Adversarial attacks on
machine learning systems

Bhiksha Raj
Carnegie Mellon University

TSD 2019
13 Sep 2019



Acknowledgements..

* Thanks (in alphabetic order) to:
— Anders Oland
— Ahmed Shah
— Gerald Friedland
— Nicolas Papernot
— Joseph Keshet
— Raphael Olivier
— Rita Singh
 Whose material | am using (with permission)..

e Other collaborators:
— Pulkit Agarwal
— Nicholas Wolfe



MLSP
Introducing me

* Bhiksha Raj

— Professor

— Carnegie Mellon University
* Language Technologies
* Electrical and Computer Engg.
* Machine Learning
* Music Technologies

* Research Areas
— Automatic speech recognition
— Audio intelligence
— Machine learning and sparse optimization
— Deep learning
— Data privacy






BEST Artificial Intelligence
Ranked in 2018, part of Computer Science
GRAD SCHODI—S Artificial intelligence is an evolving field that requires broad fraining, so courses

typically involve principles of computer science, cognitive psychology and
RANKINGS engineering. These are the best artificial intelligence programs.

Specialty Artificial Intelligence % ¥ |

Rank School name

Carnegie Mellon University

#1 Pittsburgh, PA
#9 Massachusetts Institute of Technology
Cambridge, MA
43 Stanford University
i Stanford, CA
#4 University of California—Berkeley

Berkeley, CA



'BEST Best Graduate Computer Science Programs

Ranked in 2018 | Best Graduate Computer Science Programs Rankings

GRAD SCHOULS Methodology
Earning a graduate degree in computer science can lead to positions in research
e institutions, government agencies, technology companies and colleges and

Rank

(1.1

universities. These are the top computer science schools. Each school's score
reflects its average rating on a scale from 1 (marginal) to 5 (outstanding), based on
a survey of academics at peer institutions.

Specialty | Select specialty v |
School name Score
Carnegie Mellon University 50

Pittsburgh, PA

Massachusetts Institute of Technology 5.0
Cambridge, MA

Stanford University 2.0
Stanford, CA

University of California—Berkeley 2.0
Berkeley, CA



The story of “O”




One day in summer 2013

Boss, my
MNIST
recognizer
thinks this
monkey is the
number 2!

The story of O:
“0” (a PhD student) has just written his own ultra-efficient distributed
matlab-based deep learning toolkit



23222822722
22225 L LB
-
pA
o
P
P
A
2
A

One day in summer 2013




One day in summer 2013

No way! That
looks more like
an 8 ora O




One day in summer 2013

Nope! It's the
number 2!




One day in summer 2013

Hm! I wonder
why. Try erasing
the smile.




One day in summer 2013

Aolo,
R




One day in summer 2013

Can we
automatically figure
out how to edit it to
make it 8?2.

Surel I
know how to




O makes a monkey an 8

@ mmmm). Divergence — > Loss

Backpropagation

* Backpropagate the error all the way back to the input to modify the
input
argmin Div(CNN(x), 8)
X



O makes a monkey an 8

==- CNN mmmm). Divergence ) Loss

Backpropagation

* Backpropagate the error all the way back to the input to modify
the input, but keep the corrections small

argmin Div(CNN (x + €),8) + 1|l ||
E



O makes a monkey 8

Neat! Perhaps
you can also
make it a 0?

Boss, I made a
monkey 8!




O can make a monkey anything

I can make it
anything!




O makes a monkey anything

/ Just change the target

€ 7

‘, CNN mmmm), Divergence - Loss

Backpropagation

* Backpropagate the error all the way back to the input to modify
the input, but keep the corrections small

argmin Div(CNN (x + €),7) + A|| ||
E



The monkey digits

0] o) 0] _ o]
i ﬂ@@ﬂ@ﬁ'i
—
4 5 6 7

* Monkey figures can be minimally edited to make O’s MNIST CNN
recognize them as any digit of our choice!



* |n fact, you
can do this
with any
figure

Other figures

Insert  Tools Desktop Window Help

FRAUPEL- 2|08 nD

Insert Tools Desktop Window Help

LR ODEL- |G| 08| e D

¥

510152095 5 10152625

Insert Tools Desktop Window Help

LAUDEL- S| 0E|aD

B

Insert Tools Desktop Window Help

[ w98 2|0EaD

Insert Tools Desktop Window Help
REODEL- B 0E|m




Fooling a classifier

* Any input can be minimally perturbed to fool
the classifier into classifying it as any class!

