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Speech Processing and Prosody

 Prosody conveys various types of information over the linguistic content
 Prosody structures the utterances
 May be used to emphasized words
 Speaker emotional state
 …

 Speech prosody neglected
 In automatic speech recognition
 In manual transcriptions

 But critical for expressive speech synthesis

 Prosody is a suprasegmental information, and is characterized by
 Duration of the sounds
 Fundamental frequency
 Energy of the sounds
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Outline

 Prosodic features, computation and reliability
 Phone duration
 Fundamental frequency
 Phone energy

 Prosodic features in automatic speech processing
 Computer assisted language learning
 Structuring speech utterances
 Sentence modality
 Prosodic correlates of discourse particles
 Expressive speech

 Conclusion
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Phone duration

 Is determined from the phone boundaries that can be set
 Manually
 Automatically through forced speech-text alignment

 Some boundaries are clear, some are more ambiguous, for example

 Clear between vowel and occlusive
 Ambiguous between vowel and semi-vowel
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Automatic speech-text alignment

 Needs only a manual transcription of the speech signal into words
 sequence of words corresponding to the speech segment

 Uses pronunciation variants for each word (lexicon or grapheme-to-phoneme tools)
 Relies on automatic speech recognition tools
 find the sequence of phones that best matches with the speech signal
     (and the associated word and phone boundaries)

 Works well when
 Good quality speech data and reliable acoustic models
 Transcription perfectly matches with the actual content
 Pronunciation variants include the actual pronunciations

 Performance degrades
 On noisy speech data
 On non-native speech (difficult to predict every possible pronunciation deviations)
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Automatic speech-text alignment

 Example for « Madame la Ministre, merci »   ( Madame Minister thanks)

 3 states per phone model  *  10 ms per frame   30 ms minimum duration per phone
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Example of speech segmentation
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• absent in manual segmentation
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• 30 ms long in automatic segmentation with 10 ms frame shift



Analysis of final consonantal clusters

 Analysis of a frequent final cluster  / t ʁ /   as in   / m i n i s t ʁ /  (ministre)

 Extended pronunciation lexicon where all pronunciation variants are allowed
 Adding final schwa / ə /
 Eliding consonants / t /  or/and  / ʁ /

 This leads to an extended set of pronunciation variants
Example for ministre:

/ m i n i s t ʁ ə /  [+t][+ʁ][+ə] / m i n i s    ʁ ə /  [-t][+ʁ][+ə]
/ m i n i s t ʁ    /  [+t][+ʁ][-ə] / m i n i s    ʁ    /  [-t][+ʁ][-ə]
/ m i n i s t    ə /  [+t][-ʁ][+ə] / m i n i s       ə /  [-t][-ʁ][+ə]
/ m i n i s t       /  [+t][-ʁ][-ə] / m i n i s          /  [-t][-ʁ][-ə]
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/ʁ/ pronounced

/ʁ/ elided

/t/ pronounced /t/ elided



Comparing frequency estimations

 Word ministre

 Comparing
frequencies
estimated with
5 and 10 ms
frame shifts

 5 ms frame shift acoustic analysis leads to higher frequency of occurrences for longest
pronunciation variant (here / m i n i s t ʁ ə /)
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Speech-text alignment

 Besides correct transcription, adequate pronunciation variants, …
better to rely on a 2 pass process
 First, determine the pronunciation variants actually used

with context-dependent models
 Then, re-align with context-independent acoustic models

which leads to a better precision of the boundaries

 To get a better precision
 Use 5 ms frame shift

Note, that is what is done in parametric speech synthesis

 Other difficulties stem from
 Non adequate noise models
 Annotation conventions for noises, laughing, hesitations, …, that vary among corpora
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Fundamental frequency (F0)

 Fundamental frequency vs. pitch
 Pitch is linked to the perception of the frequency
 F0 is a physical property of the sounds

 However the term ‘pitch’ is often used when talking about the F0

 F0 detection can be done
 In the time domain
 In the spectral domain
 Using both time and spectral domains
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F0 detection – time domain

October 11, 2019 TSD 2019 -- Speech processing and prosody 12

 Rely on the time shift at which the signal (almost) repeat itself (in voiced sounds)
 ACF (Praat) Auto Correlation Function

