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Abstract

Businesses and organizations today generate increasing volumes of data. Being
able to analyze and visualize this data to find trends that can be used as input
when making business decisions is an important factor for competitive advan-
tage. Spotfire is a software platform for doing this. Spotfire uses a tabular data
model similar to the relational model used in relational database management
systems (RDBMSs), which are commonly used by companies for storing data.
Extraction and import of data from RDBMSs to Spotfire is generally a simple
task.

In recent years, because of changing application requirements, new types
of databases under the general term NoSQL have become popular. NoSQL
databases differ from RDBMSs mainly in that they use non-relational data
models, lack explicit schemas and scale horizontally. Some of these features
cause problems for applications like Spotfire when extracting and importing
data.

This thesis investigates how these problems can be solved, thus enabling sup-
port for NoSQL databases in Spotfire. The approach and conclusions are valid
for any application that interacts with databases in a similar way as Spotfire.

General solutions for supporting NoSQL databases are suggested. Also, two
concrete tools for importing data from Cassandra and Neo4j that have been
implemented in the Spotfire platform are described. The presented solutions
comprise a data model mapping from the NoSQL system to Spotfire tables,
sampling and possibly clustering for finding schemas, and an extraction mech-
anism tailored to the particular system’s query interface.

The suggested solutions are not claimed to be complete. Rather, the work
in this thesis can serve as a starting point for more thorough investigations or
as a basis for something that can be extended.
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Glossary

ACID Atomicity, Consistency, Isolation, Durability
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CF Column Family
CFS Column Family Store
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HDFS Hadoop Distributed File System
JAR Java Archive
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NoSQL Not only SQL
RDBMS Relational Database Management System
REST Representative State Transfer
SC Super Column
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SDK Software Development Kit
SQL Structured Query Language
UUID Universally Unique Identifier

v



Contents

1 Introduction 1
1.1 RDBMSs, NoSQL and Spotfire . . . . . . . . . . . . . . . . . . . 1
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution of thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 4

3 Theory 6
3.1 Recap of the relational model and ACID . . . . . . . . . . . . . . 6
3.2 Spotfire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 NoSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.4 RDBMSs vs. NoSQL – when to choose what . . . . . . . 11
3.3.5 Implications for application development . . . . . . . . . . 12

3.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 Estimating the optimal number of clusters . . . . . . . . . 15

4 Survey 18
4.1 Key-Value Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Document Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Column Family Stores . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Graph Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Problem analysis and general solutions 29
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Key-Value Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Document Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Column Family Stores . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Graph Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



6 Implementation 33
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Spotfire SDK and API . . . . . . . . . . . . . . . . . . . . 33
6.1.2 On-Demand . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.3 General architecture . . . . . . . . . . . . . . . . . . . . . 34

6.2 Cassandra tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.1 Motivation and choices . . . . . . . . . . . . . . . . . . . . 36
6.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.3 Configuration of import . . . . . . . . . . . . . . . . . . . 37
6.2.4 Data function . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.5 Results pagination . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Neo4j tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.1 Motivation and choices . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.3 Configuration of import . . . . . . . . . . . . . . . . . . . 43
6.3.4 Data function . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.5 Results pagination . . . . . . . . . . . . . . . . . . . . . . 46
6.3.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Experiments 49
7.1 Results pagination . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Discussion and future work 57
8.1 Cassandra tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Neo4j tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Sample and page size parameters . . . . . . . . . . . . . . . . . . 59
8.4 Client vs. server execution . . . . . . . . . . . . . . . . . . . . . . 60
8.5 Retrofitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.6 User level of expertise . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Conclusion 62

vii



Chapter 1

Introduction

In this chapter, the main topic of the thesis and the motivation behind it are
introduced. This starts off with a presentation of the problem background in
Section 1.1. Following this, the problem formulation given in Section 1.2. Then,
the main contributions of the thesis are presented in Section 1.3. Finally, an
outline of the rest of the thesis is given in Section 1.4.

1.1 RDBMSs, NoSQL and Spotfire

Codd presented already in 1970 his relational model for data stores [8]. Ever
since, his model has been widely adopted within the IT industry as the default
data model for databases. Traditionally, the major database management sys-
tems (DBMSs) have been based on this model – resulting in so called relational
DBMSs (RDBMSs). Examples of such include MySQL1, Oracle Database2 and
Microsoft SQL Server3.

In recent years the requirements for many modern applications have signif-
icantly changed – especially since the rise of the Web in the late 90s and early
00s. Large websites must now be able to serve billions of pages every day [9] and
web users expect that their data is ubiquitously accessible at the speed of light
no matter the time of day. Some of these requirements have made RDBMSs as
data stores unsatisfactory in several ways. Issues include that throughput is too
low, that they do not scale well and that the relational model simply does not
map well to some applications.

As a reaction to this, new types of DBMSs under the umbrella term NoSQL
have become popular. The term NoSQL is often interpreted as short for “Not
only SQL”, where SQL refers to the default data management language in
RDBMSs – Structured Query Language. The whole purpose of this movement
is to provide alternatives where RDBMSs are a bad fit. The term incorporates a
wide range of different systems. In general, NoSQL databases use non-relational
data models, lack schema definitions and scale horizontally.

Businesses and organizations today generate increasing volumes of data in-
cluding information about their customers, suppliers, competitors and opera-

1http://www.mysql.com, accessed Jan 25, 2012.
2http://www.oracle.com/us/products/database/index.html, accessed Jan 25, 2012.
3http://www.microsoft.com/sqlserver/en/us/default.aspx, accessed Jan 25, 2012.
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tions. Being able to analyze and visualize this data to find trends and anoma-
lies that subsequently can be acted on to create economic value has become an
important factor for competitive advantage – a factor whose importance most
likely will increase even more the coming years [23].

Spotfire is a software platform for interactive data analysis and visualization,
developed by the company TIBCO Software. Spotfire enables businesses and
organizations to understand their data so that they can make informed decisions
which in turn create economic value.

While Spotfire includes tools analyzing and visualizing data, the data itself is
supplied by the user. The different systems from which one can import data into
Spotfire is a key competition point for the product. Today, Spotfire supports
importing data from several RDBMSs, spreadsheets and CSV4-like formats.
However, there is currently no support for any NoSQL alternative.

The Spotfire platform data model is based on the relational model; data
is represented by rectangular tables consisting of rows and columns. The re-
lationship to RDBMSs is natural and thus automatic extraction and import
from such data sources into Spotfire tables is often a simple task. Because of
the non-relational data models and lack of explicitly defined schemas in NoSQL
databases, the relationship to Spotfire tables and how to extract data is not
always as obvious.

1.2 Problem formulation

The thesis aims to investigate how data from NoSQL databases can be extracted
and imported into Spotfire tables, so that it can be analyzed and visualized
within the application.

Key questions that the thesis attempts to answer include:

• How do different NoSQL data models differ from Spotfire’s data model?

• How do these differences affect extraction and import from Spotfire’s point
of view? How does the lack of explicitly defined schemas affect extraction
and import?

• How can these problems be solved – enabling support for NoSQL databases
in Spotfire?

To answer these questions, first, a general introduction to NoSQL followed
by a survey on NoSQL data models is given. The knowledge presented in these
leads to a problem analysis, which ultimately results in suggested solutions. To
concretize these, two proof of concept tools that support two particular NoSQL
databases are implemented in the Spotfire platform.

While the thesis aims to give an understanding of NoSQL databases in gen-
eral and how data can be extracted from such into Spotfire, it does not cover
underlying implementation details of any NoSQL system. Still, data models,
query models and client APIs are thoroughly covered.

4Comma-Separated Values. A simple file format where values are separated by commas.
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1.3 Contribution of thesis

The main contribution of the thesis is its suggestions to TIBCO Software re-
garding how NoSQL databases can be supported in Spotfire. However, the
reasoning and conclusions are valid in a more general sense than that. In fact,
developers of any application that interacts with databases in a similar way as
Spotfire, that want to support NoSQL alternatives, might benefit from reading
the thesis.

Furthermore, Section 3.3 provides a general introduction to NoSQL and con-
tains no Spotfire specifics. This is true for the entire survey in Chapter 4 as well.
Thus, these are potentially useful for people in many different organizations and
roles; e.g., system architects, developers, database administrators, and perhaps
even managers.

1.4 Outline of thesis

The rest of the thesis is structured as follows:

• Chapter 2 presents related work. This includes both work on NoSQL in
general and work on data analysis on large datasets.

• Chapter 3 gives the theoretical foundation needed for the rest of the the-
sis. It starts off with a brief recap of concepts and terminology from the
relational model. Then, the Spotfire platform is described. After that,
a general overview of NoSQL is given. Finally, although it might not at
this point be apparent why, some machine learning theory in the form of
clustering is given.

• Chapter 4 provides a survey of the four database families within NoSQL.
For each family, a general description of characteristics is given, as well as
a detailed description of the data model, query model and client APIs for
one concrete system.

• Chapter 5 analyzes the problem formulation using the knowledge pre-
sented in Chapters 3 and 4, and presents general solutions as a result of
this.

• Chapter 6 thoroughly describes the two proof of concept tools that have
been implemented to add support for importing data from both Cassandra
and Neo4j into Spotfire.

• Chapter 7 provides descriptions and results of the experiments that have
been conducted to evaluate the implemented tools.

• Chapter 8 discusses the implemented tools and the overall approach. Also,
the points considered most important to investigate further are mentioned.

• Chapter 9 concludes the thesis by considering what has been accomplished
and presents possible approaches the company can take.
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Chapter 2

Related work

As the thesis both provides an introduction to NoSQL in general and deals with
how NoSQL systems can be used in a data analysis context, other work on either
of these topics are relevant for comparison. Below follows a list of related work
and how these differ from the work in this thesis:

• Strauch’s paper NoSQL Databases [42] provides a thorough introduction
to NoSQL. The paper describes the rationales behind the movement, some
common techniques and algorithms for solving issues concerning, e.g., con-
sistency and distributed data processing, and also presents a number of
concrete systems with implementation details and data models. As the
paper is intended to give an overview, no particular focus is put on data
models. For example, there are no concrete examples on how the data
models can be used or what they imply for, e.g., application development.
Also, Graph Databases (see Section 3.3.3) are not covered at all.

• The thesis No Relation: The Mixed Blessings of Non Relational Databases
[48], written by Varley, gives a good overview over non-relational data
models and how they differ from the relational model. Throughout the the-
sis, Varley tries to determine a winner between the two model paradigms
from a data modeling perspective by considering various strengths and
weaknesses and comparing them side by side. As the thesis is more than
two years old, some parts are already outdated. Like in Strauch’s paper,
Graph Databases (see Section 3.3.3) are not covered at all.

• Several languages have recently been developed for processing and analysis
of large datasets, including Dremel [32], Hive [45], Jaql [4], Pig [36] and
Tenzing [7]. Typically, the datasets are spread over several machines in
a cluster and are stored either directly in a distributed file system or in
some database. The programs are executed in the cluster in a MapReduce1

fashion. For example, Jaql and Pig programs are translated into Hadoop2

jobs, and they both read data from HDFS3. These languages are mainly
targeted to power users with programming experience. Some of them

1A software framework developed by Google for distributed data processing on large
datasets in clusters [11].

2An open source implementation of the MapReduce framework supported by Apache.
3Hadoop Distributed File System. The primary storage system for Hadoop applications.

4



can also be used by less experienced users, e.g., Tenzing, which supports
a mostly complete SQL implementation. The approach used in all of
these languages requires that there is a cluster that can be used for data
processing tasks, and that the structure of the data is known in advance.

• A Spotfire competitor, Tableau4, recently announced their added support
for working with data stored in HDFS [16]. Their approach is to let the
user input Hive scripts that subsequently are run on a Hadoop cluster. The
output is then imported into Tableau’s in-memory engine. The user defines
which data from the file system should be processed, and how complex
data should be flattened to a format that the application supports. Using
a cluster of several machines for these computations enables Tableau to
get decent response times with large datasets even though no clever query
mechanism is available. Obviously, this approach is targeted at rather
advanced users, and it requires analysts to know the structure in which
data is stored on beforehand.

4http://www.tableausoftware.com, accessed Jan 25, 2012.
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Chapter 3

Theory

In this chapter the theoretical foundation needed for the rest of the thesis is
presented. First, a brief recap of concepts and terminology from the relational
model is given in Section 3.1. Then, the Spotfire platform is described in Section
3.2. After that, Section 3.3 gives a general overview of NoSQL. Finally, Section
3.4 presents some machine learning theory in the form of clustering.

3.1 Recap of the relational model and ACID

The reader is assumed to be familiar with the relational model and ACID,
which is why this section contains only a brief recap of important terminology
and concepts.

In the relational model, data is represented as rectangular tables known as
relations. A relation has a set of named attributes. These can be thought of
as names of the table columns. Each attribute is associated with a domain,
i.e., an atomic type such as an integer or a string. A row in a table is called
a tuple. When a relation has N attributes, each tuple contains N components
– one for each attribute. Every component must belong to the domain of its
corresponding attribute. A schema is the name of a relation together with its
set of attributes.

Most RDBMSs guarantee so called ACID transactions. ACID is an acronym
of four properties. These are, in order [47]:

• Atomicity: Transactions are atomic. That is, a transaction is executed
either in its entirety or not at all.

• Consistency: Every transaction takes the database from one valid state to
another.

• Isolation: A running transaction will not interfere with another transac-
tion.

• Durability: The effect of a transaction must persist and thus never be lost.

6



3.2 Spotfire

Spotfire is a software platform for interactive data analysis and visualization.
It is developed by TIBCO Software1, a software company based in Palo Alto,
CA, US. The first version of Spotfire was launched in 1996.

Spotfire enables businesses and organizations to understand their data so
that they can make informed decisions which in turn create economic value.
An example of what a business typically wants to analyze is sales data. The
business might have stores at several locations and sell a range of different
products. Using Spotfire, they can analyze, e.g., how sales differ between the
different locations, which products are popular, whether there are some trends
in the customers’ behaviors, and so on. Findings like these can later be used
to make decisions, e.g., when allocating budgets among the locations or when
deciding which products to put on the shelves, to maximize the success of the
business.

In Spotfire, the basic unit the user works with is the analysis file. An
analysis file is split into a number of pages. Each page contains a number of
visualizations. A visualization is a visual representation of data in some way.
Although not an exhaustive list, common visualization types in Spotfire include
the Bar Chart, Line Chart, Combination Chart, Pie Chart, Scatter Plot, Heat
Map and Box Plot. An example of an analysis is shown in Figure 3.1.

Before any visualization can be created, data must be imported from external
sources into data tables. For every analysis file, there is a set of these. A
data table consists of columns and rows. A column has a name and a type.
The supported types are: Blob, Boolean, Integer, LongInteger, SingleReal,
Real, Currency, Date, Time, DateTime, TimeSpan and String. In a table with
N columns, a row is an N -tuple where each value belongs to exactly one column
and is an instance of that column’s type. An example of a Spotfire data table
is shown in Figure 3.2.

3.3 NoSQL

The term NoSQL dates back to 1998 when it was used for a particular RDBMS
that did not support SQL2. It was not until 2009 that it was used with approxi-
mately the same meaning that it has today [42]. Still, it is not rigorously defined
in the literature. As for the word, it is often interpreted as short for “Not only
SQL” rather than “No SQL”, emphasizing that the movement is about coming
up with alternatives for RDBMSs/SQL where these are a bad fit, as opposed to
being completely against them [14].

