
Using Computer Game to Develop Advanced AI
John E. Laird

Although computer and video games have existed for fewer than 40 years, they are already
serious business. Entertainment software, the entertainment industry's fastest growing segment,
currently generates sales surpassing the film industry's gross revenues. Computer games have
significantly affected personal computer sales, providing the initial application for CD-ROMs,
driving advancements in graphics technology, and motivating the purchase of ever faster
machines. Next-generation computer game consoles are extending this trend, with Sony and
Toshiba spending $2 billion to develop the Playstation 2 and Microsoft planning to spend more
than $500 million just to market its Xbox console [1].

These investments have paid off. In the past five years, the quality and complexity of computer
games have advanced significantly. Computer graphics have shown the most noticeable
improvement, with the number of polygons rendered in a scene increasing almost exponentially
each year, significantly enhancing the games' realism. For example, the original Playstation,
released in 1995, renders 300,000 polygons per second, while Sega's Dreamcast, released in
1999, renders 3 million polygons per second. The Playstation 2 sets the current standard,
rendering 66 million polygons per second, while projections indicate the Xbox will render more
than lOO million polygons per second. Thus, the images on today's $300 game consoles rival or
surpass those available on the previous decade's $50,000 computers.

The impact of these improvements is evident in the complexity and realism of the environments
underlying today's games, from detailed indoor rooms and corridors to vast outdoor landscapes.
These games populate the environments with both human and computer controlled characters,
making them a rich laboratory for artificial intelligence research into developing intelligent and
social autonomous agents.

Indeed, computer games offer a fitting subject for serious academic study, undergraduate
education, and graduate student and faculty research. Creating and efficiently rendering these
environments touches on every topic in a computer science curriculum. The "Teaching Game
Design " sidebar describes the benefits and challenges of developing computer game design
courses, an increasingly popular field of study

COMPUTER GAME AI
In computer games, designers can use AI to control individual characters, provide strategic
direction to character groups, dynamically change parameters to make the game appropriately
challenging, or produce a sports game's play-by-play commentary.2,3 Computer games offer an
inexpensive, reliable, and surprisingly accessible research environment, often with built-in AI
interfaces.

Moreover, computer games avoid many of the criticisms leveled against research based on
simulations: Because researchers do not develop them, the games avoid embodying preconceived
notions about which aspects of the world designers can simulate with ease and which aspects
they can simulate only with difficulty. These games constitute real products that create real
environments with which millions of humans can interact vigorously.

Development costs and the lack of processing power prevent games for today's computers and
consoles from exhibiting a high level of artificial intelligence. Currently, developers devote more
resources to advancing a game's graphics technology than to enhancing its AI. Within two to
three years, however, the emphasis on graphics will likely have run its course as incremental
improvements in the underlying technology lead to only marginal improvements in the game
experience.

Game designers continually look for new ways to distinguish their games, and companies
already market games based on their AI. Recently, AI has been featured in two very successful
games, The Sills and Black and White. In the near future, more development and runtime
resources will be available to increase game AI complexity and realism, at which point we can
expect to see a significant growth in the role of AI in games.

DEVELOPING QUAKE II AI
My research group uses computer games as its environment for research on building human-
level AI. We do basic research on AI within computer games and
also demonstrate AI's potential for future computer games. Our most mature research involves
building AI bots that play the infamously violent action computer game Quake II. We selected
the game as an AI development platform because its developer, id software, publishes an
interface that makes it possible to control Quake II's botS via external software. Following id's
lead, other games, such as Unreal Tournament and Half- Life, provide interfaces So that anyone
can write code to control characters in the game through a dynamically linked library (DLL).
Other research groups are starting to pursue similar research projects using Unreal Tournament,
although with an emphasis on team play [4].

The bots included in the game provide challenging opponents, but only because of their
superhuman reaction times and aiming skills, not because of their complex tactics or game
knowledge. In contrast, we seek to create bots that use many of the tactics humans use so that
they beat you by outthinking you, not by outshooting you.

