

Classical first-order predicate logic

This is a powerful extension of propositional logic. It is the most
important logic of all.

In the remaining lectures, we will:

• explain predicate logic syntax and semantics carefully

• do English–predicate logic translation, and see examples from
computing

• generalise arguments and validity from propositional logic to
predicate logic

• consider ways of establishing validity in predicate logic:
– truth tables — they don’t work
– direct argument — very useful
– equivalences — also useful
– natural deduction (sorry).

104

Why?

Propositional logic is quite nice, but not very expressive.
Statements like

• the list is ordered

• every worker has a boss

• there is someone worse off than you

need something more than propositional logic to express.

Propositional logic can’t express arguments like this one of De
Morgan:

• A horse is an animal.

• Therefore, the head of a horse is the head of an animal.

105

6. Syntax of predicate logic

6.1 New atomic formulas

Up to now, we have regarded phrases such as the computer is a Sun
and Frank bought grapes as atomic, without internal structure.

Now we look inside them.

We regard being a Sun as a property or attribute that a computer
(and other things) may or may not have. So we introduce:

• A relation symbol (or predicate symbol) Sun.
It takes 1 argument — we say it is unary or its ‘arity’ is 1.

• We can also introduce a relation symbol bought.
It takes 2 arguments — we say it is binary, or its arity is 2.

• Constants, to name objects.
Eg, Heron, Frank, Room-308, grapes.

Then Sun(Heron) and bought(Frank,grapes) are two new atomic
formulas.

106

6.2 Quantifiers

So what? You may think that writing

bought(Frank,grapes)

is not much more exciting that what we did in propositional logic —
writing

Frank bought grapes.

But predicate logic has machinery to vary the arguments to bought.

This allows us to express properties of the relation ‘bought’.

The machinery is called quantifiers.

107

What are quantifiers?

A quantifier specifies a quantity (of things that have some property).

Examples
• All students work hard.

• Some students are asleep.

• Most lecturers are lazy.

• Eight out of ten cats prefer it.

• Noone is stupider than me.

• At least six students are awake.

• There are infinitely many prime numbers.

• There are more PCs than there are Macs.

108

Quantifiers in predicate logic

There are just two:

• ∀ (or (A)): ‘for all’

• ∃ (or (E)): ‘there exists’ (or ‘some’)

Some other quantifiers can be expressed with these. (They can also
express each other.) But quantifiers like infinitely many and more
than cannot be expressed in first-order logic in general. (They can in,
e.g., second-order logic.)

How do they work?
We’ve seen expressions like Heron, Frank, etc. These are constants,
like π, or e.

To express ‘All computers are Suns’ we need variables that can
range over all computers, not just Heron, Texel, etc.

109

6.3 Variables

We will use variables to do quantification. We fix an infinite collection
(set) V of variables: eg, x, y, z, u, v, w, x0, x1, x2, . . .

Sometimes I write x or y to mean ‘any variable’.

As well as formulas like Sun(Heron), we’ll write ones like Sun(x).
• Now, to say ‘Everything is a Sun’, we’ll write ∀x Sun(x).

This is read as: ‘For all x, x is a Sun’.
• ‘Something is a Sun’, can be written ∃x Sun(x).

‘There exists x such that x is a Sun.’
• ‘Frank bought a Sun’, can be written

∃x(Sun(x) ∧ bought(Frank, x)).

‘There is an x such that x is a Sun and Frank bought x.’
Or: ‘For some x, x is a Sun and Frank bought x.’

See how the new internal structure of atoms is used.

We will now make all of this precise.

110

6.4 Signatures

Definition 6.1 (signature) A signature is a collection (set) of
constants, and relation symbols with specified arities.

Some call it a similarity type, or vocabulary, or (loosely) language.

It replaces the collection of atoms we had in propositional logic.

We usually write L to denote a signature. We often write c, d, . . . for
constants, and P, Q, R, S, . . . for relation symbols.

111

A simple signature

Which symbols we put in L depends on what we want to say.

For illustration, we’ll use a handy signature L consisting of:
• constants Frank, Susan, Tony, Heron, Texel, Clyde, Room-308,

and c

• unary relation symbols Sun, human, lecturer (arity 1)
• a binary relation symbol bought (arity 2).

Warning: things in L are just symbols — syntax. They don’t come
with any meaning. To give them meaning, we’ll need to work out
(later) what a situation in predicate logic should be.

112

6.5 Terms

Definition 6.2 (term) Fix a signature L.
1. Any constant in L is an L-term.
2. Any variable is an L-term.
3. Nothing else is an L-term.

A closed term or (as computer people say) ground term is one that
doesn’t involve a variable.

Examples of terms
Frank, Heron (ground terms)
x, y, x56 (not ground terms)

Terms are for naming objects.
Terms are not true or false.

Later (§9), we’ll throw in function symbols.

113

6.6 Formulas of first-order logic

Definition 6.3 (formula) Fix L as before.

1. If R is an n-ary relation symbol in L, and t1, . . . , tn are L-terms,
then R(t1, . . . , tn) is an atomic L-formula.

2. If t, t′ are L-terms then t = t′ is an atomic L-formula.
(Equality — very useful!)

3. ⊤,⊥ are atomic L-formulas.

4. If A, B are L-formulas then so are (¬A), (A ∧ B) (A ∨ B),
(A → B), and (A ↔ B).

5. If A is an L-formula and x a variable, then (∀x A) and (∃x A) are
L-formulas.

6. Nothing else is an L-formula.

Binding conventions: as for propositional logic, plus: ∀x,∃x have
same strength as ¬.

114

Examples of formulas

Below, we write them as the cognoscenti do. Use binding
conventions to disambiguate.

• bought(Frank, x)

We read this as: ‘Frank bought x.’

• ∃x bought(Frank, x)

‘Frank bought something.’

• ∀x(lecturer(x) → human(x))

‘Every lecturer is human.’ [Important eg!]

• ∀x(bought(Tony, x) → Sun(x))

‘Everything Tony bought is a Sun.’

115

More examples

• ∀x(bought(Tony, x) → bought(Susan, x))

‘Susan bought everything that Tony bought.’

• ∀x bought(Tony, x) → ∀x bought(Susan, x)

‘If Tony bought everything, so did Susan.’ Note the difference!

• ∀x∃y bought(x, y)

‘Everything bought something.’

• ∃x∀y bought(x, y)

‘Something bought everything.’

You can see that predicate logic is rather powerful — and terse.

116

7. Semantics of predicate logic

7.1 Structures (situations in predicate logic)

Definition 7.1 (structure) Let L be a signature. An L-structure (or
sometimes (loosely) a model) M is a thing that
• identifies a non-empty collection (set) of objects (the domain or

universe of M , written dom(M)),
• specifies what the symbols of L mean in terms of these objects.

The interpretation in M of a constant is an object in dom(M). The
interpretation in M of a relation symbol is a relation on dom(M). You
will soon see relations in Discrete Mathematics I, course 142.

For our handy L, an L-structure should say:
• which objects are in its domain
• which of its objects are Tony, Susan, . . .
• which objects are Suns, lecturers, human
• which objects bought which.

117

Example of a structure

Below is a diagram of a particular L-structure, called M (say).
There are 12 objects (the 12 dots) in the domain of M .
Some are labelled (eg ‘Frank’) to show the meanings of the
constants of L (eg Frank).
The interpretations (meanings) of Sun, human are drawn as regions.
The interpretation of lecturer is indicated by the black dots.
The interpretation of bought is shown by the arrows between objects.

118

The structure M

�

� human

���������������������

i

bought

ic

yi
�

�
�

�
�

�
�

�
�

�
��

PPPPPPPPq

bought

B
B
B
B
B
B
BN

Sun

bought

Room-308

Heron

Texel

Clyde

Frank

Tony

Susan

i
i

i

iy

y
y

y

'

&

$

%

M

119

Tony or Tony?

Do not confuse the object wmarked ‘Tony’ in dom(M) with the
constant Tony in L.
(I use different fonts, to try to help.)

They are quite different things. Tony is syntactic, while wis semantic.
In the context of M , Tony is a name for the object wmarked ‘Tony’.

The following notation helps to clarify:

Notation 7.2 Let M be an L-structure and c a constant in L. We
write cM for the interpretation of c in M . It is the object in dom(M)

that c names in M .

So TonyM = the object wmarked ‘Tony’.
In a different structure, Tony may name (mean) something else.

The meaning of a constant c IS the object cM assigned to it by a
structure M . A constant (and any symbol of L) has as many
meanings as there are L-structures.

120

Drawing other symbols

Our signature L has only constants and unary and binary relation
symbols.

