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Artificial intelligence (AI) is the intelligence of machines and the branch of computer 
science which aims to create it. Major AI textbooks define the field as "the study and design 
of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment 
and takes actions which maximize its chances of success.[2] John McCarthy, who coined the 
term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4] 

The field was founded on the claim that a central property of human beings, intelligence—the 
sapience of Homo sapiens—can be so precisely described that it can be simulated by a 
machine.[5] This raises philosophical issues about the nature of the mind and limits of 
scientific hubris, issues which have been addressed by myth, fiction and philosophy since 
antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has 
suffered stunning setbacks[8] and, today, has become an essential part of the technology 
industry, providing the heavy lifting for many of the most difficult problems in computer 
science. 

AI research is highly technical and specialized, so much so that some critics decry the 
"fragmentation" of the field.[9] Subfields of AI are organized around particular problems, the 
application of particular tools and around long standing theoretical differences of opinion. The 
central problems of AI include such traits as reasoning, knowledge, planning, learning, 
communication, perception and the ability to move and manipulate objects.[10] General 
intelligence (or "strong AI") is still a long term goal of (some) research.[11] 
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Perspectives on AI 

AI in myth, fiction and speculation 
Main articles: Artificial intelligence in fiction, Ethics of artificial intelligence, 
Transhumanism, and Technological singularity 

Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the 
golden robots of Hephaestus and Pygmalion's Galatea.[12] Human likenesses believed to have 
intelligence were built in many ancient societies; some of the earliest being the sacred statues 
worshipped in Egypt and Greece,[13][14] and including the machines of Yan Shi,[15] Hero of 
Alexandria,[16] Al-Jazari[17] or Wolfgang von Kempelen.[18] It was widely believed that 
artificial beings had been created by Geber,[19] Judah Loew[20] and Paracelsus.[21] Stories of 
these creatures and their fates discuss many of the same hopes, fears and ethical concerns that 
are presented by artificial intelligence.[6] 

Mary Shelley's Frankenstein,[22] considers a key issue in the ethics of artificial intelligence: if 
a machine can be created that has intelligence, could it also feel? If it can feel, does it have the 
same rights as a human being? The idea also appears in modern science fiction: the film 
Artificial Intelligence: A.I. considers a machine in the form of a small boy which has been 
given the ability to feel human emotions, including, tragically, the capacity to suffer. This 
issue, now known as "robot rights", is currently being considered by, for example, California's 
Institute for the Future,[23] although many critics believe that the discussion is premature.[24] 

Another issue explored by both science fiction writers and futurists is the impact of artificial 
intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a 
comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With 
Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human 
abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the 
Foundation Series). Academic sources have considered such consequences as: a decreased 
demand for human labor;[25] the enhancement of human ability or experience;[26] and a need 
for redefinition of human identity and basic values.[27] 

Several futurists argue that artificial intelligence will transcend the limits of progress and 
fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the 
relentless exponential improvement in digital technology with uncanny accuracy) to calculate 
that desktop computers will have the same processing power as human brains by the year 
2029, and that by 2045 artificial intelligence will reach a point where it is able to improve 
itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction 
writer Vernor Vinge named the "technological singularity".[26] Edward Fredkin argues that 
"artificial intelligence is the next stage in evolution,"[28] an idea first proposed by Samuel 
Butler's Darwin Among the Machines (1863), and expanded upon by George Dyson in his 
book of the same name in 1998. Several futurists and science fiction writers have predicted 
that human beings and machines will merge in the future into cyborgs that are more capable 
and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley 
and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist 
Kevin Warwick and inventor Ray Kurzweil.[26] Transhumanism has been illustrated in fiction 
as well, for example in the manga Ghost in the Shell and the science fiction series Dune. 
Pamela McCorduck writes that these scenarios are expressions of an ancient human desire to, 
as she calls it, "forge the gods."[6] 



History of AI research 
Main articles: history of artificial intelligence and timeline of artificial intelligence 

In the middle of the 20th century, a handful of scientists began a new approach to building 
intelligent machines, based on recent discoveries in neurology, a new mathematical theory of 
information, an understanding of control and stability called cybernetics, and above all, by the 
invention of the digital computer, a machine based on the abstract essence of mathematical 
reasoning.[29] 

The field of modern AI research was founded at a conference on the campus of Dartmouth 
College in the summer of 1956.[30] Those who attended would become the leaders of AI 
research for many decades, especially John McCarthy, Marvin Minsky, Allen Newell and 
Herbert Simon, who founded AI laboratories at MIT, CMU and Stanford. They and their 
students wrote programs that were, to most people, simply astonishing:[31] computers were 
solving word problems in algebra, proving logical theorems and speaking English.[32] By the 
middle 60s their research was heavily funded by the U.S. Department of Defense[33] and they 
were optimistic about the future of the new field: 

• 1965, H. A. Simon: "[M]achines will be capable, within twenty years, of doing any 
work a man can do"[34] 

• 1967, Marvin Minsky: "Within a generation ... the problem of creating 'artificial 
intelligence' will substantially be solved."[35] 

These predictions, and many like them, would not come true. They had failed to recognize the 
difficulty of some of the problems they faced.[36] In 1974, in response to the criticism of 
England's Sir James Lighthill and ongoing pressure from Congress to fund more productive 
projects, the U.S. and British governments cut off all undirected, exploratory research in AI. 
This was the first AI winter.[37] 

In the early 80s, AI research was revived by the commercial success of expert systems[38] (a 
form of AI program that simulated the knowledge and analytical skills of one or more human 
experts). By 1985 the market for AI had reached more than a billion dollars and governments 
around the world poured money back into the field.[39] However, just a few years later, 
beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into 
disrepute, and a second, more lasting AI winter began.[40] 

In the 90s and early 21st century AI achieved its greatest successes, albeit somewhat behind 
the scenes. Artificial intelligence was adopted throughout the technology industry, providing 
the heavy lifting for logistics, data mining, medical diagnosis and many other areas.[41] The 
success was due to several factors: the incredible power of computers today (see Moore's 
law), a greater emphasis on solving specific subproblems, the creation of new ties between AI 
and other fields working on similar problems, and above all a new commitment by researchers 
to solid mathematical methods and rigorous scientific standards.[42] 

 
 