— Perturbations can be so small as to be
imperceptible to a human observer

The monkey distance

° ) 3



Unfortunately we were late to the
party!

z soft Internet Explor
SOV DIRIDIDINIDIDDNDDNDINNDEDDADDDRY

CUWINNERT

You have won a FREE' Apple iPod!

) 4 GBE model holds up to 1,000 songs
) Mare than 8 hrs battery life on 1 charge
() Earbud headphones, belt clig, AC adapter

Click Here to Claim Your FREE Apple iPod!
(*For participation in our prograrm, )

 Spammers had been fooling spam filters for decades already



The History of Email

e The first “E-mail” :1965

—  MIT’s “Compatible Time-Sharing System” (CTSS)



The History of E

The first “E-mail” :1965

MIT’s “Compatible Time-Sharing System” (CTSS)

The first email spam: 1 May 1978

By Digital Equipment Corporation
* Although it wasn’t called “spam” until April 1993

mail Spam

DIGITALWILL BE GIVING A PRODUCT PRESENTATION OF THE NEWEST MEMBERS OF THE
DECSYSTEM-20 FAMILY; THE DECSYSTEM-2020, 2020T, 2060, AND 2060T. THE

DECSYSTEM-20 FAMILY OF COMPUTERS HAS EVOLVED FROM THE TENEX OPERATING SYSTEM
AND THE DECSYSTEM-10<PDP-10> COMPUTER ARCHITECTURE. BOTH THE DECSYSTEM-2060T
AND 2020T OFFER FULL ARPANET SUPPORT UNDER THE TOPS-20 OPERATING SYSTEM.

THE DECSYSTEM-2060 IS AN UPWARD EXTENSION OF THE CURRENT DECSYSTEM 2040

AND 2050 FAMILY. THE DECSYSTEM-20201S A NEW LOW END MEMBER OF THE
DECSYSTEM-20 FAMILY AND FULLY SOFTWARE COMPATIBLE WITH ALL OF THE OTHER
DECSYSTEM-20 MODELS.

WE INVITEYOU TO COME SEE THE 2020 AND HEAR ABOUT THE DECSYSTEM-20 FAMILY
AT THE TWO PRODUCT PRESENTATIONS WE WILL BE GIVING IN CALIFORNIATHIS
MONTH. THE LOCATIONS WILL BE:

TUESDAY, MAY 9, 1978 —2 PM
HYATT HOUSE (NEAR THE L.A. AIRPORT)
LOS ANGELES, CA

THURSDAY, MAY 11, 1978 -2 PM

DUNFEY’S ROYAL COACH

SAN MATEO, CA

(4 MILES SOUTH OF S.F. AIRPORT AT BAYSHORE, RT 101 AND RT 92)

A 2020 WILL BE THERE FOR YOU TO VIEW. ALSO TERMINALS ON-LINETO OTHER
DECSYSTEM-20SYSTEMS THROUGH THE ARPANET. IF YOU ARE UNABLE TO ATTEND,
PLEASE FEEL FREE TO CONTACT THE NEAREST DEC OFFICE

FOR MORE INFORMATION ABOUT THE EXCITING DECSYSTEM-20 FAMILY.



The History of Email Spam defences

* The first “E-mail” :1965
— MIT’s “Compatible Time-Sharing System” (CTSS)

* The first email spam: 1 May 1978
— By Digital Equipment Corporation
* Although it wasn’t called “spam” until April 1993

* Earliest attempts at prevention of SPAM: 1996
— “Mail Abuse Prevention System” (MAPS = SPAM in reverse), uses blacklists



The History of adversarial attacks on
Email Spam defences

The first “E-mail” :1965
— MIT’s “Compatible Time-Sharing System” (CTSS)

The first email spam: 1 May 1978
— By Digital Equipment Corporation
* Although it wasn’t called “spam” until April 1993

Earliest attempts at prevention of SPAM: 1996
— “Mail Abuse Prevention System” (MAPS = SPAM in reverse), uses blacklists