For this L, we drew an L-structure M by
• drawing a collection of objects (the domain of M)
• marking which objects are named by which constants in M

• marking which objects M says satisfy the unary relation symbols
(human, etc)

• drawing arrows between the objects that M says satisfy the
binary relation symbols. The arrow direction matters.

If there were several binary relation symbols in L, we’d have to label
the arrows.
In general, there’s no easy way to draw interpretations of 3-ary or
higher-arity relation symbols.
0-ary (nullary) relation symbols are the same as propositional atoms.

121

7.2 Truth in a structure (a rough guide)

When is a formula true in a structure?
• Sun(Heron) is true in M , because HeronM is an object fthat M

says is a Sun.
We write this as M |= Sun(Heron).
Can read as ‘M says Sun(Heron)’.

Warning: This is a quite different use of |= from definition 3.1.
‘|=’ is overloaded.

• Similarly, bought(Susan, Clyde) is true in M .
In symbols, M |= bought(Susan, Clyde).

• bought(Susan,Susan) is false in M , because M does not say that
the constant Susan names an object wthat bought itself.
In symbols, M 6|= bought(Susan, Susan).

From our knowledge of propositional logic,
• M |= ¬ human(Room-308),
• M 6|= Sun(Tony) ∨ bought(Frank, Clyde).

122

Another structure

Here’s another L-structure, called M ′.

human

M ′

Sun

f
PPPPPPPPPPPPPPPPf

�
�

�
�

�
�

�
�

PPPPPPq

B
B
B
B
BBNB
B

B
B
BM

Room-308

Heron

Texel

Clyde

Frank

Tony
c

Susan

f
f

f
fv

vv
v���

'

&

$

%
Now, there are only 10 objects in dom(M ′).

123

Some statements about M ′

• M ′ 6|= bought(Susan, Clyde) this time.

• M ′ |= Susan = Tony.

• M ′ |= human(Texel) ∧ Sun(Texel).

• M ′ |= bought(Tony, Heron) ∧ bought(Heron, c).

How about bought(Susan, Clyde) → human(Clyde)?
Or bought(c, Heron) → Sun(Clyde) ∨ ¬human(Texel)?

124

Evaluating formulas with quantifiers

How do we work out if a formula with quantifiers is true in a structure?

�

�human

������������������

g

bought

gc

wg
�

�
�

�
�

�
�

�
�

��

PPPPPPPq

bought

B
B
B
B
B
BN

Sun

bought

Room-308

Heron

Texel

Clyde

Frank

Tony

Susan

g
g

g
gw

w
w

w

'

&

$

%

M again

125

Evaluating quantifiers

∃x bought(x, Heron) is true in M .
In symbols, M |= ∃x bought(x, Heron).
In English, ‘something bought Heron’.

For this to be so, there must be an object x in dom(M) such that
M |= bought(x, Heron) — that is, M says that bought(x, f), wheref= HeronM .

There is: we can take (eg.) x to be TonyM .

126

Another example: M |= ∀x(bought(Tony, x) → bought(Susan, x))

That is, ‘for every object x in dom(M),
bought(Tony, x) → bought(Susan, x) is true in M ’.
(We evaluate ‘→’ as in propositional logic.)

In M , there are 12 possible x. We need to check whether
bought(Tony, x) → bought(Susan, x) is true in M for each of them.

bought(Tony, x) → bought(Susan, x) will be true in M for any object
x such that bought(Tony, x) is false in M . (‘False → anything is
true.’) So we only need check the x for which bought(Tony, x) is true.

The effect of ‘bought(Tony, x) →’ is to restrict the ∀x to those x that
Tony bought — here, just HeronM .

For this object f, bought(Susan, f) is true in M . So
bought(Tony, f)→bought(Susan, f) is true in M .

So bought(Tony, x) → bought(Susan, x) is true in M for every object
x in M . Hence, M |= ∀x(bought(Tony, x) → bought(Susan, x)).

127

Exercise: which are true in M?

�

� human

����������������

f
bought

fc

vf
�

�
�

�
�

�
�

�
�

PPPPPPq

bought

B
B
B
B
BBN

Sun

bought

Room-308

Heron

Texel

Clyde

Frank

Tony

Susan

f
f

f
fv

vv
v

'

&

$

%

∃x(Sun(x) ∧ bought(Frank, x))

∃x(Sun(x) ∧ ∃y bought(y, x))

∀x(lecturer(x) → human(x))

128

7.3 Truth in a structure — formally!

We saw how to evaluate some formulas in a structure. Now we show
how to evaluate arbitrary formulas.

In propositional logic, we calculated the truth value of a formula in a
situation by working up through its formation tree — from the atomic
subformulas (leaves) up to the root.

For predicate logic, this is not so easy.
Not all formulas of predicate logic are true or false in a structure!

129

Example

∀x(bought(Tony, x) → Sun(x)) is true in M (see slide 128).

Its formation tree is:

`
`

`
`

`
`

`
`

`
`̀

Sun(x)bought(Tony, x)

→

∀x

• Is bought(Tony, x) true in M?!

• Is Sun(x) true in M?!

130

Free and bound variables

What’s going on?
We’d better investigate how variables can arise in formulas.

Definition 7.3 Let A be a formula.

1. An occurrence of a variable x in an atomic subformula of A is
said to be bound if it lies under a quantifier ∀x or ∃x in the
formation tree of A.

2. If not, the occurrence is said to be free.

3. The free variables of A are those variables with free occurrences
in A.

131

Example

PPP
!!!

y free
z bound

y free

x bound
z bound

z freey free
x bound

S
SS

#
##

HHHHH

!!!!!

R(z, y)S(x, z)

∧

∃z

R(y, z)R(x, y)

∧

→

∀x

∀x(R(x, y) ∧ R(y, z) → ∃z(S(x, z) ∧ R(z, y)))

The free variables of the formula are y, z.
Note: z has both free and bound occurrences.

132

Sentences

Definition 7.4 (sentence) A sentence is a formula with no free
variables.

Examples
• ∀x(bought(Tony, x) → Sun(x)) is a sentence.
• Its subformulas

bought(Tony, x) → Sun(x),
bought(Tony, x),

Sun(x)

are not sentences.

Which are sentences?
• bought(Frank, Texel)
• bought(Susan, x)
• x = x
• ∀x(x = y → ∃y(y = x))
• ∀x∀y(x = y → ∀z(R(x, z) → R(y, z)))

133

The problem

Sentences are true or false in a structure.
But non-sentences are not!
A formula with free variables is neither true nor false in a structure
M , because the free variables have no meaning in M . It’s like asking
‘is x = 7 true?’

We get stuck trying to evaluate a predicate formula in a structure in
the same way as a propositional one, because the structure does not
fix the meanings of variables that occur free. They are variables,
after all.

Getting round the problem
So we must specify values for free variables, before evaluating a
formula to true or false.
This is so even if it turns out that the values do not affect the answer
(like x = x).

134

Assignments to variables

An assignment supplies the missing values of variables.

What a structure does for constants,
an assignment does for variables.

Definition 7.5 (assignment) Let M be a
structure. An assignment (or ‘valuation’) into M is something that
allocates an object in dom(M) to each variable.
For an assignment h and a variable x, we write h(x) for the object
assigned to x by h.

[Formally, h : V → dom(M) is a function.]

Given an L-structure M plus an assignment h into M , we can
evaluate:
• any L-term, to an object in dom(M),
• any L-formula, to true or false.

135

Evaluating terms (easy!)

Definition 7.6 (value of term) Let L be a signature, M an
L-structure, h an assignment into M , and t an L-term.
The value of t in M under h is the object in M allocated to it by:

• M (if t is a constant),

• h (if t is a variable).

136

Example

(1) The value in M under h (below) of the term Tony is the object w
marked ‘Tony’. (From now on, I usually write just ‘Tony’ (or TonyM ,
but NOT Tony) for it.)
(2) The value in M under h of x is Heron.

�

�human

����������������

f
bought

fc

vh(z)
f

�
�

�
�

�
�

�
�
�

PPPPPPq

bought

B
B
B
B
BBN

Sun

bought

Room-308

Heron

Texel

Clyde

Frank

Tony

Susan

f
f

h(x)

f
fv

vv
vh(y)

h(v)

'

&

$

%

M, h

137

Semantics of atomic formulas

Fix an L-structure M and an assignment h. We define truth of a
formula in M under h by working up the formation tree, as earlier.

Notation 7.7 (|=) We write M, h |= A if A is true in M under h, and
M, h 6|= A if not.

Definition 7.8 (truth in M under h)
1. Let R be an n-ary relation symbol in L, and t1, . . . , tn be L-terms.