Philosophy of AI 

 
Mind and Brain portal 

Main article: philosophy of artificial intelligence 

Artificial intelligence, by claiming to be able to recreate the capabilities of the human mind, is 
both a challenge and an inspiration for philosophy. Are there limits to how intelligent 
machines can be? Is there an essential difference between human intelligence and artificial 
intelligence? Can a machine have a mind and consciousness? A few of the most influential 
answers to these questions are given below.[43] 

Turing's "polite convention" 
If a machine acts as intelligently as a human being, then it is as intelligent as a human 
being. Alan Turing theorized that, ultimately, we can only judge the intelligence of 
machine based on its behavior. This theory forms the basis of the Turing test.[44] 

The Dartmouth proposal 
"Every aspect of learning or any other feature of intelligence can be so precisely 
described that a machine can be made to simulate it." This assertion was printed in the 
proposal for the Dartmouth Conference of 1956, and represents the position of most 
working AI researchers.[5] 

Newell and Simon's physical symbol system hypothesis 
"A physical symbol system has the necessary and sufficient means of general 
intelligent action." This statement claims that the essence of intelligence is symbol 
manipulation.[45] Hubert Dreyfus argued that, on the contrary, human expertise 
depends on unconscious instinct rather than conscious symbol manipulation and on 
having a "feel" for the situation rather than explicit symbolic knowledge.[46][47] 

Gödel's incompleteness theorem 
A formal system (such as a computer program) can not prove all true statements. 
Roger Penrose is among those who claim that Gödel's theorem limits what machines 
can do.[48][49] 

Searle's strong AI hypothesis 
"The appropriately programmed computer with the right inputs and outputs would 
thereby have a mind in exactly the same sense human beings have minds."[50] Searle 
counters this assertion with his Chinese room argument, which asks us to look inside 
the computer and try to find where the "mind" might be.[51] 

The artificial brain argument 
The brain can be simulated. Hans Moravec, Ray Kurzweil and others have argued that 
it is technologically feasible to copy the brain directly into hardware and software, and 
that such a simulation will be essentially identical to the original. This argument 
combines the idea that a suitably powerful machine can simulate any process, with the 
materialist idea that the mind is the result of physical processes in the brain.[52] 

 
 
 
 



AI research 

In the 21st century, AI research has become highly specialized and technical. It is deeply 
divided into subfields that often fail to communicate with each other.[9] Subfields have grown 
up around particular institutions, the work of particular researchers, particular problems (listed 
below), long standing differences of opinion about how AI should be done (listed as 
"approaches" below) and the application of widely differing tools (see tools of AI, below). 

Problems of AI 

The problem of simulating (or creating) intelligence has been broken down into a number of 
specific sub-problems. These consist of particular traits or capabilities that researchers would 
like an intelligent system to display. The traits described below have received the most 
attention.[10] 

Deduction, reasoning, problem solving 

Early AI researchers developed algorithms that imitated the step-by-step reasoning that 
human beings use when they solve puzzles, play board games or make logical deductions.[53] 
By the late 80s and 90s, AI research had also developed highly successful methods for dealing 
with uncertain or incomplete information, employing concepts from probability and 
economics.[54] 

For difficult problems, most of these algorithms can require enormous computational 
resources — most experience a "combinatorial explosion": the amount of memory or 
computer time required becomes astronomical when the problem goes beyond a certain size. 
The search for more efficient problem solving algorithms is a high priority for AI research.[55] 

Human beings solve most of their problems using fast, intuitive judgments rather than the 
conscious, step-by-step deduction that early AI research was able to model.[56] AI has made 
some progress at imitating this kind of "sub-symbolic" problem solving: embodied 
approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net 
research attempts to simulate the structures inside human and animal brains that gives rise to 
this skill. 

 

Knowledge representation 

Main articles: knowledge representation and commonsense knowledge 

Knowledge representation[57] and knowledge engineering[58] are central to AI research. Many 
of the problems machines are expected to solve will require extensive knowledge about the 
world. Among the things that AI needs to represent are: objects, properties, categories and 
relations between objects;[59] situations, events, states and time;[60] causes and effects;[61] 
knowledge about knowledge (what we know about what other people know);[62] and many 
other, less well researched domains. A complete representation of "what exists" is an 
ontology[63] (borrowing a word from traditional philosophy), of which the most general are 
called upper ontologies. 



Among the most difficult problems in knowledge representation are: 

Default reasoning and the qualification problem 
Many of the things people know take the form of "working assumptions." For 
example, if a bird comes up in conversation, people typically picture an animal that is 
fist sized, sings, and flies. None of these things are true about all birds. John McCarthy 
identified this problem in 1969[64] as the qualification problem: for any commonsense 
rule that AI researchers care to represent, there tend to be a huge number of 
exceptions. Almost nothing is simply true or false in the way that abstract logic 
requires. AI research has explored a number of solutions to this problem.[65] 

The breadth of commonsense knowledge 
The number of atomic facts that the average person knows is astronomical. Research 
projects that attempt to build a complete knowledge base of commonsense knowledge 
(e.g., Cyc) require enormous amounts of laborious ontological engineering — they 
must be built, by hand, one complicated concept at a time.[66] 

The subsymbolic form of some commonsense knowledge 
Much of what people know isn't represented as "facts" or "statements" that they could 
actually say out loud. For example, a chess master will avoid a particular chess 
position because it "feels too exposed"[67] or an art critic can take one look at a statue 
and instantly realize that it is a fake.[68] These are intuitions or tendencies that are 
represented in the brain non-consciously and sub-symbolically. Knowledge like this 
informs, supports and provides a context for symbolic, conscious knowledge. As with 
the related problem of sub-symbolic reasoning, it is hoped that situated AI or 
computational intelligence will provide ways to represent this kind of knowledge.[69] 

 

Planning 

Main article: automated planning and scheduling 

Intelligent agents must be able to set goals and achieve them.[70] They need a way to visualize 
the future (they must have a representation of the state of the world and be able to make 
predictions about how their actions will change it) and be able to make choices that maximize 
the utility (or "value") of the available choices.[71] 

In some planning problems, the agent can assume that it is the only thing acting on the world 
and it can be certain what the consequences of its actions may be.[72] However, if this is not 
true, it must periodically check if the world matches its predictions and it must change its plan 
as this becomes necessary, requiring the agent to reason under uncertainty.[73] 

Multi-agent planning uses the cooperation and competition of many agents to achieve a given 
goal. Emergent behavior such as this is used by evolutionary algorithms and swarm 
intelligence.[74] 

 

 

 



Learning 

Main article: machine learning 

Machine learning[75] has been central to AI research from the beginning.[76] Unsupervised 
learning is the ability to find patterns in a stream of input. Supervised learning includes both 
classification (be able to determine what category something belongs in, after seeing a 
number of examples of things from several categories) and regression (given a set of 
numerical input/output examples, discover a continuous function that would generate the 
outputs from the inputs). In reinforcement learning[77] the agent is rewarded for good 
responses and punished for bad ones. These can be analyzed in terms of decision theory, using 
concepts like utility. The mathematical analysis of machine learning algorithms and their 
performance is a branch of theoretical computer science known as computational learning 
theory. 

