Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

1z10

McGill University:
School of Computer Science
Winter 1997 Class Notes for 308-251

DATA STRUCTURES AND ALGORITHMS
Topic #7: TRIES AND SUFFIX TREES

This lecture is about tries and suffix trees. Here is some general information on tries:

e The term trie comes from the word "retrieval”.
o Tries were introduced in the 1960's by Fredkin.
o A suffix tree is a member of the trie family.

Why do we use tries?

- The trie is a data structure that can be used to do a fast search in a large text. For example, we can think
of the Oxford English dictionary which contains several gigabytes of text. The Oxford dictionary is a
static structure because we do not want to add or delete any items. However, searching for an item in the
dictionary is very important. Also, searching for a string should be efficient because overlapping of
strings can occur.

TEXT il il e e
L1 | I 1 L | | |
T end of
beginning of text fext

I:l indicates the location of the string in the text

@ indicates string searches which overlap

Example of string searches which overlap:

Find the string AAA in the text BBAA|AABAAB

FIGURE 1

- Tries are used to implement the dictionary abstract data type (ADT) where basic operations like
makenull, search, insert, and delete can be performed.

- They can be used for encoding and compression. (To be done in a later lecture.)

- They can be used in regular expression search and approximate string matching.

Regular expression
A regular expression is a way to define a pattern of characters. One example of a regular expression is

[aB]*[cd][efg] where * is an indicator of repetition. The above expression represent any string with the
following properties:

28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

The string starts with any (possibly zero) number of a or B
followed by exactly one of c or d
followed by exactly one of e or for g

Example: aaace and Bdg are two strings which can be represented by the above regular expression.

Another example of a regular expression is ~*.*$ where ” denotes the beginning of a line, the dot is a
wildcard that represents any symbol and $ denotes the end of a line. Therefore, the expression ~.*$
represents a line containing any string repeated any number of time. That is, a whole line.

In UNIX, there is a command called grep which is used to report all matching substrings in a file.

We can type the command: grep ‘[aB]*[cd][efg]" <filename> and all substrings defined by this regular
expression contained in <filename> will be listed.

Structure of a trie

-A trie is a k-ary position tree.
-1t is constructed from input strings, i.e. the input is a set of n strings called S1,S2,...,Sn, where each S;j

consists of symbols from a finite alphabet and has a unique terminal symbol which we call $.
Some examples of alphabets are:
e {0,1} for binary files.
o {all 256 ASCII characters}
e {a,b,cd,...xy,z}
Tries are not only used to search for strings in normal text, but also to search a pattern in a picture. Here,

the picture can be a gif file.

Kinds of tries

Non compact tries.

Compact tries.

Tries called "PATRICIA" which are even more compact.
Suffix tries.

Suffix trees.

agrwdE

Non compact tries

A non compact trie is one in which every edge of the underlying tree represents a symbol of the alphabet.
(In the following example and for the rest of the this page we will always assume that the symbols in our
alphabet are the CAPITAL letters A..Z with terminal symbol $)

Let's construct the trie from the following 5 strings: BIG, BIGGER, BILL, GOOD, GOSH.

2210 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

BILLY) Goopg GOSH

$ LEAVES ARE GREEN.
EIGZERS$ %I‘{I:}Eﬁ%mBDL "$" TERMINATES EACH

In this figure, the strings either start with B or .
Therefore, the root of the trie is connected to 3
edges called B, G and $.

FIGURE 2

When we look for the string GOOD, we start at the root and we follow the G edge, followed by the O
edge, another O edge and finally the D edge.

If we want to look for the string BAD, we start from the root, follow the B edge and find out that there is
no A edge after. Thus BAD is not in the text.

The above structure is rather wasteful because each edge represents a single symbol. For huge texts this is
an enormous waste of space. Instead, we must find a way to represent the trie in a more compact form.

Before building a compact trie, let's look at 2 types of implementation for tries.
1. The first implementation uses an array of pointers.

Each array cell has an index. If the alphabet is from A to Z, the array indices will range from A to Z
plus the terminal symbol $, so the size of the array is equal to the alphabet size plus 1.

Here is an array representation for the strings BIG and GOO (in figure 3). A string start with either

a B or a G. This is why in the first array, cell B and G have children to point to. The other cells
have NIL pointers. For example, no word starts with the letter A, so cell A has a NIL pointer.

3210 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

Trie representation for words BI(x and (00 using array of pointers
FIGURE 3

This implementation is wasteful when we have few words because most of the pointers are NIL.

2. The second implementation uses linked lists and is due to "de la Briandais".
Each node of the linked list represents a single symbol and has pointers to its next sibling and to its
first child. Consider the following text:

[s1...5§-15...5n$ S1...5 j-1 t1...tm3]

The first child of sk is sk+1 for all k such that 1< k <n (where sp+1 = $)
The next sibling of s j is t1. No other node have a sibling.

4710 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

2NN ENN

Trie representation for words Bl and (00
using linked lists

——>pointer to child ~ ——> pointer to sibling
FIGURE 4

Compact tries

This type of trie resembles the one in figure 2 except that chains which lead to leaves are trimmed. This is
illustrated in figure 5.