Suppose that the value of ti in M under h is ai, for each
i = 1, . . . , n (see definition 7.6).
M, h |= R(t1, . . . , tn) if M says that the sequence (a1, . . . , an) is
in the relation R.
If not, then M, h 6|= R(t1, . . . , tn).

2. If t, t′ are terms, then M, h |= t = t′ if t and t′ have the same
value in M under h.
If they don’t, then M, h 6|= t = t′.

3. M, h |= ⊤, and M, h 6|= ⊥.

138

Semantics of non-atomic formulas (definition 7.8 ctd.)

If we have already evaluated formulas A, B in M under h, then

4. M, h |= A ∧ B if M, h |= A and M, h |= B.
Otherwise, M, h 6|= A ∧ B.

5. ¬A, A ∨ B, A → B, A ↔ B

— similar: just as in propositional logic.

If x is any variable, then

6. M, h |= ∃xA if there is some assignment g that agrees with h on
all variables except possibly x, and such that M, g |= A.
If not, then M, h 6|= ∃xA.

7. M, h |= ∀xA if M, g |= A for every assignment g that agrees with
h on all variables except possibly x.
If not, then M, h 6|= ∀xA.

‘g agrees with h on all variables except possibly x’ means that
g(y) = h(y) for all variables y other than x. (Maybe g(x) = h(x) too!)

139

7.4 Useful notation for free variables

The books often write things like

‘Let A(x1, . . . , xn) be a formula.’

This indicates that the free variables of A are among x1, . . . , xn.

Note: x1, . . . , xn should all be different. And not all of them need
actually occur free in A.

Example: if C is the formula

∀x(R(x, y) → ∃yS(y, z)),

we could write it as
• C(y, z)

• C(x, z, v, y)

• C (if we’re not using the useful notation)

but not as C(x).

140

Notation for assignments

Fact 7.9 For any formula A, whether or not M, h |= A does not
depend on h(x) for any variable x that does not occur free in A.

• So for a formula A(x1, . . . , xn), if h(xi) = ai (each i), it’s OK to
write M |= A(a1, . . . , an) instead of M, h |= A.

• Suppose we are explicitly given a formula C, such as

∀x(R(x, y) → ∃yS(y, z)).

If h(y) = a, h(z) = b, say, we can write

M |= ∀x(R(x, a) → ∃yS(y, b))

instead of M, h |= C. Note: only the free occurrences of y in C

are replaced by a. The bound y is unchanged.

• For a sentence S, we can just write M |= S, because by fact 7.9,
whether M, h |= S does not depend on h at all.

141

Working out |= in this notation

Suppose we have an L-structure M , an L-formula A(x, y1, . . . , yn),
and objects a1, . . . , an in dom(M).

• To establish that M |= (∀xA)(a1, . . . , an) you check that
M |= A(b, a1, . . . , an) for each object b in dom(M).

You have to check even those b with no constants naming them
in M . ‘Not just Frank, Texel, . . . , but all the other fand wtoo.’

• To establish M |= (∃xA)(a1, . . . , an), you try to find some object b

in the domain of M such that M |= A(b, a1, . . . , an).

A is simpler than ∀xA or ∃xA. So you can recursively work out if
M |= A(b, a1, . . . , an), in the same way. The process terminates.

142

7.5 Evaluating formulas in practice

Now we do some examples of evaluation. Let’s have a new
L-structure, say N . The black dots are the lecturers. The arrows
indicate the interpretation in N of the relation symbol bought.

�

�human

����������������

ff

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

PPPPPPq

B
B
B
B
BBN

Sun

Room-308

Heron

Texel
c

Clyde

Frank

Tony

Susan

f
f

f
fv

vv
v���

'

&

$

%

N |= ∃x(bought(x, Heron) ∧ x = Susan)?

N |= ∀x(lecturer(x) → ∃ybought(x, y))?

(‘Every lecturer bought something.’)

143

1. N |= ∃x(bought(x, Heron) ∧ x = Susan)?

By definition 7.8, the answer is ‘yes’ just in case there is an object b

in dom(N) such that N |= bought(b, Heron) ∧ b = Susan.

We can find out by tabulating the results for each b in dom(N). Write
1 for true, 0 for false.
N |= bought(b, Heron) ∧ b = Susan if (and only if) we can find a b that
makes the rightmost column a 1.

b B(b, Heron) b = Susan both

Tony 1 0 0

Susan 1 1 1

Frank 0 0 0

other w 0 0 0

Room 308 0 0 0
... 0 0 0

144

But hang on, we only need one b making the RH column true. We
already got one: Susan.

So yes, N |= ∃x(bought(x, Heron) ∧ x = Susan).

A bit of thought would have shown the only b with a chance is Susan.
This would have shortened the work.

Moral: read the formula first!

145

2. N |= ∀x(lecturer(x) → ∃y bought(x, y))?

N |= ∀x(lecturer(x) → ∃y bought(x, y)) if and only if
N |= lecturer(b) → ∃y bought(b, y) for all b in dom(N),
if and only if for each b in dom(N), if N |= lecturer(b) then there is d

in dom(N) such that N |= bought(b, d).

So N |= ∀x(lecturer(x) → ∃y bought(x, y)) if (and only if) for each b

with L(b) = 1 in the table below, we can find a d with B(b, d) = 1.

146

N |= ∀x(lecturer(x) → ∃y bought(x, y)) ctd

b sample d L(b) B(b, d)

Tony Heron 1 1

Susan Tony 1 0

Frank Clyde 1 0

other w Clyde 1 1

Heron Susan 0 0

Room 308 Tony 0 0
...

... 0 ?

147

N |= ∀x(lecturer(x) → ∃y bought(x, y)) ctd

Reduced table with b just the lecturers:

b sample d L(b) B(b, d)

Tony Heron 1 1

Susan Tony 1 0

Frank Clyde 1 0

other w Clyde 1 1

We don’t have 1s all down the RH column.

Does this mean N 6|= ∀x(lecturer(x) → ∃y bought(x, y))?

148

N |= ∀x(lecturer(x) → ∃y bought(x, y)) ctd

Not necessarily.
We might have chosen bad ds for Susan and Frank. L(b) is true for
them, so we must try to choose a d that b bought, so that B(b, d) will
be true.

And indeed, we can:

b d L(b) B(b, d)

Tony Heron 1 1

Susan Heron 1 1

Frank Texel 1 1

other w Clyde 1 1

shows N |= ∀x(lecturer(x) → ∃y bought(x, y)).

149

Advice

How do we choose the ‘right’ d in examples like this? We have the
following options:

1. In ∃x or ∀x cases, tabulate all possible values of d.

In ∀x∃y cases, etc, tabulate all d for each b: that is, tabulate all
pairs (b, d).
(Very boring; no room to do it above.)

2. Try to see what properties d should have (above: being bought
by b). Translating into English (see later on) should help. Then
go for d with these properties.

3. Guess a few d and see what goes wrong. This may lead you to
(2).

4. Use games. . . coming next.

150

How hard is it?

In most practical cases, it’s easy to do the evaluation mentally,
without tables, once used to it.

But in general, evaluation is hard.

Suppose that N is the natural numbers with the usual meanings of
prime, even, +.

No-one knows whether

N |= ∀x(even(x) ∧ x > 2 → ∃y∃z(prime(y) ∧ prime(z) ∧ x = y + z)).

151

7.6 Hintikka games

Working out |= by tables is clumsy. Often you can do the evaluation
just by looking.

But if it’s not immediately clear whether or not M |= A, it can help to
use a game G(M, A) with two players — me and you, say.

In G(M, A), you are trying to show that M |= A, and I am testing you
to see if you can.

There are two labels, ‘∀’ and ‘∃’.

At the start, I am given the label ∀, and you get label ∃.

152

Playing G(M, A)

The game starts at the root of the formation tree of A, and works
down node by node to the leaves. If the current node is:
• ∀x, then (the player labeled) ∀ chooses a value (in dom(M)) for

the variable x

• ∃x, then ∃ chooses a value for x

• ∧, then ∀ chooses the next node down
• ∨, then ∃ chooses the next node down
• ¬, then we swap labels (∀ and ∃)
• →,↔ — regard A → B as ¬A ∨ B, and A ↔ B as

(A ∧ B) ∨ (¬A ∧ ¬B).
• an atomic (or quantifier-free) formula, then we stop and evaluate

it in M with the current values of variables.
The player currently labeled ∃ wins the game if it’s true, and the
one labeled ∀ wins if it’s false.

153

Winning strategies

A strategy for a player in G(M, A) is just a set of rules telling that
player what to do in any position.

A strategy is winning if its owner wins any play (or match) of the
game in which the strategy is used.

Theorem 7.10 Let M be an L-structure. Then M |= A if and only if
you have a winning strategy in G(M, A).

