Rete algorithm

The Rete algorithm (/'ri:ti:/ REE-tee or ['rerti:/ RAY-tee, rarely/'ri:t/ REET or /re’tei/ re-
TAY) is apattern matchin@lgorithmfor implementingoroduction rule systemdt is used to
determine which of the system's rules should fagel on its data store.

Contents

e 1 Overview
* 2 Description
o 2.1 Alpha network
2.2 Beta network
2.3 Conflict resolution
2.4 Production execution
2.5 Existential and universal guantifications
2.6 Memory indexing
2.7 Removal of WMEs and WME lists
2.8 Handling ORed conditions
o0 2.9 Diagram
» 3 Miscellaneous considerations
e 4 Optimization and performance

O O OO0 o o o

e 5 Retell
e 6 Rete-lll
e 7 Rete-NT

» 8Seealso
» 9 References
e 10 External links

Overview

A naive implementatiorof an expert system might check eaake against knowrfactsin
aknowledge basefiring that rule if necessary, then moving orthie next rule (and looping
back to the first rule when finished). For even erade sized rules and facts knowledge-
bases, this naive approach performs far too sloWhg Rete algorithm provides the basis for
a more efficient implementation. A Rete-based exggstem builds a network afodes
where each node (except the root) correspondpattarn occurring in the left-hand-side (the
condition part) of a rule. The path from treot nodeto aleaf nodedefines a complete rule
left-hand-side. Each node has a memory of factghlwhkatisfy that pattern. This structure is
essentially a generalizéde. As new facts are asserted or modified, they pyafgmalong the
network, causing nodes to be annotated when tkeatratches that pattern. When a fact or
combination of facts causes all of the patternsafgiven rule to be satisfied, a leaf node is
reached and the corresponding rule is triggered.

The Rete algorithm was designed by@rarles L. Forgyf Carnegie Mellon Universityfirst
published in a working paper in 1974, and latebetated in his 1979 Ph.D. thesis and a 1982
paper (se®eferences Rete was first used as the core engine of thB5J#ioduction system
language which was used to build early systemsudicy R1 for Digital Equipment
Corporation. Rete has become the basis for manylgopule engines and expert system
shells, includingTibco Business Events,Newgen OmniRulé€3,IPS Jess Drools IBM
Operational Decision Manageme®@PSJ, Blaze AdvisoBizTalk Rules Engineand Soar
The word 'Rete’ is Latin for 'net' or ‘comb’. Tlaeng word is used in modern Italian to mean
network Charles Forgy has reportedly stated that he addpe term 'Rete’ because of its use
in anatomy to describe a network of blood vessetsrerve fibers:

The Rete algorithm is designed to sacriftemoryfor increased speed. In most cases, the
speed increase over naive implementations is devedars of magnitude (because Rete
performance is theoretically independent of the nemof rules in the system). In very large

expert systems, however, the original Rete algoritends to run into memory consumption

problems. Other algorithms, both novel and Retethadave since been designed which
require less memory (e.g. Reféor Collection-Oriented Matéh).

Description

The Rete algorithm provides a generalized logicascdption of an implementation of
functionality responsible for matching dataples (“facts”) againstproductions("rules’) in

a pattern-matchingroduction systenfa category ofule enging A production consists of
one or more conditions and a set of actions whiely be undertaken for each complete set of
facts that match the conditions. Conditions testt fattributes including fact type
specifiers/identifiers. The Rete algorithm exhibits following major characteristics:

e It reduces or eliminates certain types of redundancy through the use of node sharing.

e It stores partial matches when performing joins between different fact types. This, in turn,
allows production systems to avoid complete re-evaluation of all facts each time changes are
made to the production system's working memory. Instead, the production system needs
only to evaluate the changes (deltas) to working memory.

* It allows for efficient removal of memory elements when facts are retracted from working
memory.

The Rete algorithm is widely used to implement rnigiig functionality within pattern-
matching engines that exploit a match-resolve-gclecto supportforward chainingand

inferencing

e It provides a means for many-many matching, an important feature when many or all
possible solutions in a search network must be found.

Retes aredirected acyclic graphthat represent higher-level rule sets. They ameigdly
represented at run-time using a network of in-mgnadjects. These networks match rule
conditions (patterns) to facts (relational datddsp Rete networks act as a type of relational
query processor, performingrojections selectionsand joins conditionally on arbitrary
numbers of data tuples.

