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Abstract

The development of information society in recertaites has enabled collecting, filtering and
storing huge amounts of data. These data must kibefuprocessed to gain valuable
information and knowledge. The scientific field bleg with extracting information and
knowledge from data has evolved rapidly to copdlie extent and growth of information
sources the number of which has geometrically ss®d with the appearance of the World
Wide Web. All traditional approaches in informatiogirieval, knowledge acquisition, and
data mining must be adapted for the dynamic, hg&reous, and unstructured data on the
Web. Web mining has come into being as a fullygksdi research discipline.

The Web brings much specificity with it. The moatient feature is its link structure. The
Web is a dynamic, linked network of nodes. Web pagentain links to other pages with
similar contents, of a specific or more generakrest, or otherwise related. Soon it was
discovered that the link structure of Web is a vasburce of information and that it presents
a wonderful field for applications from the sociaétwork domain as well as from the
mathematical graph theory. Brin and Page have dtduhthe interlinkage of Web pages to an
extensive research which resulted in the appearainttee now famous article “The anatomy
of a large-scale hypertextual Web search enginel988 introducing Google — a search
engine for day-to-day usage by the whole Web conitywifihe success of Google has been
very much due to the underlying algorithm calledgéRank, which makes use of the
interconnection of billions of Web pages recursiveb as to identify popular, prestigious,
significant, or authoritative sources on the Webe Tdescription of PageRank has been
published and this results in a steady flow of mesearch papers on link-based methods that
finally introduce a completely new group of algbnts — ranking algorithms. Each technique
has its particular properties and is aimed at appiwith specific problems. Although
originally conceived for the Web, ranking algorithigre usable in every environment that can
be modelled as a graph.

The innovative portion of this doctoral thesis dewlith the definitions, explanations and
testing of modifications of the standard PageRaakmbila adapted for bibliographic
networks. The new versions of PageRank take intowrd not only the citation but also the
co-authorship graph. We verify the viability of thew algorithms by applying them to the
data from the DBLP digital library and by comparthg resulting ranks of the winners of the
ACM SIGMOD E. F. Codd Innovations Award. The rarggnbased on both the citation and
co-authorship information turn out to be betterntithe standard PageRank ranking. In
another part of the disseration, we present a ndetbgy and two case studies for finding
authoritative researchers by analyzing academic \8f&ds. In the first case study, we
concentrate on a set of Czech computer sciencertdepas’ Web sites. We analyze the
relations between them via hyperlinks and find thest important ones using several
common ranking algorithms. We then examine theartstof the research papers present on
these sites and determine the most authoritatieeiCauthors. In the second case study, we
do exactly the same with French academic compuiense Web sites to find the most
significant French researchers in the field. W® alscuss the weak points of our approach
and propose some future improvements. To the estiroknowledge, it is the only attempt
ever made at discovering authoritative researcfrerm the above countries by directly
mining from Web data.

Keywords: Web mining, Web crawling, ranking algorithms, bdgraphic networks,
citations, co-authorships, authorities, bibliogragPageRank.



Résumé

Le récent développement de la société de I'infoiznad permis de collecter, de filtrer et de
stocker de grandes masses de données. Le probmeamtenant d’exploiter ces données
pour obtenir des informations et des connaissapedientes. Les techniques d’extraction
des informations et des connaissances a partiodeégs ont rapidement évolué a cause de la
forte croissance des sources d’informations donbhabre a augmenté de fagon exponentielle
apres l'arrivée du Web. Il faut maintenant adapbetes les approches traditionnelles de la
recherche d’information, de I'acquisition des cdmsances et de la fouille de données aux
données dynamiques, hétérogenes et non strucyuéss trouvent sur le Web. La fouille du
Web est devenue une discipline de recherche reeonnu

Le Web a beaucoup de spécificités. La propriétplla caractéristiqgue est sa structure de
liens. Le Web est un réseau de noeuds liés etassi un réeseau dynamique. Les pages Web
contiennent des liens vers d’autres pages aveontertu similaire, intéressant ou lié de fagon
guelconque. On a découvert assez tét que la steud® liens du Web est une ressource
énorme d’information et qu’elle représente un damatiypique d’application des réseaux
sociaux aussi bien que de la théorie des graphemahématiques. Brin et Page ont
largement étudié l'inter-connection des pages Wl a résulté en la publication de leur
célébre article « The anatomy of a large-scale hgpmial Web search engine » en 1998.
Dans leur article ils ont présenté Google — un rauvmoteur de recherche sur le Web qui est
utilisé par des millions d’utilisateurs chaque jusqu’a présent. Le descriptif de PageRank a
été publié et cela a eu pour effet la publicatigyfiente de nouveaux articles scientifiques
sur les méthodes basées sur les liens. Les chescbefinalement créé un nouvel ensemble
d’algorithmes — des algorithmes de classement ingn&lgorithms). Chaque méthode a ses
gualités spécifiques et est réservée a la résalud® problemes differents. Méme si les
algorithmes de classement ont été congus pour ke d\rigine, ils sont applicables a tout
systeme modélisable sous forme de graphe.

La partie innovante de cette these porte sur Idmitiens, les explications et teste des
modifications de la formule standard de PageRambt#geé aux réseaux bibliographiques. Les
nouvelles versions de PageRank tiennent compteseolement du graphe de citations mais
aussi du graphe de collaboration. On vérifie I'eggiilité des nouveaux algorithmes en
traitant des données issues de la bibliotheque nguaeDBLP et en comparant les rangs des
lauréats du prix « ACM SIGMOD E. F. Codd Innovasolward ». Les classements reposant
sur les informations concernant a la fois les icite et les collaborations s’averent meilleurs
gue les classements générés par PageRank stabdasl.un autre chapitre de la thése, on
présente une méthodologie et deux études de caero@ant la recherche des chercheurs
faisant autorité en analysant des sites Web acadésii Dans la premiére étude de cas, on se
concentre sur une collection de sites Web des dbioes d’informatique tcheques. On
analyse les relations entre eux a l'aide de liensore trouve les laboratoires les plus
significatifs en utilisant plusieurs algorithmesdaluation courants. Ensuite, on examine le
contenu des articles de recherche trouvés suiitesses on détermine les auteurs tcheques les
plus importants. Dans la deuxiéme étude, on faicEment la méme chose avec des sites
Web des laboratoires d’informatique francgais paauver les scientifiques frangais les plus
eéminents dans ce domaine. On discute égalemendiffesultés de notre approche et on
propose quelques améliorations envisageables ddogit.

Mots-clés: fouille du Web, robots Web, algorithmes d’évaluaticéseaux bibliographiques,
citations, co-auteurs, authorité, PageRank bibdipgique.



Abstrakt

Rozvoj inform&ni spolénosti v poslednich desetiletich umiaje shroma&ovat, filtrovat a
ukladat obrovska mnozstvi dat. Abychom z nich distenné informace a znalosti, museji se
tato data dale zpracovavat.cdécky obor zabyvajici se ziskavanim informaci daatiez dat
se rekotre vyviji, aby zachytil vysoké tempo rigstu zdrofi informaci, jejichz pdet se po
vzniku celos¥tové pavdiny (webu) zvySuje geometrickdadou. VSechny tradéini pristupy z
oblasti ziskavani informaci, dobyvani znalosti dodani z dat se musejitippisobit
dynamickym, heterogennim a nestrukturovanymimatz webu. Dolovéani z webu (web
mining) se stal plnohodnotnowdeckou disciplinou.

Web ma mnoho specialnich vlastnosti. Tou nejv§agai je jeho struktura odkézmezi
strankami. Web je dynamickou, propojenou siti. Webstranky obsahuji odkazy na jiné
stranky s podobnym obsahem nebo na zajiniaj@ak sgiznéné dokumenty. Velmi brzy se
zZjistilo, Ze webova struktura odkaze ohromnym zdrojem informaci a Zdepstavuje
rozsahlé pole aplikaci z oboru socialnich siti éematické teorie graf Brin a Page podrobili
propojeni webu intenzivnimu vyzkumu a v roce 199@8ali dnes uz slavng¢lanek ,The
anatomy of a large-scale hypertextual Web searginef) v nimz swtu predstavili Google —
webovy vyhledavé pro kazdého. Usgh Googlu spéiva predevdim v algoritmu pro
hodnoceni webovych stranek nazvaném PageRank. yigriva struktury webu k tomu, aby
v ném rekurzivni metodou nalezl popularniilefité, vyznamné a autoritativni zdroje.
Technicky popis PageRanku byl publikovan &l ma nasledek doslovaiipal dalSich
odbornych ¢ldnki 0 metodach zaloZenych na propojenitusit€, které nakonec daly
vzniknout Upl@ nové skupig algoritmi — hodnoticim (ranking) algoritim. Kazda metoda
ma své zvlastnosti a umi se vyadat s ufitymi problémy. Akoliv byly hodnotici algoritmy
puvodne vymysleny pro web, jsou pouZzitelné v kazdém realit které Ize modelovat grafem.

Inovativni ¢ast této doktorské prace se zabyva definicemi, &hsvim a testovanim
modifikaci standardniho vzorce PageRankuutsapeného pro bibliografické &it Takto
vzniklé nové verze PageRanku berou v Gvahu nej&in¢igraf, ale i graf spoluautorstvi.
Pouzitelnost novych algoritimovétujeme jejich aplikaci na data z digitalni kninovbBLP.
Ziskané Zebcky vyznamnych autdr porovnavame s drziteli ocemi ACM SIGMOD E. F.
Codd Innovations Award. Ukazujeme, Ze hodnocenbZamalé jak na citacich, tak na
spolupracich dava lepSi vysledky nez standardnieRagk. V jiné ¢asti disertace
piedstavujeme metodologii a &vpiipadové studie vyhledavani autoritativnickkden
analyzovanim univerzitnich wébPrvni studie se zatfuje na mnozinu webovych stranek
ceskych kateder informatiky. Zkoumame zde propojerézi jednotlivymi katedrami a
nékolika bEZnymi hodnoticimi metodami ozéigieme ty nejdlezitejSi. Poté analyzujeme
autory. V druhé fipadové studii provadime ten samy postup s frarstgumi univerzitnimi
weby pro nalezeni nejvyznaggich francouzskych vyzkumnik v oboru informatiky.
Rovrez se zmhujeme o slabych strankach naSetistppu a navrhujemegkolik budoucich
vylepSeni. Na zakladnaSich znalosti konstatujeme, Ze vySe uvedendesjsdu jedinym
dosud publikovanym pokusem o vyhledavani autovitéth wdci z obou zemi Ppmym
dolovanim z webovych dat.

Kli ¢éova slova: dolovani z webu, webovi pavouci, hodnotici algoyitrbibliografické si,
citace, spoluautorstvi, autority, bibliografickygedrank.
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Introduction

Introduction

At the dawn of the World Wide Web in the early 18996obody actually knew what kind of

medium was emerging. The concept of hypertext cbibg Tim Berners-Lee was not

generally known to the public, and the underlyiaghinological infrastructure, Internet, was
not much spread beyond some university institutidiss was to change rapidly within the

following decade in a breath-taking pace. MilliaafsWeb servers began to host millions of
documents of all kinds, and the Web’s dimensioabtied every six months. It became clear
very soon that the new medium had a huge potetatiakploit. Sergey Brin and Larry Page

were among the first to recognize the amazing pds&s of what was now called the World

Wide Web and to make practical attempts to tuintd something more manageable. From
1996 to 1998, they designed and implemer@ewgle a search engine for the Web. They
were aware that the Web had one particularity steatdard information retrieval (IR) systems
of that time did not handle well. This feature whe presence of hyperlinks between Web
documents. Brin and Page realized that links dichage just a navigational function, but that
they were a kind of endorsement of a document lnerodocuments. This analogy to

bibliographic citations between publications malden invent and incorporate an algorithm
calledPageRankn their Web search engine.

Motivations

PageRank is a technique to order (rank) Web doctsmby importance, significance,
authoritativeness, quality, prestige, influencdugaor whatever we may call it, but not by
relevance. It is query independent, i.e. it is goeiputed and the ranks of Web pages are
known long before they are used to sort the redoltsa given user query. PageRank is
recursive — it assigns high ranks to pages thdirdeed to by documents that themselves have
a high rank. With regard to the immense scope @MWeb (billions of documents), PageRank
must be calculated iteratively (i.e. approximatelghd it is sometimes called the world’s
largest matrix computation. The exact synthesBageRank and other IR techniques in order
to detect relevant and high quality Web pages oppetary information and know-how of
commercial Web search engines which, having seentrttfmendous business success of
Google, have all added some link-based evaluationVeb documents to their ranking
schemes.

Google’s PageRank was one of the first large-sapfdications of Web structure mining, a
subdomain of Web mining besides Web content and Mgealge mining. | guess that it was in
particular the commercial success of Google thggéred interest in Web mining and Web
structure mining. Many researchers, including meehsince tried to explore and explain
PageRank’s properties, speed up its computaticmpgse its modifications, or adapt it for
graphs different from the Web graph. The classaoking algorithmshas come into being,
and Web mining has become a research disciplirits ofvn. The seminal book on this topic
by Soumen Chakrabarti from 2002 is being prepaoedhfe second edition as disclosed in a
personal communication with the author. The Wethéslargest data repository mankind has
ever had, and the information excess can be redudgdwvith filtering techniques that detect
not only topic-relevant but also high quality infeation. Therefore, | reckon that the need for
the detection of authoritative sources in the Wb still be growing.

Goals and results achieved
The main objectives of this doctoral dissertatgam be divided into two groups. First, |
wanted to modify the PageRank formula and embed some parameters from a co-
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authorship graph so as to work better with citatibetween authors. In other words, | wanted
the modified PageRank to produce a “fairer” rankoigauthors by importance that is based
on the citation as well as collaboration informatidMy assumption was that a citation
between two frequently collaborating researcheras \ess valuable than that between two
authors that had never published together. ThedatdnPageRank does not enable such a
distinction as it is based on the citation graply.oRelated work on this topic includes
publications by Liu at al. [Liu2005] and Sidiroposl et al. [Sidiropoulos2005]. Second, |
wanted to apply some ranking algorithms, not nesdgsnovel ones, to some real and raw
data in order to find authoritative institutionsdaresearchers in a domain close to mine. In
particular, 1 was interested in influential computeience departments in the Czech Republic
and in France and wondered what authors would appeasignificant after analysis of
research papers found on the Web sites of thosartegnts. In my view, no such analysis
had ever been published. One can encounter sonilarsivork in the articles by Thelwall and
his colleagues [Thelwall2001, Thelwall2002, Li200Biit they are interested in universities
rather than departments, and they do not analyzendents on the Web sites.

Coherently to the goals above, | consider my mamtrébutions to be:

» Bibliographic PageRank | proposed and implemented several modificatiointhe
standard PageRank formula so as to better suitegbd for a fair ranking of authors.
Unlike the standard PageRank, the new formula taktesaccount citations as well as
collaborations of authors. | tested the new methiwdhe data from the DBLP digital
library and compared the new author rankings waitist of ACM award winners. |
can conclude that the new methods generally odparPageRank.

* Mining the Czech and French academic Wehl also mined Web sites of Czech and
French computer science departments and deternaingtbritative institutions and
researchers. Due to the noise in the data, | ptefenderline it as a unique case study,
the first of its scope and domain, in which | congiWeb mining and information
extraction techniques. The methodology | use isequeneral and is thus applicable to
completely distinct fields as well.

Thesis outline and ommissions

In chapters | and Il, | discuss state-of-the-aprapches to Web structure mining. — Web
crawling, a prerequisite of mining, in Chapter damanking algorithms for Web pages (or
sites), the main tool for the detection of auttadnge sources on the Web, in Chapter Il
Chapter IIl deals with social networks, a domaiattstrongly influences Web structure
mining. In Chapter IV, | present a few systems lade on the Web that may help, among
others, identify influential researchers and thuaynbe used in comparisons of author
rankings. | introduce DBLP here, further employed Ghapter V on the bibliographic

PageRank, the main innovative part of the thesidedcribe experiments with mining the
academic Web in Chapter VI, and | summarize teeattation afterwards. Some results from
chapters V and VI are shown in the appendix.

At the end of the thesis, | enclose a list of cwéundred article references and several dozens
of Web references. Actually, there could be moréhefn — in an order of magnitude! Such is
the scale of Web mining. Thus, | made a numbemagsions in the state-of-the-art sections
to keep a reasonable scope of the thesis. Forneestd do not cover vertical (focused)
crawling, information extraction, PageRank energegenvector theory, the work by Mike
Thelwall and others.
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I Web Graph and Its Crawling

The World Wide Web is a gigantic dynamic networkreuntly containing tens of billions of
nodes [e.g. Gulli2005]. Web pages appear and desappheir contents are modified. Links
between pages are added or removed and the WeHayf is not what it was yesterday. How
are the new Web documents created? Which nodebajolink to most frequently? What
does the Web graph look like? Are there any regidarto observe? The behaviour of social
networks, one of which is the Web graph, is fanfroeing fully understood [Newman2003].
Nevertheless, much research has been devoted tantigsis of the Web as a graph with
view of answering some of the questions asked. dalide to study the Web, we need to
collect the Web data first. This process knowrciasvling is not trivial, and we present the
state-of-the-art knowledge and current trends énséicond part of this overview chapter.

.1  Web as a Graph

The very early simple random graph model with thmber of nodes and the same uniform
probability p of the appearance of eachmh — 1) possible edges does not seem to be in
accordance with the real Web graph [Chakrabarti2q2243]. This model had to be
improved and verified in practical experiments.c®inthe Web graph model is not the key
element in this thesis, we just briefly mention taits interesting properties, namely the
power law degree distribution and the bow tie d$tme; and we refer to the most recent
survey articles on this topic [Chakrabarti2006, Bim2007]. Moreover, the latter introduces a
free software library for generating and measurdmme graphs. Among others, a deep
understanding of Web graph models may have a gmgact on the design and
implementation of ranking algorithms for Web sitds best-known of which we cover in
detail in sections 11.2 and 11.3.

.1.1 Power Law Degree Distribution

One of the first phenomena of the Web observed tapower law degree distributiort
answers the question with what frequency Web pagjisa certain in- or out-degree occur in
the Web graph. The power law resembles the Zipfig in which an object ranked on the k-
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th position by the number of occurrences occursamately N/k-times where N is the total
number of all objects’ occurrences. In the powaer, Ik is not a rank but a degree size, and
there is an exponent over it. Thus, the probaedi®r(g(p) = k) and Pr(g.{p) = k) of Web
pagep having an in-degree k or out-degree k are thevioig:

Pr(d,, (p) = k) D/k™ (1)
Pr(d,, (p) = k) D1/k (1-2)

where al and a2 are coefficients varying from 2.1 to 2.7 [Kumar29®Barabasi1999,
Kleinberg1999a, Broder2000]. See Figure 1.1 for phets of degree distributions. Note that
the power law holds also for the Web graph wheraigite links have been removed (denoted
as “remote only” in the figure).

Although the power law degree distribution has beéetermined empirically, it can be proven
theoretically as well. Barabasi and Albert [Barab839] proposed a Web-suited random
graph model, in which new nodes are continuoustieddand preferentially attached to nodes
that already have a large in-degree. This is sonssticalled the “winner takes all” or “rich
get richer” scenario (compare with PageRank iniBedt.2). This model was later amended
by Pennock et al. [Pennock2002] so as to give pegsillar nodes a greater chance to get in-
links from newly added nodes. This refinement wamfl to better fit the power law function.

In-degreese (total, remote-onlyl distr. Out-degree (total, remote-onlyl distr.
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Figure 1.1: Power law of in and out-degree disttifns of Web pages [Broder2000].
1.1.2 Bow Tie Structure

When analyzing the Web structure, Broder and hidkeagues [Br6der2000] discovered
something unexpected. They examined two Web crafvisbout 200 million pages and a
billion and a half links in a half-year interval canepeatedly found out that the Web'’s
connectivity was limited by a global structure simow Figure 1.2. They called it the “bow tie
structure” of the Web. In their experiments, thealtlg connected Web (i.e. connected when
treated as an undirected graph) made up 90% aofhioée Web crawled and consisted of four
parts of about the same size. There wasangly connected co&CC), in which each node
has a directed path to any other node, and threklweonnected components — IN with
nodes having paths into SCC but not reachable ftere, OUT with pages reachable from
SCC but with no paths into SCC, atshdrils which were weak components attached to IN
and OUT. Some pages in OUT were reachable fromdNubes but not vice versa. Besides
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the pages mentioned so far, there were also sonmillibn Web pages forming separate
disconnected components.

Broder also made assumptions about the compongmtstionality. He suggested that the
pages in IN were newly created pages not yet haveen linked to from other pages. The
pages in OUT might be corporate Web pages thatrnaviat to the “centre of events” in
SCC. The authors of the experiment showed thatlidlmmeterof SCC was 28 at least. The
diameter is the maximum of the shortest paths etwany two nodes in that component.
(See also Section 111.3.) As for the graph as alehthey determined that if there was a
directed path between two nodes, its length wasri@verage. If there was an undirected
path, its average length was six. Finally, the argtiound out that the distributions of weakly
and strongly connected components also followegbtveer law (see Section 1.1.1). Although
the experiments above are relatively old now, thenclusions were confirmed later on. Dill
et al. [Dill2002] verified the existence of the baw structure even in subgraphs of the Web,
e.g. given a top-level domain or a keyword occuregretc. Nevertheless, the Web is a
dynamic organism, and it is unsure whether it siill adhere to the bow tie model in the
future.

Tendrils
4/ T~

Tubes

Disconnected 7<>C$ @

components =

Figure 1.2: The bow tie structure of the Web [Brir00].

.2  Web Crawling

Web crawling or spidering is the process of collegtWeb pages and other Web documents
by recursively following the out-links from a sdtstarting (seed) pages. Its primary goal is to
create a corpus of Web documents that could subsdgube indexed by a Web search
engine in order to respond to users' requests.yEsegirch engine relies on its indexed corpus
and so the way of its creation is essential. The carrently played by Web search engines in
the world is incontestable, and, therefore, it asnewhat surprising that crawling is still
under-represented in the Web mining research. Thg@ergnents described in
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Chapter VI could not have been conducted withoutbVeewling techniques, so we find

useful to incorporate a section on this topic irs thissertation. Unless we indicate another
source of information, the facts presented hereecétom our own experience, the most
comprehensive overview of Web crawling strategiesr oy Baeza-Yates et al. [Baeza-
Yates2005] or from the Web mining book by Chakrélj@hakrabarti2002, ch. 2].

1.2.1 Architecture of a Web Crawler

Figure 1.3 depicts the typical architecture of agéascale Web crawler. By a large-scale
crawler we mean a system capable of gatheringbgliof documents from the current World
Wide Web. It is clear that with such a huge amamtlata more sophisticated techniques
must be applied than simply parsing HTML files awivnloading documents from the URLs
extracted from there. As we may see at the pictatgh attention is paid to the problems of
avoiding Web pages (URLs) already visited befoerafpelizing crawling (fetching threads)
and balancing the load of Web servers from whicbudtents are obtained (server queues),
and speeding up the access to Web servers (via daN&ng). We will give some notes on
these issues further below.
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e DNS prefetch client £
expiration dates) -
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Figure 1.3: Architecture of a typical Web crawl€@Hakrabarti2002, ch. 2].
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The role of Web crawling

Since Web crawling is at the heart of each Webckeangine, rather general architectural
descriptions of crawlers without important detditsve appeared so far. Commercial search
engines treat their Web crawling techniques asnegsi secrets and prefer not to give their
rivals a chance to take advantage of their know-haAnother reason is to keep essential
information on crawling away fromsearch engine spammensho would abuse the
information. (Search engine spammers deliberatedgte, remove or modify Web pages on
the content as well as link level so as to prontotde result list to a given query those pages
that would otherwise have been unnoticed. Seargmes must defend themselves against
such attempts and develop anti-spam techniques 2(0&].) Some of the crawler
architectures published are that of Alexa [Burn8]9which is still the Web robot of the
Internet Archive [38], an early version of GooglefBrin1998], being the crawler of Google
[39], Mercator [Heydon1999], which was the spidefr AltaVista [40], Ubicrawler
[Boldi2004b], and Dominos [Hafri2004]. Parallel wilang architectures are proposed in
[Cho2002]. There have also been Web spiders ralesséee software under the GNU public
licence [35], [36], [37].

In general, a Web crawler takes a URL from the guafupending URLSs, it downloads a new
page from the URL, it stores the document to a sigpry and it parses its text to find
hyperlinks to URLSs, which it then enqueues in thewg of pending URLSs in case they have
not yet been downloaded (“fetched”). Ideally, criagylis stopped when the queue of pending
URLs is empty. In practice, however, this will neveappen as the universe of a large-scale
Web crawler is almost infinite. The Web is steadihanging and will never be crawled as a
whole. So a reasonable terminating condition mestsét up for the crawler to stop. For
example, a certain number of documents have béelmei@, a specific number of terabytes of
data has been downloaded, a particular time pé@scelapsed, or the crawler simply runs out
of resources (main memory, storage capacitieg, etc.

Internals

More specifically, a Web spider would like to damy activities in parallel in order to speed
up the process of crawling. In fact, the DNS namsolving, i.e. getting IP address of an
Internet host by contacting specific servers wigime-to-IP mappings, and opening an HTTP
connection to a Web server may take up to a sewadmich is often more than receiving the
response from a Web server (i.e. downloading a Isoramiddle-sized document with a
sufficiently fast connection). So the natural ides to fetch many documents at a time.
Current commercial large-scale Web robots fetchhaugeveral thousands of documents in
parallel and crawl the “whole” Web (billions of dgwoents) within a couple of weeks.
Interestingly, parallelization objects offered bpeoating systems such as processes and
threads do not seem advantageous for multiple ifegcbf thousands of documents due to
thread (process) synchronization overheads. Instesmd non-blocking fetching via
asynchronous sockets is preferred. Indeed, preseminercial search engines work with such
huge amounts of data that they have to use techieslohat are often beyond capabilities of
traditional operating systems. Google, for examphas a file system of its own
[Ghemawat2003].

Implementors of large-scale Web crawlers try touoedthe host name resolution time by
means of DNS caching. The DNS server mapping hastes to their IP addresses is
customized and extended with a D& heand aprefetching clientThe cache is preferably

placed in the main memory for a very fast lookuphe table of names and IPs. In this way,
server names that have already been put in theedzefore can be found almost immediately.
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New names, though, have still to be searched fodistant DNS servers. Therefore, the
prefetching client sends requests to the DNS sengit after URL extraction from a
downloaded page and does not wait until the ressluterminates (non-blocking UDP
datagrams are sent). Thus, the cache is filled itip @@rresponidng IPs long before they are
actually needed. (DNS requests are kept completeby from a common Web surfer. It is
the Web browser that gets all the work done.)