Earliest address spoofing attack: 1997



And counter defences

The first “E-mail” :1965
— MIT’s “Compatible Time-Sharing System” (CTSS)

The first email spam: 1 May 1978
— By Digital Equipment Corporation
* Although it wasn’t called “spam” until April 1993

Earliest attempts at prevention of SPAM: 1996
— “Mail Abuse Prevention System” (MAPS = SPAM in reverse), uses blacklists

Earliest address spoofing attack: 1997

Earliest ML based spam filter: 20 April 2001
— Spam Assassin



And counter adversarial ttacks

The first “E-mail” :1965
— MIT’s “Compatible Time-Sharing System” (CTSS)

The first email spam: 1 May 1978
— By Digital Equipment Corporation
Although it wasn’t called “spam” until April 1993

Earliest attempts at prevention of SPAM: 1996
— “Mail Abuse Prevention System” (MAPS = SPAM in reverse), uses blacklists

Earliest address spoofing attack: 1997

Earliest ML based spam filter: 20 April 2001
— Spam Assassin

Earliest adversarial attack on and ML Spam filter: 21 April 2001



Spam becomes a thing of the past

The first “E-mail” :1965
— MIT’s “Compatible Time-Sharing System” (CTSS)

The first email spam: 1 May 1978
— By Digital Equipment Corporation
Although it wasn’t called “spam” until April 1993

Earliest attempts at prevention of SPAM: 1996
— “Mail Abuse Prevention System” (MAPS = SPAM in reverse), uses blacklists

Earliest address spoofing attack: 1997

Earliest ML based spam filter: 20 April 2001
— Spam Assassin

Earliest adversarial attack on and ML Spam filter: 21 April 2001

Bill Gates declares Spam “soon to be a thing of the past” : January 2004



Spam filtering in 2000

e Spam filters are mostly Naive Bayes classifiers

[[; P(X;|spam)

Yes => Spam
> 07
[I; P(X;|notspam)

No => not Spam

* X;s are “features” derived from the message

— Typically words or word patterns
* E.g. CRM114

31



The “goodword” attack

Free Xanax, Low cost HGH

Sound is drop. Line whether soft oxygen. Cross burn make
suggest, minute. Cover part reason. Why fresh wire.
Notice, are fact find hold. Move such light city, feet.
Near hot, pick other busy, book.

Introducing a set of words and word patterns that are much more frequent in good
email than spam will fool the naive Bayes filter

E.g. D. Lowd, C. Meek, Good word attacks on statistical spam filters, 2nd Conf. Email
and Anti-Spam (CEAS), Mountain View, CA, USA, 2005

— Formalized an already popular technique
— Do not even need to know which features the classifier uses, though knowing helps

32



Naive Bayes classifers are linear classifiers

[1; P(X;|spam) > 67
[1; P(X;|notspam)
e Translates to

Z(logP(Xilspam) — logP(XiInotspam)) —logf > 0?
i

 (Can be rewritten as

Zf(Xi) _b>0?

* Or more generally as

z/lif(Xi) —b>0?

— Which actually translates to a Bayes classifier using maximum entropy distribution estimates
— Which is also a very popular Spam filtering mechanism

33



Beating linear classifier spam filters

N\

N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma, Adversarial classification.
International Conference on Knowledge Discovery and Data Mining, 2004

Integer programming algorithm to determine minimal edits to “convert” a spam to
not spam

— Also works for other problems in other domains »



2004-present: adversarial attacks on
simple linear and non-linear classifiers

* On perceptrons
* On logistic regressions and softmax

* On SVMs
— And SVMs with non-linear kernels

 Even on how to “poison” training data to make learned SVMs
misbehave

— And how to defend

* Biggio, Battista, and Fabio Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recognition 84 (2018)

35



2010s.. Neural networks rule..

TECHNEWSWORLD
Comimitn st 1) Vol Mo Secmiy (ke b g i e e T

Found in translation:
More accurate, fluent
sentences in Google
Translate

Microsoft Al Beats Humans at
Speech Recognition

Bacak Tusovskr
PRANCTSEM, CoRis TR ATE

Neural network systems have established the state of the
art in many many tasks...



Nnets are universal approximators

* Can approximate anything!
e Surely they’re more robust than simple naive classifiers?