Productions (rules) are typically captured andrdsfibyanalystsanddevelopersising some
high-level rules language. They are collected mie sets which are then translated, often at
run time, into an executable Rete.

When facts are "asserted" to working memory, thgirencreatesvorking memory elements
(WMESs) for each fact. Facts are n-tuples, and rhayefore contain an arbitrary number of
data items. Each WME may hold an entire n-tuple, atternatively, each fact may be
represented by a set of WMEs where each WME caqtaifixed-length tuple. In this case,
tuples are typically triplets (3-tuples).

Each WME enters the Rete network at a single rodenThe root node passes each WME on
to its child nodes, and each WME may then be prajgagthrough the network, possibly
being stored in intermediate memories, until iives at a terminal node.

Alpha networ k

The "left" (@pha) side of the node graph forms a discriminationrwoek responsible for
selecting individual WMEs based on simple condaiotests which match WME attributes
against constant values. Nodes in the discriminatietwork may also perform tests that
compare two or more attributes of the same WME.\IWME is successfully matched against
the conditions represented by one node, it is pagsehe next node. In most engines, the
immediate child nodes of the root node are usdddtiothe entity identifier or fact type of each
WME. Hence, all the WMEs which represent the samigy type typically traverse a given
branch of nodes in the discrimination network.

Within the discrimination network, each branch giha nodes (also called 1-input nodes)
terminates at a memory, called @pha memory. These memories store collections of WMEs
that match each condition in each node in a giveterbranch. WMEs that fail to match at
least one condition in a branch are not materidlisghin the corresponding alpha memory.
Alpha node branches may fork in order to minimisedition redundancy.

A possible variation is to introduce additional nueies for each intermediate node in the
discrimination network. This increases the overhefthe Rete, but may have advantages in
situations where rules are dynamically added teeoroved from the Rete, making it easier to
vary the topology of the discrimination network dymcally.

An alternative implementation is described by Dobes!! In this case, the discrimination
network is replaced by a set of memories and aexinlhe index may be implemented using
ahash tableEach memory holds WMEs that match a single caordit pattern, and the index
is used to reference memories by their patterns @pproach is only practical when WMEs
represent fixed-length tuples, and the length cheaple is short (e.g., 3-tuples). In addition,
the approach only applies to conditional patteha performequalitytests againstonstant
values. When a WME enters the Rete, the indexasl ts locate a set of memories whose
conditional pattern matches the WME attributes, taredWME is then added directly to each
of these memories. In itself, this implementationtains no 1-input nodes. However, in order
to implement non-equality tests, the Rete may dongalditional 1-input node networks
through which WMEs are passed before being placed memory. Alternatively, non-
equality tests may be performed in the beta netwledcribed below.

Beta networ k

The "right" (peta) side of the graph chiefly performs joins betwebffierent WMEs. It is
optional, and is only included if required. It casts of 2-input nodes where each node has
a "left" and a "right" input. Each beta node seitslsutput to deta memory.

Beta nodes process tokens. A token is a unit eshgeowithin a memory and also a unit of
exchange between memories and nodes. In many ireptations, tokens are introduced
within alpha memories where they are used to hoidles WMEs. These tokens are then
passed to the beta network.

Each beta node performs its work and, as a resay, create new tokens to hold a list of
WMEs representing a partial match. These extendleeht are then stored in beta memories,
and passed to subsequent beta nodes. In thistibadmeta nodes typically pass lists of WMEs
through the beta network by copying existing WM&difrom each received token into new
tokens and then adding a further WMESs to the bsts result of performing a join or some
other action. The new tokens are then stored itityeut memory.

A common variation is to builinked listsof tokens where each token holds a single WME.
In this case, lists of WMESs for a partial match eepresented by the linked list of tokens.

This approach may be better because it elimin&es¢ed to copy lists of WMEs from one

token to another. Instead, a beta node needs ontyeite a new token to hold a WME it

wishes to join to the partial match list, and thiek the new token to a parent token stored in
the input beta memory. The new token now formshibed of the token list, and is stored in

the output beta memory.

In descriptions of Rete, it is common to referdken passing within the beta network. In this
article, however, we will describe data propagatioterms of WME lists, rather than tokens,
in recognition of different implementation optioasd the underlying purpose and use of
tokens. As any one WME list passes through the hetaork, new WMESs may be added to
it, and the list may be stored in beta memoriesVKE list in a beta memory represents
a partial match for the conditions in a given prctean.