Play mechanics
When multiple human and bot players engage in a Quake II match at the same time, they exist in
a level that contains hallways and rooms. To explain the game using its own terminology, the
players move through the level, acquiring power-ups such as weapons, ammo, armor, and first-
aid boxes. The players also fire their weapons in an attempt to injure their enemies. When a
player's health reaches zero, the player dies, then instantly reappears at one of the level's preset
spawning sites. The first player to rack up a prespecified number of kills wins the game.

The game distributes power-ups in static locations throughout the level. When a player takes a
powerup, a replacement automatically regenerates in 30 seconds. Weapons vary according to
their range, accuracy, damage spread, reload time, ammo type, and amount of damage they
cause. For example, the shotgun spreads its damage across a wide area at short range, but does
no damage if the player fires it at distant targets. In contrast, the railgun kills in a single shot at
any distance, but requires very precise aim because it has zero spread.

Although it might appear from this description that Quake II is a mindless point-and-shoot game,
the factors I've listed--combined with the layout of the level's topology-make the game tactically
complex, which becomes obvious when watching an expert play.

The Quakebot
Our Quakebot uses Soar5-an engine for making and executing decisions-as its underlying AI
engine for controlling a single player. We chose Soar as our AI engine because our real research
goal is to understand and develop general integrated intelligent agents, Soar embodies our
current best hypotheses for the cognitive architecture underlying general intelligent agents, with
research and refinement of it stretching back twenty years.

Figure 1 shows the overall structure of the system. Quake II is the commercial version of the
game, which we have extended with the DLL. The DLL, written in C, implements the
Quakebot's sensors and motor actions, along with the Soar 1/0, our intercomputer
communication code. Soar 1/0 provides a platform independent mechanism for transmitting all
perception and motor information between the Quakebot and the game. We encoded all
knowledge for playing the game into the Soar rules.

The underlying Quake II game engine updates the world and calls the interface ten times a
second. On each of these cycles, it updates all changes to the bots and initiates any requested
motor actions. Soar runs asynchronously to Quake II and executes its basic decision cycle
anywhere from 30 to 50 times a second, allowing it to take multiple reasoning steps for each
change in its sensors. Soar consumes 5 to 10 percent of the processing power of a 400-MHz
Pentium II that runs Windows NT.

The Soar Quakebot's design uses principles originally developed for controlling robots, then
extended in our research to simulate military pilots in large-scale disrributed flight
simulations.6,7 In Soar, an operatorthe basic object of decision-consists of

• primitive actions that bots perform in the world such as move, turn, or shoot;
• internal actions such as remembering the enemy's last position; or
• more abstract goals such as attack, get-item, or goto-next-room that, in turn, must

dynamically decompose into simpler operators that ultimately bottom out in primitive
actions.

Soar continually proposes, selects, and applies operators to the current state via if-then rules that
match against the data structures that make up the current state. When Soar selects an abstract
operator that cannot be applied immediately, such as collect-power-ups, it generates a substate.
Within a substate, Soar then proposes, selects, and applies additional operators until the original
operator completes, or until the game environment changes such that it triggers the proposal and
selection of another operator. These additional operators may require further decomposition,
leading to the recursive dynamic generation of an operator hierarchy.

Figure 2 shows a subset of the Quakebot's operator hierarchy. Although a small part of the
overall hierarchy, this list includes some of the top-level operators, such as wander, explore,
attack, and other operators that Soar uses to apply the collect-power-ups operator.

During a game, rules will propose top-level operators-such as wander, explore, and attack-by
testing information gleaned from the Quakebots sensors. For example, if the Quakebot does not
sense an enemy or have a recent memory of one, and an inventory check reveals that it's missing
some important power-ups, a rule will propose the collect-power-ups operator.

Once Soar selects collect-power-ups, a substate will generate in which rules propose the get-item
operator for each missing power-up. Additional rules will then fire to create preferences so that
the bot pursues the get-item, another substate generates, and rules test whether the item being
pursued is in the current room or another one. If the power-up is in the current room, the rules
further decompose the problem until primitive operators such as face-the-item and move-to-the-
item, are proposed, selected and applied.