37



Szegedy et al. Intriguing properties of
neural networks. ICLR 2014

Ostrich

L

Adding often imperceptible noise to images can result in targeted misclassification
Finding the noise that will cause images to be misclassified:

il = argmin A|n| + L(f(x + n; 9),yfalse)
n
— Subjectto (x + n) € [0,1]™ (noisified images stay in valid range of pixel values)

Basically “O”s method

38



Goodfellow 2014

+.007x

“panda” “gibbon”
57.7% confidence 99.3% confidence

2 =x + 8 sign(VeL(f (x5 0), Yirue))

Intentional modification

— Modify only final bit of pixel values, to maximize the error between network
output and true class

— One-step process, without iteration

Goodfellow, Shlens and Szegedy. Explaining and harnessing adversarial
examples. arXiv:1412.6572 (2014).

39



Many other attack methods

Generally based on two approaches
Norm minimization: Minimization of noise as a regularizer, for loss minimization

fi = argminA|n|, + L(f(x + n; 6),y)
n

Norm-constrained minimization: Impose hard constraints on noise while
minimizing loss
fil=arg min L(f(x +n;0),y)

nin|p<é

In all cases, the modified data is encouraged on constrained to remain within a
small “radius” of the original data, to maintain perceptual similarity

40



Deepfool

NAC)

Class 1
/\\ #
‘/ N x

Class O

* The network is actually a discriminator f (X)

— For binary classification, when f(X) = 0, the input X is
classified as one class, when f(X) < 0 itis a different class

— Multi-class classifiers can be viewed as a collection of such
discriminators

41



Deepfool

L fOaW)

Class 1

v

Class O

* The network is actually a discriminator f(X)

— For binary classification, when f(X) = 0, the input X is classified as one class,
when f(X) < 0 itis a different class

— Multi-class classifiers can be viewed as a collection of such discriminators

* To change the classification output for an input, shift it by the minimum
amount so that f(X) changes sign

42



Deepfool

, fOW)

w /\\

| \/ X

Class 1

Class O

* |teratively linearize the function and find
location of O

— Until a location where the actual f(X) =0 is
found

43



Deepfool

, fOW)

_/\\\/ =

* |teratively linearize the function and find
location of O

— Until a location where the actual f(X) =0 is
found

Class O

44



Deepfool

, fOW)

Class 1

° AN

v x

Class O

* |teratively linearize the function and find
location of O

— Until a location where the actual f(X) =0 is
found

45



Techniques are increasingly
sophisticated

* And increasingly efficient!

e And versatile

46



You can simply have an instance
misclassified...

Aim: Modify cat image so that its not classified as cat

il =arg max L(f(

n:|n|p<é

T +1;0), Verue)

Cat

* To just misclassify an input, find noise to
maximize the error between the network
output and the true label

47



Or even choose what it is
misclassified as

l = arg min L(f(>1+ n; 8), bottle)

n:n|,<é

* Find noise to minimize the error between the
network output and the desired bogus label

48



You don’t even need to know the classifier

Probe input X Unknown classifier Probe output Y

G
(probe X,, probe Y,), (probe X,, probe Y,), ..., (probe X, probe Y,)

@Train

X — Proxy classifier — Y

e Just probe the unknown classifier to obtain input-output pairs
* Train a proxy classifier with the probe data

* Use the proxy classifier to build your adversarial inputs
— They will transfer to the original classifier!

49



But these are only artificial, right?

+.007x

-

“panda” “gibbon”
57.7% confidence 99.3% confidence

* Synthetic examples, where you add noise to pre-recorded images
— Using significant computation in each case

 Doesn’t carry over to real-life where you will generally not have the

ability to carefully manipulate an image with iterative algorithms
50



Sharif, Mahmood, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter.
"Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition."
ACM SIGSAC Conference on Computer and Communications Security, 2016.

5
1



SPEED
LIMIT

Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

52



These only work on images though..

* Are attacks limited to images?
— Attacking simple binary or multi-class classifiers

* Will it work on harder tasks like speech recognition
— With effectively infinite classes...