 

Natural language processing 

Main article: natural language processing 

Natural language processing[78] gives machines the ability to read and understand the 
languages that the human beings speak. Many researchers hope that a sufficiently powerful 
natural language processing system would be able to acquire knowledge on its own, by 
reading the existing text available over the internet. Some straightforward applications of 
natural language processing include information retrieval (or text mining) and machine 
translation.[79] 

 

Motion and manipulation 

 
 

ASIMO uses sensors and intelligent algorithms to avoid obstacles and navigate stairs. 
Main article: robotics 

The field of robotics[80] is closely related to AI. Intelligence is required for robots to be able to 
handle such tasks as object manipulation[81] and navigation, with sub-problems of localization 
(knowing where you are), mapping (learning what is around you) and motion planning 
(figuring out how to get there).[82] 

 



Perception 

Main articles: machine perception, computer vision, and speech recognition 

Machine perception[83] is the ability to use input from sensors (such as cameras, microphones, 
sonar and others more exotic) to deduce aspects of the world. Computer vision[84] is the ability 
to analyze visual input. A few selected subproblems are speech recognition,[85] facial 
recognition and object recognition.[86] 

Social intelligence 

Main article: affective computing 

 
 

Kismet, a robot with rudimentary social skills. 

Emotion and social skills play two roles for an intelligent agent:[87] 

• It must be able to predict the actions of others, by understanding their motives and 
emotional states. (This involves elements of game theory, decision theory, as well as 
the ability to model human emotions and the perceptual skills to detect emotions.) 

• For good human-computer interaction, an intelligent machine also needs to display 
emotions — at the very least it must appear polite and sensitive to the humans it 
interacts with. At best, it should appear to have normal emotions itself. 

Creativity 

Main article: computational creativity 

A sub-field of AI addresses creativity both theoretically (from a philosophical and 
psychological perspective) and practically (via specific implementations of systems that 
generate outputs that can be considered creative). 

General intelligence 

Main articles: strong AI and AI-complete 

Most researchers hope that their work will eventually be incorporated into a machine with 
general intelligence (known as strong AI), combining all the skills above and exceeding 
human abilities at most or all of them.[11] A few believe that anthropomorphic features like 
artificial consciousness or an artificial brain may be required for such a project.[88] 



Many of the problems above are considered AI-complete: to solve one problem, you must 
solve them all. For example, even a straightforward, specific task like machine translation 
requires that the machine follow the author's argument (reason), know what it's talking about 
(knowledge), and faithfully reproduce the author's intention (social intelligence). Machine 
translation, therefore, is believed to be AI-complete: it may require strong AI to be done as 
well as humans can do it.[89] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Approaches to AI 

There is no established unifying theory or paradigm that guides AI research. Researchers 
disagree about many issues. A few of the most long standing questions that have remained 
unanswered are these: Can intelligence be reproduced using high-level symbols, similar to 
words and ideas? Or does it require "sub-symbolic" processing?[90] Should artificial 
intelligence simulate natural intelligence, by studying human psychology or animal 
neurobiology? Or is human biology as irrelevant to AI research as bird biology is to 
aeronautical engineering?[91] Can intelligent behavior be described using simple, elegant 
principles (such as logic or optimization)? Or does artificial intelligence necessarily require 
solving many unrelated problems?[92] 

Cybernetics and brain simulation 

 
 

The human brain provides inspiration for artificial intelligence researchers, however there is 
no consensus on how closely it should be simulated. 

In the 40s and 50s, a number of researchers explored the connection between neurology, 
information theory, and cybernetics. Some of them built machines that used electronic 
networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns 
Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society 
at Princeton University and the Ratio Club in England.[29] 

Traditional symbolic AI 

When access to digital computers became possible in the middle 1950s, AI research began to 
explore the possibility that human intelligence could be reduced to symbol manipulation. The 
research was centered in three institutions: CMU, Stanford and MIT, and each one developed 
its own style of research. John Haugeland named these approaches to AI "good old fashioned 
AI" or "GOFAI".[93] 

Cognitive simulation 
Economist Herbert Simon and Alan Newell studied human problem solving skills and 
attempted to formalize them, and their work laid the foundations of the field of 
artificial intelligence, as well as cognitive science, operations research and 



management science. Their research team performed psychological experiments to 
demonstrate the similarities between human problem solving and the programs (such 
as their "General Problem Solver") they were developing. This tradition, centered at 
Carnegie Mellon University would eventually culminate in the development of the 
Soar architecture in the middle 80s.[94][95] 

Logical AI 
Unlike Newell and Simon, John McCarthy felt that machines did not need to simulate 
human thought, but should instead try to find the essence of abstract reasoning and 
problem solving, regardless of whether people used the same algorithms.[96] His 
laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of 
problems, including knowledge representation, planning and learning.[97] Logic was 
also focus of the work at the University of Edinburgh and elsewhere in Europe which 
led to the development of the programming language Prolog and the science of logic 
programming.[98] 

"Scruffy" symbolic AI 
Researchers at MIT (such as Marvin Minsky and Seymour Papert) found that solving 
difficult problems in vision and natural language processing required ad-hoc solutions 
– they argued that there was no simple and general principle (like logic) that would 
capture all the aspects of intelligent behavior. Roger Schank described their "anti-
logic" approaches as "scruffy" (as opposed to the "neat" paradigms at CMU and 
Stanford).[99][92] Commonsense knowledge bases (such as Doug Lenat's Cyc) are an 
example of "scruffy" AI, since they must be built by hand, one complicated concept at 
a time.[100] 

Knowledge based AI 
When computers with large memories became available around 1970, researchers 
from all three traditions began to build knowledge into AI applications.[101] This 
"knowledge revolution" led to the development and deployment of expert systems 
(introduced by Edward Feigenbaum), the first truly successful form of AI software.[38] 
The knowledge revolution was also driven by the realization that truly enormous 
amounts of knowledge would be required by many simple AI applications. 

