An Exploration into Computer Games and Computer Generated Forces

John E. Laird
University of Michigan
1101 Beal Ave.
Ann Arbor, Michigan 48109-2110

laird@umich.edu

Keywords:
Computer games, computer generated forces, artificial intelligence, anticipation

ABSTRACT: The artificial intelligence (A1) components of computer games often appear to be very complex, possibly
having abilities beyond the state of the art in computer generated forces. In this paper we study the similarities and
differences between Als for computer games and computer generated forces (CGFs). We contrast the goals of Als and
CGFs, their behavioral requirements, and the underlying resources available for developing and fielding them, with an
eye to how they impact the complexity of their behaviors. Our conclusion is that CGFs are currently far ahead of game
Als, but that this may change soon. We argue that computer games have advantages for doing certain types of research
on complex, human-level behavior. We support this argument with a demonstration of research we have done on Al and
computer games. We have developed the Soar Quakebot, which is a Soar program that plays the death match version of
Quake II. The design of the Soar Quakebot is based on TacAir-Soar, a real-time expert system that flies U.S. military
air missions in simulation, and that is used for training in the U.S. Air Force. The Soar Quakebot incorporates complex

tactics and the ability of the bot to anticipate the actions of its enemy.

1. Introduction

Over the last five years, there have been amazing
advances in the quality and complexity of computer
games. The most noticeable advances have come in
computer graphics, where the number of polygons that are
rendered in a scene seems to increase exponentially each
year. Images on today’s $400 game consoles rival or
surpass those on $50,000 computers from only a few years
ago. Secondary to the graphics has been the complexity of
the underlying environments, be they indoor rooms and
corridors or outdoor landscapes. These and other features
have led to a significant improvement of the realism of
games. Embedded within these simulated worlds are Als -
computer controlled synthetic characters that populate the
worlds, sometimes as members of the same team, but
usually as enemy fodder for the player to kill. When taken
together, these advances make the experience of playing
games very compelling. Although it is tempting to dismiss
them as frivolous, their behavior is often very captivating
and shows enough intelligence to raise an uncomfortable
thought in the minds of CGFs developers, “Have
computer games made CGFs obsolete?”

The short answer is, “No.” The best work in CGFs, as
demonstrated in STOW-97, is still years ahead of the
synthetic characters developed in computer games in
terms of complexity and realism of behavior. The first part
of this paper explores the reasons for this, which are
rooted in the significant differences between the goals,
available resources, and environments of the game
industry vs. the DOD simulation world. These differences

lead to significant differences in the complexity and
scalability of the behavioral representation approaches
used in the two fields.

Even if computer games have a long way to go in terms of
realistic modeling of complex human behavior, they
provide environments that are worth considering for
research on building human-level Al characters [5]. The
immersive three-dimensional worlds of computer games
provide complex, exciting, stable, and cheap
environments for research and development into the
advanced capabilities required by computer generated
forces. This point is illustrated in the second part of this
paper by an example of our own research where we have
transitioned our technology for developing CGFs to
developing synthetic characters in computer games.
Computer games have simplified some of the issues that
arise in research on CGFs while allowing us to create
“authentic”, realistic, and complex behavior. Our major
advancement has been in extending our synthetic
characters so that they anticipate the actions of their
opponents.

2. Computer Generated Forces

Computer generated forces can be used in training,
mission rehearsal, and weapons development and testing,
as well as many other applications such as doctrine and
tactics development. In these applications, the CGFs
populate the synthetic battle space with entities that
substitute for humans. They are used most often for
training and mission rehearsal where the cost of

populating the battle space with humans and either real or
simulated vehicles is prohibitively expensive for
realistically sized training exercises. For example, when
training or rehearsing a division of four Navy pilots, over
forty additional entities might be needed to provide
friendly support, enemy planes, and ground forces.
Moreover, if the goal is to train a group of mid- to high-
level commanders, hundreds, thousands, or tens of
thousands of units might be needed.

When CGFs are used for training (and other purposes),
the primary goal is to replicate the behavior of a human;
that is the behavior should be realistic [8]. Without
realistic, human-like behavior, the danger is that human
trainees interacting with the CGFs will have negative
training. Therefore, a CGF should obey appropriate
doctrine and tactics, and have the same strengths and
weaknesses as humans both in physical and mental
abilities. In the limit, this includes human behavioral
characteristics such as response to battlefield stress (e.g.
fatigue), emotions (e.g. frustration, anger, fear), and other
psycho-physiological human characteristics. For some
applications of CGFs, the realism is less important and the
CGFs can be less complex.