WME lists that reach the end of a branch of betdesorepresent a complete match for
a single production, and are passed to terminaésiodThese nodes are sometimes called
p-nodes, where "p" stands fgoroduction. Each terminal node represents a single production
and each WME list that arrives at a terminal noeleresents a complete set of matching
WMEs for the conditions in that production. For le&&ME list it receives, a production node
will "activate" a new production instance on thgéada". Agendas are typically implemented

asprioritised queues

Beta nodes typically perform joins between WMEslistored in beta memories and individual
WMEs stored in alpha memories. Each beta nodesiscaged with two input memories. An
alpha memory holds WM and performs "right" actigas on the beta node each time it stores
a new WME. A beta memory holds WME lists and perer’left" activations on the beta
node each time it stores a new WME list. When @& jaide is right-activated, it compares one
or more attributes of the newly stored WME from itput alpha memory against given
attributes of specific WMEs in each WME list conidl in the input beta memory. When
a join node is left-activated it traverses a singgavly stored WME list in the beta memory,
retrieving specific attribute values of given WMHs.compares these values with attribute
values of each WME in the alpha memory.

Each beta node outputs WME lists which are eittared in a beta memory or sent directly to
a terminal node. WME lists are stored in beta méssowhenever the engine will perform
additional left activations on subsequent beta aode

Logically, a beta node at the head of a branchetd bodes is a special case because it takes
no input from any beta memory higher in the netw@iferent engines handle this issue in
different ways. Some engines use specialised adapties to connect alpha memories to the
left input of beta nodes. Other engines allow lmetdes to take input directly from two alpha
memories, treating one as a "left" input and theoas a "right” input. In both cases, "head"
beta nodes take their input from two alpha memories

In order to eliminate node redundancies, any ophaalor beta memory may be used to
perform activations on multiple beta nodes. As veall join nodes, the beta network may
contain additional node types, some of which asedieed below. If a Rete contains no beta
network, alpha nodes feed tokens, each containsigghe WME, directly to p-nodes. In this
case, there may be no need to store WMESs in algmaanes.

Conflict resolution

During any one match-resolve-act cycle, the engitifind all possible matches for the facts
currently asserted to working memory. Once all ¢herent matches have been found, and
corresponding production instances have been &etivan the agenda, the engine determines
an order in which the production instances mayfived". This is termedaonflict resolution,

and the list of activated production instancesersned theconflict set. The order may be
based on rule prioritys@lience), rule order, the time at which facts containe@ach instance
were asserted to the working memory, the compleaftgach production, or some other
criteria. Many engines allow rule developers teesebetween different conflict resolution
strategies or to chain a selection of multipletstyees.

Conflict resolution is not defined as part of thet& algorithm, but is used alongside the
algorithm. Some specialised production systemsad@erform conflict resolution.

Production execution

Having performed conflict resolution, the enginewvndires” the first production instance,
executing a list of actions associated with thedpobion. The actions act on the data
represented by the production instance's WME list.

By default, the engine will continue to fire eachoguction instance in order until all
production instances have been fired. Each proalugtistance will fire only once, at most,
during any one match-resolve-act cycle. This charatic is termedefraction. However, the
sequence of production instance firings may berrapéed at any stage by performing
changes to the working memory. Rule actions cartadoninstructions to assert or retract
WMEs from the working memory of the engine. Eaghetiany single production instance
performs one or more such changes, the engine imtegdenters a new match-resolve-act
cycle. This includes "updates" to WMEs currentlytine working memory. Updates are
represented by retracting and then re-assertingVili&=. The engine undertakes matching of
the changed data which, in turn, may result in gearto the list of production instances on
the agenda. Hence, after the actions for any omeifsp production instance have been
executed, previously activated instances may haen lde-activated and removed from the
agenda, and new instances may have been activated.

As part of the new match-resolve-act cycle, theirmgerforms conflict resolution on the

agenda and then executes the current first instarite engine continues to fire production
instances, and to enter new match-resolve-act €ydetil no further production instances
exist on the agenda. At this point the rule enggndeemed to have completed its work, and
halts.

Some engines support advanced refraction stratégi@sich certain production instances
executed in a previous cycle are not re-executedamew cycle, even though they may still
exist on the agenda.

It is possible for the engine to enter into nevedieg loops in which the agenda never
reaches the empty state. For this reason, mostengupport explicit "halt" verbs that can be
invoked from production action lists. They may als@vide automatidoop detectionin
which never-ending loops are automatically haltédraa given number of iterations. Some
engines support a model in which, instead of hgltrhen the agenda is empty, the engine
enters a wait state until new facts are asserteredly.