The two seminal papers on Google’s Bigtable [6] and Amazon’s Dynamo [12]
seem to have been the starting point for the NoSQL movement. Many of the
design decisions and principles used in these can be found in later works. In
general, the pioneers of the movement have been big web companies like the
two aforementioned.

NoSQL incorporates a wide range of different systems. Often, these have
been created to solve one particular problem for which RDBMSs have not

1http://spotfire.tibco.com, accessed Jan 25, 2012.
2http://www.strozzi.it/cgi-bin/CSA/tw7/I/en US/nosql, accessed Jan 25, 2012.
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Figure 3.1: Example of a Spotfire analysis. The current page of the analysis
shows a text box and two visualizations; a Pie Chart (containing two separate
pies) and a Combination Chart (combining lines and bars).

been appropriate, for various reasons. A typical NoSQL database uses a non-
relational data model, lacks schema definitions and scales horizontally (see Sec-
tion 3.3.1).

Now that NoSQL is generally introduced, a more thorough background and
descriptions will be given in following subsections. First, in Section 3.3.1, the
main motives behind the NoSQL movement are given. Then, Section 3.3.2
describes the main characteristics of NoSQL databases. Section 3.3.3 presents a
taxonomy of NoSQL databases. Section 3.3.4 gives some dimensions that should
be taken into consideration when choosing between using an RDBMS and a
NoSQL database. Finally, Section 3.3.5 describes how application development
is affected when using a NoSQL system instead of an RDBMS.

3.3.1 Motives

While RDBMSs have been the default solution for data management in appli-
cations for many years, some modern applications have experienced changing
requirements for which RDBMSs have been unsatisfactory in several ways [42].
Below follows a list of some of the most important of these. Naturally, these
also form the main motives behind the NoSQL movement:

8



Figure 3.2: Example of a Spotfire data table with columns Record No, Order
Priority, Sales Total, Discount and Ship Method.

• Throughput is too low: Some web applications require the underlying
data store to process larger volumes than most RDBMSs would be able
to handle.

• They were not built to scale horizontally: While vertical scaling refers to
adding more hardware onto existing machines, horizontal scaling refers to
adding more machines to a cluster. RDBMSs were originally built to scale
vertically [42]. However, vertical scaling has its limitations in that it gives
sublinear effects, sometimes requires high-risk operational efforts and that
there is an upper bound on how much hardware that can be added and
efficiently utilized by the software. Horizontal scaling in general does not
have these problems. Today, some RDBMSs offer horizontal scalability,
but utilizing this is generally not straightforward.

• Object-Relational mapping is expensive: Today, object-oriented program-
ming is the most prevalent programming paradigm. Persisting application
objects in an RDBMS requires a mapping between the application’s object
model and the database’s relational model. Setting this up takes time and
effort, and it enforces developers to treat data relationally – even though
it might not inherently be.

• The “One Size Fits All”-thinking is flawed: RDBMS development has been
characterized by a “One Size Fits All”-thinking, by which one means that
RDBMSs have been seen as a general tool that can handle all different re-
quirements applications might have on data management. Being a general
tool – trying to be too much at once – some argue that RDBMSs end up
excelling at nothing [41]. Since different applications might have different
requirements on consistency, performance and so on, this thinking is in
some sense inherently flawed.

• ACID is not always needed: Most RDBMSs provide ACID transactions
(see Section 3.1). Naturally, when providing these, tradeoffs on other
things such as performance must be done. In some applications ACID is
not needed, which means some performance gets lost for nothing.

9



3.3.2 Characteristics

Most NoSQL databases share a common set of characteristics [42]. Naturally,
since NoSQL is a broad concept, more or less all of these characteristics have
exceptions. Still, they can serve to give a general idea about what NoSQL
databases are:

• Distributed: NoSQL databases are often distributed systems where several
machines cooperate in clusters to provide clients with data. Each piece
of data is commonly replicated over several machines for redundancy and
high availability.

• Horizontal scalability: Nodes can often be dynamically added to (or re-
moved from) a cluster without any downtime, giving linear effects on stor-
age and overall processing capacities. Usually, there is no (realistic) upper
bound on the number of machines that can be added.

• Built for large volumes: Many NoSQL systems were built to be able to
store and process enormous amounts of data quickly.

• BASE instead of ACID: Brewer’s CAP theorem [5] states that a dis-
tributed system can have at most two of the three properties Consistency3,
Availability4 and Partition tolerance5. For a growing number of applica-
tions, having the last two are most important. Building a database with
these while providing ACID properties is difficult, which is why Consis-
tency and Isolation (see Section 3.1) often are forfeited, resulting in the
so called BASE approach [5]. BASE stands for Basically Available, Soft-
state, Eventual consistency, with which one means that the application is
available basically all the time, is not always consistent, but will eventually
be in some known state.

• Non-relational data models: Data models vary, but generally, they are not
relational. Usually, they allow for more complex structures and are not as
rigid as the relational model.

• No schema definitions: The structure of data is generally not defined
through explicit schemas that the database knows of. Instead, clients
store data as they desire, without having to adhere to some predefined
structure.

• SQL is unsupported: While most RDBMSs support some dialect of SQL,
NoSQL variants generally do not. Instead, each individual system has
its own query interface. Recently, the Unstructured Data Query Lan-
guage6 was proposed as an attempt to unify the query interfaces of NoSQL
databases [25].

3I.e., that all nodes always agree on the current state.
4I.e., that every request gets a response about its success.
5I.e., that the system continues to work even though arbitrary messages are lost.
6http://www.unqlspec.org, accessed Jan 25, 2012.
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3.3.3 Taxonomy

There is no universally accepted taxonomy of NoSQL databases. Sources differ
in which systems they include and into which categories the systems are clas-
sified. Often, however, suggested taxonomies divide systems, at least partly,
based on their data models [42]. Since this thesis mainly focuses on proper-
ties of data models and client interfaces of these databases, the following data
model-based taxonomy of four families is suggested for the purposes here:

• Key-Value Stores

• Document Stores

• Column Family Stores

• Graph Databases

This taxonomy is conceptually consistent with, e.g., Scofield’s [39], with some
minor naming differences. There has been discussion around the naming of the
third family [2]; simply calling it “Column Stores” can be misleading since there
are relational column stores too, e.g., Sybase IQ7 and Vertica8. Therefore, the
more explicit name “Column Family Stores” is here chosen.

Note that neither object databases nor XML9 databases are included in any
of the families. The reason for this is that these are generally not referred to as
being part of the NoSQL movement [42].

Descriptions of the characteristics for each of the aforementioned families, as
well as examples of systems that are included in them, are given in the survey
in Chapter 4.

3.3.4 RDBMSs vs. NoSQL – when to choose what

A general misconception about the NoSQL movement is that it aims to replace
RDBMSs. This is not the case. The purpose is rather to provide alternatives
in situations where RDBMSs are not a perfect fit. Thus, NoSQL databases and
RDBMSs generally satisfy different needs, and are thus not always compara-
ble. When choosing whether to use an RDBMS or a NoSQL alternative for a
particular application, at least the following dimensions should be considered:

• Business needs

– Maturity: RDBMSs are more mature and are thus more proven and
more likely to contain fewer bugs.

– Support: RDBMSs are often professionally supported, whereas NoSQL
databases often are open source projects supported by volunteers.

– Costs: As open source projects, several NoSQL databases can be
used for free. Many RDBMS alternatives are in comparison rather
expensive. Also, because of less rigid data models and no explic-
itly defined schemas, application development is often faster using
NoSQL databases, resulting in lower development costs.

7http://www.sybase.ca/products/datawarehousing/sybaseiq, accessed Jan 25, 2012.
8http://www.vertica.com, accessed Jan 25, 2012.
9Extensible Markup Language. A markup language often used to store arbitrary data

structures.
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• Engineering needs

– Performance: RDBMSs provide sufficient performance for many ap-
plications. Whether this is sufficient or not generally has to be de-
termined by evaluating possible alternatives for the particular use
case.

– Consistency: Several NoSQL databases do not offer the ACID prop-
erties that RDBMSs generally do. Not all applications need these,
and can work sufficiently well with looser guarantees.

When choosing between relational alternatives, there are standardized bench-
marks for which these can be compared. A common benchmark for this purpose
is TPC-H10. Since RDBMSs often are intended to solve similar tasks, bench-
marks like this are easy to consult. However, since NoSQL databases often are
built to solve one specific problem, benchmarks for these are not as easy to
construct. Recently, though, the YCSB benchmark for NoSQL databases was
suggested [10].

3.3.5 Implications for application development

NoSQL databases generally lack explicitly defined schemas (see Section 3.3.2).
This does not, however, imply that applications using NoSQL databases lack
schemas and that the stored data lacks structure. Instead, what happens is
that the schema moves down to the application level; the schema in a NoSQL
database is defined by how applications use it. This has several implications.
One is that there is no built-in mechanism enforcing the schema, which poten-
tially could lead to the database being in an invalid state if there is an error in
the application11. Another implication is that inspecting the database without
knowing the schema is much harder since the structure and meaning of the data
in general is unknown.

Instead of ACID, some NoSQL databases provide BASE (see Section 3.3.2).
Naturally, not all applications can cope with an underlying data store that
provides BASE rather than ACID properties. For example, in an online banking
application, a user that transfers an amount of money to some account and then
finds that the original account’s balance is untouched might end up issuing the
same transfer multiple times and eventually getting the news that the account
has been emptied. Obviously, online banking applications can in general not
cope with BASE properties. On the other hand, in applications like Facebook,
the consequences of reading an old value are not as severe, and therefore such
applications can possibly cope with BASE.

3.4 Clustering

Section 5.1 suggests using clustering as part of a general solution. To give
a better understanding of that discussion, clustering and methods for solving
clustering are here formally introduced. Section 3.4.1 discusses methods for
automatically estimating the optimal number of clusters.

10http://www.tpc.org/tpch, accessed Jan 25, 2012.
11To alleviate these problems, some have built custom tools that check the state of the data

store against an external schema on a regular basis [22].

12



Clustering is the problem of how to assign a set of objects into groups, called
clusters, so that objects within the same cluster, according to some measure, are
more similar to each other than to objects in other clusters. It is a form of the
machine learning problem unsupervised learning, by which one means that the
learning (here, how to form the clusters) happens without any labeled training
data.

A certain type of clustering, called hard clustering (as opposed to, e.g., soft
or hierarchical clustering), refers to the task of assigning each given object to
exactly one cluster [31]. Given a method to measure the similarity, or rather,
dissimilarity or distance, between objects, this task can be formalized as follows:

Given a set of objects X, the number of clusters K ∈ Z+ and a
distance function d ∈ R+

0 between all pairs of objects in X, partition
X intoK disjoint setsX1, X2, ..., XK such that

∑
k

∑
x,x′∈Xk

d(x, x′)

is minimized12.

One way to express the resulting partitioning is by using a cluster assignment
function C : X → {1, 2, ...,K} (see Algorithm 3.1).

This problem is since long known to be NP-hard [17]. With N = |X|, the
number of distinct cluster assignments possible is [26]:

S(N,K) =
1

K!

K∑
k=1

(−1)K−k
(
K

k

)
kN (3.1)

Already S(19, 4) ≈ 1010, and of course, it is desirable to be able to cluster
more than 19 objects into four clusters. Thus, exhaustive search for the optimal
solution is in general infeasible. Therefore, suboptimal algorithms must be
employed in practice. A common choice for this is the K-means algorithm [20].

K-means is intended for situations where the objects’ variables are quantita-
tive and the distance function can be chosen as the squared Euclidean distance.
However, this is not always the case for a particular domain. As an alterna-
tive in such situations, the K-medoids algorithm has been proposed [20]. This
algorithm is suitable when object variables are not quantitative, but rather
qualitative attributes.

K-medoids was suggested by Kaufman and Rousseeuw by the name Parti-
tioning Around Medoids [27]. A medoid is the center of a cluster, defined as the
object in the cluster that minimizes the total distance to all other objects in the
same cluster. Algorithm 3.1 shows how to compute K-medoids in detail.

As for time complexity, since the total number of iterations is not known in
advance, a general expression cannot be derived; but complexities for individual
steps can. Solving Equation 3.2 includes checking the distance from x to each
cluster center mk. Since there are K cluster centers and N objects, this step
takes O(KN) in total. As for Equation 3.3, for every cluster Xk = {x ∈ X :
C(x) = k} this takes O(|Xk|2) since for every object the distance to all other
objects in the same cluster must be summed.

As can be seen in Algorithm 3.1, how to perform step 1 is not explicitly
defined. Common suggestions include assigning seeds uniformly at random or

12 1
2

∑
k

∑
x,x′∈Xk

d(x, x′) is known as the intra-cluster dissimilarity (the constant is ir-

relevant when optimizing). Alternatively, and equivalently, the objective function can be
expressed as maximizing the inter-cluster dissimilarity, 1

2

∑
k

∑
x,x′∈X:C(x)6=C(x′) d(x, x′).
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Algorithm 3.1 K-medoids

Input: A set of objects X, the number of clusters K ∈ Z+ and a distance
function d ∈ R+

0 between all pairs of objects in X.
Output: A cluster assignment C : X → {1, 2, ...,K}.

1. Initialize K seed cluster centers.

2. Given current cluster centers {m1,m2, ...,mK}, assign each object x ∈ X
to the cluster with the closest center, i.e.:

C(x) = argmin
k

d(x,mk) (3.2)

3. For every cluster Xk = {x ∈ X : C(x) = k}, assign as cluster center mk

the object x ∈ Xk in the cluster that minimizes the total distance to the
other objects in that cluster, i.e.:

mk = argmin
x:C(x)=k

∑
C(x′)=k

d(x, x′) (3.3)

4. Repeat steps 2 and 3 until no assignments change.

using results from other clustering algorithms [31]. In 2007, the K-means++
method was suggested by Arthur and Vassilvitskii [3]. They found that for K-
means, initializing seeds by the K-means++ method outperformed choosing
seeds uniformly at random in both speed and the accuracy of the resulting
clustering. Naturally, K-means++ seeding is not specific for K-means, but can
also be applied to, e.g., K-medoids. The K-means++ seeding is described in
Algorithm 3.2.

As shown there, after having chosen the initial seed, seeds are picked with a
probability described by Equation 3.4. Since the denominator is constant for a
given value of S, this equation says that each object is picked with a probability
proportional to the square of its closest distance to an already picked seed.
Thus, the greater the distance of an object to the already chosen seeds, the more
likely it is to be chosen. A straightforward K-means++ seeding implementation
requires O(KN) time13.

An alternative to both uniformly randomized and K-means++ seeding is an
algorithm that greedily chooses the next seed to be the object that maximizes
the total distance to the already chosen seeds, after having chosen the first seed
uniformly at random. This method is here referred to as the Greedy seeding
method and it is described in Algorithm 3.3. A straightforward implementation
requires O(KN) time. Naturally, this method is not robust against outliers and

13To see why, consider how step 2 would be implemented. For all x′ ∈ X, dmin(x′, S)2

can be computed in O(N) in total by storing these values between iterations and updating
them for each incremental change in S. Given these distances, selecting an object according
to prescribed probabilitity can then be implemented in O(N) by uniformly randomizing a
number in the range [0.0,

∑
x∈X dmin(x, S)2) and running through the stored distances to see

which object this value corresponds to. Since step 2 is run K times, this gives a total running
time of O(KN).
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Algorithm 3.2 K-means++ seeding

Input: A set of objects X, the number of clusters K ∈ Z+ and a distance
function d ∈ R+

0 between all pairs of objects in X.
Output: A set of cluster center seeds S = {s1, s2, ..., sK} ⊆ X.