The U.S. DOD has significant resources available in order
to develop realistic CGFs. For many years, DARPA
funded research groups under the CFOR, STOW and the
ASTT programs. The individual services have also
invested 10's if not 100's of millions of dollars in CGFs.
Development has covered semi-automated entity-level
forces that combine simple autonomous behavior with
human control, such as available under ModSAF or
CCTT; autonomous intelligent entity-level forces that can
work independently or as teams, obeying standard
doctrine and tactics, such as our work on TacAir-Soar;
command forces that plan activities for entity-level units,
such as the systems developed under CFOR. Each of these
efforts have involved at least 10's of man-years of
development, usually spread over multiple years and they
include significant knowledge-acquisition efforts
combined with verification and validation of the
behaviors.

The resources available in the fielding of CGFs span a
broad spectrum depending on the required complexity and
realism of behaviors of the CGFs. For the simplest CGFs,
hundreds or thousands might run on a single processor.
For those incorporating detailed realistic behavior at the
entity or command level, there may be only one to ten per
processor.

The environment that the CGFs exist in can be very large
and complex. For example, the STOW environment
covered a 500 x 775 km area that was populated by over
3,700 active entities and over 10,000 buildings. Although
unusually large, other simulation environments have the

same unrestricted aspect in that the CGF developer does
not know beforehand where and how his units will be
used. During operation, the CGF's behavior must be
unscripted, responding to the situations as they develop.
However, they have to modulate and customize their
behaviors based on the specific missions being performed.
For STOW, our planes had to accept the standard Air
Tasking Order that is used to specify air missions
throughout the U.S. military. During the performance of
those missions, the CGFs had to communicate with other
CGFs and humans (this was a critical component of the
CFOR project), sometimes responding to dynamic
changes in their orders.

To summarize, the goal for the most complex CGFs is to
display realistic behavior in the complex, uncontrolled
simulation environments. The DOD has made available
significant resources available to create these systems
using various Al approaches such as hierarchical finite-
state machines, rule-based systems, hierarchical goal-
structured rule-based systems, constraint-satisfaction
systems, and hierarchical planning systems. Although
these approaches are all different, they share the idea of
creating a separate level of description for encoding
behavior about strategy, tactics, doctrine, and behavior.
They rise above standard programming languages such as
C and C++.

3. Game Als

In computer games, Al can be used to control individual
characters in the game, to provide strategic direction to
groups of characters, to dynamically change parameters in
a game to make it appropriately challenging, or to even
produce the play by play commentary in a sports game
[1,2,9]. For this paper I will concentrate on the types of Al
that are used to control individual characters or provide
strategic direction to groups of characters. These uses map
most directly on to the uses of Al in military simulation.
Just as in military simulation, the role of Als in computer
games is to populate an environment with entities that the
human plays with and against.

In contrast to military simulation, the goal of computer
games is to entertain the person playing the game. The Al
must generate behavior that makes the game fun to play.
This is even more vague than "human-like behavior", and
can only be defined within the context of a specific game.
Moreover, when there is a desire for human-like behavior,
the desire is really only for the illusion of human-like
behavior, and the effort is put into the illusion, not into the
accuracy or competence of the underlying behaviors.

Often, the Al must just be competent, performing the
standard actions of the game, such as blocking, running,
passing, and tackling in a football game. But it is also
important at the higher levels of a sports game that the

play calling that is not too predictable. In many action
games, the role of the Al is not to be a human-level
opponent, but to be a "punching bag" for the human
player to beat up on. If the Al does more than run straight
at you, it is considered very sophisticated. In strategy
games, it is not critical that the units being controlled
behave exactly like humans, only that they don't do
obviously dumb things (like run into walls or shoot their
own forces) and that they carry out the orders given them
to by a human player or a computer controlled enemy. In
games where there is a plot or storyline, such as adventure
games and many action games, the game Als behavior is
usually tightly scripted so that they "pop-out" at specific
times, or engage in fixed dialogue to forward the plot. In
games where realism seems important, what is critical is
that the behavior looks "good", not that it is verified to be
good.

Another aspect of being entertaining is that the Al
provides the human with a satisfying game experience, so
that it is much more important that the Al opponent is
neither too easy nor too hard than that it plays extremely
realistic. Often the role of the Al is not to provide the kind
of experience you would get in training, where you might
get your butt kicked whenever you make a mistake.
Instead, the Al just needs to put up a good fight, and then
lose convincingly - so that the human player feels a sense
of achievement.