Sub-symbolic AI 

During the 1960s, symbolic approaches had achieved great success at simulating high-level 
thinking in small demonstration programs. Approaches based on cybernetics or neural 
networks were abandoned or pushed into the background.[102] By the 1980s, however, 
progress in symbolic AI seemed to stall and many believed that symbolic systems would 
never be able to imitate all the processes of human cognition, especially perception, robotics, 
learning and pattern recognition. A number of researchers began to look into "sub-symbolic" 
approaches to specific AI problems.[90] 

Bottom-up, embodied, situated, behavior-based or nouvelle AI 
Researchers from the related field of robotics, such as Rodney Brooks, rejected 
symbolic AI and focussed on the basic engineering problems that would allow robots 
to move and survive.[103] Their work revived the non-symbolic viewpoint of the early 
cybernetics researchers of the 50s and reintroduced the use of control theory in AI. 
These approaches are also conceptually related to the embodied mind thesis. 

Computational Intelligence 
Interest in neural networks and "connectionism" was revived by David Rumelhart and 
others in the middle 1980s.[104] These and other sub-symbolic approaches, such as 



fuzzy systems and evolutionary computation, are now studied collectively by the 
emerging discipline of computational intelligence.[105] 

Formalisation 
In the 1990s, AI researchers developed sophisticated mathematical tools to solve 
specific subproblems. These tools are truly scientific, in the sense that their results are 
both measurable and verifiable, and they have been responsible for many of AI's 
recent successes. The shared mathematical language has also permitted a high level of 
collaboration with more established fields (like mathematics, economics or operations 
research). Russell & Norvig (2003) describe this movement as nothing less than a 
"revolution" and "the victory of the neats."[42] 

Intelligent agent paradigm 

The "intelligent agent" paradigm became widely accepted during the 1990s.[106] An intelligent 
agent is a system that perceives its environment and takes actions which maximizes its 
chances of success. The simplest intelligent agents are programs that solve specific problems. 
The most complicated intelligent agents are rational, thinking human beings.[107] The 
paradigm gives researchers license to study isolated problems and find solutions that are both 
verifiable and useful, without agreeing on one single approach. An agent that solves a specific 
problem can use any approach that works — some agents are symbolic and logical, some are 
sub-symbolic neural networks and others may use new approaches. The paradigm also gives 
researchers a common language to communicate with other fields—such as decision theory 
and economics—that also use concepts of abstract agents. 

Integrating the approaches 

An agent architecture or cognitive architecture allows researchers to build more versatile and 
intelligent systems out of interacting intelligent agents in a multi-agent system.[108] A system 
with both symbolic and sub-symbolic components is a hybrid intelligent system, and the study 
of such systems is artificial intelligence systems integration. A hierarchical control system 
provides a bridge between sub-symbolic AI at its lowest, reactive levels and traditional 
symbolic AI at its highest levels, where relaxed time constraints permit planning and world 
modelling.[109] Rodney Brooks' subsumption architecture was an early proposal for such a 
hierarchical system. 



Tools of AI research 

In the course of 50 years of research, AI has developed a large number of tools to solve the 
most difficult problems in computer science. A few of the most general of these methods are 
discussed below. 

Search and optimization 

Main articles: search algorithm, optimization (mathematics), and evolutionary 
computation 

Many problems in AI can be solved in theory by intelligently searching through many 
possible solutions:[110] Reasoning can be reduced to performing a search. For example, logical 
proof can be viewed as searching for a path that leads from premises to conclusions, where 
each step is the application of an inference rule.[111] Planning algorithms search through trees 
of goals and subgoals, attempting to find a path to a target goal, a process called means-ends 
analysis.[112] Robotics algorithms for moving limbs and grasping objects use local searches in 
configuration space.[81] Many learning algorithms use search algorithms based on 
optimization. 

Simple exhaustive searches[113] are rarely sufficient for most real world problems: the search 
space (the number of places to search) quickly grows to astronomical numbers. The result is a 
search that is too slow or never completes. The solution, for many problems, is to use 
"heuristics" or "rules of thumb" that eliminate choices that are unlikely to lead to the goal 
(called "pruning the search tree"). Heuristics supply the program with a "best guess" for what 
path the solution lies on.[114] 

A very different kind of search came to prominence in the 1990s, based on the mathematical 
theory of optimization. For many problems, it is possible to begin the search with some form 
of a guess and then refine the guess incrementally until no more refinements can be made. 
These algorithms can be visualized as blind hill climbing: we begin the search at a random 
point on the landscape, and then, by jumps or steps, we keep moving our guess uphill, until 
we reach the top. Other optimization algorithms are simulated annealing, beam search and 
random optimization.[115] 

Evolutionary computation uses a form of optimization search. For example, they may begin 
with a population of organisms (the guesses) and then allow them to mutate and recombine, 
selecting only the fittest to survive each generation (refining the guesses). Forms of 
evolutionary computation include swarm intelligence algorithms (such as ant colony or 
particle swarm optimization)[116] and evolutionary algorithms (such as genetic algorithms[117] 
and genetic programming[118][119]). 

Logic 

Main articles: logic programming and automated reasoning 

Logic[120] was introduced into AI research by John McCarthy in his 1958 Advice Taker 
proposal. The most important technical development was J. Alan Robinson's discovery of the 
resolution and unification algorithm for logical deduction in 1963. This procedure is simple, 
complete and entirely algorithmic, and can easily be performed by digital computers.[121] 



However, a naive implementation of the algorithm quickly leads to a combinatorial explosion 
or an infinite loop. In 1974, Robert Kowalski suggested representing logical expressions as 
Horn clauses (statements in the form of rules: "if p then q"), which reduced logical deduction 
to backward chaining or forward chaining. This greatly alleviated (but did not eliminate) the 
problem.[111][122] 

Logic is used for knowledge representation and problem solving, but it can be applied to other 
problems as well. For example, the satplan algorithm uses logic for planning,[123] and 
inductive logic programming is a method for learning.[124] There are several different forms of 
logic used in AI research. 

