1.5.11 Feedback Edge/Vertex Set

Problem Input | Problem Output

INPUT                    OUTPUT


Input Description: A (directed) graph G=(V,E).

Problem: What is the smallest set of edges E' or vertices V' whose deletion leaves an acyclic graph?

Excerpt from The Algorithm Design Manual: Feedback set problems arise because many algorithmic problems are much easier or much better defined on directed acyclic graphs than on arbitrary digraphs. Topological sorting can be used to test whether a graph is a DAG, and if so, to order the vertices so as to respect the edges as precedence scheduling constraints. But how can you design a schedule if there are cyclic constraints, such as A must be done before B, which must be done before C, which must be done before A?

By identifying a feedback set, we identify the smallest number of constraints that must be dropped so as to permit a valid schedule. In the feedback edge (or arc) set problem, we drop precedence constraints (job A must come before job B). In the feedback vertex set problem, we drop entire jobs and any associated constraints. It is also referred to in the literature as the maximum acyclic subgraph problem.


Implementations

  • The Stanford GraphBase (C) (rating 4)

    Related Problems

  • Bandwidth Reduction
  • Job Scheduling
  • Topological Sorting


    Previous Problem Next Problem

    View the graph for this file

    Bulletin Board
    About ``The Algorithm Design Manual''.
    Send us Mail
    The Stony Brook Algorithm Repository -- go to front page

    This page last modified on Wed Mar 07, 2001 .