
1

Distributed File Systems

Paul Krzyzanowski • Distributed Systems

Accessing files

FTP, telnet
– Explicit access
– User-directed connection to access remote

resources

We want more transparency
– Allow user to access remote resources just

as local ones

Focus on file system for now

2

Paul Krzyzanowski • Distributed Systems

Operating System: File System

organization
storageretrieval
namingsharing

protection

Responsible for

of files

◗File directory services
bind file name to internal handle

(inode, FAT index)

◗File system controls access to data
◗Low-level operations:

buffering, issuing disk I/O

Paul Krzyzanowski • Distributed Systems

Distributed file system goals
• Access transparency

– Clients unaware files are remote
• Location transparency

– Consistent name space (local and remote)
• Concurrency transparency

– Modifications are coherent
• Failure transparency

– Client and client programs should operate
correctly after server failure

• Heterogeneity
– File service should be provided across

different hardware and software platforms

3

Paul Krzyzanowski • Distributed Systems

Distributed file system goals
• Scalability

– Scale from a few machines to many (tens of
thousands?)

• Replication transparency
– Clients unaware of replication
– Coherence maintained

• Migration transparency
– Files should be able to move around without

clients’ knowledge

• Fine grained distribution of data
– Locate objects near processes that use

them

Paul Krzyzanowski • Distributed Systems

Terms

• File service
– Specification of what the file system offers

to clients

• File
– name, data, attributes

• Immutable file
– Cannot be changed once created

• Easy to cache and replicate

• Protection
– Capabilities
– Access control lists

4

Paul Krzyzanowski • Distributed Systems

File service types
Upload/Download model

– Read file: copy file from server to client
– Write file: copy file from client to server

Advantage
– Simple

Problems
– Wasteful: what if client needs small piece?
– Problematic: what if client doesn’t have

enough space?
– Consistency: what if others need to modify

the same file?

Paul Krzyzanowski • Distributed Systems

File service types

Remote access model
File service provides functional interface:

– open, close, read bytes, write bytes, etc…

Advantages:
– Client gets only what’s needed
– Server can manage coherent view of file

system

Problem:
– Possible server and network congestion

• Servers are accessed for duration of file access
• Same data may be requested repeatedly

5

Paul Krzyzanowski • Distributed Systems

File server

• File Directory Service
– Maps textual names for file to internal

locations that can be used by file service

• File service
– Provides file access interface to clients

• Client module (driver)
– Client side interface for file and directory

service
– if done right, helps provide access

transparency
• e.g. under vnode layer

Paul Krzyzanowski • Distributed Systems

Naming issues

Should all machines have the exact same
view of the directory hierarchy?

– e.g., global root directory?
//server/path
/remote/server/path

or….

Should each machine have its own
hierarchy with remote resources located
as needed

/usr/local/games

6

Paul Krzyzanowski • Distributed Systems

Location transparency

Is the name of the server known to the
client?

– //server1/dir/file
– Server can move without client caring
– If file moves to server2 … problems!

Location independence
– Files can be moved without changing the

pathname

Paul Krzyzanowski • Distributed Systems

Access transparency

• Allow applications to access remote
files as local files

• Remote FS name space should be
syntactically consistent with local
name space
1. redefine the way all files are named and

provide a syntax for specifying remote files
• e.g. //server/dir/file
• Can cause legacy applications to fail

2. use a file system mounting mechanism
• Overlay portions of another FS name space over

local name space

7

Semantics of
file sharing

Paul Krzyzanowski • Distributed Systems

Absolute time ordering
Sequential semantics
Read returns result of last write
Easily achieved if

– Only one server
– Clients do not cache data

BUT
– Performance problems if no cache

• Obsolete data
– We can write-through

• Must notify clients holding copies
• Requires extra state, generates extra

traffic

8

Paul Krzyzanowski • Distributed Systems

Session semantics

• Relax the rules
• Changes to an open file are initially

visible only to the process (or machine)
that modified it.

Paul Krzyzanowski • Distributed Systems

Another solution

Make files immutable
– Aids in replication
– Does not help with detecting modification

Or...
Use atomic transactions

– Each file access is an atomic transaction
– If multiple transactions start concurrently

• Resulting modification is serial

9

Paul Krzyzanowski • Distributed Systems

File usage patterns

• We can’t have the best of all worlds
• Where to compromise?

