
STATISTIC OF QUASI-PERIODIC SIGNAL WITH
RANDOM PERIOD - FIRST APPLICATION ON

VOCAL CORDS OSCILLATION

KROUPA Lukáš (CZ), VÁVRA František (CZ), NOVÝ Pavel (CZ)

Abstract. This paper will introduce problem of statistics of quasi-periodic
signal in relation to detection of the vocal cords pathology from audio recording.
Distribution function of period lengths and its relation to distribution function
of immediate frequencies is defined and application on vocal cord diagnostic by
classification of periods and frequencies to common (normal) and anomalous is
devised.
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1 Introduction
Quasi-periodic signal is assumed to be continuous bounded signal which repeatedly crosses
given level (e.g. zero level) in direction from below to above this level. It’s apparent this
definition is loose and heuristic, but obvious when applied. See figure 1.

Fig. 1. Example of quasi-periodic signal

The problem of random periods is mainly studied in field of signal processing (for example
see [2]). For our problem of vocal cords diagnostics from audio recording1 we can define

1For problem definition and details see [1]
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three sub-problems. First, description and classification of length of individual periods and
representation in frequency domain. Second, obtaining of amplitude (shape) parameters of
individual oscillations. Third problem is "measurement" of deviation of real oscillation from
it’s estimated ideal shape. The first sub-problem is subject of this paper. We will assume,
we can measure period of oscillation2. We have random selection of observed oscillation
lengths (periods) with given scope, that is the distance between consecutive transition from
below to above the zero level. We will focus on signals, where one "period" is composed of
sum of components3, therefore the assumption of asymptotic normal probability distribution
is reasonable (see [3], page 376).

2 Distribution function of frequency and it’s relation to distribution function of period
lengths

Distribution function and density function of period length T > 0[sec] will be denoted as
Gt(x), gt(x) and assume the values are known. Than distribution function of frequency
f = 1

T
> 0[1/sec] will be

Gf (x) = P (f ≤ x) = P (
1

T
≤ x) = P (T ≥ 1

x
) = 1− P (T ≤ 1

x
) = 1−Gt(

1

x
)

, in summary Gf (x) = 1−Gt(
1
x
) from which the density is

gf (x) =
1

x2
gT (

1

X
) (1)

For the first two moments of frequency f probability description, following would be valid
if these moments exist4:

E(f) =

∫ +∞

0

x

x2
gT (

1

x
)dx =

∫ +∞

0

1

x
gT (

1

x
)dx =

∫ +∞

0

1

y
gT (y)dy = ET (

1

T
)

summarized as E(f) = E( 1
T
),

E(f 2) =

∫ +∞

0

x2

x2
gT (

1

x
)dx =

∫ +∞

0

gT (
1

x
)dx =

∫ +∞

0

1

y2
gT (y)dy = ET (

1

T 2
)

and accordingly σ2(f) = σ2
T (

1
T
). To avoid problems caused by existence or non-existence

of moments, quantile replacement of these moments is used.

For this reason and because of the normality we will assume continuous distribution function
f(x) for x > 0. We can infer that GT (x) for x > 0 is continuous as well. Onward we
will denote zp

def
= G−1z (p) for 0 < p < 1 and zp is p quantile of random variable z, i.e.

zp = inf{x ∈ R : p ≤ Gz(x)}.
2For description of signal pre-processing and period length detection see [1], page 23
3That is the case for acoustic signal produced by vocal cords.
4Transformation of period distribution to frequency distribution might lead to distribution without exis-

tence of some of the moments. Even for uniform distribution of periods on interval (0, Tmax) or often used
exponential distribution of period duration. Non-existence of moments might not be just academical issue.
Fundamentals of this problems are in relation f = 1

T
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3 Quantiles and relation of GT (Tp) = p and Gf (fp) = p

Let 0 < p < 1 and GT (Tp) = p,Gf (fp) = p from which

p = 1−GT (
1

fp
)⇒ 1

fp
= G−1T (1− p) = T1−p

, summarized as

fp =
1

Tp−1
(2)

By that we have obtained relation between quantiles of period length and immediate fre-
quency. It might be difficult to get (estimate) one of both fp, T1−p quatiles in some cases
(statistical, estimative). Hence this simple inference, which connects quatiles fp and T1−p. If
following applies

GT (Tp) = Gf (fp) = 1−GT (
1

fp
⇒ GT (

1

fp
) = 1−Gt(Tp)⇒

1

fp = G−1T (1−GT (Tp))

, again summarized:

fp =
1

G−1T (1−GT (Tp))
(3)

then medians T0,5, f0,5 can be used as replacement values. To describe variability the quartile
ranges T0,75−T0,25, f0,75−f0,25 can be used, or alternatively the width of zone equivalent to σ
zone above the median for normal distribution (for technical comparisons), i.e. T0,84134−T0,5
and f0,84134 − f0,5. Obviously this form of variability comparison might be problematic for
unsymmetrical distributions. Another alternative might be width of±3σ zone in symmetrical
position of normal distribution T0,99865−T0,00135

6
, f0,99865−f0,00135

6
. These values are equal to value

of σ in case of normal distribution. Consequently statistical inference is now possible.