The standard development cycle for a computer game is
one year. Some ambitious games can take up to 3 years,
but the majority of games are developed within a year or
less. On a development team, there will usually be one
person responsible for the Al. For action, adventure, and
military simulation games, that person will create the
basic behaviors and a scripting language. The scripting
language is used by level designers to create specific Als
for the different parts of the game. The limits on available
manpower strictly limit the complexity of behaviors for
the Al. For sports games, usually the Al used in the
previous years is tweaked, and rarely rewritten from
scratch. And although more and more people in the game
industry are being trained in Al methods, the development
schedules prevent them from using the complexity of
techniques employed in CGFs.

The fielding of computer game Al is pretty
straightforward. The game Al is usually allocated only 5-
10% of the CPU of the computer the game is played on.
The remaining CPU is dedicated to graphics, networking,
sound, game play, physics etc. Even for a sports game,
such as soccer, where they are many players, the game Al
is getting very little of the CPU.

How do computer games give any semblance of realistic
behavior? First, the environments in with they behave are
very restricted and are preprocessed to simplify their

runtime processing. All of those tough problems that
CGFs must by solve by themselves (realistic sensor
processing, terrain and spatial reasoning, coordination,
and complex strategic planning) are finessed in computer
games. For example, in strategic games, a human has
already analyzed the terrain and created an annotated map
for the game Al with all of the important tactical and
strategic locations. Moreover, the human expert has
probably created a set of scripts for the Al to follow and
one is picked randomly when the game starts. In driving
games and action games, specific paths through the
environment have been laid down for the Al to follow.
Furthermore, the computer Al feels no compunction to
play fair. To simplify its reasoning, the game designer will
often give the game Al access to the complete game state -
it knows where your forces are even though it cannot
realistically "sense" them. Remember, what is important is
that the game is fun to play, so a valid approach is for the
game Al to make up for its weaknesses by cheating, which
works well as long as it doesn't get caught. The result of
all of these simplifications and cheats is that the Al in
computer games does not scale up to real world problems
and must be hand customized to new scenarios and new
missions.

Because of the lack of resources for development, game
developers often code the Als directly in C. Conditional
actions that would normally be encoded as rule-based
system end up being lots of embedded if-statements in C.
Moreover, only rarely is there a clean separation between
the Al logic and the rest of the game logic. The one
exception is that in many adventure and action games,
scripting languages are developed so that level designers,
not programmers, can specify the behavior of game Als to
further the plot or story. These languages provide a way
for non-programmers to specify bits of conditional and
sequential behavior as well as some coordination.
However, the scripts are always very specific to one small
part of the game. Some progress is being made, with
finite-state machines being used more and more for
control of simple units and characters. In addition,
complex path finding algorithms are employed for unit-
level Als being built on top of A*.

Although game Al has a long way to go to compare to the
state of the art in CGFs, I expect that it will make up
ground fast. Up to now, graphics has been the driving
force behind advances in computer games; however,
within 2-3 years advances in graphics may run their
course as the improvements in the underlying technology
leads to only marginal improvements in the game
experience. The advent of the Playstation 2 and the
Microsoft X-box will support such a high-level of
graphics that more of the CPU can be dedicated to Al.
Thus, we can expect to see more development and runtime
resources available for game Al, and making it possible to
increase complexity and realism in game Al. As games

become less linear and more complex, it will become
cheaper to develop more realistic and general Als than
hardcode in specific behaviors. Moreover, game designer
will look for new areas to distinguish their games, with Al
being an obvious choice. Already games are marketed
based on their Al, as weak as it is.

4. Computer Games in CGF Research

Although the goals of computer games are not always
aligned with the DOD simulation community, the game
industry has created some amazing environments in which
CGF related research could be performed. Action and
adventure games are set in complex three-dimensional
worlds, often with military themes. Although computer
game designers have chosen to finesse many of the hard
research issues, these environments can be used to study
those issues. There are many features of these worlds that
are exciting from a research perspective:

1. The games provide immersive environments of
greater detail than available with the majority of
military simulations. The detail is for unit level
interactions and not for large-scale simulations, but at
the unit-level, these games have amazingly complex
and real-world environments.

2. Some games provide well-defined interfaces for
connecting external software that can control an
entity in the game. These dynamically loaded libraries
(DLLs) make it possible to use the commercial game
without have access to the source code. Games such
as Quake, Half-Life, and Descent all publish DLLs.

3. The games are cheap - $49.95.

4. The games come with editors that allow a user to
create their own environments in which to play.

5. The game code is extremely robust and bug free. It
runs right out of the box, with out complex
installation, licensing agreements, updates, etc.