– Semantics vs. efficiency
– Efficiency = client performance, network

traffic, server load

• Understand how files are used
• 1981 study by Satyanarayanan

Paul Krzyzanowski • Distributed Systems

File usage

• Most files are <10 Kbytes
– Feasible to transfer entire files (simpler)
– Still have to support long files

• Most files have short lifetimes
– Perhaps keep them local

• Few files are shared
– Overstated problem
– Session semantics will cause no problem

most of the time

10

System design issues

Paul Krzyzanowski • Distributed Systems

Name resolution (namei)

(a) Component at a time
vs.

(b) entire path at once

(b) is more efficient but…
– Remote server may access and reveal more

if its file system than it wants
– Other components cannot be mounted

underneath remote tree

Can use (a) and cache bindings

11

Paul Krzyzanowski • Distributed Systems

Stateful or stateless?

Stateful
– Server maintains client-specific state

• Shorter requests
• Better performance in processing

requests
• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Paul Krzyzanowski • Distributed Systems

Stateful or stateless
Stateless

– Server maintains no information on client accesses

• Each request must identify file and offsets
• Server can crash and recover

– No state to lose

• Client can crash and recover
• No open/close needed

– They only establish state

• No server space used for state
– Don’t worry about supporting many clients

• Problems if file is deleted on server
• File locking not possible

12

Paul Krzyzanowski • Distributed Systems

Caching

Hide latency to improve performance for
repeated accesses

Four places
– Server’s disk
– Server’s buffer cache
– Client’s buffer cache
– Client’s disk

WARNING:
cache consistency

problems

Paul Krzyzanowski • Distributed Systems

Approaches to caching

• Write-through
– What if another client reads its cached copy?
– All accesses will require checking with server
– Or Server maintains state and sends

invalidations

• Delayed writes
– Data can be buffered locally (consistency

suffers)
– Remote files updated periodically
– One bulk wire is more efficient than lots of

little writes
– Problem: semantics become ambiguous

13

Paul Krzyzanowski • Distributed Systems

Approaches to caching

• Write on close
– Admit that we have session semantics

• Centralized control
– Keep track of who has what open on each

node
– Stateful file system with signaling traffic

Distributed File Systems
Case Studies

14

NFS
Network File System

Sun Microsystems

c. 1985

Paul Krzyzanowski • Distributed Systems

NFS Design Goals
– Any machine can be a client or server
– Must support diskless workstations
– Heterogeneous systems must be

supported
• Different HW, OS, underlying file system

– Access transparency
• Remote files accessed as local files through

normal file system calls (via VFS in UNIX)

– Recovery from failure
• Stateless, UDP, client retries

– High Performance
• use caching and read-ahead

15

Paul Krzyzanowski • Distributed Systems

NFS Design Goals

No migration transparency
If resource moves to another server, client
must remount resource.

Paul Krzyzanowski • Distributed Systems

NFS Design Goals

No support for UNIX file access semantics
Stateless design: file locking is a problem.

All UNIX file system controls may not be
available.

16

Paul Krzyzanowski • Distributed Systems

NFS Design Goals

Devices
must support diskless workstations where
every file is remote.

Remote devices refer back to local devices.

Paul Krzyzanowski • Distributed Systems

NFS Design Goals

Transport Protocol
Initially NFS ran over UDP using Sun RPC

Why UDP?
Slightly faster than TCP
No connection to maintain (or lose)
Designed for ethernet LAN environment

relatively reliable

Error detection but no correction.
NFS retries requests

17

Paul Krzyzanowski • Distributed Systems

NFS Protocols

• Mounting protocol
– Request access to exported directory tree

• Directory & File access protocol
– Access files and directories

(read, write, …)

Paul Krzyzanowski • Distributed Systems

Mounting Protocol

• Send pathname to server
• Request permission to access contents

• Server returns file handle
– File device #, inode #, instance #

client: parses pathname
contacts server for file handle

client: create in-code vnode at
mount point.
(points to inode for local files)
points to rnode for remote files