1. Choose an initial seed s1 uniformly at random from X.

2. Choose the next seed si, selecting si = x′ ∈ X with probability

P (x′) =
dmin(x′, S)2∑
x∈X dmin(x, S)2

(3.4)

where
dmin(x, S) = min

s∈S
d(x, s). (3.5)

3. Repeat step 2 until K seeds have been chosen.

it is also flawed by the greedy assumption. However, as shall be seen in Section
7.2, it can be very effective.

Algorithm 3.3 Greedy seeding

Input: A set of objects X, the number of clusters K ∈ Z+ and a distance
function d ∈ R+

0 between all pairs of objects in X.
Output: A set of cluster center seeds S = {s1, s2, ..., sK} ⊆ X.

1. Choose an initial seed s1 uniformly at random from X.

2. Choose the next seed si to the object which maximizes the total distance
to the already chosen seeds, i.e.:

si = argmax
x∈X\S

∑
s∈S

d(x, s) (3.6)

3. Repeat step 2 until K seeds have been chosen.

3.4.1 Estimating the optimal number of clusters

As can be seen in the discussion above, the number of clusters K is considered an
input. In some applications, though, the number of clusters is not always known
– it might be the case that there is just a set of objects that potentially could
be clustered, and one wants to know what the “optimal” number of clusters
is and what the corresponding clustering in that case would be. Of course, it
is possible to run the clustering algorithm for different values of K and then
manually evaluate the resulting clusterings and pick the best one. But this
requires human effort, for a task that potentially is quite tedious. Also, for
various reasons, it might not be the case that human evaluation always gives
the best results.
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Finding the optimal number of clusters is an inherently hard problem; how
to define a cluster involves subjectivity and depends on the end goal. Thus,
any method is expected to have its flaws and certain cases for which it does not
perform well. However, a generally well-performing method can still reduce the
amount of human effort required to achieve desired results.

Several methods for automatically estimating an optimal K have been pro-
posed. Among others, these include an information theoretic method [43], the
Silhouette method [27], the Gap statistic [46] and Clest [13]. Some of these, e.g.,
the Silhouette method, do not have the ability to estimate K = 1 cluster (only
K ≥ 2).

While Dudoit and Fridlyand concluded in a study that Clest in general is
more accurate and robust than several other methods, they also reported good
performance of the Gap statistic [13]. In fact, the Gap statistic estimatedK more
accurately than Clest for four models out of the eight they tried. Furthermore,
the Gap statistic has fewer parameters and is thus easier to use in a more general
setting.

In general, given a clustering algorithm, the within-cluster dispersion14 WK =∑
k

1
2|Xk|

∑
x,x′∈Xk

d(x, x′) of a clustering decreases with increasing K. Based

on this, the overall idea of the Gap statistic is to compute an expected curve of
WK by clustering samples from a reference distribution for K = 1, 2, ...,Kmax

and compare this to the WK curve resulting from clustering the observed data.
The optimal number of clusters is then the K for which the latter curve falls
the farthest below the former. The algorithm for computing the Gap statistic
is shown in Algorithm 3.4. For more details of this method, consult Tibshirani
et al.’s original paper [46].

As can be seen in Algorithm 3.4, the time complexity of the Gap statistic
is dominated by clustering computations; step 2 in particular. There, KB
clusterings are computed. Thus, using a clustering algorithm that runs in O(C)
time, the Gap statistic can be computed in O(KBC) time.

14This is the sum of, over all clusters, the average distances within each cluster.
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Algorithm 3.4 Gap statistic

Input: A set of objects X, the maximum number of clusters Kmax ∈ Z+,
a distance function d ∈ R+

0 between all pairs of objects in X, a reference
distribution R and the number of reference data sets B.

Output: An estimation of the optimal number of clusters K∗.

1. Cluster X for K = 1, 2, ...,Kmax, giving a series of WKs.

2. Generate B reference data sets from R and cluster these for K =
1, 2, ...,Kmax, giving a series of W ∗Kb where b = 1, 2, ..., B.

3. Compute the estimated Gap statistic:

gap(K) =

∑
b log(W ∗Kb)

B
− log(WK) (3.7)

4. Let l̄ = (1/B)
∑

b log(W ∗Kb) and compute standard deviations:

σK =

√∑
b(log(W ∗Kb)− l̄)2

B
(3.8)

5. Let sK = σK
√

1 + 1/B and choose the optimal number of clusters:

K∗ = smallest K such that gap(K) ≥ gap(K + 1)− sK+1 (3.9)
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Chapter 4

Survey

In this chapter, a survey of the data models of the four NoSQL families is pre-
sented. Sections 4.1 – 4.4 present Key-Value Stores, Document Stores, Column
Family Stores and Graph Databases, respectively. For each family, a general
description of the general data model within the family is given. To make the
discussion more concrete, one system within each family is presented with an
overview, its data model, its metadata, its indexing capabilities and its client
APIs.

Naturally, since NoSQL databases evolve very rapidly, any comprehensive
survey would quickly get outdated. Therefore, it should be noted that this
chapter is not intended to serve as a complete guide in any way, but rather an
introduction to the families to get a better understanding of them. The choices
of the four concrete systems that are described are all motivated by them being
among the most popular system within their respective family.

4.1 Key-Value Stores

Being one of the NoSQL pioneers in general, Amazon’s Dynamo was also the
starting point for Key-Value Stores (KVSs). The architecture and data model
described in the original Dynamo paper [12] has inspired many of the popular
KVSs seen today.

KVSs have the simplest of data models among NoSQL families. The data
model is based on the abstract data type Map [19]. Thus, a KVS contains a
collection of key-value pairs where all keys are unique. Each pair can be queried
by key via a get operation. New pairs are added via a put operation. What
mainly differs between different KVSs’ models are the permitted types of the
keys and the values.

It can be discussed to which extent the key-value pair model is enough for
building applications on top of. For example, Bigtable creators Chang et al.
argue that it is too limiting for developers [6], which was why they settled on
a more complex model. On the other hand, Dynamo creators DeCandia et al.
claim that several services on the Amazon platform require only primary-key
access, meaning that KVSs suffice for these [12]. Most likely, however, is that
more complex applications call for more complex data models and interfaces
than what a KVS can offer.
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Dynamo aside, examples of common KVSs include Redis (see Section 4.1.1),
Riak1, Kyoto Cabinet2, Scalaris3, LevelDB4 and MemcacheDB5. Section 4.1.1
describes Redis in more detail.

4.1.1 Redis

Overview

Redis6 is an open source KVS officially sponsored by VMware. It was initially
released in 2009 and is available under the BSD license7. Redis has several
prominent users, including GitHub [37], Stack Overflow [34] and Flickr [49].

Redis stores all data in-memory, which means it is very fast and that the
amount of data stored in a node is limited by its RAM.

Data model

Keys in Redis are uninterpreted bit sequences. As for values, there is support
for five different types: plain bit sequences and lists, sets, hashes and sorted
sets of bit sequences. Lists are ordered bags. Sets are like mathematical sets.
Hashes are maps. Sorted sets are like sets with the addition that every element
has a floating point number associated with it that determines its rank.

A simple customer database containing two customers might be stored as
follows in Redis:

(customerIds, [12, 67])

(customerId:12:name, Smith)

(customerId:12:location, Seattle)

(customerId:67:name, Andersson)

(customerId:67:location, Stockholm)

(customerId:67:clubCard, 82029)

This is a common way of storing complex objects in KVSs. Redis’ data model,
however, is a bit more powerful than the average KVS. The same database could
be stored using hashes, instead of atomic values, as follows:

(customerIds, [12, 67])

(customerId:12, {name: Smith, location: Seattle})

(customerId:67, {name: Andersson, location: Stockholm,

clubCard: 82029})

Of course, in both of these examples, both keys and values are really bit se-
quences. For presentation purposes above, these have been written as strings
and integers.

1http://wiki.basho.com/Riak.html, accessed Jan 25, 2012.
2http://fallabs.com/kyotocabinet, accessed Jan 25, 2012.
3http://code.google.com/p/scalaris, accessed Jan 25, 2012.
4http://code.google.com/p/leveldb, accessed Jan 25, 2012.
5http://memcachedb.org, accessed Jan 25, 2012.
6http://redis.io, accessed Jan 25, 2012.
7http://www.xfree86.org/3.3.6/COPYRIGHT2.html#5, accessed Jan 25, 2012.
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Metadata

The namespace in Redis is flat and there is no schema support. Therefore, no
particular metadata is stored.

Indexing

Naturally, all keys are indexed by default, giving O(1) lookups. Values cannot be
indexed per se. Instead, to achieve constant lookups on values, custom indexes
can be built by adding K to a list at key V for every pair (K,V ) that is added.

Interface

There are Redis clients for over 20 programming languages that have been cre-
ated by third party developers [38]. The functionality exposed by different clients
varies. Examples of methods in the core API include:

• SET key value, which adds the pair (key, value) to the database.

• GET key, which returns the value stored at key key.

• LPOP key, which pops and returns the leftmost value in the list stored at
key key.

• SCARD key, which returns the cardinality of the set stored at key key.

• HSET key field value, which sets the hash field field stored at key key
to value.

Redis can be queried for its set of keys matching a certain pattern with the
command KEYS pattern. For example, KEYS * returns all keys in the database,
and KEYS h?llo returns all keys that start with “h”, end with “llo” and have
an arbitrary character in between.

4.2 Document Stores

From a data model perspective, Document Stores (DSs) are the next logical step
from KVSs. The central notion in DSs is the document. A document is generally
a set of fields, where a field is a key-value pair. Keys are atomic strings or bit
sequences, and values are either atomic, e.g., integers or strings, or complex,
e.g., lists, maps, and so on. A DS can store several documents or even several
collections of documents.

Examples of common DSs include MongoDB (see Section 4.2.1), CouchDB8,
Jackrabbit9, RavenDB10 and Terrastore11. Section 4.2.1 describes MongoDB in
more detail.

8http://couchdb.apache.org, accessed Jan 25, 2012.
9http://jackrabbit.apache.org, accessed Jan 25, 2012.

10http://ravendb.net, accessed Jan 25, 2012.
11http://code.google.com/p/terrastore, accessed Jan 25, 2012.
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4.2.1 MongoDB

MongoDB12 is an open source DS that was initially released in 2009. It is
developed and professionally supported by the company 10gen. Prominent users
include Disney [18], craigslist [51] and foursquare [22]. The source is available
under AGPLv313.

Data model

A MongoDB deployment holds a set of databases. Each database stores a set
of collections. A collection holds a set of documents. A document, as described
in the introduction, is a set of fields, where a field is a key-value pair. In
MongoDB, documents are represented in a format known as BSON14. Thus,
MongoDB supports all types that BSON supports15. Keys are always strings.
Value types include, but are not limited to: string, integer, boolean, double,
null, array, object, date, object id, binary data, regular expression and code.
All documents contain an automatically added field called id which assigns
the document a unique id.

An example MongoDB document storing information about a customer looks
as follows:

{

_id: 4e77bb3b8a3e000000004f7b,

name: Müller,

location: Zürich,

clubCard: 48551,

points: 7946

}

As can be seen, all values are atomic in the above example. Another example
where some values are complex is the following person record:

{

_id: 4b866f08234ae01d21d89605,

name: Smith,

birthYear: 1947,

address: {

city: San Francisco,

street: Mason St.

},

hobbies: [sailing, cooking, chess]

}

Notice how the field address stores a document within the document. This is
called embedding in MongoDB. As an alternative to embedding, fields can also
link to other documents by storing their id values.

12http://www.mongodb.org, accessed Jan 25, 2012.
13http://www.gnu.org/licenses/agpl-3.0.html, accessed Jan 25, 2012.
14Short for Binary JSON; a serialization of JSON-like documents.

http://bsonspec.org, accessed Jan 25, 2012.
15Notice, though, that different drivers might implement these types differently.
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Metadata

While there are no schemas in MongoDB, the names of the databases and the
names of their respective collections are stored as metadata. Also, the defined
indexes (see Indexing below) are stored as metadata.

Indexing

Indexes are supported in MongoDB. They work similarly as to how indexes work
in RDBMSs, allowing clients to index arbitrary fields within a collection. Even
embedded fields can be indexed, e.g., address.city from the second example
in Data model above. Fields that have been indexed support both random
access retrieval and range queries. Indexes can be created at any time in the
lifetime of a collection. The id field of all documents is automatically indexed.

Interface

The original MongoDB creators provide drivers for over twelve programming
languages, such as C, C++, Java, PHP, Ruby, Python and .NET. In addition,
there are even more drivers that have been developed by the community. Not all
drivers completely support the core MongoDB API and they also differ in how
support for certain types is implemented. There is no separate query language
for MongoDB.

The standard MongoDB distribution also includes an interactive shell called
mongo through which commands can be issued to an underlying MongoDB in-
stance.

4.3 Column Family Stores

The data models in Column Family Stores (CFSs) are inspired by Google’s
Bigtable [6]. The general theme is a structure called the column family (CF).
In the original Bigtable paper, a CF is a collection of columns. These exist in
a table. Rows are similar to relational rows, except that all rows in the same
table do not necessarily have the same structure. A value in a cell, i.e., the
intersection of a row and a column, is an uninterpreted bit sequence. Each cell
is versioned, meaning that it can contain multiple versions of the same data and
that every version has a timestamp attached to it.

Bigtable aside, examples of common CFSs include Cassandra (see Section
4.3.1), HBase16 and HyperTable17. Section 4.3.1 describes Cassandra in more
detail.

4.3.1 Cassandra

Overview

Cassandra was initially developed at Facebook in 2007 to enable their Inbox
Search feature, with which users quickly can search through their Facebook

16http://hbase.apache.org, accessed Jan 25, 2012.
17http://hypertable.org, accessed Jan 25, 2012.
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message inbox [30]. In 2008, it was open sourced, and since 2010, it is a top-
level Apache project.

Today, Cassandra is actively developed and contributors include both com-
panies and individuals. It has several prominent users; examples include com-
panies such as Netflix [24], Reddit [28], and Twitter [29]. It is also professionally
supported by several third parties [44]. Among NoSQL technologies, it is cer-
tainly one of the most mature. The source code is available under Apache
License 2.018.

Data model

The outermost structure in Cassandra is a cluster of machines. Machines in a
cluster cooperate to provide clients with data. Within a cluster, data is ordered
hierarchically as shown in Figure 4.1. This hierarchy is now further described.

For every cluster, there is a set of keyspaces. A keyspace is identified by a
unique string within its cluster. Within a keyspace, there is a set of CFs. These
come in two different flavors; standard and super. The former is typically called
just CF, whereas the latter usually is called super CF (SCF). Both a CF and an
SCF are identified by a unique string within their keyspace. For both a CF and
an SCF, the next level is rows. A row is uniquely identified within its (S)CF by
its key, which is an uninterpreted bit sequence.

A row in a CF contains a set of columns. A row in an SCF contains a set
of super columns (SCs), which in turn contain columns. A column is a triplet
that contains a name (unique within its CF or SC), a value and a timestamp.
The name and value are bit sequences, and the timestamp is a 64-bit integer.
The value field is where applications store their actual data19.