So your winning once is not enough for M |= A. You must be able to
win however I play.

154

Let’s play games on N

�

�human

�����������������

gg

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��

PPPPPPPq

B
B
B
B
BBN

Sun

Room-308

Heron

Texel
c

Clyde

Frank

Tony

Susan

g
g

g
gw

ww
w���

'

&

$

%

N

The black dots are the lecturers. The arrows indicate the
interpretation in N of the relation symbol bought.

155

N |= ∀x∃y(lecturer(x) → bought(x, y))?

a
a
a
a
a
a

!
!

!
!

!
!

bought(x, y)

lecturer(x)

¬

∨

∃y

∀x

156

N |= ∃y∀x(lecturer(x) → bought(x, y))?

a
a
a
a
a
a

!
!

!
!

!
!

bought(x, y)

lecturer(x)

¬

∨

∀y

∃x

157

8. Translation into and out of logic

Translating predicate logic sentences from logic to English is not
much harder than in propositional logic. But you can end up with a
mess that needs careful simplifying.

∀x(lecturer(x) ∧ ¬(x = Frank) → bought(x, Texel))

‘For all x, if x is a lecturer and x is not Frank then x bought Texel.’
‘Every lecturer apart from Frank bought Texel.’ (Maybe Frank did too.)

∃x∃y∃z(bought(x, y) ∧ bought(x, z) ∧ ¬(y = z))

‘There are x, y, z such that x bought y, x bought z, and y is not z.’
‘Something bought at least two different things.’

∀x(∃y∃z(bought(x, y) ∧ bought(x, z) ∧ ¬(y = z)) → x = Tony)

‘For all x, if x bought two different things then x is equal to Tony.’
‘Anything that bought two different things is Tony.’
CARE: it doesn’t imply Tony did actually buy 2 things, just that noone
else did.

158

English to logic

Hints for English-to-logic translation: express the sub-concepts in
logic. Then build these pieces into a whole logical sentence.

Sample subconcepts:

• x buys y: bought(x, y).

• x is bought: ∃y bought(y, x).

• y is bought: ∃z bought(z, y).

• x is a buyer: ∃y bought(x, y).

• x buys at least two things:
∃y∃z(bought(x, y) ∧ bought(x, z) ∧ y 6= z).

Here, y 6= z abbreviates ¬(y = z).

159

English-to-logic translation examples

• Every lecturer is human: ∀x(lecturer(x) → human(x)).

• x is bought/has a buyer: ∃y bought(y, x).

• Anything bought is not human:
∀x(∃y bought(y, x) → ¬ human(x)).
Note: ∃y binds tighter than →.

• Every Sun has a buyer: ∀x(Sun(x) → ∃y bought(y, x)).

• Some Sun has a buyer: ∃x(Sun(x) ∧ ∃y bought(y, x)).

• All buyers are human lecturers:
∀x(∃y bought(x, y)

︸ ︷︷ ︸

x is a buyer

→ human(x) ∧ lecturer(x)).

• No lecturer bought a Sun:
¬∃x(lecturer(x) ∧ ∃y(bought(x, y) ∧ Sun(y))

︸ ︷︷ ︸

x bought a Sun

).

160

More examples

• Everything is a Sun or a lecturer (or both):
∀x(Sun(x) ∨ lecturer(x)).

• Nothing is both a Sun and a lecturer:
¬∃x(Sun(x) ∧ lecturer(x)), or
∀x(Sun(x) → ¬lecturer(x)), or
∀x(lecturer(x) → ¬Sun(x)), or
∀x¬(Sun(x) ∧ lecturer(x)).

• Only Susan bought Clyde: ∀x(bought(x, Clyde) ↔ x = Susan).

• If Tony bought everything that Susan bought, and Tony bought a
Sun, then Susan didn’t buy a Sun:
∀x(bought(Susan, x) → bought(Tony, x))

∧ ∃y(Sun(y) ∧ bought(Tony, y))

→ ¬∃y(Sun(y) ∧ bought(Susan, y)).

(This may not be true! But we can still say it.)

161

Counting

• There is at least one Sun: ∃x Sun(x).
• There are at least two Suns: ∃x∃y(Sun(x) ∧ Sun(y) ∧ x 6= y),

or (more deviously) ∀x∃y(Sun(y) ∧ y 6= x).
• There are at least three Suns:
∃x∃y∃z(Sun(x) ∧ Sun(y) ∧ Sun(z) ∧ x 6= y ∧ y 6= z ∧ x 6= z),
or ∀x∀y∃z(Sun(z) ∧ z 6= x ∧ z 6= y).

• There are no Suns: ¬∃x Sun(x)

• There is at most one Sun: 3 ways:
1. ¬∃x∃y(Sun(x) ∧ Sun(y) ∧ x 6= y)

2. ∀x∀y(Sun(x) ∧ Sun(y) → x = y)

3. ∃x∀y(Sun(y) → x = y)

• There’s exactly 1 Sun: ∃x∀y(Sun(y) ↔ y = x).
• There are at most two Suns: 3 ways:

1. ¬(there are at least 3 Suns)
2. ∀x∀y∀z(Sun(x) ∧ Sun(y) ∧ Sun(z) → x = y ∨ x = z ∨ y = z)

3. ∃x∃y∀z(Sun(z) → z = x ∨ z = y)

162

Common patterns

You often need to say things like:
• ‘All lecturers are human’: ∀x(lecturer(x) → human(x)).

NOT ∀x(lecturer(x) ∧ human(x)).
NOT ∀x lecturer(x) → ∀x human(x).

• ‘All lecturers are human and not Suns’:
∀x(lecturer(x) → human(x) ∧ ¬Sun(x)).

• ‘All human lecturers are Suns’:
∀x(human(x) ∧ lecturer(x) → Sun(x)).

• ‘Some lecturer is a Sun’: ∃x(lecturer(x) ∧ Sun(x)).

Patterns like ∀x(A → B), ∀x(A → B ∧ C), ∀x(A → B ∨ C), and
∃x(A ∧ B) are therefore common.

∀x(B ∧ C), ∀x(B ∨ C), ∃x(B ∧ C), ∃x(B ∨ C) also crop up: they say
every/some x is B and/or C.

∃x(A → B) is extremely rare. If you write this, check to see if you’ve
made a mistake.

163

9. Function symbols and sorts
— the icing on the cake.

9.1 Function symbols

In arithmetic (and Haskell) we are used to functions, such as
+,−,×,

√
x,++, etc.

Predicate logic can do this too.

A function symbol is like a relation symbol or constant, but it is
interpreted in a structure as a function (to be defined in discr math).

Any function symbol comes with a fixed arity (number of arguments).

We often write f, g for function symbols.

From now on, we adopt the following extension of definition 6.1:

Definition 9.1 (signature) A signature is a collection of constants,
and relation symbols and function symbols with specified arities.

164

Terms with function symbols

We can now extend definition 6.2:

Definition 9.2 (term) Fix a signature L.
1. Any constant of L is an L-term.
2. Any variable is an L-term.
3. If f is an n-ary function symbol of L, and t1, . . . , tn are L-terms,

then f(t1, . . . , tn) is an L-term.
4. Nothing else is an L-term.

Example
Let L have a constant c, a unary function symbol f , and a binary
function symbol g. Then the following are L-terms:
• c

• f(c)

• g(x, x)

• g(f(c), g(x, x))

165

Semantics of function symbols

We need to extend definition 7.1 too: if L has function symbols, an
L-structure must additionally define their meaning.

For any n-ary function symbol f in L, an L-structure M must say
which object (in dom(M)) f associates with any sequence (a1, . . . ,

an) of n objects in dom(M). We write this object as fM (a1, . . . , an).
There must be such a value.

[fM is a function fM : dom(M)n → dom(M).]
A 0-ary function symbol is like a constant.

Examples
In arithmetic, M might say +,× are addition and multiplication of
numbers: it associates 4 with 2 + 2, 8 with 4 × 2, etc.

If the objects of M are vectors, M might say + is addition of vectors
and × is cross-product. M doesn’t have to say this — it could say ×
is addition — but we may not want to use the symbol × in such a
case.

166

Evaluating terms with function symbols

We can now extend definition 7.6:

Definition 9.3 (value of term) The value of an L-term t in an
L-structure M under an assignment h into M is defined as follows:
• If t is a constant, then its value is the object in M allocated to it

by M ,
• If t is a variable, then its value is the object h(t) in M allocated to

it by h,
• If t is f(t1, . . . , tn), and the values of the terms ti in M under h

are already known to be a1, . . . , an, respectively, then the value
of t in M under h is fM (a1, . . . , an).

So the value of a term in M under h is always an object in dom(M).
Not true or false!