53



Fooling a speech recognizer

 Example from Nicolas Carlini



Fooling a speech recognizer

\ [Reveal Transcription] “okay google browse to evil dot com™

[Reveal Transcription] “without the dataset the article is useless™

\
N/ \
[Reveal Transcription] [original. no speech is recognized]
[Reveal Transcription] “okay google browse to evil dot com”
9 o
# N

Example from Nicolas Carlini



But this requires the loss to be
differentiable

fi = argminA|n|, + L(f(x + n;6),y)
n

 Wont work if we’re trying to introduce non-
differentiable errors, right?
— Like ASR or MT errors

— Or image segmentation errors..

56



The Proxy loss

l_(J/C\,y) — P]/~N(O,1)[f(5c\ty; 9) —f(D/C\,j;, 9) < )/] L(y'y)

* f(x,y;0)is the score assigned to class y by
the network

— ¥ is the highest scoring class

* Finds the expected error between actual
output and target output

— This turns out to be a differentiable function of n

* Houdini: Fooling Deep Structured Prediction
Models, Cisse, Adi, Neverova, Keshet, 2017



Image segmentation example

True segmentation _ _
(Cisse, Adi, Neverova, & Keshet, 2017)



Image segmentation example

rle ,
b’

Borrow segmentation from this image

(Cisse, Adi, Neverova, & Keshet, 2017)



Image segmentation example

Adversarially modified image

(Cisse, Adi, Neverova, & Keshet, 2017)



Image segmentation example

...and its rubbish segmentation

(Cisse, Adi, Neverova, & Keshet, 2017)



Speech recognition (Google Voice)

Original .

. Adversarial:

if sh Id only see Ph forjust if she ou down take shee throwns purhdress luon ellwon
moment

© ©

(Cisse, Adi, Neverova, & Keshet, 2017)



So why are classifiers so fragile

* Perceptual reasoning
 Statistical reasoning

63



Perceptual reasoning

Machine learning

classifier

We're actually working with two classifiers
— Human perception (typically)
— The ML classifier

We want to modify the data such that the two classify the data differently
— Malicious modification

64



Human perception is very forgiving

On atkins or the soith beach diet, try our diet patg¢h. & new cutting edge,
advanced appétite siippréssant, métabalism badster, and énérgy
énhincer...all in one. The perfect sppplemént to assist you in ldsifig those
extra poufids just in time for simmeér

Léarii the triith about losing weéight.

All ordérs backeéd by our nd risk, monéy back Guparantée!

Shipped Discréetly,

Whi wait, theé solution is now

Mo further £€mails plédse
http: ffthesedealzwontlast.com

 We want to find patterns

65



Human perception is

» g Bt Yoy
s i
s -

 We want to find patterns

very forgiving

(d

66



Human perception is very forgiving

I

—~
-
=

-
-
-
-
-

 We want to find patterns

— Tom Sullivan and Schubert, for the curious

67



The perceptual radius

 Thereis a “ball” of modifications around any valid
pattern that we are tolerant to

— ML algorithms, on the other hand, are sensitive these
variations

68



The perceptual rationale

Machine
learning
classifier
car
cat ’ > cat
house

Adversarial attacks search for points within this ball for which the
ML algorithm responds differently than we do
— Since we don’t really know the perceptual ball, they model it instead
as a physical ball of small radius
« Eg. x+n, [In]],<e¢

 |If the model physical ball lies within the perceptual ball, the found solutions
will be valid adversarial instances

69



The perceptual rationale

Machine
% learning
classifier
car
cat ’ > cat
house

* Machine learning algorithms that are provided
training samples, only learn the function at the
sample, but not the entire perceptual circle
around it

— Which cannot even be characterized in most cases

70



Statistical reasoning

XX, Y
O O O

Target function:

Y = X, XOR X,
O 1 1
1 0 1
1 1 O

* Consider an ML algorithm that has been provided
this training data
— Trivial to learn
— Simple XOR