The data model is often referred to as a “multidimensional map” [30]. As can
be seen in Figure 4.1, the total number of dimensions required before a column
value is reached depends on the type of the enclosing CF. If it is a standard
CF, the number of dimensions is four; for an SCF, it is five. Thus, this map is
either four- or five-dimensional.

To get a better understanding of the data model, example instances of a CF
and an SCF are suggested in Figures 4.2 and 4.3, respectively.

As for types, unless a column is defined in a schema (see Metadata be-
low), the type of a value is unknown. Values are, as previously noted, just bit
sequences. Cassandra supports types20, in the sense that developers can use pre-
defined (de)serializers21 when encoding and decoding data from the database.
For schema-defined columns, values are guaranteed to be deserializable by the
set validation class.

Metadata

A cluster stores and provides metadata about its keyspaces and (S)CFs. Among

18http://www.apache.org/licenses/LICENSE-2.0, accessed Jan 25, 2012.
19Actually, there are other places where application data can be stored. For instance,

column names are bit sequences too, and it is certainly possible to store application data
directly in these (possibly leaving the value field empty, or storing additional data there). In
fact, doing this has even been documented in various design patterns [21].

20https://svn.apache.org/repos/asf/cassandra/trunk/src/java/org/apache/cassandra/db/marshal/,
accessed Jan 25, 2012.

21The bit sequences are really byte arrays, so (de)serializers are methods with signatures
type → byte[] and byte[] → type.
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Keyspace

Column Family Super Column Family

Row Row

Super Column

Column

Figure 4.1: Cassandra’s data hierarchy. For all relationships, the cardinality is
one-to-many. It can be seen that the number of dimensions required to reach
a column, which holds the eventual data value, depends on the enclosing CF’s
type.

other things, this always includes the names of these entities. More detailed
metadata such as definitions of columns is optional and up to the data modeler.
Should it be included, it is done through schemas. With a schema, data on
all levels in the hierarchy (see Figure 4.1) can be configured. Columns are
defined per (S)CF. A column definition includes a name, a validation class and
possibly an index configuration. Schema-defined columns “exist” in all rows in
the (S)CF. This does not, however, imply that all rows include data for these,
but rather that individual rows cannot use already defined columns differently
from how they have been configured, i.e., values must pass through the defined
validation class.

Indexing

Row keys are always automatically indexed. This means retrieving data by
key is always fast. If a client wants to query on column values rather than
row keys, separate indexes for these can be constructed. These are referred to
as secondary indexes, and they are configured in the schema, as mentioned in
Metadata above. Secondary indexes can only be built within CFs – not SCFs.

Interface

Clients can communicate with Cassandra using the Thrift22 API. The API pro-
vides methods through which clients can manipulate and query for data. On
top of this, several third party developers have implemented high level client

22An Interface Definition Language which enables efficient and seamless communication
between services and clients written in different programming languages [40].
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Figure 4.2: Example of a CF storing a small customer database. It can be seen
that rows have unique keys that identifies them and that every row can define
its own set of columns. Note that this is a simplified picture; timestamps are
omitted, and all fields are really bit sequences.

libraries. The purpose of these is to hide the low level details of the Thrift API,
while still providing full functionality. On the Cassandra website, it is advised
to write applications using high level clients23, avoiding direct contact with the
Thrift API.

Cassandra also supports its own query language; the Cassandra Query Lan-
guage (CQL). CQL has many similarities to SQL in both syntax and exposed
functionality, but they are not equivalent, nor does one subsume the other.
CQL contains many Cassandra specific features and also does not offer as rich
query functionality as SQL. The Thrift API provides a method through which
CQL queries can be executed. For some programming languages such as Java
and Python, there are CQL drivers. Also, the standard Cassandra distribution
includes a command-line based CQL client, called cqlsh.

4.4 Graph Databases

The common theme among Graph Databases (GDs) is that data is structured in
a mathematical graph. A graph G = (V,E) generally consists of a set of vertices
V and a set of edges E. An edge e ∈ E is a pair of vertices (v1, v2) ∈ V × V . If
the graph is directed, these pairs are ordered.

The data models between different GDs generally differ in what kind of
graphs they support; whether it is directed, whether self-loops (i.e., edges e =
(v1, v2) where v1 = v2) are permitted, whether multi-edges (i.e., two or more
identical edges between the same vertices) are permitted, and so on.

Examples of common GDs include: Neo4j (see Section 4.4.1), InfiniteGraph24,
HyperGraphDB25, sones GraphDB26 and InfoGrid27. Section 4.4.1 describes
Neo4j in more detail.

23http://wiki.apache.org/cassandra/ClientOptions, accessed Jan 25, 2012.
24http://www.infinitegraph.com, accessed Jan 25, 2012.
25http://www.hypergraphdb.org, accessed Jan 25, 2012.
26http://www.sones.de/static-en/, accessed Jan 25, 2012.
27http://infogrid.org/wiki/Projects/ig-graphdb, accessed Jan 25, 2012.
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Figure 4.3: Example of an SCF storing a small customer database. It can be
seen that a super column wraps a set of columns for each row. Like in Figure
4.2, this is a simplified picture; timestamps are omitted, and all fields are really
bit sequences.

4.4.1 Neo4j

Overview

Neo4j28 is written in Java and is developed by the company Neo Technology29. It
comes in both an open source and commercial variants, licensed under GPLv330

and AGPLv3 (just like MongoDB), respectively. Neo4j is today actively devel-
oped, has an active community and a long list of projects in which it is used
[35].

Data model

For every Neo4j instance, there is exactly one graph. Graph vertices are called
nodes, and edges are called relationships.

Every node contains a set of properties. A property is a key-value pair where
the key is a Java string, and the value is a Java primitive (boolean, char, byte,
short, int, long, float or double), String or an array of any of these. Every
node also has a unique id, which is a nonnegative integer.

Relationships are always directed, i.e., they have a start and end node. Start
and end node are not allowed to coincide, i.e., self-loops are not permitted. Just
like nodes, relationships have a set of properties. Relationships also always
have types. All there is to a relationship type is a defined name, which is a Java
string.

An example of a Neo4j graph is shown in Figure 4.4. The graph stores a
small customer database containing three customers.

28http://neo4j.org, accessed Jan 25, 2012.
29http://neotechnology.com, accessed Jan 25, 2012.
30http://www.gnu.org/licenses/gpl-3.0.html, accessed Jan 25, 2012.
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Figure 4.4: Example of a Neo4j graph storing a customer database with three
customers. Here, all customers are reachable from the empty reference node.
The image is a screenshot from the graph visualization tool Neoclipse.

Metadata

The relevant metadata stored by Neo4j is the following:

• Reference node: A node that exists by default, without having been ex-
plicitly added by the user. It is supposed to be the “starting point” of the
graph. Often, the whole graph is reachable from the reference node.

• Relationship types: All relationship types available for use in the graph.

• Highest node id: At least, this can be retrieved in constant time for any
Neo4j instance. This can be relevant, e.g., when sampling (see Section
6.3.3).

• Indexes: The node and relationship indexes built (see Indexing below).

Indexing

Neo4j supports indexing on both nodes and relationships. An index always has
a name, a type (i.e., node or relationship) and a provider. The provider is by
default Lucene31, but it is also possible to use custom providers. A node index
entry is a key-value pair pointing to a node. For instance, suppose a graph
models a customer database with nodes being customers, an example index
entry could then be the pair (“location”, “Stockholm”) that points to the node
of some customer in Stockholm. Similarly, a relationship index entry is a key-
value pair pointing to a relationship. Note that there can be several identical
key-value pairs in the same index pointing to different nodes/relationships. Also
note that the key-value pair does not necessarily have anything to do with the
actual data in the indexed node/relationship32.

31An open source information retrieval library.
http://lucene.apache.org, accessed Jan 25, 2012.

32This differs from how indexes generally work in RDBMSs since in such, values themselves
are index keys.
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Interface

It is possible to communicate with Neo4j in a variety of ways. If the communi-
cating application is run on the same machine as the Neo4j instance, embedded
mode can be used. This is supported for, e.g., Java and Python applications.
To enable communication over network, Neo4j exposes a REST33 API. Through
this, all relevant operations on the graph can be performed.

A Neo4j graph is typically queried by traversals. A traversal is simply a walk
in the graph. Typically, a traversal starts in a certain node, follows some spec-
ified relationships, and terminates according to some criterion. Neo4j supports
its own traversal API methods and the two graph traversal languages Cypher34

and Gremlin35.
The Neo4j server is extendible. One way to add custom functionality is

to write a server plugin. This is Java code archived into a JAR36-file that is
deployed on the server. The functionality implemented by the server plugin is
then exposed via the REST API.

33Representational State Transfer. A style of architecture for web services; runs over HTTP.
[15]

34http://docs.neo4j.org/chunked/1.5/cypher-query-lang.html, accessed Jan 25, 2012.
35https://github.com/tinkerpop/gremlin/wiki, accessed Jan 25, 2012.
36Java Archive. An archive file format used to store Java class files, resources and metadata.
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Chapter 5

Problem analysis and
general solutions

The problem formulation (see Section 1.2) gave three bullets with concrete ques-
tions that the thesis attempts to answer:

• How do different NoSQL data models differ from Spotfire’s data model?

• How do these differences affect extraction and import from Spotfire’s point
of view? How does the lack of explicitly defined schemas affect extraction
and import?

• How can these problems be solved – enabling support for NoSQL databases
in Spotfire?

Chapter 4 answered the question in the first bullet by describing the general
data models of the four NoSQL families, together with a particular data model
of one specific system per family. It could be seen that none of the models
exactly matches Spotfire’s tabular model.

In the rest of this chapter, the questions in the other two bullets are answered.
Section 5.1 gives general answers, while Sections 5.2 – 5.5 give more specialized
answers for each of the four NoSQL families.

5.1 General

Before attempting to answer the questions in the two last bullets in the chapter
introduction, Spotfire’s data model and the rationale behind it needs to be ana-
lyzed. As has been noted earlier, Spotfire’s tabular data model closely resembles
the relational model. But why is data in a data visualization and analysis tool
represented by tables? First, representing data by tables makes importing data
from RDBMSs a straightforward task – after all, RDBMSs have been the de-
fault solution for data management for decades. Second, structuring data in
this fashion makes it easy to understand and work with.

A table is an instance of something more abstract; it is really a collection of
comparable instances of some concept. Although this concept might be either
an entity or a relationship, it is for the remainder of the thesis thought of as an
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entity to simplify the discussion. Rows in the same table are intended to always
model the same entity – whether the entity is a Person, a Flight, a Sale, or
something else. The columns of the table represent the attributes of the entity
instances, i.e., the dimensions along which the instances can be described, and
thus compared. In the relational model, these dimensions are always atomic,
i.e., they cannot be complex structures such as lists, maps, and so on. However,
allowing only atomic attributes is not really a limitation of the model, since
complex attributes can be modeled in another set of tables together with a
definition of the relationship between these tables and the attributes.

Regarding the first question from bullet two above, an obvious problem that
arises when importing data from NoSQL systems into Spotfire concerns how
to convert the NoSQL data models into the Spotfire data model. As argued
above, a table is a representation of a collection of comparable entity instances.
Thus, enabling support for NoSQL data stores in Spotfire is all about enabling
extraction and import of comparable entity instances into Spotfire tables1. The
problems that must be solved in order to do this include:

a) how to let the user specify the comparable entity and its attributes,

b) how, and from where, to extract this exactly, and

c) how to convert attribute values into something that Spotfire permits.

Note that a) and b) are related. If a user specifies that an entity shall be
extracted from structure A, then the data design in A naturally describes the
entity and its attributes. Of course, this rests on the assumption that structure
A stores exactly one entity and that each instance is designed in roughly the
same way. Exactly this is the case in RDBMSs, and solving a) and b) is then
done simply by asking the database for its tables and corresponding schemas,
and subsequently letting the user choose one of these and the desired columns
to import.

Because of the lack of explicit schemas, this cannot be done in NoSQL
databases. However, given that there is a structure storing one entity, one
way to solve this would be to let the user “blindly” give the full path to this
structure and an entity definition textually. For example, assuming a Cassan-
dra CF stores exactly one entity and that CF columns can be mapped to table
columns, it would be feasible to let the user give the CF path, <host>:<port>:
<keyspace>:<CF>, and columns c1, c2, ..., cn.

However, this is generally not preferable because the user might not know
the exact structure of the database and also, typing errors that could lead to
undesired results are easily made. Instead, a more guided approach is suggested:
A schema can be inferred by sampling the database. This inferred schema can
then be presented to the user who proceeds by selecting which attributes to
import from the presented ones – just like in the RDBMS case. Of course,
it should also be possible for the user to edit the presented schemas since the
results may not be perfect because of the sampling. This general approach is
from now on referred to as schema inference.

Naturally, sampling entire databases is rather costly. Instead, schemas
should be inferred over smaller structures. In general, it is suggested to infer

1It is also conceivable to redesign Spotfire’s data model into something that more closely
resembles the NoSQL data models. However, in this thesis, Spotfire’s data model is considered
to be a given, and not something that can be changed.
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schemas over structures that store exactly one entity. Of course, all databases
do not necessarily have such structures. In such cases, structures storing mul-
tiple entities can be sampled, and the sample can subsequently be clustered,
i.e., the different entity schemas can be separated into clusters so as to find one
schema per entity (see Sections 3.4 and 6.3.6). Structures, e.g., Cassandra CFs
or MongoDB collections, are usually part of the underlying NoSQL database’s
metadata and can thus be straightforwardly asked for, and the user can choose
from these which one to sample and import from. An extension of this approach
would be to allow sampling and extraction over several structures, but this is
generally not needed since data is not modeled that way.

As for b) specifically, given what to extract, querying and retrieving data
from an RDBMS is straightforward because of SQL. NoSQL systems generally
all have different query interfaces supporting different kinds of queries. Thus,
no general solution to this problem is suggested. Instead, an investigation of
each particular system’s interface must be conducted in order to solve this.
Concerning where to extract from, it is, naturally, suggested that the same
structure that was sampled also should be extracted from, since the inferred
schema is valid for precisely that structure.

Solving c) is in general a simple task. If the underlying NoSQL system
supports types (as in, e.g., Neo4j) then it is only a matter of type conversion. If
it does not (as in, e.g., Cassandra) either some observed values can be analyzed
and types can be inferred accordingly, or the user can be forced to explicitly
give a conversion procedure.

5.2 Key-Value Stores

If one uses a KVS to store data with more than one dimension, the typical pat-
tern is to put all dimensions into the key, separated by some special token, and
store the values as usual [1]. For example, in an application storing a collection
of the entity User, entries similar to the following can be expected:

(userid:56:username, bar)

(userid:56:password, 782a30df3b2d8f0ed078016388cb50b6)

(userid:492:username, foo)

(userid:492:password, cc6c6102174b3050bc3397c724f00f63)

A sample of key-value pairs could be analyzed to find the general form of the
keys. A result of such an analysis of the above set of pairs would be something
similar to userid:<int>:username and userid:<int>:password. This could
then be presented to the user who can choose to import any subset of the found
structures. However, the structure of the keys can be very different in different
applications. Coming up with an inference algorithm powerful enough to be
generally useful is likely rather challenging. Instead of sampling and trying to
infer a schema, perhaps it is more appropriate to let the user give only regular
expressions for keys of pairs that should be extracted. Each expression could
then be mapped to a table column. For example, extracting all Users’ names
and passwords in the running example would then be done when given the
regular expressions userid:[0-9]*:username and userid:[0-9]*:password.