As for conflict resolution, the firing of activatgatoduction instances is not a feature of the
Rete algorithm. However, it is a central featureengines that use Rete networks. Some of
the optimisations offered by Rete networks are amdgful in scenarios where the engine
performs multiple match-resolve-act cycles.

Existential and universal quantifications

Conditional tests are most commonly used to perfeatections and joins on individual
tuples. However, by implementing additional betdentypes, it is possible for Rete networks
to performguantifications Existential quantificationnvolves testing for the existence of at
least one set of matching WMEs in working memdgyniversal quantificationinvolves
testing that an entire set of WMESs in working meynoieets a given condition. A variation of
universal quantification might test that a givemer of WMES, drawn from a set of WMEs,
meets given criteria. This might be in terms oftiteps for either an exact number or
a minimum number of matches.

Quantification is not universally implemented int®engines, and, where it is supported,
several variations exist. A variant of existenttplantification referred to asegation is
widely, though not universally, supported, and issatibed in seminal documents.
Existentially negated conditions and conjunctiomgolve the use of specialised beta nodes
that test for non-existence of matching WMEs ors sgit WMEsS. These nodes propagate
WME lists only when no match is found. The exagbliementation of negation varies. In one
approach, the node maintains a simple count on BAdE list it receives from its left input.
The count specifies the number of matches fountd WIMES received from the right input.
The node only propagates WME lists whose countei®.zIln another approach, the node
maintains an additional memory on each WME listereed from the left input. These
memories are a form of beta memory, and store WM for each match with WMEs
received on the right input. If a WME list does matve any WME lists in its memory, it is
propagated down the network. In this approach, trmgaodes generally activate further beta
nodes directly, rather than storing their outpuaimadditional beta memory. Negation nodes
provide a form ofrlegation as failute

When changes are made to working memory, a WMEHgdt previously matched no WMEs
may now match newly asserted WMESs. In this case,pttopagated WME list and all its
extended copies need to be retracted from beta mesnfurther down the network. The
second approach described above is often usegpmdiefficient mechanisms for removal of
WME lists. When WME lists are removed, any corregpog production instances are de-
activated and removed from the agenda.

Existential quantification can be performed by cammy two negation beta nodes. This
represents the semantics @duble negation(e.g., "If NOT NOT any matching WMEs,
then..."). This is a common approach taken by sfyeoduction systems.

Memory indexing

The Rete algorithm does not mandate any specificoaggh to indexing the working memory.
However, most modern production systems providexmdy mechanisms. In some cases,
only beta memories are indexed, whilst in othamdexing is used for both alpha and beta
memories. A good indexing strategy is a major faoiadeciding the overall performance of
a production system, especially when executing sels that result in highly combinatorial
pattern matching (i.e., intensive use of beta jmdes), or, for some engines, when executing

rules sets that perform a significant number of WkéEactions during multiple mat-
resolve-at cycles. Memories are often implemented usingldoations of hash tables, a
hash values are used to perform conditional jomsubsets of WME lists and WMEs, ratl
than on the entire contents of memories. Thisyin,toften significantly reducethe number
of evaluations performed by the Rete netw

Removal of WM Esand WME lists

When a WME is retracted from working memory, it mbge removed from every alpl
memory in which it is stored. In addition, WME &ghat contain the WME must be remd
from beta memories, and activated production irtgarfor these WME lists must be-
activated and removed from the agenda. Severalemmgtation variations exist, includi
tree-based and rematblased removal. Memory indexing may be used in soass to
optimise removal.

Handling ORed conditions

When defining productions in a rule set, it is coomto allow conditions to be grouped us
an OR connective In many poduction systems, this is handled by interpretingiragle
production containing multiple ORed patterns asdteivalent of multiple productions. Tl
resulting Rete network contains sets of terminaflesowhich, together, represent sin
productions. Ths approach disallows any form of sl-circuiting of the ORed conditions.
can also, in some cases, lead to duplicate pramuatistances being activated on the age
where the same set of WMEs match multiple intepralductions. Some engines prov
agenda deluplication in order to handle this iss

Diagram

The following diagram illustrates the basic Retpdgraphy, and shows the associati
between different node types and memca

-8 @& @
0 ® oW .
" - o A
e g L4
S pue A

Illustrates the basic Rete.

