
Predicate Logic

• Terms represent specific objects in the
world and can be constants, variables or
functions.

• Predicate Symbols refer to a particular
relation among objects.

• Sentences represent facts, and are made of
of terms, quantifiers and predicate symbols.



Predicate Logic

• Functions allow us to refer to objects
indirectly (via some relationship).

• Quantifiers and variables allow us to refer
to a collection of objects without explicitly
naming each object.



Some Examples

• Predicates: Brother, Sister, Mother , Father
• Objects: Bill, Hillary, Chelsea, Roger
• Facts expressed as atomic sentences a.k.a.

literals:
Father(Bill,Chelsea)

Mother(Hillary,Chelsea)
Brother(Bill,Roger)

¬  Father(Bill,Chelsea)



Variables and Universal
Quantification

• Universal Quantification allows us to make
a statement about a collection of objects:

∀ x Cat(x) ⇒  Mammel(x)
All cats are mammels

∀  x Father(Bill,x) ⇒  Mother(Hillary,x)
All of Bill’s kids are also Hillary’s kids.

“For All”



Variables and Existential
Quantification

• Existential Quantification allows us to state
that an object does exist (without naming it):

∃x Cat(x) ∧  Mean(x)
There is a mean cat.

∃ x Father(Bill,x) ∧  Mother(Hillary,x)
There is a kid whose father is Bill and whose

mother is Hillary

“There

exists”



Nested Quantification

∀  x,y Parent(x,y) ⇒  Child(y,x)

∀  x ∃ y Loves(x,y)

∀  x [Passtest(x) ∨ (∃ x ShootDave(x))]



Functions

• Functions are terms - they refer to a specific
object.

• We can use functions to symbolically refer
to objects without naming them.

• Examples:
fatherof(x)     age(x)     times(x,y)   succ(x)



Using functions

∀  x Equal(x,x)

Equal(factorial(0),1)

∀  x Equal(factorial(s(x)),
                             times(s(x),factorial(x)))



Representing facts with Predicate Logic - Example

• Marcus was a man

• Marcus was a Pompeian

• All Pompeians were Romans

• Caesar was a ruler.

• All Romans were either loyal to Caesar or hated him.

• Everyone is loyal to someone.

• Men only try to assassinate  rulers they are not loyal to.

• Marcus tried to assassinate Caesar



Predicate Logic Knowledgebase

Man(Marcus)
Pompeian(Marcus)

∀  x Pompeian(x) ⇒  Roman(x)
Ruler(Caesar)

∀  x Romans(x) ⇒  Loyalto(x,Caesar) ∨ Hate(x,Caesar)

∀  x ∃ y Loyalto(x,y)
∀  x ∀  y Man(x) ∧  Ruler(y) ∧  Tryassassinate(x,y) ⇒      
                ¬ Loyalto(x,y)
Tryassassinate(Marcus,Caesar)



Questions (Goals)

Was Marcus a Roman?

Was Marcus loyal to Caesar?

Who was Marcus loyal to?

Was Marcus a ruler?

Will the test be easy?



Isa and Instance relationships

• The example uses inheritance without
explicitly having isa or instance predicates.

• We could rewrite the facts using isa and
instance explicitly:

instance(Marcus,man)
instance(Marcus,Pompeian)

isa(Pompeian,Roman)



Quiz

Using the predicates:
Father(x,y)  Mother(x,y)  Brother(x,y)  Sister(x,y)

Construct predicate logic facts that establish
the following relationships:
– GrandParent
– GrandFather
– GrandMother
– Uncle
– Cousin



Proof procedure for Predicate
Logic

• Same idea, but a few added complexities:
– conversion to CNF is much more complex.
– Matching of literals requires providing a matching

of variables, constants and/or  functions.

¬  Skates(x) ∨ LikesHockey(x)
¬  LikesHockey(y)

We can resolve these only if we assume x and y refer
to the same object.



Predicate Logic and CNF
• Converting to CNF is harder - we need to worry

about variables and quantifiers.
1. Eliminate all implications ⇒
2. Reduce the scope of all ¬  to single term. *
3. Make all variable names unique
4. Move Quantifiers Left *
5. Eliminate Existential Quantifiers *
6. Eliminate Universal Quantifiers *
7. Convert to conjunction of disjuncts
8. Create separate clause for each conjunct.



Eliminate Existential Quantifiers

• Any variable that is existentially quantified
means we are saying there is some value for
that variable that makes the expression true.

• To eliminate the quantifier, we can replace
the variable with a function.

• We don’t know what the function is, we just
know it exists.



Skolem functions

∃ y President(y)
We replace y with a new function func:
President(func())
func is called a skolem function.

