Developing an Artificial Intelligence Engine

Michael van Lent and John Laird
Artificial Intelligence Lab
University of Michigan
1101 Beal Ave.

Ann Arbor, Ml 48109-2110
{vanlent,laird}@umich.edu

Introduction

As computer games become more complex and consumers demand more
sophisticated computer controlled agents, developers are required to place a
greater emphasis on the artificial intelligence aspects of their games. One
source of sophisticated Al techniques is the artificial intelligence research
community. This paper discusses recent efforts by our group at the University of
Michigan Atrtificial Intelligence Lab to apply state of the art artificial intelligence
techniques to computer games. Our experience developing intelligent air combat
agents for DARPA training exercises, described in John Laird's lecture at the
1998 Computer Game Developer's Conference, suggested that many principles
and techniques from the research community are applicable to games. A more
recent project, called the Soar/Games project, has followed up on this by
developing agents for computer games, including Quake Il and Descent 3. The
result of these two research efforts is a partially implemented design of an
artificial intelligence engine for games based on well established Al systems and
techniques.

The Soar/Games project has interfaced the Soar artificial intelligence architecture
with three games developed as part of the project and two commercial games,
Quake Il and Descent 3. The Soar architecture is the result of 15 years of
research in the fields of artificial intelligence and cognitive psychology at various
research universities. The interface between Soar and the games, using either
sockets or the Tcl language, includes as many as 80 sensors and 20 actions.
Complex agents, that include the ability to plan and learn new knowledge, have
been developed for the non-commercial games. Simple agents have been
created for Quake Il and Descent 3 and complex agents, that share a large
amount of knowledge, are under development.

The Soar/Games project has a number of benefits for both the research
community and the game developer community. For the research community,
the Soar/Games project has already provided environments for testing the results
of research in areas such as machine learning, intelligent architectures and
interface design. The difficult aspects of the Soar/Games project have also
suggested a number of new research problems relating to knowledge
representation, agent navigation and human-computer interaction. From a game



development perspective, the main goal of the Soar/Games project is to make
games more enjoyable by making the agents in games more intelligent and
realistic. If done correctly, playing with or against these Al agents will more
closely capture the challenge of playing online. An Al engine will also make the
development of intelligent agents for games easier by providing a common
inference machine and general knowledge base that can be easily applied to
new games.

The division of labor in the DARPA project first suggested the concept of an
artificial intelligence engine that consists of three components. During that
project, one programmer worked on the inference machine, one on the interface
to the simulator, and three programmers created the knowledge base. The Soar
architecture, used in the DARPA project, will serve as the Al engine’s inference
machine. The interface between Soar and the game or simulator must be
designed separately for each application but a number of general principles have
been developed to guide the interface design. The knowledge base is generally
the most time-consuming component of the Al engine to develop. However, a
carefully designed knowledge base can easily be applied to multiple games in
the same genre somewhat offsetting the cost of development with the benefit of
reusability.

The main advantage of the Al engine approach is exactly this reusability of the
engine and especially the game independent behavior knowledge. Rather than
develop the Al for a new game from scratch, a programmer can implement an
interface to the Al engine and take advantage of the inference machine and pre-
existing knowledge bases. As part of developing the Al engine we plan on
creating a general knowledge base containing information applicable to any first
person perspective action game. Similar knowledge bases for other game
genres could also be developed and reused across multiple games. Additionally,
the operator-based nature of the knowledge base, as required by Soar, is
modular, allowing programmers to mix and match tactics, behaviors and goals as
appropriate for their game.

This paper will describe our artificial intelligence engine design and give
examples of how the techniques and systems incorporated make agents in
games more intelligent. The next section will present five requirements an Al
engine should fulfill and describe some common approaches to game Al against
which our engine will be compared. The next three sections will describe the
components of the Al engine and discuss how each is influenced by the
requirements. Finally, the conclusion will detail which aspects of the engine have
been implemented and which aspects still need work. Additionally, a number of
more advanced Al techniques will be discussed with an eye towards future
inclusion in the engine.



Artificial Intelligence Engine Requirements
An effective artificial intelligence engine should support agents that are:

Reactive
Context Specific
Flexible

Realistic

Easy to Develop

GhwhRE

Reactive agents respond quickly to changes in the environment and those
reactions are specific to the current situation. Context specific agents ensure
that their actions are consistent with past sensor information and the agent’s past
actions. Flexible agents have a choice of high level tactics with which to achieve
current goals and a choice of lower level behaviors with which to implement
current tactics. Realistic agents behave like humans. More specifically, they
have the same strengths has human players as well as the same weaknesses.
Finally, an artificial intelligence engine can make agent development easier by
using a knowledge representation that is easy to program and by reusing
knowledge as much as possible. Each of the components of the artificial
intelligence engine must be carefully designed to implement the five
requirements discussed above.

