Research in Human-level Al using Computer Games
John E. Laird

The goal of our research is to understand what is required for human-level artificial intelligence
(AI). A key component of our methodology is developing Al systems in complex, dynamic
environments that have many of the properties of the world we inhabit. Although robotics might
seem an obvious choice, research in robotics requires solving many difficult problems related to
low-level sensing and acting in the real world that are far removed from the cognitive aspects of
intelligence. Simulated virtual environments make it possible to by-pass many of these problems,
while preserving the need for intelligent real-time decision-making and interaction.
Unfortunately, development of realistic virtual environments is an expensive and time-
consuming enterprise onto itself and requires expertise in many areas far a field from Al
However, computer games provide us with a source of cheap, reliable, and flexible technology
for developing our own virtual environments for research.

Over the last four years, we have been pursuing our research in human-level Al using a variety
of computer game engines: Descent 3, Quake II, and Unreal Tournament. Outrage
Entertainment, the developer of Descent 3, created an interface for us to test the viability of using
a mature Al engine to control a character in the game. Descent 3 is a fun and challenging game
that involves three-dimensional control of a spaceship through tunnels and caves. Although it
was a useful first step, we abandoned it for Quake II in which the Al system could control more
human-like characters. In Quake II, players (including Al “bots”) attempt to shoot each other
and they can collect “powerups” such as health items, ammunition, and weapons. Quake II has a
dynamically linked library (DLL) that allows access to Quake II’s internal data structures and
controls for the computer-controlled bots. We interface our Al engine (Soar) through the DLL to
control a bot that a human playes against. One attractive feature of Quake II is that there are
editors available to create your own game environments.

Our goal in using Quake II was to discover what was necessary to create an Al bot that played
the game in much the same way a human plays the game. We designed our bots to use sensory
information similar to that which is available to a human, use the controls similar to those used
by a human, and use some of the tactics that humans use. For sensing, the bots can “see” other
players and items that are not obstructed by other entities or features (such as walls) in the
environment. However, it is difficult to extract spatial information about the physical
environment from the game, such as walls and doors, which in the game’s internal data
structures are just sets of polygons. The bot needs this information to avoid moving into walls
and to create internal maps of its environment. To overcome this difficulty, the bots get range
information to the nearest polygons to the front, back, and to both sides. The bots then build up a
map as it explores the level that it later uses for moving from room to room, finding the best path
to pick up a given powerup, or hiding in corners to surprise the enemy. The bot can also “hear”
noises made by other nearby characters. For movement, the bots can move left, right, forward,
and back, as well as turn, using commands that map directly onto the actions humans can make
by moving their mouse and pressing keys on their keyboard.

The reasoning in our bot is done by programs written in the Soar Al architecture. Programs in
Soar consists of sets of rules that support knowledge-rich reactive and goal-driven behavior

through the elaboration of the situation, and the proposal, selection, and application of operators.
For example, rules can elaborate the internal representation of the current situation, such as
detecting that the bot is too close to a wall, or that a useful weapon is nearby. Proposal rules test
the current situation, including elaborations to suggest either primitive or complex operators to
perform, such as proposing to pickup a nearby powerup (weapon, health, or ammunition item).
Additional rules select among proposed operators, such as preferring to pickup the best powerup
if there are multiple powerups nearby. Finally, application rules generate the actions that are
involved in performing the operator such as sending a motor command to move forward, or turn.

Many operators that are proposed and selected cannot be applied directly, such as picking up a
weapon. These are automatically converted into subgoals where further rules propose finer-grain
operators to achieve the more abstract operators. Figure 2 shows a small part of the hierarchy
that can arise as part of exploring a level. [Add Figure] We did some informal studies where we
had humans compare the behavior of human players to variations of the bots to determine if
changes in decision speed, tactics, aggressiveness, and aiming skill influence how “human” the
bots were. The trends in the results were that bots with extremely accurate aiming or extremely
fast (< 25 msec.) decision speed appeared less human than ones with less accurate aiming skills
and slower (100 msec.) decision speed.