 AMDF (snack library) Average Magnitude Difference Function

 CCF (Praat) Cross Correlation Function

 Kaldi (speech recognition toolkit)
 REAPER (REAPER)
 RAPT (SPTK and snack library) Robust Algorithm for Pitch Tracking

 SRPD (ESTL) Super Resolution Pitch Determinator

 TEMPO (STRAIGHT)
 YIN (YIN and JSNOORI)



F0 detection – frequency domain

 Exploit the harmonic structure of the spectrum for voiced sounds
 Martin (JSNOORI)
 SHS (Praat) Sub-Harmonic Summation algorithm

 SWIPE (SPTK and JSNOORI) Sawtooth Waveform Inspired Pitch Estimator
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F0 detection – combined approaches

 Combine time and frequency cues
 Aurora (ETSI)
 NDF (STRAIGHT) Nearly Defect-free F0
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F0 detection – comments

 Time and frequency approaches provide F0 candidates
 Main challenge is to select the “good” candidate

and to avoid pitch halving (F0/2) or doubling (2*F0) estimations
which lead to the numerous variants

 Voicing decision is a critical step
[unvoiced sounds and silence  no F0 values;   voiced sounds  F0 values]
 Usually carried on by applying thresholds on numerical criteria used to compute F0

 Dynamic programming-based post processing in some approaches
 E.g., RAPT, REAPER, Martin
 For minimizing jumps in the F0 curve (thus reducing halving and doubling errors,

and to improve voicing decision)
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Performance evaluation measures

 VDE: Voicing Decision Error
 Proportion of frames for which a voicing decision error is made
 Two types of errors

q v->uv  voiced frame classified as unvoiced
q uv->v  unvoiced frame classified as voiced

 FFE: F0 Frame Error
 Provides a global error measure
 Consider as error

q Voicing decision error (v->uv and uv->)
q Gross pitch error (voiced frame classified as voiced, but estimated F0 differs from the

reference F0 by more than 20%)
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Evaluation on clean data
PTDB-TUG corpus, 20 speakers, 4720 utterances

October 11, 2019 TSD 2019 -- Speech processing and prosody 17

 Mean (over all speakers) ranges from 5% to 8%



Evaluation on clean data
PTDB-TUG corpus, 20 speakers, 4720 utterances
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 Mean (over all speakers) ranges from 5% to 8%
 Except SWIPE and YIN, better results on male speakers than on female speakers



Evaluation on clean data
PTDB-TUG corpus, 20 speakers, 4720 utterances
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 Mean (over all speakers) ranges from 5% to 8%
 Except SWIPE and YIN, better results on male speakers than on female speakers
 Large gap in performance between best and worst speaker (for all approaches)



Evaluation on simulated noisy data
PTDB-TUG corpus, noises (babble, factory, …) added at various SNR levels

October 11, 2019 TSD 2019 -- Speech processing and prosody 20

 Most approaches have the same behavior (ending at around 25% FFE for -5 dB SNR)
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Evaluation on simulated noisy data
PTDB-TUG corpus, noises (babble, factory, …) added at various SNR levels

October 11, 2019 TSD 2019 -- Speech processing and prosody 21

 Most approaches have the same behavior (ending at around 25% FFE for -5 dB SNR)
 A large part of the errors are due to voicing decision errors
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Voicing decision errors
PTDB-TUG corpus, noises (babble, factory, …) added at various SNR levels

 When noise increases, the largest part of the errors comes from v  uv decision errors
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Evaluation on real noisy data
SPEECON corpus, 60 speakers, car, office and public places, close and distant microphones
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 Degradation with noise (distance to speaker)
 Best algorithm vary depending on condition



Comparing performance
on real and simulated noisy data
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 Degradation with respect to noise level
 For babble noise (simulated or real public places), results are very similar between

simulated noisy data and real noisy data



Comparing performance
on real and simulated noisy data
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 Degradation with respect to noise level
 For babble noise (simulated or real public places), results are very similar between

simulated noisy data and real noisy data



F0 detection

 Most of the algorithms provide good results on clean data (from 5% to 8% FFE)
 But large performance variation across speakers

 Performance degradation when noise is present
 Voicing detection error is the main cause of error

(in most of the cases, voiced frames are mis-classified as unvoiced)

 Best algorithm vary depending on noise type and level
 RAPT (SPTK), REAPER and NDF (STRAIGHT) are the best approaches
 ACF (Praat), RAPT (SPTK), TEMPO (STRAIGHT), YIN and SWIPE are the most often used

(according to a recent survey [Strömbergsson, Interspeech 2016])

 Choosing the most adequate algorithm or combining several approaches may be a
solution, as well as optimizing the voicing decision
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Phone energy

 How to compute it
 Energy in the middle of the phone segment?
 Average energy over the whole phone segment?