6. University students are extremely excited about
working on computer games.

All of these reasons make computer games an attractive

arena for academic research on many of the issues related

to computer-generated forces. The most significant
overheads are creating the interface between the DLL and
the Al system that the researcher is using. Other than that,
the overhead in using a computer game is much less than
using a military simulation system such as
ModSAF/JSAF.

For now, the best support in computer games is from
action games where research on single characters or
groups of characters is easiest to pursue. However, |
expect this to expand to strategy games where command
level research can be studied.

5. The Soar Quakebot

Over the last two years, we have been experimenting with
research in computer game Al within action games. The
next three sections summarize our experiences. An
expanded version of these sections can be found in [4].

The Soar Quakebot plays the death match version of
Quake II. Quake II is a popular commercial computer
game. In a death match, players exist in a "level", which
contains hallways and rooms. The players can move
through the level, picking up “powerups”, such as
weapons, ammo, armor, and health, and firing weapons.
The object of the game is to be the first to kill the other
players a specified number of times. Each time a player is
shot or is near an explosion, its health decreases. When a
player's health reaches zero, the player dies. A dead player
is then "reborn" at one of a set of spawning sites within
the level. Powerups are distributed throughout the level in
static locations. When a powerup is picked up, a
replacement will automatically regenerate in 30 seconds.
Weapons vary according to their range, accuracy, spread
of damage, time to reload, type of ammo used, and
amount of damage they do. For example, the shotgun does
damage in a wide area if used close to an enemy, but does
no damage if used from a distance. In contrast, the railgun
kills in a single shot at any distance, but requires very
precise aim because it has no spread of the projectiles.

The Soar Quakebot controls a single player in the game.
As shown in Figure 1 on the next page, the Soar Quakebot
reasoning code currently runs on a separate computer and
interacts with the game using the Quake II interface DLL.
C code, which implements the Soar Quakebot's sensors
and motor actions, is embedded in the DLL along with our
inter-computer communication code, called Socket 1/O.
Socket I/0 provides a platform-independent mechanism
for transmitting all perception and motor information
between the Quakebot and the game.

The Quakebot uses Soar [6] as its underlying Al engine.
All the knowledge for playing the game, including
constructing and using an internal map, is encoded in Soar
rules. The underlying Quake II game engine updates the
world and calls the DLL ten times a second. On each of
these cycles, all changes to the bot's sensors are updated
and any requested motor actions are initiated.

Soar runs asynchronously to Quake II and executes its
basic decision cycle anywhere from 30 to 50 times a
second, allowing it to take multiple reasoning steps for
each change in its sensors. Soar consuming 5-10% of the
processing of a 400MHz Pentium II running Windows
NT.

Interface
DLL

Socket

~_ 7
Perception |

/0 | d——
/_A.QU&H

Socket
/0

Soar Quakebot

Rules

Figure 1: Interface between Quake II and the Soar Quakebot

The Soar Quakebot is designed based on the principles
developed early on for controlling robots using Soar and
then extended in our research on simulating military pilots
in large scale distributed simulations [3]. Soar is an engine
for making and executing decisions - selecting the next
thing the system should do and then doing it. In Soar, the
basic objects of decision are call operators. An operator
can consists of primitive actions to be performed in the
world (such as move, turn, or shoot), internal actions
(remember the last position of the enemy), or more
abstract goals to be achieved (such as attack, get-item,
goto-next-room) that in turn must be dynamically
decomposed into simpler operators that ultimately bottom
out in operators with primitive actions. These primitive
actions are implemented by if-then rules.

The basic operation of Soar is to continually propose,
select, and apply operators to the current state via rules
that match against the current state. When an abstract
operator is selected that cannot be applied immediately,
such as get-item, then a substate is generated. For this
substate, additional operators are then proposed selected
and applied until the original operator is completed, or the
world changes in such a way as to lead to the selection of
another operator.

Figure 2 shows a subset of the operator hierarchy in the
Quakebot. This is a small part of the overall hierarchy, but
includes some of the top-level-operators, such as wander,
explore, attack, and those that are used in the substate that
can arise to apply the collect-powerups operator.

| attack | | wander | | collect-powerups | | explore |

get-item

goto-item goto-next-room

face-item stop | | notice-item-missing |

| move-to-item |

Figure 2: Partial operator hierarchy

Rules encode all of Soar's long-term procedural
knowledge, and they are matched against the states stored
in Soar's global declarative working memory. Working
memory holds all of the bot's information about the
current situation, including perception, elaborations of
perception, data structures representing the map of the
game, etc. All rules that successfully match working
memory fire in parallel to change working memory by
either adding or deleting declarative structures.

