

An Evolutionary Games Analysis of Bidding Strategies in a Scheduling Auction

Jeff MacKie-Mason

Arthur W. Burks Collegiate Professor of Information and Computer Science

Professor of Economics

School of Information, University of Michigan Professor of Computer Science

Michael P. Wellman

Artificial Intelligence Lab, University of Michigan

Scheduling Problems

- Scheduling optimization with full information is hard:
 discrete
 - complementarities
 - even with public information it's typically a knapsack problem
- In addition, often have autonomous agents with private local information
 - Need scheduling methods that respect autonomy and private information
 - I.e., decentralized mechanisms

2

No decentralized scheduling mechanisms are ideal

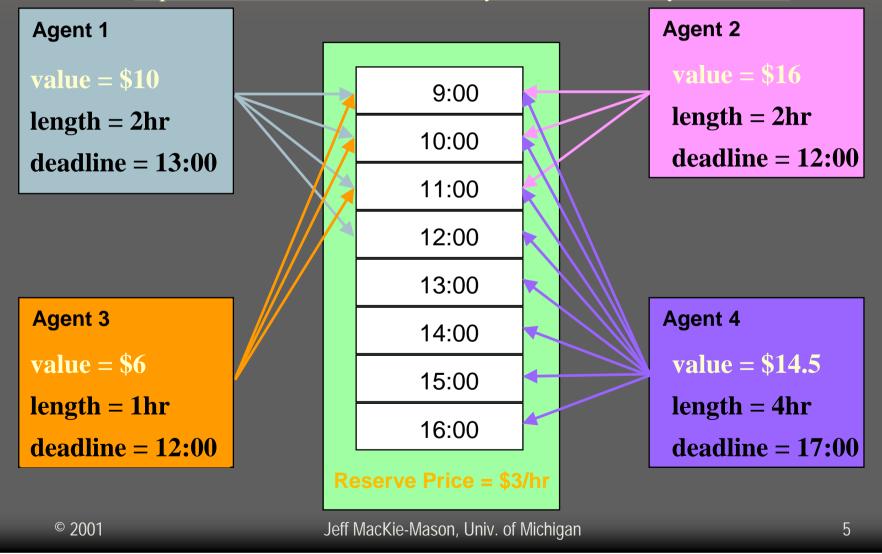
 \Rightarrow "Ideal" mechanism satisfies (at least): Pareto efficiency: No feasible alternative allocation benefits at least one agent without harming at least one other agent Participatory efficiency: willingness; budget balance Agent strategies are rational Impossibility theorems rule out satisfying all three

Designing good market mechanisms is immature science

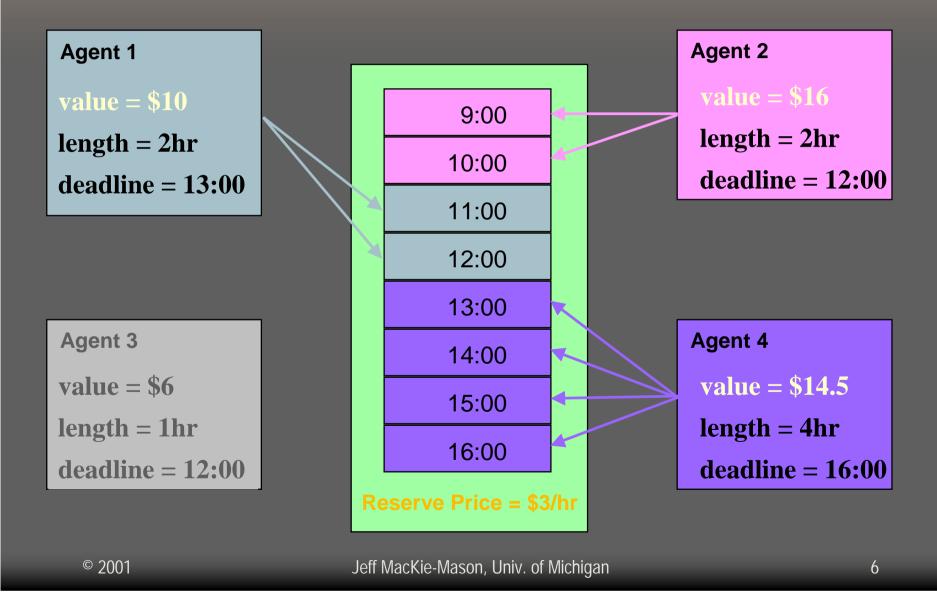
- Need to search for "good enough" mechanisms in large space of those that are not ideal
- To evaluate a mechanism, need to know how agents will interact with it (their strategies)
- Typically not possible to analytically derive optimal strategies
- HOW TO EVALUATE PRACTICAL MECHANISMS?