Avoiding redundancy

The biggest task of a crawler is to avoid redungldnceliminating duplicate pages and links
from the crawl. A crawler that does not respecs thiay easily end up inspider trap— an
infinite loop of links between the same pages. Suttapped spider can “crawl!” the Web for
ages and collect petabytes of data, but it wilubeless, because it gets stuck in just one place
of the Web. There must be a modulJflVisited? that checks whether or not a page has
been already fetched before putting its URL to wharking pool of pending documents
(sometimes callettontier). The intuitive solution is to have a list of URakeady visited and

to compare each newly extracted URL against tkis Unfortunately, many problems arise
here:

» Different forms of URLs. URLs occur in various forms. They may be absotute
relative, they may or may not include port numbéagments, or queries, thay may
contain special or even non-latin characters, thay be in lower case or upper case,
etc. Before we can attempt to compare URLSs, we tav®rmalize them and produce
the so-calleccanonical form In this form, every URL is absolute, with the hoame
in lower case, without non-latin characters andrso

 Too many URLs To crawl a significant portion of the Web, we Wsneed to store

somewhere a few billions URLs for further compansolmagine that an average
normalized URL is fifty characters long. Even foore-billion-pages crawl, a storage
capacity of 50 billion bytes (50 GB) would be reggi. Moreover, access to the list of
URLs visited must be very fast as the check wilvbey frequent. How to resolve this
difficulty? We can somewhat reduce the size of URksencoding them into MD5
fingerprints or CRC checksums. These fingerprings/rbe four to eight bytes long
according as how many URLs we suppose to crawhkddition, we can use each
fingerprint as a hash and store the URLs in a Iasle on disk. Disk seeks will still
be slow, but we can improve this with a two-levakhing — host name hashing and
path hashing will be done separately for each URL.

« Duplicate pages with different URLs Even if we are careful enough and never crawl
the same URL twice, we can still download page# whe same content if they have
different URLs. In order to avoid adding links toetfrontier that appear as new,
because they are relative to the page with a éfifedRL but with a duplicate content,
but in reality have been added before, it is newgstr each newly fetched page to
check whether it has been downloaded ysPggeKnown?module in Figure 1.3).
Again, we can use the MD5 hash function here. Wemaintain a list of fingerprints
of fetched pages’ contents and compare each new gganst it. Unfortunately, only
a very small difference between two pages thabtrerwise considered as duplicate,
such as a different time stamp at the bottom op#mge, results in distinct fingerprints,
and the duplicates recognition fails. Thus, thecpss must be enhanced by a
technique calleghingling[Broder1997], which detects near duplicates.
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Care must be taken not to overload Web servers miguests. Not only does it prevent a
denial of service by the Web servers, but it i® @sneasure of politeness to other Web users.
Ideally, theload monitor & managedistributes requests evenly among servers, for eéch
which there is a queue pending URLs. It contrbé the interval between two requests sent
to the same server be no less than, say, a miBesdes others, fetching pages uniformly
from distinct servers reduces the risk of gettingks in a spider trap.

Dynamic pages

We have seen that the greatest danger for a Wellecraonsists in not recognizing that a
Web page has already been fetched before. If Hppdns, the spider may easily crawl a very
small part of the Web infinitely long. The main so&i of such difficulties are page
duplication and site mirroring (i.e. duplication whole Web sites), dynamically generated
pages and Web host aliases. A computer with aindRaaddress may be represented by one
or more host names (virtual servers). On the dthed, a Web site may be hosted by several
machines with distinct IPs. This many-to-many lelatbetween host names and IPs along
with aliases (synonymous names of a Web site) mtieesecogniton of known URLs even
more difficult. Besides shingling for duplicate gagthere exist techniques for the detection
of mirrored Web sites [Bharat2000, Cho2000, Kum@@l9thay may help resolve this
problem as well. But by far the biggest troublevith dynamic pages such as CGI, PHP, or
Java scripts.

Dynamic pages are dangerous in that they can genafratever content (including what we
are not at all interested in), and that their nunrhay be virtually infinitely large. Dynamic
pages often contain generated URLs that differ amlpne parameter of their query part.
Also, they are often results of a database quepgmiding on what the Web user types in a
Web form, etc. It is feasible to store nor fing@mnps of their URLs neither of their contents
because of their immense number. How can we ovexcibns problem? The most robust
spider would just ignore dynamic pages. Howevewauld probably miss a lot of important
data. There have even been attempts to crawl tddehi Web behind Web forms
[Raghavan2001]. In practice, we must still obsetvawling statistics and set bounds for
various parameters such as the number of docurgattiered on a site or the crawling depth
(i.,e. the number of links followed leading to tharrent page). Whenever a bound is
exceeded, crawling as a whole or just on that @adr site is stopped. For example, for the
crawling in Section VI.1.1, we determined the maximcrawling depth to be eight. This is in
accordance with Baeza-Yates [Baeza-Yates2005, Béates2004]. He recommends five for
static pages and fifteen for dynamic pages.

1.2.2 Crawling strategies

Assume for simplicity that we are to crawl a snpatt of the Web that is a tree. Because we
are sure that this part of the Web is finite arat thie are going to visit all of its pages, we can
arbitrarily choose one of the two basic crawlingtmoels — breadth-first or depth-first
crawling. Let us recall that with breadth-first witang, we first visit nodes with the same
distance (number of links) from the root node. Tata structure used here to store links
extracted from pages is a queue. On the other hanigpth-first crawling, we follow links as
deep as we can. We put them on a stack. See Higufer a small example. Which of the
two strategies is better? In this simple case, #reythe same provided we are not interested
in the order of visiting individual pages. At thede we will have a set of documents which
we can, for example, add to a corpus and builchdax on it.
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Figure 1.4: Breadth-first (left) and dept-firstght) crawling of a simple Web tree.

In practice, however, neither is the Web graptea {and we must apply the techniques from
Section I.2.1 to avoid crawling loops) nor can wéext all documents. Thus, if we know that
we will not be able to crawl all pages, we woulkelito crawl the more important ones at
least. Therefore, we expect a good crawling stgategvisit more important pages sooner
during the crawl than a bad crawling strategy. Wal dvith the importance of Web pages in
Chapter Il and in Chapter lll. Here, we only asateia value of significance with each Web
page and set the total significance of all pagethanWeb graph to be crawled to be one.
Then, at any time point of the crawl, we can plu¢ importance value of all the pages
crawled so far against the fraction of the totahber of pages to crawl.
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Figure 1.5: Performance of a crawler sampling Waggs at random.

In a crawl, where pages would be picked up randg@hyg uniformly) from the graph, the
plot would be approximately diagonal like in Figurg. (In fact, a truly random sampling of
Web pages from the real Web is quite a difficustkiawhich we do not cover in this thesis.
See [Chakrabarti, pp.246-253] for more informatiam this.) The diagonal line may be
considered as a baseline, and any crawler whoserpamnce curve plotted on the chart is
above the diagonal line is a more effective spi@rcourse, normally we know neither the
total number of pages on the Web nor their impaganTherefore, this measurement is
possible forsynthetic(artificial) graphs when the number of pages and their importance are
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known before, or for pre-crawled Web graphs withtla values required already computed.
In both cases, we call these “artificial” spiderawling simulators Alternatively, we can
measure crawling performance retroactively and admpll the values when the crawl has
finished.

Baeza-Yates defines three groups of crawling gjrese

* With no extra information. When deciding which page to crawl next, the spices
no additional information available except knowthg structure of the Web crawled
so far in the current crawl.

* With historical information . The crawler additionally knows the Web graph
obtained in a recent “complete” crawl. This is coamrior search engine spiders that
regularly crawl the Web in several-week intervdlgpically, the spider knows what
pages existed a couple of weeks ago, what linkg ¢batained and what importance
the pages had which was computed after the cralthodgh the Web changes very
fast (about 25% new links are created every wedkUlds2004]), the historical data
were too costly to acquire so that it could berehtineglected. Thus, the selection of
a next page to crawl will be based on the histbridfarmation.

« With all information . This is a theoretical strategy not usable ina YWeb crawl.
We will call it theomniscient method, which perfectly knows the whole Web graph
that should be crawled including the values of ingoace of individual pages. This
method always chooses the page with the highegirianpce from the frontier.

Crawling strategies with no extra information

* Breadth-first. We mentioned this technique earlier. It is repdrto collect high
quality (important) pages quite soon [Najork2000h the other hand, depth-first
strategies are not much used in real Web crawlalgo because the maximum
crawling depth is worse controllable in them.

» Backlink-count [Cho1998]. Pages in the frontier with a higher bemof in-links
from pages already downloaded have a higher pyiofitrawl.

» Batch-PageRank[Cho1998]. We will talk about PageRank in Sectib@. Now, we
can think of it as importance. This technique clalies PageRank values for the pages
in the frontier after downloading evekypages. Of course, these PageRanks are based
on the graph constituted of the pages downloadddrs@nd they are only estimates
of the real PageRanks derived from the whole Welplyr After each re-calculation,
the frontier is prioritized according to the esttethPageRank and the thpages will
be downloaded next.

» Partial-PageRank It is like Batch-PageRank but with temporary Hageks assigned
to new pages until a new re-calculation is doneesEhtemporary PageRanks are
computed non-iteratively unlike normal PageRankshassum of PageRanks of in-
linking pages divided by the number of out-linkstbse pages (the so-called out-link
normalization).
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* OPIC [Abiteboul2003]. This technique may be consideasda weighted backlink-
count strategy.

» Larger-sites-first. This method tries to cope best with the rule Wab sites must not
be overloaded and choose preferentially pages Wb sites having a large number
of pending pages. The goal is not to have at tlikaofrihe crawl a small number of
large sites, because that would slower down crgwline to the delay required
between two accesses to the same site.

Crawling strategies with historical information

Again, we would like to order the pages in the fremby their PageRank and crawl the more
important ones first. For the pages encounterdgtarcurrent crawl that existed when the last
crawl was run, we use their historical PageRankdkeugh we are aware that their current
PageRank may have changed. The pages that didkisbttieen have to be assigned some
estimates. There are several methods how to ddakkeése new pages:

» Historical-PageRank-Omniscient Again, it is a theoretical variant which know th
complete graph and assigns “true” PageRanks todhepages.

» Historical-PageRank-Random It assigns to the new pages random PageRanks
chosen from those computed for the previous crawl.

» Historical-PageRank-Zero. New pages are all assigned a zero PageRank artluesr
crawled after “old” pages.

» Historical-PageRank-Parent Each new page is assigned an out-link-normalized
PageRank of its parent page(s) linking to it. ffament page is new as well (there is no
historical PageRank associated with it) we obvipysbceed to the grandparent and
so forth.

Recommendations

Baeza-Yates and his colleagues conducted crawimglations as well as real crawls of the
Web graph of the whole Greek (.gr) and Chilear) fakional domains. The total number of
Web pages crawled was in the order of millions afjgs. Their experiments confirmed the
following. Theomniscienttechnique is the best as expected except therdast stages (see
Figure 1.6 with the performance chart of crawling tGreek Web in September 2004). It
crawls important pages fast, perhaps too fast abitmeeds to select pages more or less at
random towards the end of the crawl in order nadwerload Web sites. From the strategies
with no extra informationbacklink-countand partial-pagerank are the worst. In some
crawling stages they are even worse then the Ip@sedindom (“diagonal”) method (not in
figure). Breadth-first performs very well for thiest 30% of total pages to crawl, then its
efficiency slightly decreaseBBatch-pagerank OPIC and larger-sites-first are the most
efficient crawling strategies. The importance o first 25% of pages they collect is more
than 50% of the overall significance spread ovegegan the graph.

Figure 1.7 shows the performance of the varioushimes using historical information
compared with themniscientvariant andOPIC. The “historical” methods take advantage of
a complete crawl from May 2004 when only 55% ofgmm the current crawl existed.
Surprisingly,historical-page-rank-randoris doing quite well even though 45% of randomly
evaluated pages may seem a lot. A possible expanatthat very important pages are
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relatively stable, and that it is the “less sigrafit” part of the Web that chang&PIC is less
efficient at the beginning, but it improves later &fter some further measurements, Baeza-
Yates concludes that “historical” strategies arafgmally better” thaf©OPIC andlarger-
sites-first and he recommends to use the latter for prageesonsLarger-sites-firsis more
suitable for distributed crawlers, for no commutima is needed between crawlers to
exchange information on weighted in-links to a giyage like imOPIC.

Greece, Sep 2004
1
09
08 o
- [ R S
- F. i T ™ =Ty
by N WS R J!‘\
006 Y L
o 1 -
S o Fs) ﬁ |
= 0.5 e
< oo g . [ ?
= y ' oA L
g 04 1 ‘? rai . Omniscient ——— -
= e L BT rgl Larger-sites-first ——e
b .3 ; = OPIC o -
e i & L 28 t e
02 Hig ot Breadth-first oxo
1 Batch-pagerank -8
0.1 e — Partial-pagerank -~ - —
0 e - Backlink-count e
0 01 02 03 04 05 06 07 08 09 1
Fraction of pages

Figure 1.6: Crawling methods performance with nad@xnformation [Baeza-Yates2005].
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.3  Summary

Studying the models of the Web helps us realize aast, dynamic, and heterogenous it is. It
also makes us wish to understand in detail itscgira and behaviour. However, we cannot
study anything before we crawl it. Crawling the Wela prerequisite of Web mining. Before
we can apply any Web mining techniques to some Wéth, we first need to obtain the data
somehow. Certainly, there exist archives of congpWeb crawls available for researchers or
free crawling software ready to use (both menticaieolve). Nevertheless, they are difficult or
even impossible to customize so as to meet vergifspeerawling needs. Furthermore,
without realizing how difficult and complex Web wring is and without understanding its
internals to some extent at least, one could haodigsider oneself as a Web mining
researcher. The code of a spider used in the gressearch can be found on the companion
CD of this dissertation.

We did not coverfocused crawlingn this chapter. The aim of a focused (or alsoivak}t
Web spider is to download topic-relevant documemd not all documents. Such crawlers
need to classify pages in relevant (on a givernc)agd irrelevant ones and follow links from
the on-topic pages only. Performanceveftical spiderscan be measured in the same way as
we show in Section 1.2.2, but instead of a generglortance of pages crawled, we are
interested in their topical importance. There arsuanber of methods that deal with this
problem such as reinforcement learning [Rennie1988jtext graphs [Diligenti2000], neural
networks [Chau2003] or those proposed in [Chaktét®89]. There is an overview of
focused crawling techniques in [Chakrabarti2000,3§8-283].
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We have understood the termportanceused throughout Section [.2 rather intuitivelyilun
now. However, everyone recognizes that not all \Wetuments are important, valuable. The
overwhelming majority of Web pages are uselessafqgrarticular Web user. They are not
relevant to the topic the user is interested inisTéan be figured out by filtering Web
documents (classifying their textual content) amdving the user the relevant ones only.
But do all the on-topic documents have the samétygd&verybody who has experience with
searching for information on the Web will agreettti@ey do not. Thus, in addition to
relevance filters, some further criteria must deanhich documents are worth our attention
and which are not.

In 1998, two PhD students from the Stanford Uniwgiis California, Sergey Brin and Larry
Page, published a report on their project of adacale Web search engine called Google
[Brin1998]. They described its architecture andoamve details of a new algorithm for
ranking Web pages by importancePageRank (Curiously enough, page in its name can
mean a Web page but also the surname of one igntors.) What was then a University
project has developed into a commercial multi-orikdollar-revenue company operating a
Web search engine serving hundreds of millions s&rs1 every day. Approximately at the
same time, Jon Kleinberg proposed another algorfthmaetermining significant Web pages
calledHITS [Kleinberg1999b] but made to attempt to comnadize it. It remained as an
academic foundation.

We can only guess that it was the commercial sscoé<so0gle that raised an immense
interest in the new group of algorithms for detagtsignificant Web pages that later earned
the name ofanking or topic-distillation algorithms New ranking methods and modifications
appeared soon and the publication stream doesesoh $0 fade out - SALSA, TruRank,
BackRank, ObjectRank, AuthorRank, SCEAS Rank, letthis chapter, we will concentrate
on PageRank and its modifications that has becormereely popular, and we will deal with
HITS to much lesser extent.
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1.1  First-Order Methods

A simple and intuitive procedure of ordering Welggs by importance is to count in-links of
a Web page. To formalize, I& = (V, E) be a directed, edge-weighted graph (Web graph), V
a set of vertices (Web pages) and E a set of gthyperlinks among Web pages). Then, we
can calculate the number of in-links of each nodethe graph like its in-degree:

Dy (U) =, e WIVU) (I1.1)

wherew(v, u)is the weight of the edge pointing from nod&® nodeu and we assume that all
edge weights are set to one. We will refer to thisking mechanism as In-Degree. The In-
Degree ranking is called first-order or radius-1 method. The score obtained for a node
depends only on its direct neighbours. In otherdspnodes not sharing the same edge have
no influence on each other. This is in contradictiath real life as objects in social networks
(Web may be considered a social network — see €hdpt often have an indirect impact on
one another. PageRank and HITS higher-ordertechniques and take this into account. If
the values of weight& are allowed to be more than one, we call the igreke aweighted in-
degree Although it is usually not much useful to detemmauthoritativenes®f a Web page
or Web site (according to the level we are intex@sh) by means of weighted in-degrees,
because parallel edges between them are mostlyeidnad is appropriate to do so in other
graphs such as bibliographic citation graphs. We tteen call the weighted in-degree a
citation countor simply citations (compare with Section I11.214daV.3.3).

.2 PageRank

We will first introduce PageRank as presented infB98, Page1999] in a intuitive manner
in Section I1.2.1, and then we will enhance it witha linear system formulation
[Bianchini2005] in Section 11.2.2 and a probabilstramework for ranking methods by
[Diligenti2004] in Section 11.2.3. In Section 11£. we discuss convergence issues, and we
describe a PageRank modification that is mostedl&b the innovative work in this thesis in
Section 11.2.5 — PageRank for publications by [Ridoulos2005]. Finally, we enumerate
current research issues and trends on this topied\ille2003] in Section 11.2.6.

1.2.1 Primer

Using the Web grapls = (V, E) from Section II.1, the PageRank score BR6r pageu
introduced by Brin and Page is defined as follows:

1- PR(v)
PR(u) =——+d —_—

TR (12
whered (damping factoy is an empirically determined constant usuallysstveen 0.8 and
0.9 andDgy(V) is the out-degree of node computed analogically to (Il.1). Note that
PageRank of one node is dependant on PageRankbef modes, which can, in turn, be
directly or indirectly (via other nodes) suppliedttwPageRank from the current node. So
there is a recursion that allows influencing anyeotnode to which there is a path from the
current node.

Normalization of the rank obtained from in-linkingpdes by their out-degree is a salient
feature of PageRank. It penalizes nodes linkinghémy others. This is in accordance with
real world situations: a citation by a researcheéng often is less valuable than that made by
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someone who cites rarely. Figure 1.1 shows the idesuch arout-link normalizationin
PageRank computatiofil - d)is a randomizing factor representing the pos$yib jump to
any node in the graph regardless of the out-edges the current vertex. On the contrady,
stands for the probability of following an out-lifkom the present page. Introducing the
random term prevents loops of nodes (catitk sink$ from accumulating too much rank
and not propagating it further. See Figure 1.2 forank sink example. There is also a
difficulty with nodes with no out-links (referred tas dangling pages that would not
distribute their PageRank either. In fact, zero-@edree Web pages and rank sinks are the
main obstacles in a straightforward computatiorPaieRank. Why are pages with no out-
links and closed loops of pages so annoying and &@wvthese problems resolved will be
shown later on. On the other hand, nodes withadinks are not harmful, and their
PageRank is always smaller than that of any nodiésseme in-links as follows from (11.2).

1 50
\ 100 7 53 /

50 D

-
> 9 50 /
7 T

Figure II.1: Main idea of a PageRank calculatioag@1999].

Figure I.2: Rank sink example.
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Iterative Calculation
In practice, we compute PageRank as follows.

1. We remove duplicate links and self-links frore tiraph.

2. We set initial PageRanks of all nodes in theolgraniformly so that the total rank in
the system is one. This is the zeroth iteration.

3. We remove nodes having no out-links iterativegcause removing one zero-out-
degree node may cause another one to appeatr.

4. We compute the PageRank scores for all noddgkerresidual graph according to
(11.2) using the scores from the previous iteratidfe perform an Lnormalization so
that the total rank in the system (including thetices removed in step 3) is one again.

5. We repeat step 4 until convergence. Numericalemence of the scores is usually
not necessary. An ordering of nodes (by PageRduait)does not change (or changes
relatively little) is satisfactory [Chakrabarti2QQ2 211].

6. We gradually add back the nodes removed in 3tgompute their rank score like in
(11.2) and re-normalize the whole system.

Properties

The number of iterations needed depends on the euailmodes and edges in the graph. For
a Web graph with over 320 million pages, roughlyite®ations were required [Pagel1998].
The order of the nodes added back in as well age¢lqeency of normalization may affect the
final rank scores, however, it should not havergdaffect on the ranking itself. The property
of the overall rank being one at each time stepifies the explanation of PageRank
calculation in terms of a random walk. In fack thRageRank score of a Web page is then a
fraction of time spent on this page by a random Aietber browsing on the Web for some
infinitely long time. For a detailed analysis ofethrandom walk framework, see
[Diligenti2004] and an excerpt in Section 1l.2.3orFsome more details including matrix
notation of (I11.2), see [Chakrabarti2002, pp. 213 and [Ding2001b]. There exist
PageRank modifications. For instance, the one m®gdiy [Sidiropoulos2005] is meant
particularly for bibliographic citation graphs.

11.2.2 Linear System Guise

Web matrices

Before we can explain how to compute PageRank sdorea Web graph by solving a system
of linear equations, we first need to define twammes. LetG = (V, E) be a Web graph as
before,A its adjacency matrixandT its transition matrix Let A;j be one ifi links toj, i.e. if
there existsi( j) 0 E, and zero otherwise. Clearlyy is asymmetric and it imposes no
restrictions upon the existence of self-links orafial edges. By normalizing elementsAn
by out-degree and transposi#g we obtain the transition matrixT; = A, / Zk A, . An

example of a Web graph and its corresponding nestAcandT is shown in Figure [.3.
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010100000 000013 000 O
001000000 1/2000 0 000 O
000000000 0100 0 00012
000000000 1/20001/3 000 O
100100100 0000 0 1/200 O
000010100 0000 0 000 O
000000000 00001/31/201 O
000000100 0000 0 00012
001000010 100000 000 O

G=(V, E A T

Figure 11.3: Example of a Web graph and its adjaggA) and transitionT) matrix.

Linear system
Now, we put all PageRanks in the Web graph PR®J2F..., PRN) into aPageRank vector
X = [X1.Xa,....xn] T @and apply (11.2) to the whole graph:

x = (1 -d)ey +dTx (11.3)

whereey = [1,...,1] is a unity column vector ol ones. We will denote the equilibrium
solution of this system as = [x,X;,....x;,]" . Note that unlike (I1.2), the first term is not

divided by the number of all paghisor V|. We will come back to this interesting pointtéddi
later.

Dynamical system

A linear systentan normally be solved algebraically using Gaussianination. However,
this would requireD(N®) floating-point operations, which is absolutelyfemsible with regard
to the number of pages in the Web (billions). Tfenes the system must be transformed into
a correspondingynamical systerand solved numerically:

x(t) = (1 —d)ey + dTx(t — 1) (11.4)

wherex(t) is the PageRank vector at time steft can be proven [Bianchini2005] that this
dynamical system is stable (i.e. it converges), #mat the sequence(l), x(2), x(3)...
converges to the solution of the linear systemlli)(independently of the non-zero initial
vectorx(0) if d < 1. This can be fixed very simply by adheringthte recommendations of
PageRank’s inventors and settidgon 0.85. We will discuss the impact @fon PageRank
computation further below. But there is also a obwhen we want to make (11.4) coherent
with the Markov process model (see Section Il.2@)ich was the original framework for
PageRank. In this probabilistic model, the totahsof PageRanks over all nodes must be
equal to one at any time. For the system (ll.4¥daverge,T must bestochastic(i.e. non-
negative with all columns summing up to one) . Wdtaut this condition? Is it easy to figure
this out?
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Removing dangling pages

When we have a look at Figure 1.3, we can see idhately thatT is not stochastic. Using it
directly in (11.4) and forcing¥(t)|p = 1 fort = 0 would not yield a fixed-point distribution of
PageRanks over the graph. The sequer(g}{would not converge. There are three columns
in T not summing up to one the source of which areddmegling pages3, 4, and 7 in the
graph. Dangling pages (originally callddngling linksby Brin and Page to refer to pages the
links to which have been encountered by the Wewlerabut that have not yet been crawled
themselves) have no out-links and hence the columiiisthat sum up to null. In fact, there
are very many pages without out-links in the Wedtd @l.4) could be directly applied only to
some selected portions of the Web such as the ®81panent in Figure 1.2.

There are two main theoretic approaches (see [B€tRA5] for others) how to deal with
dangling pages. Both of them are depicted in FEdud. The first is to add dummy page
with a self-link to the graph and let all danglipgges point to it. Thus the dimensions of the
adjacency and transition matricksandT; increase by one as well as the PageRank vegtor
= [X1, X2, ..., Xn, Xn+1] . We must then replade x, andey in (11.4) with Ty, X1, andeys1:

x1(t) = (1 —d)ensy + dTyxa(t — 1), (I1.5)

In the second approach, we make dangling pagestdirdl pages in the graph including
themselves like in Figure 1.4 bottom. All dimensgremain intact, and the linear system
(11.3) changes into:

X, =1TeN +dT,X,. (1.6)

Normalization
Bianchini et al. prove that equations (11.3) thrbu@.6) describe related systems, and that the

ranking scheme provided by those four systemsais#me. Moreover, ik, is the stationary

solution of (II.6), they show that it holds*thatstlmormalized PageRantan be obtained by
normalizing the tinnormalizeti PageRank« :

X3 =X /X g (11.7)

Thus, || X, |L=ll x,(t)|L,= 1for t = 0 provided that %p(0)|[p = 1. On the other hand, the

stationary PageRank vectet, derived from (I1.5) is not normalized, and itsatibn tox is
the following:

* *T d *T
= +—R 1.8
X =[x L+ R (11.8)

whereR = [ry,...,ry], andr; = 1 if i is a dangling page in the original gra@ghandr; = 0
otherwise. In factR is the last row inT; without the last element. For instande,=
[0,0,1,1,0,0,1,0,0] in Figure 11.4.
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0101000000 0 0001/3 000 00
0010000000 1/2000 0 000 00
0000000001 0100 0 000120
0000000001 1/20001/3 0 00 0 0
1001001000 0000 0 1/200 0 0
0000101000 00000 000 00
0000000001 00001/31/201 0 0
0000001000 0000 0 000L/20
0010000100 00000 000 00
10000000001 0011 0 010 01
Ay L
010100000 001/91/91/3 000 0
001000000 1/201/91/9 0 000 0
111111111 011/919 0 0001/2
111111111 1201/91/91/3 0 00 0
100100100 001/91/9 0 1/200 0
000010100 001/91/9 0 000 O
111111111 001/91/91/31/201 0
000000100 001/91/9 0 00012
001000010 001919 0 000 0
G, = (Vo E) A; T,

Figure II.4: Two ways of tackling dangling pages.