- stores state on client

18

Paul Krzyzanowski • Distributed Systems

Mounting Protocol

• static mounting
– Mount request contacts server

Server: /etc/exports
Client: mount fluffy:/users/paul /home/paul

Paul Krzyzanowski • Distributed Systems

Directory and file access protocol

• Initially perform lookup RPC
– returns file handle and attributes

• Not like open
– No information is stored on server

• handle passed as a parameter for other
file access functions
– e.g. read(handle, offset, count)

19

Paul Krzyzanowski • Distributed Systems

Directory and file access protocol

• NFS has 16 functions
– (version 2; six more added in version 3)

null
lookup

create
remove
rename

link
symlink
readlink

read
write

mkdir
rmdir
readdir

getattr
setattr

statfs

Paul Krzyzanowski • Distributed Systems

Accessing files

• Parse component at a time via namei
– At each point, see if mount point

• Yes? Continue on the mounted file system
• Remote? Perform NFS RPC lookup

• Ensures that .. is processed locally and
future mount points are processed

• Final lookup returns handle
• Create in-core vnode, rnode

20

Paul Krzyzanowski • Distributed Systems

Accessing files

Application can now access file

file descriptor in-core vnode (VFS layer)

in-core rnode (NFS client)

Perform NFS read/write RPCs using state
in rnode

RPCs include user ID and group ID
- security hole

Paul Krzyzanowski • Distributed Systems

NFS Performance
• Usually slower than local
• Improve by caching at client

– Goal: reduce number of remote operations
– Cache results of

read, readlink, getattr, lookup, readdir
– Cache file data at client (buffer cache)
– Cache file attribute information at client
– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache
– All NFS writes are write-through to avoid

unexpected data loss if server dies

21

Paul Krzyzanowski • Distributed Systems

Inconsistencies may arise

• Try to resolve by validation
– Save timestamp of file
– When file opened or server contacted for

new block
• Compare last modification time
• If remote is more recent, invalidate cached data

Paul Krzyzanowski • Distributed Systems

Validation

• Always invalidate data after some time
– After 3 seconds for open files (data blocks)
– After 30 seconds for directories

• If block is modified
– Marked dirty
– Scheduled to be written
– Flushed on close

22

Paul Krzyzanowski • Distributed Systems

NFS read-ahead

• Transfer data in large chunks
– 8K bytes default

• As soon as a chunk is received
– A new read request is issued for the next

chunk
– Assumes data is read in-order

Paul Krzyzanowski • Distributed Systems

NFS read-ahead
application kernel server

request bytes 0..8191
wait…

read(byte 0)

return bytes 0..8191return(byte 0)
read(byte 1)

return(byte 1)
read(byte 8191)

return(byte 8191)

request bytes 8192..16535
wait…

read(byte 8192)

return bytes 8192..16535return(byte 8192)

23

Paul Krzyzanowski • Distributed Systems

Problems with NFS

• File consistency
• Assumes clocks are synchronized
• Open with append cannot be

guaranteed to work
• Locking cannot work

– Separate lock manager added (stateful)

• No reference counting of open files
– You can delete a file you (or others) have

open!

• Global UID space assumed

Paul Krzyzanowski • Distributed Systems

Problems with NFS

• No reference counting of open files
– You can delete a file you (or others) have

open!

• Common practice
– Create temp file, delete it, continue access
– Sun’s hack:

• If same process with open file tries to delete it
• Move to temp name
• Delete on close

24

Paul Krzyzanowski • Distributed Systems

Problems with NFS

• File permissions may change
– Invalidating access to file

• No encryption
– Requests via unencrypted RPC
– Authentication methods available

• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

Paul Krzyzanowski • Distributed Systems

Improving NFS: version 2

• user-level lock manager
• NV RAM support

– Improves write performance
– Normally NFS must write to disk on server

before responding to client write requests
– Relax this rule through the use of non-

volatile RAM

25

Paul Krzyzanowski • Distributed Systems

Improving NFS: version 2

• Adjust RPC retries dynamically
– Reduce network congestion from excess

RPC retransmissions under load
– Based on performance

• Client-side disk caching
– cacheFS
– Extend buffer cache to disk for NFS

• Cache in memory first
• Cache on disk in 64KB chunks

Paul Krzyzanowski • Distributed Systems

Improving NFS: version 2

• Enhanced lock manager
–Monitored locks

• status monitor: monitors hosts with locks
• Informs lock manager if host inaccessible
• If server crashes: status monitor