¢ Most implementations use type nodes to perform the first level of selection on n-tuple
working memory elements. Type nodes can be considered as specialized select nodes. They
discriminate between different tuple relation types.

e« The diagram does not illustrate the use of specialized nodes types such as negated
conjunction nodes. Some engines implement several different node specialisations in order
to extend functionality and maximise optimisation.

e The diagram provides a logical view of the Rete. Implementations may differ in physical
detail. In particular, the diagram shows dummy inputs providing right activations at the head
of beta node branches. Engines may implement other approaches, such as adapters that
allow alpha memories to perform right activations directly.

e The diagram does not illustrate all node-sharing possibilities.

For a more detailed and complete description of Rete algorithm, see chapter 2 of
Production Matching for Large Learning Systems lop&t Doorenbos (see link below).

Miscellaneous considerations

Although not defined by the Rete algorithm, somgimes provide extended functionality to
support greater control @afuth maintenanceFor example, when a match is found for one
production, this may result in the assertion of M¥MESs which, in turn, match the conditions
for another production. If a subsequent changedkivg memory causes the first match to
become invalid, it may be that this implies that #econd match is also invalid. The Rete
algorithm does not define any mechanism to defimel &andle thesdogical truth
dependencies automatically. Some engines, howegport additional functionality in
which truth dependencies can be automatically ragiatl. In this case, the retraction of one
WME may lead to the automatic retraction of addiilbWMESs in order to maintain logical
truth assertions.

The Rete algorithm does not define any approaclustfication. Justification refers to
mechanisms commonly requirederpertand decision systems in which, at its simples, th
system reports each of the inner decisions useeaith some final conclusion. For example,
an expert system might justify a conclusion thaaaimal is an elephant by reporting that it is
large, grey, has big ears, a trunk and tusks. Senggnes provide built-in justification
systems in conjunction with their implementatiortlod Rete algorithm.

This article does not provide an exhaustive deBoripof every possible variation or
extension of the Rete algorithm. Other considenatiand innovations exist. For example,
engines may provide specialised support withinRle¢e network in order to apply pattern-
matching rule processing to specifiata typesand sources such @gsogrammatic objects
XML data orrelational data tablesAnother example concerns additional time-stamping
facilities provided by many engines for each WMEeeing a Rete network, and the use of
these time-stamps in conjunction with conflict deson strategies. Engines exhibit
significant variation in the way they allow prognanatic access to the engine and its working
memory, and may extend the basic Rete model toostfgrms of parallel and distributed
processing.

Optimization and performance

Several optimizations for Rete have been identifsedl described in academic literature.
Several of these, however, apply only in very dpescenarios, and therefore often have little
or no application in a general-purpose rules endgmaddition, alternative algorithms such as
TREAT and LEAPS have been formulated which may pl®vadditional performance
improvements. There are currently very few comnaérar open source examples of
productions systems that support these alternatga@ithms.

The Rete algorithm is suited to scenarios whenedod chaining and "inferencing” is used to
calculate new facts from existing facts, or toefiland discard facts in order to arrive at some
conclusion. It is also exploited as a reasonablicieht mechanism for performing highly
combinatorial evaluations of facts where large nemalof joins must be performed between
fact tuples. Other approaches to performing rukdwation, such as the used#cision trees

or the implementation of sequential engines, maynbee appropriate for simple scenarios,
and should be considered as possible alternatives.

Performance of Rete is also largely a matter oflementation choices (independent of the
network topology), one of which (the use of hadilés) leads to major improvements. Most
of the performance benchmarks and comparisonsadaibn the web are biased in some way
or another. To mention only a frequent bias andiraair type of comparison: 1) the use of
toy problems such as the Manners and Waltz examgles examples are useful to estimate
specific properties of the implementation, but thegy not reflect real performance on
complex applications; 2) the use of an old impletagon; for instance, the references in the
following two sections (Rete Il and Rete-NT) congpaome commercial products to totally
outdated versions of CLIPS and they claim thatabemercial products may be orders of
magnitude faster than CLIPS; this is forgetting @aIPS 6.30 (with the introduction of hash
tables as in Rete IlI) is orders of magnitude fagtan the version used for the comparisons
(CLIPS 6.04).

Rete Il

In the 1980s, DEharles Forgyleveloped a successor to the Rete algorithm néteesl | 2!
Unlike the original Rete (which is public domaimjs algorithm was not disclosed. Rete Il
claims better performance for more complex probl¢éeven orders of magnitufé]e, and is
officially implemented in CLIPS/R2.