• Propositional or sentential logic[125] is the logic of statements which can be true or 
false. 

• First-order logic[126] also allows the use of quantifiers and predicates, and can express 
facts about objects, their properties, and their relations with each other. 

• Fuzzy logic, a version of first-order logic which allows the truth of a statement to be 
represented as a value between 0 and 1, rather than simply True (1) or False (0). Fuzzy 
systems can be used for uncertain reasoning and have been widely used in modern 
industrial and consumer product control systems.[127] 

• Default logics, non-monotonic logics and circumscription are forms of logic designed 
to help with default reasoning and the qualification problem.[65] 

• Several extensions of logic have been designed to handle specific domains of 
knowledge, such as: description logics;[59] situation calculus, event calculus and fluent 
calculus (for representing events and time);[60] causal calculus;[61] belief calculus; and 
modal logics.[62] 

Probabilistic methods for uncertain reasoning 

Main articles: Bayesian network, hidden Markov model, Kalman filter, decision 
theory, and utility theory 

Many problems in AI (in reasoning, planning, learning, perception and robotics) require the 
agent to operate with incomplete or uncertain information. Starting in the late 80s and early 
90s, Judea Pearl and others championed the use of methods drawn from probability theory 
and economics to devise a number of powerful tools to solve these problems.[128][129] 

Bayesian networks[130] are a very general tool that can be used for a large number of 
problems: reasoning (using the Bayesian inference algorithm),[131] learning (using the 
expectation-maximization algorithm),[132] planning (using decision networks)[133] and 
perception (using dynamic Bayesian networks).[134] 

Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding 
explanations for streams of data, helping perception systems to analyze processes that occur 
over time[135] (e.g., hidden Markov models[136] and Kalman filters[137]). 

A key concept from the science of economics is "utility": a measure of how valuable 
something is to an intelligent agent. Precise mathematical tools have been developed that 
analyze how an agent can make choices and plan, using decision theory, decision analysis,[138] 
information value theory.[71] These tools include models such as Markov decision 
processes,[139] dynamic decision networks,[139] game theory and mechanism design[140] 



Classifiers and statistical learning methods 

Main articles: classifier (mathematics), statistical classification, and machine 
learning 

The simplest AI applications can be divided into two types: classifiers ("if shiny then 
diamond") and controllers ("if shiny then pick up"). Controllers do however also classify 
conditions before inferring actions, and therefore classification forms a central part of many 
AI systems. 

Classifiers[141] are functions that use pattern matching to determine a closest match. They can 
be tuned according to examples, making them very attractive for use in AI. These examples 
are known as observations or patterns. In supervised learning, each pattern belongs to a 
certain predefined class. A class can be seen as a decision that has to be made. All the 
observations combined with their class labels are known as a data set. 

When a new observation is received, that observation is classified based on previous 
experience. A classifier can be trained in various ways; there are many statistical and machine 
learning approaches. 

A wide range of classifiers are available, each with its strengths and weaknesses. Classifier 
performance depends greatly on the characteristics of the data to be classified. There is no 
single classifier that works best on all given problems; this is also referred to as the "no free 
lunch" theorem. Various empirical tests have been performed to compare classifier 
performance and to find the characteristics of data that determine classifier performance. 
Determining a suitable classifier for a given problem is however still more an art than science. 

The most widely used classifiers are the neural network,[142] kernel methods such as the 
support vector machine,[143] k-nearest neighbor algorithm,[144] Gaussian mixture model,[145] 
naive Bayes classifier,[146] and decision tree.[147] The performance of these classifiers have 
been compared over a wide range of classification tasks[148] in order to find data 
characteristics that determine classifier performance. 

Neural networks 

Main articles: neural networks and connectionism 

 
 

A neural network is an interconnected group of nodes, akin to the vast network of neurons in 
the human brain. 



The study of artificial neural networks[142] began in the decade before the field AI research 
was founded. In the 1960s Frank Rosenblatt developed an important early version, the 
perceptron.[149] Paul Werbos developed the backpropagation algorithm for multilayer 
perceptrons in 1974,[150] which led to a renaissance in neural network research and 
connectionism in general in the middle 1980s. The Hopfield net, a form of attractor network, 
was first described by John Hopfield in 1982. 

Common network architectures which have been developed include the feedforward neural 
network, the radial basis network, the Kohonen self-organizing map and various recurrent 
neural networks.[citation needed] Neural networks are applied to the problem of learning, using 
such techniques as Hebbian learning, competitive learning[151] and the relatively new 
architectures of Hierarchical Temporal Memory and Deep Belief Networks. 

Control theory 

Main article: intelligent control 

Control theory, the grandchild of cybernetics, has many important applications, especially in 
robotics.[152] 

Specialized languages 

AI researchers have developed several specialized languages for AI research: 

• IPL[153] includes features intended to support programs that could perform general 
problem solving, including lists, associations, schemas (frames), dynamic memory 
allocation, data types, recursion, associative retrieval, functions as arguments, 
generators (streams), and cooperative multitasking. 

• Lisp[154][155] is a practical mathematical notation for computer programs based on 
lambda calculus. Linked lists are one of Lisp languages' major data structures, and 
Lisp source code is itself made up of lists. As a result, Lisp programs can manipulate 
source code as a data structure, giving rise to the macro systems that allow 
programmers to create new syntax or even new domain-specific programming 
languages embedded in Lisp. There are many dialects of Lisp in use today. 

• Prolog[156][122] is a declarative language where programs are expressed in terms of 
relations, and execution occurs by running queries over these relations. Prolog is 
particularly useful for symbolic reasoning, database and language parsing applications. 
Prolog is widely used in AI today. 

• STRIPS is a language for expressing automated planning problem instances. It 
expresses an initial state, the goal states, and a set of actions. For each action 
preconditions (what must be established before the action is performed) and 
postconditions (what is established after the action is performed) are specified. 

• Planner is a hybrid between procedural and logical languages. It gives a procedural 
interpretation to logical sentences where implications are interpreted with pattern-
directed inference. 

AI applications are also often written in standard languages like C++ and languages designed 
for mathematics, such as Matlab and Lush. 



Evaluating artificial intelligence 
Main article: Progress in artificial intelligence 

How can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general 
procedure to test the intelligence of an agent now known as the Turing test. This procedure 
allows almost all the major problems of artificial intelligence to be tested. However, it is a 
very difficult challenge and at present all agents fail. 