reinstates locks on recovery
• If client crashes: all locks from client are

freed

26

Paul Krzyzanowski • Distributed Systems

The automounter

• Problem with mounts
– If a client has many remote resources

mounted, boot-time can be excessive
– Each machine has to maintain its own name

space
• Painful to administer on a large scale

• Automounter
– Allows administrators to create a global

name space
– Support on-demand mounting

Paul Krzyzanowski • Distributed Systems

Automounter

• Solve static mounting problems with…
the automounter

• Mount and unmount in response to
client demand
– Set of directories are associated with a local

directory
– None are mounted initially
– When local directory is referenced

• OS sends a message to each server
• First reply wins

– Attempt to unmount every 5 minutes

27

Paul Krzyzanowski • Distributed Systems

Automounter maps

• Automounter maps
– Provide mapping:

client pathname → server file system
– Automounter converts maps into mounts

that are added to the client’s file system
tree

• Alternative to automounter maps
– X/Open Federated Naming Specification (XFN)
– Name service
– All resources under /xfn/pathname

Paul Krzyzanowski • Distributed Systems

Automounter maps

Example:
automount /usr/src srcmap

srcmap contains:

cmd -ro doc:/usr/src/cmd
kernel -rw frodo:/release/src \

bilbo:/library/source/kernel
lib -ro sneezy:/usr/local/lib

Access /usr/src/cmd: request goes to doc

Access /usr/src/kernel:
ping frodo and bilbo, mount first response

28

Paul Krzyzanowski • Distributed Systems

Inside the automounter

• automounter speaks NFS and mount
protocols

• Performs NFS mount of given directory
– Mount has address and port number of

automounter, not nfsd server

• All NFS requests go to automounter
• When automounter gets a lookup RPC

of a directory in the map
– Mounts the directory under a directory in
/tmp_mnt

– Returns a symbolic link to the directory

Paul Krzyzanowski • Distributed Systems

The automounter

VFSVFS

NFSNFS

KERNEL

application automounter

NFS request

NFS mount

server

NFS request

29

Paul Krzyzanowski • Distributed Systems

More improvements… NFS v3

• New version of NFS protocol
• Support 64-bit file sizes
• TCP support and large-block transfers

– UDP caused more problems on WANs (errors)
– All traffic can be multiplexed on one

connection
• Minimizes connection setup

– No fixed limit on amount of data that can be
transferred between client and server

• Server checks access for entire path
from client

Paul Krzyzanowski • Distributed Systems

More improvements… NFS v3

• Negotiate for optimal transfer size
• New commit operation

– Check with server after a write operation to
see if data is committed

– If commit fails, client must resend data
– Reduce number of write requests to server
– Speeds up write requests

• Don’t require server to write to disk immediately

• Return file attributes with each request
– Saves extra RPCs

30

RFS
Remote File Sharing
AT&T Unix System V

c. 1986

Paul Krzyzanowski • Distributed Systems

Design Goals

NFS
– Support lowest common denominator in file

system interfaces

RFS
– Support every feature of the UNIX System V

file system
• More complex interface
• Harder to port to other operating systems/file

systems

31

Paul Krzyzanowski • Distributed Systems

Design Goals
NFS

– Connectionless
– Ambiguous semantics
– Stateless

RFS
– Connection-oriented, stateful
– Server keeps track of

• Which files are open
• Which data blocks are cached on each client

– Provides for strong consistency (“UNIX
semantics”)

Paul Krzyzanowski • Distributed Systems

Resource access

NFS
– Client has to know which directories are

exported by which server

– Export list is a file in /etc/exports on
server

32

Paul Krzyzanowski • Distributed Systems

Resource access

RFS
Uses a name server

• Symbolic naming of resources:
– Path, name, description

• Client queries name server to see list of resources
• mount is performed with a symbolic name

– mount queries name server to get machine,
path

• Several name servers can run for fault tolerance
– One is primary

• Client need not know location of resource on
server

Paul Krzyzanowski • Distributed Systems

Resource access

NFS
– Devices on remote file system refer to local

devices

RFS
– Supports remote devices

33

Paul Krzyzanowski • Distributed Systems

What do you get?