Rete Il can be characterized by two areas of imgam@nt; specific optimizations relating to
the general performance of the Rete network (inolythe use of hashed memories in order
to increase performance with larger sets of damagl, the inclusion of &ackward chaining
algorithm tailored to run on top of the Rete netkvddackward chaining alone can account
for the most extreme changes in benchmarks reladiftete vs. Rete Il.

Jess (at least versions 5.0 and later) also aduxlavard chaining algorithm on top of the
Rete network, but it cannot be said to fully imp&rRete I, in part due to the fact that no
full specification is publicly available.

Rete-III

In the early 2000s, the Rete Ill engine was dewedopy Dr.Charles ForgyPh.D. Rete Il
touted a 300% performance boost over other prodachksding earlier versions of Rete. The
Rete Il algorithm is implemented as part of the& Advisor Rule Server, a commercial
product from FICO (formerly Fair Isaac Corporatith)

Rete-NT

In 2010, DrCharles Forgyleveloped a new generation of the Rete algorithran Infoworld
benchmark, the algorithm was deemed 500 timesrfé#sa@ the original Rete algorithm and
10 times faster than its predecessor, Ret& This algorithm is now licensed to Sparkling
Logic, the company that Charles joined as investar strategic advisé#*% as the inference
engine of the SMARTS product.

See also

Action selection mechanism
Expert system

Inference engine

OPS5

Production system

References

1. "Rete Algorithm Demystified! — Part 1 Answer!" by Carole-Ann Matignon

2. The Execution Kernel of RC++: RETE* A Faster Rete with TREAT as a Special Case,
http://www.cs.bris.ac.uk/Publications/Papers/2000091.pdf, by lan Wright, James Marshall.
Retrieved 2013-09-13.

3. Collection Oriented Match, http://teamcore.usc.edu/papers/1993/cikm-final.pdf, by Anurag
Acharya and Milind Tambe, Carnegie Mellon University. Retrieved 2013-09-13.

4. Production Matching for Large Learning Systems from SCS Technical Report Collection,
School of Computer Science, Carnegie Mellon University

5. RETE2 from Production Systems Technologies

6. Benchmarking CLIPS/R2 from Production Systems Technologies

7. http://dmblog.fico.com/2005/09/what is rete ii.html

8. Owen, James (2010-09-20). "World's fastest rules engine | Business rule management
systems". InfowWorld. Retrieved 2012-04-07.

9. "It's Official, Dr. Charles Forgy Joins Sparkling Logic as Strategic Advisor". PR.com. 2011-10-

31. Retrieved 2012-04-07.

10. "Dr. Charles Forgy, PhD". My.sparklinglogic.com. Retrieved 2012-04-07.

=

This article includes a list of references, but its sources remain unclear because it has

insufficient inline citations. Please help to improve this article by introducing more precise
citations. (August 2011)

Charles Forgy, "A network match routine for production systems." Working Paper, 1974.
Charles Forgy, ""On _the efficient implementation of production systems." Ph.D. Thesis,
Carnegie-Mellon University, 1979.

Charles, Forgy (1982). "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem". Artificial Intelligence 19: 17-37. doi:10.1016/0004-3702(82)90020-0.

External links

Rete Algorithm explained Bruce Schneier, Dr. Dobb's Journal

Production Matching for Large Learning Systems — R Doorenbos Detailed and accessible
description of Rete, also describes a variant named Rete/UL, optimised for large systems
(PDF)

According to the Rules (A short introduction from cut-the-knot)

Trpe "lodes Sl L Hudes
oo

Hodz g

Rete
/

Alzla
[TR
alpha T
Mermary Lo
- e
racs = (@) —@— (= ~X0
! l‘\ -H"'\ Apha L
'T . . ‘H\H [GERRINIET St
| T = o
— Eets
I|I Cuninngy .
ll'. hiapa e -
I'I Alhe
\ Memary f L Beta
\. (/ r Drmy “ Mernory
\ T put -
\ -
‘.\ Alpha Hetwork - \'\\
A e - \\\
A " Beta Hetwaork . Join Mades
N ™
A .,
\\)
\\
N,
Asserbons & \\
Hetractions

J (’? P i
errinal F Fule ©

ofes \i’y% @f/
\\\ E-H"'-‘

)
&

Agenda

Corflict
ResolLrion