71



Spurious inputs

X (X, X, Y

Target function:
Y = X; XOR X,

m) O R R O O
R, O Fr O R O
R =, O O O O
O O O =L = O

* Now the algorithm has been provided this new
table instead

— The target function is still X; XOR X,
— X5 is a spurious input

72



What will the algorithm learn
X, (X, (X Y

_ O = = O O

R O - O +» O

R B O O O O

©O OO = = O

X1

X2

X3

Y

X1

X2

Y

X1

X2

X3

0

1

1

0

0

1

0

0

1

1

[y

X1

X3

1

0

1

0

The algorithm can learn any of these patterns for the unseen input
combinations

1

0

1

1

0

1

0

1

[y

1

1

— Only one is right for our target function

— If it learns any of the others, the output for any combination of X; and

X, can be made erroneous by choosing the right X,

73



What will the algorithm learn
X, (X, (X Y

Each additional spurious

bit of input adds an
exponential number of

ways for the algorithm to
learn the wrong thing

This makes it foolable

_ O = = O O

R O - O +» O

R B O O O O

©O OO = = O

X1

X2

X3

Y

X1

X2

Y

X1

X2

X3

0

1

1

0

0

1

0

0

1

1

[y

X1

X2

X3

1

0

1

0

* The algorithm can learn any of these patterns for the unseen input
combinations

1

0

1

1

0

1

0

1

1

[y

1

0

1

— Only one is right for our target function

— If it learns any of the others, the output for any combination of X; and

X, can be made erroneous by choosing the right X,

74



Sufficient statistic

* A sufficient statistic is the minimal function of
the input that is sufficient to compute the
output

* For the previous example (x{,x5) is a
sufficient statistic

* (x1,X,,x3) is not a sufficient statistic
— It is overspecified



Sufficient statistic: Linear example

V1 X2

1 Y2
X= lle
> xl
y]_ == A]_X
Vo = A,X Type equation here.

* Binary classification problem
— Blue class vs. yellow class

* y; = A;1X is a sufficient statistic
— (y1,y>) is not a sufficient statistic
— (x4, x5) is not a sufficient statistic

76



Sufficient statistic

Any classifier that operates on a non-sufficient statistic of the input
is exponentially hard to learn and can be fooled by adversarial
examples

The input to any linear classifier that can be fooled by adversarial
examples is not a sufficient statistic

* B. Li, G. Friedland, J. Wang, R. Jia, C. Spanos, D. Song: "One Bit Matters:
Understanding Adversarial Examples as the Abuse of Data Redundancies”,
submitted to NIPS 2018

Summary: If you provide redundant input to the classifier, it can be
fooled by an adversarial example

77



The susceptibility of networks

f1(x)
| W(ﬁm == f,(0))?
2 LG

4

* Consider the example of y = (f;1(x) == f,(x))?
— f1(x) and f1(x) are two outputs at kth layer

78



The susceptibility of networks

(f1(x) == f2(x))?

* Consider the exampleof y = (f;(x) == f,(x))?
— f1(x) and f; (x) are two outputs at kth layer

* |f the network produces three features at the kth layer,
this opens up the possibility of adversarial attack

79



Susceptibility of networks

* Adversarial attacks can only be prevented by having a “perfect” network
— At least one layer that produces exactly sufficient statistic

* [tisimpossible to know what the minimal network architecture is for any
given problem
* Any practical solutions will always be exploitable
— By a more motivated attacker

80



Defences

* So how does one defend?

81



Adding adversarial samples to
training
* Explicitly train against adversarial instances

* While training the network

e |teratively:

— Generate several adversarial instances
* Instances that are misclassified by the classifier
* E.g. Cats that are classified as tables

— Add them (with correct labels) to training set and
retrain
— Szegedy et al., 2014, Goodfellow et al., 2014

— Improve
* Network remains exploitable..

82



Making the function non-
differentiable

Al = argminA|n|, + L(f(x + n;0),y)
n

e Usual techniques for producing adversarial
samples use gradients of f(x +n;0)

— This is the network

e The network must be differentiable w.r.t x

83



Making the function non-

differentiable

f(x)

A N

O

Z
7

/

/

Ve

Sof

—

* Make f(x + n; 8) non-differentiable

— A variety of ways
* Quantize input

* Randomize computations

* Quantize activations
* Etc.