Now we can see that the division Hys not necessary in (I1.3) provided we contentelwes
with unnormalized PageRanks. Actually, thenorm of the fixed point is always bounded by
the number of all pagéds:

X L= N —%ZXf (1.9)

-d i0s

whereSis a set of dangling pages. Therefore, the totalormalized PageRank ||, in a
graph without dangling pageshk and any nodes with no out-links cause a losnefgy

If we would like to have §[| = |k(®)|k for t = 0 in order to have a stochastic system
conforming to the random walk framework (see Sectl®.3), the transition matrix must be
stochastic as well, i.e. it must be non-negativéd have all columns summing up to one.
BecauseT is not stochastic in general due to dangling pages the system (I1.4) would
therefore not converge, we need to take advanthde or T, and the appropriate equations
(11.5) or (11.6). Equation (11.5) resulting in a BaRank vector that should yet be normalized is
preferred by [Bianchini2005]; (11.6) was originallised by PageRank’s inventors [Page1999].
An alternative, practical approach is to preprodides Web graph by iteratively removing
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dangling pages, computing PageRank on the stocheatisition matrix, and then distributing
the scores to previously removed nodes [Chakr&f®, p. 211]. This process is criticized
by [Langville2003] for not being fair, but it is dradded in the iterative calculation outlined
in Section 11.2.1.

Eigensystem

Theoretically, if the Web graph had no dangling gggno rank sinks and was strongly
connected (the transition matrix is then stochastit said to berimitive), we could drop the
factorsd and (1 —-d) from (11.3) and could directly solve the systans Tx whose stationary
solution is theprincipal eigenvectoof T [Chakrabarti2002, p. 210]. See also Sectionsll.3
and 111.2.2 for a similar concept. A survey of eigector ranking methods for the Web is
available in [Langville2005].

11.2.3 Random Walk Guise

Diligenti [Diligenti2004] distinguishe$orizontal and vertical ranking methods. Horizontal
rankings are only based on the Web graph topologyda not take into account the contents
of Web pages. PageRank and HITS (see Sectiondie8poth horizontal. Vertical (focused)
rankings classifying Web documents are useful @pic search. Diligenti's probabilistic
framework is based orandom walksn that the relevance (rank) of a pagep is computed
as the probability of visiting that page in a ramdwalk on the Web graph. The most popular
pages (i.e. most often cited) are the most likellge visited during a random walk.

Randomwalk

A random walk in the context of Web browsing is athematical model of actions taken by a
generic Web surfer. At each step of the walk, tindes can perform one of the following
actions: jump to any Web page (actignfollow a link to another page (actid) follow a
backlink from the current page (actibh stay where he or she is (actign Thus, the set of
atomic actions i0 = {j, I, b, s}. At each step, the behaviour of the surfer degeon the
current page. If he finds it interesting, he witbpably click on a link there. If he finds it
boring, he types another URL in the address baio¥Veb browser. So the surfer's behaviour
can be modelled by a set of conditional probabditiepending on the current page

*  X(plq, I): probability of following a link from pagq to page p
*  X(plqg, b): probability of following a backlink fromto p

*  X(plq, j): probability of jumping from q to p

* X(s|q): probability of staying on q

If G=(V, E)is aWeb graph defined as earlier grehd q are Web pages,q //V ) then the
following constraints have to be satisfied for epalyeq:

> .x(pla.j)=1 Y x(pla,l) =1 2Xplab)=1. 10

pLv (g, p)IE (p,)0E

Evidently, the first constraint in (11.10) includ#ise case of remaining on the page because p
can be the same @gs The probabilistic random walk model can be masie of to compute
the probabilityx,(t) — that the surfer is located on pgpi timet. The probability distribution

on all pages is represented by the ver{or= [x(t),... xn(t)]" whereN is the total number of
pages. The probabilities,(t) are updated in each step of the random walk agugridi the
following formula:
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X,(t+D =D x(pla)x,(t) =

= quX(pIq, 1x(] Iq)xq(t)+(q%D;<(plq,l)X(l | a)x, (t) + (I.11)
+ D x(pla,b)x(b]a)x,(t) + x(s| p)x, (t)
(p.a)IE

where the probabilitk(p|q) of moving from pagey to pagep is expanded considering the
user’s actions. The probabilitiegj|q), x(1|g), andx(b|q) are general probabilities of jumping
to a random page from pagg following a link fromq, and following a backlink frong,
respectively, without specifying a target page.

Now we will move to a matrix notation. The prob#bek defining the random surfer model
may be organized in a coupled& N matrices:

» forward matrix4 whose element (p,q) is the probability x(p|q,!)
* backward matrix~ of the probabilities x(p|q,b)
* jump matrix2 gathering the probabilities x(p|q.j)

We can also define a set afttion matrices that inform about the probabilities o€ th
individual actions taken on each pagelhese matrices afé x N diagonal matrices having
x(jlq), x(1]g), x(b|g)andx(s|q)as their diagonal valudg,q). We will denote those matricé,
D), Dy andDs, respectively. We can then restate (I11.11) as

X(t + 1) = E D) "(t) + (4 D)"x(t) + (/" Dp) x(t) + Dg) "X(1). (1.12)
By defining the transition matrix as
T=(C[D;+AD +/[Dy+Dy’
we can write (11.12) in the following way:
X(t + 1) =T IX(t). (1.13)

From the initial distribution of probabilities(0) we can compute a distribution in any time
stept:

x(t) = T' IX(0). (11.14)

Equation (I1.14) describes a Markov chain whoséestansition matrix i . The final rank
of all pages in the graph is the stationary distitn x(c) of this chain. Diligenti further
shows that on some conditions there must exist audistribution and that it is independent
of the initial vectorx(0).

PageRank calculation based on a random walk

The single-surfer model may be extended toudtisurfer walkin which the things become
slightly more complicated. In this model there segeral surfers influencing one another. But
we are more interested in how the PageRank caionldits into the probabilistic single-
surfer random walk framework.
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PageRank is a special case of the single-surfelorarwalk in that it considers only two basic
actions: jumping to a random page from the curpageq with probabilityx(j|gq) = 1—d and
following a link from the pagey with probability x(l|g) = d (d may be chosen arbitrarily
between 0 and 1 with the effect on convergencedspeplained in 11.2.4). The other two
probabilities known from the general modg(k(q) and x(s|q) are null. Obviously, all the
probabilities are independent of the current pgagé&he target pagp of a jump is selected
uniformly from all theN pages in the grapB, thusx(p|j) =1/ N,Op0G. The probability of
following a link from pagey to pagep is x(p|q.l) = ag whereay = 1/hq andhy is thehubness

of pageq, i.e. the number of links pointing fromelsewhere (out-degree). Therefore, we can
rewrite (11.11) as

Xp(t+1)=%2xq(t)+d > aqxq(t)=l_d+d D agx,(t) (11.15)

(g,p)IE N (g,p)IE

where ) x,(t) = 1.

o0E

The fact that 0 <d < 1 implying x(jl]g) = 1 —d > 0 guarantees that the PageRank vector
converges to a distribution of scores independénhe initial distribution. Again, using a
matrix notation, the computation of PageRank Idiesthis:

xp(t+l)=%E+dATZx(t) (11.16)

whereE is theN x N identity matrix,A is the adjacency matrix of the Web graph defined a
before (i.e. an eleme = 1 if there is a link fronp to g and it is zero otherwise), addis a
diagonal matrix whose elemeny, = ay,.

There is a little problem witlsink pages(we call them dangling pages in Section 11.2.2)
whose hubness is zero (i.€h(g) = [0) and therefore we cannot compute the term,.1/h
Instead, it should bg(l|g) = O resulting inx(jlg) = 1 for any sink pagg. So the PageRank
equation must be modified in th&f|g) = 1 —d if ch(g) # O andx(j|g) = 1 ifch(g) = 0. Then

the first term in (11.15) will not be constant bilie probabilityx(p]| j,t) :%Zx(j | )%, (t)

qOG
(jJumping top in time step t) needs to be computed at the beginoi each iteration.

Conclusions

Diligenti also presents HITS (another well-knownnkimg algorithm described in
Section I1.3) in terms of a multisurfer random wailbtation (see Section 11.3.1 for the
eigenvector interpretation) and compares HITS WwitdlgeRank: Computation of PageRank is
stable (see Section 11.2.6) and it can be applelhtge document collections because small
communities are not overwhelmed by large ones.herother hand, PageRank does not take
into account complex relationships of Web pagetiona. HITS is not stable, only the largest
community influences the ranking but HITS underdtabetter relations among pages. As a
result, [Diligenti2004] proposes a hybrid modelledlPageRank-HITS, which combines both
of the algorithms.
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Diligenti’s probabilistic framework is also well ised for vertical ranking systems, which
consider the contents of Web pages as well as &g §haph topology when assigning scores.
Each page is represented by a set of keywordstagets a relevance value by a classifier
respecting the topic of interest. For instance phge www.google.com is highly ranked by a
general PageRank, but it would be little rankedabyageRank focused on tdata mining
topic. From a couple of focused ranking algorithiasisuble focused PageRank” turned out to
be the best.

11.2.4 Convergence Rate and the Effect of Factor d

The method represented by the dynamical systeri.#) (s the iterative Jacobi algorithm,
which requireO(m|E|) floating point operationsE| is the number of links in the Web graph,
andm is the number of iterations. Bianchini and heteaues show thah depends only on

d and the relative erra. In other words, the number of iterations in tiistem (I1.4) needed

to achieve a relatively stable vector of PageRalgfsends neither on the size of the Web nor
on its connectivity. They define the relative erabreach time step asd(t)|k = |K - x(t)|L/
||k, and prove mathematically that in order to getrtHative error under a certain threshold
& it must be true that

S log(@-d)g)
~ logd

t (11.17)

Number of steps

Thus, ford = 0.85 ands = 107, we gett = 111. That means, we need to iterate at least 111
times (i.e.m above will be 111) to get the error under the shoédd. Changingd to 0.3
accelerates the computation to about 14 iteratwhereas setting it on 0.99 yields 2 062
iterations! Now, when we make smaller, ¢ = 10* t (and m) will have to be 3 895.
Evidently a smalk slows down convergence, which is natural, but alsdspeeds it up. The
reported number of about fifty iterations by BrindaPage for their graph with 322 million
nodes (see Section 11.2.1) suggests that the autitented themselves wighe 10°. Let us
recall that the number would have been the sartteeif had had a graph with just a million
nodes. Apparently, the number of flops still retate the number of edges in the graph, and,
with regard to the immense size of the current Whabgreater than approximately one
hundred would probably not be desirable even bydommercial search engines having
enormous computing capacities.

So why not to seat very low if it speeds up convergence? In fdct, 0.85, has been carefully
chosen, and it is rarely set outside of the intef@a; 0.9). The fact is that the lowerdghe
less is respected the true link structure of theoWeecause the term (1d) represents the
random jump of a Web surfer (see Section 11.23s In accordance with intuition as well as
with empirical observations that a random jump espnts about one sixth of all transitions
between Web pages. Thus, a lowveremphasizes random transitions between WelsgEge
the expense of existing links between them. Wh#bvs naturally is that differentl's
produce distinct rankings. Two orderings of Webgsamay differ substantially. Also for this
reason, the convergence criterion in practical iappbns is not the relative error of rank
scores or a difference between two subsequentvectiors, but the iterative process stops as
soon as the ordering of pages does not change jmucko subsequent orderings may be
compared by means of some well-known metrics suchKandall’'s tau or Spearman
correlation coefficient.
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Boundary values

What about the boundary valuesdsf If we setd = 0, all unnormalized PageRanks are equal
to one. On the other hand,df= 1 then (Il.4) may not converge. Moreover Bianclgt al.
show that wherd — 1, some nodes gain advantage over others, andlistrgbution of
PageRank is biased towards them. They call theskesnessential nodesand we can
recognize that a rank sink like that in Figure IsZalways composed of one or more essential
nodes. There is now way of escape from a rank exalept for a random jump outside of the

loop of essential nodes. On the other hand, thestay PageRank scone’;, of any nodep

that is outside of rank sinks (amessential nodes zero wherd = 1. Thus, settingl higher or
lower, we can also regulate how much rank we woestonfer to nodes in rank sinks. Bt
set to zero or one should be avoided, becauseatileng scheme does not work anymore
then.

11.2.5 PageRank for Publications

Although PageRank was originally conceived to he#farch engines rank Web pages by
importance, it was clear that it could be applie@ny graph-like structure, not only the Web
graph. An evident application field is the netwardkbibliographic citations. We devote an

entire Chapter Il to the study of various sociatlanformation networks that invite the usage
of PageRank-like methods. In this section, we w#al with the research carried out in

[Sidiropoulos2005] that inspired our work describedChapter V. The extent to which our

work is different from the following is clarifiechiSection V.4.

e

C)

Figure I1.5: Examples of graphs where standard &&& ot work well [Sidiropoulos2005].

PageRank’s drawbacks

Sidiropoulos and Manolopoulos are concerned withation networks of scientific
publications and find out that the standard Pag&Raretric is not appropriate for
bibliographic measurements in some cases. Moreifgadly, they show that in situations
such as those depicted in Figure II.5 a modificatid PageRank would be desirable. For
example, in case a), nodes 10 and 6 are rankeeérilgan 0, because they are part of cycles.
(In terms of the terminology we have learned inphevious sections, we would say that they
are part of rank sinks or that they are essenttdhyvever, in a graph where nodes are
publications and edges are citations between thamycle is a kind of self-citation. Therefore,
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we would rather node loops not to have much infteean rank distribution. Similarly, in
case b), node 0 is ranked higher by PageRank tbde h even though 1 has more “direct”
citations which would be perceived as having moneight in bibliometrics. In the last
examples c) and d), an additional node 8 point, tand this results in an increase of over
7% of PageRank of node 5. So even quite a distarge in the citation graph has some non-
negligible influence on a particular node. Thug, thotivation for the following formula is to
give more weight to direct citations and to makartimpact smaller as the distance between
the citing and the cited node gets larger:

_ Rv)+b_

R(u)=@-d)+d ———a

W=a-d+d 3 - (1118)
SCEAS Rank
In the above formula, RJ is the rank score computed for nadéalled SCEAS RanH) is a
factor enforcing direct citations, aradrepresents the speed with which an indirect oitati
impact converges to zero. Then the rank scoreaited nodeu is affected by a citing node
by the factor of™® whenk other nodes lie between themblfs zero anda is one, equation
(11.18) is equivalent to the standard PageRanR)i&xcept for the first term divided by the
number of nodes which we explained earlier. 4 and b > 0 then one may evendet 1
without convergence to zero unlike PageRank. R@gskproduced by PageRank and SCEAS
Rank for the graphs in Figure I1.5 fdr=1,b = 1, anda = e (2.72) are shown in Table Il.1.
As €’ is almost zero, a node citing from a distanc& aind more has almost no impact on the
cited node.

a) b) Q) d)
PR|SCEAS| PR|SCEAS| PR| SCEAS PR| SCEAS
6 0| 0 1] 5 5 5 5
13 6| 1 0| 3 3| 3 6
10 10| 2 2| 2 2| 2 0
9 13| 3 3| 1 1] 1 1
5 9| 4 4| 4 0| o 2
0 5 5 5/ 0 6| 4 3
1 1] 6 6| 6 4| 6 4
2 2| 7 7| 7 71 7 7
3 3 8 8
4 4

7 7

8 8

11 11

12 12

Table II.1: PageRank and SCEAS rankings for Figuse

Authors of SCEAS experimentally prove that it comes twice as fast as PageRank.
Moreover, they conduct a series of experiments déta from the DBLP digital library (see
Section 1V.1) and compare SCEAS rankings with s@vether ranking schemes including
PageRank, HITS and a “baseline” ranking constitwé@uthors winning an ACM award.
They show that their method is superior to the th&Ve adopted their comparison
methodology to test our novel algorithm on reabdatChapter V.

42



Chapter II Ranking Algorithms for Web Sites

11.2.6 Current Issues, Trends, and Areas of Future Research

Ranking algorithms have attracted much attentiarzabse of their evident practical usability,
and the steady stream of new ideas, observatioodifications, and improvements does not
seem to fade out. In spite of this, the theoretjmaperties of PageRank are still “only
partially understood” [Bianchini2005]. The follovgrntopics appear to be the main research
areas in this domain at present and will probablyain in the scientific mainstream in the
next decade. We refer to some of the availablealidee only, please see [Langville2003] for
further references.

» Storage The vast dimensions of the Web transition matneke its storage in main
memory impossible. There are two principal appreachow to tackle this problem.
First, we can compress the transition matrix, whéchormally very sparse, store it in
main memory, and then modify the iterative (alstbedapowel) method in (11.3) so
that it could work with the compressed matrix. S&towe can store the transition
matrix on disk in an efficient manner and then fiogt methods that allow for a
timesaving access to this matrix. The aim is toimire the time needed for 1/0
operations.

» Convergence speedAlthough the number of steps required for posver iterations
methodto converge is not more than a hundred whatevesittes of the Web graph
(see Section 11.2.4), the number of floating pomperations involved in that
computation may be enormous. Therefore, much relsesfort is devoted to finding
out techniques aiming at speeding up the calculaBasically, one can either try to
reduce the number of iterations (mostly by tinkgnmth computation parameters or
by relaxing the convergence criterion) or to redtloe number of operations in an
iteration.

« Stability and sensitivity. There have been some contradictory research tsepor
concerning the scale of change in the PageRankwetien the Web structure varies.
Some authors [Ng2001a, Ng2001b] claim that PageRamiing is stable and that it is
not much affected by many poorly ranked pagesdtamodified. Nevertheless, some
other researchers argue that it is mainly highhkeal pages which alter mostly and
these modifications do have a great impact on tleadl ranking. Finally, there are
scientists who point out that rank stability shoblkel observed rather than numerical
stability.

* Incremental computation. The frequency of updating PageRank of Web pages
should be high enough so as to reflect the dynaatigre of the Web. It is conforming
to the time period between two consecutive cralth® Web (see Section 1.2), which
amounts to weeks. The high computational costsagieRank motivated endeavours
to calculate it incrementally as the spider craiwes Web without needing to start over
from scratch every time after a complete crawl [Ke&es2005, Boldi2004a].
Alternatively, only the part of the Web that hasiehed since the previous crawl can
be re-computed and then coherently incorporatedhan overall ranking. Some
techniques aim at “predicting” the Web structurang2005].

 Spamming There are estimates of millions of pages in thebWhat have been
created only for the purpose afearch engine spammingg means that they try to
promote other pages or groups of pages in seagiheenankings by linking to them.
In other words, their goal is to unfairly increatbe® PageRank score of particular
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pages. These unfair linkage patterns can be vemplex and difficult to discover.
Therefore, sophisticated algorithms [e.g. Wu2005bktrbe developed to help search
engine ranking schemes (based on PageRank) evalleigages fairly. An on-going
clash of both parties — search engines vs. spamnisrto be expected in the years to
come.

.3 HITS

Web structure mining, one domain of Web miningzascerned with exploring the topology

of Web sites. The term topology is borrowed froragdr theory and it means the structure of
Web graph, in which the nodes are Web pages andrtseare links pointing from one page
to another. Obviously, it is a directed graph. S@omas discovered that this structure could
bear some information no less important than theahcontents of Web pages. For instance,
researchers have noticed that Web pages can ggnegadiivided into two categories: pages
that link to many other pages and pages that arggabto by many other pages. In fact, this
behaviour resembles the human society when we tifillkeb pages as humans.

11.3.1 Authorities and Hubs

Gibson, Kleinberg and others [Gibson1998, Kleintt®@Pb, Chakrabarti1998] explored the
existence ofWeb communities In doing so they introduced the notionsaafthorities and
hubsand theydeveloped a technique called HITS (Hyperlink-Indud®pic Search), which
is based on them. The authors conducted a numbexpdriments with HITS or methods
derived from HITS and they took a surprising cosabn that was in contrast to the common
opinion that the World Wide Web was “becoming irasi@gly chaotic”. Ahublinks to many
pages, whereas awuthorityis linked to from many pages. Between these twiies there is

a mutually reinforcing relationship — a good auityais linked to from many good hubs and a
good hub links to many good authorities. A Web pegre be dub andauthority at the same
time. The following Figure 11.6 shows an exampleao¥Web community. The set S includes
pages obtained with a query to a Web search entliaeextended st contains, in addition,
all the pages linking to the pages in the Seind all the pages that are linked to from the
pages in the s& The size of the s&is limited by choosing only a certain number afulés
from the search engine. We will denote such a geg® = (T, E) with E being the set of
links as usual.

Figure I1.6: Example of a Web community.

44



Chapter II Ranking Algorithms for Web Sites

If we assign arauthority weighta(p) and ahub weighth(p) to each page, their values are
computed as a sum diub weights of the pages that link to it and as a sinauthority
weights of the pages it links to, respectively. 8geations (11.19) and (11.20).

a(p)= Y h(a), (1.19)
(a,p)IE

h(p)= > a(q). (11.20)
(p,a)0E

At the beginning, we initialize the values of afp) andh(p) to 1. We update them according

to the formulae (11.19) and (11.20) in each itecasti We proceed like this with all the pages
and we normalize the weights after each iterafldre authors prove that this iterative process
converges to stable sets of weightsaothoritiesandhubs Then say ten greatest authorities
and ten greatest hubs can be denoted asotieeof a community

Previous thoughts can be expressed in the mattiation. Again, letA be the adjacency
matrix of a directed Web graph (similar to thafgure 11.6), whered; = 1 when the page
links to pagg and O otherwise. Lét anda be vectors corresponding to the weights of hubs
and authorities of all pages. We will repeatedIgfqren the following operations:

h—Aa a—A'h. (11.21)

From the classical matrix theory it implies thatttwian appropriate renormalizatidm
(respectivelya) converges to the principal eigenvech’ (respectivelyA'A). Kleinberg
shows further that thenon-principal eigenvectorof these matrices correspond to the
authorities and hubs of the “non-principal” Web coumities.

11.3.2 Extended Authorities and Hubs

We can also apply the ideatwibsandauthoritiesto graphs with other kinds of nodes. In the
previous case, each node is a Web page, but it dmuk researcher, a research group or an
institution as well. If a node is a researcher,ddlges coming to this node are citations of this
scientist (strictly said citations of his/her puliions) made by other researchers (in their
publications). On the other hand, the edges parftiom this node to the others are citations
to other researchers. Of course, we might grouparebers according to co-authorship,
membership to institutions and so on. So the omatihere are not meant to be references
(links) from Web pages but directly from papershjpzations). In the case of Web citations
the cited entity can be easily recognized by itsLUR is more complicated with paper
citations — it is necessary to find the refererssssion in the paper, to retrieve the individual
citations in it and possibly to determine the citdgject. Here we must work with a certain
ambiguity, because not all citations have the stormeat, not all authors are stated with their
second given names and so on. See Chapter Illlhimrconcept of authorities in social
networks and Chapter VI for case studies of findaghoritative institutions and researchers
on the Web.

1.4  Summary

The idea of taking into account the link structwfethe Web in order to rank pages by
importance was a revolutionary step towards a emhifiew on methods seeking to detect
authoritative sources in networked environments.efttirely new class of algorithms was
born — ranking algorithms. Even though the firsplagation area was the Web, these
algorithms are suitable for any directed graphshis chapter, we concentrated mainly on the
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best-known representative of ranking methods, PagkRvhich is at the heart of the Google
search engine. Although the most recent versionPafjleRank and its exact usage in
combination with other techniques in Google is higtroprietary information, we attempted
to summarize the state-of-the-art knowledge of ttasking method as understood in
academia.

The contents of this chapter are based primarilyhenoriginal PageRank articles [Brin1998,
Pagel1999], survey articles [Bianchini2005, Lang2003, Berkhin2005], the corresponding
chapter in [Chakrabarti2002, pp. 209-216], and sHdveesearch papers [Diligenti2004,
Ding2001b, etc.]. We had to leave out those mandifitations of PageRank due to space
limitations such as SALSA [Lempel2000] — a stociltastethod on the boundary between
PageRank and HITS, TruRank [Vigna2005], which woedso for d = 1, BackRank
[Bouklit2005], which allows a random surfer to fmN a backlink, or ObjectRank
[Balmin2004], which is query dependant unlike PageR We just sketched out the features
of SCEAS Rank [Sidiropoulos2005, Sidiropoulos200&jt was most relevant to our work,
and for information on AuthorRank, another PageRiaarbed technique close to our research
[Liu2005, Bollen2006], we refer to sections 1ll.4a8d V.4. As a final remark we would like
to underline that some aspects related to ranKdiggyithms are also discussed in the context
of social networks in Chapter 1.
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The Web graph, about which we talk in Chapter laimetwork of pages connected via
hyperlinks. Actually, every system that can be nedieas a graph is a network. The two
expressions are synonymous, although mathematipiaisr speaking of graphs rather than
networks, which is the terminology of social scistst Wasserman and Faust
[Wasserman1994] review social networks in detad anvery comprehensive overview of
networked systems has been written by Newman [New20@3]. Newman groups real world
networks into social, information, technologicahdabiological networks. He considers
citation networks and the World Wide Web (the dinies we are interested in) as
information networks, although the term “social'sHaeen widely accepted and is often used
in the context of citations or WWW, e.g. in [Chaba&ti2002, ch. 7] or [Liu2005].

The terms, algorithms, analyses, and models weustst the context of the Web are the
results of mixing mathematical and social scienppr@aches. If some decades ago social
network models and theories were introduced whatérlihad impact on the analysis of the
Web (for instance bibliometric methods describedGarfield1979] or [White1989]), now
there are algorithms that have evolved in the Welirenment and that, having been enriched
with ingredients from the mathematical graph theamg numerical analysis, may be applied
to original social networks again. Thus, webomstimdluences bibliometrics. This is the case
of ranking techniques covered in detail in Chafter

[11.1 References and Citations

To avoid confusion between references and citatfahsch is sometimes the case even in the
most accurate publications), we will strictly calesi out-edges as references and in-edges as
citations. Thus, articles (or authorgfer to other articles (authors) that ased by them. A
citation by X is an out-edge fro; areferenceto X is an in-edge tX. A citation of Y by X

is the same as r@ferenceto Y from X meaning an edge frok to Y. So in the most strict
sense, we should always use “refer” in the actorenfand “cite” in the passive form. Thus,
the common phrase “authXrcites autholy” would read only as “authoX refers to authoY”

or “authorY is cited by authoX” in the most exact interpretation. However, thegse X
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citesY” in the sense of an edge froto Y is so common in literaure that it is practically
inevitable. Therefore, when appropriate we alwaygicate whether a relationship is an in-
edge or out-edge throughout this thesis.