• File and record locking works
• Open with append works
• Strong consistency

But…

• Sensitive to server crashes
• UNIX System V file system only

AFS
Andrew File System

Carnegie-Mellon University

c. 1986(v2), 1989(v3)

34

Paul Krzyzanowski • Distributed Systems

AFS

• Developed at CMU
• Commercial spin-off

– Transarc

• IBM acquired Transarc

• Currently open source under IBM Public
License

Paul Krzyzanowski • Distributed Systems

AFS Design Goal

Support information sharing
on a large scale

e.g. 10,000+ systems

35

Paul Krzyzanowski • Distributed Systems

AFS Assumptions

• Most files are small
• Reads are more common than writes
• Most files are accessed by one user at a

time
• Files are referenced in bursts (locality)

– Once referenced, a file is likely to be
referenced again

Paul Krzyzanowski • Distributed Systems

AFS Design Decisions

• Whole file serving
– Send the entire file on open

• Whole file caching
– Client caches entire file on local disk
– Client writes the file back to server on close

• if modified
• Keeps cached copy for future accesses

36

Paul Krzyzanowski • Distributed Systems

AFS Design

• Each client has an AFS disk cache
– Part of disk devoted to AFS (e.g. 100 MB)

• Client manages cache in LRU manner
• Clients communicate with set of trusted

servers
• Each server presents one identical

name space to clients
– All clients access it in the same way
– Location transparent

Paul Krzyzanowski • Distributed Systems

AFS Server: volumes

• Disk partition contains
file and directories

• Volume
– Administrative unit of organization

• e.g. user’s home directory, local source, etc.

– Each volume is a directory tree (one root)
– Assigned a name and ID number
– A server will often have 100’s of volumes

grouped into volumes

37

Paul Krzyzanowski • Distributed Systems

AFS Server: cells

• Servers are grouped into administrative
entities called cells

• Cell: collection of
– Servers
– Administrators
– Users
– Clients

• Each cell is autonomous but cells may
cooperate and present users with one
uniform name space

Paul Krzyzanowski • Distributed Systems

cell

Files, directories, volumes, cells

Server A

volume 1 volume 2 volume 3

/

home

paul
src doc

images

lib

musicchip

mail

ask
proj phone

Server B

volume 14 volume 15

/

src

linux
kernel doc

ajit

home

bobsysv

cmd

bsd
kern lib

Server C

cell directory server

volume 1 volume 2
volume 3

/

home

paul
src doc

images

lib

musicchip
mail

ask
proj phone

Server A

38

Paul Krzyzanowski • Distributed Systems

Namespace management

Clients get information via cell directory
server

Goal:
everyone sees the same namespace

/afs/cellname/path

/afs/mit.edu/home/paul/src/try.c

Paul Krzyzanowski • Distributed Systems

Internally on the server…

Each file and directory identified by three
32-bit numbers:

File ID = { }

client caches server
address of volume but
server keeps mapping.
If volume moves to
another server, server
forwards the request

vnodeID: “handle”
on server

Unique number to
ensure that vnode
IDs are not reused

volumeID, vnodeID, uniquifier

39

Paul Krzyzanowski • Distributed Systems

Internally on the server

• Communication is via RPC on UDP

• Access control lists used for protection
– Directory granularity
– UNIX permissions ignored (except execute)

Paul Krzyzanowski • Distributed Systems

Authentication and access
Kerberos authentication

– Trusted third party issues tickets
– Mutual authentication

Before a user can access files
– Authenticate to AFS with klog command

• “Kerberos login” – centralized authentication

– Get a token (ticket) from Kerberos
– Present it with each file access

Unauthorized users have id of
system:anyuser

40

Paul Krzyzanowski • Distributed Systems

AFS cache coherence

• On open
– Server sends entire file to client

and provides a callback promise:
– It will notify the client when any other

process modifies the file

Paul Krzyzanowski • Distributed Systems

AFS cache coherence

• If a client modified a file
– Contents are written to server on close

• When a server gets an update it notifies
all clients that have been issued the
callback promise
– Clients invalidate cached files

