More on Indexes

B-Trees

Source: our textbook,
slides by Hector Garcia-Molina

B-Trees

@ Automatic multi-level index
@ Features:

+ automatically adjust number of levels of
indexes as size of data file changes

+ storage on blocks is managed to keep
every block between half full and full =>
no overflow blocks needed

¢ We'll actually study B+ trees

B-Tree Structure

@ A balanced search tree: every root-to-leaf path has
same length

@ each node (vertex) in the tree contains search keys
K, < K, ...< K, and P,,, pointers

[PlKiplk[p) [KP.. |

@ parameter nis the max number of keys in a node so
that n+1 pointers and 7 keys fit in one block
+ Ex: In practice choose n to be large. If block size is 4096
bytes, keys are 4 bytes, and pointers are 8 bytes, then n =
340.

3

Constraints on B-Tree Nodes

@ Keys in leaf nodes are in sorted order
(copy keys from the data file)

@ The Root contains between 2 and n+1 index
node pointers

@ Each internal node must contain at least
[(n+1)/2] keys and [(n+1)/21 +1 pointers
(ceiling function [x] rounds up)

@ P, points to an index node with keys K such
that K < K;

Leaf Node Constraints

#Each leaf contains at least | (7+1)/2]
and at most n data record keys and
pointers (floor function | xJ rounds down)

@ Each leaf also has a "next leaf" pointer
and possibly a “prev leaf” pointer

Sample non-leaf

/

‘.

to keys to keys to keys to keys
< 57 57< k<81 81<k<95 295

Sample leaf node:

From non-leaf node

|

—» to next leaf

In textbook’s notation

Leaf:

o n
M ™M

Non-leaf:

n=3

5 B & in sequence
| [|
|
> > >
g2 3¢ 38
°§ % %
n=3
Full node min. node
—— —
Non-leaf @g‘g‘ | = |
‘|z =
Leaf = /8 |3
I [5
T v <

Insert into B+tree

(a) simple case

+ space available in leaf
(b) leaf overflow
(c) non-leaf overflow
(d) new root

B-Tree Example n=3
Root
2
o [88]8835 |88 | B3%[88
U T TR e
(a) Insert key = 32 n=3
g

3
5

11

(c) Insert key = 160

100
60

(a) Insert key = 7 n=3
z >
—
o P08 T 8= |
= 1 7
(d) New root, insert 45 n=3
new root | /&

<40
<45

(b) Coalesce with sibling
+ Delete 50

/
A
e e

10
20
30
40

_152% E
— | S
2EF | | BE || 28
T T s
Deletion from B-tree
(a) Simple case - no example
(b) Coalesce with neighbor (sibling)
(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf
(c) Redistribute keys n=4

+ Delete 50

10
4035
1100 |v_

T >
n o
™M <
|
2

<110
<120

<30
i85

(d) Non-leaf coalese
+ Delete 37

new root -~,

\\
oo
'—?N

¥

ﬂ{?

T

«10

Lia —
<26
<30
IXI
5
2L
«-40
<45

oo
NN
| |
vy

o

B-tree deletions in practice

— Often, coalescing is not implemented
+ Too hard and not worth it!

— Does SimpleDB implement coalesing?--No

20

B-Trees with Duplicate Keys

Change definition of B-tree:

@ If key Kappears in an internal node, then K'is
the smallest "new" key in the subtree S
rooted at the pointer that follows Kin the
node

€ "New" means K'does not appear in the part
of the B-tree to the left of Sbut it does
appear in S

@ Allow null key in certain situations

Example B-Tree with Duplicates

Lookup in B-Trees

@ Assume no duplicate keys.

@ Assume B-tree is a dense index.

@ To find the record with key K; search starting at the
root and ending at a leaf:

« if current node is not a leaf and has keys K3, K, ...,
K, find the smallest key, K;in the sequence that is
<K

+ follow the (A41)-st pointer to a node at the next
level and repeat

+ when a leaf node is reached, find the key with value
Kand follow the associated pointer to the data
record

Range Queries with B-Trees

@®Range query: a query in which a range of
values is sought. Examples:
¢ SELECT * FROM R WHERE R.k > 40;
. gELECT * FROM R WHERE R.k >= 10 AND R.k <=
@ To find all keys in the range [a,b]:
+ Do a lookup on a: leads to leaf where a could be
+ Search the leaf for all keys > a
+ If we find a key > b, we are done

+ Else follow next-leaf pointer and continue searching
in the next leaf

+ Continue until finding a key > b6 or no more leaves

24

Efficiency of B-Trees

@ B-trees allow lookup, insertion and deletion of
records with very few disk I/Os

@ Number of disk I/Os is number of levels in the B-
tree plus cost of any reorganization

@If nis at least 10, then splitting/merging blocks
will be rare and usually limited to the leaves

@ For typical sizes of keys, pointers, blocks and files,
3 levels suffice (see next slide)

@ Also can keep root block of B-tree in memory

Size of B-Tree

@ Assume
+ 4096 bytes per block
+ 4 bytes per key (e.g., integer)
+ 8 bytes per pointer
+ no header info in the block
@ Then n = 340 (can keep n keys and n+1 pointers in a
block)
@ Assume on average a block has 255 pointers
@ Count:
+ one node at level 1 (the root)
+ 255 nodes at level 2
+ 255%255 = 65,025 nodes at level 3 (leaves)

+ each leaf has 255 pointers, so total number of records is more
than 16 million

26