Definitions

We can gain valuable information from social netxgowhen we have a look eb-citations
and co-referencesLet us recall what Ding et al. [Ding2001a, Din@20, Ding2002] say
about them. LeG = (V, E) be a directed graph of citations (&8tbetween publications (set
V). Each edgeyx, p)) means that publicatign cites publicatiorp;. Let A be the assymetrid

x N adjacency matrix of such a citation network whene the number of publicationg|| A;

= 1 if p; citesp; andA; = 0 in other cases. The number of citations (edégree) of; is the

sum of values in thpth column ofA, i.e. d,, (p;) = ZLA]. and the number of references (or

out-degree) fronp; is the sum of values in theh row ofA, i.e. d ,(p,) = ZjN:lAj . Letdy, =

[din(PL), din(P2),....din(P)]" be the vector of in-degrees of publicationsVindou: = [doud(pa),
doud(P2),.....doud(pr)] " be the vector of out-degrees, dbg = diag(din) andDou: = diag@ou) be
the corresponding diagonal matrices. The numbelahteractions between publications is

equal to the sum of all elementsAn|E |= ZLZ:LA] .

Co-citations

If publicationp; references botp, andps thenp, andps are co-cited by;. On the other hand,
if both p; andp; referencep; thenp, andp, co-references. See Figure 111.1 for examples. Let
us define theo-citation indexC;; of publicationgy andp; as the number of other publications

citing both p; and p;: C; :ZLA“ A= (AT A);,i# jor by means of set notation
C, 4{p. OV :(p,, p)) OE,(p,, p;) DE}|. The whole symmetric co-citation matrix will be

denoted as C. Although C; is not meaningful and is wusually set to zero,
N

N . . .
(ATA),, =Zj:1A].k Ay = j:lAjk =d, (p,) is the in-degree ofx. Thus, diag(ATA) = Dj,.
This results in an interesting relationship. Thecalbed authority matrix is a sum of the co-
citation and in-degree matrices:

ATA=D, +C. (1.1)

The authority matrixA'A is the base for computing HITS authorities (corepaith Section
[1.3.1) and it is surprising to see how close théharities are to co-citations and in-degrees.
Apparently, the higher the co-citation index, therenrelated are the co-cited publications. In
fact, the co-citation index may be considered ameasure of similarity of two items
[Small1973], and it can be utilized to cluster @tgdinking to each other such as publications
[McCain1992], authors [Chen1999], or Web pagesgbai 996].

Co-references

It works similarly in the opposite direction of tlo#tation. Two publications co-referencing
some others (such as @and p on the right-hand side of Figure 111.1) are likety deal with
the same topic. In bibliometrics, a co-referenceften referred to as bibliograhic coupling
[Kessler1963]. The higher the number of co-refeeeingapersqo-reference indgxthe closer
are the citing publications to one another. Rebe the co-reference matrix of papersvin

Then, the co-reference ind& of papersp andp; is R, :ZILAK Ay = (AAT)U. Jd# ] or,
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with set notation,R, 4{p, OV :(p,, p,) UE,(p;, p,) UE}|. Again, R; is set to zero, but

(AA"), :zlilAk A, :ZLAK =d,,(p,) is the out-degree gk. Thus,diag(AAT) = Doy,
and we can express the hub ma#' as the sum of co-reference and out-degree matrices

AAT =D, +R. (11.2)

P, P, P, P,

Figure IIl.1:p, andps are co-cited by, (left) andp; andp, co-references (right).

Normalization

Ding [Ding2001a] further proves that the averagecitation index ofp; and p; is

Cjj = din(i)din()/(N — 1), and the average co-reference indeRjis doudi)dout(j)/(N — 1) if the
social network forms a fixed degree sequence rangtaph [Aiello2000]. (Compare with the
Web graph model in Section 1.1.) He also points that both co-citation and co-reference
indices should be normalized. We can explain tlosmalization looking at Figure 111.2.
Papergps andpy (left) are co-cited bys, ps, andps, but the co-citation by, should weight
less becausp; andp; are also co-cited by, in addition tops andp;. Actually, there are four
out-links fromp, and only two of them make the co-citatiorpgfandp;. Thus, the co-citation
by ps is 50% less valuable than that pyor ps which have only two out-links each. This is
called the normalization by out-links for co-citats, and it will be the normalization by in-
links for co-references. Papgrsandp, (right) co-references, ps, andps, but there are also
ps andp; that co-referencp,. Therefore, the contribution @ to the co-reference index for
p1 andp, will be a half of the contribution made py or ps.

Figure Il.2: Examples of co-citation and co-refece.
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1.2 Popularity and Prestige

.2.1 Popularity

Bollen et al. [Bollen2006] make a distinction beémepopularity and prestige when he
discuss the significance of scientific journalsfdde returning to this topic a little later, we
incorporate these two terms into general socialvolds. In a social network like that in
Section lll.1, the popularity of a nogeis clearly identified as the number of citations- (
links) or in-degree. Citations and in-degrees n@ayetimes not be the same quantitites (like
in the author citation graph in Chapter V), anatiins may then be considered as weights in
an edge-weighted citation graph. To demonstrate difference between in-degree and
citations, we have to extend the graphe (V, E) from Section Ill.1 and associate weights
with its edges. Letv; be the value assigned to edgg(E. The popularity of node is then

Pu)= > w,, . (111.3)

(v,u)dE

Weighted and unweighted in-degrees

Obviously, if we set all weights to one, the popularity of a node is its in-degitéaot all of
the edges have a weight of one, the popularity iseghted in-degreeThus, counting
citations for a particular author in a citation gneof authors, in which the weightjwneans
that authorn is cited w-times by authar is like calculating the weighed in-degree of that
author. In Chapter V, we use “counting citationgtid'calculating the weighted in-degree”
synonymously. What is the relationship between‘tieemal” (unweighted) and weighted in-
degree (citations)? Let us denote the weightedegree of nodeu as R(u) and its
unweighted in-degree as(H). If we suppose thaty; is always greater or equal to one (as it
should be in citation networks) theg(B) = P,(u). Consider the cases in Figure III.3.

/

)]

< ()

X y

Figure I11.3: Citations and in-degrees.
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The weighted in-degrees ofandv are the same (fu) = R,(v) = 5) whereas the unweighted
in-degrees are different (@) = 5, but R(v) = 1). We intuitively judge that is more popular.
On the other hand, nodesandy have the same unweighted in-degree (1), but distin
weighted in-degrees (5 and 1). We will considess more popular, although we may be more
reluctant here that in the previous case, becaesassociate the notion of poularity with the
number of endorsing elements rather than with thength of endorsment. The nodes
more popular than bothandy in each aspect.

Until now, we could always decide upon popularitihe weighted and/or the unweighted in-
degree was higher. But what if we are to compareertitan two elements or if the in-degrees
do not allow us to decide? For instance, the inrelegyofu andx are the following: R(u) =5,
Pu(X) = 9, R(u) = 5, and Rx) = 3. Can we normalize the in-degrees somehowshért
investigation shows us that we cannot. If we noireatitations by in-degree (i.e\ /), we
get 1 foru, 5 forv, 3 forx, and 1 fory. In case that we normalize in-degree by citatipm®s
P./Py), we obtain 1 fou, 0.2 forv, 0.33 forx, and 1 fory. Among the many discrepancies we
get, let us name just one. The “normalized” in-@egwould be the same forandy which is

an obvious nonsense. Thus, the solution appedrs to have two separate rankings for the
weighted in-degree (citations) as well as for theveighted in-degree (like we do in Section
V.3.3) and eventually to combine (average) the safrfbm both rankings to produce a
“universal” ranking like in [Sidiropoulos2006].

Balanced popularity

Finally, we will inspire ourselves by the genuinermalization of co-citations and co-
references, and we will introduce thalanced popularityBP. Again, the balanced popularity
presumes that the endorsment from a node linkiagnaény other nodes is less significant
than from a node having only few out-links. Sidimojos calls BP the balanced citation count
and does not distinguish between weighted and ghted citation counts, because he deals
with publication citation graphs that normally dotrhave weights. We define the balanced
popularity of node as follows:

u

BPU) = Y —

Vo W, (1n.4)
(v.K)OE

The denominator Zka is the out-degree of. There may be an unweighted as well as a
(v,k)OE

weighted variant of BP according as we set the eig. The motivation behind the

normalization by out-links is clear. For exampleg titation ofps by ps should be twice as

valuable as that by,, becaus@, has twice as many out-edge9as

All the methods measuring popularity we have déscriso far are calle@irst-order or
radius-1 methodsThe score obtained for a node depends only odilext neighbours. In
other words, nodes not sharing the same edge havefluence on each other. This is in
contradiction with the real life as objects in sbdaietworks often have an indirect impact on
one another. The next higher-order technique tdkesnto account.

1.2.2 Prestige

Prestige [Chakrabarti2002, p. 205] is defined recursivelje prestige score of a node
depends on the prestige scores of nodes that fmwitite node, and their scores depend on
nodes pointing to them and so forth. Thus, prestiga) of nodeu is computed as follows:
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Pr(u) = z Pr(v) . (|“5)

(v,u)dE

Actually, prestige is authority in HITS (see Sentih.3), and it can also be normalized by
out-links which is, in turn, the base of PageRaakadibed in detail in Section 1I.2. Prestige
can be easily computed wittower iterationslike HITS with the omission of hubs. Let
p(0) = [1,...,1]" be the initialprestige vectoof prestige scores of all nodes in the graph at
time 0. We will then iteratively update the prestigectorp(t + 1) =A'p(t), and L;-normalize

it (i.e. |pM)|h = ziN:l p; (t) should be one) after each iteration to avoid owerflWe will

iterate until convergence @f which will give the final prestige scores of abdes summing
up to one. Of course, the greater the score, tjiechithe prestige. See the section on HITS for
some notes on the eigenvectors of this system.rtdmfately, the prestige scores of nodes that
are not in cycles and that are not even linked yonbdes in cycles converge to zero
[Sidiropoulos2006].

This is not a problem in graphs with no cycles.gdtetically, there should not be any loops
in the graphs of citations between publicationthalgh it is not impossible in practice.) But,
of course, this fact is very annoying in the netxgothat are supposed to have many cycles
such as citations between authors or the World Witsb. The cycles in these types of
networks are sometimes created deliberately sooasuiment the prestige or any other
recursive ranking score of theirs or of a particmade. See also the remarksspammingn
sections 1.2.1 and 11.2.6 and the papetiok farm spamspy [Wu2005].

What about self-citations? We have not talked altoen so far. There are no restrictions on
the diagonal values of the node adjacency m&riXhey can be 0 or 1 just like the other
matrix elements. In fact, self-citations are veagiyy detectable small cycles. As we have just
seen, loops may cause problems when applying igeuesaluation mechanisms. Therefore,
we recommend to remove self-citing edges from tiagly (like in Chapters V and VI) unless

we are interested in some special graph properties.

1.3 Centrality

An alternative measure of importance of a node meavork is itscentrality. We briefly
mention three centrality metricsradius closenessandbetweennesd he radius tf) of node

u is equal to maxl(u,v) where dq(,v) is the distance from to (another) node in graphG.
Distance is the length of the shortest path frome ande to another. Thus, radius is the
distance to the most distant node in the graph.ndoe with the smallest radius is called the
center of the graph. Evidently, nodes with a smadius have more influence in the network
than nodes with a large radius. Closeness is soatewimilar to the radius, but it is
represented by many distances to all other nod#sad of a single quantity. A central node
should be close to any other node in the graph.

Betweenness is the number of times a particulaelied on the shortest path between any
two nodes in the graph considering each possible gfanodes. The node with a high
betweenness centrality controls the informationvfloetween other vertices. If we remove
such a node, a large number of shortest pathsogget or the graph even breaks up into
(more) components. A clear drawback of betweenrge#s computational time complexity
O(n) with n as the number of nodes, which makesmipractical for large graphs. It is
reasonable to calculate the radius and closendgdasrthe largest graph component. On the
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other hand, we can compute the betweenness cgnirala graph with components, but it
means examining many shortest paths “in vain”. figh time complexity of betweenness
would then suggest to use it only for the largeshponent, although this usually does not
help much, because real-world networks often haverg big largest component either (see
Section IV.1).

All centrality metrics can be adapted for directeddirected, weighted as well as unweighted
graphs. A single measure is not appropriate isialations. Therefore, several techniques of
importance evaluation should always be employegarallel. Liu [Liu2005] uses prestige
and centrality measures in the analysis of a sp&md of social networks, which we will
introduce in the next section.

1.4 Co-authorship networks

Co-authorship networks are a special case of soetaorks, in which the nodes are authors
and edges mean collaboration between authors. &thi citation networks discussed in the
previous sections, in which each edge is endorsemecognition, acknowledgement, or
express of debt, an edge between two authors @maathorship graph implies that those two
authors have been or still are colleagues. Theg kbavauthored one or more publications as a
result of their collaboration and common researtbrtelasting for years or even decades.
This is in contrast to citations, where the citmmghor often does not know the cited author in
person, and they may be divided by a time spampdbcenturies. In general, collaboration is
much stronger tie than a citation: authors knowheatber personally. (Let alone the “fake”
co-authorships that occur from time to time.)

Growing interest

In recent years, many research papers have app#zat deal with the analysis of co-
authorship networks [e.g. Nascimento2003, Wagn&208meaton2003, Farkas2002,
Otte2002, He2002, Cunningham1997]. It is in relatio the emergence of a large number of
electronic sources of bibliographic data. We ca@ne of them in Chapter IV. The analysis
of co-authorship networks instead of citation neksas advantageous in that there is more
reliable data to analyze. While citation indexirggjuires much manual labour and even if
fully or partly automatized it is prone to errocseating a co-authorship graph is by far not so
demanding.

.4.1 Network Types

Liu et al [Liu2005] enumerate three possible repnégtions of co-authorship (collaboration)
graphs — undirected unweighted (also called bimarynore generally, unit-weighted) graph,
directed unweighted graph, and directed weighteglgrLet us have a paperco-published
by authorsa,, ap, andagand a papep, co-authored by, anda,. The three representations of
this co-authorship network are visualized in Figlird — as an undirected unweighted graph
(left), directed unweighted graph (middle), andieeaed edge-weighted graph (right) the
weights of which will be explained bellow.

Can we measure prestige?

The undirected unweighted graph is the simpleshfisom which we can, however, gain all
centrality information for each node. To be alolerteasure prestige and popularity, we must
turn it into a directional network. So each oridginadirected edge is transformed into two
inversely directed edges so that the relationsbtpiéen the nodes sharing the original edge is
symmetric. Let us recall that the endorsement ¢tie edge) is not a citation but a
collaboration. Does it make sense to measure pdpulor prestige on the basis of
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collaborations and not on citations? Because ofatle of free availability of reliable citation
data some researchers take advantage of directebaration networks and then try to
identify authoritative authors as if it was a claabnetwork of citations between authors. But
Is a researcher who has many collaborators mommipenmt than another scientist who has
just a few colleagues? While citation indexing aamtalysis is an established means of
determining significant sources, the analysis chathorship networks with view of finding
authoritative researchers is not yet mature. A faypscientist in the collaboration network
may be authoritative in some sense, but such attheill probably be different from the
authority based on citations.

Figure II.4: Graph representations of a co-authipreetwork.

And, last but not least, authors who often pubtlsir papers alone (without co-authors) are
strongly handicapped if not entirely discarded ircalaboration authority ranking. The
number of publications written by one author mayghée large. For example, in the DBLP
data set we work with Section V.3, 149 031 papérhe total of 472 043 are single-author
papers which accounts for 31.6 %. The publicatiexemined by Liu et al. from the digital
library research community were single-author Bsidn 19.6 %. Péicek [Peticek2005]
reports about 10% single-author papers for DBLP @itdSeer. The practical meaning of
collaboration-based authorities is yet to be suteahito further research.

11.4.2 Weighted Networks

If we admit the existence of collaboration authest we might want the endorsements in a
directed collaboration network not to weigh equaliy order to be able to assign weights to
edges, we need some additional, explicit as welhmgaicit knowledge not included in the
simple co-authorship graph. For example, co-astldra paper jointly published by two
authors are surely more connected than co-authaaspaper written by fifteen researchers.
Also, collaboration between frequent collaboraisrgkely to be more intensive than between
occasional co-authors and, therefore, the colldlworéink should weigh more.

Frequency and exclusivity

Based on the ideas above, Liu defines two factuas will further determine weights in the
directed edge-weighted collaboration graph — ctxa@ship frequencyand exclusivity The
motivation behind introducing these two factorsagive more weight to collaboration links
that connect authors who often co-publish togettigr a minimum number of other authors
involved. Thus, the resulting graph is théh= (V, E, W) whereV = {ay,...,an} is the set of
authors as nodeg, is the set of co-authorship links between authsredges, and/is the set
of weightsw; assigned to each edge;,(a). We also need a set of publicatioRs=
{p1.---,pm}, because Liu does not consider a bipartite pabibm-author graph like we do in
Section V.1. The weighwjj is computed as follows:
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U (111.6)

wherec; is the co-authorship frequency of autharanda; computed like this:

¢, => 0, (I11.7)

k=1

andg; is the co-authorship exclusivity of auth@sandsg; (a; # &) in publicationpy defined
in the following way:

Jijx :]/(f(pk)_l) (11.8)
wheref(py) is the number of authors of publicatipn

The weights in (I1l.6) are normalized so that tlnsof weights on edges emanating from a
node is one. This is necessary, because a recitagyeRank-like algorithm will then analyze
the graph and compute prestige, which requirespttdperty for convergence. It also enables
to interpret the weights as transition probab#itté a random walker on the graph that would
not be allowed to randomly jump to an arbitrary @odn example of weight calculation is
shown in Table I11.1.

paper 1: f, ap, ag}; paper 2: fy, as}
Exclusivity

paper authors resujt
P1 a,a 0.5
P1 a1,83 0.5
p1 a,a3 0.5
P2 aj,do 1.0

Frequency
authors calculation resujt
a,ar 05+1 1.5
a1,a3 0.5 0.5
ap,a3 0.5 0.5
Weight

edge calculation result
(ag,@) [1.5/(1.5+0.5) 0.7b
(a2,21) |1.5/(1.5+0.5) 0.7b
(a,a) |0.5/(1.5+0.5) 0.26
(ag,@) ]0.5/(0.5+0.5) 0.50
(az,a3) |0.5/(1.5+0.5) 0.26
(ag,a2) 10.5/(0.5+0.5) 0.50

Table II.1: Weight calculation for graph in Figuite4.
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Context in our work

Liu’s weights strengthen relationships between atsgthvho often and exclusively co-publish.
In Chapter V, we introduce similar factors intoition graph. However, these factors affect
the weights inversely, because a citation betwaenauthors who frequently write articles
together should weigh less than that between ‘fioreauthors. The advantage of considering
these factors in a citation graph is that the diete®f authoritative sources from a graph of
citations is a fully recognized method whereasifigdauthorities in a collaboration network
is still in experimental stages and has the drakdace discusses earlier. In addition, the
directed weighted co-authorship graph represemtadfoLiu et al. is not self-contained. To
compute weights, we need additional informatiorcisas a table of publications and their
authors) that is nowhere to be found in the gr&phthe other hand, our graph representation
in Section V.1 is self-descriptive. We generalized &xtend the notion of co-authorship
frequency and exclusivity and employ them in a \Wwedg citation network to identify “more
fairly” authoritative researchers.

1.5 Scientometrics

The social networks we present in this chapteraigirorship and citation networks) are often
studied in bibliometrics — a scientific domain segkto discover interesting publication
patterns. Because Web pages can be regarded @&sapiobk, techniques and methodologies
from bibliometrics have been widely adopted in wektrics to “measure” Web pages.
Interestingly, some methods, such as prestige ctatipn, have gone the opposite way —
although originally developed for Web pages, theyreow being applied to standard printed
publications. If these publications are of scieatifature (journal articles, conference papers,
technical reports, dissertations, technical bogietent documentations etc.), we can talk
about scientometrics.

Scientometrics generally tries to measure reseaectormance of individuals and groups of
individuals (such as institutions or even counjri@s the basis of the number of “generated”
publications or patents and thempacton the research community. One can think of impact
as a kind of popularity or prestige. The significarof scientometrics has been growing since
research-funding bodies need some objective andtifjable information to justify their
funding policies. Their objective is to support lhiguality research and to limit aids to
unproductive individuals or institutions. In thiscsion, we will describe two metrics. One,
quite well established although sometimes contedtmdmeasuring impact of scientific
journals and another one, rather new, for calaujatesearch performance of individuals.

1.6 Impact Factor

Thejournal impact factor(IF) was first presented by Eugene Garfield in 1858 reviewed
many times in his subsequent publications [e.@anfield1979, Garfield1999]. Nowadays, it
plays a key role in the annual “Journals Citatioep&ts” issued annually by Thomson
Scientific (see Section IV.3.3). In the light oktlexplanations above, we can regard it as a
first-order popularity metric computed by normaigi weighted in-degrees. In fact, the
impact factor of a journal in a given year is theerage number of citations an article
published in the journal in the two preceding yeamtains from journal articles published in
the current year.

We can group publications from Section Ill.1 according to journals in whittey appear
and thus get a set of new nodés= {vi,...,v\} representing journals wherg = {ps,...,p}.
The original edgesp(,p;) UE for citations between publications will be grougseatilarly so as
to form new edges between journals\(,) JE" if and only if there existsp(p)CE such that
pi0v, andpOvg. The weightG, W' of (v, vq)JE™ will be the number of edges directed
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from Vp to vq, Hpq {(pi,p)CE: pillvp, O pilvg}. Now that we have the journal citation graph

= (VF, EF, WF), we further define IR{t) as the impact factor of journsin yeart,
c(v,,v.,t) as the number of citations to articles publisimegurnaly; in yearst — 1 and — 2 by
articles published in journa] in yeart, ands(v;) as the number of articles published in journal
vi in yearst — 1 and — 2. The impact factor of journglin yeart is then

ic(vj Vi, 1)

”:(Vi ,t) ZﬁT

(111.9)

Criticism

Many objections to the calculation of IF may ariBgst, only citations by articles in indexed
journals are considered. What journals should loexad? The selection of journals may
immensely affect the IF computed. In addition, papom conference proceedings are
completely disregarded (i.e. citations made by tl@ennever counted) which is an obvious
problem in such a rapidly evolving field like conteuscience, in which some conferences
are much more prestigious than journals. Secoredddfinition of IF admits self-citations
which may result in a strong bias towards frequesdlf-cited journals. Third, why has the
time delay of two years been chosen? Two years tntighinconvenient for some research
domains. And, last but not least, because of imifawity-based foundation, the impact factor
measures quantity rather than quality. Shouldtittompute prestige instead?

This and other criticism has been expressed in moumse publications [Harter1997,
Seglen1997, Nederhof2001, Bordons2002, Lewison2@0®2] Saha2003 among others].
Bollen [Bollen2006] proposes to replace IF with eighted PageRank, in which weights are
given as above in the journal citation graph, ttedrine prestigesfatusin his words) rather
than popularity of journals. He conducts an inténgsstudy on the data from “2003 Journal
Citation Reports” and identifies journals for whidhe popularity and prestige ranks
significantly differ.

Il.7  Index H

The indexH (also calledh-index, h-score or Hirsch-Index) is a simple metric of resha
performance proposed by J. E. Hirsch in 2005 [Hi2OO5]. A researcher has a scbrég h
papers by him have at ledsicitations (in-links) each and the other papersehatv most
citations each. For instance, a scientist whtlx 30 has thirty publications each of which has
been cited thirty times at least. The calculatibih & quite simple — we just sort publications
of a particular researcher by citations descengliagt denote them with 1, 2, 3, etc. We then
start from 1 and proceed until we found a publ@atumber that is larger than the citation
count of that publication. Theindex isg minus one. Clearly, there may be publications with
the same citation couhtthat do not contribute to theindex because they lie on the h+1st,
h+2nd, etc. position.

Properties

Hirsch finds two interesting relations. The firsteois a very rough estimate of the number of
citations with regard tb:

T = ah? (111.10)
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whereT is the total number of citations to publicatiorfsacscientist and is a coefficient
between 3 and 5 determined empirically. In theol@ihg equationn is the number of years
in service of a researcher usually measured ft@ryear of the first publication amdlis the
slope ofh versus.

h=mn. (11.12)

Obviously, if a researcher hhs= 20 after twenty years of researchhor 40 after forty years
of scholarly workmis 1. On the other hand, both a researcher Wwitl20 after ten years and
a scholar withh = 60 after thirty years of service have the same 2 and their research
output may be considered as comparable. The pagametllows for evaluating researchers
at different levels of seniority. Hirsch concludbsat a scientist (in physics) with close to
one is successful and a scientist witlabout three is an outstanding individual.

The indexH has some significant advantages over traditiociahsometric techniques. It is a
single number (compared to citation counts of tlesthighly cited papers), it does not prefer
guantity to quality (compared to the number of pailons), and it acknowledges a
systematic long-term work rather than a few frediyecited research results. On the other
hand, it has some inconveniences. Similarly totioma, it cannot be compared across
different scientific fields and subfields becauseligtinct citation patterns. For example, the
top h-scores in physics and computer science are aldbuwiereas their counterparts in
medical and biological sciences can be twice ak.hgso, theh-index of a scientist who
stops publishing can never increase in spite ophidications being cited.

Bibliographic notes

The h-index is very new and is subject to some cont®yeand amendment proposals.
Meanwhile, it has been suggested for journal ev@ngdBraun2006] and compared with
standard bibliometric measures and peer reviewegommts [Raan2006, Bornmann2005].
Bornmann and Daniel [Bornmann2007] summarize theesif-the-art knowledge about the
index h. However, its simplicity and availability makessititable for comparisons with other
scientometric or bibliometric rankings such as éhgsesented in Section V.3.3. A list of
computer science researchers with the larg@stiex is available at [24]. The indéxcan be
retrieved automatically from Google Scholar (seetiSe 1V.3.2) — a script for this purpose
sorting an author’s publications by citation coumt@y be found at [26] and a user interface at
[25] or [34].

1.8 Summary

In this chapter, we have discussed social netwad we have shown how closely
bibliometrics, webometrics, and scientometrics r@lated to each other via applications of
social networks. Therefore, some parts of this tdrapre on the boundary and could be
placed in Chapter | on ranking algorithms for W&tes. We have presented several well-
known metrics for evaluating nodes in a social rekw In particular, we point out
Section I11.4.2 on weighted co-authorship networkise bibliographic information used here
to calculate edge weights in a collaboration grispéxtended and newly adopted for citation
graphs in Chapter V.
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In this chapter we will describe several on-linestsyns that may serve for the support of
researchers by providing bibliographic informatiasitation indices, search services, or
repositories of scientific publications. Basicallye can group these systems into free and
charged applications, and into manually maintaiaed automated ones as is shown in
Table IV.1. We will take a more datailed look abtwrominent representatives — DBLP for
the part of man-made services and CiteSeer frongtbep of computerized systems. The
other services (Google Scholar,Rexa, ISI Web ofeism, and ACM Portal) will be
mentioned briefly. The importance of this chapter the core of the thesis (detection of
authoritative sources) is in that it introduce®atty existing services that allow for searching
for authorities or provide data that might be ukedhe search itself or for the verification of
search results in the field of (computer) scieratokarly publications

V.1 DBLP

When not stated otherwise, the information in #astion comes from [Ley2006] and [6]. The
DBLP digital library is a collection of bibliographdata from the field of computer science.
It is manually maintained and freely available &}. [As of April 2007, it contains over
870 000 bibliographic records. Its history reaclassfar back as 1993, shortly after the
appearance of the World Wide Web. Although moreci$igeat the beginning, it gradually
began to cover the whole domain of computer sciancecan be read as Digital Bibliography
& Library Project now.