The common approaches currently used in computer games generally excel at
some of the requirements listed above while falling short in others. For example,
stimulus-response agents just react to the current situation at each time step with
no memory of past actions or situations. This type of agent is generally very
responsive because, without contextual information, the proper reaction to the
current situation can be calculated very quickly. Stimulus-response agents can
also implement multiple behaviors but aren’t easily able to represent higher level
tactics. Script-based agents, on the other hand, naturally make use of contextual
information but can be less reactive. These agents have a number of scripts, or
sequences of actions, one of which is selected and executed over a number of
time steps. Once a script is selected all the actions performed are consistent
with the context and goals of the script. However, if the situation changes, script-
based systems can be slow to change scripts or stuck executing a irrelevant
script which makes them less reactive.

Perhaps the most common approach to building intelligent agents in games is to
use C code to implement the Al with a large number of nested if and case
statements. As the agents get more complex, the C code that implements them
becomes very difficult to debug, maintain and improve. A more constrained
language, which better organizes the conditional statements, could be developed
but we believe this language would turn out to be very similar to the Soar
architecture.



The Inference Machine is Key

The inference machine is the central component of the Al engine design because
it sets forth constraints that the other components must meet. The job of the
inference machine is to apply knowledge from the knowledge base to the current
situation to decide on internal and external actions. The agent’s current situation
is represented by data structures representing the results of simulated sensors
implemented in the interface and contextual information stored in the inference
machine’s internal memory. The inference machine must select and execute the
knowledge relevant to the current situation. This knowledge specifies external
actions, the agent’s moves in the game, and internal actions, changes to the
inference machine’s internal memory, for the machine to perform. The inference
machine constantly cycles through a perceive, think, act loop, which is called the
decision cycle.

1. Perceive: Accept sensor information from the game
2. Think: Select and execute relevant knowledge
3. Act: Execute actions in the game

The inference machine influences the structure of the knowledge base by
specifying the types of knowledge that can be used and how that knowledge is
represented. For example, a reactive inference machine, with no internal
memory, would limit the knowledge base to stimulus-response knowledge
represented as rules of the form “if X is sensed then do Y.” The knowledge base
couldn’t contain high level goals because, without any internal memory, the
inference machine couldn’t remember the current goal across the multiple
decision cycles needed to achieve it. Thus, a feature of the inference machine,
the lack of internal memory, effects the knowledge base by limiting the types of
knowledge included. A second example is how the speed of the inference
machine constrains the speed of the interface. Because the interface must
provide updated sensor data at the beginning of each decision cycle, the amount
of time it take the inference machine to think and act is the amount of time the
interface has to extract the sensor data. If the interface is too slow, the inference
machine will be selecting incorrect actions due to out of date sensor information.

The most characteristic details of an inference machine are how it implements
the think step of the decision cycle and any internal actions of the act step. For
example, during the think step a stimulus-response inference machine compares
each stimulus-response rule to the current sensor information. One rule is
selected from the rules that match according to the specific inference machine’s
selection mechanism. A common mechanism is to order the rules by priority and
execute the highest priority rule that matches. Since a stimulus-response
machine doesn’t have any internal memory there aren’t any internal actions to be
supported. A slightly more complex inference machine might include a simple
form of internal memory by allowing the knowledge to select from a number of
modes (attack, retreat, explore...) which influence behavior. Separate rules



would be used for each mode and rules could change the machine’s internal
mode of behavior. Agents that use stimulus-response inference machines,
usually with some form of behavior modes, are common in the early action
games. These agents usually sit in “sleep” mode until they sense the player and
then change to an “attack” mode. Stimulus-response inference machines
support agents that are very reactive but tend not to be very context specific,
flexible or realistic.