Below is a list of the main tactics the Quakebot uses.
These are implemented across the top-level operators.
e Collect-powerups
Pick up items based on their spawn locations
Pick up weapons based on their quality
Abandon collecting items that are missing
Remember when missing items will respawn
Use shortest paths to get objects
Get health and armor if low on them
Pickup up other good weapons/ammo if close by
e Attack
e Use circle-strafe (walk sidewise while shooting)
e Move to best distance for current weapon
e Retreat
e Run away if low on health or outmatched by the
enemy's weapon
e Chase
e (o after enemy based on sound of running
¢ Go where enemy was last seen
e Ambush
e Wait in a corner of a room that can’t be seen by
enemy coming into the room
e Hunt
¢ Go to nearest spawn room after killing enemy
¢ Go to rooms enemy is often seen in

6. Anticipation

Although the Quakebot as described above can react to
different situations and opponents, as of yet, it and other
game Als do not anticipate or adapt to the behavior of
other players. The following quote from Dennis (Thresh)
Fong, the Michael Jordon of Quake, gives some insight

into the importance of anticipation (Newsweek, November

1999):
Say my opponent walks into a room. I'm
visualizing him walking in, picking up the weapon.
On his way out, I'm waiting at the doorway and I
fire a rocket two seconds before he even rounds the
corner. A lot of people rely strictly on aim, but
everybody has their bad aim days. So even if I'm
having a bad day, I can still pull out a win. That's
why I've never lost a tournament.

These tactics can be added manually for specific locations
in a specific level of a game. For example, we could add
tests that if the bot is ever in a specific location on a
specific level and hears a specific sound (the sound of the
enemy picking up a weapon), then it should set an ambush
by a specific door. Unfortunately, this is the approach
currently used in computer games and it requires a
tremendous effort to create a large number of tactics that
work only for the specific level.

Instead of trying to encode behaviors for each of these
specific situations, a better idea is to attempt to add a
general capability for anticipating an opponent's actions.
From an AI perspective, anticipation is a form of
planning; a topic researchers in Al have studied for 40
years. The power of chess and checkers programs comes
directly from their ability to anticipate their opponent's
responses to their own moves. Anticipation for bots in
first-person shooters (FPS) has a few twists that
differentiate it from the standard Al techniques such as
alpha-beta search.

1. A player in a FPS does not have access to the
complete game state as does a player in chess or
checkers.

2. The choices for action of a player in a FPS unfold
continuously as time passes. At any time, the player
can move, turn, shoot, jump, or just stay in one place.
There is a breadth and depth of possible actions that
quickly make search intractable and requires more
knowledge about which actions might be useful.

However, as we developed the Quakebot, we found that in
order to improve the behavior of the bot, we were forced
to add more and more specialized tactics. Our approach to
anticipation is to have the Quakebot create an internal
representation that mimics what it thinks the enemy's
internal state is, based on its own observation of the
enemy. It then predicts the enemy's behavior by using its
own knowledge of tactics to select what it would do if it
were the enemy. Using simple rules to internally simulate
external actions in the environment, the bot either forward
projects until it gets a useful prediction, or there is too
much uncertainty as to what the enemy would do next.
The prediction is used to set an ambush or deny the enemy
an important weapon or health item.

Anticipation requires adding knowledge about when it

should be used, how it is done, and how the results are

used to change behavior. These map on to the following

structures in the Quakebot:

1. Proposal and selection knowledge for a predict-
enemy operator.

2. Application knowledge for applying the predict-
enemy operator.

3. Proposal knowledge for selecting operators that will
use the predictions.

6.1 Predict-Enemy Proposal and Selection

When should the Soar Quakebot attempt to predict the
enemy's behavior? It should not be doing it continually,
because of the computational overhead and the
interference with other activities. It shouldn't do it when it
has absolutely no idea what the state of the other bot is
and it also shouldn't do it when any prediction will be
ignored because the bot already knows what to do. The
Soar Quakebot attempts to anticipate an enemy when it
senses the enemy (so it knows some things about the
enemy's state), and the enemy is not facing the bot and is
outside the range of its currently selected weapon
(otherwise the bot should be attacking). The Quakebot
will also attempt to anticipate the enemy if the enemy has
just disappeared from view, such as when it has left a
room through a doorway.