 Values dependent on many parameters
 Distance between speaker and microphone
 Microphone and channel characteristics
 Signal scaling

 Reasonable feature if comparisons are made inside a given utterance (assuming the
speaker does not move to much during an utterance)

 Difficult to have reliable comparisons over different acquisition sessions
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Normalizing prosodic features

 Phone duration depends on speaking rate
 Phone duration ratios are often more relevant
 Or normalization with respect to speaking rate

 F0 depends on the speaker, and large differences between males and females
 F0 ratios (when measured in Hz) are more useful

or delta values in semi-tones
 Glissando threshold for perception of changing pitch (takes into account pitch variation and

duration of the segment)

 Energy depends on many aspects
 Phone energy ratios (or differences in decibels) are more relevant
 Or normalization with respect to signal level
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Confidence scoring

 Phone boundaries
 Automatic speech-text alignment provides phone-boundaries but there are no associated

confidence score
 Just very view experiments aiming at computing the posterior probability of the boundary

 F0
 Algorithms provide F0 values
 A few of them provide a probability of the voicing feature
 Some attempts at computing a confidence score on the estimated F0 values
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Outline

 Prosodic features, computation and reliability
 Phone duration
 Fundamental frequency
 Phone energy

 Prosodic features in automatic speech processing
 Computer assisted language learning
 Structuring speech utterances
 Sentence modality
 Prosodic correlates of discourse particles
 Expressive speech

 Conclusion
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Computer assisted language learning

 Providing automatic feedback to language learners, on various aspects
 Implies detecting pronunciation defects
 Providing reliable feedback

 Detecting pronunciations defects
 Requires an alignment of the speech signal with the expected pronunciation

q Pronunciation defects, such as phone insertions and deletions affect the alignment
accuracy

q If mother tongue known, some frequent pronunciation defects may be taken into
account to enrich the pronunciation lexicon

 Scoring pronunciation
q Phoneme quality (i.e., is it the expected phoneme?) based on GOP (goodness of

pronunciation) score
q Lexical stress requires prosodic features (phone duration, fundamental frequency)
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Precision of phone boundaries
on non-native speech

 Percentage of boundaries that are less than 20 ms of the reference boundary
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Example for the word “difference” pronounced by
a native speaker (reference) and by a learner
- Leaner: syllable S2 is too long, and syllable S1 is
not stressed enough

- After analyzing the pronunciation, a textual
diagnosis is provided to the learned, as well as a
audio feedback

 Native speech (reference)

Non-native speech (learner)

Example of audio & textual prosodic feedback

January 2015 Multispeech 33

Modified learner’s voice

Melodic curve (in red)



Structuring speech utterances

 Prosody structures speech utterances
 Prosodic groups
 Organization of prosodic groups

 Automatic approach for prosodic structure in French based on [Martin, 1987]
mainly relies on
 Amplitude of the F0 slopes
 Inversion of F0 slopes

      at the end of the potentially stressed groups
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Detection of prosodic boundaries

 Subset of ESTER and ETAPE (broadcast news) have been manually segmented in
prosodic groups

 Analysis of automatic prosodic boundary detection
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Speech data Number of boundaries
in reference data

Percentage

Found Omitted Inserted

ESTER subset 1405 83% 17% 20%

ETAPE subset 1167 77% 23% 13%



Examples of prosodic trees
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Prosodic groups and punctuation

 Using ESTER data that was manually transcribed with punctuation marks

 96% of dots match with end of automatically detected prosodic groups

 80% of commas match with end of automatically detected prosodic groups
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Sentence modality

 Focus on statement vs. question
 Questions can be

 Expressed with interrogative forms
 Perceived as questions only through a rising intonation

 Classification based on
 Linguistic features (words)
 Prosodic features
 Both linguistic and prosodic features

