Propositional Logic

So far we have considered propositional logic as a knowledge representation language.

We can write sentences in this language (syntax) with some logical structure.

We can define the interpretations of these sentences using truth tables (semantics).

What remains is reasoning; to draw new conclusions from what we know (proof system) and to do so using a computer to automate the process.

References:
- Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley, 2001. (Chapter 15)
Mechanising Proof

Question: Assuming knowledge can be captured using propositional logic, how do we automate reasoning (i.e. perform inference)?

- One answer: a proof of a formula from a set of premises is a sequence of steps in which any step of the proof is:
 1. An axiom or premise
 2. A formula deduced from previous steps of the proof using some rule of inference

The last step of the proof should deduce the formula we wish to prove

- We use the notation \(S \vdash P \) to denote that the set of formulae \(S \) “prove” the formula \(P \). Alternatively, we say that \(P \) follows from (premises) \(S \)

Soundness and Completeness

- A logic is sound if it preserves truth (i.e. if a set of premises are all true, any conclusion drawn from those premises must also be true)
- Technically, a proof system \(\vdash \) is sound if whenever \(S \vdash P \) (\(P \) follows from \(S \) using the proof system), \(S \vdash P \) (\(P \) is entailed by \(S \), e.g. using truth tables)
- A logic is complete if it is capable of proving all consequences of any knowledge base
- Technically, a proof system \(\models \) is complete if whenever \(S \models P \) (\(P \) is entailed by \(S \), e.g. using truth tables), \(S \models P \) (\(P \) follows from \(S \) using the proof system)
- A logic is decidable if there is a mechanical procedure (computer program) which when asked whether \(S \vdash P \), can always answer ‘yes’ or ‘no’ (correctly)

Resolution

- Another type of proof system based on refutation
- Better suited to computer implementation than systems of axioms and rules (can give correct ‘no’ answers)
- Generalizes to first-order logic (see next week)
- The basis of Prolog’s inference method
- To apply resolution, all formulae in the knowledge base and the query must be in clausal form (c.f. Prolog clauses)

Normal Forms

- A literal is a propositional letter or the negation of a propositional letter
- A clause is a disjunction of literals
- Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g. \((P \lor Q \lor \neg R) \land (\neg S \lor \neg R) \)
- Disjunctive Normal Form (DNF) — a disjunction of conjunctions of literals, e.g. \((P \land Q \land \neg R) \lor (\neg S \land \neg R) \)
- Every propositional logic formula can be converted to CNF and DNF
Conversion to Conjunctive Normal Form

- Eliminate ↔ rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \lor Q$
- Use De Morgan’s laws to push \neg inwards:
 - rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
 - rewrite $\neg (P \lor Q)$ as $\neg P \land \neg Q$
- Eliminate double negations: rewrite $\neg \neg P$ as P
- Use the distributive laws to get CNF:
 - rewrite $(P \land Q) \lor R$ as $(P \lor R) \land (Q \lor R)$
 - rewrite $(P \lor Q) \land R$ as $(P \land R) \lor (Q \land R)$

Example

- $\neg (P \rightarrow (Q \land R))$
- $\neg (\neg P \lor (Q \land R))$
- $\neg P \land \neg (Q \land R)$
- $\neg P \land (\neg Q \lor \neg R)$
- $P \land (\neg Q \lor \neg R)$
- Two clauses: P, $\neg Q \lor \neg R$

Resolution Rule of Inference

Resolution Rule

- $A \lor B$
- $\neg B \lor C$

- $A \land C$ is the resolvent of the two clauses

Resolution Rule: Key Idea

- Consider $A \lor B$ and $\neg B \lor C$
 - if B is True, $\neg B$ is False and truth of second formula depends only on C
 - if B is False, truth of first formula depends only on A
- Only one of B, $\neg B$ is True, so if both $A \lor B$ and $\neg B \lor C$ are True, either A or C is True, i.e. $A \lor C$ is True
Applying Resolution

- The resolution rule is sound (resolvent entailed by two ‘parent’ clauses)
- How can we use the resolution rule? One way:
 - Convert knowledge base into clausal form
 - Repeatedly apply resolution rule to the resulting clauses
 - A query A follows from the knowledge base if and only if each of the clauses in the CNF of A can be derived using resolution
- There is a better way . . .