Trim away all chains which lead to leaves

e

BIGGERY

FIGURE 5

The compact form of the trie is in figure 6:

5210 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

Trie for strings big, bigger, bill, good, gosh
This trie is more compact than the trie
in figure 2.

FIGURE 6

The number of leaves is n+1, where n is the number of input strings. Furthermore, in the leaves, we may
store either the strings themselves or pointers to the strings (that is, integers).

The compact trie can be even more compacted. This will be discussed under the topic Tries called
&QquotPATRICIA".

Tries called "PATRICIA™

&QquotPATRICIA" stands for "practical algorithm to retrieve information coded in
alphanumeric". This will be different from the previous trie in that an edge can be labeled with more
than one character. Hence, all the unary nodes will be collapsed. The following figure illustrates the
collapsing process:

B % Bg

Before, one edge is used to represent a character.
Now, the red node (unary node) is collapsed and

one edge can hold more than one character.
FIGURE 7

6z10 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

The very compact trie will look as follows:

BIGGERY

: leaft
. : internal noede
FIGURE 8

Note:

For binary PATRICIA tries (where there are only 2 symbols), the number of internal nodes is equal to the
number of leaves minus 1. The height of the PATRICIA trie is bounded by n (the number of leaves). The
heights of the ordinary trie or the compact trie are not necessarily bounded by n.

Suffix trie

Principles:

The idea behind suffix TRIE is to assign to each symbol in a text an index corresponding to its position in
the text.(ie: First symbol has index 1, last symbol has indice n=#of symbols in text). To build the suffix
TRIE we use these indices instead of the actual object.

The structure becomes exogenous and has several advantages:

1. It requires less storage space.
2. We do not have to worry how the text is represented. (bin, ASCII, etc)
3. We do not have to store the same object twice. (no duplicate)

A suffix trie is an ordinary trie in which the input strings are all possible suffixes.

A suffix of a text [t1 ... tn] is a substring [t ... tn] where i is an integer between 1 and n.

To demonstrate the structure of the resulting tree we will build the suffix trie corresponding to the
following text:

TEXT: GOOGOLS

POSITION: 1 23 4567

We begin by giving a position to every suffix in the text. We can now build a SUFFIX TRIE for all n
suffixes of the text.

7210 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

GDDGDLE root

| I

FIGURE 9

Note: The resulting tree has n leaves and height n.

Suffix tree

The suffix tree is created by TRIMMING (compacting + collapsing every unary node) of the suffix TRIE.

The following is a picture of a suffix trie. The corresponding suffix tree is drawn below.
COMPACT TRIE OF SUFFIXES OF THE TEXT: GOOGOLE

root

@ ALctve node, correspond to a suffix of the text
B Inhactive node, one for each symbol of the alphabet not associated with any string
& I[nternal node, each have at least two cluldren in a compact trie

FIGURE 10

8z10 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

SUFFIX TREE

root

Key: GOOGOLES
1 2 3 456 7
FIGURE 11

We store pointers rather than words in the leaves. And we replaced every string by a pair of indices, (a,b),
where a is the index of the beginning of the string and b the index of the end of the string. i.e: We write

e (3,7) for OGOL$
e (1,2) for GO
o (7,7)for$

Remark: This make the storage in a suffix tree strickly O(n).

Search in suffix tree

Searching for all instances of a substring S in a suffix tree is easy since the symbols in S define a path
down the suffix tree. Following this path, if we encountered a NIL pointer before reaching the end, then S
is not in the tree. If we end up at a node x then S occurs at least once. Moreover the places where S can be
found are given by the pointers in all the leaves in the subtree rooted at x.

Pseudo-code for searching in suffix tree:
SEARCH

Start at root

Go down the tree by taking each time the corresponding bifurcation
If S correspond to a node then return all leaves in subtree

If S encountered a NIL pointer then S is not in the tree

Ex:
If S ="GO" we take the GO bifurcation and return: GOOGOL$,GOLS$.
If S ="OR" we take the O bifurcation and then we hit a NIL pointer so "OR" is not in the tree.

Analysis

If we have
e TRIE
e Alphabet = {0,1}
e Each string consists of infinitely many independent coin-flips
s1 =01101111010001....

9z10 28.8.2007 12:37

Topic #7: Tries and suffix trees http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

s2 =11010110110101101...
sp = 010111011101...

Putting a period in front, each string can be thought of as the binary expansion of a real number
between 0 and 1.

e Compact the resulting tree by eliminating all chains leading to leaves

If a new string S of length k is to be added in the TRIE, we can expect that the distance between the
leaf representing S and the root is approximately log 2 n. Intuitive proof:

1. Each coin-flip has a 50% chance of being 0 or 1. So starting at any node, we have 50%
chance of going left, 50% chance of going right.

50% chance of n

cothe left _\

of nodes
rematining

_/

FIGURE 12

2. The process ends with the last digit of S. At that point we have:
n/2k~1::>k~logzn

Insertion/Growing (Trie & Suffix tree)

Java Applet

10z 10 28.8.2007 12:37