 Evaluations on speech data from ESTER and ETAPE (broadcast news) using
 Manual transcriptions
 Automatic speech recognition output
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Detection of sentence modality

 Comparison of classification results using an MLP classifier

 The most important linguistic feature is the lexical log likelihood ratio (lexLLR)
using two language models (one for questions, one for statements)

 The best results are obtained when combining all features
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Discourse particles

 Words of expressions such as « well », « then », « you see », « you know », …
 That lose their usual lexical meaning
 But have a function at the discourse level

 For utterance interpretation
 For the management of the interaction
 …

 Focus on a few French words that are frequently used as discourse particles (DP)
 alors (so)
 bon (well)
 donc (thus, therefore)
 enfin (finally, anyway)
 quoi (what)
 voilà (there you go)
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Examples

Label Example

Non-DP … la question que tout le monde se posait alors était les ventes de
ces nains de jardin refléteraient elles …
… the question that everyone was asking then was would the sales
of these garden dwarves reflect … 

DP … la les forces régulières les forces loyalistes vont mettre le paquet
sur bouaké [pause] alors la question qui qui se pose à la mi journée
c'est de savoir qui …
… the regular forces the loyalist forces will provide full backing on
bouaké [pause] then the question arising at midday is to know …

DP … en achetant tout simplement des produits vous savez étiquetés
satisfait ou remboursé alors c'est une gestion mais ça marche il l'a
prouvé il a rempli son frigo …
... by simply buying products you know labeled satisfied or refunded
then it is a management but it works he proved it he has filled its
fridge ... 
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Speech corpora

 Large set of speech corpora (13 subsets)
 that were manually transcribed (by respective corpora developers)
 And text-speech aligned (in house, or in the ORFEO project)

 French language

 Variety of speaking styles with various degrees of speech spontaneity
 Storytelling  [0.14 million words]
 Prepared speech [1.82 million words]

q Broadcast news
 Spontaneous speech

q Conversations, interviews, … [1.84 million words]
q Interactions [1.52 million words]

 About 1000 occurrences randomly selected for each word
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Data annotation

 Annotation of speech data
 Speech segments with about 15 words before and 15 words after the selected word
 Using praat

q Speech signal available (for listening)
q Speech transcription also available

 Annotation as DP or non-DP
 If DP, further annotation with pragmatic function

 Pragmatic functions depend on discourse particles
 Examples of pragmatic functions are

 Introduction
 Conclusion
 Addition
 Confirmation
 …
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Examples

Label Example

Non-DP … la question que tout le monde se posait alors était les ventes de
ces nains de jardin refléteraient elles …
… the question that everyone was asking then was would the sales
of these garden dwarves reflect … 

DP – introduction … la les forces régulières les forces loyalistes vont mettre le paquet
sur bouaké [pause] alors la question qui qui se pose à la mi journée
c'est de savoir qui …
… the regular forces the loyalist forces will provide full backing on
bouaké [pause] then the question arising at midday is to know …

DP – conclusion … en achetant tout simplement des produits vous savez étiquetés
satisfait ou remboursé alors c'est une gestion mais ça marche il l'a
prouvé il a rempli son frigo …
... by simply buying products you know labeled satisfied or refunded
then it is a management but it works he proved it he has filled its
fridge ... 
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DP / non-DP analysis for word ”alors”
with respect to spontaneity of speech data
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Story Prepa. Interviews Interactions

24%

55%

72%
82%



DP / non-DP with respect to speech type
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Analysis of a few prosodic correlates

 Different prosodic correlates have been analyzed
 Pauses before and after the word
 Position in intonation group

(segmentation in intonation groups relies on F0 slope inversion, pitch level and vowel
duration)

 Pitch level and slope at end of words
 Vowel duration, and lengthening
 …

 Here, analysis is focused on
 Pauses before and after the word
 Position in intonation group
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Frequency of occurrence of pauses before the
word

 Word “bon”
 Very few pauses before when non-DP
 Pause before much more frequent when DP

 Words “alors” and “donc”
 More pauses before when DP than when

non-DP,  in spontaneous styles
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Frequency of occurrence of pauses after the word

 No large differences between DP and
non-DP functions, except for “bon”

 Word “bon” (well, …)
 Largest difference for storytelling
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Position of the word in the intonation group

 Alone in intonation group
 More often when DP than when non-DP
 Largest difference for “bon”