Figure 3 shows the main tactics the Quakebot uses. It implements these actions via the top-level
operators and their decompositions. Although Quakebots react to different situations and
opponents, they originally did not anticipate other players' behavior.

Anticipation's role
The following quote from Dennis "Thresh" Fong [8] Quake's Michael Jordan equivalent, gives
some insight into the importance of anticipation:

Say my opponent walks into a room. I'm visualizing him walking in, picking up the
weapon. On his way out, I'm waiting at the doorway and I fire a rocket two seconds
before he even rounds the corner. A lot of people rely strictly on aim, but everybody has
their bad aim days. So even if I'm having a bad day, I can still pullout a win. That's why
I've never lost a tournament.

We can program these tactics manually for specific locations within a specific level. For
example, we could add tests that direct a bot to set an ambush if it occupies a specific location on
a specific level and hears a specific noise, such as the sound of an enemy picking up a weapon.
Computer games currently use this approach, which requires a tremendous effort to create a large
number of tactics that work for each specific level.

An alternative to encoding behaviors for each of these specific situations is to add a general
capability for anticipating an opponent's actions. Anticipation is a form of planning that AI
researchers have studied for 40 years. The power of chess and checkers programs comes directly
from their ability to anticipate opponent's responses to their own moves. Anticipation for bots in
first-person shooters requires a few twists that differentiate AI for the FPS genre from standard
AI techniques such as alpha-beta search:

• Unlike a chess or checkers player, an FPS player lacks access to the complete game state.
• The choices for a player's actions in an FPS game unfold continuously as time passes. At

any time, the player can move, turn, shoot, jump, or remain in one place.
The breadth and depth of possible actions in an FPS game quickly make search intractable and
require more knowledge about which actions might prove useful.

Internal representation.

To support anticipation, the first thing the Quakebot must have is the ability to create its own
internal representation of what it believes to be the enemy's internal state-what the enemy is
currently sensing. It builds this representation based on its observations of the enemy. The
Quakebot then predicts the enemy's behavior by using its own knowledge of tactics to select
what it would do if it were that enemy. Using simple rules to internally simulate external actions
in the environment, the bot forward projects until it either gets a useful prediction or decides too
much uncertainty exists about what the enemy will do next. The bot uses such predictions to, for
example, set an ambush or deny the enemy an important weapon or health item.

Figure 4 shows an example in which the Quakebot, pictured in the lower left, sees its enemy,
pictured in the upper center, heading toward a desirable objectthe heart. As the enemy quickly
moves out of range, the Quakebot decides to predict the enemy's future course of action. If the
enemy turns toward the Quakebot instead of continuing toward the heart, the prediction process
aborts so that the Quakebot can immediately attack and not be caught planning.

Once it makes the decision to predict the enemy's behavior, the Quakebot creates an internal
representation of the enemy's state based on its perception of the enemy. Figure 5 shows the
Quakebot creating an internal representation of the enemy's situation that it will use for its
internal planning.

Quakebot prediction. In the next step, the Quakebot uses its representation of the enemy's state
and its knowledge of what it would do in the enemy's state to predict the enemy's actions. Thus,
we assume that the enemy's goals and tactics are essentially identical to the Quakebot's. In this
example, the bot knows, from prior explorations, that the power-up resides in the small room at
the top, and it now attributes that knowledge to the enemy. The bot projects that its adversary
will collect the power-up, which leads to a cascade of problem solving as it decides to execute
get-item and goto-next-room operations.

Once the Quakebot gets to this point, it internally simulates the enemy's movement from room to
room. It also can simulate the changes that will happen as other operators apply, such as its
health increasing if it picks up a first-aid kit. The selection and application of operators continues
until the Quakebot determines that the enemy will take the power-up, as Figure 6a shows. At that
poinr, the Quakebot predicts the enemy will change top-level operators and choose the wander
operator. Figure 6b shows that, because the room has only one exit, wander will direct the enemy
to exit, move back down the hallway, and finally reenter the room from which it started-and
which the Quakebot now occupies.