Definition 7.8 needs no amendment, apart from using it with the
extended definition 9.3.

We now have the standard system of first-order logic (as in books).

167

Arithmetic terms

A useful signature for arithmetic and for programs using numbers is
the L consisting of:
• constants 0, 1, 2, . . . (I use underlined typewriter font to avoid

confusion with actual numbers 0, 1, ...)
• binary function symbols +,−,×
• binary relation symbols <,≤, >,≥.

We interpret these in a structure with domain {0,1,2,. . . } in the
obvious way. But (eg) 34− 61 is unpredictable — can be any number.

We’ll abuse notation by writing L-terms and formulas in infix notation:
• x + y, rather than +(x, y),
• x > y, rather than >(x, y).
Everybody does this, but it’s breaking definitions 9.2 and 6.3, and it
means we’ll need to use brackets.

Some terms: x + 1, 2 + (x + 5), (3× 7) + x.
Formulas: 3× x > 0, ∀x(x > 0 → x × x > x).

168

9.2 Many-sorted logic

As in typed programming languages, it sometimes helps to have
structures with objects of different types. In logic, types are called
sorts.

Eg some objects in a structure M may be lecturers, others may be
Suns, numbers, etc.

We can handle this with unary relation symbols, or with ‘many-sorted
first-order logic’.

Fix a collection s, s′, s′′, . . . of sorts. How many, and what they’re
called, are determined by the application.

These sorts do not generate extra sorts, like s → s
′ or (s, s′).

If you want extra sorts like these, add them explicitly to the original
list of sorts. (Their meaning would not be automatic, unlike in
Haskell.)

169

Many-sorted terms

We adjust the definition of ‘term’ (definition 9.2), to give each term a
sort:

• each variable and constant comes with a sort s, expressed as
c : s and x : s. There are infinitely many variables of each sort.

• each n-ary function symbol f comes with a template

f : (s1, . . . , sn) → s,

where s1, . . . , sn, s are sorts.
Note: (s1, . . . , sn) → s is not itself a sort.

• For such an f and terms t1, . . . , tn, if ti has sort si (for each i)
then f(t1, . . . , tn) is a term of sort s.

Otherwise (if the ti don’t all have the right sorts), f(t1, . . . , tn) is
not a term — it’s just rubbish, like)∀)→.

170

Formulas in many-sorted logic
• Each n-ary relation symbol R comes with a template

R(s1, . . . , sn), where s1, . . . , sn are sorts.
For terms t1, . . . , tn, if ti has sort si (for each i) then R(t1, . . . , tn)

is a formula. Otherwise, it’s rubbish.
• t = t′ is a formula if the terms t, t′ have the same sort.

Otherwise, it’s rubbish.
• Other operations (∧,¬,∀,∃, etc) are unchanged. But it’s polite to

indicate the sort of a variable in ∀,∃ by writing

∀x : s A and ∃x : s A

instead of just

∀xA and ∃xA

if x has sort s.

This all sounds complicated, but it’s very simple in practice.
Eg, you can write ∀x : lecturer ∃y : Sun(bought(x, y))

instead of ∀x(lecturer(x) → ∃y(Sun(y) ∧ bought(x, y))).

171

L-structures for many-sorted L
Let L be a many-sorted signature, with sorts s1, s2, . . .

An L-structure is defined as before (definition 7.1 + slide 166), but
additionally it allocates each object in its domain to a single sort (one
of s1, s2, . . .). So it looks like:

�

�sort human

����������������

f
boughth,s

fc

vf
�

�
�

�
�

�
�

�
�

PPPPPPq

boughth,s

B
B
B
B
BBN

sort Sun

sort rest�

boughth,r

Room-308

Heron

Texel

Clyde

Frank

Tony

Susan

f
f

f
fv

vv
v

'

&

$

%

M

172

We need a binary relation symbol boughts,s′ for each pair (s, s′) of
sorts.
lecturer (black dots) must be implemented as 2 or 3 relation
symbols, because (as in Haskell) each object has only 1 sort, not 2.
(Alternative: use sorts for human lecturer, non-human lecturer, etc —
all possible types of object.)

173

Interpretation of L-symbols

A many-sorted L-structure M must say:
• for each constant c : s in L, which object of sort s in dom(M) is

‘named’ by c

• for each relation symbol R : (s1, . . . , sn) in L, and all objects
a1, . . . , an in dom(M) of sorts s1, . . . , sn, respectively, whether
R(a1, . . . , an) is true or not.

It doesn’t say anything about R(b1, . . . , bn) if b1, . . . , bn don’t all
have the right sorts.

• for each function symbol f : (s1, . . . , sn) → s in L and all objects
a1, . . . , an in dom(M) of sorts s1, . . . , sn, respectively, which
object fM (a1, . . . , an) of sort s is associated with (a1, . . . , an)

by f .

It doesn’t say anything about f(b1, . . . , bn) if b1, . . . , bn don’t all
have the right sorts.

174

10. Application of logic: specifications

A specification is a description of what a program should do.

It should state the inputs and outputs (and their types).

It should include conditions on the input under which the program is
guaranteed to operate. This is the pre-condition.

It should state what is required of the outcome in all cases (output for
each input). This is the post-condition.

• The type (in the function header) is part of the specification.

• The pre-condition refers to the inputs (only).

• The post-condition refers to the outputs and inputs.

175

Precision is vital

A specification should be unambiguous. It is a CONTRACT:

Programmer wants pre-condition and post-condition to be the same
— less work to do! The weaker the pre-condition and/or stronger the
post-condition, the more work for the programmer — fewer
assumptions (so more checks) and more results to produce.

Customer wants weak pre-condition and strong post-condition, for
added value — less work before execution of program, more gained
after execution of it.

Customer guarantees pre-condition so program will operate.
Programmer guarantees post-condition, provided that the input
meets the pre-condition.

If customer (user) provides the pre-condition (on the inputs), then
provider (programmer) will guarantee the post-condition (between
inputs and outputs).

176

10.1 Logic for specifying Haskell programs

A very precise way to specify properties of Haskell programs is to
use first-order logic.
(Logic can also be used for Java, etc)

We use many-sorted logic, so we can have a sort for each Haskell
type we want.

177

Example: lists of type [Nat]

Let’s have a sort Nat, for {0,1,2,. . . }, and a sort [Nat] for lists of
natural numbers.
(Using the real Haskell Int is more longwinded: must keep saying
n ≥ 0 etc.)

The idea is that the structure’s domain should look like:

[Nat]

(all lists : [Nat])

. . .

(all nos)

210

[] [2] [2,1,3] . . .

Nat

M

2-sorted

structure

'

&

$

%
178

10.2 Signature for lists

The signature should be chosen to provide access to the objects in
such a structure.

We want [], : (cons), ++, head, tail, ♯, !!.

How do we represent these using constants, function symbols, or
relation symbols?

How about a constant [] : [Nat] for the empty list, and function
symbols
• cons : (Nat, [Nat]) → [Nat]

• ++ : ([Nat], [Nat]) → [Nat]

• head : [Nat] → Nat

• tail : [Nat] → [Nat]

• ♯ : [Nat] → Nat

• !! : ([Nat], Nat) → Nat

179

Problem: tail etc are partial operations

In first-order logic, a structure must provide a meaning for function
symbols on all possible arguments (of the right sorts).
What is the head or tail of the empty list? What is xs !! ♯(xs)? What is
34 − 61?

Two solutions (for tail):
1. Choose an arbitrary value (of the right sort) for tail([]), etc.
2. Use a relation symbol Rtail([Nat],[Nat]) instead of a function

symbol tail : [Nat] → [Nat]. Make Rtail(xs, ys) true just when
ys is the tail of xs. If xs has no tail, Rtail(xs, ys) will be false for
all ys.

Similarly for head, !!. E.g., use a function symbol
!! : ([Nat], Nat) → Nat, and choose arbitrary value for !!(xs, n) when
n ≥ ♯(xs). Or use a relation symbol !!([Nat], Nat, Nat).

We’ll take the function symbol option (1), as it leads to shorter
formulas. But we must beware: values of functions on ‘invalid’
arguments are ‘unpredictable’.

180

Lists in first-order logic: summary

Now we can define a signature L suitable for lists of type [Nat].
• L has constants 0, 1, . . . : Nat, relation symbols <,≤, >,≥ of sort

(Nat,Nat), a constant [] : [Nat], and function symbols +,−, : or
cons, ++, head, tail, ♯, !!, with sorts as specified 2 slides ago.

We write the constants as 0, 1,. . . to avoid confusion with actual
numbers 0, 1, . . . We write symbols in infix notation where
appropriate.