Features

DBLP is updated regularly and some 110 thousand remerds are added each year.
However, this is far below the number of new comepudcience papers that appear. It has
been estimated that only about one fourth of newepa is input into the DBLP
[Peticek2005]. The authors of DBLP, a small research grauthe University of Trier in
Germany, admit that the selection of papers fordiggtal library is more or less random.
Nevertheless, the “all or nothing policy” is applie whenever a journal issue or a conference
proceedings book is selected, all of its papersrgret. Some basic funding enables to hire
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students to enter bibliographic data. The justiky huge manual effort needed with respect to
fully autonomous systems such as CiteSeer, somefiteenf this approach must prevail.
Therefore, a great care is taken when enteringoautames. The objective is to unify the
spelling of names and to disambiguate authors with same names. Both manual and
automated techniques are employed in this praamedsactually, this takes most of the time
of entering new data. As a result, the informatonpublications by an individual author in
DBLP is quite reliable. Moreover, even diacritisgimbols may be used by means of special
character codes. A feature that often does not weeK in other on-line bibliographic
systems.

The most significant property is the availabiliyadl the data in an XML file [8]. This allows
for numerous bibliographic studies based on DBLPchsuas [Sidiropoulos2005],
[Sidiropoulos2005b], [Sidiropoulos2006], [Bani-Ahd2005], [Cai2005], [Liu2005],
[Rahm2005], [Mohan2005], [Elmacioglu2005], [Nascime003], [Hassan2004] to nhame a
few. DBLP has clearly established itself as a mewriof high quality data for data mining
methods. We have respected its outstanding raleisrcontext, and we base our experiments
in Section V.3 on DBLP. Besides the regularly updadata file, there is also a “preserved”
file which enables different researchers to condaxgeriments with the same data and to
compare their results. Unfortunately, researchenmeglect this option.

Citations

Unfortunately, only a very small part of DBLP pudations contains references to other
papers. It is only a few percent. See [Sidiropa0@%] for a list of conferences and journals
whose papers include references. These are pnmaapers that are part of the so-called
“SIGMOD Anthology” [9]. In fact, about eighty penmsteof those 100 000 citation links in
DBLP are citations made by SIGMOD Anthology publicas. The anthology consists of
articles the full-text versions of which are digad and distributed on CDs (DVDs) for a fee.
There are over 14 000 PDF files (as of January R@ag some of the papers in the anthology
the reverse “cited by” information was also adddwterestingly, this information is
sometimes not disclosed by the DBLP Web interfac#a by the off-line browser [7] even
if it evidently appears in the XML file. It is uredr why. For instance, for [Brin98] no
citations (in-links) are shown on the Web site velasr the off-line browser finds eight
citations in the September 2006 data file. It cartmeoexplained by different data files because
the off-line file can never be more recent thatdhdine data.

Also, it is not evident how to obtain the list atimg publications for a particular paper.
Among others, to get the total citation count likg¢10]. In fact, it is necessary to go from the
anthology page or the corresponding BibTeX page twdhe “citation” page via theee>
element. For instance, from [11] or [12] to [13i3 “citation” page does not exist for some
cited papers, however. The safest way to find steg references in DBLP to a paper
seems to look for that paper’s key (ID) direcththie <cite> elements of the DBLP XML file.

In general, citation analysis based on DBLP id stsither limited when compared to the
extensive usage of its co-authorship graph. Thezefeome researchers even add directed
edges into the co-authorship graph and consider d citation graph [Liu2005].

Statistics

The co-authorship graph has more 440 000 nodesamualy 2006. There is one big
component with over 330 000 authors whereas thensetargest component has only 37
nodes! For more than 8 000 authors there exisitskad their personal homepage. We take
advantage of this feature in Section VI1.2.2 wheeemust decide on the “nationality” of a
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researcher. For each publication record thereBib&eX entry at least. For some publications
a link to their on-line version is provided. Papéan the SIGMOD Anthology have their
“local” links to a specific file on the CD/DVD ingted. Regarding the technology behind
DBLP, surprisingly there is no underlying databfis$. Scripts and programs parsing data
files and searching it in the main memory providarsh results. This is true for both the on-
line and off-line version. Therefore, before apptydata mining methods to the DBLP data it
is often needed to transfer it (or a portion ofntp a relational database.

We do not want to describe the internals of the Xt#ta provided by DBLP, but we will
rather terminate this section with a look at Figlwel adopted from [6]. As we can see, the
vast majority of publications in DBLP are eithenéerence papers (inproceedings) or journal
articles. The other publication types are neglgildlhat is why we analyze only papers and
articles in Section V.3.

| 80000 B www
i _ [0 master thesis
| 70000 W phd thesis
| 60000 - @ incollection 8
I 3 [ 7 B book -%
: 50000 i [J proceedings o
| 40000 [ inproceedings g
I M articles Q
| 30000 - H
20000 -
10000 -
07 Frrrrrr T T T T T T T T T TTd
g 2383838
o (@) (o) N @)} (@] (@] (@] year
AN i i i i i —

Figure IV.1: Distribution of various publicationggs and years in DBLP on 12 Jan 2006.

IV.2 CiteSeer

Services [15] as well as the full source code de&eer (at the beginning called CiteSeer,
then Researchindex, now CiteSeer again) are fraajlable. CiteSeer uses search engines
(with queries “publications®, “papers*, “postscripetc.) and crawling to efficiently locate
papers on the Web. Start points for crawling map &le submitted by users who would like
to have their documents indexed. It may take avi@gks after submitting to happen so. Its
database is continuously updated 24 hours a daykdJDBLP or ISI Web of Science, the
digital library and also its citation index (whiah quite limited in DBLP as we mention in
Section IV.1) are constructed in a fully automatey — no manual effort is needed. In April
2007, more than 760 000 documents are indexed.
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Features

Operating completely autonomously, CiteSeer worksitownloading papers from the Web

and converting them to text. It then parses theepa extract the citations and the context in
which the citations are made in the body of theepagtoring this information in a database.
CiteSeer includes full-text article and citatioml@xing, and allows the location of papers by
keyword search or citation links. It can also lecpapers related to a given article by using
common citation information or word similarity. @&~ a particular paper, CiteSeer can also
display the context of how subsequent publicatmtesthat paper [Lawrencel999].

CiteSeer downloads Postscript or PDF files, whiehthen converted into text usiRrg:Script
from the New Zealand Digital Library project [16kmained in [Nevill-Manning1998]. It
checks that the document is a research documetesbig for the existence of a reference or
bibliography section.

Once CiteSeer has a document in a usable formudt hocate the section containing the
reference list, either by identifying the sectiaater or the citation list itself. It then extracts
individual citations, delineating individual citatis by citation identifiers, vertical spacing, or
indentation. CiteSeer parses each citation usingdtes to extract fields such as title, author,
year of publication, page numbers, and the citaii@mtifier. (Compare with the techniques
of information extraction with hidden Markov modéts[Seymore1999].) CiteSeer also uses
databases of author names, journal names, andtbhdddelp identify citation subfields.

Internals

Citations to a given article may have widely vagyiformats. Much of the significance of

CiteSeer derives from the ability to recognize t@ilhof these citations might refer to the same
article. Also, CiteSeer uses font and spacing médron to identify the title and author of

documents being indexed. Identifying the indexedudeents allows analyzing the graph
formed by citation links, which results in abundaiétion statistics.

Several classes of methods for identifying and iy citations to identical articles are
applied [Lawrence1999]:

= String distance measurements, which consider distas the difference between
strings of symbols.

= Word frequency measurements, which are based ost#tistics of words that are
common to each string (TFIDF — Term Frequency mgelse Document Frequency,
common in information retrieval, see [Chakraba®20p. 57]).

= Knowledge about subfields or the structure of thead

= Probabilistic models, which use known bibliograpimimrmation to identify subfields
of citations.

Furthermore, algorithms for finding related artechre used:

= Word vectors, a TFIDF scheme used to locate astivieh similar words.

= Distance comparison of the article headers, uséiddcsimilar headers.

= Common Citation vs. Inverse Document Frequency QI which finds articles
with similar citations.
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Data

Besides links to the original documents on the Wehich have been downloaded and
processed, and document copies in its repositoitgS€er provides links to corresponding
document pages in DBLP and on the ACM Portal as. Wéhether these DBLP and ACM
references have been added manually is uncleank¥ha its automated citation indexing,
CiteSeer is able to publish lists of the most creeskarchers on a regular basis [17]. However,
the computer-generated citation rankings sustagn ghme problems we talk about in
Section VI.2.1 — incorrectly recognized author ngmambigous names, difficulties with
diacritics, etc. It is also possible to get allgSeer’s bibliographic data in an XML-like
format including references and author affiliatioloes some publications or just BibTeX
records with basic information [18]. Suprisinglyjt€Seer’'s data are not widely used in
scientometric research — an exception is [An2004].

IV.3 Other Systems

IV.3.1 Rexa

Rexa [19] is a service similar to CiteSeer that &aslved prom a project called Cora. It is
newer and it has only about a half of the numbetamiuments in its database (about 380 000
in April 2007). However, it enables to search lmghaphic references to a total of seven
million research papers, and its user interfaceeapgpto be more comfortable and intuitive.
Documents are not added continuously to the dighedry, though. The last extensive Web
crawl was performed in 2005 and the next one @@paration. Rexa is based on the work of
Andrew McCallum and his colleagues, and the teatmpolbehind it is relatively well
documented compared to CiteSeer [Seymorel999, NMo€@Ha999a, McCallum1999b,
McCallum2000 and others]. Emphasis is put on ettrgcinformation from scientific
publications with machine learning techniques anccieating networks of linked objects —
papers, authors, institutions (in development), ketgarticular, this enables a quick retrieval
of the citation count of an individual author. Fomore detailed overview of the information
extraction methods employed, see [Seymore1999].

IV.3.2 Google Scholar

Google Scholar is a service provided by the Gotgid search engine [20] in which it is also
seamlessly integrated. It is a powerful tool foarsling for bibliographic information
operating entirely autonomously. Scientific docutsesre collected from all over the Web,
indexed, and made available to the public via &cafe user interface resembling that of its
general search engine. It is not disclosed how nagrryments there are in the database, but
we can learn on the Web site of Rexa that Rexas & approximately one fourth of the
computer science papers indexed by Google Scholat would mean some 1.6 million
documents let alone the other six scientific domaiavered by Scholar and references to
articles that have actually not been indexed, bubse bibliographic information is known
(analogous talangling pagedrom Section 11.2.2). It is certainly the most gorahensive on-
line repository of scientific bibliographic inforrian at present.

On the other hand, Google Scholar may be considessdas a digital library that the other
systems above. An open access to the cached vedi@apers downloaded remains limited.
Quite often only links to an abstract on a publigh&Veb site are supplied, which then
requires a subscription to get access to thetdutl of the article. Of course, articles on non-
login-protected Web sites are still accessible tandard documents found by a search
engine. Therefore, Scholar groups similar documents usually offers free versions of a
charged document retrieved somewhere else on tlie {(Wer instance, a preprint of a journal
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article downloadable from the author's home palymjeover, there is a possibility to search
library catalogues for print versions of papersh@ar shows citation counts for individual
publications, though not for individual researchdrige latter must be done manually or via
scripts that communicate directly with Scholar's Wiaterface as is shown at [26] and
mentioned in Section 1.7 in the context of congtiheH score.

IV.3.3 Web of Science

Thomson Scientific Web of Science (formerly ISI Web Science [27] — ISI stands for
Institute for Scientific Information) enables use&rssearch a database consisting primarily of
papers from about 8 700 research journals (5 90@n@gs with 10.8 million searchable
articles for the “Science” domain which is stilsaperset of computer science). In addition to
journals, specific Web sites are also includechindatabase. See [Testal998], [28], and [29]
for information on how the journals and Web sites selected. The database covers 1978 to
date, but only the 1991+ portion has English lagguabstracts. This amounts to
approximately 70 % of the articles in the databddeere are weekly updates, with items
usually appearing 3 to 8 weeks after publicatiof].[3ts important feature is theited
reference searchindCitations mean later references citing an eaaliticle. Users can search
for all references to specific papers, authorsvenekeywords. A related service provided by
Thomson Scientific is “Journal Citation Reports’l[3The complete statistics of citations
between papers from the journals indexed are @taithere. This includes impact factors of
individual journals — quantifiers that are discuss@ Section 11l.6 and disputed by
[Bollen2006]. Yet another derived Web site is [3@th a list of over 300 “highly cited”
computer science researchers. The Web of Sciermeased and maintained manually. It is a
commercial product.

IvV.3.4 ACM Portal

The ACM Portal [33] is a Web interface of the dafjitibrary of the Association for
Computing Machinery. The library is further dividedo the Digital Library proper and into
the Guide. There are some 200 000 articles puldiflyyACM and partner societies in the
Digital Library (April 2007). The full texts of ACMublications are available for subscribed
members (the yearly rate is 198 USD). However, ipabbns owned by third party publishers
are still charged. In addition, the ACM Guide coimses the Digital Library plus more than
700 000 bibliographic records of articles cited ACM papers. The ACM Portal is
constructed manually, however, references in adidre extracted automatically using OCR
techniques. References (out-links) and citationsliiks) are shown in principle only for
ACM publications in the Digital Library. There iy an indirect way how to obtain the
number of citations for an individual researchéind all of his/her publications in the library
and count their “citings” (ACM’s expression for afions). Research conducted on the data
from the ACM Digital Library includes e.g. [Kim20D4

V.4 Summary

In this chapter, we discuss the topic of on-linsteyns assisting researchers in finding
bibliographic information such as publication ti#ledates, names of authors, references,
citations or even providing them with access toahstracts or full texts of the publications
being searched for. We mention six such systemsoartlothers like INSPEC by IEE [23],
Scirus run by Elsevier [22], or Academic Live Séaly Microsoft [21]. The importance of
this chapter for the thesis is in that it preseddta usable in social network analysis (see
Chapter I1ll) and thus appropriate for testing arafification of methods introduced in
chapters V and VI.
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The summary Table 1V.1 may be regarded as a feahateix of the systems above. Some
numbers are approximate only — such as those ll®mGoogle Scholar documents for
computer science or 10.8 million Web of Scienceclag that cover all natural and technical
sciences. By reference linking we mean whetheroamenavigate forward by following links

to referenced papers and citations linking is tipposite — one can go back to citing
publications. Let us remark in this context thadlifierent terminology is used in Web of

Science — navigating forward means forward in tened it is exactly the same that we call
going back to citing papers. At the ACM Portal ereihce and citation linking is possible only
in the Digital Library, not in the Guide. In somgstems we can find out the exact citation
count for a particular scientist, in some othershage to count it indirectly by means of
citations to the scientist’s publications.

ACM  Google Web of .
DBLP Portal  Scholar Rexa Science CiteSeer
Free yes no yes yes no yes
Automated no no yes yes no Jes

# documents | 870 000 200 000 1 600 00B@80 000 10 830 000760 000
All bibl. data

downloadable | Y€® no no no no yes
lFiQneIIi?]rgence partly ?grlfl)y no yes yes yes
ﬁ:rmgn partly F()gril)y yes yes yes yes
i Siﬁiﬁiiggﬁgﬁr partly ?gril)y yes  yes yes yes
i o ingﬁretgw ing?rggw indirectly yes yes indirectly

Table IV.1: Feature matrix of systems as of Ap@0Z.

We can conclude that DBLP appears to be the bpssitery for automated experiments with
bibliographic data, for it is free, all of its datae easily downloadable and manageable
(XML), and it is relatively free of errors (unlik€iteSeer) due to its manual creation.
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V Bibliographic PageRank

Notions of importance, significance, authority, girge, quality and other synonyms play a
major role in social networks of all types. Theydt& an object that has a large impact on the
other objects in the community. Perhaps the beaingle are bibliographic citations in the
scientific literature. Counting citations of resdarpublications is a relatively objective
manner to determine quality research known sinlmng time ago. With the fast growth of
the World Wide Web in the past ten years, this lohdnalysis has become essential also in
this domain in which citations are links betweenb/Ap@ges. Therefore, current Web search
engines make use of various link-based quality iranlalgorithms whose rankings they
combine with the keyword search results to offerdker not only topic-relevant but also high
quality Web pages. The best-known link-based ramkalgorithm is PageRank (see
Section I1.2). This recursive algorithm is applileato any directed graph — such as a graph of
citations between authors or papers. However,dgbdiphic data usually offers more than just
citations. Collaboration networks are also a vdeaource of information and are often
studied (see Section 1ll.4). But their combinatiwith citation graphs, which may lead to
more fair rankings of authors, has been relatilithe examined. In this chapter, we present
several modifications of the classical PageRankntda adapted for bibliographic networks.
Our versions of PageRank take into account not tmdycitation but also the co-authorship
information.

V.1 Definitions

Let G® = (P O A, E) be an undirected, unweighted, bipartite graphagthorship graph),
P O A a set of vertices(aset of publicationsA aset of authors) anB’” a set of edges. Each
edge p, a} O E”, p O P, a O A means that autha has (co-)authored publicatiqn Let
G° = (P, E®) be a directed unweighted graph (publication icitagraph),P a set of vertices
(the same set of publications), aBd a set of edges (citations between publications)v,N
based on the two grapt® andG®, we will introduce yet another graph we will fusthwork
with. Let G = (A, E) be a directed, edge-weighted graph (author citagjraph),A a set of
vertices (the same set of authors) &nd set of edges (citations between authors). Feryev
pUP let A, = {alJA: [ p,a} OE"} be the set of authors of publicatipnFor eachdy,a,), a;0A,
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a,0A, ai#a, where there exist9{p,) 0 E® such that p,a;} O E” and {pr,a} O E” and
ApinApz =0 (i.e. no common authors in citing and cited pudilens are allowed) there is an
edge &1,a,)0E. Thus, 61,a2)0E if and only if {py.p2) O EC O pra} O E° O paagt OE”
DAplﬂ Apz =0 Oazza,.

G G G

pl al p1 ‘ al az
b, a,
P, a, Py

P, a a
P, a, 2z &0 4

Figure V.1: Examples of co-authorship, publicatemation, and author citation graphs.

Before assigning weights to edgedinwe further define:

= Wy, = [C|] whereC = {p,0P: X py,u} DE” 0 O p, v} OE” O X py,p2} DEC O py # po, as
the number of citations fromto v,

= f,v= [Py + P\| whereP; = {pOP: (X p,i} OE"}, as the number of publications byplus
the number of publications w

= C,v = [CP| whereCP = {pOP: O p,u} OE” O O p,v} OE"}, as the number of common
publications byu andv,

* hd,, = JADC,| + ADC,| whereADG; = {alJA: [pOP such that p,a} OE” O {p,i} OE},
as the number of all distinct co-authorsugblus the number of all distinct co-authors
of v,

= hy,y, = JADCJ| + ADC,| whereADG is defined as above but it is a multiset, as the
number of all co-authors ofplus the number of all co-authorswof

» td,y = DCAl where DCA = {alA: [pOP such that p,a}0E" O {p,u}CE" O
{p,v} OE"}, as the number of distinct co-authors in commabljzations byu andv,

* t,v= DCAl whereDCA is defined as above but it is a multiset, as t@lrer of co-
authors in common publications byandyv,

* guv=fuv — SR| - BR| whereSR = {pOP: {p,i} OE" O d.-(p) =1}, as the number

of publications byu whereu is not the only author plus the number of pubiaa by
v wherev is not the only author.

Note that the current authors are considered amuttwers of themselves (variables hd, h, td,
t). They should actually not be counted in but thaild have no effect on the results.

V.2 Rank Calculation

We associate a triple of weights,(, ¢y, bu,) with each edgeu( v) O E wherew,, ¢, are
described above arg, , can be equal to one of the seven following valieEo@ing to the
semantics of edge weights we want to stress: &) b@fy., C) hyy, d)hd,\, €) guw 1) tuw Q)
tdy. We then define the rank &(for authoru as follows:
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1-d o
Ru)=—+d R(V) <="—
| Al (Z) > o, (V.1)
(v,K)E
where
va
Tk T L (V.2)

v,k ZW\, j .
b, +1.e

andd is the damping factor, an empirically determinedstant usually set to about 0.9.

In all the variations above, we penalize the ciethor for the frequency of collaboration
with the citing author. We suppose that a citatmistained from a frequent co-author
(colleague) is less valuable than that from a tpreiesearcher. Therefore, the contribution
from citing authors is inversely proportional tethumber of common publications with the
cited author. This happens in case a). On the ditwed, we mitigate this penalization under
some circumstances. In cases c), d), f), and geeegnize that the relationship between two
authors is weaker if they have many co-authorseimegal — cases c) and d) — or in common
publications — cases f) and g). We also distingbistween all co-authors — cases c¢) and f) -
and distinct co-authors — cases d) and g). In tasee claim that two authors are more
closely related if they have relatively many comnpumublications in relation to the total
number of publications by both of them and lesateel in the opposite case. The same holds
for case e) where the total number of publicatibgseach author as the only author is
counted. When all the coefficientsandb are equal to zero, equation (V.1) becomes the
weighted PageRank formula. (For instance, [Boll@&0and [Xing2004] work with
weighted PageRanks.) In addition to this, if ak tweightsw,, are set to one, it is the
standard PageRank [Brin1998]. The coefficien@ndb are analogous to the co-authorship
frequency and exclusivity in [Liu2005] which is ntiemed in Section V.4.

Zero c coefficients

Certainly, there will be many author pairsGrfor whichc is zero. Does it make sense to have
a non-zero coefficiertt if c is equal to zero? It surely does not wiheis t or td. If there are
no common publications, there are no co-author&ammon publications either. Other
parametersf( g, h, hd) may (or even must) be greater than zero evemn if zero. But
modifying the portion of rank distributed betweeutheors only on the basis of all their
publications 1), all their co-authorshjj, etc. without the context of their common pubticas

(c = 0) does not look meaningful. Why should authobtain more rank than authpfrom a
particular citing author only for the reason thatdine has written more publications? Briefly,
we setb to zero whenever is zero.

Example

Table V.1 shows edge weights for graphn Figure V.1. The coefficients g, h, andhd are
zero wherc is zero as mentioned in the paragraph above heut mon-zero variants are also
presented in parentheses for illustration. Edggps) and (s,p2) have no effect because they
are considered as self-citations (autaphas co-authored both of them). The proportions of
rank distributed by auth@ in graphG in Figure V.1 along its out-edges in the stand&fd)
and weighted PageRank (w) and the variations 3)areggiven in Table V.2.
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Edge |w|c| f g h | hd |t|td
{a,&}|2/0]/0(4)|0(1)|0(7)|0 (4)|0| 0
{asa} [1]1] 4 1 7 3122
{as,a} |1/0]/0(3)]0(1)/0(5)|0 (4)|0| 0O

Table V.1: Edge weights for graghin Figure V.1.

Edge | PRRw|a| b | c| d| e|] f| ¢
{ar,a} | 1/3|2/4| 47| 4/11|2/7|2/5|2/4|4/9|4/9
{ai,ag} |1/3|1/4|1/7|5/11|4/7|2/5|1/4|3/9|3/9
{ag,a} |1/3|1/4|2/7|2/11|1/7|1/5|1/4|2/9|2/9
> 12121 1| 1] 1 1] 1 1

Table V.2: Proportions of rank distributed by n@gdén graphG in Figure V.1.

For example, to computg »» for the variation w)we substitute in (V.2);

2

aal,aZ P~
O—+1(2+1+1)
0+1

o
which is 2/4. SINC@a1 a2+ 0a1.a3t+ daraa= 2/4 + 1/4 + 1/4 = 1, the proportioail’iaz from
Jvk

(v,K)OE
(V.1) remains 2/4. Thus, one half of rank of authois transferred to auth@g and so on.

V.3 Experiments

We tested our algorithms on the DBLP data availabdML. We took advantage of the only
time-stamped version of the collection from Febyudd, 2004 [2] which may serve
researchers as a testbed for experiments and comsr We extracted onlgrticle and
inproceedingsecords exactly like in [Sidiropoulos2005].

V.3.1 DBLP Testbed Data

Statistics

Table V.3 summarizes some basic statistics of tB&RD data we work with. (For more
details on DBLP, see Section IV.1.)) We spend somme tdiscussing it here as a good
understanding of it is vital for everyone wishing reproduce our experiments. The data
contained 173 63Q@rticle records (journal papers) and 298 4itproceedingsrecords
(conference papers) that we imported into a refatidatabase. These numbers are in cells B2
and C2, respectively. The total number aticle and inproceedingsrecords (i.e. their
corresponding XML elements), which we will referas papers, is 472 043 (D2). The number
of papers having some references is only 8 188 ({@8h is less than two percent of the
total. In addition, a large part of all referenéesn papers (D6) are references to undisclosed
publications outside of the DBLP library. The refeces within DBLP (D7) can be further
decomposed into references to papers (D8) ancerefes to other kinds of publications such
as books, theses, etc. The corresponding numbepspErs with references within DBLP
publications and with references to papers are m@U6. Exactly 18 288istinct papers are
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cited (D11). Time spans are not shown in Table Yi@vever, the most recent paper is from
2004, the oldest one is from 1936. The time peabditing papers is 1970 — 2001, that of
cited papers is 1945 - 2001 We can also obtairr afiermation from Table V.3, such as the
number of references from journal papers to confsxepapers (B10), the number of
conference-to-conference references (C10), the eumbjournal papers with references to
papers (B5), etc.

A B C D

1 articles inproceedings total

2 # 173 630 298 413 472 043

3 # with ref. 1818 6370 8188

4 # with ref. within DBLP 1791 6212 8003

5 # with ref. to papers 1771 6177 7948

6 # references 47 329 120 822 168 151

7  #ref. within DBLP 30186 79 003 109 189

8 # ref. to papers 27 801 72 853 100 654

9 # ref. to articles 13 330 29 247 42577
10 # ref. to inproc. 14 471 43 606/ 58 077
11 # distinct cited 7 391 10894 18285

Table V.3: Statistics ddrticle andinproceedingsecords in DBLP 14 Feb 2004.