Since KVSs usually contain just one flat namespace with entries, the appro-
priate entity-storing structure to sample and extract from is simply the key-value
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collection.

5.3 Document Stores

In DSs, documents conceptually correspond to relational table rows [33]; each
document has a set of fields that closely resembles a table’s set of columns.
Thus, the suggested structure to sample and extract from is the structure that
most closely wraps documents2. A document field can then be mapped to a
table column.

Some DSs allow fields to store complex data such as lists or even other doc-
uments. Naturally, these fields cannot appropriately be converted into atomic
Spotfire values. When the user wants to import a complex field into Spotfire, it
should be compulsory to specify what atomic part of that structure that should
be extracted, so as to flatten the structure so that it matches Spotfire’s model.
For example, if a document has a field storing a list of atomic values, the user
should be forced to give an index in the list, or possibly several if more than
one value in this list is desired to import.

5.4 Column Family Stores

In CFSs, a CF is conceptually similar to a table in the relational world [21].
The main difference is that tables always are rectangular, whereas each row
in a CF can contain an arbitrary set of columns, and these do not have to be
shared by other rows in the same CF. However, using a CF to store an entity
is a common pattern [21], and thus the suggested entity-storing structure to
sample and extract from is the CF. A CF column can then be mapped to a
table column.

5.5 Graph Databases

In GDs, there is usually no finer structure than the graph itself. Thus, the
suggested entity-storing structure to sample and extract from is simply the
graph. The graph typically contains several different entities connected to each
other in some fashion. For example, a movie database probably stores both
Movies and Actors. Thus, GDs are examples where clustering, mentioned in
Section 5.1, is relevant.

Entities are often stored as vertices, having some attached attributes de-
scribe them, similarly as a table’s columns. Therefore, it is most important to
support importing vertices and their attributes. However, edges could also have
attributes that are interesting to analyze. Thus, two different import modes
could be offered; one importing vertices and the other edges. In both cases, a
vertex’/edge’s attributes can be mapped to columns.

2For example, in CouchDB, the database is a flat collection of documents, whereas in
MongoDB, there is a hierarchy and the closest structure storing documents is the collection
(see Section 4.2.1).
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Chapter 6

Implementation

Two proof of concept tools that can import data from Cassandra and Neo4j into
Spotfire tables have been implemented. This chapter describes these in detail.
First, in Section 6.1, an overview of required resources and concepts is given.
Also, the tools’ general architecture is described. Then, Sections 6.2 and 6.3
respectively deal with tool implementation details for the two aforementioned
systems.

6.1 Overview

Here, a general overview of the two implemented tools is given. In Section
6.1.1, the Spotfire SDK1 and API are introduced. Then follows a definition of
the concept of On-Demand in Section 6.1.2. Lastly, in Section 6.1.3, the general
tool architecture is given.

6.1.1 Spotfire SDK and API

Spotfire has a public SDK that provides developers with resources to extend the
platform2. The platform allows for several extension points; examples include:

• Tools that perform analytic actions.

• Transformations that preprocess data prior to analysis.

• Visualizations that display data.

Custom extensions are written against the public Spotfire API. To help devel-
opers get started with this, TIBCO Software has published a set of extension
tutorials and examples3. There is also the API documentation4 that can be
used for reference. The extensions can be written in any .NET language.

1Software Development Kit.
2http://stn.spotfire.com/stn/Extend/SDKOverview.aspx, accessed Jan 25, 2012.
3http://stn.spotfire.com/stn/Extend/Extending.aspx, accessed Jan 25, 2012.
4http://stn.spotfire.com/stn/API.aspx, accessed Jan 25, 2012.
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6.1.2 On-Demand

The term On-Demand is present in various different contexts (e.g., Video and
Print On-Demand) with slightly different meanings. In the context here, On-
Demand means that data from a data source is fetched only when it is explicitly
demanded, and that no other data than what is demanded is fetched. This
stands in contrast to fetching data before it is demanded and/or fetching more
data than is asked for.

The concept originates from a need to enable analysis of big data. With On-
Demand, analyses are conducted in a top-down fashion where the user starts
out with an aggregated view of a data set and then drills down to explore details
as desired. The initial aggregated view can originate from, for instance, various
ETL5 processes.

6.1.3 General architecture

Both tools have been written in C# .NET. They are mainly based on the idea
of fetching data On-Demand. This can be motivated by the fact that NoSQL
databases are designed to contain large amounts of data, so extracting and pre-
senting a structure in its entirety is often infeasible. This is, though, not always
the case, which is why both tools also support exhaustive imports. These two
import modes are referred to as On-Demand and Exhaustive mode, respectively.

Using Spotfire terminology, the two implementations are tools in an applica-
tion context (i.e., subclasses of API class CustomTool<AnalysisApplication>)
that both execute a data function (i.e., subclasses of API class CustomData-

FunctionExecutor) for importing data from the underlying data source.
The two generic steps in which the user interacts with the tools are as follows:

1. Configuration of import, i.e., giving where data is located, what data to
include in the resulting Spotfire table, how to import it and other data
source specific parameters.

2. If On-Demand mode is chosen: Configuration of how On-Demand is con-
trolled, i.e., giving definitions of rules for how to determine which values
certain columns are limited to.

Column values can be limited to, for example, a marking in another table or an
arbitrary expression in the Spotfire expression language6. In On-Demand mode,
the user can choose to refresh the imported data manually or automatically when
the value of a parameter controlling the On-Demand has changed. Step 1 above
is tailored for each of the two tools because the underlying data sources differ.
Step 2 uses existing Spotfire dialogs, and is thus identical for both tools.

When these two steps are done – and if in On-Demand mode, initial values
for the On-Demand parameters have been set – data will be imported from
the underlying data source into a Spotfire table and the user can analyze and
visualize it.

5Extract, Transform, Load. A term common in data warehousing, referring to the process
in which data is extracted from a source, transformed according to one’s particular needs, and
then loaded into another data source.

6http://stn.spotfire.com/spotfire client help/ncfe/ncfe custom expressions introduction.htm,
accessed Jan 25, 2012.
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The extraction is executed in the data function. Depending on whether the
mode is Exhaustive or On-Demand, the specific role of the data function differs.

In Exhaustive mode, the extraction happens once. The only input required
is the import configuration. Using information from this, the data function
communicates with the underlying data source and retrieves data accordingly.
Finally, a Spotfire table is output.

In On-Demand mode, every time an On-Demand parameter value is changed
and a refresh is issued, the table is updated with newly imported data. The
data function therefore keeps track of the initial import configuration across
all refreshes. For every import, the current On-Demand parameter values are
passed to the data function. This is, for every column in the Spotfire table, a set
of values – possibly the empty set, meaning no filter. The data function com-
municates with the underlying data source and fetches data from the configured
mapping that matches the On-Demand parameter values. Finally, a Spotfire
table is output. This procedure is illustrated in Figure 6.1.

NoSQL data source

Data function
On-Demand
parameter

values
Spotfire table

Figure 6.1: The role of the data function in On-Demand mode. For every ex-
traction, the current On-Demand parameter values are input. The data function
communicates with the underlying data source, and finally outputs a Spotfire ta-
ble.

To consolidate the understanding of the data function’s role in the two im-
port modes, analogies to the relational world can be made: Assuming the Spot-
fire table has a 1:1 mapping to a data source table t and that columns c 1, c 2,
..., c N are desired to import, in Exhaustive mode, the task of the data function
is to respond to the following type of SQL query:

SELECT c_1, c_2, ..., c_N

FROM t

In On-Demand mode, given that column c i is limited to the set of values v i

= (v i 1, v i 2, ..., v i Mi) according to the On-Demand parameters, the data
function’s task is to respond to the following type of SQL query:

SELECT c_1, c_2, ..., c_N

FROM t
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WHERE c_1 IN (v_1_1, v_1_2, ..., v_1_M1) AND

c_2 IN (v_2_1, v_2_2, ..., v_2_M2) AND

... AND

c_N IN (v_N_1, v_N_2, ..., v_N_MN)

It should be clarified that when all v i’s are empty, no data should be returned.
Of course, the data functions cannot simply pass queries like these to the

underlying NoSQL data sources since they do not support SQL. How this actu-
ally is handled in the implemented data functions is described in Sections 6.2.4
and 6.3.4.

6.2 Cassandra tool

Section 4.3.1 introduced Cassandra and its data model. In this section, it is
described how extraction of tabular data from a Cassandra cluster has been im-
plemented in the Cassandra tool. Section 6.2.1 motivates the use of Cassandra,
and also describes choices made in the tool. Section 6.2.2 gives the architecture
of the tool. Section 6.2.3 goes into depth on how an import is configured. Sec-
tion 6.2.4 explains how the tool’s data function has been implemented. Lastly,
Section 6.2.5 describes the implemented pagination support.

6.2.1 Motivation and choices

As described in Section 4.3.1 Cassandra is actively developed, has several promi-
nent users, is professionally supported by third parties and is one of the most
mature systems within the NoSQL movement. These facts together with the
host company’s expressed interest in Cassandra were the reasons for choosing
to implement support for it.

As Cassandra is actively developed, new versions are continuously released;
and changes between versions can be quite substantial. Therefore, it should be
pointed out that the implementation described here is based on version 1.0.0.

As described in Section 4.3.1, an application developer can either choose to
communicate with Cassandra directly via the Thrift API or high level clients
that add an abstraction layer on top of that. In the implementation described
here, all communication is done directly via Thrift. Although, as mentioned in
Section 4.3.1, it is advised that developers use high level clients, the choice for
using the Thrift API directly was made for two main reasons:

• The high level clients are even less mature than Cassandra itself. This
means the risk for stumbling into blocking bugs is rather high. Figuring
out that something is a bug can be very time consuming, not to mention
the time needed to solve or find a way to work around it.

• Whenever there is new functionality released for Cassandra, the high level
client developers must first implement support for it on their end before
it can be used in an application using such.

Concerning how to map Cassandra’s data model to tables, the procedures
suggested in Chapter 5 were chosen. That is, a CF is assumed to store an
entity, and CF columns are mapped to Spotfire columns. The reasoning in the
aforementioned chapter motivates this choice. As described in Section 4.3.1,
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Cassandra also allows SCFs. Basically, SCFs just add another dimension on
top of standard CFs. Therefore, if an SCF is sampled, a specific SC must
subsequently be chosen to extract from.

6.2.2 Architecture

The general architecture of the implemented tools is described in Section 6.1.3.
It is mentioned there that there is both a configuration of the import, and a
data function that the tools execute. For both of these parts, the Cassandra
tool must communicate with the underlying Cassandra cluster. To clarify how
this is done and what entities are involved, Figure 6.2 gives an architectural
overview of the tool and its surroundings.

Spotfire

Cassandra

Thrift API

Network T
C

P
/I

P

Cassandra tool

Figure 6.2: Architectural overview of the Cassandra tool and its surrounding
entities. It can be seen that communication between the tool and Cassandra is
done using the Thrift API over TCP/IP.

Section 6.2.1 mentioned that all communication between the Cassandra tool
and the underlying Cassandra cluster is done via the Thrift API. Thrift allows
for several different transport protocols. Typically, it is used on top of the
TCP/IP stack using streaming sockets. This is how it is done here as well, as
can be seen in Figure 6.2. The figure also shows where the network boundary
is.

6.2.3 Configuration of import

Referring to the steps defined in Section 6.1.3, step 1 for Cassandra includes
determining values for the following parameters:

• Data location and selection

– Host and port.

– Keyspace.
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– CF, or SC and related SCF. (Remember: a CF and SC are the two
structures mapped to a table.)

– Columns and their types.

• Other parameters

– Consistency level: When reading from Cassandra, consistency level
must always be given. The consistency level dictates how many repli-
cas in the cluster that must to be read before a value is returned to
the caller. Examples of permitted values are ONE, QUORUM and ALL.
A full listing of permitted values and their meanings can be found in
the Cassandra documentation7.

– Page size: When fetching data from Cassandra, depending on the size
of the result set, it is not always desirable to query for and retrieve
the results in one piece. It might be more efficient to query for
and fetch the results in several smaller pieces. Therefore, support for
paginating results has been implemented. This parameter determines
the number of rows returned per page. (See Section 6.2.5 for how this
is implemented, and Section 7.1 for related experiments.)

It is now described how the values of these are determined, in the same order
as they are presented above.

Host and port are given by the user as a string. Once this has been entered,
the user can ask for that particular cluster’s keyspaces and (S)CFs. These
are stored as metadata in Cassandra, so retrieving them is straightforward
(describe keyspaces8). The user proceeds by selecting one of the presented
(S)CFs, and consequently corresponding keyspace.

Now, it is desirable to present the union of columns over all rows in the
chosen (S)CF, so the user can import an arbitrary subset of these. Although
Cassandra lets developers define schemas, this is optional. This means, when
no schema is defined, Cassandra cannot be directly queried for the columns (or
SCs) of a certain (S)CF. As indicated in Section 5.1, what instead can be done
is to sample a number of rows and then the column set can be estimated based
on that. This is how it is done here. As for schema-defined columns, these are
always added to the column set based on information from stored metadata.

As described in Section 4.3.1, hierarchically, for CFs, columns follow rows.
For SCFs, SCs follow rows, and then come columns. This means that if an SCF
is chosen in the previous step, the user first has to select an SC after sampling
before individual columns can be selected.

Consistency level is given as one of the permitted values mentioned above.
Sample size and page size are given as integers.

When these values are given, the user proceeds by asking to sample the
chosen (S)CF, and the tool queries Cassandra for the given amount of rows.
In Cassandra, rows are always returned sorted. Sorting order is determined by
the cluster’s partitioner. In version 1.0.0, Cassandra provides ByteOrdered-

Partitioner and RandomPartitioner out-of-the-box. Users can also define
custom partitioners. With ByteOrderedPartitioner, rows are sorted lexically

7http://wiki.apache.org/cassandra/API#ConsistencyLevel, accessed Jan 25, 2012.
8http://wiki.apache.org/cassandra/API#describe keyspaces, accessed Jan 25, 2012.

38



by their keys. With RandomPartitioner, rows are sorted lexically by the MD59

hashes of their keys.
When asking Cassandra for a set of rows (get range slices10), one of the

parameters is a key range11. This consists of a start and an end key for the
desired rows. If no row keys are known, empty byte arrays can be given. For
start and end key, respectively, this means the first and last row of the collection,
as defined by the row sort order. Thus, Cassandra can be sampled by giving
empty byte arrays as key range, and at the same time limiting the result size to
the given sample size.

Once the cluster has been sampled, observed columns, and possibly SCs, are
presented to the user. Since the sampling might not find everything, it is also
possible to give columns and SCs explicitly – the user might know how the data
is modeled.

In Spotfire, every column has a type (see Section 3.2). In Cassandra, if a
column is defined in a schema, the validation class12 of that column is used as
type. The validation class is a Java class deployed on the Cassandra cluster
which is used for validating all values before they are put into the column.
Normally, this is any one of Cassandras supported types, but can also be a
custom type.

If a column is not defined in a schema, the tool tries to infer the column type
by analyzing observed values during the sampling. This is done in a straight-
forward fashion by, for the observed values of a certain column, trying to parse
these to every supported type. Among the types for which all values could be
parsed, the most specific is chosen. If this means no type, the column type is
marked as unsupported.