During the internal simulation, the bot continually compares the distance in terms of the number
of rooms the enemy has traveled to the distance the Quakebot requires to get to the same
location. In the preceding example, the Quakebot predicts that the enemy will require four moves
to get back to the room that the Quakebot currently occupies. Why doesn't the Quakebot stop
predicting at the point that the enemy would be in the hallway-only three moves for the enemy
versus one for the bot? Because the Quakebot knows an ambush cannot be set in a hallway,
where there is no place to hide. Thus, it waits until the enemy's predicted location is a room,
where it knows it can set an ambush, as shown in Figure 7.

When the Quakebot predicts that the enemy will be in another room that the bot can reach
sooner, the Quakebot attempts to set an ambush by moving to an open location next to the door
that its code predicts the enemy will move through. In general, the bot tries to shoot the enemy in
the back or side as it enters the room. If the bot carries a rocket launcher, it will take a
preemptive shot when it hears the enemy getting close-just as star player Dennis Fong would.
We associate time limits with both of these ambush strategies, however, so that the bot will not
wait indefinitely at the ambush site.

Our work with the Quakebot demonstrates that we can successfully pursue serious research on
autonomous AI agents within the context of
computer games. Our research directly applies to computer-generated forces,6,7 where we need
to

Figure 4. The Ouakebot, lower left, decides to predict the actions of its enemy, which stands at
the threshold to the small
room at the top. The bot predicts that the enemy will continue into the room to
obtain the heart, a valuable game item. If the enemy turns on the bot, however, the prediction
process aborts so that the bot can respond to the attack immediately.

Figure 5. The Ouakebot, lower left, uses its knowledge of what it would do in the enemy's state to
create an internal representation of the enemy's situation.
model realistic, entity-Ievel behavior. We find com
puter game environments useful in doing small studies on the effect of different cognitive
parameters on our Quakebot's skill levels. Using Quake II, we have successfully studied the
impact on overall game performance from changes in reaction time, tactics level, and perceptual
and motor skills.
From its scoring method, which rewards the highest number of kills, it's obvious that Quake II
epitomizes violent computer games. Although we have found computer games to be a rich
environment for research on human-Ievel behavior representation, we do not believe that the
future of AT in games lies in
creating more and more realistic arenas for violence.
Better AT in games has the potential for creating new game types in which social interactions,
not violence, dominate. The Sims9 provides an excellent example of how social interactions can
be the basis for an engaging game. Thus, we are pursuing further research within the context of
creating computer games that emphasizes the drama that arises from social interactions between
humans and computer characters.

References
1. International Digital Software Association, http://
www.idsa.com (cnrrent 24 May 2001).
2 J.E. Laird and M. van Lent, "Interactive Computer Games: Human-Level AI's Killer
Application," Proc. Nat'l Conf A.I., AAAI Press, Menlo Park, Calif., 2000, pp.1171-1178.
3. M. van Lent and J. E. Laird, eds., " Artificial Intelligence and Interactive Entertainment,"
Tech. Report 55-01-02, AAAI Press, Mar. 2001.

4. R. Adobbati et al., "GameBots: A 3D Virtual World TestBed for Mu]ti-Agent Research,"
Proc. 2nd Workshop on Infrastructure for Agents, MAS, and Scalable MAS, ACM Press, New
York, 2001, pp. 47-52.
5. J.E. Laird, A. Newell, and P.S. Rosenbloom, "Soar: An
 Architecture for General Intelligence," Artificial Intelli
 gence, Mar. 1987, pp. 1-64.
6. R.M. Jones et al., " Automated Intelligent Pilots for Combat Flight Simulation," AI Magazine,
Jan. 1999,
pp.27-42.
7. J .E. Laird, " An Exploration into Computer Games and
Computer Generated Forces," Proc. 9th Conf. Computer Generated Forces and Behavioral
Representation, 2000, http:/ /www.sisostds .org/cgf- br/9th/view-pa pers. htm (current 6 June
2001).
8. N. Croal, "Making a Killing at Quake," Newsweek, 22
 Nov. 1999, pg. 104.
 9. M. Macedonia, "Using Technology and Innovation to
 Simulate Daily Life," Computer, Apr. 2000, pp. 110
 112.