A second class of inference machines common in games use scripted
sequences of actions to generate the agent’s behavior. At specific points in the
game or when the agent senses certain conditions, the inference machine begins
to execute one of the scripts stored in its knowledge base. Once a scriptis
selected the inference machine performs the actions in sequence over a number
of decision cycles. The inference machine’s internal memory stores the agent’s
place in the script and possibly some details of previous sensor information or
actions used to slightly customize the remainder of the script. More complex
scripts include branch points in the sequence of actions where sensor inputs,
such as the human player’s responses to earlier actions, can influence the
remainder of the actions in the script. Agents that use script-based inference
machines are common in adventure and interactive fiction games where agents
interact with players through scripted conversations. Usually, once the script has
been completed, the agent switches to a reactive inference machine and a
behavior mode based on the player’s reactions during the script. Script-based
inference machines tend to be less reactive than stimulus-response machines
but their behavior is more context specific and somewhat more realistic.

As an inference machine, the Soar architecture combines the reactivity of
stimulus-response machines with the context specific behavior of script-based
machines. Additionally, agents based on Soar are flexible in that they can
respond to a given situation in multiple different ways. In Soar, knowledge is
represented as a hierarchy of operators. Each level in the hierarchy represents a
successively more specific representation of the agent’s behavior. The top
operators in the hierarchy represent the agent’s goals or modes of behavior. The
operators at the second level of the hierarchy represent the high level tactics the
agent uses to achieve the top level goals. The lower level operators are the
steps and sub-steps, called behaviors, used by the agent to implement the
tactics. In any given decision cycle Soar can select one operator to be active at
each level of the hierarchy.

As shown in figure 1, an agent that plays Quake Il might have a top level “Attack”
goal with various tactics for attacking at the second level of the hierarchy. The
behaviors and sub-behaviors that implement each attack tactic would fill out the
lower levels. Because Soar considers changing each operator every decision
cycle it is very reactive. If the situation suddenly changes, the inappropriate
operators will immediately be replaced with operators more suitable to the new
situation. On a 300 MHz Pentium Il machine Soar can handle 6-10 agents



Top Level Goals

Attack Retreat Explore Collect Power-ups

.................................

Tactics

Circle-Strafe

i Behaviors
Find hidden location Select weapon Wait for target Shoot target

Figure 1: A portion of a sample operator hierarchy for an action game such as
Quake Il or Descent 3. This hierarchy has four top-level goals. The Attack goal can
be implemented by any of six tactics. The Camp tactic has four behavior sub-
operators, some of which have sub-operators of their own.

allowing each to perform 5 decision cycles per second. Unlike Soar, script-based
inference machines usually don’t consider changing scripts until the current script
is finished. This can sometimes be seen in role playing games when the player
attacks a computer controlled agent in the middle of a conversation and the
agent doesn't fight back until it has finished its lines. Soar, on the other hand,
could change from a “converse” high level operator to a “defend” operator in a
single decision cycle.

Because operators can remain selected for many decision cycles, Soar can
easily support context specific sequences of actions in like script-based
machines. In Soar, a script would take the form of a single high level operator
and a sequence of sub-operators. Soar would select the high level operator to
execute the script and that operator would remain selected (or persist) through
out the execution of the script. Each sub-operator would be selected in turn and
perform a step in the script. Since each operator has its own selection conditions
branching scripts, as described above, are also easy to implement. If at any
point the situation changed making the script inappropriate, the high level
operator would be replaced and the script wouldn’t continue.

Unlike both stimulus-response machines and script-based machines, the Soar
architecture includes a full internal memory that can store a variety of types of
information. In addition to the persistence of selected operators, the persistence
of information in the internal memory supports context specific behavior. For
example, if an enemy moves out of sight, a pure stimulus-response machine will



Figure 2: An intelligent agent, or bot, in Quake Il will receive sensor information about
an opponent at position C but won’t sense the opponents in positions A (no line of
sight), B (out of field of view), D (out of sight range and field of vision) or E (no line of
sight and out of field of vision).

immediately forget that the enemy exists. A script-based machine will fare
slightly better because it will at least have an attack-enemy script selected; but it
won’t have any sensor information about the enemy with which to implement the
script. The Soar architecture can easily store the most recent sensor information
about the enemy in the internal memory and, if the enemy disappears, fall back
on these memories. Furthermore, after the enemy disappears Soar operators
can modify the internal memories about the enemy based on projections of the
enemy’s behavior.