Figure 3 shows an example where the Quakebot (lower
left) sees its enemy (upper center) heading north, on its
way to get a desirable object (the heart). This corresponds
to the situation described above and causes the Quakebot
to propose and select the predict-enemy operator.

v

— &

- 1

Figure 3: The predict-enemy operator is selected.
One important aspect of Soar is that if the enemy turns
toward the Quakebot instead of continuing north, the
predict-enemy operator will be retracted (proposal rules
implement justification-based reasoning maintenance) so
that the Quakebot can select the attack operator and not be
caught napping.

6.2 Predict-Enemy Application

Once the decision has been made to predict the enemy's
behavior (via the selection of the predict-enemy operator),
the next stage is to do it. Our approach is straightforward.
The Quakebot creates an internal representation of the
enemy's state based on its perception of the enemy and
then uses its own knowledge of what it would do in the
enemy's state to predict the enemy's actions. Thus, we will
assume that the enemy's goals and tactics are essentially
the same as the Quakebot's. This is the same approach that
is taken in Al programs that play most games, such as
chess or checkers. However, in this case the actions that
are taken are not moving a piece on a board but are the
movement of a Quakebot through its world using
perception and motor commands.

The first step is to create the internal representation of the
enemy's situation so that the Quakebot's tactics can apply
to them. This is easy to do in Soar because Soar already
organizes all of its information about the current situation
in its state structure in working memory. All that needs to
be done is that when the predict-enemy operator is
selected and a substate is created, that state needs to be
transformed into a state that looks like the top-level state
of the enemy. The internal representation of the enemy's
state is only approximate because the Quakebot can sense
only some of it and must hypothesize what the enemy
would be sensing. Surprisingly, just knowing the enemy's
position, health, armor level, and current weapon is
sufficient to make a plausible prediction of high-level
behavior of players such as the Soar Quakebot.

v

OO

T
— &

ED

Figure 4: The Quakebot creates an internal representation
of enemy's situation.

The second step involves letting the Quakebot's tactics
work on its representation of the enemy's state. In the
internal simulation of the example in the figures, rules
would propose the collect-powerups operator in order to
get the heart powerup. The Quakebot knows that the
powerup is in the room to the north from prior
explorations and attributes that knowledge to the enemy.
Once collect-powerups is selected, a substate will be
created, and then get-item, which in turn will have a
substate, followed by goto-next-room. If this was not an

internal simulation, goto-next-room would lead to a
substate in which goto-door is selected. However, for
tactical purposes, the Quakebot does not need to simulate
to that level of detail. To avoid further operator
decompositions, a rule is added that tests that a prediction
is being done and that the goto-next-room operator is
selected. Its actions are to directly change the internal
representation so that the Quakebot (thinking it is the
enemy) thinks it has moved into the hall. Similar rules are
added to short-circuit other operator decompositions.
Additional rules are needed to update related data
structures that would be changed via new perceptions
(frame axioms), such as that health would go up if a health
item was picked up. One additional rule is added to keep
track of how far the enemy would travel during these
actions. This information is used later to decide when to
terminate the prediction. Figure 5 shows the updated
internal representation of the Quakebot.

@

T

O
e
—

- 1

Figure 5: The Quakebot projects that enemy will move
into hallway in pursuit of powerup.

The selection and application of operators continues until
the Quakebot thinks that the enemy would have picked up
the powerup. At that point, the enemy is predicted to
change top-level operators and choose wander. Because
there is only one exit, wander would have the enemy leave
the room, going back into the hallway and finally back
into the room where the enemy started (and where the
Quakebot is).

Q@

Oo

_ &0

- 1

Figure 6: The Quakebot projects that enemy will return to
the current room.

6.3 Predicting

Throughout this process, the Quakebot is predicting the
behavior of the enemy. That prediction is only useful if
the Quakebot can get into a tactical position that takes
advantage of the prediction. Up until the enemy returns to
the room, the prediction does not help the Quakebot.
However, if the Quakebot hides by the hallway, it can get
off a shot into the back or side of the enemy as it comes
into the room. Thus, following the prediction, the
Quakebot can set an ambush.

What are the general conditions for using the prediction:
that is, what advantage might you get from knowing what
the enemy is going to do? For Quake II, we've
concentrated on the case where the bot can predict that it
can get to a room before the enemy, and either set an
ambush or deny the enemy some important powerup. This
is done by continually comparing the distance that the
enemy would take to get to its predicted location to the
distance it would take for the Quakebot to get to the same
location. For the current system, the number of rooms
entered is used a rough distance measure. In the example
above, the Quakebot predicts that it will take the enemy
four moves to get back to the current room, and it knows
it is already in that room. Why doesn't the Quakebot stop
predicting when the enemy would be coming down the
hallway, which is three moves for it vs. one for the bot?
The reason is that the Quakebot knows that it cannot set
an ambush in a hallway, and thus waits until the predicted
location is a room.