41

Paul Krzyzanowski • Distributed Systems

AFS cache coherence

• If a client was down, on startup:
– Contact server with timestamps of all

cached files to decide whether to invalidate

• If a process has a file open, it continues
accessing it even if it has been
invalidated
– Upon close, contents will be propagated to

server

AFS: Session Semantics

Paul Krzyzanowski • Distributed Systems

AFS: replication and caching

• Read-only volumes may be replicated
on multiple servers

• Whole file caching not feasible for huge
files
– AFS caches in 64KB chunks (by default)
– Entire directories are cached

• Advisory locking supported
– Query server to see if there is a lock

42

Paul Krzyzanowski • Distributed Systems

AFS summary

Whole file caching
– offers dramatically reduced load on servers

Callback promise
– keeps clients from having to check with

server to invalidate cache

Paul Krzyzanowski • Distributed Systems

AFS summary

AFS benefits
– AFS scales well
– Uniform name space
– Read-only replication
– Security model supports mutual

authentication, data encryption

AFS drawbacks
– Session semantics
– Directory based permissions
– Uniform name space

43

CODA
COnstant Data Availability
Carnegie-Mellon University

c. 1990-1992

Paul Krzyzanowski • Distributed Systems

CODA Goals

Descendant of AFS
CMU, 1990-1992

Goals
Provide better support for replication than AFS

- support shared read/write files

Support mobility of PCs

44

Paul Krzyzanowski • Distributed Systems

Mobility

• Provide constant data availability in
disconnected environments

• Via hoarding (user-directed caching)
– Log updates on client
– Reintegrate on connection to network

(server)

• Goal: Improve fault tolerance

Paul Krzyzanowski • Distributed Systems

Modifications to AFS

• Support replicated file volumes
• Extend mechanism to support

disconnected operation
• A volume can be replicated on a group

of servers
– Volume Storage Group (VSG)

45

Paul Krzyzanowski • Distributed Systems

Volume Storage Group

• Volume ID used in the File ID is
– Replicated volume ID

• One-time lookup
– Replicated volume ID → list of servers and

local volume IDs
– Cache results for efficiency

• Read files from any server
• Write to all available servers

Paul Krzyzanowski • Distributed Systems

Disconnection of volume servers

AVSG: Available Volume Storage Group
– Subset of VSG

What if some volume servers are down?
– Each file copy has a version stamp
– Before fetching a file

• Client requests version stamps from all available
servers

46

Paul Krzyzanowski • Distributed Systems

Disconnected servers

• If the client detects that some servers
have old versions
– Some server resumed operation

– Client initiates a resolution process
• Updates servers: notifies server of stale data
• handled entirely by servers
• Administrative intervention may be required (if

conflicts)

Paul Krzyzanowski • Distributed Systems

AVSG = Ø

• If no servers are available
– Client goes to disconnected operation

mode

• If file is not in cache
– Nothing can be done… fail

• Do not report failure of update to server
– Log update locally in Client Modification

Log (CML)
– User does not notice

47

Paul Krzyzanowski • Distributed Systems

Reintegration

• Upon reconnection
– Commence reintegration

• Bring server up to date with CML log
playback
– Optimized to send latest changes

• Try to resolve conflicts automatically
– Not always possible

Paul Krzyzanowski • Distributed Systems

Support for disconnection

• Keep important files up to date
– Ask server to send updates if necessary

• Hoard database
– Automatically constructed by monitoring the

user’s activity
– And user-directed prefetch

48

Paul Krzyzanowski • Distributed Systems

CODA summary

• Session semantics as with AFS
• Replication of read/write volumes

– Client-driven reintegration

• Disconnected operation
– Client modification log
– Hoard database for needed files

• User-directed prefetch

– Log replay on reintegration

DFS
Distributed File System

Open Group

49

Paul Krzyzanowski • Distributed Systems

DFS

• Part of Open Group’s Distributed
Computing Environment

• Descendant of AFS

Assume (like AFS)
– Most file accesses are sequential
– Most file lifetimes are short
– Majority of accesses are whole file transfers
– Most accesses are to small files

Paul Krzyzanowski • Distributed Systems

DFS Goals

Use whole file caching (like AFS)

But…
session semantics are hard to live with

Create a strong consistency model
(UNIX semantics)