Applying Resolution Refutation

- Negate query to be proven (resolution is a refutation system)
- Convert knowledge base and negated conclusion into CNF and extract clauses
- Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- If the empty clause is derived, answer ‘yes’ (query follows from knowledge base), otherwise answer ‘no’ (query does not follow from knowledge base)

Refutation Systems

- To show that P follows from S (i.e. $S \models P$) using refutation, start with S and $\neg P$ in clausal form and derive a contradiction using resolution
- A contradiction is the “empty clause” (a clause with no literals)
- The empty clause \Box is unsatisfiable (always False)
- So if the empty clause \Box is derived using resolution, the original set of clauses is unsatisfiable (never all True together)
- That is, if we can derive \Box from the clausal forms of S and $\neg P$, these clauses can never be all True together
- Hence whenever the clauses of S are all True, at least one clause from $\neg P$ must be False, i.e. $\neg P$ must be False and P must be True
- By definition, $S \models P$ (so P can correctly be concluded from S)

Resolution: Example 1

$(G \lor H) \rightarrow (\neg J \land \neg K), \ G \models \neg J$

Clausal form of $(G \lor H) \rightarrow (\neg J \land \neg K)$ is $\{ \neg G \lor \neg J, \neg H \lor \neg J, \neg G \lor \neg K, \neg H \lor \neg K \}$
1. $\neg G \lor \neg J$ [Premise]
2. $\neg H \lor \neg J$ [Premise]
3. $\neg G \lor \neg K$ [Premise]
4. $\neg H \lor \neg K$ [Premise]
5. G [Premise]
6. J [\neg Conclusion]
7. $\neg G$ [1, 6. Resolution]
8. \Box [5, 7. Resolution]
Resolution: Example 2

\[P \rightarrow \neg Q, \neg Q \rightarrow R \vdash P \rightarrow R \]

Recall \(P \rightarrow R \equiv \neg P \lor R \)

Clausal form of \(\neg (\neg P \lor R) \) is \(\{ P, \neg R \} \)

1. \(\neg P \lor \neg Q \) [Premise]
2. \(Q \lor R \) [Premise]
3. \(P \) [\(\Box \) Conclusion]
4. \(\neg R \) [\(\neg \) Conclusion]
5. \(\neg Q \) [1, 3. Resolution]
6. \(R \) [2, 5. Resolution]
7. \(\Box \) [4, 6. Resolution]

Resolution: Example 3

\[\vdash ((P \lor Q) \land \neg P) \rightarrow Q \]

Clausal form of \(\neg((P \lor Q) \land \neg P) \rightarrow Q \) is \(\{ P \lor Q, \neg P, \neg Q \} \)

1. \(P \lor Q \) [\(\neg \) Conclusion]
2. \(\neg P \) [\(\neg \) Conclusion]
3. \(\neg Q \) [\(\neg \) Conclusion]
4. \(Q \) [1, 2. Resolution]
5. \(\Box \) [3, 4. Resolution]

Soundness and Completeness Again

- Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true, any conclusion drawn from those premises must also be true)
- Resolution refutation is complete, i.e. it is capable of proving all consequences of any knowledge base (not shown here!)
- Resolution refutation is decidable, i.e. there is an algorithm implementing resolution which when asked whether \(S \vdash P \), can always answer ‘yes’ or ‘no’ (correctly)

Heuristics in Applying Resolution

- Clause elimination — can disregard certain types of clauses
 - Pure clauses: contain literal \(L \) where \(\neg L \) doesn’t appear elsewhere
 - Tautologies: clauses containing both \(L \) and \(\neg L \)
 - Subsumed clauses: another clause exists containing a subset of the literals
- Ordering strategies
 - Resolve unit clauses (only one literal) first
 - Start with query clauses
 - Aim to shorten clauses
Conclusion

- We have now investigated one knowledge representation and reasoning formalism
- This means we can draw new conclusions from the knowledge we have: we can reason
- Have enough to build a knowledge-based agent
- However, propositional logic is a weak language; there are many things that cannot be expressed
- To express knowledge about objects, their properties and the relationships that exist between objects, we need a more expressive language: first-order logic