Problems with article and inproceedings elements

The number of papers with references in D3, D4, Badis decreasing as well as is the
number of references themselves in D6, D7, andTb& results from the fact thatM is a
set of all publications in the worl@ is a set of publications in the DBLP digital libyaandP

is a set of DBLP journal and conference papers BhéhQ [0 M. The relationshig® O Q is
completely disregarded in the statistics on DBLBspnted in [Sidiropoulos2005]. For the
reader who would like to verify our results we pdevsa small hint in Table V.4. It shows
occurrences odrticle andinproceedingDBLP records along with their keys. Also we must
be aware that some other DBLP XML elements use “fpernals”, “conf’, “tr’, and
“persons” keys. Thus, the key itself does not iathcwhether or not a cited publication is a
journal or conference paper.

tag key #
article journals 173 085
article persons 10
article tr 535 173 630
inproceedings [conf 298 322
inproceedings fjournals/jods 9
inproceedings jjournals/Incs 80
inproceedings [persons/Codd74 1
inproceedings [persons/JohnLM94 1 298 413

472 043

Table V.4: Key and tag distribution in our DBLP aat
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V.3.2 Co-Authorship and Citation Graphs

Publications

Let us return to Table V.3. The publication citatigraphG® based on tharticles and
inproceedingsrecords will thus have 472 043 nodd?| (h D2) and 100 654 edge&{]| in
D8). So the references not pointing to papers a@nepointing outside of DBLP have
absolutely no effect. 7 948 nodes (D5) will hasene out-edges and 18 285 nodes (D11) will
have some in-edges. There will be 5 389 nodes both in- and out-degree non-zero (not
shown in Table V.3). The other graph constructedhfthe DBLP records is the co-authorship
graph G". This graph hasP| + JA| nodes (publications plus authors) which is 472 84
315 485 = 787 528 vertices in total. The numbeeddesH'| is 1 070 643. This is actually
the number of publication — author pairs (€% in Figure V.1). See Figure V.2 for a
histogram of the number of co-authors in publicadia.e. of the degrees of publication nodes
in G". The most frequent number of co-authors is two amiblication has 2.27 co-authors
on average. Interestingly, there are also pubboatwithout any authors which is an obvious
omission in DBLP.

180 000 -
160 000 - ]
140 000 -
120 000 +
100 000 +
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Figure V.2: Histogram of the number of co-author®BLP publications.

Author citation graph

The resulting citation graph of authdéshad 295 531 edges (no self-citations are allowed a
citations between publications that have at least @mmon author are considered as self-
citations) which isg|. Obviously, A is still 315 485. 12 934 nodes had a non-zerdeigree,

6 992 nodes had a non-zero out-degree. 4 748 madkloth a non-zero in-degree and a non-
zero out-degree. Only 15 178 authors were nottisdlarhis low inter-linkage of nodes @&

is a result of the nature of the DBLP data. Citadiavere systematically input only for a small
number of journals and conferences, such as SIGMR@Pord or VLDB Journal, as was
already mentioned in [Sidiropoulos2005]. See Figw& for a cumulative distribution of in-
and out-degrees and their weighted variations t{arta and references) in gragh The
maximum value for in-degree is 1 857, for out-deg884, for citations (in) 5 346 and for
references (out) 2 594. Apparently, the largestvbould be O+ with all the isolated authors
included. It is not depicted in Figure V.3. As waaynsee, the four series are quite well
correlated. The number of authors with a speciéigrde decreases as the degree gets bigger.
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There are no evident outliers. Perhaps the mostesting feature is the sudden drop in the
number of authors for 1+ (having one or more) andHaving five or more) in-degree and

citations. This is not the case for out-degree eferences. This means that 5 is quite a
boundary for less and more cited authors. Also,stiyeeriority of references over citations

which begins with 10+ and terminates with 200+ ¢adles that the group of highly cited

authors is greater than that of highly citing ausho

Oin-degree M citations (in) Oout-degree Oreferences (out)

14 000 +
13 000
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11 000
10 000 -
#9000
8 000 -
7 000 -l
6 000 1l
5000 -
4 000 1}l |-
3 000 -
2000 Al
1 000 -

X X X X X

F TSNS
WA PSS P

(weighted) degree
Figure V.3: Cumulative histogram showing distriloatiof in- and out-degrees (&

Distribution of ¢ and b coefficients

Figure V.4, Figure V.5, Figure V.6, and Figure \&fiow the cumulative distribution of
various parameters defined in Section V.1 in thights of edges it of graphG. The size of
the bin 0+ for each series of each graph would 3531, i.e.B|. The number of edges in
each 1+ bin is always 7 017 since this is the nurobedges irE between authors that have
some common publications. This number will never d&eeded by values of other
parameters because in Section V.2 we have defireegdrameters g, h, hd, t, td to be zero
wheneverc is zero. Now, let us make a few examples of imtdgtion of the data in the
figures. For instance, the number of edgeEk fior which the parameteris five or more is a
little greater than one thousand. This means thatetare some one thousand author pairs
having five common publications at least that @geh other (not necessarily at the same
time). The author pairs are ordered, so if the @stltite one another at the same time, i.e.
there are two edges I for this pair, the pair is counted twice. Anotleample: there are
some 5 000 author pairs having some common puiditatvhose sum of publications is 70
at least (see Figure V.5). In Figure V.6, we casenbe that there are no collaborating authors
that would have 400 or more distinct co-author®tal. The bins 1+ and 2+ in Figure V.7 are
the same because each common publication of twmeuhas two (distinct) co-authors at
least. The largest number of author pairs have dmtviive and ten distinct co-authors in their
common publications (see Figure V.7). If we sulitthe citing and the cited author, it is
between three and eight. In general, it holds ftkag), h > hd, t > td as the second parameter
in the couple is always more restrictive.
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Statistics ofc and b coefficients

To terminate this subsection, Table V.5 presensichstatistics of the andb parameters in
the weights of edges in gragh which were commented on in the previous paragraph
Parameteb is represented by the corresponding coefficiérgsh, hd, t, andtd as described

in sections V.1 and V.2. Note that only those edgds of G are considered for whiahis
non-zero, i.e. edges between authors who have somenon publications. The number of
these edges is 7 017 as mentioned above. Takingastount all of the edges & would
obviously decrease the mean values and set allame@dnd modes to zero. In total, we have
found 10 902 author pairs having one common putdicaat least but not all of them have a
citation edge irE, of course. Some interesting findings visible iable V.5 include: i) the
maximum number of distinct co-authors in commonligakions by two specific authors is 67
(M, 1) the most frequent number of the samehsee (rather low), iii) the maximum total
number of publications (counted separately) of tetlaborating authors is 489, etc. Much
more analysis (such as component analysis) ofdkeuthorship and citations graphs could be
done but it is not the aim of this thesis.

c f g h hd t td
min 1 4 2 2 2 2 2
max 56 489 443 977 355 210 67
avg 2.93 139.83 120.87 295.26 122.41 14.80 7.99
std. deviation 3.89 81.50 72.28 168.68 64.50 17.66 6.47
median 2 130 111 273 114 9 6
mode 1 153 134 188 59 3 3

Table V.5: Basic statistics of weight parametersefdges irE with non-zercc.
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V.3.3 Computing Ranks for Authors

We exploited extensively the author citation grapldescribed in detail in Section V.3.2.
Altogether, twelve ranking methods were employedualuate the authors. In addition to the
weighted (citation counting) and unweighted in-@&egrHITS authorities (see Section 11.3),
and the standard (unweighted) PageRank (see Séc#pnwve also applied the weighted and
the bibliographic (seven variants a) — g) from #ecV.2) PageRank algorithms. In this way,
we finally obtained twelve author rankings. The prgblem that immediately arises is how to
evaluate the quality of these rankings. The qualfta ranking is a highly subjective matter.
A straightforward solution would be to compare tpenerated rankings with an official,
“human-made” ranking. Unfortunately, this does ewist. Another possibility would be to
make use of the various citation systems we tatbuin Chapter IV and compare the new
rankings with their citation-based rankings. Treuble here is that the citation data in DBLP
is very incomplete and it is more or less concéattaon publications in a few particular
journals and conferences. Thus, it would not beatlly comparable.

Awards

It is remarkable in this context, that ACM SIGMOUDOgidal Review and ACM SIGMOD
Record journals as well as the ACM SIGMOD Confeeshave their publications’ citations
included. This was perhaps what initially triggetkd idea in [Sidiropoulos2005] — namely to
compare author rankings with lists of ACM SIGMOD ad winners. Quite logically, the
authors expected that award winners should be ¢hlaagher in their rankings than other
authors. In other words, the better a rankinghilgber ranks it associates with award winning
authors. As our approach is somewhat different ftogirs (more on this will be said in
Section V.4), the only award we can take advant#ges the ACM SIGMOD E. F. Codd
Innovations Award1], which is awarded “for innovative and highligsificant contributions
of enduring value to the development, understandorguse of database systems and
databases.”

Program committees

The only alternative approach to author rankingleation we are aware of is described in
[Liu2005]. Here the newly derived rankings are camagl to lists of program committee
members (i.e. prestigious researchers) of confesean digital libraries. A ranking with more
authors being members of program committees isideresl better than another one having
only a few of themThis approach has two obvious drawbacks. Firss, diomain specific. It

is appropriate for rankings based on data fromtalidibrary conferences (as was the case).
For other fields different program committees wob#le to be considered. But for general,
non-specific data (more or less the case of DBILRJ hot reasonable. And second, actual
ranks of authors are not taken account of. So tankings with the same authors in a
different order would be evaluated the same. (Alfio this can be improved easily by
comparing a series of ranks rather than singlé sotares.)

Results

We thus compared the ranks achieved by fifteen evmf the ACM SIGMOD E. F. Codd
Innovations Award from the years 1992 — 2006. \® &ixpected that better rankings would
place award winners higher. Let us have a lookadile V.6 with the actual ranks. The first
three rankings (citations, in-degree and HITS atitiles) are presented just for reference. The
actual baseline ranking is “PR” (standard unweidiageRank, in a darker column). In other
words, the goal is to compare the new “bibliograpliageRank rankings in columns “w”
and “a” through “g” with the standard PageRank. Th&mn “w” stands for the weighted
PageRank from Section V.2 and “a” — “g” correspdadhe variations a) — g) mentioned at
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the very beginning of the same section. We cantlsaethe weighted PageRank is much
better than the classical one in terms of the stinarkks (the smaller the better), the median
rank and a little better as for the worst rankgssil to the award winners. The rankings “a” —
“g” are always better than the standard PR reggrthe sum of ranks and median rank and
only “a” and “c” have a worse worst rank. The ramki‘a” is also weaker than “w” in all
metrics whereas “c” only with respect to the waestk. The rankings “d” and “e” are the best
in the sum of ranks and in the worst rank respebtivihe median is better for “d” (9 versus
12). Let us recall that this ranking penalizes arghrequently cited by their co-authors but it
weakens this handicap if the citing and cited agtlh@ave many distinct co-authors altogether.
Moreover, the median rank 9 is the best of allh@ table. Even the rankings not based on
PageRank are worse in this respect.

As we may observe, simple citations counting andlegree perform best. This is not
astonishing since prestige, popularity, awards, r@edgnition generally still rely mostly on
the number of an individual’s citations. What is re@urprising is the very good result of
HITS which is in contradiction with the conclusiotaken by [Sidiropoulos2005]. However,
their HITS ranking was not obtained in the same ampurs (see Section V.4).

Year Author Cites InDeg HITS PR w a b ¢ d e f g
1992 Michael Stonebraker 1 1 1 3 2 2 1 1 1 1 3 3
1993 Jim Gray 4 3 4 6 3 6 2 2 2 4 1 2
1994 Philip Bernstein 6 8 7 4 6 5 6 6 4 6 5 4
1995 David DeWitt 2 2 2 36 14 20 3 3 3 2 4 5
1996 C. Mohan 36 47 45 113 110 116 62 59 65 65 105 101
1997 David Maier 13 11 112 51 3 47 7 7 6 7 11 13
1998 Serge Abiteboul 12 18 21 104 61 69 12 11 14 12 37 43
1999 Hector Garcia-Molina 9 12 18 60 49 62 4 4 5 3 16 14
2000 Rakesh Agrawal 11 15 25 65 58 64 16 19 18 15 49 49
2001 Rudolf Bayer 84 75 94 7 16 14 97 132 94 93 25 20
2002 Patricia Selinger 38 38 23 59 55 53 61 55 54 63 36 48
2003 Don Chamberlin 16 13 10 2 4 3 29 26 23 26 7 6
2004 Ronald Fagin 28 40 46 19 13 13 27 28 30 25 17 17
2005 Michael Carey 7 9 5 63 46 55 13 10 9 14 21 29
2006 Jeffrey D. Uliman 3 5 9 15 8 12 5 5 7 5 8 8
Worst rank 84 75 94 | 113 110 116 97 132 94 93 105 101
Sum of ranks 270 297 321 720 480 541 345 368 335 341 345 362
Median rank 11 12 11 36 16 20 12 10 9 12 16 14

Table V.6: E. F. Codd Innovations Award winners #melr ranks in distinct methods.

Discussion of author ranks

The accompanying chart of Table V.6 is in Figur&8.\WWe can easily capture the most
significant trends there. The three lowest-evekednauthors are Rudolf Bayer, C. Mohan,
and Serge Abiteboul. At the same time, the posstiohRudolf Bayer and Serge Abiteboul
are quite oscillating (both high and low ranks gxishereas those achieved by C. Mohan
remain more stable (rather low). There are tworgses who are always ranked in the top 10
— Michael Stonebraker and Jim Gray. Neverthelésese two researchers were awarded first
—in 1992 and 1993, respectively. Thus, there e liime enough for them to profit from
the award and to collect citations. In this contéx¢ high ranks of the most recently awarded
researcher, Jeffrey D. Ullman, are very remarkalaé course, he may have won another one
from the many awards before.)
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Figure V.8: E. F. Codd Innovations Award winners.

Let us have a look at some particularities in FegWi.8. For instance, Rudolf Bayer has
relatively few citations and few distinct citingthors (citations and in-degree), but he is cited
mostly by authoritative researchers (“PR” and “wfd not so much by his colleagues (“a”).
Then he suddenly looses good positions which médicate that his colleagues citing him
have published rather little (*b” and “e”) and ththey usually have few co-authors in their
publications (“c” and “d”). But the number of cothors in the common publications with
the researchers citing him is relatively high (&ffid “g”). Also, there is the biggest difference
between “c” and “d” for Rudolf Bayer amongst allanded authors. This may mean that there
are less distinct co-authors in his publicatiorrd(ar in publications of his colleagues citing
him) with respect to all co-authors than is theecasth other award winners. It is somewhat
inverse with Serge Abiteboul. He has many citatibuasis cited by less authoritative authors
(a sudden drop with “PR”). However, if the frequgmd endorsements is taken into account
(“w”), Abiteboul’s rank improves considerably (froover 100 to almost 60), etc. Certainly,
all of the above explanations are not exclusiveabse there may be many other factors
affecting the ranks that we are even not awardlgb keep in mind that the results are based
on the very incomplete data we work with. We do pagsent individual statistics over
rankings for each author here since the objectite compare rankings rather than authors.

Comparison of rankings

There are a number of metrics for comparison okirggs. See [Sidiropoulos2006] for some
of them. We will briefly discuss the outcomes ofen metrics — two numerical and one
graphical. In Table V.7 we can see the number ofraon elements in the top twenty authors
of two particular rankings. For instance, the ragkby citations has 16 authors in common
with the ranking by in-degree in the Top 20. Thenber of common authors varies between
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five and twenty. Of course, it does not reveal aimg about the order of authors. It just says
that 16 authors are the same. Theoretically, tlerorg could be inverse. Two pairs of
rankings have a complete match — “w” and “a”, abd &nd “e”. Also “f” and “g” have a
rather great match (19 authors in common). On therdand, the least observable match is
produced by the standard PageRank — it share$iyesauthors with each “b”, “c”, and “e”.
We can notice that there is a set of pairs of “twankings that match quite well each other:
{citations, in-degree}, {"PR”, “w"}, {"b”, “e”}, {* c”, “d"}, and {*f", “g"}. The “twin”
rankings are very close to each other in the dedmiof their coefficients, e.g. weighted or
unweighted in-degree, co-authors or distinct cdvargt, etc. This definition similarity results
in the similarity of their top twenty authors. Tlaly exception in this respect is the pair
{*"w”, “a”} that matches perfectly but whose defifon is somewhat distinct. On the contrary,
we may observe the smallest numbers between thkingsn from {‘b”, “c”, “d”,
“e”IX{"PR”, "w”, “a”}.

Cites InDeg HITS PR w a b c d e f g
Cites X 16 14 7 9 9 14 14 15 14 12 12
InDeg 16 X 16 9 10 10 12 12 13 12 13 13
HITS 14 16 X 11 12 12 11 12 13 11 16 15
PR 7 9 11 X 16 16/ 5/ 51 8 5] 14 15
w 9 10 12 16 X 20 7 7 8 7 16 17
a 9 10 12 16 20 X 7 7 8 7 16 17
b 14 12 11 5 7 7 X 18 17 20 11 10
c 14 12 12 5 7 7 18 X 18 18 11 10
d 15 13 13 6 8 8 17 18 X 17 12 11
e 14 12 11 7 70 20 18 17 X 11 10
f 12 13 16 14 16 16 11 11 12 11 X 19

g 12 13 15 15 17 17 10 10 11 10/ 19 X

Table V.7: Common elements in top 20 authors.

Cites InDeg HITS PR w a b c d e f g

Cites | X 0.9904 0.8666 0.8119 0.8207 0.8188 0.8189 0.8079 0.8199 0.8203 0.8253 0.8237
InDeg |0.9904 X  0.8661 0.8178 0.8179 0.8163 0.8169 0.8072 0.8178 0.8180 0.8221 0.8207
HITS |0.8666 0.8661 X  0.7748 0.7496 0.7483 0.67860.6831 0.6866 0.7473 0.7496
0.8119 0.8178 0.7748 X  0.9806 0.9803 0.9168 0.8785 0.9213 0.9253 0.9751 0.9776
0.8207 0.8179 0.7496 0.9806 X 0.9993 0.9520 0.9197 0.9557 0.9586 0.9968 0.9981
0.8188 0.8163 0.7483 0.9803 0.9993 X  0.9452 0.9123 0.9491 0.9522 0.9938 0.9960
0.8189 0.8169 0.6786 0.9168 0.9520 0.9452 X  0.9935 0.9992 0.9995 0.9665 0.9620
0.8079 0.80720.8785 0.9197 0.9123 0.9935 X  0.9921 0.9904 0.9376 0.9315
0.8199 0.8178 0.6831 0.9213 0.9557 0.9491 0.9992 0.9921 X 0.9993 0.9700 0.9657
0.8203 0.8180 0.6866 0.9253 0.9586 0.9522 0.9995 0.9904 0.9993 X  0.9722 0.9681
0.8253 0.8221 0.7473 0.9751 0.9968 0.9938 0.9665 0.9376 0.9700 0.9722 X 0.9994
0.8237 0.8207 0.7496 0.9776 0.9981 0.9960 0.9620 0.9315 0.9657 0.9681/0.9994 X

o
Py}

Q -0 Q0 T =

Table V.8: Spearman correlation coefficients.

The next comparison is based on the correlatiowd®t rankings. Table V.8 shows the
Spearman correlation coefficients for each panaokings. They are all significant at the 0.01
level. An alternative metric would be Kendall's teaee Section 11.2.4). With this metric, we

consider the ranks of all authors that have sorgegree. (It is 12 934 as we mention in
Section V.3.2.) Thus, few matches in the Top 20 tmagasily compensated for with matches
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of lower ranked researchers. All highly matchingrgaf rankings from Table V.7 are
represented by a large correlation coefficient. fighest correlation (0.9995) was measured
betweenb ande where publications and “solo” publications areemchanged. On the other
hand, the least correlation is reported betweand HITS (0.6379). However, the number of
common top 20 authors is 12 which is by far not wast. Evidently, there are many
mismatches between lower-ranked scientists. Thersetsmall matches from Table V.7 has
disappeared here. It seems that mismatches justmatate in the upper part of rankings

(which is more important than the lower one, thqugh

Finally, let us present a graphical representat@lied g-g plot. Ranks of authors generated
by two different rankings are plotted against eattter. Obviously, two perfectly matching
rankings would produce a straight line. There &eahking pairs, so it is impossible to show
all charts. We have chosen four of them and shawntin Figure V.10. The top-left and
bottom-left charts are examples of highly matchitwgn” rankings (“f" vs. “g” and “b” vs.
“e”, respectively). The top-right plot is for thedst correlating pair (HITS vs. “c”) and the
bottom-right plot represents a “mediocre” rankiray gnamely “a” vs. “c”).
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Figure V.9: Convergence rates of standard (PR)ghted (w) & bibliographic (a — g) PR.

Convergence
All in all, enhancing the citation graph with fuethbibliographic information proves to be

very useful. The advantage over the standard PadeR&lear. Already assigning weights to
the edges in the citation graph is very effectiviel @adding data from the co-authorship
network improves the results even more. The corarerg rates of standard and bibliographic
PageRanks are comparable. See Figure V.9 wherathping factord in equation (V.1)) is
set to 0.9. The vertical axis in the figure repreésethe Spearman correlation coefficient
between the rank vectors in the current and previtaration. This simplified convergence
criterion is often used instead of measuring theohlte error over rank scores (see Section
[1.2.4). In the single precision arithmetic (sixsmven decimal digits), all algorithms converge
in about ten iterations. Of course, the resultargkings depend entirely on the structure of the
citation and co-authorship graphs, i.e. on the DBBE they are generated from. Remind that
in our data collection, only 8 188 publicationsniréhe total 472 043 had references included.
The rest could be used for the co-authorship gapi. Even though the DBLP collection
dates from 2004, it still makes sense to take adcount award winners from more recent
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years because it usually takes a couple years farbéication to become cited and DBLP
references to papers from years after 1997 aremrathre [Sidiropoulos2005]. The newest
citing paper is from 2001 as pointed out in SectoB. 1.

14000 - 14000 -
HITS vs. ¢

12000 4 fvs. g L 12000

10000 - 10000 -
8000 | o 8000

6000 6000 -

rank by g
*
rank by ¢

4000 > 4000 |

2000 2000 4

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
rank by f rank by HITS

14000 - 14000 -

12000 + 12000

10000 ~ 10000 -

8000 8000 1

rank by e
rank by ¢

6000 - 6000 1

4000 - 4000 -

2000 &

2000

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8OO0 10000 12000 14000

rank by b rank bya

Figure V.10: Some comparisons of rankings by medigsq plots.

Significance

To show somestatistical significanceof the improvement of the results of the baselife P
method by the new rankings (see Table V.6), we dowled to reject the null hypothebis

Lpr - vew = 0O, i.e. that the mean ranks of the baseline @inithe new ranking are equal.
However, to be able to perform such a test, the tamkings would have to be normal
distributions, independent of each other, and thairances would have to be equal. At least
the first two conditions are not satisfied. Therefowe cannot say whether or not the
improvements we have achieved are statisticallgisggint. We can only demonstrate their
practical significance

Prediction

We show the top 40 authors for each ranking methddbles Table 1, Table 2, Table 3, and
Table 4 in the appendix. E. F. Codd Award winnegesia bold. Of course, the top ranked
authors that have not yet been awarded have ttategtechance to win the award in future
years. Raymond A. Lorie and Umeshwar Dayal appe@ng the best in each ranking. As the
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awarding highly correlates with the ranking by tdas, Won Kim is also a top candidate for
the ACM SIGMOD E. F. Innovations Award in futureays. (E. F. Codd himself died in 2003
and cannot be awarded.)

V.4 Related Work & Summary

Sidiropoulos

Sidiropoulos and Manolopoulos [Sidiropoulos2005]vénaproposed modifications of
PageRank that would better meet needs for evafpatides in bibliographic networks. Their
PageRank-based algorithm is called SCEAS Ranksadddgcribed in Section 11.2.5. Although
we adopted their testing methodology (DBLP and dweinners) and tried our best for our
results to be directly comparable, they are nois Tias several reasons:

1. Different data. Unfortunately, authors use DBd#&ta from January 14, 2005. These
data were probably up-to-date when they condudted experiments but they are
obsolete now and, in addition, they are not puplalailable. Had they worked with
[2] instead, the input data would be the same haul tesults verifiable.

2. No author citation graph. Only co-authorshipptw&” and publication citation graph
G are constructed. All computations are performenhu®® and rankings for authors
are obtained by averaging ranks of their publicetio

3. Not all publications considered. In additionlyothe ranks of the 25 best-ranked
publications of each awarded author are countddrimuthor ranks. The number 25
was selected because it appeared to be the glptiaduwon of SCEAS Rank.

Evidently, the number of best publications seledaua severely affect the ranking quality. If
a global optimum for PageRank was chosen insteagcan assume that SCEAS Rank would
come out much worse. Even for those 25 publicat{optmal for SCEAS), PageRank has a
smaller sum of ranks (200 against 207). The restil®CEAS would be comparable to ours if
the ranks of all publications for each author weaken into account. The authors do not
disclose these results. Working directly at thehautevel (and not at the publication level)
avoids the problem of searching for the optimal banof best publications for authors (some
authors may even not have the required number loligadions) and, therefore, the resulting
rankings are biased towards the method that thenapthumber of top publications was
selected for. Authors in [Sidiropoulos2006] try &nend the “number-of-publications”
problem by aggregating the ranks of authors overersé¢ different numbers of top
publications but still not all publications are sadered which does not allow for an unbiased
comparison of authors and methods. The inherenaddentage of our author-level
methodology is that it does not enable ranking ijsahbns.

Bollen

Liu, Bollen et al. [Liu2005] introduce co-authorghirequency and exclusivity computed
from a co-authorship graph into PageRank (calleth&wRank) and rank authors from a few
conferences on digital libraries. Co-authorshipgfiency and exclusivity are somewhat
analogous to the andt coefficients from Section V.1 and are explainedsection 111.4.2.
Their testing data originating from an undisclosenlsion of DBLP are rather small (759
publications) and domain-specific. They compareirtmankings with relevant program
committee members and conclude that “the resulBagfeRank and AuthorRank are highly
correlated, but there is no conclusive evidence tme performs better than the other.”
However, they do not take advantage of distinct Imens of citations between authors, i.e. the
parametekv from Section V.1 is always set to one in their moett Interestingly, they do this
in [Bollen2006] for journal citation networks with weighted PageRank algorithm. But no
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co-authorship information was added to journalsdiovious reasons. On the other hand, our
“bibliographic* PageRank exploits both the co-au#iinip and citation information from
bibliographic networks in a generalized manner.

