Pattern Matching 3/31/2004 11:08 AM

Pattern Matching

[ablajc[a]a[b]

1
lalblafclalb]

A 4 3 2
|a|b|a|0|a|b|f

© 2004 Goodrich, Tamassia Pattern Matching 1

Strings

A string is a sequence of characters
Examples of strings:

Java program

= HTML document

= DNA sequence

= Digitized image

An alphabet S is the set of possible characters for a family of strings

Example of alphabets:

= ASCII “Happy” = {72, 97, 112, 112, 121}
= Unicode “Happy” = {72, 97, 112, 112, 121}
= {0, 1} “01101”
= {A,C,G,T} “ACGGTCAT”
© 2004 Goodrich, Tamassia Pattern Matching 2

Pattern Matching 3/31/2004 11:08 AM

{JStrlngs

* |et P be a string of size m

= A substring P[i .. j] of P is the subsequence of P consisting of the
characters with ranks betweeni and j

= A prefix of P is a substring of the type P[0 ..i]
= A suffix of P is a substring of the type P[i ..m - 1]

* Given strings T (text) and P (pattern), the pattern matching
problem consists of finding a substring of T equal to P

*+ Applications:
= Text editors
= Search engines
= Biological research

© 2004 Goodrich, Tamassia Pattern Matching 3

Brute Force Pattern Matching

* An algorithmic design pattern for matching a pattern string P, of
length m to a substring of a text string T, of length n.

* By “match”, we mean that, for some substring T[i, i+m-1],

T[i+j] = P[j] for all values of j such that 0 £] < m.

* The brute-force pattern matching algorithm compares the
pattern P with the text T for consecutive values of i such that
0 £i <n-m, until either
= a match is found, or

= all placements of the pattern have been tried and no match ahs
been found.

© 2004 Goodrich, Tamassia Pattern Matching 4

Pattern Matching 3/31/2004 11:08 AM

Brute-Force Pattern
1 Matching J

+B . Algorithm BruteForceMatch(T, P)
rute-force pattern Input text T of size n and pattern
matching runs in time Pof-§7em
O(nm) Output starting index of a

_substrin%of Tequal toPor-1
if no such substring exists

for i= 0Oton-m

+ Example of worst case:

= T=aaa...ah { test shifti of the pattern}
j= 0

« P=aaah whilej <mU T[i +j]1= P[j]

joj+1
= may occur in images and if j=m
DNA sequences return i {match ati}

else

= unlikely in English text break while loop { mismatch}

return -1 {no match anywhere}
© 2004 Goodrich, Tamassia Pattern Matching 5

,Other Approaches

+ Naive view is that it is always necessary to examine
every character in T in order to locate a pattern P as
a substring.

4+ This is not always the case...

+ \We can sometimes avoid comparisons between P and
a sizable fraction of T if we assume that the alphabet
is a fixed and finite size.

+ We call this approach the Boyer-Moore Algorithm.

© 2004 Goodrich, Tamassia Pattern Matching 6

Pattern Matching

{Boyer—Moore Heuristics

* The Boyer-Moore’s pattern matching algorithm is based on two
heuristics

Looking-glass heuristic: Compare P with a subsequence of T
moving backwards

Character-jump heuristic: When a mismatch occurs at T[i]=c¢

= If P contains ¢, shift Pto align the last occurrence of cin Pwith T[i]
= Else, shift P to align P[0] with T[i + 1]

* Example
2] [pla[t[t]e[r[n] [m[a[t[c[n]i[n]g] [a]I]g]ofr[i]t]nh]m]
_ 1 i 3 _ 5 11199 8 7
[r[i[t][h[m] [ri]t[h][m] [rlift[h]m] [r]i[t]h{m]
N, A A 2 R 6 7
r[ift[h]m] [r[i[t]h]m] Lrli[t][h[m]
© 2004 Goodrich, Tamassia Pattern Matching 7

Last-Occurrence Function

* Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet S to build the last-occurrence function L mapping S to
integers, where L(c) is defined as

= the largest index i such that P[i]=cor
= - 1if no such index exists

*+ Example:
= S={ab,cd}
= P =abacab

D

(9]

*+ The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

* The last-occurrence function can be computed in time O(m + 9),
where mis the size of P and s is the size of S

© 2004 Goodrich, Tamassia Pattern Matching 8

3/31/2004 11:08 AM

Pattern Matching 3/31/2004 11:08 AM

_The Boy g
Algorithm BoyerMooreMatch(T, P, S) Case1: JE1+]
L = lastOccurenceFunction(P, S) L1 '|'|'|'|'|?!'|'!'|'|'|'|
i m-1 |
j=m m-1 [T.1.T-Ipfa] 1
repeat it
if T[i1=P[j] Im - jl
if j=0
return i { matchati } [T.T.T.Ib[a]
else j '
}:j'_'% Case 2: 1+ £]
else CL LI fal T L]]
{ character-jump } il :
| = L[T[ill ol |
i = i+m—min(j,l+|) ... |
jo m-1 Im- @+l
until i>n-1 T
return - 1{ nomatch} [Ta] T.Tb[]
1+
© 2004 Goodrich, Tamassia Pattern Matching 9

Example

[a]bfajclalafbfafd|c|afb]afc[alblaja]b]b]

1
[a]bfajcla]b]

A 4 3 2 13 12 11 10 9 8
[a[p|a]c[afb] a[blafcfa]b]
X . , oA
[alp[ajc[afb] [a]b]ajc[a[b]
X 6

