
MCMCF
A Tool for Network Design

Jeffrey D. Oldham
Department of Computer Science

Stanford University
oldham@cs.stanford.edu

1997 November 18

Joint work with Andrew Goldberg,
Serge Plotkin, and Cliff Stein.

A Multicommodity Flow Example

Specify:

network topology
edge costs
peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA–Dallas 35 calls
LA–NYC 80 calls

Dallas–NYC 70 calls

30 calls
$3 per call

80
ca

lls
$1

pe
r

ca
ll

100 calls

$1 per call

LA
Dallas

NYC

Jeffrey D. Oldham (oldham@cs.stanford.edu) 1

Linear Programming Based Solution

Disadvantages:

Size: Problem specification: space

Linear programs: variables
inequalities

is the number of nodes.
is the number of edges.

is the number of commodities.

LP solution time:

experimentally quadratic in
experimentally quadratic in network size

design tradeoff:

slow, exact solution
fast approximation

Jeffrey D. Oldham (oldham@cs.stanford.edu) 2

Combinatorial Solution

Combinatorial program MCMCF:

-approximation:

flow uses at most edge capacity
flow cost at most minimum cost

Main idea:

reduce to single-commodity problems
relate commodities using potential function

Theoretical advantage:

time: (time for min-cost flow)
space:

Practical advantages:

trade off time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu) 3

The Potential Function

Problem:
Several objectives:

minimize total cost
capacity constraints for every edge

Not smooth!

Solution:
Aggregate into smooth potential function

flow’s cost

desired cost
edges

flow

capacity

small good solution

Jeffrey D. Oldham (oldham@cs.stanford.edu) 4

Outline of the Algorithm

Goal: Reduce potential function .

Main ideas:

Move in direction .
Maintain flow satisfying demands.

Until -optimal solution found:

1. Choose a commodity to improve.

2. Compute .

3. Use as edge costs.

4. Compute single-commodity minimum-cost flow .

5. Improvement step: .

Jeffrey D. Oldham (oldham@cs.stanford.edu) 5

Implementing the Algorithm

Direct implementation runs slower than LP.

Problem:

pessimistic parameters which
guarantee progress but not practical progress

Solution:
Use theory to yield practical modifications:

Dynamically adjust the step size .
Dynamically adjust .
Compute lower bound to determine when
solution is -optimal.
Restart MCF routine using previous flow.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 6

Choosing the Step Size

Improvement step:

Theory:

fixed step size

Practice:

Compute to minimize potential function.
Use Newton-Raphson method.
Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)
time (seconds)

instance Newton theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100 0.01 3 95

Jeffrey D. Oldham (oldham@cs.stanford.edu) 7

Comparisons with Linear Programming

MCMCF

-approximation:
Flow uses at most edge capacity
Flow cost at most minimum cost

CPLEX

dual simplex:
exact solutions

primal simplex
permits stopping to yield -approximation
experimentally 10x slower than dual

Comparisons performed on a Sun UltraSparc-2.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 8

Dependence on

CPLEX

MCMCF (1%)

Number of Commodities

Multigrid Instances

R
un

ni
ng

T
im

e
(m

in
)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 9

Dependence on (cont’d)

CPLEX

MCMCF (1%)

Number of Commodities

Rmfgen Instances

R
un

ni
ng

T
im

e
(m

in
)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 10

Dependence on Problem Size

CPLEX

MCMCF (2%)

Number of Vertices

Tripartite Instances

R
un

ni
ng

T
im

e
(m

in
)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 11

Dependence on the Approximation

The dependence is asymptotically .

(log scale)

Rmfgen Instances

N
um

be
r

of
M

C
F

C
om

pu
ta

tio
ns

(lo
g

sc
al

e)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 12

Conclusions

theoretical algorithm

theoretically fast
practically slower than LP

practical modifications

guided by theory

resulting advantages

yield fast, provably correct implementation
faster than all other algorithms
solve larger problems than all other algorithms
fast approximations—good for design
trade time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu) 13

