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Scheduling ProblemsScheduling Problems
� Scheduling optimization with full information is hard:

discrete
complementarities
even with public information it’s typically a knapsack problem

� In addition, often have autonomous agents with 
private local information

Need scheduling methods that respect autonomy and private 
information
I.e., decentralized mechanisms
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No decentralized scheduling 
mechanisms are ideal
No decentralized scheduling 
mechanisms are ideal
� “Ideal” mechanism satisfies (at least):

Pareto efficiency: No feasible alternative allocation
benefits at least one agent without harming at least 
one other agent
Participatory efficiency: willingness; budget 
balance
Agent strategies are rational

� Impossibility theorems rule out satisfying all 
three
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Designing good market 
mechanisms is immature science
Designing good market 
mechanisms is immature science
�Need to search for “good enough” mechanisms 

in large space of those that are not ideal
�To evaluate a mechanism, need to know how 

agents will interact with it (their strategies)
�Typically not possible to analytically derive 

optimal strategies
�HOW TO EVALUATE PRACTICAL 

MECHANISMS?
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Factory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling ExampleFactory Scheduling Example
Agent 1

value = $10
length = 2hr
deadline = 13:00
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Reserve Price = $3/hr

Agent 2

value = $16
length = 2hr
deadline = 12:00

Agent 3

value = $6
length = 1hr
deadline = 12:00

Agent 4

value = $14.5
length = 4hr
deadline = 17:00

http://auction.eecs.umich.edu/FactoryDemoDocs/factory-demo.html
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Efficient SolutionEfficient SolutionEfficient SolutionEfficient SolutionEfficient SolutionEfficient SolutionEfficient SolutionEfficient Solution
Agent 1

value = $10
length = 2hr
deadline = 13:00
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Reserve Price = $3/hr

Agent 2

value = $16
length = 2hr
deadline = 12:00

Agent 3

value = $6
length = 1hr
deadline = 12:00

Agent 4

value = $14.5
length = 4hr
deadline = 16:00
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Simple Case:
Ascending Single Good Auctions
Simple Case:
Ascending Single Good Auctions
� Goods: 1 auction for each slot
� Rules: 

min. bid increment ε
no bid withdrawal
closure when bidding stops

� Baseline Strategy:
agent j bids for set of slots to max surplus at current p

– drop out if no set of slots has positive surplus
N.B. For single-slot problem, this is dominant strategy
N.B. For multi-slot, not regret proof
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Some theoretical results I:
Single slot demands
Some theoretical results I:
Single slot demands
�Theorem: A price equilibrium exists

�Theorem: Achieved p will differ from the min. 
unique equilibrium price by at most κε, where κ = 
min(# slots,# agents)

�Theorem: v(a) will differ from optimal by at most 
κε(1+ κ)
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Some theoretical results II:
Multi-slot demands
Some theoretical results II:
Multi-slot demands
�p can differ from equilibrium by arbitrarily large 

amount
�v(a) can differ from optimal by arbitrarily large 

amount
�So, apparently need to evaluate alternative 

mechanisms to find improved performance
�However: mechanisms evaluated against given 

strategies.  How good are the strategies?
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Strategies sensible?Strategies sensible?

� Is it reasonable for A2 to stop bidding?
By bidding b1=3, it can do better than if auction 
stopped (v2 = -1 rather than v2 = -9)

Minimum prices: (1,9)

Suppose: 
A2 bids: b1=1, b2=9
A1 bids: b1=2

Then: s1→A1, s2 → A2, v(f)=3

But optimum: s1 → A1, s2 → ∅ , 
v(f)=12

1122Agent 2

311Agent 1

ValueDeadlineLength
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Approaches to strategy discovery / 
selection
Approaches to strategy discovery / 
selection
� Deductive analytics

see above
� Human-subject experiments

expensive, hard to generalize, limited to simple problems
� Statistical analysis

real world experiments few compared to number of possible 
mechanisms
expensive to implement field trials

� Evolutionary games
can select and evolve good strategies
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Evolutionary games to select 
strategies
Evolutionary games to select 
strategies
�Set of s=1,…,S strategies
�Population(s) of N agents, each initialized to si ∈ S
�Strategy i played by fraction fi of population
�During a “generation”, agents interact through 

mechanism, each obtains payoff (“fitness”) πi

�Update fraction fi based on relative fitness
� Iterate
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Selection outcomesSelection outcomes
�Monomorphic population: strategy i* dominates
�Polymorphic equilibrium: mixed strategy 

equilibrium
Note: May have multiple steady states (if any) so 
initial conditions matter