50

Paul Krzyzanowski • Distributed Systems

DFS Tokens

Cache consistency maintained by tokens

Token:
– Guarantee from server that a client can

perform certain operations on a cached file

Server grants and revokes tokens
– Multiple read tokens
– One write token

• Revoke all other read and write tokens

Paul Krzyzanowski • Distributed Systems

DFS design

• Token granting mechanism
– Allows for long term caching and strong

consistency

• Caching sizes: 8K – 256K bytes
• Read-ahead (like NFS)

– Don’t have to wait for entire file

• File protection via ACLs
• Communication via authenticated RPCs

51

Paul Krzyzanowski • Distributed Systems

DFS Sumary

• Essentially AFS with server-based token
granting
– Server keeps track of who is reading and

who is writing files
– Server must be contacted on each open and

close operation to request token

SMB
Server Message Blocks

Microsoft

c. 1987

52

Paul Krzyzanowski • Distributed Systems

SMB Goals

• File sharing protocol for Windows
95/98/NT/2000/ME/XP

• Protocol for sharing
– Files, devices, communication abstractions

(named pipes), mailboxes

• Servers: make file system and other
resources available to clients

• Clients: access shared file systems, printers,
etc. from servers

Design Priority:
locking and consistency over client caching

Paul Krzyzanowski • Distributed Systems

SMB Design

• Request-response protocol
– Send and receive message blocks

• name from old DOS system call structure

– Send request to server (machine with
resource)

– Server sends response

• Connection-oriented protocol
• Each message contains:

– Fixed-size header
– Command string (based on message) or

reply string

53

Paul Krzyzanowski • Distributed Systems

Message Block

• Header: [fixed size]
– Protocol ID
– Command code (0..FF)
– Error class, error code
– Tree ID – unique ID for resource in use by

client (handle)
– Caller process ID
– User ID
– Multiplex ID (to route requests in a process)

• Command: [variable size]
– Param count, params, #bytes data, data

Paul Krzyzanowski • Distributed Systems

SMB Commands

• Files
– Get disk attr
– create/delete directories
– search for file(s)
– create/delete/rename file
– lock/unlock file area
– open/commit/close file
– get/set file attributes

54

Paul Krzyzanowski • Distributed Systems

SMB Commands

• Print-related
– Open/close spool file
– write to spool
– Query print queue

• User-related
– Discover home system for user
– Send message to user
– Broadcast to all users
– Receive messages

Paul Krzyzanowski • Distributed Systems

Protocol Steps

• Establish connection

55

Paul Krzyzanowski • Distributed Systems

Protocol Steps

• Establish connection
• Negotiate protocol

– negprot SMB
– Responds with version number of protocol

Paul Krzyzanowski • Distributed Systems

Protocol Steps

• Establish connection
• Negotiate protocol
• Authenticate/set session parameters

– Send sesssetupX SMB with username,
password

– Receive NACK or UID of logged-on user
– UID must be submitted in future requests

56

Paul Krzyzanowski • Distributed Systems

Protocol Steps

• Establish connection
• Negotiate protocol - negprot
• Authenticate - sesssetupX
• Make a connection to a resource

– Send tcon (tree connect) SMB with name of
shared resource

– Server responds with a tree ID (TID) that
the client will use in future requests for the
resource

Paul Krzyzanowski • Distributed Systems

Protocol Steps

• Establish connection
• Negotiate protocol - negprot
• Authenticate - sesssetupX
• Make a connection to a resource – tcon
• Send open/read/write/close/… SMBs

57

Paul Krzyzanowski • Distributed Systems

Locating Services

• Clients can be configured to know about
servers

• Each server broadcasts info about its
presence
– Clients listen for broadcast
– Build list of servers

• Fine on a LAN environment
– Does not scale to WANs
– Microsoft introduced browse servers and the

Windows Internet Name Service (WINS)

Paul Krzyzanowski • Distributed Systems

Security
• Share level

– Protection per “share” (resource)
– Each share can have password
– Client needs password to access all files in share
– Only security model in early versions
– Default in Windows 95/98

• User level
– protection applied to individual files in each share

based on access rights
– Client must login to server and be authenticated
– Client gets a UID which must be presented for future

accesses

58

CIFS
Common Internet File System

Microsoft, Compaq, …

c. 1995?

