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and Martina Neumanová
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Abstract: The submitted paper deals with ”kernel approximations” of dis-
crete probability distributions derived for cardinal variables with finite alpha-
bet of elementary events. The work is concentrated on one type of the kernel:

κ(x, xi, a, b) =
ae(xi,x)b1−e(xi,x)

a + b(|X| − 1)
,

where |X| is finite and a, b > 0, a = a(n), b = {b(n)e(x, y = 1 ⇔x = y,
e(x, y) = 0 ⇔ (x 6= y)}. Then the approximation of probability distribution
has the form:

p̂n(x) =
1

n

n∑

i=1

κ(x, xi, a, b) ,

where n is range of sample. Possible options of kernel’s parameters and
their effects are analyzed in the text. The asymptotical behavior is studied as
well. Further the context among some of classical and non classical frequency
probability estimates is presented.

Keywords: Kernel Approximation, Kernel´s Parameters, Frequency Esti-
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1 Introduction and Assumptions
We assume probability distribution defined on finite set X (set of elementary events) and
that we have n > 1 samples {x1, . . . , xn}. Kernel is considered in a form:

κ : X ×X → 〈0, 1〉 , κ(x, xi) 7→ ae(xi,x)b1−e(xi,x)

a + b(|X| − 1)
,

where e(xi,
x ) = 1 ⇔ xi = x and e(xi, x) = 0 ⇔ xi 6= x for xi, x ∈ X , and i = 1, . . . , n

and a, b > 0, a = a(n), b = b(n). With these assumptions we obtain

∑

x∈X

κ(x, xi, a, b) =
∑

x∈X

ae(xi,x)b1−e(xi,x)

a + b(|X| − 1)

=
1

a + b(|X| − 1)

∑

x∈X

ae(xi,x)b1−e(xi,x)

=
1

a + b(|X| − 1)


ae(xi,x) +

∑

x∈X;x6=xi

b1−e(xi,x)




=
1

a + b(|X| − 1)
(a + b(|X| − 1)) = 1 .
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As probability estimate is understood

p̂n(x) =
1

n

n∑

i=1

ae(xi,x)b1−e(xi,x)

a + b(|X| − 1)
=

1

n(a + b(|X| − 1))

n∑

i=1

ae(xi,x)b1−e(xi,x) , for x ∈ X .

Let n(x) = |{x = xi, i = 1, . . . , n}| denote the number of observed values x in the
sample {x1, . . . , xn} and p(x) the probability of observing the event x. Then we obtain

p̂n(x) =
1

n(a + b(|X| − 1))

n∑

i=1

ae(xi,x)b1−e(xi,x)

=
1

n(a + b(|X| − 1))
(an(x) + b(n− n(x)))

=
n(x)(a− b) + nb

n(a + b(|X| − 1))

=
n(x)

n

a− b

a + b(|X| − 1)
+

b

a + b(|X| − 1)

with

E{p̂n(x)} =
E{n(x)}

n

a− b

a + b(|X| − 1)
+

b

a + b(|X| − 1)

=
np(x)

n

a− b

a + b(|X| − 1)
+

b

a + b(|X| − 1)

= p(x)
a− b

a + b(|X| − 1)
+

b

a + b(|X| − 1)

= p(x)
a− b

a− b + b|X| +
b

a− b + b|X| .

From the previous expression we see, that if limn→∞ b(n) = 0, limn→∞ a(n) = α > 0
then limn→∞ E{p̂n(x)} = p(x). Because of that the estimate p̂n(x) is asymptotically
unbiased. Furthermore,

p̂n(x)− E{p̂n(x)} =
a− b

a + b(|X| − 1)

(
n(x)

n
− p(x)

)
.

With this result the variance of the estimate p̂n(x) is

σ2(p̂n(x)) =

(
a− b

n[a + b(|X| − 1)]

)2

E{(n(x)− np(x))2}

=

(
a− b

n[a + b(|X| − 1)]

)2

np(x)(1− p(x))

=
1

n

(
a− b

a + b(|X| − 1)

)2

p(x)(1− p(x)) .