84



Non-differentiable classifiers remain
exploitable

Probe input X Non-dlffergntlable Probe output Y
classifier

G
(probe X,, probe Y,), (probe X,, probe Y,), ..., (probe X, probe Y)

@Train

X — Proxy classifier — Y

* Build differentiable proxy classifiers and fool
them

— The adversarial samples are transferrable

85



Making it robust to (perceptually)
acceptable variations

Most successful approach to date: Train model to not change
output within perceptual radius of each training input

— Actual perceptual radius unknown; use metric balls instead
* Wang and Kolter, 2018

86



Standard Machine Learning Paradigm

\
e

* Objective: Train a mapping from input to output

— But given only input output pairs

Solution: Learn the function such that the mapping is
correctly learned for the specific input-output pairs
provided

87



Standard Machine Learning Paradigm

What really happens: No guarantee what the function learns even 6
away from the training samples

More generally, the output of the network can change very sharply
within a 6 region of any valid instance

Adversarial instances exploit these 6 regions
— They are obtained by modifying valid instances by small amounts

88



? Solution

S
o9
(@5
o9
o9
S
S

“«»> 5= di
~
*
Xi
. C— . —>

* Learn network such that
— It outputs correct y value at each training x
— It outputs a value close to y, in a § ball around x

6 = argminE, l max_L(f(x + n; 9);3’)]
0 |Tl|p<5

* Minimize the worst loss within the delta ball
— Towards deep learning models resistant to adversarial attacks, Madry et al., 2017

— Provable defenses against adversarial examples via the convex outer adversarial polytope,
Wang and Kolter 2018

89



Making it robust to (perceptually)
acceptable variations = Testing for
adversariality

 The procedure can also be used to verify test instances

— Does the rest of the ball produce the same output as the
instance itself?

* Wang and Kolter, 2018

90



What are we missing?

* The techniques still approximate the
perceptual ball with the metric ball

* Fight fire with fire: Use actual perceptual
metrics

— Use known perceptual properties for the data to
build defences

— Particularly effective for speech

91



Detecting Adversariality: Spectral
band redundancy

Both equally intelligible
(but not as intelligible as full-band speech)

o]

-}
»

("]
i

Frequency (kHz)
Frequency (kH

o
i

[3+]

*4-

0.5 1 1.5

Time (secs)

2 2.5

=
&)

1 1.5 2 25
Time (secs)

Fletcher’s experiment: Speech that has been high-pass filtered

1800Hz is as intelligible as speech that is low-pass filtered at
1800Hz

— And both are intelligible
— Speech is highly redundant

Exploit spectral redundancy to combat adversarial noise

— Adversarial noise will affect some spectral bands more than others



Detecting Adversariality: Spectral
band redundancy

Secondary system \ Main
E——— Recognizer

Time (secs)

Recognizer
Secondary
compare

) t
Recognizer Y’ cystem

Y and Y' are recognized text

Recognizer

/

Secondary verifier strategy
— Filter signals into multiple bands
— Recognize bands individually
— \Vote

If secondary recognizer output does not match primary recognizer
output, input is potentially adversarially modified



Detecting Adversariality: Spectral

band redundancy

—> Recognizer

If primary task is not speech recognition
— E.g. speaker verification, health condition test, etc.
Secondary system are still recognizers

Secondary system
/ y sy \ Vi Y Y/0
£ RSy lassifier
2, Recognizer S classi
Secondary 1/0
Recognizer —{_compare )+ 1/0 system

— Outputs are compared to one another to determine if input is adversarial

— Adversarial inputs will increase variety and diversity of sub-band

recognition outputs



Detecting Adversariality:
time-frequency redundancy

e Speech remains highly intelligible after random time-
frequency components of the audio are masked out

— “Erase” up to 80% of randomly selected TF elements

* Erasure will likely eliminate adversarial noise



Detecting Adversariality:
time-frequency redundancy

Secondary system \ / Secondary system

Recognizer Recognizer \

~

Recognizer vote

Recognizer Recognizer

/

Recognizer compare

s g

/

* Generate multiple random-masked versions of input
* Recognize all of them

e Secondary system can be used in the same manner
as for the spectral-band redundancy method



The bad news

* None of the defences discussed so far are
panaceas

— Often don’t work

e Attacks, meanwhile, get increasingly
sophisticated

— And increasingly pose real dangers



Looking ahead

 Will remain an area of research for the
immediate future

— Adversaries and defences constantly catching up to
each other

* What | have not covered:
— Poisoning the training set
— Backdoor attacks
— Exploiting adversarial samples

* For watermarking, etc.



The Abrupt Stop

99