Factory Scheduling Example

http://auction.eecs.umich.edu/FactoryDemoDocs/factory-demo.html



Efficient Solution



Simple Case: Ascending Single Good Auctions

- ➡ Goods: 1 auction for each slot
- **Rules**:
 - \blacksquare min. bid increment ϵ
 - no bid withdrawal
 - closure when bidding stops
- **Baseline Strategy**:

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

- agent j bids for set of slots to max surplus at current p
 - drop out if no set of slots has positive surplus
- N.B. For single-slot problem, this is dominant strategy
- N.B. For multi-slot, not regret proof

Some theoretical results I: <u>Single slot</u> demands

Theorem: A price equilibrium exists

Theorem: Achieved p will differ from the min. unique equilibrium price by at most KE, where K = min(# slots,# agents)

Theorem: v(a) will differ from optimal by at most $\kappa \epsilon (1 + \kappa)$

Some theoretical results II: <u>Multi-slot</u> demands

- p can differ from equilibrium by arbitrarily large amount
- v(a) can differ from optimal by arbitrarily large amount
- So, apparently need to evaluate alternative mechanisms to find improved performance
 However: mechanisms evaluated against given strategies. How good are the strategies?

© 2001

Strategies sensible?

	Length	Deadline	Value
Agent 1	1	1	3
Agent 2	2	2	11

Minimum prices: (1,9)

Suppose: A_2 bids: $b_1=1$, $b_2=9$ A_1 bids: $b_1=2$ Then: $s_1 \rightarrow A_1$, $s_2 \rightarrow A_2$, v(f)=3

But optimum: $s_1 \rightarrow A_1, s_2 \rightarrow \emptyset$, v(f)=12

Is it reasonable for A₂ to stop bidding?
 By bidding b₁=3, it can do better than if auction stopped (v₂ = -1 rather than v₂ = -9)

Approaches to strategy discovery / selection

- Deductive analytics
 - see above
- Human-subject experiments
 - expensive, hard to generalize, limited to simple problems
- Statistical analysis
 - real world experiments few compared to number of possible mechanisms
 - expensive to implement field trials
- Evolutionary games

can select and evolve good strategies

11

Evolutionary games to select strategies

 \Rightarrow Set of s=1,...,S strategies \Rightarrow Population(s) of N agents, each initialized to $s_i \in S$ Strategy i played by fraction f_i of population During a "generation", agents interact through mechanism, each obtains payoff ("fitness") π_i \Box Update fraction f_i based on relative fitness ⇒ Iterate

Selection outcomes \Rightarrow Monomorphic population: strategy i^{*} dominates Polymorphic equilibrium: mixed strategy equilibrium Note: May have multiple steady states (if any) so initial conditions matter Theoretical properties known for some problems: E.g., under fairly general conditions Evolutionary Equilibria

Nash Equilibria

Discovery by evolving strategies

Add a method to search through other parts of strategy space E.g., genetic algorithm

⇒ At each generation, invoke new strategies

Our method

- O. Specify a scheduling problem (N slots), initialize a population with strategy distrib *f*
- 1. Randomly draw agents to participate in a scheduling market ("instance")
- 2. Randomly assign schedule preferences, play instance
- 3. Each generation update population fractions proportional to fitness

Design issues and implications

- O. Problem specificity: Strategy performance may vary by problem
- 1. Playing the field: find strategies that succeed on average against distribution of other strategies in population
- 2. Preference independence: find strategies that succeed on average across all admissible preferences
 General in principle, but in practice not the same as preference-specific strategies
- 3. Update dynamics may determine number and type of equilibria (and whether found by the algorithm)

Strategies explored

- Baseline "sunk unaware": agent j bids for set of slots to max surplus at current p
 - Bids as if incremental cost for slots currently winning is full price
- Problem: Agents ignoring "sunk cost" and may stop irrationally early
- Alternative: "sunk aware": bids as if incremental cost for slots currently winning is zero

Preliminary results

- Environment 1: "Contentious" sunkness likely to matter
 - 5 slots available
 - 5 agents with varying length jobs, λ =1,...,5
 - Agents have monotonically decreasing values for later deadlines