With these deductions we get

E{p̂n(x)} = p(x)
a− b

a + b(|X| − 1)
+

b

a + b(|X| − 1)
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= p(x)
a− b

(a− b + b|X| +
b

a− b + b|X| ,

σ2(p̂n(x)) =
1

n

(
a− b

a + b(|X| − 1)

)2

p(x)(1− p(x))

=
1

n

(
a− b

a− b + b|X|

)2

p(x)(1− p(x)) .

2 Reparametrization
For a = b we have E{p̂n(x)} = 1/|X| and σ2(p̂n(x)) = 0. This is nothing else than
assuming for probability estimate the uniform distribution regardless of the observed data.
For this reason we will further assume a 6= b. In this case we can use the new parameter
c = b/(a− b). Then

p̂n(x) =
n(x)

n

1

1 + c|X| +
c

1 + c|X| ,

E{p̂n(x)} = p(x)
1

1 + c|X| +
c

1 + c|X| ,

σ2(p̂n(x)) =
1

n

(
1

1 + c|X|

)2

p(x)(1− p(x)) .

Of course in accordance with the assumptions mentioned above, this means that a = a(n),
b = b(n) ⇒ c = c(n). It is clear, that for limn→∞ c(n) = 0 we obtain E{p̂n(x)} n→∞→ p(x)
and σ2{p̂n(x)} n→∞→ 0. Dealing with the mentioned conditions, the estimate p̂n(x) is
asymptotically unbiased and efficient. Criterion σ2{p̂n(x)} n→∞→ 0 can be sometimes
distorting, because in the previously mentioned case

p̂n(x) =
1

|X| is σ2(p̂n(x)) = 0 as well.

For this reason a more appropriate criterion to describe the quality of p̂n(x) would be

δ2{p̂n(x)} = E{(p̂n(x)− p(x))2} .

Its minimization do not guarantee (asymptotically) to be unbiased but it guarantees ”con-
vergence” to the true probability p(x) in the sense of

lim
n→∞E{(p̂n(x)− p(x))2} = 0 , if the ”zero is accessible”.

Because for each probability value y, for which such a mentioned expected values exists,
we have

E{(y −m)2} = σ2(y) + (E{y} −m)2

thus we can write

δ2(p̂n(x)) =
1

n

(
1

1 + c|X|

)2

p(x)(1− p(x)) +

(
p(x)

1

1 + c|X| +
c

1 + c|X| − p(x)

)2

=
1

n

(
1

1 + c|X|

)2

p(x)(1− p(x)) +

(
c

1 + c|X|

)2

(1− p(x)|X|)2 .
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Discussion

1. c = 0 ⇒ p̂n(x) = n(x)/n, thus for the classical frequency estimate we have

E{p̂n(x)} = p(x) and σ2{p̂n(x)} =
1

n
p(x)(1− p(x)) .

2. Further, we analyze the case c > 0. In order to get

lim
n→∞E{(p̂n(x)− p(x))2} = 0 ,

limn→∞ c(n) = 0 is sufficient. To hold respecting this condition is enough |c(n)| ≤
An−α, A ≥ 0, α > 0. Because we will exclude the case of b ≤ 0 from practical
reasons, we have a− b > 0 ⇔ a > b. Then

[b > 0] ∧ [|c(n)| ≤ An−α] ⇔ 0 <
b

a− b
≤ An−α ⇔ 0 < b(n) ≤ n−α

1
A

+ n−α
a(n) ,

if A > 0. From these conditions then we can choose for practical purposes choice
b(n) = n−α/(B + n−α) = 1/(Bnα + 1) and a(n) = 1 for some B = 1/A > 0 and
α > 0. Thus by this choice c(n) = An−α.

3. We will not discuss the case c < 0.

3 Comparison with Some Estimates

Classical Frequency Estimate: p̂0
n(x) = n(x)

n
, in this case b = 0 and a 6= 0 ⇒ c = 0,

then

E{p̂n(x)} = p(x) and σ2{p̂n(x)} =
1

n
p(x)(1− p(x)) .

Posterior Bayes Estimate with Uniform Prior: 0 ≤ p(x) ≤ 1,
∑

x∈X p(x) = 1, p̂a
n(x) =

n(x)+1
n+|X| = n(x)

n
1

1+
|X|
n

+
1
n

1+
|X|
n

, hence c = 1/n and b(n)(n + 1) = a(n), then

E{p̂n(x)} = p(x)
n

n + |X|+
1

n + |X| and σ2{p̂n(x)} =
1

n

(
n

n + |X|

)2

p(x)(1−p(x)) .