In the tool, the supported types are BooleanType, LongType and UTF8Type,
referring to their names in the Cassandra implementation. They all have obvious
equivalents in Spotfire13. The user can change the inferred types to any of the
tool-supported types. If the actual type is not among the supported ones, the
column cannot be imported.

When all columns are present with types, the user selects a subset of them
to import. Finally, the import mode, Exhaustive or On-Demand, is chosen, and
step 1 is finished.

6.2.4 Data function

Section 6.1.3 described, among other things, the task of the data function. In
Exhaustive mode, this boils down to retrieving a set of columns for all rows in
a given CF or SC. This has straightforwardly been implemented by using the
Thrift API method get range slices, with pagination added on top of it (see
Section 6.2.5).

As for On-Demand mode, it is as an analogy in Section 6.1.3 concluded that
the task boils down to responding to a certain type of SQL query. Cassandra,

9A cryptographic hash function.
http://tools.ietf.org/html/rfc1321, accessed Jan 25, 2012.

10http://wiki.apache.org/cassandra/API#get range slices, accessed Jan 25, 2012.
11http://wiki.apache.org/cassandra/API#KeyRange, accessed Jan 25, 2012.
12http://wiki.apache.org/cassandra/API#ColumnDef, accessed Jan 25, 2012.
13BooleanType 7→ Boolean; LongType 7→ LongInteger; UTF8Type 7→ String.
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of course, does not support SQL. As mentioned in Section 4.3.1, Cassandra
supports the Thrift API, including the method for executing CQL queries.

Referring to the generic SQL query in Section 6.1.3, using either regular
methods in the Thrift API, or the one executing CQL queries, Cassandra sup-
ports equivalents of everything there except for the IN operator. Something
similar, though, is supported: equivalents of WHERE clauses where every column
is filtered to one value, rather than a set of them (i.e., a simple equality opera-
tor; WHERE c = v). This, however, is only true when at least one of the filtered
columns is indexed (then, get indexed slices14 can be used).

After some contemplation, one realizes that this query functionality is suffi-
cient to implement the equivalent of the IN operator on top of it. For example,
the query

SELECT director, genre, title

FROM movies

WHERE director IN (’Andersson’, ’Tarantino’) AND

genre IN (’crime’, ’drama’, ’thriller’)

can be translated into six different queries on the form

SELECT director, genre, title

FROM movies

WHERE director = v1 AND

genre = v2

where (v1, v2) take on the values { (’Andersson’, ’crime’), (’Andersson’,
’drama’), (’Andersson’, ’thriller’), (’Tarantino’, ’crime’), (’Tarantino’,
’drama’), (’Tarantino’, ’thriller’) }.

Formally, a query from Spotfire for a set of columns C = {c1, c2, ..., cn}
with corresponding filters S = {S1, S2, ..., Sn} can be translated into

∏
i |Si|

Cassandra-supported queries where each query limits the column values to one
combination of the filter values. As for pagination (see Section 6.2.5), this is
done per Cassandra query, thus possibly increasing the actual number of calls
to Cassandra. This is how it is done in the implemented data function.

6.2.5 Results pagination

It is mentioned in Section 6.2.3 that result sets can be paginated. This is relevant
both when sampling and performing bulk imports, i.e., when using Thrift API
methods get range slices and get indexed slices. It should be noted that
pagination is not explicitly implemented in either the Cassandra back end, or
the Thrift API – there is no get next page method or anything equivalent;
get range slices and get indexed slices only return rows in a list whose
size can be limited.

However, by utilizing the key range parameter, pagination can be imple-
mented on the client-side. Suppose there is a certain query Q that should be
issued to Cassandra. Suppose further that the page size is set to K. Pagination
can then be implemented as follows:

14http://wiki.apache.org/cassandra/API#get indexed slices, accessed Jan 25, 2012.
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1. Issue Q, with the key range set to include all keys and the limit on the
size of the results set to K. Cassandra will then return the first K (at
most) rows matching Q.

2. Present this (possibly empty) page of returned rows to the application.

3. If the returned number of rows is less than K, there are no more rows to
fetch for Q and the algorithm terminates.

4. Otherwise, issue Q again, with the key range set to include all keys starting
at the key of the last row on the previously fetched page. Again, limit the
result size to K. Repeat from step 2.

Note that, because the semantics of the start key are inclusive, rows preceding
page breaks are retrieved twice. This whole procedure is illustrated with an
example in Figure 6.3.

row 0

row 2

.

.

.
.
.
.

row 3

row 4

row 5

row 6

row 7

row 1
page 0

page 1

page 2

Figure 6.3: Illustration of how pagination works. In the figure, the page size is
set to 4. As can be seen, both page 0 and page 1 contain row 3. This is because
row 3’s key is used as start key when querying for page 1.

For an original query Q, a general formula for the number of issued queries
M to Cassandra using pagination is now derived. Let K denote the page size,
and N the size of the entire result set. When N < K, only one query is needed,
because everything fits into one page. When N = K, two queries are needed,
because even though everything fits into one page, that page is filled so another
query must be issued to determine whether the result set has been depleted
or not. When N > K, first an initial query is needed after which there are
N −K more rows to fetch. For subsequent queries, because of the page overlap
described above, at most K − 1 new rows are fetched per page. Thus, the
following formula can be derived:

M = 1 +

⌈
max(N −K + 1, 0)

K − 1

⌉
(6.1)
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The max function is used to avoid negative numerators when K > N + 1. The
added 1 in the first argument to max is required when N = K to get the
numerator greater than the denominator so that the fraction gets rounded up
(remember: there will be two queries when N = K). Obviously, K must be
greater than 1.

It is apparent that this formula asymptotically grows as fast as N/K, which
comes as no surprise since paginating N results with a page size of K roughly
means splitting them into N/K pages, and one query is used per page.

6.3 Neo4j tool

Section 4.4.1 introduced Neo4j and its data model. In this section, it is de-
scribed how extraction of tabular data from Neo4j has been implemented in the
Neo4j tool. Section 6.3.1 motivates the use of Neo4j, and also describes choices
made in the tool. Section 6.3.2 gives the architecture of the tool. Section 6.3.3
goes into depth on how an import is configured. Section 6.3.4 explains how the
tool’s data function has been implemented. Section 6.3.5 describes the imple-
mented pagination support. Lastly, Section 6.3.6 goes through the implemented
clustering algorithms.

6.3.1 Motivation and choices

As described in Section 4.4.1 Neo4j is actively developed, has an active commu-
nity and is widely used. These facts together with the host company’s expressed
interest in Neo4j were the reasons for choosing to implement support for it. The
implementation described here is based on version 1.5.

As described in Section 4.4.1, the main way to communicate with a remote
Neo4j instance is via a REST API over HTTP. Most relevant functionality for
accessing data is exposed through this API. However, since the REST API runs
over HTTP, and in some situations returns more data than is needed, com-
municating via the out-of-the-box REST API from Spotfire can be inefficient.
Therefore, the choice was to create a server plugin (see Section 4.4.1) that im-
plements Spotfire specific functionality server-side. Communicating with the
server plugin is also done via a REST API – simply an extension of the original
– but in this way, it can be assured that the returned responses are minimal and
that the functionality exactly meets what Spotfire requires. Thus, efficiency is
optimized for, with the drawback of having to deploy the server plugin on the
server in the first place.

Concerning how to map Neo4j’s data model to tables, the procedures sug-
gested in Chapter 5 were chosen, with the exception that only one of the two
modes is supported; importing nodes. That is, nodes are assumed to correspond
to table rows, and the properties a node stores are thought of as table columns.
The reasoning in the aforementioned chapter motivates this choice.

6.3.2 Architecture

The general architecture of the implemented tools is described in Section 6.1.3.
It is mentioned there that there is both a configuration of the import, and a
data function that the tools execute. For both of these parts, the Neo4j tool
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communicates with the underlying Neo4j instance. To clarify how this is done
and what entities are involved, Figure 6.4 gives an architectural overview of the
tool and its surroundings.

Spotfire

Neo4j

REST API

Network
H

T
T

P

Server plugin

Neo4j tool

Figure 6.4: Architectural overview of the Neo4j tool and its surrounding entities.
It can be seen that communication between the tool and Neo4j is done over HTTP
using a REST API.

As can be seen in the figure, in addition to the two general tool parts, there
is here a third part, namely the server plugin. The server plugin is written in
Java and is deployed on the server as a JAR-file.

It is mentioned in Section 6.3.1 that all communication between the Neo4j
tool and the underlying Neo4j instance is done via a REST API that exposes
both out-of-the-box functionality and the functionality implemented by the
server plugin. Figure 6.4 further illustrates this fact, and by showing where the
network boundary is, the importance of minimizing the REST API responses is
clarified.

6.3.3 Configuration of import

Referring to the steps defined in Section 6.1.3, step 1 for Neo4j includes deter-
mining values for the following parameters:

• Data location and selection

– Host and port.

– Node properties and their types. (Remember: a node and its prop-
erties are mapped to a table row.)

• Other parameters

– Retrieval method: As described in Section 4.4.1 Neo4j’s query model
is mainly based on graph traversals. Thus, one way to retrieve data
is by traversing the graph; starting at a given node, following edges of

43



certain types and terminating when a certain criterion has been met.
Other ways include using indexes or performing exhaustive searches
in the entire graph.

– Page size: As in the Cassandra tool, support for paginating results
has been implemented. Here, this parameter determines the num-
ber of nodes returned per page. (See Section 6.3.5 for how this is
implemented, and Section 7.1 for related experiments.)

It is now described how the values of these are determined, in the same order
as they are presented above.

Host and port are given by the user as a string. For the user to be able to
give the node properties with corresponding types that should be included in
the import, it is desirable to know the schemas of the Neo4j instance. Here, this
means the union of node properties for each entity in the underlying graph. The
user can then select an arbitrary subset of these node properties for an entity,
without having to enter them manually.

Neo4j does not keep metadata for this (see Section 4.4.1). As indicated in
Section 5.1, what instead can be done is to sample a number of nodes and then
infer schemas based on that. This is how it is done here.

To sample the graph, values for two parameters are required; sample size
N and sampling method. N is given by the user as an integer. As for sam-
pling method, the user can choose from three different methods that have been
implemented:

• Näıve: Neo4j provides a method to iterate through all nodes in the graph
(GraphDatabaseService.getAllNodes15). The resulting sample from the
Näıve sampling method consists of the N first nodes according to this
iterator.

• Näıve Traversal : Starting in the reference node, this sampling method tra-
verses the graph using a Breadth-First Search, following all edges in both
directions, and returns a sample consisting of the N first nodes observed
in this traversal.

• Random: It is possible to get the highest id, idhigh, of all nodes in the
graph, in constant time. Using this, this sampling method repeatedly
randomizes an integer id ∈ [0, idhigh] and checks whether a node with an
id equal to id exists (since nodes can be deleted, it is not guaranteed that
there are nodes for all ids below idhigh). If so, it adds that node to the
sample. A new id is then randomized and the procedure is repeated until
N nodes have been found. To avoid having this sampling method run
forever, there is a parameter determining the maximum number of misses
before it terminates. Thus, it is possible that it returns a sample with
fewer than N observations, even though the graph contains N , or more,
nodes.

To determine how schemas are inferred, the user gets to choose how to cluster
the results of the sampling – three choices are available:

15http://api.neo4j.org/1.5/org/neo4j/graphdb/GraphDatabaseService.html, accessed Jan
25, 2012.
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• Do not cluster at all, i.e., treat each unique node structure as an entity.
The node structure of node X is defined as X’s set of properties PX , set of
incoming relationships IX and set of outgoing relationships16 OX . Thus,
two nodes A and B are considered structurally equal iff PA = PB ∧ IA =
IB ∧ OA = OB . This method always returns the greatest number of
entities, since the sample is not clustered at all.

• Cluster using a given number of clusters K ≥ 1, i.e., compute an optimal
clustering given that there must be K clusters.

• Cluster using the “optimal” number of clusters, i.e., let the underlying
algorithms determine how many distinct entities there are and cluster
accordingly.

How the clustering is implemented is described in Section 6.3.6. For now, it suf-
fices to think about the clustering as a grouping of observed nodes into entities,
which relieves the user from work when setting up the import, plus it actually
is a form of analysis in itself.

The structures of the entities resulting from the sampling and subsequent
clustering are presented to the user. The structure of a cluster (i.e., a collection
of observed nodes) is defined as the union of the cluster’s node structures, for
each of the three node structure constituents P , I and O (see above). The user
proceeds by choosing one of the entities, adding or removing properties that
should be imported, setting property types, and possibly also setting required
properties and relationships that a node must include to be included in the
import.

Neo4j properties are always typed (see Section 4.4.1). To the user, the
proposed types are computed by a majority vote among the observed instances
(ties are broken arbitrarily). All primitive types and strings are supported by
the Neo4j tool, while arrays are not. For each of these, there is a corresponding
Spotfire type that the property gets imported as17.

After having chosen what to import, the user proceeds by choosing one of
four retrieval methods. All methods return only properties for nodes that satisfy
the conditions that have been set up. They differ in which nodes they consider,
how they iterate through these and whether data is imported in Exhaustive or
On-Demand mode. The retrieval methods that have been implemented are:

• Exhaustive: Data is imported exhaustively at once and all nodes in the
entire graph are considered.

• Exhaustive By Traversal : Data is imported exhaustively at once, and the
set of nodes that are considered is determined by a specified traversal
definition. This includes the id of the start node, the maximum traver-
sal depth and which relationships and corresponding directions to follow
during the traversal.

• On-Demand By Index : Data is imported On-Demand, and the set of nodes
that are considered is determined by what is found in a given node index
(see Section 4.4.1). It is assumed that the underlying index provider is
Lucene and that key-value pairs are property name and value, respectively.

16That is, property names and relationship type names.
17bool 7→ Boolean; byte, short, int 7→ Integer; long 7→ LongInteger; Float 7→ SingleReal;

Double 7→ Real; char, String 7→ String.
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• On-Demand By Traversal : Data is imported On-Demand and the set of
nodes considered is determined just like in Exhaustive By Traversal above.

Finally, page size is given as an integer and step 1 is finished.

6.3.4 Data function

Section 6.1.3 described, among other things, the general task of the data func-
tion. Section 6.3.3 mentioned that there are four different retrieval modes to
choose from. For all these, the data function begins by issuing a query for the
desired data to the server plugin. The server plugin creates an iterator over the
nodes that are considered for that particular retrieval mode and query. For each
node in the iterator, it is checked that it contains the required properties and
relationships (if any), and also that it satisfies given On-Demand filters (if any).
Values of desired properties in the resulting set of nodes are then retrieved by
the data function page by page (see Section 6.3.5) and are finally presented in
Spotfire as a table.

Which nodes that are considered and how these are fetched depends on
the retrieval mode. For Exhaustive, GraphDatabaseService.getAllNodes is
called. For Exhaustive By Traversal and On-Demand By Traversal, Node.

traverse18 is called. For On-Demand By Index, ReadableIndex.query19 is
called with a Lucene query string as an argument. Note that the Lucene query
language supports equivalents of all operators in the SQL query presented in
Section 6.1.3, which is why no special tricks are needed for this (which is not
the case in the Cassandra tool – see Section 6.2.4).

6.3.5 Results pagination

It is mentioned in Section 6.3.3 that result sets can be paginated. This is an
important feature since for each message that the Neo4j server sends, heap
space corresponding to the message’s size must be allocated. Thus, to keep the
server’s memory footprint low while working with large result sets, pagination
is required.

