
1

1

More on Indexes

B-Trees

Source: our textbook,
slides by Hector Garcia-Molina

2

B-Trees

�Automatic multi-level index

�Features:

� automatically adjust number of levels of
indexes as size of data file changes

� storage on blocks is managed to keep
every block between half full and full =>
no overflow blocks needed

�We'll actually study B+ trees

3

B-Tree Structure

�A balanced search tree: every root-to-leaf path has
same length

�each node (vertex) in the tree contains search keys
K1 < K2 …< Kn and Pn+1 pointers

�parameter n is the max number of keys in a node so
that n+1 pointers and n keys fit in one block
� Ex: In practice choose n to be large. If block size is 4096

bytes, keys are 4 bytes, and pointers are 8 bytes, then n =
340.

P1 K1 P2 K2 P3 … Kn Pn+1

4

Constraints on B-Tree Nodes

� Keys in leaf nodes are in sorted order

(copy keys from the data file)

� The Root contains between 2 and n+1 index
node pointers

� Each internal node must contain at least

(n+1)/2 keys and (n+1)/2 +1 pointers

(ceiling function x rounds up)

� Pi points to an index node with keys K such
that K < Ki

5

Leaf Node Constraints

�Each leaf contains at least (n+1)/2
and at most n data record keys and
pointers (floor function x rounds down)

�Each leaf also has a "next leaf" pointer
and possibly a “prev leaf” pointer

6

Sample non-leaf

to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 ≥95

5
7

8
1

9
5

2

7

Sample leaf node:

From non-leaf node

to next leaf

in sequence5
7

8
1

9
5

T
o
 r
e
co
rd

w
it
h
 k
e
y
 5
7

T
o
 r
e
co
rd

w
it
h
 k
e
y
 8
1

T
o
 r
e
co
rd

w
it
h
 k
e
y
 8
5

8

In textbook’s notation n=3

Leaf:

Non-leaf:

3
0

3
5

3
0

30 35

30

9

Full node min. node

Non-leaf

Leaf

n=3

1
2
0

1
5
0

1
8
0

3
0

3 5 1
1

3
0

3
5

co
u
n
ts
 e
v
e
n
 i
f
n
u
ll

10

Root

B-Tree Example n=3

1
0
0

1
2
0

1
5
0

1
8
0

3
0

3 5 1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

11

Insert into B+tree

(a) simple case
� space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root

12

(a) Insert key = 32 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3
2

3

13

(a) Insert key = 7 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3 5

7

7

14

(c) Insert key = 160 n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
8
0

1
6
0

1
7
9

15

(d) New root, insert 45 n=3

1
0

2
0

3
0

1 2 3 1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

3
0new root

16

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf

Deletion from B-tree

17

(b) Coalesce with sibling

� Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

4
0

5
0

n=4

4
0

18

(c) Redistribute keys

� Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

4
0

5
0

n=4

3
5

3
5

4

19
4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
0

(d) Non-leaf coalese

� Delete 37
n=4

4
0

3
0

2
5

2
5

new root

20

B-tree deletions in practice

– Often, coalescing is not implemented
� Too hard and not worth it!

– Does SimpleDB implement coalesing?--No

21

B-Trees with Duplicate Keys

Change definition of B-tree:

�If key K appears in an internal node, then K is
the smallest "new" key in the subtree S
rooted at the pointer that follows K in the
node

�"New" means K does not appear in the part
of the B-tree to the left of S but it does
appear in S

�Allow null key in certain situations

22

Example B-Tree with Duplicates

1
7

-- 3
7

4
37

2 3 5 7 1
3

1
3

1
7

2
3

2
3

2
3

2
3

3
7

4
1

4
3

4
7

23

Lookup in B-Trees

�Assume no duplicate keys.

�Assume B-tree is a dense index.

�To find the record with key K, search starting at the
root and ending at a leaf:

� if current node is not a leaf and has keys K1, K2, …,
Kn, find the smallest key, Ki in the sequence that is
≤ K.

� follow the (i+1)-st pointer to a node at the next
level and repeat

� when a leaf node is reached, find the key with value
K and follow the associated pointer to the data
record

24

Range Queries with B-Trees

�Range query: a query in which a range of
values is sought. Examples:
� SELECT * FROM R WHERE R.k > 40;

� SELECT * FROM R WHERE R.k >= 10 AND R.k <=
25;

�To find all keys in the range [a,b]:
� Do a lookup on a: leads to leaf where a could be

� Search the leaf for all keys ≥ a

� If we find a key > b, we are done

� Else follow next-leaf pointer and continue searching
in the next leaf

� Continue until finding a key > b or no more leaves

5

25

Efficiency of B-Trees

�B-trees allow lookup, insertion and deletion of
records with very few disk I/Os

�Number of disk I/Os is number of levels in the B-
tree plus cost of any reorganization

�If n is at least 10, then splitting/merging blocks

will be rare and usually limited to the leaves

�For typical sizes of keys, pointers, blocks and files,
3 levels suffice (see next slide)

�Also can keep root block of B-tree in memory

26

Size of B-Tree
�Assume

� 4096 bytes per block

� 4 bytes per key (e.g., integer)

� 8 bytes per pointer

� no header info in the block

�Then n = 340 (can keep n keys and n+1 pointers in a
block)

�Assume on average a block has 255 pointers

�Count:
� one node at level 1 (the root)

� 255 nodes at level 2

� 255*255 = 65,025 nodes at level 3 (leaves)

� each leaf has 255 pointers, so total number of records is more
than 16 million