A prediction can also terminate when the Quakebot
(thinking as the enemy) comes across a situation in which
there are multiple possible actions for which it does not
have a strong preference. This would have arisen in the
previous example if there had be three doors in the north
most room - with only two doors, the prediction would
have gone forward because of the preference to avoid
going back where you came from. When this type of
uncertainty arises, the Quakebot abandons the prediction
and attempts to get to the room it predicts the enemy is
going to.

6.4 Using the Prediction

In the Soar Quakebot, three operators make use of the
predictions created by predict-enemy: hunt, ambush, and
deny-powerups. When a prediction is created that the
enemy will be in another room that the Quakebot can get
to sooner, hunt is proposed and it sends the bot to the
correct room. Once in the same room that the enemy is
predicted to be in, ambush takes over and moves the bot
to an open location next to the door that the enemy is
predicted to come through. In general, the bot will try to
shoot the enemy in the back or side as it enters the room
(shown below in the figure). But if the bot has the rocket

launcher, it will take a pre-emptive shot when it hears the
enemy getting close (a la Dennis Fong, who was quoted
earlier). Both of these ambush strategies have time limits
associated with them so that the bot waits only a bit more
time than it thinks the enemy will take to get to the room
in which the bot has set the ambush.

a1

-1

Figure 7: The Quakebot executes an ambush based on the
results of its prediction.

6.5 Learning predictions

Inherent to Soar is a learning mechanism, called chunking,
that automatically creates rules that summarize the
processing within impasses. Chunking creates rules that
test the aspects of the situation that were relevant during
the generation of a result. The action of the chunk creates
the result. Chunking can speed up problem solving by
compiling complex reasoning into a single rule that
bypasses the problem solving in the future. Chunking is
not used with the standard Quakebot because there is little
internal reasoning to compile out; however, with
anticipation, there can be a long chain of internal
reasoning that takes significant time (a few seconds) for
the Quakebot to generate. In that case, chunking is perfect
for learning rules that eliminate the need for the Quakebot
to regenerate the same prediction. The learned rules are
specific to the exact rooms, but that is appropriate because
the predictions are only valid under special circumstances.

Below is an English version of a rule learned by the
Quakebot.

If predict-enemy is the current operator
and
there is an enemy with health 100,
using the blaster, in room #11 and
I am distance 2 from room #3
then
predict that the enemy will go to
room #3
through door #7.

Compiled into the prediction is that the bot can get to
room #3 before the enemy.

Once this rule is learned, the bot no longer needs to go
through any internal modeling and will immediately

predict the enemy's behavior when it sees the enemy under
the tested situations. The impact is that as the bot plays the
game, it will build up a set of prediction rules, and it will
make fast predictions in more situations. In fact, it might
turn out that when it originally does prediction, the time to
do the prediction sometimes gets in the way of setting an
ambush or denying a powerup, but with experience that
time cost will be eliminated. One possibility to create
more challenging opponents is to pre-train Quakebots so
that they already have an extensive set of prediction rules.

7. Limitations and Extensions

This section presents various limitations and extensions to
the anticipation capabilities of the Soar Quakebot.

7.1 Recursive Anticipation

The Quakebot anticipates what the enemy does next. An
obvious extension is for the Quakebot to anticipate the
enemy anticipating its own actions. This recursion can go
on to arbitrary depths, but the usefulness of it is probably
limited to only a few levels. Recursive anticipation could
lead the Quakebot to actions that are deceptive and
confusing to the enemy. Although this might be useful in
principle and for non-real-time computer games, such as
real-time strategy games where there is more global
sensing and a less frantic pace, it might be of only limited
use for the Quakebot. The reason is that the bot must
sense the enemy in order to have some idea of what the
enemy's state is, and the enemy must sense the bot in order
to have some idea of what the bot's state is. In Quake,
there are only rare cases where the bot and the enemy can
sense each other and one will not start attacking the other.
However, we plan to do some limited investigation of
recursive anticipation to find out how useful it is.

7.2 Enemy-Specific Anticipation

The current anticipation scheme assumes that the enemy
uses exactly the same tactics as the Quakebot. However,
there may be cases where you know beforehand that an
opponent has different tactics, such as preferring different
weapons. By incorporating more accurate models of an
enemies weapon preferences, the Quakebot can decide to
ambush an enemy in completely different (and more
appropriate) rooms. We have made this extension by
adding rules that encode weapon preferences that are
specific to a player. These rules test the name of the
opponent so that they apply only for the reasoning about
the appropriate enemy.