4 Application on vocal cords oscillation
Fundamental prerequisite for vocal cord diagnostics based on audio signal is classification
of oscillations (in this case length of their periods and immediate frequencies) to common
(standard) and anomalous. We assume phonation recording of vowel "a" ("ááá. . . "). This
process can be divided in several steps:

1. Using statistical methods create probability description of period length.

a) Elimination of identical values by addition of noise. (We are working with model
of continuous random variables.)

b) Normality test of period lengths set. See appendix 7 for one of possible methods.
c) Exclusion of observations from this set, which do not conform to this assumption.
d) Creation of point or eventually range parameter estimations from this reduced

set.

2. Create probability model of frequency from model of period lengths.

3. Based on given level of significance 0 < α < 1 form zones in which common values
occur.

4. Further diagnostic comparisons and decisions.
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5 Example of process
Observed values:
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Observed period lengths [sample count]

2 164 170 170 180 4,4 0,70 0,11 20 180 173 178 171 174 173 174 170 171 169 170 168 169 165 167 168 165 165 164 166

Tab. 1. Observed period lengths

Values after randomization and reduction by normality tests.
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Observed period lengths [sample count]

2 164 169 169 178 3,7 0,45 -0,23 19 173,13 177,84 170,55 174,08 172,64 174,15 169,92 170,71 168,56 170,48 167,71 169,42 164,91 167,23 168,39 164,95 165,14 163,97 166,31

Tab. 2. Values after randomization and reduction
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Fig. 2. Comparison of empirical data and model distribution function
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Fig. 3. Modelled distribution functions and density functions for period
lengths

Bounds for common or anomaly test and quantile parameters.
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Fig. 4. Modelled distribution functions and density functions for
immediate frequencies

6 Conclusion, discussion of results and further work
We assume probability model of oscillation for partial-diagnostic from standardized phona-
tion. Research in this field implies probability model of immediate frequency resemble nor-
mal probability distribution, even though it’s analytical expression is significantly different.
For example density:

gf =
1

x2
gT (

1

x
) =

1

x2
1√
2πσ

e−
( 1x−µ)2

2σ2 =
1

x2
1√
2πσ

e
(1−µx)2

2(σx)2

This holds not only for presented data but for all data available. This leads to following
questions:

• Is this the case only for our data, or is it general fact?

• Does it confirm intuitive approaches, when normal distribution is used for both random
variables?

• If this is general fact, define scope and how this could be utilized?

• If this is general fact, what is the physiological, physical and acoustical basis?

It is definite description and probability restriction (Bonferroni inequality) for our modi-
fied algorithm of normality tests (for example related to Jarque-Bera test) with respect to
identification of outlier observations. Parametric and non-parametric descriptions of ideal
oscillation shape (in given domain that would be mainly more or less randomly distorted
harmonic signals). Degree of "deviation" from estimated ideal shape, a measure with diag-
nostic value. Joint distribution of triplets period (frequency), shape parameters and degree
of deviation.
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7 Appendix: Normality test
Based on skewness and kurtosis5

Sampled skewness:

A3 =

√
n
∑n

i=1(xi − x)3

[
∑n

i=1(xi − x)2]
3
2

− 3

with assumption of sample selection from normal distribution is:

E(A3) = 0

and

σ2(A3) =
6(n− 2)

(n+ 1)(n+ 3)

Sampled kurtosis:

A4 =
n
∑n

i=1(xi − x)4

[
∑n

i=1(xi − x)2]2
− 3

with assumption of sample selection from normal distribution is:

E(A4) = −
6

n− 1

and

σ2(A4) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)

. Asymptotically has the A3 distribution6 N = (0, 6(n−2)
(n+1)(n+3)

) and A4 distribution N =

(− 6
n+1

, 24n(n−2)(n−3)
(n+1)2(n+3)(n+5)

). Therefore the hypothesis of normality on level of confidence α is

rejected, if: |A3|√
σ2(A3)

> u1−α
2

or
|A4+

6
n+1
|√

σ2(A4)
> u1−α

2
If the hypothesis is rejected by at least one

of stated tests, observation by which removal will lead to improvement of affected test has to
be found, i.e. the test will draw closer to critical value or eventually surpass this value. This

5See for example [5], page 138.
6Convention N = (µ, σ2)

910



observation is removed from further statistical processing. This process is repeated until the
normality hypothesis is accepted by both tests or until the cardinality of the set decreases
under acceptable threshold. This is "brute force" algorithm which repeatedly iterates over
whole set. Detailed description of individual steps and decisions exceeds scope of this paper.
We expect it would be published including study of premises needed for effective function.

Current address

Lukáš Kroupa, Ing.
Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia
Univerzitní 8, 306 14 Pilsen, Czech Republic
E-mail: kroupal@kiv.zcu.cz

František Vávra, doc. Ing., CSc.
Department of Mathematics,
Faculty of Applied Sciences, University of West Bohemia
Univerzitní 8, 306 14 Pilsen, Czech Republic
Tel. number: +420 377 63 2615, e-mail: vavra@kma.zcu.cz

Pavel Nový, Ing. PhD.
Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia
Univerzitní 8, 306 14 Pilsen, Czech Republic
Tel. number: +420 377 63 2411, e-mail: novyp@kiv.zcu.cz

911