Summary

In this chapter, we presented several modificatafrtbe classical PageRank formula adapted
for bibliographic networks. Our versions of PageR#ake into account not only the citation
but also the co-authorship graph. We verified tladility of our algorithms by applying them
to the data from the DBLP digital library and byngmaring the resulting ranks of the winners
of the ACM SIGMOD E. F. Codd Innovations Award. Rargs based on both the citation
and co-authorship information turned out to bedrdtian the standard PageRank ranking. In
the future work, we would like to concentrate oa tbsue of incorporating the time factor in
the bibliographic PageRank. For instance, a cilabetween two authors made after their
collaboration would be considered as less valuifale another one made before it, etc.
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The succesful analysis of the well-structured DRIeRa in the previous chapter invites us to
try to discover authorities also in the world’s ¢eegt repository of unstructured data — on the
Web. In this chapter, we present a methodologytandcase studies for finding authoritative
researchers by analyzing academic Web sites. IfirStecase study, we concentrate on a set
of Czech computer science departments’ Web sitesawalyze the relations between them
via hyperlinks and find the most important onesgsseveral common ranking algorithms.
We then examine the contents of the research papessnt on these sites and determine the
most authoritative Czech authors. In the seconeé sasdy, we do exactly the same with
French academic computer science Web sites tatlfi@anost significant French researchers
in the field. Unlike Chapter V, in which we work tiquite non-noisy DBLP data, the results
of the experiments we present in this chapterrdrerently dependant on the structure and the
content of the Web. Moreover, the Web data mayxteemely noisy and biased. Thus, the
outcomes should be considered as informative rdtiar conclusive. We also discuss the
weak points of our approach and propose some futnpeovements. To the best of our
knowledge, it is the only attempt ever made atalisdng authoritative researchers from the
above countries by directly mining from Web data.

This chapter comprises two sections. Section VEealsl with the analysis of Czech and
French Web sites whereas Section VI.2 describegribcess of examining the papers found
thereon.

VI.1 Mining the Structure

The rapid growth of the Web has lead to fearsfirmation explosionexcessor flooding
There is too much information available, and wencairhandle all of it. The Web is a huge
storehouse of data, information, and knowledgeiaratder to be able to get the maximum
out of it, we must quickly recognize whether or mosource of information on the Web is
valuable. Otherwise, we can easily waste our titndysng Web documents that are irrelevant
or of a poor quality. Like in the scientific litétee where publications cite other publications,
and we tend to refer to those highly cited onespreger authoritative Web pages.
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Chapter VI Mining the Academic Web

It is important for a Web surfer to search for mh@tion on quality pages to possibly gain
advantage over others. It is no less relevant idfed site creator to have his site perceived as
valuable and thus attracting a larger number oitorss which may consequently imply a
greater profit. Briefly, it is in the interest dfidg whole Web community to be capable of
distinguishing between good and bad Web documénthe Web domain, citations are links
between Web pages or Web sites (when we talk afitaitevel).Commercial Web search
engines soon became aware of the potential of teke Nk structure for the discovery of its
authoritative resources, and a link-based qualilggment is a necessary complement of their
content-based search techniques.

Algorithms for these judgements may be recursiuehsas PageRank [Brin1998, Page1999,
Chakrabarti2002, pp. 209-212] or HITS [Chakrab&®8, Gibson1998, Kleinberg1999b] or
simple like In-Degree which just counts in-linkeorge studies [Ding2001b, Ding2002] have
shown that the rankings produced by the three d@ihgos are highly positively correlated, but
it has been contested by other researchers [Parghna002]. Recursive methods have a
strong probabilistic background [Diligenti2004] amidere exist many modifications, e.g.
PageRank for bibliographic citations [Sidiripoul6€8, Sidiripoulos2006]. We refer to
Chapter 1l for in-depth information on ranking atgloms. Closest to our work is the research
in [Thelwall2001, Li2003] not further described batue to space limitations, but in addition
to the relations between Web sites we also stuttieccontents of the documents found on
them. Other authors have tried to determine theonapce of Web sites of Universities rather
than departments as we have done [3].

VI.1.1 Czech University Computer Science Web Sites

Our first objective was to determine authoritatinstitutions among Czech computer science
University departments. We have chosen this areause we know it well and we could
expect that there would be enough data on the W@ebnalyze. At the same time, we
supposed the data volume to be easily manageabd®. though we limited our experiments
by topic and scope, the methodology we used wdiismtly general to be able of applying
to a completely different scientific field.

Constraints

We have selected seventeen computer science Web fesim a Web directory of Czech
academic institutions. Our selection had severabtraints. First, we wanted to take account
of their geographic location so as to include vasioegions of the Czech Republic. Second,
each department had to have its home page on its sewer. That means, we did not
consider home pages being on a URL’s path suchnag.someuniversity.cz/somedepartment
but only those like www.department.university.czhefefore, we had to eliminate
departments whose home pages were located in theiversity domain, which was
sometimes the case.

The reason for this is the fact that stand-alomeess can be manipulated more easily by a
machine. A Web spider recognizes quickly whethemnaira link on a department’s Web page
is internal (within department). No recognitionloical domains on Web sites is necessary,
and we can get along without techniques similathtse in [Li2000], And third, we wanted
the departments to correspond in the Universityanahy approximately to the level of our
home department. This is somewhat tricky becausalhof the Universities have the same
structure of schools consisting of departments.thigrreason, some institutions in our list are
schools rather than departments.

84



Chapter VI Mining the Academic Web

Procedure

In December 2005, we let our Web spider crawl ifhe seventeen servers. The spider stored
information about hyperlinks between Web pageshendervers to a database and built a
corpus of downloaded documents for further anal{see Section VI.2). We repeated the

same procedure two more times in a-few-days interaad the results we obtained remained
almost unchanged. We show those from the last expat in Table VI.1.

We have to mention briefly a few Web crawling rethtssues which may have impact on the
parameters we examined. We were interested onlynks via the HTTP protocol and
pointing to documents in certain formats. For ins& we did not consider video or audio
documents, which is natural, but we also left autuinents with extensions doc, rtf, txt, and
ppt, which is more arguable. (However, taking actoof these formats in one of the
experiments caused only one change in the midateop¢he chart in Table VI.1.) To prevent
the spider from getting stuck in Web traps, wetBetmaximum depth of nesting in the Web
graph to eight, which is empirically a good estiendbr yielding reasonable results.
(Documents in greater depths are usually duplicatésdifferent names — URLS.)

Results

Our spider collected over 250 000 documents (ircipeformats) and created a roughly
7 GB corpus. We found about 3.3 million links t@tlke documents within the set of servers.
We removed duplicate links and self-links (intreedinks). Duplicate links have the same
source and target URL; self-links have a source adrget within the same server. After
removal, there were 1 850 links left. The siteFable VI.1 are ordered descendingly by the
number of in-links (citations).

We can notice in Table VI.1 that the hosts are gedunto three clusters. At the top, there are
three Web sites that are clearly ahead of the stiAdrthe bottom, there are sites that have no
or very few in-links. In between, there is the Esgblock of average departments. We show
the number of the documents of our interest foundthe individual servers as well. Of
course, the number of in-links often depends onntimaber of documents on the target site.
Their numbers vary greatly due to different sizdshosting institutions (see also the
constraints above), preference of various docunfenhats and document generation
(dynamic Web pages), etc. One way of tackling fgrgblem is to normalize the number of
citations somehow. For instance, it is possibldivade the number of citations by the number
of documents on a particular site (the ratio inldst column of Table VI.1) or by the number
of staff of the corresponding institution [Li2003h this context, it is interesting to note the
very low total ratio. This means that in a closed &f Czech computer science institutions,
the departments cite one another very rarely, wisidomewhat astonishing.

Issues

There are some facts that may severely influeneettering by in-links. One of them is the

existence of server aliases. For instance, wwvAsiieand www.siteB.zcu.cz is one machine
with the same content. Thus, citations to both khitwe counted together. There may be a
large number of aliases and ignoring them could leawrong results. It is not possible to

replace host names with IP addresses either sirare mirtual servers can share one IP
address.
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Chapter VI Mining the Academic Web

Another problem is dynamically generated Web pdges the Web site with a significantly
higher number of documents). In such a case, twionaore URLS (and two or more possible
references) represent one document and citatiomscsive counted only once then. This is
very annoying, especially regarding the low intemgectivity of the Web sites. Last but not
least, there is a problem with document formats #erver hosts documents in a format we
ignore (e.g. rtf) to a greater extent than the oHegvers, it can automatically lose citations.
All these issues (site mirrors, different site sizdynamic pages, etc.) must be taken into
account when declaring the most authoritative tuistins.

Server #Docs #In-Links Ratio
www.fi.muni.cz 15 438 924 0.0599
iti.mff.cuni.cz 632 335 0.5301
www.cs.vsb.cz 18 325 243 0.0133
kam.mff.cuni.cz 10 952 69 0.0063
www.kiv.zcu.cz 12 309 68 0.0055
cs.felk.cvut.cz 16 422 56 0.0034
kocour.ms.mff.cuni.cz 11 860 43 0.0036
WWW.CS.cas.cz 3226 37 0.0115
www.fit.vutbr.cz 148 682 28 0.0002
www.kin.vslib.cz 46 18 0.3913
www.inf.upol.cz 1230 13 0.0106
ksvi.mff.cuni.cz 472 13 0.0275
ktiml.ms.mff.cuni.cz 847 3 0.0035
ki.ujep.cz 240 0 0
kit.vse.cz 273 0 0
ufal.mff.cuni.cz 8 316 0 0
www.kai.vslib.cz 2423 0 0
Total 251 693 1850 0.0074

Table VI.1: Czech Web sites analyzed.

Authoritative Institutions

The relations between the examined servers froneT\ébl are depicted in Figure VI.1. The
citation network is a directed graph with edge \&sgset to in-link numbers. To enhance
visual perception we use three types of edges malowidth lines (less than ten citations),
medium width lines, and thick lines (more than 9&tmns). By simply looking at the
network, we can immediately identify two major cefades for the most important hosts —
www.fi.muni.cz and www.cs.vsb.cz. To verify it, weok advantage of the methods from
Chapter Il. First, we computed in-degrees of théesan the citation graph without respect to
edge weights (i.e. each edge has a weight of dw&e that the in-links in Table VI.1 are
actually in-degrees respecting edge weights. Thencomputed HITS authorities for the
graph nodes and, finally, we generated PageRan&stiRdnks, in fact) for all of the nodes.
Table VI.2 summarizes the rankings produced bjoall algorithms.

We can see indeed that all four measures are $grquagpitively correlated. The hosts
www.cs.vsb.cz and www.fi.muni.cz are in the topethservers whichever ranking method we
applied; cs.felk.cvut.cz is highly ranked by In-Deg and HITS whereas www.cs.cas.cz is
favoured by PageRank only. Number two by citatiofs-links), iti.mff.cuni.cz, is
handicapped by its strong support from more or jlesisone server as we may see in Figure
VI.1. Naturally, the nodes (sites) with a zero egcee end up at the bottom of each chart.
Perhaps, we could prefer those with some out-latkieast to those with a zero out-degree.
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Chapter VI Mining the Academic Web

These nodes with no in-links and out-links areretyiisolated and do not participate in the
community.

Site In-Links In-Deg HITS PageRank
cs.felk.cvut.cz 6 3 1 4
iti.mff.cuni.cz 2 6 5 6
kam.mff.cuni.cz 4 7-8 8 7
ki.ujep.cz 14 - 17 14 - 17 14 - 17 14 - 17
kit.vse.cz 14 - 17 14 - 17 14 - 17 14 - 17
kocour.ms.mff.cuni.cz 7 4-5 4 5
ksvi.mff.cuni.cz 11 9-12 12 11
ktiml.ms.mff.cuni.cz 13 13 13 12
ufal.mff.cuni.cz 14 - 17 14 - 17 14 - 17 14 - 17
WWW.CS.cas.cz 8 4-5 6 2
www.cs.vsb.cz 3 1-2 2 1
www.fi.muni.cz 1 1-2 3 3
www.fit.vutbr.cz 9 7-8 7 8
www.inf.upol.cz 11 9-12 10 9
www.kai.vslib.cz 14 -17 14 - 17 14 - 17 14 - 17
www.kin.vslib.cz 10 9-12 11 13
www.Kiv.zcu.cz 5 9-12 9 10

Table VI.2: Algorithms and rankings of Czech Welesi

Correlation

Now that we have four different rankings: by inkié in-degree (each edge has a weight of
one), HITS (authority), and PageRank, we are isterkin the correlations between these
orderings. The Spearman correlation coefficientsefach pair of rankings are presented in
Table VI1.3. They are all significant at the 0.0Zde The very high positive correlation
between the four rankings was expected as it h@ady been reported before [Ding2001b,
Ding2002].

|In—Links In-Degree  HITS PageRank

In-Links X 0.89 0.89 0.86

In-Degree 0.89 X 0.96 0.96
HITS 0.89 0.96 X 0.95

PageRank| 0.86 0.96 0.95 X

Table VI1.3: Czech rankings correlation.

VI.1.2 French University Computer Science Web Sites

In this section, we will describe our experimenthnsthe Web sites of French computer
science departments. This data collection wasialite field of interest of this dissertation’s
author, but it was much larger than the Czech dataand, therefore, it required a different
treatment. First, we had to draw up a list of labories. To do this, we looked up in Web
directories and we also submitted queries to Wabckeengines. From these Web pages, we
manually selected 80 final sites that constituted get of departments. The selection was
limited by the same constraints we discussed irctéimext of Czech Web sites. The first goal
was to determine the most authoritative sites adayf 2006.
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Procedure

To accelerate the process of creating the Web grapldid not make use of a Web spider of
our own, but we took advantage of a service pralidg the search engine Yahoo! We
submitted to it queries in this form:

site:www.loria.fr linkdomain:www.irisa.fr

which returns the number of documents on www.lbriaontaining at least one link to
documents on www.irisa.fr. For us, it is a weigtt tbe edge from www.loria.fr to
www.irisa.fr. We had to construct 6 320 queriesghis way. Of course, the construction and
submission of queries, storing of results, and ghaph creation were automated. (The
complete figure of the Web graph with 393 edgesvalable on the accompanying CD and at
[4]; its sketch without node labels and edge weighin Figure VI1.2.)

The drawbacks of relying solely upon search engiaes discussed a great deal in
[Thelwall2001, Li2003]. The problem consists primhain “instability” of the results. This
means that the results obtained one day differ fibvmse of another one. Another
disadvantage is that the results are not transpafé do not know which document formats
are taken into account, how duplicate documentsreated, etc.

N

Figure V1.2: Citation graph of French Web sites.

Results and discussion

Again, we applied the four ranking methods to thebVgraph of 80 sites of choice. We can
see the results in Table V1.4 and Table VI.5. Tihessare sorted by in-links (citations), i.e. by
the total number of links to this site from oth#es in the set (with some limitations imposed
by the search engine). The first place belongs wwvyiuturs.inria.fr, whose positions
achieved by the other methods, though, are muckevde can suppose that the reason for
this is a very strong support from a particulae.s{After inspecting the Web graph, we can
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see that it is www.lifl.fr.) The following sitesvahys have high ranks - www-sop.inria.fr,
www.loria.fr, www.lIri.fr and www.lifl.fr. We can siely consider them as authoritative.

In-Links Site In-Degree | HITS | PageRank
1 | www-futurs.inria.fr 45 41 53
2 | www-sop.inria.fr 1 1 9
3 | www.loria.fr 1 5 3
4 | www.lri.fr 6 6 10
5 | www-rocg.inria.fr 13 12 28
6 | www.irisa.fr 4 3 18
7 | www.lifl.fr 5 7 4
8 | www.lix.polytechnique.fr 20 17 26
9 | dpt-info.u-strasbg.fr 39 53 43

10 | www.inrialpes.fr 6 8 2
11 | www.irit.fr 9 4 8
12 | www.liafa.jussieu.fr 13 15 39
13 | www.lirmm.fr 1 11 1
14 | www.labri.fr 13 13 30
15 | www-leibniz.imag.fr 10 14 13
16 | liris.cnrs.fr 13 16 11
17 | www.prism.uvsq.fr 13 25 5
18 | www.di.ens.fr 34 26 44
19 | www.lip6.fr 20 21 40
20 | www.laas.fr 6 2 27
21 | dep-info.u-psud.fr 61 58 69
22 | www-lil.univ-littoral.fr 25 34 35
23 | www-verimag.imag.fr 25 37 16
24 | www.i3s.unice.fr 25 31 7
25 | eurise.univ-st-etienne.fr 25 23 32
26 | www-Isr.imag.fr 34 26 37
27 | www.info.unicaen.fr 13 10 14
28 | www-timc.imag.fr 12 9 17
29 | www-sic.univ-poitiers.fr 45 46 50
30 | cedric.cnam.fr 25 22 38
31 | www.dil.univ-mrs.fr 39 54 25
32 | www-Imc.imag.fr 25 29 34
33 | www.info.univ-angers.fr 34 44 24
34 | lifc.univ-fcomte.fr 20 32 21
35 | eric.univ-lyon2.fr 10 19 6
36 | www-id.imag.fr 25 33 15
37 | www-lipn.univ-paris13.fr 13 24 29
38 | dept-info.labri.fr 25 18 36
39 | www.isima.fr 39 43 48
40 | sis.univ-tin.fr 20 28 12

Table VI.4: Ranking of French Web sites (1 — 40).
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In-Links Site In-Degree | HITS | PageRank
41 | www-clips.imag.fr 25 30 22
42 | www.lisi.ensma.fr 39 40 33
43 | www-info.iutv.univ-paris13.fr 61 69 72
44 | www.lif.univ-mrs.fr 34 36 31
45 | www.cril.univ-artois.fr 39 35 41
46 | www.li.univ-tours.fr 34 42 45
47 | citi.insa-lyon.fr 45 45 54
48 | deptinfo.unice.fr 39 38 46
49 | msi.unilim.fr 52 55 64
50 | www.iut-info.univ-lillel.fr 61 62 65
51 | www.lia.univ-avignon.fr 20 20 23
52 | lil.univ-littoral.fr 52 48 57
53 | lisi.insa-lyon.fr 45 39 47
54 | www.isc.cnrs.fr 45 71 19
55 | www.if.insa-lyon.fr 61 72 52
56 | sirac.inrialpes.fr 61 62 62
57 | phalanstere.univ-mlv.fr 45 65 20
58 | www.lalic.paris4.sorbonne.fr 45 47 61
59 | www.icp.inpg.fr 52 51 49
60 | www-valoria.univ-ubs.fr 52 57 51
61 | lihs.univ-tlsel.fr 52 48 60
62 | www.epita.fr 52 67 42
63 | llaic3.u-clermontl.fr 52 51 56
64 | Isiit.u-strashg.fr 52 48 57
65 | liuppa.univ-pau.fr 52 56 66
66 | wwwhds.utc.fr 61 66 55
67 | www.depinfo.uhp-nancy.fr 61 68 59
68 | Irlweb.univ-bpclermont.fr 61 62 62
69 | www-lium.univ-lemans.fr 61 70 67
70 | www.dptinfo.ens-cachan.fr 61 58 68
71 | www.ai.univ-paris8.fr 61 58 69
72 | www.lita.univ-metz.fr 61 58 69
73 | dept-info.univ-brest.fr 73 73 73
74 | lina.atlanstic.net 73 73 73
75 | lis.snv.jussieu.fr 73 73 73
76 | psiserver.insa-rouen.fr 73 73 73
77 | www.listic.univ-savoie.fr 73 73 73
78 | www-info.enst-bretagne.fr 73 73 73
79 | www.info.iut.u-bordeaux1.fr 73 73 79
80 | www.info.iut-tlse3.fr 73 73 79

Table VI.5: Ranking of French Web sites (41 — 80)

|In—Links In-Degree HITS PageRank

In-Links X 0.86 0.85 0.76

In-Degree 0.86 X 0.96 0.91
HITS 0.85 0.96 X 0.82

PageRank | 0.76 0.91 0.82 X

Table VI.6: French rankings correlation.
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The same difficulties as with the Czech sites geérsimirror sites, different logical Web sites
(some departments may prefer separate sites for afaiheir projects), dynamic pages, etc.
Moreover, some other errors introduced by the $earggine may occur. The correlation
between the individual rankings is rather high agaee Table VI.6).

in-links in-degree  out-links out-degree
sum 5160 393 5160 393
min 0 0 0 0
max 917 15 1476 54
avg 64.50 4.91 64.50 4.91
std. deviation 138.17 4.04 213.68 10.84
median 20,5 4 4 1
mode 0 1 0 0

Table VI.7: Statistics of the French Web graph.

Oin-links Min-degree Oout-links O out-degree
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Figure VI1.3: Cumulative distribution of degreedlire French Web graph.

Let us comment on some properties of the Web grdpRrench sites. Some statistics is
shown in Table VI.7. Alphabetically sorted sitesthwihe exact numbers of in-links, in-
degree, out-links, and out-degree may be foundhénajpppendix in Table 5 and Table 6. The
Web graph has 80 nodes and 393 edges. 72 sitesbmesin-links, 55 sites have some out-
links. 49 nodes have both a non-zero in-degreeaamsh-zero out-degree. Two Web sites are
entirely isolated — www.info.iut.u-bordeaux1.fr anavw.info.iut-tlse3.fr. They have no in-
links as well as no out-links. The maximum in-deg(ee. the maximum number of distinct
sites citing a particular site) is 15 which is a&asad by www.lirmm.fr, www.loria.fr, and
www-sop.inria.fr. However, the maximum number oflinks to a site is much higher — 917
of www-futurs.inria.fr. www.lifl.fr and www.Iri.frare the top sites as for the out-links and
out-degree (1 476 and 54, respectively).The mediamber of in-links is about twenty.
Figure V1.3 shows the cumulative distribution ofjdees in the French Web graph. If we have
a more closer look at the sites that have much nmlieks that out-links, these are www-
futurs.inria.fr, www-rocq.inria.fr, www.lix.polytdmique.fr, dpt-info.u-strasbg.fr,
www.inrialpes.fr, and www.liafa.jussieu.fr. The gnlVeb sites that has strikingly more out-
links than in-links is Isiit.u-strasbg.fr. (Thoughe two Strasbourg sites are more or less
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complimentary.) The site with the most balancedatir@h between in-links and out-links is
www.loria.fr (460 vs. 501).

VI.2 Mining the Content

The phase of finding significant institutions eregbls to reduce the set of Web sites that we
are going to analyze in the next stage in Sectib@.\For example, we might discard the last
four sites in Table VI.1 or the last eight sitesTiable V1.5, i.e. the least important sites.
However, our case studies (Czech and French acadmmputer science Web sites) have
still sufficiently small data sets so that no retut is necessary. However, it might be
inevitable with some very large data, such as Acaeriuniversity Web sites. Measuring the
quality of academic institutions with webometriol® is justified in [Li2003], where Web-
based rankings correlated with official rankings.

Vi.2.1 Czech Researchers

In addition to studying links in a collection of mputer science Web sites, we were also
interested in the documents themselves found oseth&eb sites. Thus, besides files
containing hyperlinks (mainly HTML documents), wewhloaded potential research papers
as well. In practice, that meant collecting PDF #&uabtScript files because most research
publications publicly accessible on the Web ar¢hese two formats. First, we had to pre-
process our download corpus. We unpacked archindscanverted observed files to plain
text via external utilities. So, at the beginnimgg had a 12 thousand set of potential research
papers. We discarded duplicates and examined thaimeng documents. We used a simple
rule to categorize the documents. In case theydstd some kind of references section they
were considered as papers. In this way, we obtasonetk 3 600 papers in the end, i.e. over
eight thousand documents did not look like researthles.

Information extraction

The next task is to extract information from th@@a needed for citation analysis, i.e. names
of authors, titles of papers, etc. We employ thmesanethodology with use of Hidden
Markov Models (HMM) as that of McCallum and his lealgues [McCallum1999a,
McCallum1999b, Seymore1999, McCallum2000]. A dgamn of their approach is outside
of the scope of this thesis. The difference is watwork with complete papers, not just with
pre-processed headers and references. Moreovereshkiing text files analyzed by HMMs
may often have been incorrectly converted to teftode. Existence of diacritics in the Czech
spelling also worsens the extraction. We did noasnee the extraction accuracy due to lack
of testing objects but, for the above reasons,wppase it to be significantly lower than those
90 - 93% reported in [Seymore1999].

We stored the information to a database for a cdatite subsequent querying. The author
citation graphG had over 28 000 non-isolated nodes and roughly Qb edges. Authors
were represented by their surnames and theirrfaste and, when applicable, middle name
initials. Strictly said, words identified as surnesn Of course, many of these words were not
surnames (they were incorrectly classified) or theyre foreign surnames of international
authors. From the citation graph with “surnames’gegph nodes we determined the most
authoritative Czech authors using the three differanking methods. (The recognition of a
Czech surname was done manually for the top aujleeg Table VI.8 for details.
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Rank | In-Degree HITS PageRank
1 | NeSetil J Jargar P NeSetl J
2 | Jartar P NeSdtl J Jargar P
3| Hajic J Kwera A Kuwera A
4 | Kucera A Pala K Pultr A
5| MatouSek J  Hafi J Pala K
6 | PanevovaJ OlivakK Smrz P
7 | PalaK Panevova J Hajd
8| Sgall P MatousSek J Panevova J
9 | Kratochvil J  KratochvilJ  MatouSek J
10| Oliva K Sgall P Sedlizek R

Table VI.8: Ten most authoritative Czech CS redens

Let us underline several facts. First, we did nisachbiguate the names. Thus, a couple of
authors may actually be represented by one namen Bading first names does not resolve
this problem. In addition, references in papersaligulo not refer to full author names but to
initials and surnames only. Thus, some mapping éatvthese “short” names and full names
is necessary. We contented ourselves with redusveg the full names in paper headers to
short names and accepting some information lose €aution of author disambiguation
would be to cluster authors according to their gtitars or publication topics as it is done in
[Han2005]. Authors report that this method workdlwaéth European (English) names but it
achieves accuracy of only 60 — 70% with Chinese asanSecond, duplicate citations are
handled only in the sense that we remove duplidateiments before analysis. We do not
examine whether two or more papers having perhagg small differences are one
publication in reality. Their references to anotpaper are counted separately.

Third, Czech names often contain diacritics. Ireinational publications written in English,
though, diacritics are left out sometimes. Thelspels not unified. Furthermore, conversion
to plain text from PDF and PostScript files doeswork well and produces more variants of
one name. For instance, we found seven commonty wesgations of the name “H&jiin our
database. In other words, names with no diacritictheir original spelling have a better
chance to have their citations counted correctty. &l the surnames in Table VI.8, we tried
to include their frequent versions in citationseTiwo-way name ambiguity (one author may
be known under more names and one name may repre@sesuple of authors) is to be
reflected in future improvements. For all thesesoes, the actual citation numbers are less
interesting than the ranking itself. Let us noigfErthat the ranking is a result of those 3 600
papers we got. The question is how it would chahg®re papers were analyzed.

Discussion

Again, no duplicate edges and self-citations wHoevad in the citation graph of authors. The
only two authors occurring among the top threeaeders for each method are “Négel’
and “Jagar P”. Other highly ranked names include @ A” or “Hajic J”. Some of the
names (such as “Kera”, “Matousek”, or “Sedk&éek”) are very frequent Czech names and
they might require further disambiguation even & wnow the domain (computer science)
and the first name initial.