7.3 Adaptive Anticipation
Unfortunately, an enemy's tactics and preference are

rarely known beforehand. It is only through battle that one
learns about the enemy. We've further extended the

Quakebot so that it notices the weapon preferences of its
opponent during a match and dynamically modifies its
model of that opponent.

A more general, but more difficult approach is to have the
bot modify its knowledge each time the enemy does
something unpredictable. The bot would continually try to
build up its knowledge so that it can successfully predict
the enemy. One final complexity is that the enemy will not
be static, but will be adapting to the bot's tactics, and even
to the bot's use of anticipation and it adaptation to the
enemy. For example, after the first time an enemy is
ambushed after getting the powerup from a dead-end
room, it will probably anticipate the ambush and modify
its own behavior. Our research into these issues will build
on previous research we've done on learning from
experience with dynamic environments [7].

8. Summary and Perspective

Our work with the Quakebot demonstrates how research
on autonomous Al agents can be successfully pursued
within the context of computer games. The research we've
done has direct application to CGFs where it is desirable
to have realistic, entity-level behavior. The same methods
for anticipation could be directly applied to other CGFs
systems. Moreover, it is easy to imagine doing further
research within the context of the Quakebot or related
characters on other aspects of human modeling such as the
impact of emotion and battlefield stressors, or on
coordination and cooperation in small group. We have
also found these environments useful in doing small
studies on the effect of different cognitive parameters on
the skill-levels of our Quakebot. Although only
preliminary, we have been able to study the impact on
changes in reaction time, tactics level, and
perceptual/motor skills on overall performance level in the
game. Overall, we have found computer games to be a
rich environment for research on human-level behavior
representation.

9. Acknowledgments

The author is indebted to the many students who have
worked on the Soar/Games project, most notably Michael
van Lent, Steve Houchard, Joe Hartford, and Kurt
Steinkraus.

This research was funded in part by grant N61339-99-C-
0104from ONR and NAWCTSD.

10. References

[1] AAALI: Papers from the AAAI 1999 Spring
Symposium on Artificial Intelligence and Computer
Games, Technical Report SS-99-02, AAAI Press,
1999.

[2] AAALI: Papers from the AAAI 2000 Spring
Symposium on Artificial Intelligence and Interactive
Entertainment, Technical Report SS-00-02, AAAI
Press, 2000.

[3] R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter,
P. G. Kenny, and F. V. Koss: "Automated Intelligent
Pilots for Combat Flight Simulation" Al Magazine,
20(1), 27-42, 1999.

[4] J.E. Laird: "It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot" Papers from the
AAAI 2000 Spring Symposium on Artificial
Intelligence and Interactive Entertainment, Technical
Report SS-00-02, AAAI Press, 2000.

[5] J. E. Laird and M. van Lent: "Human-Level Al's
Killer Application: Computer Game AI" To appear in
Proceedings of AAAI 2000, Austin, TX, August
2000.

[6] J. E. Laird, A. Newell, and P. S. Rosenbloom: "Soar:
An architecture for general intelligence: Artificial
Intelligence, 33(3), 1-64, 1987.

[7] J. E. Laird, D. J. Pearson, and S. B. Huffman:
"Knowledge-directed Adaptation in Multi-level
Agents" Journal of Intelligent Information Systems, 9,
261-275, 1997.

[8] National Research Council, "Modeling Human and
Organizational Behavior: Applications to Military
Simulations" National Academy Press, Washington
D.C. 1998.

[9] S. Woodcook: "Game Al: The State of the Industry"
Game Developer, 6(8), 1999.

Author Biography

JOHN E. LAIRD is a Professor of Electrical Engineering
and Computer Science at the University of Michigan. He
received his B.S. from the University of Michigan in 1975
and his Ph.D. from Carnegie Mellon University in 1983.
He is one of the original developers of the Soar
architecture and leads its continued development and
evolution. From 1992-1997, he led the development of
TacAir-Soar, a real-time expert system that flew all the
U.S. fixed-wing air missions in STOW-97. He was an
organizer of two symposia on Al and computer games and
has been a presenter at the last three Computer Game
Developers' Conferences.

	4. Computer Games in CGF Research
	6.1 Predict-Enemy Proposal and Selection
	6.2 Predict-Enemy Application
	6.3 Predicting
	6.4 Using the Prediction
	6.5 Learning predictions

	7. Limitations and Extensions
	7.1 Recursive Anticipation

