
Pattern Matching 3/31/2004 11:08 AM

1

Pattern Matching 1© 2004 Goodrich, Tamassia

Pattern Matching

1

a b a c a a b

234

a b a c a b

a b a c a b

Pattern Matching 2© 2004 Goodrich, Tamassia

Strings

A string is a sequence of characters
Examples of strings:
n Java program
n HTML document
n DNA sequence
n Digitized image

An alphabet Σ is the set of possible characters for a family of strings

Example of alphabets:
n ASCII “Happy” = {72, 97, 112, 112, 121}
n Unicode “Happy” = {72, 97, 112, 112, 121}
n {0, 1} “01101”
n {A, C, G, T} “ACGGTCAT”



Pattern Matching 3/31/2004 11:08 AM

2

Pattern Matching 3© 2004 Goodrich, Tamassia

Strings

Let P be a string of size m
n A substring P[i .. j] of P is the subsequence of P consisting of the 

characters with ranks between i and j
n A prefix of P is a substring of the type P[0 .. i ]
n A suffix of P is a substring of the type P[i ..m − 1] 

Given strings T (text) and P (pattern), the pattern matching 
problem consists of finding a substring of T equal to P

Applications:
n Text editors
n Search engines
n Biological research

Pattern Matching 4© 2004 Goodrich, Tamassia

Brute Force Pattern Matching

An algorithmic design pattern for matching a pattern string P, of 
length m to a substring of a text string T, of length n.

By “match”, we mean that, for some substring T[i, i+m-1],

T[i+j] = P[j] for all values of j such that 0 ≤ j < m.

The brute-force pattern matching algorithm compares the 
pattern P with the text T for consecutive values of i such that
0 ≤ i <n-m, until either
n a match is found, or
n all placements of the pattern have been tried and no match ahs 

been found.



Pattern Matching 3/31/2004 11:08 AM

3

Pattern Matching 5© 2004 Goodrich, Tamassia

Brute-Force Pattern 
Matching

Brute-force pattern 
matching runs in time 
O(nm)

Example of worst case:
n T = aaa … ah

n P = aaah

n may occur in images and 
DNA sequences

n unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text T of size n and pattern 

P of size m
Output starting index of a 

substring of T equal to P or −1
if no such substring exists 

for i ← 0 to n − m
{ test shift i of the pattern }
j ← 0
while j < m ∧ T[i + j] = P[j]

j ← j + 1
if  j = m

return  i {match at i}
else

break while loop {mismatch}
return  -1 {no match anywhere}

Pattern Matching 6© 2004 Goodrich, Tamassia

Other Approaches

Naïve view is that it is always necessary to examine 
every character in T in order to locate a pattern P as 
a substring.

This is not always the case…

We can sometimes avoid comparisons between P and 
a sizable fraction of T if we assume that the alphabet 
is a fixed and finite size.

We call this approach the Boyer-Moore Algorithm.



Pattern Matching 3/31/2004 11:08 AM

4

Pattern Matching 7© 2004 Goodrich, Tamassia

Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two 
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] = c
n If P contains c, shift P to align the last occurrence of c in P with T[i] 
n Else, shift P to align P[0] with T[i + 1]

Example 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Pattern Matching 8© 2004 Goodrich, Tamassia

Last-Occurrence Function
Boyer-Moore’s algorithm preprocesses the pattern P and the 
alphabet Σ to build the last-occurrence function L mapping Σ to 
integers, where L(c) is defined as
n the largest index i such that P[i] = c or
n −1 if no such index exists 

Example:
n Σ = {a, b, c, d}
n P = abacab

The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m + s), 
where m is the size of P and s is the size of Σ

−1354L(c)

dcbac



Pattern Matching 3/31/2004 11:08 AM

5

Pattern Matching 9© 2004 Goodrich, Tamassia

m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j ≤ 1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ )

L ← lastOccurenceFunction(P, Σ )
i ← m − 1
j ← m − 1
repeat 

if T[i] = P[j]
if  j = 0

return  i  { match at i }
else

i ← i − 1
j ← j − 1

else
{ character-jump }
l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until  i > n − 1
return  −1 { no match }

m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j

Pattern Matching 10© 2004 Goodrich, Tamassia

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b
1113



Pattern Matching 3/31/2004 11:08 AM

6

Pattern Matching 11© 2004 Goodrich, Tamassia

Analysis
Boyer-Moore’s algorithm runs in 
time O(nm + s)

Example of worst case:
n T = aaa … a
n P = baaa

The worst case may occur in 
images and DNA sequences but 
is unlikely in English text

Boyer-Moore’s algorithm is 
significantly faster than the 
brute-force algorithm on English 
text

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

Pattern Matching 12© 2004 Goodrich, Tamassia

The KMP Algorithm (§ 11.2.3)
Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm.

When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?

Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here



Pattern Matching 3/31/2004 11:08 AM

7

Pattern Matching 13© 2004 Goodrich, Tamassia

KMP Failure Function
Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself

The failure function F(j) is 
defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j]

Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j] ≠ T[i ] 
we set  j ← F (j − 1)

1

a

3

2

b

4 5210j

3100F(j)

aabaP[j]

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a

Pattern Matching 14© 2004 Goodrich, Tamassia

The KMP Algorithm
The failure function can be 
represented by an array and 
can be computed in O(m) time

At each iteration of the while-
loop, either
n i increases by one, or
n the shift amount i − j

increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2n iterations of the 
while-loop
Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if  j = m − 1

return  i − j { match }
else

i ← i + 1
j ← j + 1

else
if  j > 0

j ← F[j − 1]
else

i ← i + 1
return  −1 { no match }



Pattern Matching 3/31/2004 11:08 AM

8

Pattern Matching 15© 2004 Goodrich, Tamassia

Computing the Failure 
Function

The failure function can be 
represented by an array and 
can be computed in O(m) time

The construction is similar to 
the KMP algorithm itself
At each iteration of the while-
loop, either
n i increases by one, or
n the shift amount i − j

increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2m iterations of the 
while-loop

Algorithm failureFunction(P)
F[0] ← 0
i ← 1
j ← 0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i] ← j + 1
i ← i + 1
j ← j + 1

else if  j > 0 then
{use failure function to shift P}
j ← F[j − 1]

else
F[i] ← 0 { no match }
i ← i + 1

Pattern Matching 16© 2004 Goodrich, Tamassia

Example Problem

We want to match the pattern “abacab” 
to the text “abacaabaccabacabaabb”
n We start by computing the fail function.

n Then we run the search using the fail 
function.



Pattern Matching 3/31/2004 11:08 AM

9

Pattern Matching 17© 2004 Goodrich, Tamassia

Example – Computing the Fail Function

c

3

a

4 5210j

F(j)

babaP[j]

i

F(i)

j

0

0

0

1

1

3

0

0

0

1

1

2

2

1

0

P[1…i] = P[1…1] = “b”2

0 P[1…i] = P[1…2] = “ba”

3

1

P[1…i] = P[1…3] = “bac”

4

0

P[1…i] = P[1…4] = “baca”

5

1

P[1…i] = P[1…5] = “bacab”

Pattern Matching 18© 2004 Goodrich, Tamassia

Example – Doing the search

1

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

a b a c a a b a c a b a c a b a a b bc

0

c

3

1

a

4 5210j

2100F(j)

babaP[j]

j = 5, so set j = f(4) = 1j = 1, so set j = f(0) = 0j = 4, so set j = f(3) = 0j = 0, so increment I by 1



Pattern Matching 3/31/2004 11:08 AM

10

Pattern Matching 19© 2004 Goodrich, Tamassia

A brief comparison…

The pattern “abacab” was matched to the text 
“abacaabaccabacabaabb” using the 3 pattern matching 
techniques discussed in this course:
n Brute Force took 29 steps
n Boyer-Moore took 19 steps
n Knuth-Morris-Pratt also took 19 steps

After making a small change to the text 
“abacaabacdabacabaabb” the results were:
n Brute Force still took 29 steps
n Boyer-Moore took 16 steps
n Knuth-Morris-Pratt still took 19 steps

The Boyer-Moore technique improved mainly because the “d” is 
not in the pattern.