Artificial intelligence can also be evaluated on specific problems such as small problems in 
chemistry, hand-writing recognition and game-playing. Such tests have been termed subject 
matter expert Turing tests. Smaller problems provide more achievable goals and there are an 
ever-increasing number of positive results. 

The broad classes of outcome for an AI test are: 

• optimal: it is not possible to perform better 
• strong super-human: performs better than all humans 
• super-human: performs better than most humans 
• sub-human: performs worse than most humans 

For example, performance at checkers (draughts) is optimal,[157] performance at chess is 
super-human and nearing strong super-human,[158] and performance at many everyday tasks 
performed by humans is sub-human. 

Competitions and prizes 
Main article: Competitions and prizes in artificial intelligence 

There are a number of competitions and prizes to promote research in artificial intelligence. 
The main areas promoted are: general machine intelligence, conversational behaviour, data-
mining, driverless cars, robot soccer and games. 

 

 

 

 

 

 

 



Applications of artificial intelligence 
Main article: Applications of artificial intelligence 

Artificial intelligence has successfully been used in a wide range of fields including medical 
diagnosis, stock trading, robot control, law, scientific discovery, video games and toys. 
Frequently, when a technique reaches mainstream use it is no longer considered artificial 
intelligence, sometimes described as the AI effect.[159] It may also become integrated into 
artificial life. 

See also 

• List of AI projects 
• List of AI researchers 
• List of emerging technologies 
• List of basic artificial intelligence topics 
• List of important AI publications 

Notes 

1. ^ Poole, Mackworth & Goebel 1998, p. 1 (who use the term "computational 
intelligence" as a synonym for artificial intelligence). Other textbooks that define AI 
this way include Nilsson (1998), and Russell & Norvig (2003) (who prefer the term 
"rational agent") and write "The whole-agent view is now widely accepted in the 
field" Template:Harvy 

2. ^ This definition, in terms of goals, actions, perception and environment, is due to 
Russell & Norvig (2003). Other definitions also include knowledge and learning as 
additional criteria. 

3. ^ Although there is some controversy on this point (see Crevier 1993, p. 50), 
McCarthy states unequivocally "I came up with the term" in a c|net interview. (See 
Getting Machines to Think Like Us.) 

4. ^ See John McCarthy, What is Artificial Intelligence? 
5. ^ a b Dartmouth proposal:  

o McCarthy et al. 1955 
6. ^ a b c This is a central idea of Pamela McCorduck's Machines That Think. She writes: 

"I like to think of artificial intelligence as the scientific apotheosis of a veneralbe 
cultural tradition." (McCorduck 2004, p. 34) "Artificial intelligence in one form or 
another is an idea that has pervaded Western intellectual history, a dream in urgent 
need of being realized." (McCorduck 2004, p. xviii) "Our history is full of attempts—
nutty, eerie, comical, earnest, legendary and real—to make artificial intelligences, to 
reproduce what is the essential us—bypassing the ordinary means. Back and forth 
between myth and reality, our imaginations supplying what our workshops couldn't, 
we have engaged for a long time in this odd form of self-reproduction." (McCorduck 
2004, p. 3) She traces the desire back to its Hellenistic roots and calls it the urge to 
"forge the Gods." (McCorduck 2004, p. 340-400) 

7. ^ The optimism referred to includes the predictions of early AI researchers (see 
optimism in the history of AI) as well as the ideas of modern transhumanists such as 
Ray Kurzweil. 



8. ^ The "setbacks" referred to include the ALPAC report of 1966, the abandonment of 
perceptrons in 1970, the the Lighthill Report of 1973 and the collapse of the lisp 
machine market in 1987. 

9. ^ a b Fractioning of AI into subfields:  
o McCorduck 2004, pp. 421-425 

10. ^ a b This list of intelligent traits is based on the topics covered by the major AI 
textbooks, including:  

o Russell & Norvig 2003 
o Luger & Stubblefield 2004 
o Poole, Mackworth & Goebel 1998 
o Nilsson 1998. 

11. ^ a b General intelligence (strong AI) is discussed in popular introductions to AI:  
o Kurzweil 1999 and Kurzweil 2005 

12. ^ AI in Myth:  
o McCorduck 2004, p. 4-5 
o Russell & Norvig 2003, p. 939 

13. ^ Sacred statues as artificial intelligence:  
o Crevier (1993, p. 1) (statue of Amun) 
o McCorduck (2004, pp. 6-9) 

14. ^ These were the first machines to be believed to have true intelligence and 
consciousness. Hermes Trismegistus expressed the common belief that with these 
statues, craftsman had reproduced "the true nature of the gods", their sensus and 
spiritus. McCorduck makes the connection between sacred automatons and Mosaic 
law (developed around the same time), which expressly forbids the worship of robots 
(McCorduck 2004, pp. 6-9) 

15. ^ Needham 1986, p. 53 
16. ^ McCorduck 2004, p. 6 
17. ^ A Thirteenth Century Programmable Robot 
18. ^ McCorduck 2004, p. 17 
19. ^ Takwin: O'Connor, Kathleen Malone. "The alchemical creation of life (takwin) and 

other concepts of Genesis in medieval Islam". University of Pennsylvania. Retrieved 
on 2007-01-10. 

20. ^ Golem: McCorduck 2004, p. 15-16, Buchanan 2005, p. 50 
21. ^ McCorduck 2004, p. 13-14 
22. ^ McCorduck (2004, p. 190-25) discusses Frankenstein and identifies the key ethical 

issues as scientific hubris and the suffering of the monster, i.e. robot rights. 
23. ^ Robot rights:  

o Russell & Norvig 2003, p. 964 
o Robots could demand legal rights 

24. ^ See the Times Online, Human rights for robots? We’re getting carried away 
25. ^ Russell & Norvig (2003, p. 960-961) 
26. ^ a b c Singularity, transhumanism:  

o Kurzweil 2005 
o Russell & Norvig 2003, p. 963 

27. ^ Joseph Weizenbaum's critique of AI:  
o Weizenbaum 1976 
o Crevier 1993, pp. 132−144 
o McCorduck 2004, pp. 356-373 
o Russell & Norvig 2003, p. 961 



Weizenbaum (the AI researcher who developed the first chatterbot program, ELIZA) 
argued in 1976 that the misuse of artificial intelligence has the potential to devalue 
human life. 