We also did a qualitative analysis of the behavior and noticed that expert players attempt to
anticipate the actions of their opponents. Anticipation is a form of planning similar to the look-
ahead search performed by Al programs that play classic games like chess and checkers;
however, the challenge in a game like Quake II is that when a decision is made to perform an
action (such as when to turn) is often as important as the choice of action to take. Moreover, in
contrast to chess where you can see the complete board, in Quake II the there is only imperfect
information about the state of each player. To simplify the process, our bot creates an internal
representation of what it thinks the opponent’s internal state is, and then uses its own tactics to
predict the opponent’s behavior. It continues to predict until it finds a situation in which it can
get to one of the opponent’s destinations first and set an ambush, or there is so much uncertainty
in what the opponent will do that it is not worth projecting its behavior any further. After adding
anticipation, playing the bot shifts from being a purely tactical game of trying to get the best
weapons and shoot the fastest, to a more strategic and intriguing game, where you are always
wondering if the bot has already second guessed you and is hiding in ambush on the other side of
the next door.

Although action games such as Quake is the most popular game genre, there are inherent limits
in the complexity of behaviors required to create compelling bots that are essentially
computerized punching bags. Furthermore, these games limit the human gaming experience to
violent interactions with other humans and bots. Therefore, we are currently working to develop
non-violent plot-driven computer games where the Al characters have diverse and complex
behavior that is driven by the interaction of their body with the environment, their goals, their
knowledge of the world they inhabit, their own personal history, and their interactions with
human players. This will lead to games where the human players are faced with challenges and
obstacles that require meaningful interactions with the Al characters. We are building on one of
the oldest genres of computer games, sometimes called interactive fiction or adventure games,
which involve having the human player overcome obstacles and solve puzzles in pursuit of some

goal. [Myst, Bladerunner, Monkey Island series] One weakness of these games is that the
behavior of non-player Al characters is scripted, so that the interactions with them are very
stilted and not very compelling. Our challenge will be to create Al characters whose behavior are
not only human-like but also leads to engaging game play.

Using Unreal Tournament (UT), we are creating an adventure game where the player takes on
the persona of a ghost-like energy creature trapped in a house. UT is an action game similar to
Quake2 with an underlying engine that is extremely flexible. For just the cost of the game ($20),
you get access to level editors for defining the environment, a scripting language (Unrealscript)
for defining the “physics” of the world and the way objects in the world interact, and the ability
to import your own objects into the game.

In our game, the human player’s goal as the “ghost” is to escape the house and return home to an
underground cavern. The ghost is severely limited in its ability to manipulate the environment. It
can move or pick up light objects, such as a match or a piece of paper, but it can’t move or
manipulate heavy objects. Moreover, metal drains the ghost energy, so the ghost must avoid
metal objects. These constraints force the player to entice, cajole, threaten, or frighten the Al
characters into manipulating the objects in the world, which in turn forces us to develop Al
characters that have enough “intelligence” to make these social manipulations possible and
realistic. With the Al characters playing such a central role, they must have distinctive
personalities in terms of their goals and reaction to the environment. For example, there will be
the evil scientist who is immune to fear but is weak and easily fatigued by exertion or cold and
wants to capture the ghost character, while there will also be a lost hitchhiker (we aren’t trying to
have the most original story ever) who is easily frightened by the ghost, but is physically strong
and driven by curiosity. The game will push our research to integrate the knowledge-based, goal-
oriented reasoning that we have concentrated in the past, with emotions, personality, and
physical drives that have been used in simple, knowledge-lean agents in other systems
[references to Oz, Sims]. Our hope is that we inspire others to pursue human-level Al characters
and new types of games that those characters make possible.

References (to be completed)...

Figures: I can get some screen shots of our UT game.