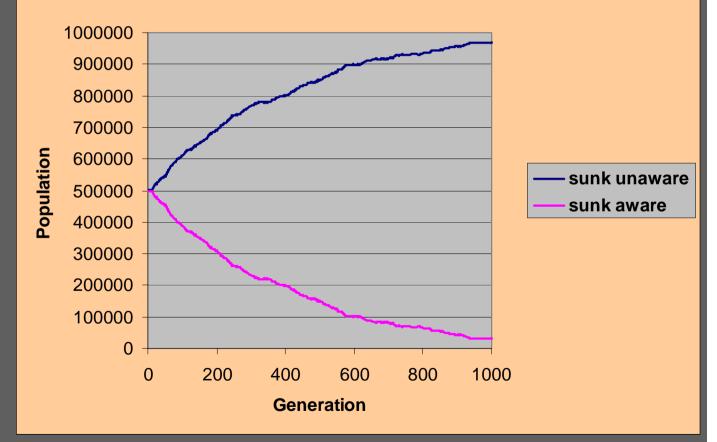
Job lengths and deadline values drawn randomly

- Environment 2: "Loose"
 - 10 slot schedules
 - 5 agents each with 2-slot jobs
 - Monotonically decreasing random deadline values

Jeff MacKie-Mason, Univ. of Michigan

Contentious

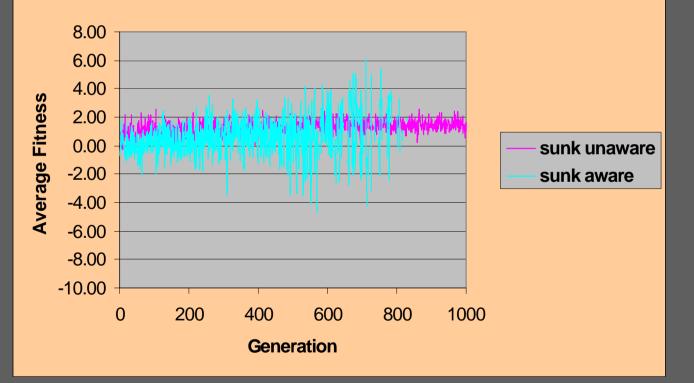
Surprise: "Unaware" does better Agent Populations 5 slots, 5 agents w/varying schedule lengths 10 schedules/generation 2 strategy types: sunk {aware | unaware} Averaged over 10 epochs (1000 gens ea.)



Contentious

"Unaware" seems to have higher avg. fitness

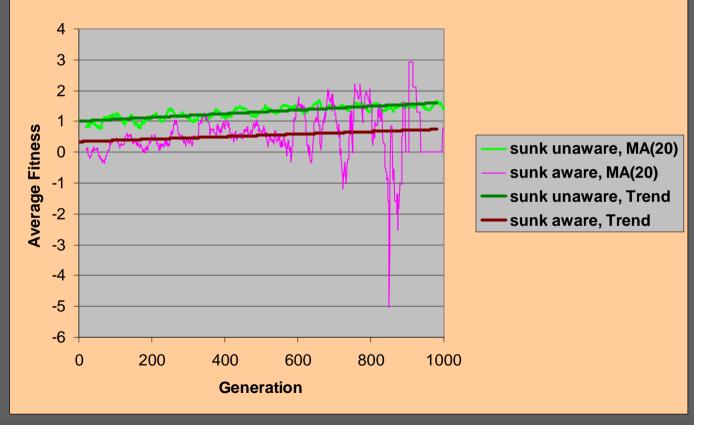
But most striking is higher variance for "aware" Agent Average Fitness 5 slots, 5 agents w/varying schedule lengths 10 schedules/generation 2 strategy types: sunk {aware | unaware} Averaged over 10 epochs



Contentious

"Unaware" really does have higher avg. fitness

Oddly, they both perform better as population goes monomorphic Agent Moving Average Fitness 5 slots, 5 agents w/varying schedule lengths 10 schedules/generation 2 strategy types: sunk {aware | unaware} Fitness averaged over 10 epochs Moving averaged over 20 generations "Trend" from regression on linear time trend



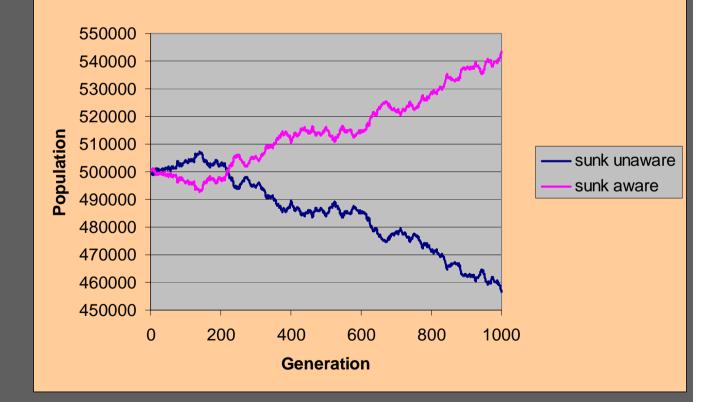
Jeff MacKie-Mason, Univ. of Michigan

What's wrong with "aware" strategy?