28. ^ Quoted in McCorduck (2004, p. 401) 
29. ^ a b AI's immediate precursors:  

o McCorduck 2004, pp. 51-107 
o Crevier 1993, pp. 27-32 
o Russell & Norvig 2003, pp. 15,940 
o Moravec 1988, p. 3 

Among the researchers who laid the foundations of the theory of computation, 
cybernetics, information theory and neural networks were Alan Turing, John Von 
Neumann, Norbert Weiner, Claude Shannon, Warren McCullough, Walter Pitts and 
Donald Hebb 

30. ^ Dartmouth conference:  
o McCorduck, pp. 111-136 
o Crevier 1993, pp. 47-49 
o Russell & Norvig 2003, p. 17 
o NRC 1999, pp. 200-201 

31. ^ Russell and Norvig write "it was astonishing whenever a computer did anything 
kind of smartish." Russell & Norvig 2003, p. 18 

32. ^ "Golden years" of AI (successful symbolic reasoning programs 1956-1973):  
o McCorduck, pp. 243-252 
o Crevier 1993, pp. 52-107 
o Moravec 1988, p. 9 
o Russell & Norvig 2003, p. 18-21 

The programs described are Daniel Bobrow's STUDENT, Newell and Simon's Logic 
Theorist and Terry Winograd's SHRDLU. 

33. ^ DARPA pours money into undirected pure research into AI during the 1960s:  
o McCorduck 2005, pp. 131 
o Crevier 1993, pp. 51, 64-65 
o NRC 1999, pp. 204-205 

34. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109 
35. ^ Minsky 1967, p. 2 quoted in Crevier 1993, p. 109 
36. ^ See History of artificial intelligence — the problems. 
37. ^ First AI Winter:  

o Crevier 1993, pp. 115-117 
o Russell & Norvig 2003, p. 22 
o NRC 1999, pp. 212-213 
o Howe 1994 

38. ^ a b Expert systems:  
o ACM 1998, I.2.1, 
o Russell & Norvig 2003, pp. 22−24 
o Luger & Stubblefield 2004, pp. 227-331, 
o Nilsson 1998, chpt. 17.4 
o McCorduck 2004, pp. 327-335, 434-435 
o Crevier 1993, pp. 145-62, 197−203 



39. ^ Boom of the 1980s: rise of expert systems, Fifth Generation Project, Alvey, MCC, 
SCI:  

o McCorduck 2004, pp. 426-441 
o Crevier 1993, pp. 161-162,197-203, 211, 240 
o Russell & Norvig 2003, p. 24 
o NRC 1999, pp. 210-211 

40. ^ Second AI Winter:  
o McCorduck 2004, pp. 430-435 
o Crevier 1993, pp. 209-210 
o NRC 1999, pp. 214-216 

41. ^ AI applications widely used behind the scenes:  
o Russell & Norvig 2003, p. 28 
o Kurzweil 2005, p. 265 
o NRC 1999, pp. 216-222 

42. ^ a b Formal methods are now preferred ("Victory of the neats"):  
o Russell & Norvig 2003, pp. 25-26 
o McCorduck 2004, pp. 486-487 

43. ^ All of these positions below are mentioned in standard discussions of the subject, 
such as:  

o Russell & Norvig 2003, pp. 947-960 
o Fearn 2007, pp. 38-55 

44. ^ Philosophical implications of the Turing test:  
o Turing 1950, 
o Haugeland 1985, pp. 6-9, 
o Crevier 1993, p. 24, 
o Russell & Norvig 2003, pp. 2-3 and 948 

45. ^ The physical symbol systems hypothesis:  
o Newell & Simon 1976, p. 116 
o Russell & Norvig 2003, p. 18 

46. ^ Dreyfus criticized the necessary condition of the physical symbol system hypothesis, 
which he called the "psychological assumption": "The mind can be viewed as a device 
operating on bits of information according to formal rules". (Dreyfus 1992, p. 156) 

47. ^ Dreyfus' Critique of AI:  
o Dreyfus 1972, 
o Dreyfus & Dreyfus 1986, 
o Russell & Norvig 2003, pp. 950-952, 
o Crevier 1993, pp. 120-132 and 

48. ^ This is a paraphrase of the important implication of Gödel's theorems. 
49. ^ The Mathematical Objection:  

o Russell & Norvig 2003, p. 949 
o McCorduck 2004, p. 448-449 

Refuting Mathematical Objection:  
o Turing 1950 under “(2) The Mathematical Objection” 
o Hofstadter 1979, 

Making the Mathematical Objection:  
o Lucas 1961, 
o Penrose 1989. 



Background:  
o Gödel 1931, Church 1936, Kleene 1935, Turing 1937, 

50. ^ This version is from Searle (1999), and is also quoted in Dennett 1991, p. 435. 
Searle's original formulation was "The appropriately programmed computer really is a 
mind, in the sense that computers given the right programs can be literally said to 
understand and have other cognitive states." (Searle 1980, p. 1). Strong AI is defined 
similarly by Russell & Norvig (2003, p. 947): "The assertion that machines could 
possibly act intelligently (or, perhaps better, act as if they were intelligent) is called 
the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so 
are actually thinking (as opposed to simulating thinking) is called the 'strong AI' 
hypothesis." 

51. ^ Searle's Chinese Room argument:  
o Searle 1980, Searle 1991 
o Russell & Norvig 2003, pp. 958-960 
o McCorduck 2004, pp. 443-445 
o Crevier 1993, pp. 269-271 

52. ^ Artificial brain:  
o Moravec 1988 
o Kurzweil 2005, p. 262 
o Russell Norvig, p. 957 
o Crevier 1993, pp. 271 and 279 

The most extreme form of this argument (the brain replacement scenario) was put 
forward by Clark Glymour in the mid-70s and was touched on by Zenon Pylyshyn and 
John Searle in 1980. Daniel Dennett sees human consciousness as multiple functional 
thought patterns; see "Consciousness Explained." 

53. ^ Problem solving, puzzle solving, game playing and deduction:  
o Russell & Norvig 2003, chpt. 3-9, 
o Poole et al. chpt. 2,3,7,9, 
o Luger & Stubblefield 2004, chpt. 3,4,6,8, 
o Nilsson, chpt. 7-12. 