Finally, both stimulus-response machines and script-based machines are
inflexible in that they generally only have one way to respond to each situation.
Soar’s hierarchical operator representation can easily support multiple tactics to
achieve each goal and multiple behaviors to implement each tactic. Each
operator is represented by a set of selection conditions, tests on sensor
information and internal memory, and a set of conditional actions. When an
operator needs to be chosen at a level of the hierarchy all the suitable operators
with matching selection conditions are considered. Another form of knowledge,
called search control knowledge, is used to assign priorities to the candidate
operators. Once an operator is chosen, it remains the current operator at that
level until its selection conditions are no longer met. While an operator is
selected its actions can be executed if the action’s conditions are also met.
Multiple tactics or behaviors can be implemented by creating multiple operators
with similar selection conditions but different actions that result in the same
result. For example, the “Attack” goal from the Quake Il example above (see
figure 1) can be achieved via a number of different tactic operators and each
tactic operator could be implemented by a variety of behavior operators.

The Interface is Key



Enemy Sensor Information

name
classname
skin
"model
"health
"deadflag
Aweapon
team
waterlevel
watertype
velocity

X

Yy

4
range
Nangle-off

sensor
visible
Anfront

[string]
[string]
[string]
[string]
[int]

[string]
[string]
[string]
[int]

[string]

[float]
[float]
[float]
[float]

[float]
[float]

[float]
[float]

[bool]
[bool]

Movement Commands

“thrust
sidestep
Aurn

ace
climb
Aaim

Nook
yump
centerview
run
"acetarget

movetotarget

Neadtarget

[forward/off/backward]
[left/off/right]
[left/off/right]
[degrees]
[up/off/down]
[degrees]
[up/off/down]
[yes/no]
[yes/no]
[on/off]
[on/off]
[on/off]
[on/off]

Weapon Control Commands

change

continuousfire

~ireonce

[weapon]
[on/off]
[yes/no]

Misc. Commands

dropnode
~disconnect
wave

say
say_team
selecttarget

[yes/no]
[yes/no]
[int]
[string]
[string]
[target]

Figure 3: Samples of the sensor information and actions implemented by the
Quake Il interface. The sensor information the inference engine receives about an
enemy entity is shown on the left. On the right are many of the external

commands the inference engine can issue.

One of the lessons learned as a result of the Soar/Games project is the
importance of a carefully designed interface between the inference machine and
the environment in which the agent lives. The interface extracts the necessary
information from the environment and encodes it into the format required by the
inference machine. Each new game requires a new interface because the
details of the interaction and the content of the knowledge extracted vary from
game to game. For example, the interface to Descent 3 must give the agent the
ability to move or rotate in all six degrees of freedom, while Quake Il requires
only four degrees of freedom (plus a jump command). Similarly, Quake Il
requires one set of weapon control commands while Descent 3 requires two sets
because the game includes primary and secondary weapons. Each game
includes it's own special features which require customized interface

programming to support.

However, each of the interfaces we’ve designed has shared two common
principles. The first is that the interface should mimic the human’s interface as
closely as possible. Thus, the inference machine gets all the information
available to the human player and no additional information. For example, as
shown in figure 2, an opponent in Quake Il must meet three requirements to be



sensed. First, the opponent must be in the agent’s sight range. Second, the
opponent must be in the agent’s visual field, which corresponds to the visual field
displayed on the screen. Finally, there must be an unblocked line of sight
between the agent and the opponent. When an opponent meets all three
requirements the interfaces sends sensor information about that opponent to the
inference machine. The second principle is that the interface should access the
game’s data structures directly and avoid the difficult problems involved in
modeling human vision. Thus, the interface shouldn’t attempt to extract sensor
information from the image displayed on the screen alone.

One of the common complaints about game Al is that the agents are allowed to
cheat. Cheating can take the form of using extra information that the human
player doesn’t have or being given extra resources without having to perform the
actions required to acquire them. Requiring the intelligent agents to use the
same sensor information, follow the same rules and use the same actions as the
human players eliminates cheating and results in realistic agents. All of the
sensor information and actions available through the Quake Il interface are also
available to a human player (see figure 3). The cost is that these realistic agents
will require more knowledge and better tactics and behaviors to challenge human
opponents. Hopefully, using a pre-existing knowledge base will free the Al
programmers to develop the complex tactics and knowledge necessary to
implement challenging agents that don’t cheat. Because these agents don’t
cheat, but instead play smarter, they’ll be more similar to human opponents and
more fun to play against.