Paul Krzyzanowski • Distributed Systems

SMB evolves

SMB reverse-engineered
– samba under Linux

Microsoft released protocol to X/Open in 1992

Microsoft, Compaq, SCO, others joined to
develop an enhanced public version of the
SMB protocol:

Common Internet File System
(CIFS)

59

Paul Krzyzanowski • Distributed Systems

Goals

• Heterogeneous HW/OS to request file
services over network

• Based on SMB protocol
• Support

– Shared files
– Byte-range locking
– Coherent caching
– Change notification
– Replicated storage
– Unicode file names

Paul Krzyzanowski • Distributed Systems

Goals

• Applications can register to be notified
when file or directory contents are
modified

• Replicated virtual volumes
– For load sharing
– Appear as one volume server to client
– Components can be moved to different

servers without name change
– Use referrals
– Similar to AFS

60

Paul Krzyzanowski • Distributed Systems

Goals

• Batch multiple requests to minimize
round-trip latencies
– Support wide-area networks

• Transport independent
– But need reliable connection-oriented

message stream transport

• DFS support (compatibility)

Paul Krzyzanowski • Distributed Systems

Caching and Server Communication

• Increase effective performance with
– Caching

• Safe if multiple clients reading, nobody writing

– read-ahead
• Safe if multiple clients reading, nobody writing

– write-behind
• Safe if only one client is accessing file

• Minimize times client informs server of
changes

61

Paul Krzyzanowski • Distributed Systems

Oplocks

Server grants opportunistic locks
(oplocks) to client

– Oplock tells client how/if it may cache data
– Enhancement of DFS tokens

Client must request an oplock
– oplock may be

• Granted
• Revoked
• Changed by server

Paul Krzyzanowski • Distributed Systems

Level 1 oplock

– Client can open file for exclusive access
– Arbitrary caching
– Cache lock information
– Read-ahead
– Write-behind

If another client opens the file, the server has
former client break its oplock:
– Client must send server any lock and write

data and acknowledge that it does not have
the lock

– Purge any read-aheads

62

Paul Krzyzanowski • Distributed Systems

Level 2 oplock

– Request if expect others to read
– Multiple clients may have the same file

open as long as none are writing
– Cache reads, file attributes
– Send other requests to server

Level 2 oplock revoked if another client opens
the file for writing

Paul Krzyzanowski • Distributed Systems

Batch oplock

– Client can keep file open on server
even if a local process that was using it
has closed the file

– Client requests batch oplock if it
expects programs may behave in a
way that generates a lot of traffic (e.g.
accessing the same files over and over)

• Designed for Windows batch files

Batch oplock revoked if another client opens the
file

63

Paul Krzyzanowski • Distributed Systems

Filter oplock

• Open file for read or write
• Locks file so other clients cannot open

for write or delete
– All clients can share read access

• Allow other clients to perform non-
intrusive (read) operations

Paul Krzyzanowski • Distributed Systems

No oplock

– All requests must be sent to the server

– can work from cache only if byte
range was locked by client

64

Paul Krzyzanowski • Distributed Systems

CIFS Summary

• Standard has not yet materialized
– Future uncertain

• Oplocks mechanism supported in
Windows NT, 2000, XP

• Oplocks offer flexible control for
distributed consistency

NFS version 4
Network File System

Sun Microsystems

65

Paul Krzyzanowski • Distributed Systems

Proposed enhancements to NFS

• Stateful server
• Compound RPC

– Group operations together
– Receive set of responses
– Reduce round-trip latency

• Stateful open/close operations
– Ensures atomicity of share reservations for

windows file sharing (CIFS)
– Supports exclusive creates
– Client can cache aggressively

Paul Krzyzanowski • Distributed Systems

Proposed enhancements to NFS

• create, link, open, remove, rename
– Inform client if the directory changed during

the operation

• Strong security
– Extensible authentication architecture

• File system replication and migration
– To be defined

• No concurrent write sharing or
distributed cache coherence

66

Paul Krzyzanowski • Distributed Systems

Proposed enhancements to NFS

• Server can delegate specific actions on
a file to enable more aggressive client
caching
– Similar to CIFS oplocks

• Callbacks
– Notify client when file/directory contents

change

The End.