The implemented pagination works as follows: Each time the Neo4j tool
wants data, a query method in the server plugin is invoked. This query method
creates and stores a lazy iterator over the results20 and returns a UUID21, which
is a unique identifier of that particular query throughout its lifetime. When the
Neo4j tool wants the actual results from this query, it repeatedly asks the server
plugin for the next page, using the aforementioned UUID as an argument, until
the result set is depleted.

As can be understood from the discussion above, the server plugin is stateful.
To avoid performance degradation over time because of stored iterators that
will never be used (because of, e.g., canceled reads), queries that have not been
completely fetched within a parameter of T seconds are removed. Depending

18http://api.neo4j.org/1.5/org/neo4j/graphdb/Node.html, accessed Jan 25, 2012.
19http://api.neo4j.org/1.5/org/neo4j/graphdb/index/ReadableIndex.html, accessed Jan

25, 2012.
20That is, the results per se are not stored, only a description of how they shall be retrieved

once they are explicitly asked for is. This makes the memory footprint of each query very low.
21Universally Unique Identifier. A key randomly generated according to an algorithm with

the property that the probability of having two generated UUIDs coincide is practically zero.
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on the size of the result sets and how fast they can be depleted, a reasonable
value for T is on the order of minutes.

For an original query Q, a general formula for the number of issued queries
M to the server plugin using pagination is

M = 1 +

⌈
max(N −K + 1, 0)

K

⌉
(6.2)

where N is the size of the entire result set, and K the page size. The derivation
of M is identical to the derivation of corresponding M in the Cassandra tool
(see Section 6.2.5), except that here, there are always K fresh values per page,
so the denominator here is K instead of K − 1. As in the Cassandra case, this
formula grows as fast as N/K.

6.3.6 Clustering

Section 6.3.3 explained that a node sample can be clustered. The goal of the
clustering is to distinguish different entities within the sample, which in turn
helps an analyst analyze a certain Neo4j instance. Clustering in general was
introduced in Section 3.4.

The clustering algorithm implemented is K-medoids. This can be motivated
by it being a general algorithm that can be used when clustering objects with
qualitative variables. An input to K-medoids is a distance function between
objects – here, nodes. As Hastie et al. mention, there is no generic method for
finding a distance function – rather, careful thought with consideration to the
actual domain is required for good results [20]. Here, it is desirable to find a
distance measure which is general for all graphs, and at the same time sufficiently
powerful to be able to distinguish entities in every particular instance.

As Section 4.4.1 explained, every Neo4j node has a set of properties and a
set of directed relationships to other nodes; this is all that characterizes a node.
It is reasonable to assume that if two nodes have identical sets of properties and
relationships, then they model the same entity. The more these sets differ, the
more likely it is that they model different entities. A general measure of the
degree of overlap between two sets A and B is the Jaccard coefficient [31]:

J(A,B) =
|A ∩B|
|A ∪B|

(6.3)

This can be extended to measure the degree of difference, through a measure
known as the Soergel distance22 [50]:

S(A,B) = 1− J(A,B) = 1− |A ∩B|
|A ∪B|

(6.4)

Since the direction of a relationship generally has meaning23, the following gen-
eral node distance function d between two nodes A and B is therefore suggested:

d(A,B) = wPS(PA, PB) + wIS(IA, IB) + wOS(OA, OB) (6.5)

22When |A ∪B| = 0, S(A,B) can be defined to zero.
23For instance, if a customer node C has a relationship bought to a product P , this most

likely means that C bought P , and not vice versa. In fact, a customer probably never has an
incoming bought relationship, but certainly outgoing such. Thus, relationships’ directions are
discriminative when it comes to separating entities.
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PX denotes node X’s set of properties. IX and OX denote node X’s set of
incoming and outgoing relationships24, respectively. wP , wI and wO are non-
negative real-valued weights of the individual Soergel distances between the
properties, incoming and outgoing relationships, respectively. These can be
configured as desired, but generally, it is expected that a node’s properties
discriminate more than its relationships, and that incoming relationships dis-
criminate equally much as outgoing such, which is why a configuration where
wP > wI = wO is recommended. As can be seen by inspecting Equation 6.5, d
is maximized when the individual Soergel distances are maximized, i.e., when
all intersections are empty. Conversely, d is minimized when all intersections
are equal to corresponding unions.

This distance function d is the one used in the implementation. The weights
have been configured to wP = 1.0 and wI = wO = 0.5. As for seeding
method, uniformly randomized, K-means++ and Greedy seeding have been
implemented. The last one mentioned is the one used in the actual tool. This
can be motivated by the experimental results described in Section 7.2. The
presented clustering is the one with smallest intra-cluster dissimilarity over 30
runs.

Section 6.3.3 mentioned that a sample can be clustered using an “optimal”
number of clusters. The algorithm used to determine this in the implemented
tool is the Gap statistic. The discussion in Section 3.4 motivates this choice.
The Gap statistic requires the number of reference datasets B and a reference
distribution R as input. Tibshirani et al. do not give recommendations for how
to choose B [46]. However, in Dudoit and Fridlyand’s study, B = 10 was used –
a value that is used in this implementation too [13]. As for R, none of the two
choices considered by Tibshirani et al. is applicable here. Instead, a reference
node is constructed as follows:

1. Given the set of observed property set sizes, generate a reference property
set size NP uniformly at random from these.

2. Given the set of observed properties P , generate a reference property set
by picking NP properties uniformly at random from P .

3. Repeat steps 1 and 2 in corresponding versions for incoming and outgoing
relationships.

Since the Gap statistic is not deterministic, the presented value is decided
by a majority vote over 30 runs (ties are broken arbitrarily).

24That is, property names and relationship type names.
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Chapter 7

Experiments

This chapter describes the methods and results of the experiments conducted
to evaluate some of the behavior in the two implemented tools (see Chapter 6).
First, Section 7.1 explains the experiments concerning the results pagination
for both the Cassandra and the Neo4j tool. Then, Section 7.2 gives a detailed
description of how the implemented clustering algorithms in the Neo4j tool
perform on a real world dataset.

7.1 Results pagination

Although the general read performance of both Cassandra and Neo4j is given by
their implementations, the way in which clients query for data affects retrieval
speed. In both implemented tools, result sets can be paginated (see Sections
6.2.5 and 6.3.5). The only tunable parameter when paginating results is the
page size. Naturally, many more parameters than page size affect retrieval
speed, e.g., the number of network hops to the server, network load, server
load and how much of the requested data the server keeps in RAM already.
During the experiments, efforts were made to keep these factors fixed. Also,
note that the actual retrieval times measured are not the interesting parts of
the experiments; rather, the shape of the retrieval time curve as a function of
the page size is.

In the Cassandra tool experiment, a one-machine cluster using the default
Cassandra configuration held all data. The machine was a modern desktop
computer with a 3 GHz dual-core processor and 4 GB RAM running Windows
7. It was located one network hop away from the Spotfire client on a Gigabit
Ethernet. In the Neo4j tool experiment, the same machine was used. The
default Neo4j configuration was used, except that the maximum allowed Java
heap size was changed from 64 to 256 MB to enable the use of large page sizes.

In the Cassandra tool, setting the page size to P means that each query sent
through the Thrift API asks for at most P rows (columns cannot be paginated).
The data used for the Cassandra tool experiment was the first 100,000 rows of
the Airline On-Time dataset from 19871. These were all inserted into a single
CF. All NA-valued columns were omitted (remember: in Cassandra, there is
no need to enter dummy values for columns whose values really are missing).

1http://stat-computing.org/dataexpo/2009/1987.csv.bz2, accessed Jan 25, 2012.
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Numerical values were stored as 64-bit integers. String values were stored as
UTF-82 strings. In the experiment, all of these 100,000 rows were imported
into a Spotfire table, varying the page size between 10, 100, 1,000, 10,000 and
100,000. The total retrieval time from starting the import until there was a
table in Spotfire was measured and averaged over three runs. As a comparison,
the same experiment was repeated for a CF containing 100,000 rows where each
row contained one big column whose value consisted of as many bytes as any
Airline On-Time row. Thus, the same amount of data was imported in the two
cases. The results of these experiments are shown in Figure 7.1. Retrieval times
are shown in seconds; and note that the horizontal axis is logarithmic.

Figure 7.1: Average number of seconds needed to fetch 100,000 rows from a
one-machine Cassandra cluster for two different datasets, as a function of the
page size. The graph shows that the retrieval time curve has a similar shape in
the two cases.

In the Neo4j tool, setting the page size to P means that each query sent
through the REST API asks for at most P nodes (properties cannot be pagi-
nated). The dataset used for the Neo4j tool experiment was the entire Cineasts
Dataset described in detail in Section 7.2. All properties for all nodes were
fetched. The experiment was conducted in a similar fashion to the Cassandra
experiment, but page sizes 10 and 100 were not used since they would have
resulted in excessively long retrieval times. Figure 7.2 shows the results. Again,
retrieval times are in seconds, and the horizontal axis is logarithmic.

In the two figures, it can be seen that the retrieval time curve is always
convex. This means that optimizing the retrieval time is not as easy as picking
the smallest or greatest page size available, but rather searching for something
in between. Naturally, these experiments are far from exhaustive. The findings
can, nevertheless, serve as a starting point for a more thorough investigation for
a potential production implementation.

2UCS Transformation Format, 8 bits.
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Figure 7.2: Average number of seconds needed to fetch all properties from 63,045
Neo4j nodes as a function of the page size.

7.2 Clustering

To evaluate the performance of the implemented clustering algorithms in the
Neo4j tool, three experiments have been conducted. The dataset that has been
used is the Cineasts Dataset (CD) provided on the Neo4j website3.

CD originates from a Neo4j application example. It contains real world data
about movies, actors and directors, mined from themoviedb.org4, plus some
application-specific user data (the application added a social layer on top of
a movie database). CD contains in total 63,045 nodes, 106,665 relationships,
719,318 properties and five relationship types. From the domain, there are three
distinct entities: Movie, Person and User. Movies and Persons respectively
model movies and persons directly related to movies, i.e., actors and directors.
Users model users in the aforementioned social layer of the database. The node
counts of these respective entities are 12,862, 50,134 and 48. There is also the
reference node, which models nothing else than itself.

The five relationship types are ACTS IN, DIRECTED, FRIEND, RATED and ROOT.
ACTS IN is a relationship from a Person to a Movie indicating that the former
is an actor in the latter. DIRECTED works similarly but for directors. FRIEND

denotes a friendship from one User to another. RATED indicates that a User

rated a Movie. Lastly, ROOT is the relationship type used from the reference
node to connect it to the rest of the graph.

Before the experiments are described, note that the algorithms only con-
sider the set of structurally distinct nodes (see Section 6.3.3) as input. In CD,
although there are 63,044 nodes in total, there are only 140 distinct node struc-
tures; 115, 18 and 7 Movies, Persons and Users, respectively. Thus, it is possible
to use the entire dataset as input in the experiments. This is also the case in

3http://example-data.neo4j.org/files/cineasts movies actors.zip, accessed Jan 25, 2012.
4http://www.themoviedb.org, accessed Jan 25, 2012.
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the first experiment, but as shall be seen, something that will be varied in
experiments two and three.

In the first experiment, the number of iterations before K-medoids converged
was measured for uniformly randomized, K-means++ and Greedy seeding (see
Section 3.4). An iteration was considered to be computing steps 2 and 3 in
Algorithm 3.1. The dataset was clustered 500 times each for K = 1, 2, ..., 10,
and the number of iterations was then averaged and plotted against K. The
resulting graph can be seen in Figure 7.3. In the figure, mainly three things can
be observed. First, clusterings converge very quickly in general. In practice, this
means very fast execution times. Second, K-means++ seeding is consistently
superior to uniformly randomized seeding. Third, Greedy seeding gives the
fastest convergence for K ≤ 3 but ends up performing worst of the three for
K ≥ 7.

Figure 7.3: The average number of iterations before K-medoids converged. It
can be seen that, in general, clusterings converge very quickly, that K-means++
seeding consistently outperforms uniformly randomized seeding, and that Greedy
seeding is sometimes better and sometimes worse than the other two methods.

Given that the clustering algorithms converge sufficiently fast, the most in-
teresting part is to see what the resulting clusters look like and whether the
algorithms are able to distinguish between Movies, Persons and Users in a
sensible way when given the “correct” K. Therefore, the following second ex-
periment was conducted: For a given input, K-medoids with K = 3 was run 50
times, and from the resulting clusterings, the one with the smallest intra-cluster
dissimilarity was saved. In this clustering, clusters were labeled Movie, Person
or User according to a majority vote among each cluster’s members. Using
this labeling, purity was then computed. Purity is defined as the portion of
all objects that are assigned correctly, according to the computed cluster label-
ing [31]. These numbers were averaged over 500 runs for uniformly randomized,
K-means++ and Greedy seeding.

The experiment was run on three different input configurations; “115/18/7”,
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Number of Movies/Persons/Users
115/18/7 40/18/7 7/7/7

Freq. Purity Freq. Purity Freq. Purity
Movie/Movie/Movie 39 82 0 62 0 -
Movie/Movie/Person 43 95 58 89 11 67
Movie/Movie/User 10 86 0 71 0 -
Movie/Person/Person 3 95 13 89 4 67
Movie/Person/User* 5 100 25 99 71 98
Movie/User/User 0 87 3 72 12 66
Person/Person/User 0 - 0 - 2 67
Person/User/User 0 - 0 - 0 67

Table 7.1: Cluster label and purity percentages over three different data sets
when using uniformly randomized seeding. As shown, the algorithms have some
trouble giving the desired output (asterisk marked) Movie/Person/User when
the input is skewed towards Movies.

Number of Movies/Persons/Users
115/18/7 40/18/7 7/7/7

Freq. Purity Freq. Purity Freq. Purity
Movie/Movie/Movie 5 82 0 - 0 -
Movie/Movie/Person 47 95 30 89 3 67
Movie/Movie/User 16 86 0 71 0 -
Movie/Person/Person 3 95 6 89 0 67
Movie/Person/User* 29 100 63 100 92 99
Movie/User/User 0 - 1 72 4 66
Person/Person/User 0 - 0 - 0 67
Person/User/User 0 - 0 - 1 67

Table 7.2: Cluster label and purity percentages over three different data sets
when using K-means++ seeding. As shown, the algorithms have some trouble
giving the desired output (asterisk marked) Movie/Person/User when the input
is skewed towards Movies.

“40/18/7” and “7/7/7”. These differ in how many instances of each entity they
contain. The notation “x/y/z” denotes x Movies, y Persons and z Users. Thus,
“115/18/7” denotes the entire CD. For the other two input configurations, the
given number of distinct node structures for every entity were picked uniformly
at random from CD for each run.

The results are presented as rounded percentages in Tables 7.1, 7.2 and 7.3
for uniformly randomized, K-means++ and Greedy seeding, respectively. In
the tables, a relative frequency (“Freq.”) value F for a given combination of
entities C means that C was the resulting cluster labeling in F % of the cases.
A purity value P means that the average purity was P % for C. The desired
output Movie/Person/User is highlighted with an asterisk in all tables.