Mix of Frequency and Uniform Estimate: p̂λ
n(x) = (1 − λ)n(x)

n
+ λ

|X| . By comparison

with p̂n(x) = n(x)
n

1
1+c|X| + c

1+c|X| we will get λ = 1
1+c|X| or c = λ

|X|(1−λ)
for 0 ≤ λ < 1,

then

E{p̂n(x)} = p(x)(1− λ) +
λ

|X| and σ2{p̂n(x)} =
1

n
(1− λ)2p(x)(1− p(x)) .
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4 Smoothness

In the case of a mix of the frequency and uniform estimate is interesting parameter λ.
We can use it to set the smoothness of the estimate. Situation λ = 1 is said to be ab-
solutely smooth (we use uniform distribution for the estimate) and λ = 0 we can call
non-smoothed estimate (then it is classical frequency estimate). Thus, 0 ≤ λ ≤ 1 we can
think as smoothness in previous terms.

Obviously: [λ = c|X|
1+c|X| ] ⇒ [(c → 0) ⇒ (λ → 0)]. Therefore, with an in-

creasing number of observations the degree of smoothness decreases (by the condition
limn→∞ c(n) = 0). As we choose c(n) = An−α we get: λ = [1 + nα(A|X|)−1]−1.
Hence, ∂λ/∂α < 0 and ∂λ/∂A > 0 follow. So the bigger exponent α means the smaller
smoothness and bigger parameter A means bigger smoothness.

5 Future Developments

Theory and usage of kernel approximations for continuous problems is quite sophisti-
cated. It has own tasks and research fields. Work as well as applications of this theory is
relatively frequented. Main task for continuous distributions is the selection of smoothing
parameter (bandwidth). And there is only small number of works which use this theory for
discrete distributions. It´s clear that the formulation and solving task of estimation of dis-
crete distribution by means of kernel theory and classical estimation techniques are good
transferable at each other. That illustrates this paper as well. But theory of kernel defini-
tions has interpretative values. Connection of kernel and observation enables to suppose
observation error. We award relatively high weight (probability) to the registered event.
But we do not forget award small but not zero probability to the others. In our inspected
case equal to all. It was considered that do not exist instrument (except-probability) to
measure diversity of particular events, hence equal. If there would be available some rate
of diversity the task becomes more interesting. As rate of diversity (discrimination) we
understand any finite and non-negative function ϕ : X×X → R1, that ϕ(x1, x2) ≥ 0 and
ϕ(x1, x1) = 0 for all x1, x2 ∈ X . Then it is possible to leave the uncertainty principle (to
all non-registered equally) and to more diverse values (from the registered event) ascribe
minor weight than to less diverse. Kernel model for such idea can looks like

κ(x, xi, D,E) = Dϕ(xi,x)E−ϕ(xi,x)/F ,

for suitable selected F . This and the smoothness problems including the convergence
speed will be objectives for next research.

6 Sources and Conclusions

The discrete probability estimation problem is quite complicated, especially in nonpara-
metric case. For the continuous case wide developed theory is at disposal (see ?, ?, ?,
?). The situation in discrete case is not the same. The survey of different methods and



370 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 365–370

conceptions of the discrete kernel estimation can be found in ? (?). Discrete kernel esti-
mations are very useful for the interpretation of observed frequencies. This approach may
serve as an acceptable uncertainty model.

Discrete nonparametric probability estimation method publication activity is charac-
terized by many bringing back changes and reviving. This phenomenon essence was men-
tioned in Chapter 5. Sources for reusing the discrete kernels method are some practical
tasks (zero frequency problem ? (?), nonstandard time series models, Markovian switch-
ing descriptions, mathematical insurance processes, Bayesian approaches ? (?) and so
one).

Our paper contribution is mainly concentrated in Chapter 2-4. This part offers descrip-
tion of the model convergence in the language of the second order probability moments.
That fact is very clear for practical usage. The rate of smoothness set in Chapter 4 is
important too and has simple interpretation (but in nature is very trivial). The presented
generalization in Chapter 5 may be found as interesting for future development (it is in-
spired by ?, ?).
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