etc. At one extreme it might be only a few parameters that determine special
characteristics of each entity, such as it distance before sensing, type of attack, etc. In this case, the
code that interprets these parameters can be thought of as the architecture because it is shared
across all entities. For In Soar the cost is approximately 1Kbyte/rule. It is not possible to share
this across active entities.

c) Runtime state: This is the amount of storage required to hold the internal, dynamic data
structures used by the behavior knowledge. This includes sensory knowledge and internal state,
such as map information. At one extreme this might include only the entity’s current position, its
current health, and strength. At the other extreme, it might include a set of plans being executed,
goals being attempted, and internal map data.

3. Development

The viability of a given approach to synthetic character design rests not only with its performance
capabilities, but also with the costs associated with its development. If a given approach is too hard or too
expensive to use, then it won’t be used. I’'m more in the dark on this dimension, and less seems to be
written on it. There are many anecdotal stories of how Al technology was attempted for a specific game
but was later dumped because of development problems. What | have learned is that a critical part of the
development process for many games is the separation of content development by game designers and
underlying game engines by game programmers. This distinct is essentially the knowledge/Zarchitecture
distinction | made earlier. The importance of this distinction is that the architecture must support a level
of behavior specification that is easy enough for game designers to use. Many game designers are not
programmers, so that the language they use must be easy to learn and use. The need for straightforward
specification of behavior will often be at odds with the ability to specify complex behavior. This can be
overcome in part by having complex behaviors as primitives available for the game designer to select or
merely provide some parameters for. For example, the game programmer can create very complex path
finding code that the game designer need know nothing about except that it works. The game designer
need only specify the situations in which it is used. This approach can lead to a three-layer system, where
there is a set of underlying game architectures that are used by the game programmer to create a set of
behaviors available to the game designer. The game program creates a language that the game designer
then uses to specify behaviors built out of the complex primitives.

Design Goals for Autonomous Synthetic Characters *AADRAFT****