Looking mostly just at the first page of resultturaed by a search engine we can make a
guess about the probable affiliations of the awhdfor example, for “Hajl we got
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ufal.mff.cuni.cz, for “Kutera” we obtained www.fi.muni.cz and kam.mff.cunj.@nd for
“Matousek” we got kam.mff.cuni.cz and www.fit.vutbz. When comparing the sites of these
authoritative researchers to those in Table VI.& mvay observe that ufal.mff.cuni.cz,
kam.mff.cuni.cz, and www.fit.vutbr.cz have no higbsitions there. Only www.fi.muni.cz is
ranked high. Therefore, it is unclear what impaghly cited authors have on the importance
of their institutions’ Web sites. It would havelie submitted to an extensive research.

VI.2.2 French Researchers

We also gradually crawled all of the French sited #hus obtained a nearly 40 GB corpus of
downloaded documents. So, at the beginning, weaaadit 45 thousand potential research
papers. We treated them in the same way as thectCzaticles and we obtained some
16 000 papers in the end. The final citation graphuthorsG (without duplicate edges and
self-citations) had almost 86 000 non-isolated soded about 477 000 edges. Unlike the
Czech authors in Section VI.2.1, surnames alonendicturn out to be very discriminative.
Thus, authors were represented by surnames aialgrof their first and middle names. See
Table V1.9 for details.

Rank | In-Degree HITS PageRank
1 | Halbowachs N Halbwachs N Cahon S
2 | Caspi P Caspi P Berry G
3 | Sifakis J Sifakis J Filiol E
4| Berry G Berry G Halbwachs N
5| Benveniste A Benveniste A Zhang Z
6 | Abiteboul S Nicollin X Benveniste A
7 | Maler O Cousot R Lavallée S
8 | Nicollin X Raymond P Dombre E
9 | Cousot P Cousot P Boudet S
10| Cousot R Abiteboul S Dégoulange E
11| Raymond P Maler O Gourdon A
12 | Bouajjani A Asarin E Abiteboul S
13| Asarin E Comon H Charpin P
14| ComonH Bouajjani A Carlet C
15| Zhang Z Coupaye T Cohen G
16 | Berstel J Berstel J Troccaz J
17 | Meyer B David B Abdalla M
18| Florescu D Arnold A Payan Y
19 | Baccelli F Pilaud D Cousot R
20 | Leroy X Bruneton E David R
21| Bruneton E Maraninchi F Cousot P
22 | Flajolet P Meyer B Caspi P
23| Arnold A Leroy X Sifakis J
24 | Graf S Bensalem S Deransart P
25| Cohen J Graf S Maler O
26 | Coupaye T Tripakis S Bouajjani A
27 | Pilaud D Lakhnech Y Dubois D
28 | Lakhnech Y Bozga M Caron P
29 | David R Gautier T Pierrot F
30| Faugeras O LiuJ Raymond P

Table VI1.9: Authoritative French CS researchers.
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Results and discussion

The rankings produced by In-Degree and HITS arg sanilar (the top five researchers are
exactly the same) whereas that by PageRank isrrdiffierent. The authors in In-Degree and
HITS are more or less the same (only in varioustipos), but PageRank introduces some
new names. However, there are two authors (“Halbw&€ and “Berry G”) occurring in top
five of each ranking. We can certainly call thessearchers authorities.

Deciding whether or not a researcher is Frencmhgrently subjective. Our decision was
based on searching with several general and spgatladearch engines. Ideally, we found the
researcher's home page hosted by a French Welmrsidfiliation to a French institution
given in an article. Of course, by French authoes also mean those who had lived and
worked in France for a long time. We are aware that feature is particularly fuzzy. Even
with first name initials there are certainly moralividuals with the same name. Again, the
question is how the rankings would change if mbentthose 16 000 papers were analyzed.

VI.3 Summary & Future Work

Summary

Notions of popularity or authority, commonly used social networks such as scientific
publications, have also been adopted for the W@/ide Web in recent years. The most
popular ranking techniques are link-based methid@sih-Degree, PageRank, and HITS. We
present a methodology and two case studies ofnignduthoritative researchers on the Web.
We applied these algorithms to a set of Czech aset af French academic computer science
Web sites and determined the most authoritatives ami¢hin each set. (We also tried to
examine Slovak computer science departments, buldta set was too small.)

This step normally enables reducing the volume atdo be analyzed since we could
continue finding researchers on the more imporgrds only. Further, we analyzed the
research papers publicly available on the sites weddetermined the most significant
researchers by applying several ranking techniqoethe citation graph. The method is a
relatively objective means of presenting facts, thetinterpretation is necessarily subjective.
The results we achieved are not quite reliabletdude constraints and problems mentioned
above, but we believe that our methodology is jracas we have shown in our experiments.

International authors

Unlike Section V.3.2, we do not provide exact imfi@ation on the co-authorship and citation
graphs (including statistics and histograms) intiacv1.2. Neither do we present the results
of the PageRank-based methods introduced in Ch&ptére are aware that the Web-based
bibliographic data are very incomplete and inadeurdhere is a great deal of noise.
Therefore, it does not make much sense to attempe ttoo accurate in this case. Even the
rankings in Table VI.8 and in Table VI.9 should d@nsidered as a hint rather than some
precise measurements. However, all this informatmay be found on the accompanying CD
including the complete graphs and rankings in tmmfof database tables.

To allow for some minimum comparison at least, €ablin the appendix shows top 40
international authors for three basic ranking rodthapplied to both the Czech and the
French corpus. There are names of authors of atinadities without diacritics and only with

some evident inaccuracies removed. We summarizeuheers of common researchers in
the Top 40 for each pair of rankings in Table VI.Kpparently, rankings based on one
corpus tend to be more similar than those from tegoora. The largest intersection is
between HITS and in-degree rankings for each cof@@scommon scientists in the Czech
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data and 32 in the French corpus). On the othed,ithere is hardly any intersection between
PageRank from one country and other methods framother country. Nevertheless, there
are a couple of authors who occur at the top ih bountries — “Bouajjani A”, “Ullman J D”,
and “Vardi M”. These scientists seem to be regardedauthoritative by both Czech and
French computer science researchers. In additigihman J D” is one of the ACM SIGMOD
E. F. Codd Innovations Award winners (see Sectio).VAnother award winner is
“Abiteboul S’ who appears among the top authothéFrench corpus only.

CZInD CZHITS CZPR FRIND FRHITS FR PR
CZInD X 29 16 5 4 1
CZ HITS 29 X 14 5 3 2
CZ PR 16 14 X 0 0 0
FR InD 5 5 0 X 32 11
FRHITS 4 3 0 32 X 9
FR PR 1 2 0 11 9 X

Table VI.10: Common authors in Top 40.

Future work

In the future, we would like to have yet anotharkiag for institutions based on citations in
papers. This would mean enhancing assigning diftiha to each researcher. We will be
interested in the difference between the top rarskies determined via analysis of Web links
on one hand and those based on paper citationseonther hand. We would like to discover
any correlation between the link-based (Watn) citation-based (papers) ranking. The
social networks formed by academic institutions doyd their research publications are
assumed to be different. They are each destined thstinct audience. Nevertheless, in our
future research we would like to concentrate on ifseie of combining Web and paper
authorities. The methodology we have developecigeral, which will enable us to focus on
other areas of the Web as well.

To the best of our knowledge, the two case stugliesented above are the first attempt ever
made at finding authoritative researchers in thivee countries by directly mining from
unstructured Web data.
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Conclusions

Web mining is an exciting area of research. Althoaggite new (who has heard of it fifteen
years ago?), it has been subject to study to sutdntein recent years that the body of
knowledge is growing constantly and so fast thavesy articles and books do not catch up
with covering this topic. It spans across many rddie disciplines including artificial
intelligence, machine learning, data mining, knalgle acquisition, information retrieval,
graph theory and others. It borrows concepts aotniques from these domains, and it
enriches them with novel methods, algorithms, aaghes, and empirical observations that
turn out to be of a more general interest. Perlthpsmost interesting finding so far of
studying the Web is that it is developing into stimreg more than we hoped. The patterns
and regularities discovered in its scope, contstitjcture, usage, and behaviour disclose
something amazing. It is no more just a networll@fuments. It is a kind diving organism
How will it evolve in the future? Is there sometlpimore we could know about it? With the
arrival of Web 2.0 and the semantic Web even mpaees for research will be available, and |
predict that, in the next decade at least, thdystai Web mining techniques will be no less
challenging than it has been until now.

Disclaimer

The eminent feature of the Web that excludes digggilications of classic information
retrieval processes is its volatility and infinitfeb documents and links between them may
change on a daily basis or even more often, andtble sample we are analyzing is always
“a picture of the past”. It is never the true, ré&tb of a given moment, and it must be treated
as such. We can never know precisely how muchefrtformation on the Web we actually
have at our disposal, how much is still hidden geickto be discovered, and, therefore, we can
never measure recall, a fundamental metric in médion retrieval, but only make a guess
about it. Another characteristic is its decentediand “democratic” nature. It is a product of
millions of humans and human-controled machines ¢ha, more or less arbitrarily, modify
its content and structure. There is no regulatasgdyb and it governs itself. As in each
democracy, there is some self-control, but disarejgs are common. Therefore, all the
knowledge mined form the Web is affected by thediscabove, and we should avoid to draw
too far-reaching conclusions from it.

Main contributions

In this doctoral dissertation, | concentrated om igsue of mining the Web structure in order
to find authoritative sources. Besides surveyirgdhrrent progress in related areas such as
Web models, crawling techniques, ranking algorithmsd social networks, 1 made the
following research contributions:

« PageRank for bibliographic networks | proposed a modification of the well-known
PageRank equation, this time suited for graph<itdtions between publications and
collaborations between authors. | extended and rgkmed the notions of
collaboration frequency and co-authorship excligiby Liu, Bollen et al. by deriving
them directly from the co-authorship graph and ciminlg them with the information
from the citation graph. Intuitively, this enabl&s rank authors “more fairly” by
significance taking into account not only citatiobst also collaborations between
them. In total, | proposed seven variants of thelitgraphic PageRank” formula. To
test this new approach on real and non-noisy dataplied the ranking algorithms to
a data set from the DBLP digital library and uskd methodology of Sidiropoulos
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and Manolopoulos for ranking comparisons. | comgagthor rankings to a list of
ACM SIGMOD E. F. Codd Innovations Awandnners and found out that the new
rankings reflected much better the prize awardimfpeme than the baseline,
“standard” PageRank ranking. It is not possibleampare directly my results with
those of Sidiropoulos et al., because they utilaegightly different data set and their
method is primarily destined for publications, nfutr authors. This research
contribution is described in Chapter V.

Mining the Czech and French academic Web | attempted to determine
authoritative institutions from two collections 6kech and French computer science
University Web sites by applying some well-knownthoels for exploiting the Web
structure. Furthermore, | analyzed the contentslaffuments found on these Web
sites, more specifically of research papers. Ugxigting techniques of information
extraction, | found out the most significant Czemhd French computer science
researchers that can be retrieved from documenitabie on the Web. The approach
| brought into play is not new but the applicatenmd synthesis of several data mining
processes yes. The results are certainly influetgethe limitations | faced and the
selections | made. Especially the data for autbtraval is quite noisy, and | even do
not present all the results, although they araailable on the CD accompanying this
thesis. Detection of authoritative sites and awthoay be helpful to decision makers
and funding agencies in their personal and fir@npolicies. To the best of my
knowledge, my experiments are the first attemptbliplied at finding influential
Czech and French computer science authors by lgin@ehing from Web data. This
research is close to the work of Mike Thelwall onmge aspects and is explained in
Chapter V1.

Future work
My research efforts are far from being accomplish&sl their natural continuation | see in
particular:

Stability and sensitivity analysis Analysis of stability and sesitivity of the
bibliographic PageRank formula (5.2) to small pdraions in the citation and/or co-
authorship graph would be desirable. Although tlendard PageRank has been
shown to be relatively stable (see Section I1.2t6¢ larger number of parameters
involved in the calculation of (5.2) may negativedyfect this property.

Inclusion of time. The concept of a “fairer” ranking of researchasdxd not only on
citations but also on collaborations invites thelusion of the time factor. A citation
between two scientists should certainly have aedsfit meaning when it is made after
their co-authorship of many articles or long beftirey get to know each other. This
enhancement might add even more “justice” to tih&ira.

Comparison of Web-based and paper-based authoritie3he ranking of institutions
represented by their Web sites in Section VI.1ased purely on Web links. It would
be interesting to associate affiliations with autfadive researchers from Section VI.2
and to compare the two institutional rankings. doakee a great potential of the
CiteSeer data (see Section IV.2) with affiliatiosseady assigned, which may be
useful for this purpose as well.
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Table 2: Top 40 DBLP authors for each ranking (@art
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C d e
1 |Michael Stonebraker Michael Stonebraker Michael Sto  nebraker
2Jim Gray Jim Gray David J. Dewitt
3 |David J. Dewitt David J. Dewitt Hector Garcia-Molin a
4 Hector Garcia-Molina Rhilip A. Bernstein Jim Gray
5 [Jeffrey D. Uliman Hector Garcia-Molina  Jeffrey D. U liman
6 |Philip A. Bernstein David Maier Philip A. Bernstein
7 |David Maier Jeffrey D. Ullman Diavid Maier
8 |Umeshwar Dayal Umeshwar Dayal Moshe Y. Vardi
9 |Bruce G. Lindsay Michael J. Carey Umeshwar Dayal
10 |Michael J. Carey E. F. Codd Catriel Beeri
11 |Serge Abiteboul Bruce G. Lindsay E. F. Codd
12 |Jeffrey F. Naughton Catriel Beeri Serge Abiteboul

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Catriel Beeri

Hamid Pirahesh
Moshe Y. Vardi
Hans-Jorg Schek

E. F. Codd

Yehoshua Sagiv
Rakesh Agrawal
Raghu Ramakrishnan
Goetz Graefe

Nick Roussopoulos
Raymond A. Lorie
Christos H. Papadimitriou
Gio Wiederhold
Donald D. Chamberlin
Richard T. Snodgrass
Ronald Fagin

Dina Bitton

Jennifer Widom
Randy H. Katz
Alberto O. Mendelzon
Guy M. Lohman
Francois Bancilhon

H. V. Jagadish
Abraham Silberschatz
Irving L. Traiger
Michael J. Franklin
Mihalis Yannakakis
Nathan Goodman

Jeffrey F. Naughton
Serge Abiteboul
Hamid Pirahesh
Goetz Graefe
Hans-Jorg Schek
Rakesh Agrawal
Raymond A. Lorie
Yehoshua Sagiv

Nick Roussopoulos
Gio Wiederhold
Donald D. Chamberlin
Moshe Y. Vardi

Dina Bitton

Richard T. Snodgrass
Christos H. Papadimitriou
Raghu Ramakrishnan
Guy M. Lohman
Ronald Fagin

Randy H. Katz
Francois Bancilhon
Alberto O. Mendelzon
Jennifer Widom
Michael J. Franklin
Irving L. Traiger

H. V. Jagadish

\Won Kim

Eugene Wong
Nathan Goodman

Yehoshua Sagiv

Michael J. Carey

Rakesh Agrawal
Christos H. Papadimitriou
Bruce G. Lindsay
Jeffrey F. Naughton
Nick Roussopoulos
Hans-J6rg Schek
Raghu Ramakrishnan
Hamid Pirahesh
Raymond A. Lorie
Alberto O. Mendelzon
Ronald Fagin

Donald D. Chamberlin
Gio Wiederhold

Goetz Graefe

Nathan Goodman
Mihalis Yannakakis
Francois Bancilhon
Jennifer Widom
Randy H. Katz
Richard T. Snodgrass
Abraham Silberschatz
H. V. Jagadish

Guy M. Lohman
Eugene Wong

Peter Buneman
Christos Faloutsos

Missed: 55. Patricia
Selinger, 59. C. Mohan,

Missed: 54. Patricia
Selinger, 65. C. Mohan,

132. Rudolf Bayer

94. Rudolf Bayer

Missed: 63. Patricia
Selinger, 65. C. Mohan,
93. Rudolf Bayer

Table 3: Top 40 DBLP authors for each ranking (Bart
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Jim Gray

E. F. Codd

Michael Stonebraker
David J. Dewitt
Philip A. Bernstein
Raymond A. Lorie
Donald D. Chamberlin
Jeffrey D. Ullman
Irving L. Traiger
Morton M. Astrahan
David Maier

Eugene Wong
Catriel Beeri

John Miles Smith
Bruce G. Lindsay
Hector Garcia-Molina
Ronald Fagin

Kapali P. Eswaran
Gerald Held
Umeshwar Dayal
Michael J. Carey
Yehoshua Sagiv
Gianfranco R. Putzolu
Nathan Goodman
Rudolf Bayer

Mike W. Blasgen
Michael Hammer
William C. McGee
Stephen Todd

Diane C. P. Smith
Jeffrey F. Naughton
Thomas G. Price
Bradford W. Wade
Hamid Pirahesh
Phyllis Reisner

N
¥
D

J

F

E. F. Codd

Jim Gray

lichael Stonebraker
Philip A. Bernstein
avid J. Dewitt
Donald D. Chamberlin
Raymond A. Lorie
effrey D. Ullman
Irving L. Traiger
Morton M. Astrahan
John Miles Smith
Eugene Wong
David Maier

Hector Garcia-Molina
Catriel Beeri

Kapali P. Eswaran
Ronald Fagin
Gerald Held
Umeshwar Dayal
Rudolf Bayer
Michael Hammer
Bruce G. Lindsay
Nathan Goodman
Gianfranco R. Putzolu
Stephen Todd
Diane C. P. Smith
William C. McGee
Mike W. Blasgen
Michael J. Carey
Phyllis Reisner
Paul R. McJones
Jeffrey F. Naughton
Hamid Pirahesh
Yehoshua Sagiv
Bradford W. Wade

36 [Patricia G. Selinger Hans Albrecht Schmid
37 |Serge Abiteboul Nick Roussopoulos
38 |W. Frank King IlI \Won Kim

39 |[Frangois Bancilhon James W. Mehl

40 [James W. Mehl W. Frank King Il

Table 4: Top 40 DBLP authors for each ranking (gart

Missed: 49. Rakesh
Agrawal, 105. C. Mohan

Missed: 43. Serge
Abiteboul, 48. Patricia
Selinger, 49. Rakesh
Agrawal, 101. C.

Mohan
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Site In-Links | In-Degree| Out-Links | Out-Degree
1| cedric.cnam.fr 32 6 0 0
2 | citi.insa-lyon.fr 13 3 a7 1
3 | dep-info.u-psud.fr 59 1 0 0
4 | dept-info.labri.fr 22 6 3 1
5 | deptinfo.unice.fr 11 4 2 1
6 | dept-info.univ-brest.fr 0 0 1 1
7 | dpt-info.u-strasbg.fr 127 4 0 0
8 | eric.univ-lyon2.fr 27 10 5 1
9 | eurise.univ-st-etienne.fr 41 6 0 0
10 | lifc.univ-fcomte.fr 28 7 9 2
11 | lihs.univ-tlsel.fr 5 2 0 0
12 | lil.univ-littoral.fr 10 2 2 1
13| lina.atlanstic.net 0 0 20 8
14 |liris.cnrs.fr 80 8 17 2
15| lis.snv.jussieu.fr 0 0 13 7
16 | lisi.insa-lyon.fr 7 3 36 2
17 | liuppa.univ-pau.fr 2 2 0 0
18 | llaic3.u-clermontl.fr 3 2 0 0
19 | Irlweb.univ-bpclermont.fr 1 1 1 1
20 | Isiit.u-strasbg.fr 2 2 371 18
21 | msi.unilim.fr 11 2 0 0
22 | phalanstere.univ-mlv.fr 5 3 0 0
23 | psiserver.insa-rouen.fr 0 0 10 4
24 | sirac.inrialpes.fr 6 1 7 1
25 | sis.univ-tin.fr 21 7 1 1
26 | www.ai.univ-paris8.fr 1 1 0 0
27 | www.cril.univ-artois.fr 16 4 120 18
28 | www.depinfo.uhp-nancy.fr 1 1 0 0
29 | www.di.ens.fr 72 5 18 1
30 | www.dil.univ-mrs.fr 32 4 0 0
31 | www.dptinfo.ens-cachan.fr 1 1 13 2
32 | www.epita.fr 4 2 0 0
33 | www.i3s.unice.fr 44 6 82 4
34 | www.icp.inpg.fr 5 2 6 2
35 | www.if.insa-lyon.fr 6 1 0 0
36 | www.info.iut.u-bordeaux1.fr 0 0 0 0
37 | www.info.iut-tlse3.fr 0 0 0 0
38 | www.info.unicaen.fr 40 8 5 3
39 | www.info.univ-angers.fr 29 5 3 1
40 | www.inrialpes.fr 125 12 5 2

Table 5: French sites and their graph propertighébetical order, 1 - 40).
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Site In-Links | In-Degree| Out-Links | Out-Degree
41 | www.irisa.fr 213 14 115 4
42 | www.irit.fr 123 11 42 4
43 | www.isc.cnrs.fr 6 3 0 0
44 | www.isima.fr 22 4 4 2
45 | www.iut-info.univ-lillel1.fr 11 1 0 0
46 | www.laas.fr 62 12 22 3
47 | www.labri.fr 95 8 4 2
48 | www.lalic.paris4.sorbonne.fr 5 3 0 0
49 | www..li.univ-tours.fr 13 5 1 1
50 | www.lia.univ-avignon.fr 10 7 35 19
51 | www.liafa.jussieu.fr 122 8 2 1
52 | www lif.univ-mrs.fr 17 5 79 13
53 | www lifl.fr 209 13 1476 49
54 | www.lip6.fr 64 7 6 4
55 | www.lirmm.fr 117 15 480 40
56 | www.lisi.ensma.fr 20 4 2 1
57 | www.listic.univ-savoie.fr 0 0 1 1
58 | www.lita.univ-metz.fr 1 1 0 0
59 | www.lix.polytechnique.fr 177 7 3 2
60 | www.loria.fr 460 15 501 37
61 | www.Iri.fr 225 12 992 54
62 | www.prism.uvsq.fr 79 8 13 2
63 | www-clips.imag.fr 20 6 10 3
64 | www-futurs.inria.fr 917 3 4 1
65 | wwwhds.utc.fr 2 1 23 12
66 | www-id.imag.fr 24 6 38 1
67 | www-info.enst-bretagne.fr 0 0 8 1
68 | www-info.iutv.univ-paris13.fr 18 1 0 0
69 | www-leibniz.imag.fr 93 10 0 0
70 | www-lil.univ-littoral.fr 55 6 0 0
71 | www-lipn.univ-paris13.fr 22 8 217 36
72 | www-lium.univ-lemans.fr 1 1 6 4
73 | www-Imc.imag.fr 31 6 9 2
74 | www-Isr.imag.fr 41 5 10 1
75 | www-rocg.inria.fr 223 8 1 1
76 | www-sic.univ-poitiers.fr 33 3 0 0
77 | www-sop.inria.fr 648 15 243 3
78 | www-timc.imag.fr 37 9 2 2
79 | www-valoria.univ-ubs.fr 5 2 14 2
80 | www-verimag.imag.fr 50 6 0 0

Table 6: French sites and their graph propertighédetical order, 41 - 80).
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CZ In-Degree| CZHITS | CZ PageRank | FR In-Degree FR HITS FR PageRank

1|Alon N Jancar P Moller F Alur R Halbwachs N [Cahon S

2 |Nesetril J Alon N Nesetril J Halbwachs N |Alur R Berry G

3Jancar P Nesetril J Jancar P Zhang L Abadi M Milner R

4 |Hell P Christensen SKucera A Abadi M Zhang L Shamir A

5 [Milner R Milner R Hoppe H Foster | Caspi P Filiol E

6 |Caucal D Hell P Curless B Caspi P Sifakis J Dubois M

7 |Christensen SBouajjani A |Pultr A Sifakis J Berry G Ullman J

8 [Hajic J Vardi M Y Pala K Berry G Zhang H Alur R

9 [Burkart O Caucal D Lorensen W E  |Pnueli A Courcoubetis C|Halbwachs N
10 Bouajjani A [Thomas R  |Alon N Zhang H Pnueli A Karp R
11 Moller F Moller F Smrz P Courcoubetis C|Ullman J D Bellare M
12 |Kucera A Burkart O Banaschewski B|Ullman J D Benveniste A [Zhang Z
13|Hirshfeld Y  |Kucera A Hajic J Benveniste A [Manna Z Benveniste A
14 |Matousek J  Vardi M Caucal D Abiteboul S Nicollin X Reps T
15|PanevovaJ [UllmanJD [Hirshfeld Y Ullman J Cousot R Lavalle S
16 |Robertson N RivestRL  [Herrlich G Gupta A Raymond P Dombre E
17|Golub GH [Hopcroft JE |PanevovaJ Agrawal R Cousot P Boudet S
18 |Esparza J Pala K Jerrum M Manna Z Foster | Dgoulange E
19 |Pala K Robertson N [SanguinetiM  |Maler O Abiteboul S Gourdon A
20 |UllmanJ D  |Hajic J Savick P Nicollin X Maler O Abiteboul S
21|Johnson D S [Esparza J Christensen S |Cousot P Uliman J Charpin P
22|Sgall P Donald E Esparza J Thomas W Asarin E Carlet C
23|Graham R L |Oliva K Jacobson N Cousot R Harel D Abadi M
24 |Rivest R L Hirshfeld Y  (Galluccio A Raymond P Olivero A Gupta A
25|Oracles S Panevova J |Winkler F Vardi M David A Cohen G
26 |Greenbaum AMatousek J |Mcaloon K Kesselman C |Henzinger T  |Courcoubetis C
27|Agrawal R [Thomas W |Labahn G Johnson D Vardi M Zhu X
28 |Kratochvil J  [Kratochvil J  |Matousek J Milner R Comon H Coppersmith D
29 |Ganter B Johnson D S Johnson D S |Srikant R Clarke E Maier D
30 [Thomas R Richard J Benzi M Bouajjani A Johnson D Troccaz J
31|Clarke EM [ClarkeEM Welzl E Dongarra J Henzinger T A |Goldwasser S
32 |Grumberg O |Sgall P Sedlcek R Olivero A Bouajjani A Williams M
33 |Vardi M Leiserson C E|Praehofer H Asarin E Johnson R Taylor R
34 (Sterling L Grumberg O [Zeigler B Johnson R Gupta A Zheng Y
35|Garey MR |Raspaud A  [Kelton D Harel D Baader F Dongarra J
36 [Oliva K Matthew L  Kim T David A Zwaenepoel W |Buhrman H
37 (Imielinski T {Zhu X Psutka J Rivest R \Wolper P Papadimitriou C H
38|Cormen TH [Seymour P [Sharma S Helm R Li K Erdos P
39 Jerrum M Graham RL Jain P Shenker S Agrawal R Abdalla M
40 |Pach J Hendler J Pach J Wolper P Coupaye T Payan Y

Table 7: Top 40 international authors in Czech rahch corpora.
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