[a[plajc[a]b]

© 2004 Goodrich, Tamassia Pattern Matching 10

Pattern Matching

{Analysis

Boyer-Moore’s algorithm runs in
time O+ 9 [a]a]a]ala]alalala]

+ Efar}wglaeagf”\./v;)rst case: | b | a | :| z | a | a|

= P=basa Q12 11 10 9
[b[a]ajala]a]

The worst case may occur in
images and DNA sequences but X158 17 16 15 14 13

is unlikely in English text | b | a | a | a | a| a |

Boyer-Moore’s algorithm is b 24 23 22 21 20 19
significantly faster than the | b | a | a | a | a | a |
brute-force algorithm on English
text

© 2004 Goodrich, Tamassia Pattern Matching 11

The KMP Algorithm (§ 11.2.3)

+ | Knuth-Morris-Pratt’s algorithm

3/31/2004 11:08 AM

compares the pattern to the HENNRN
a

text in left-to-right, but shifts i
the pattern more intelligently |
than the brute-force algorithm.

+ When a mismatch occurs, I
what is the most we can shift

the pattern so as to avoid I I

i ?
redundant comparisons? < >\
No need to '

+ Answer: the largest prefix of Resume
P[0.j] that is a suffix of P[1.j] repeat these comparing
comparisons here

© 2004 Goodrich, Tamassia Pattern Matching 12

Pattern Matching

3/31/2004 11:08 AM

© 2004 Goodrich, Tamassia

* Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

1 KMP Failure Function

* The failure function F(j) is
defined as the size of the
largest prefix of P[0.,j] that is
also a suffix of P[1..j]

* Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j]* TJ[i]
weset j= F(- 1)

j 0

Pl la | b [a a

F@G) | O 0 1 112 3
L | [afbfaafblx| [| .[.]-]

I

lajblala]b]|a]

I
lafblala|b]a]
<>

FG- DI
|

Pattern Matching

13

© 2004 Goodrich, Tamassia

The KMP Algorithm

* The failure function can be
represented by an array and
can be computed in O(m) time

+ At each iteration of the while-
loop, either
= i increases by one, or
= the shift amounti - j
increases by at least one
(observe that F(j - 1)<))

*+ Hence, there are no more
than 2niterations of the
while-loop

*+ Thus, KMP’s algorithm runs in
optimal time O(m +n)

Algorithm KMPMatch (T, P)

F = failureFunction(P)
i=- 0
j= 0
whilei<n
if T[i1="P[j]
if j=m-1

return i- j{ match}

else
i=i+1
j=j+1
else
if >0
i= F[j-1]
else
- i+1

aF 1.f atal 1
TCturTT = L TIOTTATIT 7

Pattern Matching

14

Pattern Matching

3/31/2004 11:08 AM

© 2004 Goodrich, Tamassia

Computing the Failure
{Funcﬂon

+ The failure function can be

represented by an_ array an_d Algorithm failureFunction(P)
can be computed in O(m) time F[0]~ O
+ The construction is similar to i=1
the KMP algorithm itself j~ 0
; ; . whilei<m
*+ At each iteration of the while- if P[i] = PJj]
loop, either {we have matched j + 1 chars}
= | increases by one, or .F[i] . j*1
= the shift amounti - j T
increases by at least one elseif j > Othen
(observe that F(j - 1)<j) {use failure function to shift P}
* Hence, there are no more elsé'ﬂ Fii- 1
than 2miterations of the F[i]~ 0{ nomatch}
while-loop ioi+1

Pattern Matching

15

Example Problem

#We want to match the pattern “abacab”
to the text “abacaabaccabacabaabb”
= We start by computing the fail function.

= Then we run the search using the fail
function.

© 2004 Goodrich, Tamassia Pattern Matching

16

Pattern Matching

3/31/2004 11:08 AM

{Example — Computing the Fail Function

i o123

Pljlfa |b|la|[c |a]|b

F@) {o o |10 |1 |2

© 2004 Goodrich, Tamassia

[a 2033 [a]s] P[L..i]=P[l.1]="“b"
i folols P[1...i] = P[1...2] = “ba”
O lo 1ol 101212} prg j]=Pp[1..3] = “bac”

P[1...i] = P[1...4] = “baca”
P[1...i] = P[1...5] = “bacab”

Pattern Matching 17

Example — Doing the search

Lelplalelalalslalelelalplalelalslalalslsl

ZT ST 47 9070
LaJ—bJ—aJ-eJ—aJ—bJ j = A, so satrpmd(@)l byd1l

LlolaleleL)
IIGER AN

BNRNNN

H
J
Dl

T
EQ)
J7

D @ ©
D T H

D

Y

I N

Lelolalelals)

D P @
N gn

=Y

© 2004 Goodrich, Tamassia

Pattern Matching 18

Pattern Matching 3/31/2004 11:08 AM

{A brief comparison...

* The pattern “abacab” was matched to the text
“abacaabaccabacabaabb” using the 3 pattern matching
techniques discussed in this course:

= Brute Force took 29 steps
= Boyer-Moore took 19 steps
= Knuth-Morris-Pratt also took 19 steps

*# After making a small change to the text
“abacaabacdabacabaabb” the results were:
= Brute Force still took 29 steps
= Boyer-Moore took 16 steps
= Knuth-Morris-Pratt still took 19 steps

* The Boyer-Moore technique improved mainly because the “d” is
not in the pattern.
© 2004 Goodrich, Tamassia Pattern Matching 19

10