The Knowledge is Key

The final component of our Al engine is the knowledge base of game
independent goals, tactics and behaviors. As an example, the knowledge base
for the DARPA project included almost 500 operators that allowed the agents to
fly more than ten different types of missions including air to air combat, air to
ground combat and patrols. In our Al engine design, this knowledge base
doesn't include game specific information but instead focuses on goals, tactics
and behaviors that apply to any game within a genre. For example, in the first
person perspective genre, the circle-strafing tactic would be a component of the
behavior knowledge base. To apply the Al engine to a specific game, a small
amount of game dependent information is added which would allow the circle-
strafing tactic to be applied differently according to the game dynamics. Descent
3’s flying agents might circle-strafe in three dimensions, while Quake

agents would circle-strafe in only two dimensions. The job of the Al programmer
would then be to tailor the general knowledge base to the game being developed
and add additional game specific knowledge and personal touches.

When the general knowledge base is being developed it is important to keep the
five agent requirements (reactive, context specific, flexible, realistic, easy to
develop) in mind. Some of these requirements are mainly supported by features



of the inference machine and/or interface. The knowledge base simply needs to
ensure that it makes use of these features. For example, a knowledge base that
takes advantage of the hierarchical goal structure and internal memory of the
Soar architecture by including persistent operators and internal memories will
result in agents with context specific behavior. Encoding many high level
operators, some of which apply to any situation, gives the agent flexibility in its
choice of tactics. Similarly, encoding many low-level operators that implement
the tactics in more than one way, gives the agent flexibility in its choice of
behaviors. Flexible agents, with a choice of responses to any situation, won't
react the same way twice making the game more fun and more replayabile.

Realism is one of the main areas in which intelligent agents in games tend to fall
short. Frequently, the agents take actions a human player would never take or
miss actions that would be obvious to a human player. Unrealistic behavior can
be very distracting and usually is the cause of complaints that agents are
“stupid.” Frequently, the cause of unrealistic behavior is unrealistic or missing
knowledge in the knowledge base. When creating and testing a knowledge base
it is important to constantly ask “What would a human do?” and tailor the
knowledge to match.

Future Directions

Currently the Soar architecture has been interfaced to five different games.
Three of these games are fairly simple variations on Pac-man and tank combat
action games. The two commercial games, Quake Il and Descent 3, are more
complex and have involved creating more sophisticated interfaces and
knowledge bases. A simple agent for Quake Il has been developed that uses
around 15 operators in a three level hierarchy to battle human opponents. While
this simple Quake-bot isn’t an expert player it does easily beat beginners and
provides a challenging opponent for intermediate Quake Il players. A simple
Descent 3 agent has also been developed that seeks out and destroys monsters
in the Descent 3 levels.

The immediate future plans for the Soar/Games project is to finish a more
complex and complete implementation of the Al engine. The Soar architecture
has recently been updated to version 8, which includes changes to improve
reactivity and make Soar’s learning mechanism easier to use. A full rewrite of
the interface to Quake Il will be complete by the end of February and the
interface to Descent 3 is also being rewritten. Simple Quake Il and Descent 3
knowledge bases have already been developed and tested and a more complex
knowledge base, which will be used by both games, is currently being designed.
Additionally, a speech interface to cooperative agents in Quake Il is being
developed which will allow a human player to act as an officer, giving voice
commands coordinating the actions of a platoon of intelligent agent soldiers.



Once the initial implementation is complete, some of the ongoing research at the
University of Michigan Al lab can be tested in the context of the games. One
major area of research is automatically learning new knowledge from natural
interactions with human experts such as instruction and observation. A very
early experiment has shown that the KnoMic (Knowledge Mimic) system can
learn new operators for the Quake Il knowledge base based on observations of
an expert playing the game. A similar system, which learns from expert
instruction, also seems promising. A related research project at Colby college is
using the Soar/Games Al engine to develop socially motivated agents that seek
to satisfy internal needs and drives through social interaction and cooperation.
One of the advantages of the Soar/Games project is that so many different areas
of Al research, such as opponent modeling, agent coordination, natural language
processing and planning, have the potential to be easily showcased in the
context of computer games.

Acknowledgements

The research presented here and Soar/Games project would not exist without
the hard work of a number of undergraduates and graduate students at the
University of Michigan. Steve Houchard has worked tirelessly on the interface to
Quake II. Kurt Steinkraus implemented and constantly improves the Soar side of
the interface. Russ Tedrake developed the Descent 3 interface. Joe Hartford
developed the initial interface to Quake Il. Josh Buckman assisted Russ with the
Descent 3 side of the project. Thanks to Intel for donating a number of the
machines that have been used during the project. Finally, we'd like to thank
Outrage Entertainment for giving us the chance to work with Descent 3 while it is
being developed. Their cooperation and many hours of assistance made this
project possible.