- "Aware" strategy bids as if agent believes it must pay for currently winning slots with certainty, so full current price is sunk cost in expectation
- But non-zero probability currently winning slots will be bid away
- So may be too aggressive: too often lose slots that got agent in trouble in exchange for getting <u>new</u> slots
 Sometimes dig a deeper hole

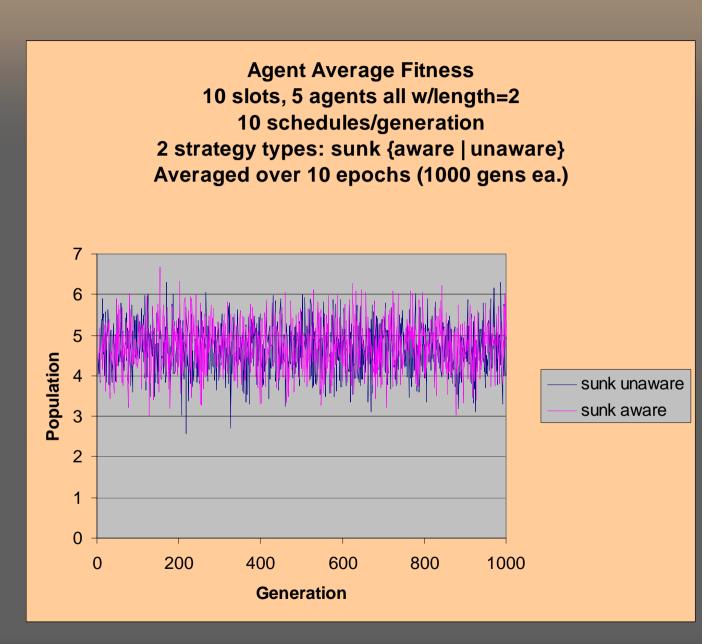
Loose

"Unaware" can perform better (problem dependency) Agent Populations 10 slots, 5 agents all w/length=2 10 schedules/generation 2 strategy types: sunk {aware | unaware} Averaged over 10 epochs (1000 gens ea.)



23

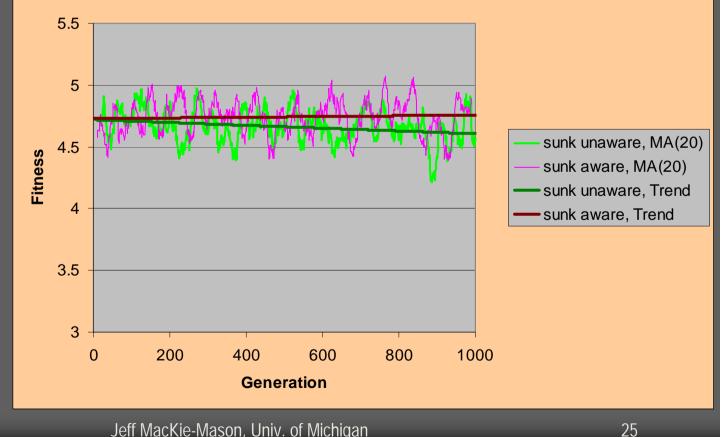
Loose



Loose

Fitness depends only slightly on composition of population

Agent Moving Average Fitness 10 slots, 5 agents all w/length=2 **10** schedules/generation 2 strategy types: sunk {aware | unaware} Averaged over 10 epochs (1000 gens ea.) Moving averaged over 20 generations "Trend" from regression on linear time trend



Summary

- Scheduling problems are hard, especially with distributed autonomous agents
- Markets are valuable class of mechanisms for decentralized problems
- Evaluating market performance depends on assumed strategies in play
- Evolutionary games method is a promising approach for mechanism design evaluation

For more info...

<u>http://www-personal.umich.edu/~jmm/</u>
 <u>http://ai.eecs.umich.edu/people/wellman/</u>