As can be noted by inspecting the tables, K-medoids together with uniformly
randomized and K-means++ seeding has a hard time producing the desired
output Movie/Person/User for the entire CD (“115/18/7”). This is because the
Movies simply outnumber the Persons and the Users, so cluster initializations
are not always well separated. When the distribution of entities is more equal
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Number of Movies/Persons/Users
115/18/7 40/18/7 7/7/7

Freq. Purity Freq. Purity Freq. Purity
Movie/Person/User* 100 100 100 100 100 99

Table 7.3: Cluster label and purity percentages over three different data sets
when using Greedy seeding. As shown, the algorithms always produce the desired
output (asterisk marked) Movie/Person/User and very close to completely pure
clusters.

in the input, the algorithms much more often produce a desired clustering with
high purity. It can also be seen that K-means++ seeding readily improves
the results as compared to the uniformly randomized seeding, and, lastly, that
Greedy seeding appears to be clearly outstanding in this regard.

In the third experiment, the performance of the Gap statistic was evalu-
ated. For an algorithm estimating the optimal number of clusters, in particular
two things are interesting to measure: how consistent the result is (since the
algorithm is randomized) and how close the result is to the “correct” num-
ber. Therefore, the Gap statistic was run 500 times and the number of times
each specific K was output was counted. Again, this was done using uniformly
randomized, K-means++ and Greedy seeding when clustering. Also, the same
input configurations as in the second experiment were used. Figures 7.4, 7.5
and 7.6 show the results for “115/18/7”, “40/18/7” and “7/7/7” respectively.
In the figures, for a given number of clusters K, the first, second and third
bar respectively show how often that particular K was output using uniformly
randomized, K-means++ and Greedy seeding. The number of clusters ranges
from 1-7 since this covers all the outputs.

Figure 7.4: Estimates of the optimal number of clusters by the Gap statistic
for “115/18/7”. The bars within each group, from left to right, respectively
represent uniformly randomized, K-means++ and Greedy seeding.
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Figure 7.5: Estimates of the optimal number of clusters by the Gap statistic for
“40/18/7”. The bars within each group, from left to right, respectively represent
uniformly randomized, K-means++ and Greedy seeding.

As can be observed, none of the seeding methods produce K = 3 most
often for “115/18/7”. For “40/18/7”, they all do. Finally, for “7/7/7”, both
uniformly randomized and Greedy seeding do. It can also be noted that Greedy
seeding produces K = 3 in a large majority of the cases for both “40/18/7” and
“7/7/7”.

55



Figure 7.6: Estimates of the optimal number of clusters by the Gap statistic for
“7/7/7”. The bars within each group, from left to right, respectively represent
uniformly randomized, K-means++ and Greedy seeding.
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Chapter 8

Discussion and future work

In this chapter the implemented tools the overall approach are discussed. Also,
the points considered most important to investigate further are mentioned. Sec-
tions 8.1 and 8.2 discuss the Cassandra and Neo4j tools, respectively. Sugges-
tions for future work are presented for both of these. Section 8.3 discusses
whether the tools’ sample and page size should be determined automatically by
the application. In Section 8.4, the architectural differences in terms of client
and server execution in the two implemented tools are discussed. In Section 8.5,
Spotfire’s inherent fit for NoSQL data is discussed. Section 8.6 finally discusses
which role the user’s level of expertise has for solving the problem of supporting
NoSQL systems.

8.1 Cassandra tool

In the implemented Cassandra tool, only one sampling method is mentioned.
This method’s resulting sample is based on the first N rows in the sampled
(S)CF (see Section 6.2.3). There is one issue with this method that deserves
to be mentioned. All the returned rows are consecutive in terms of the sort
order, which, depending on how the data is modeled, might have some actual
meaning, and could therefore limit the representativeness of the sample. This,
however, is inherent to Cassandra’s query model and is hard to get away from.
Although not obvious exactly how it could be implemented, it would be useful to
have alternatives to this sampling method to avoid this issue. Offering multiple
sampling methods are, though, not as important here as in the Neo4j tool since
it is assumed that the designs of the rows within the sampled (S)CF are similar,
whereas in Neo4j different nodes could model different entities. It should be
noted that if the cluster is configured to use the RandomPartitioner, rows
are returned semantically randomly ordered; at least as random as the MD5
algorithm allows for.

As for types, it would be possible to allow users to write their own type
converters between Cassandra bit sequences and the Spotfire types. These could
then be used when importing values from Cassandra into Spotfire. One way to
enable this is by letting users input DLLs1 that implement some type converter
interface.

1Dynamic-Link Libraries. Files containing functions that can be shared between programs.
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In Section 6.2.4, it is described how the data function is implemented in
On-Demand mode by using the API method get index slices. This approach
is feasible only when at least one of the filtered columns is indexed. However,
in CFs, column indexes might not have been built. And even worse, in SCFs,
column indexes can never be built (see Section 4.3.1). In such cases, there is no
selection mechanism in Cassandra. In the implementation, relevant columns for
all rows in the underlying CF or SC are then fetched, and filtering is performed
client-side. Naturally, this is prohibitively expensive, and in practise probably
an infeasible way of working. However, this is a limitation (from this point
of view) of Cassandra that has to be dealt with. To avoid these problems, it
could, for example, be enforced that On-Demand imports are only allowed when
columns are indexed, or suggested to the user to build indexes when configuring
the import.

The most relevant future work for the Cassandra tool is considered to be
adding support for more types and exploring whether it is possible for a more
sophisticated type inference algorithm than the one currently used.

8.2 Neo4j tool

The Cassandra and Neo4j tools conceptually differ in that in the former, it is
assumed that there is exactly one entity per sampled structure (i.e., the (S)CF),
whereas in the latter, it is assumed that there are possibly several entities per
sampled structure (i.e., the graph). This was the reason for adding clustering
support in the Neo4j tool.

When trying to infer a schema by sampling and clustering, there are two
error sources. First, the sampling might not give a representative sample. This
could either be caused by a too small sample size, or an inappropriate sampling
method. Second, the clustering might not give the “real” clusters. Thus, to
improve the overall schema inference, both of these parts can be improved on.
Naturally, the clustering deserves more focus, as it is harder to get right.

Looking back on the results from the clustering experiments in Section 7.2,
although it is not an exhaustive evaluation, it can be seen that convergence speed
is not a problem. Another observation is that the choice of the seeding method
obviously has a big impact on the end result. As it seems, the Greedy seeding
is superior to both uniformly randomized and K-means++ seeding, at least for
this particular dataset. When K is the real number of entities and entities
are truly separable, this makes sense. As long as each cluster gets initialized
with an instance that is rather representable for its entity, the other instances
will be clustered correctly, given a good distance measure. If similar results
can be achieved for other datasets, the clustering is probably very useful to the
user when Greedy seeding is used. This cannot be said about the uniformly
randomized and K-means++ seeding, as the results tend to be very sensitive to
skewed input.

As for the Gap statistic, its usefulness is hard to determine from only these
experiments. For Greedy seeding, it is correct for two out of three datasets.
When it is wrong, it is wrong only by one. Even if the Gap statistic does not
determine K perfectly, perhaps it is useful to the user anyway, because at least
it provides a hint in the right direction – especially when K is determined from
a majority vote over multiple runs.
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When extracting by traversal, a starting node id has to be given. If the user
knows nothing about the graph, a reasonable starting node id might be hard
to come up with. However, for Neo4j, there is a graph visualization tool called
Neoclipse that can be useful in such situations. With Neoclipse, the user gets to
see the overall structure of the graph. If some node that is interesting to start
traversing from is found, the user can simply note that node’s id, and later use
this in a Spotfire analysis. Something similar to Neoclipse within Spotfire could
be interesting to have for general graphs.

For the Neo4j tool, the following items, in no particular order, are considered
most interesting for future work:

• The sampling methods could be further developed. This does not neces-
sarily mean exposing more methods to the user; perhaps it is possible to
mix some existing methods into a powerful hybrid.

• A more accurate distance measure could be developed, taking more pa-
rameters into consideration, e.g., properties on found edges and types of
found node properties.

• Existing seeding methods could be evaluated on more datasets, and per-
haps alternative seeding methods could be implemented and compared to
the existing ones.

• More experimentation on the Gap statistic and a comparison to other
methods for estimating the optimal number of clusters. Depending on
how this turns out, perhaps the feature is not useful to the user at all.

8.3 Sample and page size parameters

When sampling a database in the implemented tools, sample size has to be given.
When data is retrieved, it is paginated. For this, page size has to be given.
Naturally, the user’s burden should be minimized, so the fewer parameters, the
better. Both sample size and page size are parameters that can be discussed
whether they should have to be given by the user or if the application should
be able to automatically assign reasonable values for them.

There are inherent tradeoffs involved with both. The greater the sample
size, the more representative the sample is, but the more time and resources
are needed to collect it. For the page size, the tradeoff can be noted from the
convex shape of the retrieval time curve presented in Section 7.1.

For the sample size, defining the sweet spot involves subjectivity. There is,
though, guidance in the statistics literature to how large a sample size has to
be before it is representative. Presenting a sensible value based on statistical
theory could be useful to guide the user, but this value could also be different
from what the user desires.

In contrast to the sample size, defining the optimal page size is not subjective.
It does, though, depend on the specific setting in terms of number of network
hops to the servers, network load, and so on. Although these factors cannot
easily be taken into consideration dynamically, some reasonable value could be
computed and presented as a starting point for the user. For various reasons,
though, the user might want to override this.
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As a natural conclusion of the discussion above, perhaps it makes most sense
to suggest values for both sample size and page size, but that they both can be
edited by the user.

8.4 Client vs. server execution

In the Cassandra tool, when a database is sampled, the resulting sample is sent
over the network to the Spotfire client. The sample analysis is then done client-
side. In contrast to this, when a Neo4j instance is sampled in the Neo4j tool, the
sample is kept on the server and is also analyzed server-side. Only the resulting
schema is sent to the Spotfire client. This illustrates two different architectural
approaches.

Naturally, if the server can cope with the extra load of taking care of the
entire schema inference procedure, this is advantageous, since less data has to
be sent over the network and the Spotfire client avoids the extra load. The
only reason the Cassandra tool does not run the schema inference server-side is
because there is no built-in support for things like server plugins, like in Neo4j.
Notice, though, that for schema inference this is not necessarily a major problem
since a schema does not have to be inferred for every import – the schema could
be inferred only once (or periodically, e.g., during nights) and then saved in
Spotfire somewhere for reuse.

Client vs. server execution is not only relevant when inferring schemas,
but in general for functionality that the underlying database does not pro-
vide. Another example of this is the filtering that must be performed in the
Cassandra tool when there are no indexes (see Section 8.1). Running this filter-
ing server-side instead of client-side could mean substantial performance gains
on the overall retrieval time. To enable working with truly large data sets,
server, or rather cluster, execution is probably necessary (cf. approaches in
Dremel/Hive/Jaql/Pig/Tenzing mentioned in Chapter 2).

8.5 Retrofitting

Section 5.1 mentions that one of the effects of using a tabular model in Spotfire
is that importing data from tabular sources is straightforward modelwise. Since
NoSQL systems generally do not use the relational model, bridging the model
differences is not as easy. Of course, this is the general problem in the thesis
– but it could be discussed whether the relational model is appropriate at all
in applications like Spotfire that wish to support NoSQL data sources. While
feasible, retrofitting NoSQL data into a tabular representation requires assump-
tions and heuristics and certainly does not always end up elegant. Perhaps a less
rigid model is more appropriate. On the other hand, at least in Spotfire’s case,
this would require the entire platform to be redesigned, to adapt to something
that might anyway change tomorrow again.

Furthermore, Spotfire is built to have all data in-memory. For most desktop
computers and workstations, this limits the size of the dataset to at most a few
gigabytes. Many datasets stored in NoSQL systems are much bigger than that,
which hints that the in-memory model of Spotfire perhaps is not that well-suited
for NoSQL data in general. This problem can, though, be alleviated by setting
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up sensible On-Demand analyses. This has the disadvantage that constantly
working with subsets of the dataset does not give a good overview.

8.6 User level of expertise

Depending on the user’s level of expertise and knowledge about the dataset
that should be analyzed, different functionality could be exposed. For example,
a user who already knows the schema of the dataset does not gain any insight by
sampling and subsequently having a schema inferred for it. The only advantage
with this approach for such a user is that the schema does not have to be
entered manually, and thus potential typing errors are avoided. If all users were
like that, less effort should be put on schema inference – and perhaps clustering
can be scrapped completely. If users in general are more novice in this respect,
schema inference is an important part of the analysis, as the user gets to know
the dataset through this procedure.

It would also be possible to expose a simpler text-based interface that lets
users programmatically define how to query for data and which structure to
map to certain columns. For example, the Spotfire import dialog could provide
a text box in which users are given programmatic access to some parts of the
underlying data store. In this text box, they can code their own programs
extracting data from the NoSQL system. Less effort has then to be put on
data model differences, and Spotfire merely has to provide a connection to
the underlying data store. This approach is conceptually similar to Tableau’s
approach mentioned in Chapter 2, except that the query mechanisms of the
underlying system can be utilized and that the cluster load gets smaller as
less data has to be processed. Naturally, this approach would be targeted at
expert users with programming abilities. However, this functionality does not
have to be available only to these users. If there is a query language that is
sufficiently easy to use, non-programmers can probably also use it. For example,
Google reports that their SQL supporting query engine Tenzing has been widely
adopted by the non-engineering community within the company for analyzing
data [7].
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Chapter 9

Conclusion

The overall purpose of the thesis has been to investigate how NoSQL databases
can be supported in the Spotfire platform (see Section 1.2). As shown by the
NoSQL introduction and survey (see Section 3.3 and Chapter 4), data model
differences and lack of explicit schemas and a general query interface in NoSQL
systems are the reasons for making this a nontrivial problem. However, by
using some assumptions and heuristics, the suggested solutions (see Chapter 5)
together with the implemented tools (see Chapter 6) showed how this problem
and its related issues can be solved.

The solutions are based on first finding a data structure in the underlying
NoSQL system that stores a collection of entity instances. Modelwise, these
instances are easily mapped to Spotfire’s tabular data model. Schemas for
such structures can be found by sampling the database, possibly followed by a
clustering. As for data extraction, an in-depth analysis of the particular system’s
query functionality is required, and parts of it can be exposed to the user to
enable efficient extraction.

The suggested solutions are not claimed to be complete. Rather, the work
in this thesis can serve as a starting point for more thorough investigations or
as a basis for something that can be extended.

Other approaches are conceivable too. One suggestion is to only offer the
programmatic approach discussed in Section 8.6. Obviously, this has the dis-
advantage that only experienced programmers can use it. On the other hand,
perhaps it is reasonable to require that an organization using Spotfire has at
least one experienced programmer who can set up ad hoc analyses – or TIBCO
Software could offer this as a consulting service.

As briefly discussed in Section 8.5, a completely different approach would
be to redesign Spotfire to support a less rigid model, allowing for, e.g., complex
data. In this way, many of the model differences between NoSQL systems and
Spotfire could be avoided. However, because there is no general NoSQL query
interface, extracting data would still have to be tailored for each supported
system. Also, changing the data model in Spotfire likely requires a substantial
amount of work. Naturally, the final choice of how, or even if, to support NoSQL
databases in Spotfire depends not only on technical details, but also on business
considerations and what customers ask for.

Finally, it is concluded that if support for another NoSQL system shall be
developed, this will require its own tailored solution. The designs of the two
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implemented tools support this claim. Most likely, not even systems within the
same NoSQL family can be handled generically. At least, however, the overall
approach used in the thesis can be reused.
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