Lecture 16: String Matching
CLRS-32.1,32.4

Outline of this Lecture

String Matching Problem and Terminology.

Brute Force Algorithm.

The Knuth-Morris-Pratt (KMP) Algorithm.

The Boyer-Moore (BM) Algorithm.

String Matching Problem and Terminology

Given a text array T'[1...n] and a pattern array
P[1...m] such that the elements of 7" and P are
characters taken from alphabet > . e.g.,, > = {0, 1}
or >~ = {a,b,...,z}.

The String Matching Problem is to find all the occur-
rence of P inT'.

A pattern P occurs with shift s in 7", if P[1...m]
=T[s+ 1...s5s+ m]. The String Matching Problem
Is to find all values of s. Obviously, we must have
0<s<n—m.

Tba|cabc|abca

s=2

String Matching Problem and Terminology

A string w Is a prefix of z if x =w Yy, for some string
Y.

Similarly, a string w is a suffix of x if z =yw , for
some string y.

Brute Force Algorithm

Initially, P is algined with 7" at the first index position.
P is then compared with 7" from left-to-right. If a
mismatch occurs, "slide” P to right by 1 position, and
start the comparison again.

Tclalcab clajclalb caclalb

b S—:2>c|a|b

pl
O
jab)

Brute Force Algorithm

BF StringMatcher (T, P) {
n = length(T) ;
m = length(P) ;

// s increments by 1 in each iteration
// => slide P to right by 1
for (s=0; s<=n-m; s++) {
// starts the comparison of P and T again
i=1; j=1;
while (j<=m && P[s+i]==T[3j]) {
// corresponds to compare P and T from
// left-to-right
1++; J++;
}
if (j==m+1)
print "Pattern occurs with shift=", s

The Knuth-Morris-Pratt (KMP) Algorithm

In the Brute-Force algorithm, if a mismatch occurs at
P[j] (7 > 1), it only slides P to right by 1 step. It
throws away one piece of information that we’'ve al-
ready known. What is that piece of information ?

Let s be the current shift value. Since it is a mismatch
at P[j] ,weknowT[s+1..s+7j5—1] = P[1..5 —1].

s+1 s+j—1

..... %

How can we make use of this information to make the
next shift? In general, P should slide by s > s such
that P[1..k] = T[s’ +1.5 + k] . We then compare
Plk+ 1] with T[s + k + 1] .

The Knuth-Morris-Pratt (KMP) Algorithm

When we slide P to right, it should be a place where
P could possibly occur in 7.

Tbacbab|a|b|a|abcbab

P ~1 a b|a|b|a|ca
1 q
T bacbaba|b|aabcbab
P il >a|b|abaca
1 k
1 q

alb a|b|a P[1..q]

alblal| P1.k]isasuffix of P[1.q]
1 k

Do not shift too much

Do not shift too much, as it may miss some matched
patterns!

T alb alb albabc
P ° la|blalb aIblc
T ababalbabc

|
It shiftstoo much!| A matched pattern is missed.
|

albababc

s’=g+4

T
y

T abalbalbabc

s’/=g+2

P >a|b alb

QD
O
@

The next function

We need to answer the following question: Given P[1..q]
match text characters T'[s 4+ 1..s 4+ ¢] , what is the
least shift s > s such that

P[l.k] =T[s + 1.5 + k] ?

In practice, the shift s’ can be precomputed by com-
paring P against itself. Observe that T[s/—l— 1..sl—l—k]
IS a known text, and it is a suffix of P[1..q] . To find
the least shift s > s, it is the same as finding the
largest k < ¢, Ss.t.,

P[1..k] is a suffix of P[1..q] .

The next function

Given P[1..m], letnext beafunction{1,2,...,m} —
{0,1,...,m — 1} such that

next(q)= max{k : k < q and P[1..k] is a suffix of
P[1..4q]}.

Given next(q) for all 1 < g < m, we can use the KMP
algorithm.