• Let x, y, z, k, n, m . . . be variables of sort Nat, and xs, ys, zs, . . .

variables of sort [Nat].
• Let M be an L-structure in which the objects of sort Nat are the

natural numbers 0, 1, . . . , the objects of sort [Nat] are all
possible lists of natural numbers, and the L-symbols are
interpreted in the natural way: ++ as concatenation of lists, etc.
(Define 34 − 61, tail([]), etc. arbitrarily.)

See figure, 3 slides ago.

181

10.3 Saying things about lists

Now we can say a lot about lists.
E.g., the following L-sentences, expressing the definitions of the
function symbols, are true in M , because (as we said) the L-symbols
are interpreted in M in the natural way:

♯([]) = 0

∀x∀xs((♯(x:xs) = ♯(xs) + 1) ∧ ((x:xs)!!0 = x))

∀x∀xs∀n(n < ♯(xs) → (x:xs)!!(n + 1) = xs!!n)

Note the ‘n < ♯(xs)’: xs!!n could be anything if n ≥ ♯(xs).

∀xs(♯(xs) = 0 ∨ head(xs) = xs!!0)

∀xs(xs 6= [] → ♯(tail(xs)) = ♯(xs) − 1)

∀xs∀n(0 < n ∧ n < ♯(xs) → xs!!n = tail(xs)!!(n − 1))

∀xs∀ys∀zs(xs = ys++zs ↔
♯(xs) = ♯(ys) + ♯(zs) ∧ ∀n(n < ♯(ys) → xs!!n = ys!!n)

∧ ∀n(n < ♯(zs) → xs!!(n + ♯(ys)) = zs!!n).

182

10.4 Specifying Haskell functions

Now we know how to use logic to say things about lists, we can use
logic to specify Haskell functions.

Pre-conditions in logic

These express restrictions on the arguments or parameters that can
be legally passed to a function. You write a formula A(a, b) that is
true if and only if the arguments a, b satisfy the intended
pre-condition (are legal).

Eg for the function log(x), you’d want a pre-condition of x > 0. For√
x you’d want x ≥ 0.

Pre-conditions are usually very easy to write:

• xs is not empty: use xs 6= [].

• n is non-negative: use n ≥ 0.

183

Type information

This is not part of the pre-condition.

If there are no restrictions on the arguments beyond their typing
information, you can write ‘none’, or ⊤, as pre-condition.

This is perfectly normal and is no cause for alarm.

184

Post-conditions in logic

These express the required connection between the input and output
of a function.

To do post-conditions in logic, you write a formula expressing the
intended value of a function in terms of its arguments.

The formula should have free variables for the arguments, and
should involve the function call so as to describe the required value.
The formula should be true if and only if the output is as intended.

addone :: Nat -> Nat

-- pre:none

-- post:addone n = n+1

OR, in another commonly-used style,

-- post: z = n+1 where z = addone n

185

Specifying the function ‘in’

in :: Nat -> [Nat] -> Bool

-- pre:none

-- post: in x xs <--> (E)k:Nat(k<#xs & xs!!k=x)

I used (E) and & as can’t type ∃,∧ in Haskell.

Similarly, use \/ for ∨, (A) for ∀,~ for ¬.

186

Existence, non-uniqueness of result

Suppose you have a post-condition A(x, y, z), where the variables
x, y represent the input, and z represents the output.

Idea: for inputs a, b in M , the function should return some c such that
M |= A(a, b, c).

There is no requirement that c be unique: could have
M |= A(a, b, c) ∧ A(a, b, d) ∧ c 6= d. Then the function could legally
return c or d. It can return any value satisfying the post-condition.

But should arrange that M |= ∃zA(a, b, z) whenever a, b meet the
pre-condition: otherwise, the function cannot meet its post-condition.

So need M |= ∀x∀y(pre(x, y) → ∃z post(x, y, z)), for functions of 2
arguments with pre-, post-conditions given by formulas pre, post.

187

10.5 Examples

Saying something is in a list

∃k(k < ♯(xs) ∧ xs!!k = n) says that n occurs in xs. So does
∃ys∃zs(xs = ys++(n:zs)).

Write in(n, xs) for either of these formulas.

Then for any number a and list bs in M , we have M |= in(a, bs) just
when a occurs in bs.

So can specify a Haskell function for in:

isin :: Nat -> [Nat] -> Bool

-- pre: none

-- post: isin n xs <--> (E)ys,zs(xs=ys++n:zs)

The code for isin may in the end be very different from the
post-condition(!), but isin should meet its post-condition.

188

Least entry

in(m, xs) ∧ ∀n(n < ♯(xs) → xs!!n ≥ m)

expresses that (is true in M iff) m is the least entry in list xs.

So could specify a function least:

least :: [Nat] -> Nat

-- pre: input is non-empty

-- post: in(m,xs) & (A)n(n<#xs -> xs!!n>=m), where m = least xs

Ordered (or sorted) lists

∀n∀m(n < m ∧ m < ♯(xs) → xs!!n ≤ xs!!m) expresses that list xs is
ordered. So does ∀ys∀zs∀m∀n(xs = ys++(m:(n:zs)) → m≤n).

Exercise: specify a function
sorted :: [Nat] -> Bool

that returns true if and only if its argument is an ordered list.

189

Merge

Informal specification:
merge :: [Nat] -> [Nat] -> [Nat] -> Bool

-- pre:none

-- post:merge(xs,ys,zs) holds when xs, ys are

-- merged to give zs, the elements of xs and ys

-- remaining in the same relative order.

merge([1,2],[3,4,5],[1,3,4,2,5]) and
merge([1,2],[3,4,5],[3,4,1,2,5]) are true.

merge([1,2],[3,4,5],[1]) and
merge([1,2],[3,4,5],[5,4,3,2,1]) are false.

190

Specifying ‘merge’

Quite hard to specify explicitly (challenge for you!).

But can write an implicit specification:
∀xs∀zs(merge(xs, [], zs) ↔ xs = zs)

∀ys∀zs(merge([], ys, zs) ↔ ys = zs)

∀x . . . zs[merge(x:xs, y:ys, z:zs) ↔ (x = z ∧ merge(xs, y:ys, zs)

∨ y = z ∧ merge(x:xs, ys, zs))]

This pins down merge exactly: there exists a unique way to interpret
a 3-ary relation symbol merge in M so that these three sentences are
true. So they could form a post-condition.

191

Count

Can use merge to specify other things:

count : Nat -> [Nat] -> Nat

-- pre:none

-- post (informal): count x xs = number of x’s in xs

-- post: (E)ys,zs(merge ys zs xs

-- & (A)n:Nat(in(n,ys) -> n=x)

-- & (A)n:Nat(in(n,zs) -> n<>x)

-- & count x xs = #ys)

Idea: ys takes all the x from xs, and zs takes the rest. So the number
of x is ♯(ys).

Conclusion

First-order logic is a valuable and powerful way to specify programs
precisely, by writing first-order formulas expressing their pre- and
post-conditions.
More on this in 141 ‘Reasoning about Programs’ next term.

192

11. Arguments, validity

Predicate logic is much more expressive than propositional logic. But
our experience with propositional logic tells us how to define ‘valid
argument’ etc.

Definition 11.1 (valid argument) Let L be a signature and A1, . . . ,

An, B be L-formulas.
An argument ‘A1, . . . , An, therefore B’ is valid if for any L-structure
M and assignment h into M ,
if M, h |= A1, M, h |= A2, . . . , and M, h |= An, then M, h |= B.
We write A1, . . . , An |= B in this case.

This says: in any situation (structure + assignment) in which
A1, . . . , An are all true, B must be true too.

Special case: n = 0. Then we write just |= B. It means that B is true
in every L-structure under every assignment into it.

193

Validity, satisfiability, equivalence

These are defined as in propositional logic.

Definition 11.2 (valid formula) A formula A is (logically) valid if for
every structure M and assignment h into M , we have M, h |= A.
We write ‘|= A’ (as above) if A is valid.

Definition 11.3 (satisfiable formula) A formula A is satisfiable if for
some structure M and assignment h into M , we have M, h |= A.

Definition 11.4 (equivalent formulas)
Formulas A, B are logically equivalent if for every structure M and
assignment h into M , we have M, h |= A if and only if M, h |= B.

The links between these (page 43) also hold for predicate logic.
So (eg) the notions of valid/satisfiable formula, and equivalence, can
all be expressed in terms of valid arguments.

194

Which arguments are valid?

Some examples of valid arguments:
• valid propositional ones: eg, A ∧ B |= A.
• many new ones: eg
∀x(lecturer(x) → human(x)),
∃x(lecturer(x) ∧ bought(x, Texel))

|= ∃x(human(x) ∧ bought(x, Texel)).