 “alors” non-DP
 Is getting more frequent in first position

when spontaneous speech

 “bon” non-DP
 More frequent in last position than when DPOctober 11, 2019 TSD 2019 -- Speech processing and prosody 50



Automatic classification and detection experiments

 Data subsets
 60% for training,  10% for validation,  30% for performance evaluation

 Classifiers
 Word dependent classifier
 Neural network approach (Keras toolkit)

 Two sets of features
 Prosodic features over a few word window

q duration and energy of last vowel of the word
q absolute F0 value at end of the word, and its slope
q pause before and/or after the word
q …

 Fundamental frequency values over a few second window
q F0 values computed every 10 ms
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Automatic classification and detection
using prosodic features
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Automatic classification and detection
using fundamental frequency values
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Automatic classification and detection

Prosodic features Fundamental frequency

 “alors” (then, …) & ”bon” (well, …)  Prosodic features more relevant than F0

 “donc” (therefore, …)  F0 slightly more relevant than prosodic features

 It might be interesting to combine these two sets of features
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F0 patterns

 F0 movements with respect to
 Last syllable of previous word
 First syllable of next word
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F0 patterns

Discourse Particle Pragmatic function F0 patterns

alors

conclusion falling-rising falling-plateau

introduction rising rising-plateau

reintroduction falling-plateau plateau

donc

conclusion falling-plateau plateau

reintroduction rising-plateau plateau

addition falling-plateau plateau

bon

conclusion falling-rising falling-plateau

interruption plateau

confirmation falling-rising plateau

incident falling-plateau
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Most frequent F0 patterns with respect to discourse particle and pragmatic function



F0 patterns

Discourse Particle Pragmatic function F0 patterns

alors

conclusion falling-rising falling-plateau

introduction rising rising-plateau

reintroduction falling-plateau plateau

donc

conclusion falling-plateau plateau

reintroduction rising-plateau plateau

addition falling-plateau plateau

bon

conclusion falling-rising falling-plateau

interruption plateau

confirmation falling-rising plateau

incident falling-plateau
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addition and incident  add an information or a comment



F0 patterns

Discourse Particle Pragmatic function F0 patterns

alors

conclusion falling-rising falling-plateau

introduction rising rising-plateau

reintroduction falling-plateau plateau

donc

conclusion falling-plateau plateau

reintroduction rising-plateau plateau

addition falling-plateau plateau

bon

conclusion falling-rising falling-plateau

interruption plateau

confirmation falling-rising plateau

incident falling-plateau
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Conclusion and confirmation  expression of look-back; semantic action of finality

Falling-rising and falling-plateau highlight a strong semantic break



Expressive speech

 Expressive speech is now attracting a lot of interest
 Expressive text-to-speech synthesis
 Recognition of emotions

 Emotional speech can be collected
 Recording of spontaneous speech – then annotation of the emotion
 Recording through induced situations
 Recording of acted speech from professional actors
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Prosody of emotional speech

 Considering for example the F0 range, in comparison with neutral speech

 Larger F0 ranges are much more frequent for anger
 And, slightly more frequent for fear, surprise and joy
 Smaller F0 ranges are more frequently observed for sadness.
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Segmental level analysis

 Compared to neutral speech, pronunciation of emotional speech is often modified

 Many omissions of the schwa like vowel
 Omissions are more frequently observed In the first and last breathing groups
 Slightly vary with emotions – highest percentage was observed for disgust, fear and joy

 There exist also some other modifications, as for example
the omission of liquid consonants in consonantal clusters
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Expressive speech synthesis

 Currently relies on an expressive speech synthesis corpus

 Recent approaches are based on deep learning approaches

 This opens research tracts for
 Adjusting the level of the emotions
 Investigating mixing of emotions
 Investigating transfer learning approaches
 …
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Outline

 Prosodic features, computation and reliability
 Phone duration
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 Prosodic features in automatic speech processing
 Computer assisted language learning
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 Prosodic correlates of discourse particles
 Expressive speech

 Conclusion
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Conclusion

 Computation of prosodic features
 Forced speech-text alignment is used for phone duration
 Many algorithms exists for fundamental frequency

 Approaches work well on clean and good quality speech
 However performance degrades on noisy speech

 Missing of reliable confidence estimators

 Prosody features are involved in many speech processing tasks
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