10

The Knuth-Morris-Pratt (KMP) Algorithm

KMP_StringMatcher (T, P) {
n = length(T); m = length(P);
compute Next (P) ;
g = 0; // number of characters matched
// so far
1i=1;
while (i<=n) {
// loop until a match 1is found, or
// number of characters matched so far
// 1s 0; // note "1’ 1is unchanged.
while (g > 0 and P[g+1l] != T[1i]) {
a=next [q] ;
}

// matched character increased by 1

if (P[g+1l]==TI[1]) g=g+1;

if (g==m) {

print "Pattern occurs with shift=", i-m
a=next [q] ;

}
1++;
}
}

11

How to compute next function

We first set next[1] = 0, then compute next[q] with
qg=2,3,...m,o0nebyoneinm — 1 iterations.

compute Next (P) {
m = length (P);

next [1]=0;
k = 0; // number of characters matched
// so far
q=2;
while (g<=m) {
while (k > 0 and P[k+1] !'= P[qg]) {

k = next[k];

}

if (P[k+1l]==P[qg]) k=k+1;
next [g] =k;

q++;
}
}

12

Running Time of the KMP Algorithm

1. compute_Next

(a) 29—k = 4 atthe beginning, and 2qg—k < 2m
at all times.

(b) Note that after each comparison, 2q — k In-
creases at least by 1. But the value of 2¢q — k
starts at 4, and the largest possible value is
2m, itimplies there are O(m) number of com-
parisons.

(c) Hence, the running time of compute_Next IS
O(m).
2. KMP_StringMatcher

(a) 2¢ — q = 2 at the beginning, and 2: — q < 2n
at all times.

14

(b) Note that after each comparison, 2i — q in-
creases at least by 1.

(c) Hence, the running time of KMP_StringMatcher
O(n) + O(m).

The Boyer-Moore (BM) Algorithm

The Boyer-Moore (BM) algorithm slides P from left
to right; however it compares P and 7' from right to
left, i.e., P[m] will first compare with 7'[7] . If they
match, it then compares P[m — 1] with T'[i — 1] , etc.
Else, it slides P to right, and compare P[m] with T
again.

15

The BM Algorithm : the bad-character heuristic

One insight of BM algorithm is that, if there is a mis-
match between P[4] and T'[:] , and T'[:] does not
appear in P . P should be advanced j.

T lifn|_{t|lhje] _|wja|t|e|r]|_
p—=d|e|v]i|c|e

5
T | _|i|(n|_|t|h|e| _ |wja|t]e|r]|_

start comparison
|

s+5

C

o
y

o
@D
<

e

16

The BM Algorithm : the bad-character heuristic

If T'[7] appearsin P, shift P such that 7'[:] is aligned
with the rightmost occurrence of T'[7] in P .

t

start comparison

s+4

®|----]o

o
Y
o
4]
<
(@)

17

The BM Algorithm : the bad-character heuristic

If it happens the alignment of 7" and P gives a nega-
tive value shift, then just ignore it.

T .. Greec|e I |S | o] c| -

T .. Glr|elelc|e I |S | o] c| -

negative shift

18

The BM Algorithm : the good suffix heuristic

Similar to the KMP algorithm, if the current shift is s,
and it is a mismatch at P[j] , then we know P[5 +
1.m] =T[s+ 7+ 1..s + m] . Then we can shift
P by s such that T is algined with the rightmost

occurrence of P[j + 1..m] .

s+j+1

s+m

s+m

19

The BM Algorithm

The BM Algorithm takes the larger shift amount com-
puted by bad-character heuristic and good-suffix heuris-

tic.

bad character good suffix

T ... |t _|pli|gleloln|_|h|o]|l
< %
p —— nje|y|mjojoj|n
bad character heuristic
T ... |t _|pli|gleloln| _|h|o]|l
start comparison
s+3 I
P hio|n|e|ly[m|o|o]|n
good suffix heuristic
T ... |t _|pli|gleloln|_|h|ofl
startcomparisén
s+6 I
P hjofn|e|y/m|o|oO|n

20