�Theoretical properties known for some problems: 
E.g., under fairly general conditions 
Evolutionary Equilibria ⊂ Nash Equilibria



© 2001 Jeff MacKie-Mason, Univ. of Michigan 14

Discovery by evolving  strategiesDiscovery by evolving  strategies
�Add a method to search through other parts of 

strategy space
E.g., genetic algorithm

�At each generation, invoke new strategies
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Our methodOur method
�0. Specify a scheduling problem (N slots), 

initialize a population with strategy distrib f
�1. Randomly draw agents to participate in a 

scheduling market (“instance”)
�2. Randomly assign schedule preferences, play 

instance
�3. Each generation update population fractions 

proportional to fitness
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Design issues and implicationsDesign issues and implications
� 0. Problem specificity: Strategy performance may vary 

by problem
� 1. Playing the field: find strategies that succeed on 

average against distribution of other strategies in 
population

� 2. Preference independence: find strategies that 
succeed on average across all admissible preferences

General in principle, but in practice not the same as 
preference-specific strategies

� 3. Update dynamics may determine number and type 
of equilibria (and whether found by the algorithm)
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Strategies exploredStrategies explored
�Baseline – “sunk unaware”: agent j bids for set 

of slots to max surplus at current p
Bids as if incremental cost for slots currently winning 
is full price

�Problem: Agents ignoring “sunk cost” and may 
stop irrationally early

�Alternative: “sunk aware”: bids as if 
incremental cost for slots currently winning is 
zero
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Preliminary resultsPreliminary results
� Environment 1: “Contentious” – sunkness likely to 

matter
5 slots available
5 agents with varying length jobs, λ=1,…,5
Agents have monotonically decreasing values for later 
deadlines
Job lengths and deadline values drawn randomly

� Environment 2: “Loose”
10 slot schedules
5 agents each with 2-slot jobs
Monotonically decreasing random deadline values
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Agent Populations
5 slots, 5 agents w/varying schedule lengths 

10 schedules/generation
2 strategy types: sunk {aware | unaware}
Averaged over 10 epochs (1000 gens ea.)
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Agent Average Fitness
5 slots, 5 agents w/varying schedule lengths 

10 schedules/generation
2 strategy types: sunk {aware | unaware}

Averaged over 10 epochs
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Agent Moving Average Fitness
5 slots, 5 agents w/varying schedule lengths 

10 schedules/generation
2 strategy types: sunk {aware | unaware}

Fitness averaged over 10 epochs
Moving averaged over 20 generations

"Trend" from regression on linear time trend
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What’s wrong with “aware” 
strategy?
What’s wrong with “aware” 
strategy?
� “Aware” strategy bids as if agent believes it must pay for 

currently winning slots with certainty, so full current 
price is sunk cost in expectation

� But non-zero probability currently winning slots will be 
bid away

� So may be too aggressive: too often lose slots that got 
agent in trouble in exchange for getting new slots

Sometimes dig a deeper hole
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LooseLoose Agent Populations
10 slots, 5 agents all w/length=2

10 schedules/generation
2 strategy types: sunk {aware | unaware}
Averaged over 10 epochs (1000 gens ea.)
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LooseLoose Agent Average Fitness
10 slots, 5 agents all w/length=2

10 schedules/generation
2 strategy types: sunk {aware | unaware}
Averaged over 10 epochs (1000 gens ea.)
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LooseLoose Agent Moving Average Fitness
10 slots, 5 agents all w/length=2

10 schedules/generation
2 strategy types: sunk {aware | unaware}

Averaged over 10 epochs (1000 gens ea.)
Moving averaged over 20 generations

"Trend" from regression on linear time trend
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SummarySummary
�Scheduling problems are hard, especially with 

distributed autonomous agents
�Markets are valuable class of mechanisms for 

decentralized problems
�Evaluating market performance depends on 

assumed strategies in play
�Evolutionary games method is a promising 

approach for mechanism design evaluation
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For more info…For more info…
�http://www-personal.umich.edu/~jmm/
�http://ai.eecs.umich.edu/people/wellman/


