MCMCF
A Tool for Network Design

Jeffrey D. Oldham
Department of Computer Science
Stanford University
oldham@cs.stanford.edu

1997 November 18

Joint work with Andrew Goldberg,
Serge Plotkin, and CIiff Stein.

A Multicommodity Flow Example

Specify:

e network topology
e edge costs
e peak call demand

Goal: Satisfy peak demand with minimum cost.

Peak Demands

LA—Dallas | 35 calls
LA-NYC 80 calls
Dallas—NYC | 70 calls

LA

30 calls Dallas
$3 per call

Jeffrey D. Oldham (oldham@cs.stanford.edu)

Linear Programming Based Solution

Disadvantages:

Size: Problem specification: O(k + m) space

Linear programs: O(k(n + m)) variables
O(kn + m) inequalities

e n IS the number of nodes.
e m IS the number of edges.
e k is the number of commodities.
LP solution time:
e experimentally quadratic in k
e experimentally quadratic in network size

design tradeoff:

e Slow, exact solution
e fast approximation

Jeffrey D. Oldham (oldham@cs.stanford.edu) 2

Combinatorial Solution

Combinatorial program MCMCEF:

e-approximation:

e flow uses at most (1 + ¢) edge capacity
e flow cost at most (1 + ¢) minimum cost

Main idea:

e reduce to single-commodity problems

e relate commaodities using potential function
Theoretical advantage:

e time: O(e3k)(time for min-cost flow)

e space: O(k(n+m))
Practical advantages:

e trade off time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu)

The Potential Function

Problem:
Several objectives:

e Minimize total cost
e capacity constraints for every edge

Not smooth!

Solution:
Aggregate into smooth potential function ¢

B flow’s cost flow(e)
?=oxp <a (desired cOSt)) £ e (a <CapaCity(e)))

edges e

small¢ = good solution

Jeffrey D. Oldham (oldham@cs.stanford.edu)

Outline of the Algorithm

Goal: Reduce potential function ¢.

Main ideas:

e Move in direction (—V¢).

e Maintain flow satisfying demands.
Until e-optimal solution found:

1. Choose a commodity to improve.
Compute V.
Use V¢ as edge costs.

Compute single-commodity minimum-cost flow f*.

a bk~ WD

Improvement step: (1 —o)f +of*.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 5

Implementing the Algorithm

Direct implementation runs slower than LP.

Problem:

e pessimistic parameters which
guarantee progress but not practical progress

Solution:
Use theory to yield practical modifications:

e Dynamically adjust the step size o.

e Dynamically adjust «.
e Compute lower bound to determine when

solution is e-optimal.
e Restart MCF routine using previous flow.

Jeffrey D. Oldham (oldham@cs.stanford.edu) 6

Choosing the Step Size o

Improvement step:
(1—0)f +of*

Theory:

o fixed step size 0 = O(e~3)

Practice:

e Compute ¢ to minimize potential function.
e Use Newton-Raphson method.
e Newton requires first and second derivatives.

Result: (Sun Enterprise 3000)

time (seconds)

Instance € Newton | theoretical
rmfgen-d-4-12-020 0.01 64 3842
rmfgen-d-7-10-020 0.01 257 15203

multigrid-008-016-0100 0.01 3 95

Jeffrey D. Oldham (oldham@cs.stanford.edu) 7

Comparisons with Linear Programming

MCMCF

e-approximation:
e Flow uses at most (1 + ¢) edge capacity
e Flow cost at most (1 + ¢) minimum cost

CPLEX

dual simplex:
e exact solutions

primal simplex
e permits stopping to yield e-approximation
e experimentally 10x slower than dual

Comparisons performed on a Sun UltraSparc-2.

Jeffrey D. Oldham (oldham@cs.stanford.edu)

Dependence on k&

Multigrid Instances

5000 — CPLEX

Running Time (min)
DO
o
()
o
I

MCMCF (1%)

0]

©

P .
A

| | | | |
0 100 200 300 400

Number of Commaodities (k)

Jeffrey D. Oldham (oldham@cs.stanford.edu)

Dependence on £k (cont’d)

Rmfgen Instances

CPLEX
150 —
c
£ 100 -
O
£
I_
e
5
X MCMCF (1%)
o oO— ©
O -
| | | |
50 100 150 200

Number of Commodities (k)

Jeffrey D. Oldham (oldham@cs.stanford.edu)

10

Dependence on Problem Size

Tripartite Instances

1000 — CPLEX

MCMCF (2%)

800 —

600 —

400 —

Running Time (min)

200 —

| | | |
0 2000 4000 6000

Number of Vertices

Jeffrey D. Oldham (oldham@cs.stanford.edu) 11

Dependence on the Approximation e

The dependence is asymptotically O(e~1-°).

Rmfgen Instances

o)

© 2x10°
7

= 105_
o

= 5%x10% —
V)

-

9 2x10* —
@©

5 10% —
o

£ 5000 —
o

O

L 2000 —
O

S 1000
© 500 —
(D)

®)

e | | | | |
= 5 10 20 50 100

1/¢ (log scale)

Jeffrey D. Oldham (oldham@cs.stanford.edu) 12

Conclusions

theoretical algorithm

e theoretically fast

e practically slower than LP
practical modifications

e guided by theory

resulting advantages

e yield fast, provably correct implementation

e faster than all other algorithms

e solve larger problems than all other algorithms
e fast approximations—good for design

e trade time for accuracy

Jeffrey D. Oldham (oldham@cs.stanford.edu) 13