In general the function must have the same number
of arguments as the number of universal
quantifiers in the current scope.



Skolemization Example

∀ x ∃y Father(y,x)

create a new function named foo and replace y with
the function.

∀  x Father(foo(x),x)



Predicate Logic Resolution

• We have to worry about the arguments to
predicates, so it is harder to know when 2
literals match and can be used by resolution.

• For example, does the literal
Father(Bill,Chelsea) match Father(x,y) ?

• The answer depends on how we substitute
values for variables.



Unification

• The process of finding a substitution for
predicate parameters is called unification.

• We need to know:
– that 2 literals can be matched.
– the substitution is that makes the literals identical.

• There is a simple algorithm called the
unification algorithm that does this.



The Unification Algorithm

1. Initial predicate symbols must match.
2. For each pair of predicate arguments:

– different constants cannot match.
– a variable may be replaced by a constant.
– a variable may be replaced by another variable.
– a variable may be replaced by a function as long as the

function does not contain an instance of the variable.



Unification Algorithm

• When attempting to match 2 literals, all
substitutions must be made to the entire
literal.

• There may be many substitutions that unify
2 literals, the most general unifier is always
desired.



Unification Example

• P(x) and P(y):    substitution = (x/y)

• P(x,x) and P(y,z):      (z/y)(y/x)

• P(x,f(y)) and P(Joe,z):   (Joe/x, f(y)/z)

• P(f(x)) and P(x):           can’t do it!

• P(x) ∨ Q(Jane) and P(Bill) ∨ Q(y):

(Bill/x, Jane/y)

“substit
ute x

 for y”

y fo
r x, 

then z fo
r y



Unification & Resolution
Examples

Father(Bill,Chelsea)   ¬  Father(Bill,x)∨Mother(Hillary,x)

Man(Marcus)              ¬  Man(x) ∨ Mortal(x)

Loves(father(a),a)       ¬  Loves(x,y) ∨ Loves(y,x)

This is a function



Predicate Logic Resolution
Algorithm

• While no empty clause exists and there are
clauses that can be resolved:
– select 2 clauses that can be resolved.

– resolve the clauses (after unification), apply the
unification substitution to the result and store in
the knowledge base.



Example:

¬  Smart(x) ∨ ¬  LikesHockey(x) ∨ RPI(x)
¬  Canadian(y) ∨ LikesHockey(y)
 ¬  Skates(z) ∨ LikesHockey(z)
Smart(Joe)
Skates(Joe)

Goal is to find out if RPI(Joe) is true.



• Man(Marcus)

• Pompeian(Marcus)

• ¬  Pompeian(x1) ∨ Roman(x1)

• Ruler(Caesar)

• ¬  Romans(x2) ∨ Loyalto(x2,Caesar) ∨ Hate(x2,Caesar)

• Loyalto(x3 , f(x3))

• ¬  Man(x4) ∨ ¬  Ruler(y1) ∨ ¬  Tryassassinate(x4,y1) ∨
Loyalto(x4,y1)

• PROVE: Tryassassinate(Marcus,Caesar)



Answering Questions

• We can also use the proof procedure to
answer questions such as “who tried to
assassinate Caesar” by proving:
– Tryassassinate(y,Caesar).

– Once the proof is complete we need to find out
what was substitution was made for y.



Computation

Equal(y,y)
Equal(factorial(s(x)),times(s(x),factorial(x)))
… assume s(_) and times(_,_) can compute.

We can ask for 10!:
Equal(factorial(10),z)

s(x) is t
he integer

 successor function



Test Type Question

• The members of a bridge club are Joe, Sally, Bill and Ellen.
• Joe is married to Sally.
• Bill is Ellen’s Brother.
• The spouse of every married person in the club is also in the

club.
• The last meeting of the club was at Joe’s house
• Was the last meeting at Sally’s house?
• Is Ellen married?



Logic Programming - Prolog

• Prolog is a declarative programming
language based on logic.

• A Prolog program is a list of facts.
• There are various predicates and functions

supplied to support I/O, graphics, etc.
• Instead of CNF, prolog uses an implicative

normal form: A ∧  B ∧  ... ∧  C ⇒ D



Prolog Example - Towers of Hanoi
hanoi(N) :- move(N,left,middle,right).

move(1,A,_,C) :- inform(A,C),!.

move(N,A,B,C) :-
N1=N-1, move(N1,A,C,B),

  inform(A,C), move(N1,B,A,C).

inform(Loc1,Loc2) :-
   write(“Move disk from”,Loc1,” to”, Loc2).

hanoi(3)