‘All lecturers are human, some lecturer bought Texel
|= some human bought Texel.’

Deciding if a supposed argument A1, . . . , An |= B is valid is
extremely hard in general.
We cannot just check that all L-structures + assignments that make
A1, . . . , An true also make B true (like truth tables).
This is because there are infinitely many L-structures.

Theorem 11.5 (Church, 1935) No computer program can be written
to identify precisely the valid arguments of predicate logic.

195

Useful ways of validating arguments

In spite of theorem 11.5, we can often verify in practice that an
argument or formula in predicate logic is valid. Ways to do it include:

• direct reasoning (the easiest, once you get used to it)

• equivalences (also useful)

• proof systems like natural deduction

The same methods work for showing a formula is valid. (A is valid if
and only if |= A.)

Truth tables no longer work. You can’t tabulate all structures — there
are infinitely many.

196

11.1 Direct reasoning

Let’s show
∀x(lecturer(x) → human(x)), ∃x(lecturer(x) ∧ bought(x, Texel))

|= ∃x(human(x) ∧ bought(x, Texel)).

Take any L-structure M (where L is as before). Assume that
1) M |= ∀x(lecturer(x) → human(x)) and
2) M |= ∃x(lecturer(x) ∧ bought(x, Texel)).
Show M |= ∃x(human(x) ∧ bought(x, Texel)).

So we need to find an a in M such that
M |= human(a) ∧ bought(a, Texel).

By (2), there is a in M such that
M |= lecturer(a) ∧ bought(a, Texel).
So M |= lecturer(a).
By (1), M |= lecturer(a) → human(a).
So M |= human(a).
So M |= human(a) ∧ bought(a, Texel), as required.

197

Another example

Let’s show
∀x(human(x) → lecturer(x)),
∀x(Sun(x) → lecturer(x)),
∀x(human(x) ∨ Sun(x)) |= ∀x lecturer(x).

Take any M such that
1) M |= ∀x(human(x) → lecturer(x)),
2) M |= ∀y(Sun(y) → lecturer(y)),
3) M |= ∀z(human(z) ∨ Sun(z)).

Show M |= ∀x lecturer(x).

Take arbitrary a in M . We require M |= lecturer(a).

Well, by (3), M |= human(a) ∨ Sun(a).
If M |= human(a), then by (1), M |= lecturer(a).
Otherwise, M |= Sun(a). Then by (2), M |= lecturer(a).
So either way, M |= lecturer(a), as required.

198

Direct reasoning with equality

Let’s show ∀x∀y(x = y ∧ ∃zR(x, z) → ∃vR(y, v)) is valid.

Take any structure M , and objects a, b in dom(M). We need to show

M |= a = b ∧ ∃zR(a, z) → ∃vR(b, v).

So we need to show that
IF M |= a = b ∧ ∃zR(a, z) THEN M |= ∃vR(b, v).

But IF M |= a = b ∧ ∃zR(a, z), then a, b are the same object.
So M |= ∃zR(b, z).

So there is an object c in dom(M) such that M |= R(b, c).

Therefore, M |= ∃vR(b, v). We’re done.

199

11.2 Equivalences

As well as the propositional equivalences seen before, we have extra
ones for predicate logic. A, B denote arbitrary predicate formulas.

28. ∀x∀yA is logically equivalent to ∀y∀xA.

29. ∃x∃yA is (logically) equivalent to ∃y∃xA.

30. ¬∀xA is equivalent to ∃x¬A.

31. ¬∃xA is equivalent to ∀x¬A.

32. ∀x(A ∧ B) is equivalent to ∀xA ∧ ∀xB.

33. ∃x(A ∨ B) is equivalent to ∃xA ∨ ∃xB.

200

Equivalences involving bound variables

34. If x does not occur free in A, then ∀xA and ∃xA are equivalent
to A.

35. If x doesn’t occur free in A, then
∃x(A ∧ B) is equivalent to A ∧ ∃xB, and
∀x(A ∨ B) is equivalent to A ∨ ∀xB.

36. If x does not occur free in A then
∀x(A → B) is equivalent to A → ∀xB.

37. Note: if x does not occur free in B then
∀x(A → B) is equivalent to ∃xA → B.

38. (Renaming bound variables)
If Q is ∀ or ∃, y is a variable that does not occur in A, and
B is got from A by replacing all free occurrences of x in A by y,
then QxA is equivalent to QyB.
Eg ∀x∃y bought(x, y) is equivalent to ∀z∃v bought(z, v).

201

Equivalences/validities involving equality

39. For any term t, t = t is valid.

40. For any terms t, u,
t = u is equivalent to u = t

41. (Leibniz principle) If A is a formula in which x occurs free, y

doesn’t occur in A at all, and B is got from A by replacing one or
more free occurrences of x by y, then

x = y → (A ↔ B)

is valid.

Example: x = y → (∀zR(x, z) ↔ ∀zR(y, z)) is valid.

202

Examples using equivalences

These equivalences form a toolkit for transforming formulas.

Eg: let’s show that if x is not free in A then ∀x(∃x¬B → ¬A) is
equivalent to ∀x(A → B).

Well, the following formulas are equivalent:

• ∀x(∃x¬B → ¬A)

• ∃x¬B → ¬A (equivalence 34, since x is not free in ∃x¬B → ¬A)

• ¬∀xB → ¬A (equivalence 30)

• A → ∀xB (example on p. 59)

• ∀x(A → B) (equivalence 36, since x is not free in A).

203

Warning: non-equivalences

Depending on A, B, the following need NOT be logically equivalent
(though the first |= the second):

• ∀x(A → B) and ∀xA → ∀xB

• ∃x(A ∧ B) and ∃xA ∧ ∃xB.

• ∀xA ∨ ∀xB and ∀x(A ∨ B).

Can you find a ‘countermodel’ for each one? (Find suitable A, B and
a structure M such that M |= 2nd but M 6|= 1st.)

204

11.3 Natural deduction for predicate logic

This is quite easy to set up. We keep the old propositional rules —
e.g., A ∨ ¬A for any first-order sentence A (‘lemma’)
— and add new ones for ∀,∃,=.

You construct natural deduction proofs as for propositional logic: first
think of a direct argument, then convert to ND.

This is even more important than for propositional logic. There’s
quite an art to it.

Validating arguments by predicate ND can sometimes be harder than
for propositional ones, because the new rules give you wide choices,
and at first you may make the wrong ones! If you find this
depressing, remember, it’s a hard problem, there’s no computer
program to do it (theorem 11.5)!

205

∃-introduction, or ∃I

To prove a sentence ∃xA, you have to prove A(t), for some closed
term t of your choice.

...
1 A(t) we got this somehow. . .
2 ∃xA ∃I(1)

Notation 11.6 Here, and below, A(t) is the sentence got from A(x)

by replacing all free occurrences of x by t.

Recall a closed term is one with no variables — it’s made with only
constants and function symbols.

This rule is reasonable. If in some structure, A(t) is true, then so is
∃xA, because there exists an object in M (namely, the value in M

of t) making A true.

But choosing the ‘right’ t can be hard — that’s why it’s such a good
idea to think up a ‘direct argument’ first!

206

∃-elimination, ∃E (tricky!)

Let A(x) be a formula. If you have managed to write down ∃xA, you
can prove a sentence B from it by
• assuming A(c), where c is a new constant not used in B or in the

proof so far,
• proving B from this assumption.

During the proof, you can use anything already established.
But once you’ve proved B, you cannot use any part of the proof,
including c, later on. I mean it! So we isolate the proof of B from
A(c), in a box:

1 ∃xA got this somehow

2 A(c) ass
〈the proof〉 hard struggle

3 B we made it!

4 B ∃E(1, 2, 3)

c is often called a Skolem constant.

207

Justification of ∃E

Basically, ‘we can give any object a name’.

If ∃xA is true in some structure M , then there is an object a in
dom(M) such that M |= A(a).

Now a may not be named by a constant in M . But we can add a new
constant to name it — say, c — and add the information to M that c

names a.

c must be new — the other constants already in use may not name a

in M .

So A(c) for new c is really no better or worse than ∃xA. If we can
prove B from the assumption A(c), it counts as a proof of B from the
already-proved ∃xA.

208

Example of ∃-rules

Show ∃x(P (x) ∧ Q(x)) ⊢ ∃xP (x) ∧ ∃xQ(x).

1 ∃x(P (x) ∧ Q(x)) given

2 P (c) ∧ Q(c) ass
3 P (c) ∧E(2)

4 ∃xP (x) ∃I(3)

5 Q(c) ∧E(2)

6 ∃xQ(x) ∃I(5)

7 ∃xP (x) ∧ ∃xQ(x) ∧I(4, 6)

8 ∃xP (x) ∧ ∃xQ(x) ∃E(1, 2, 7)

In English: Assume ∃x(P (x) ∧ Q(x)). Then there is a with
P (a) ∧ Q(a).
So P (a) and Q(a). So ∃xP (x) and ∃xQ(x).
So ∃xP (x) ∧ ∃xQ(x), as required.

Note: only sentences occur in ND proofs. They should never involve
formulas with free variables!

209

∀-introduction, ∀I

To introduce the sentence ∀xA, for some A(x), you introduce a new
constant, say c, not used in the proof so far, and prove A(c).
During the proof, you can use anything already established.
But once you’ve proved A(c), you can no longer use the constant c

later on.
So isolate the proof of A(c), in a box:

1 c ∀I const
〈the proof〉 hard struggle

2 A(c) we made it!

3 ∀xA ∀I(1, 2)

This is the only time in ND that you write a line (1) containing a term,
not a formula. And it’s the only time a box doesn’t start with a line
labelled ‘ass’.

210

Justification

To show M |= ∀xA, we must show M |= A(a) for every object a in
dom(M).

So choose an arbitrary a, add a new constant c naming a, and prove
A(c). As a is arbitrary, this shows ∀xA.

c must be new, because the constants already in use may not name
this particular a.

211

∀-elimination, or ∀E

Let A(x) be a formula. If you have managed to write down ∀xA, you
can go on to write down A(t) for any closed term t. (It’s your choice
which t!)

...
1 ∀xA we got this somehow. . .
2 A(t) ∀E(1)

This is easily justified: if ∀xA is true in a structure, then certainly A(t)

is true, for any closed term t.

Choosing the ‘right’ t can be hard — that’s why it’s such a good idea
to think up a ‘direct argument’ first!

212

Example of ∀-rules

Let’s show P → ∀xQ(x) ⊢ ∀x(P → Q(x)).
Here, P is a 0-ary relation symbol — that is, a propositional atom.

1 P → ∀xQ(x) given

2 c ∀I const

3 P ass
4 ∀xQ(x) →E(3, 1)

5 Q(c) ∀E(4)

6 P → Q(c) →I(3, 5)

7 ∀x(P → Q(x)) ∀I(2, 6)

In English: Assume P → ∀xQ(x). Then for any object a, if P then
∀xQ(x), so Q(a).

So for any object a, if P , then Q(a).

That is, for any object a, we have P → Q(a). So ∀x(P → Q(x)).

213

Example with all the quantifier rules

Show ∃x∀yG(x, y) ⊢ ∀y∃xG(x, y).

1 ∃x∀yG(x, y) given

2 d ∀I const

3 ∀yG(c, y) ass
4 G(c, d) ∀E(3)

5 ∃xG(x, d) ∃I(4)

6 ∃xG(x, d) ∃E(1, 3, 5)

7 ∀y∃xG(x, y) ∀I(2, 6)

English: Assume ∃x∀yG(x, y). Then there is some object c such that
∀yG(c, y).

So for any object d, we have G(c, d), so certainly ∃xG(x, d).

Since d was arbitrary, we have ∀y∃xG(x, y).

214

Derived rule ∀→E

This is like PC: it collapses two steps into one. Useful, but not
essential.

Idea: often we have proved ∀x(A(x) → B(x)) and A(t), for some
formulas A(x), B(x) and some closed term t.

We know we can derive B(t) from this:

1 ∀x(A(x) → B(x)) (got this somehow)
2 A(t) (this too)
3 A(t) → B(t) ∀E(1)

4 B(t) →E(2, 3)

So let’s just do it in 1 step:

1 ∀x(A(x) → B(x)) (got this somehow)
2 A(t) (this too)
3 B(t) ∀→E(2, 1)

215

Example of ∀→E in action

Show ∀x∀y(P (x, y) → Q(x, y)), ∃xP (x, a) ⊢ ∃yQ(y, a).

1 ∀x∀y(P (x, y) → Q(x, y)) given
2 ∃xP (x, a) given

3 P (c, a) ass
4 Q(c, a) ∀→E(3, 1)

5 ∃yQ(y, a) ∃I(4)

6 ∃yQ(y, a) ∃E(2, 3, 5)

We used ∀→E on 2 ∀s at once. This is even more useful.

216

Rules for equality

• Reflexivity of equality (refl).
Whenever you feel like it, you can introduce the sentence t = t,
for any closed L-term t and for any L you like.

... bla bla bla
1 t = t refl

(Idea: any L-structure makes t = t true, so this is sound.)

217

More rules for equality

• Substitution of equal terms (=sub).
If A(x) is a formula, t, u are closed terms, you’ve proved A(t),
and you’ve also proved either t = u or u = t, you can go on to
write down A(u).

1 A(t) got this somehow. . .

2
... yatter yatter yatter

3 t = u . . . and this
4 A(u) =sub(1, 3)

(Idea: if t, u are equal, there’s no harm in replacing t by u as the
value of x in A.)

218

Examples with equality. . .

Show c = d ⊢ d = c. (c, d are constants.)

1 c = d given
2 d = d refl
3 d = c =sub(2, 1)

This is often useful, so make it a derived rule:

1 c = d given
2 d = c =sym(1)

219

More examples with equality. . .

Show ⊢ ∀x∃y(y = f(x)).

1 c ∀I const
2 f(c) = f(c) refl
3 ∃y(y = f(c)) ∃I(2)

4 ∀x∃y(y = f(x)) ∀I(1, 3)

English: For any object c, we have f(c) = f(c) — f(c) is the same as
itself.
So for any c, there is something equal to f(c) — namely, f(c) itself!
So for any c, we have ∃y(y = f(c)).

Since c was arbitrary, we get ∀x∃y(y = f(x)).

220

Harder example

Show ∃x∀y(P (y) → y = x), ∀xP (f(x)) ⊢ ∃x(x = f(x)).

1 ∃x∀y(P (y) → y = x) given
2 ∀xP (f(x)) given

3 ∀y(P (y) → y = c) ass
4 P (f(c)) ∀E(2)

5 f(c) = c ∀→E(4, 3)

6 c = f(c) =sym(5)

7 ∃x(x = f(x)) ∃I(6)

8 ∃x(x = f(x)) ∃E(1, 3, 7)

English: assume there is an object c such that all objects a satisfying
P (if any) are equal to c, and for any object b, f(b) satisfies P .

Taking ‘b’ to be c, f(c) satisfies P , so f(c) is equal to c.

So c is equal to f(c).

As c = f(c), we obviously get ∃x(x = f(x)).

221

Final remarks

Now you’ve done sets, relations, and functions in other courses(?),
here’s what an L-structure M really is.

It consists of the following items:
• a non-empty set, dom(M)

• for each constant c ∈ L,
an element cM ∈ dom(M)

• for each n-ary function symbol f ∈ L, an n-ary function
fM : dom(M)n → dom(M)

• for each n-ary relation symbol R ∈ L, an n-ary relation RM on
dom(M) — that is, RM ⊆ dom(M)n.

Recall for a set S, Sn is

n times
︷ ︸︸ ︷

S × S × · · · × S.

Another name for a relation (symbol) is a predicate (symbol).

222

What we did (all can be in Xmas test!)

Propositional logic• Syntax
Literals, clauses (see Prolog next term!)

• Semantics
• English–logic translations
• Arguments, validity

– †truth tables
– direct reasoning
– equivalences, †normal forms
– natural deduction

Classical first-order predicate logic
same again (except †), plus
• Many-sorted logic
• Specifications, pre- and post-conditions (continued in Reasoning

about Programs)

223

Some of what we didn’t do. . .

• normal forms for first-order logic

• proof of soundness or completeness for natural deduction

• theories, compactness, non-standard models, interpolation

• Gödel’s theorem

• non-classical logics, eg. intuitionisitic logic, linear logic, modal &
temporal logic

• finite structures and computational complexity

• automated theorem proving

Do the 2nd and 4th years for some of these.

224

Modern logic at research level

• Advanced computing uses classical, modal, temporal, and
dynamic logics. Applications in AI, to specify and verify chips, in
databases, concurrent and distributed systems, multi-agent
systems, protocols, knowledge representation, . . . Theoretical
computing (complexity, finite model theory) need logic.

• In mathematics, logic is studied in set theory, model theory,
including non-standard analysis, and recursion theory. Each of
these is an entire field, with dozens or hundreds of research
workers.

• In philosophy, logic is studied for its contribution to formalising
truth, validity, argument, in many settings: eg, involving time, or
other possible worlds.

• Logic provides the foundation for several modern theories in
linguistics. This is nowadays relevant to computing.

225