54. ^ Uncertain reasoning:  
o Russell & Norvig 2003, pp. 452-644, 
o Poole, Mackworth & Goebel 1998, pp. 345-395, 
o Luger & Stubblefield 2004, pp. 333-381, 
o Nilsson 1998, chpt. 19 

55. ^ Intractability and efficiency and the combinatorial explosion:  
o Russell & Norvig 2003, pp. 9, 21-22 

56. ^ Cognitive science has provided several famous examples:  
o Wason (1966) showed that people do poorly on completely abstract problems, 

but if the problem is restated to allow the use of intuitive social intelligence, 
performance dramatically improves. (See Wason selection task) 

o Tversky, Slovic & Kahnemann (1982) have shown that people are terrible at 
elementary problems that involve uncertain reasoning. (See list of cognitive 
biases for several examples). 

o Lakoff & Núñez (2000) have controversially argued that even our skills at 
mathematics depend on knowledge and skills that come from "the body", i.e. 
sensorimotor and perceptual skills. (See Where Mathematics Comes From) 

o  



57. ^ Knowledge representation:  
o ACM 1998, I.2.4, 
o Russell & Norvig 2003, pp. 320-363, 
o Poole, Mackworth & Goebel 1998, pp. 23-46, 69-81, 169-196, 235-277, 281-

298, 319-345, 
o Luger & Stubblefield 2004, pp. 227-243, 
o Nilsson 1998, chpt. 18 

58. ^ Knowledge engineering:  
o Russell & Norvig 2003, pp. 260-266, 
o Poole, Mackworth & Goebel 1998, pp. 199-233, 
o Nilsson 1998, chpt. ~17.1-17.4 

59. ^ a b Representing categories and relations: Semantic networks, description logics, 
inheritance (including frames and scripts):  

o Russell & Norvig 2003, pp. 349-354, 
o Poole, Mackworth & Goebel 1998, pp. 174-177, 
o Luger & Stubblefield 2004, pp. 248-258, 
o Nilsson 1998, chpt. 18.3 

60. ^ a b Representing events and time:Situation calculus, event calculus, fluent calculus 
(including solving the frame problem):  

o Russell & Norvig 2003, pp. 328-341, 
o Poole, Mackworth & Goebel 1998, pp. 281-298, 
o Nilsson 1998, chpt. 18.2 

61. ^ a b Causal calculus:  
o Poole, Mackworth & Goebel 1998, pp. 335-337 

62. ^ a b Representing knowledge about knowledge: Belief calculus, modal logics:  
o Russell & Norvig 2003, pp. 341-344, 
o Poole, Mackworth & Goebel 1998, pp. 275-277 

63. ^ Ontology:  
o Russell & Norvig 2003, pp. 320-328 

64. ^ McCarthy & Hayes 1969. While McCarthy was primarily concerned with issues in 
the logical representation of actions, Russell & Norvig 2003 apply the term to the 
more general issue of default reasoning in the vast network of assumptions underlying 
all our commonsense knowledge. 

65. ^ a b Default reasoning and default logic, non-monotonic logics, circumscription, 
closed world assumption, abduction (Poole et al. places abduction under "default 
reasoning". Luger et al. places this under "uncertain reasoning"):  

o Russell & Norvig 2003, pp. 354-360, 
o Poole, Mackworth & Goebel 1998, pp. 248-256, 323-335, 
o Luger & Stubblefield 2004, pp. 335-363, 
o Nilsson 1998, ~18.3.3 

66. ^ Breadth of commonsense knowledge:  
o Russell & Norvig 2003, p. 21, 
o Crevier 1993, pp. 113-114, 
o Moravec 1988, p. 13, 
o Lenat & Guha 1989 (Introduction) 

67. ^ Dreyfus & Dreyfus 1986 
68. ^ Gladwell 2005 
69. ^ Expert knowledge as embodied intuition:  



o Dreyfus & Dreyfus 1986 (Hubert Dreyfus is a philosopher and critic of AI who 
was among the first to argue that most useful human knowledge was encoded 
sub-symbolically.) 

o Gladwell 2005 (Gladwell's Blink is a popular introduction to sub-symbolic 
reasoning and knowledge.) 

o Hawkins 2005 (Hawkins argues that sub-symbolic knowledge should be the 
primary focus of AI research.) 

70. ^ Planning:  
o ACM 1998, ~I.2.8, 
o Russell & Norvig 2003, pp. 375-459, 
o Poole, Mackworth & Goebel 1998, pp. 281-316, 
o Luger & Stubblefield 2004, pp. 314-329, 
o Nilsson 1998, chpt. 10.1-2, 22 

71. ^ a b Information value theory:  
o Russell & Norvig 2003, pp. 600-604 

72. ^ Classical planning:  
o Russell & Norvig 2003, pp. 375-430, 
o Poole, Mackworth & Goebel 1998, pp. 281-315, 
o Luger & Stubblefield 2004, pp. 314-329, 
o Nilsson 1998, chpt. 10.1-2, 22 

73. ^ Planning and acting in non-deterministic domains: conditional planning, execution 
monitoring, replanning and continuous planning:  

o Russell & Norvig 2003, pp. 430-449 
74. ^ Multi-agent planning and emergent behavior:  

o Russell & Norvig 2003, pp. 449-455 
75. ^ Learning:  

o ACM 1998, I.2.6, 
o Russell & Norvig 2003, pp. 649-788, 
o Poole, Mackworth & Goebel 1998, pp. 397-438, 
o Luger & Stubblefield 2004, pp. 385-542, 
o Nilsson 1998, chpt. 3.3 , 10.3, 17.5, 20 

76. ^ Alan Turing discussed the centrality of learning as early as 1950, in his classic paper 
Computing Machinery and Intelligence. (Turing 1950) 

77. ^ Reinforcement learning:  
o Russell & Norvig 2003, pp. 763-788 
o Luger & Stubblefield 2004, pp. 442-449 

78. ^ Natural language processing:  
o ACM 1998, I.2.7 
o Russell & Norvig 2003, pp. 790-831 
o Poole, Mackworth & Goebel 1998, pp. 91-104 
o Luger & Stubblefield 2004, pp. 591-632 

79. ^ Applications of natural language processing, including information retrieval (i.e. 
text mining) and machine translation:  

o Russell & Norvig 2003, pp. 840-857, 
o Luger & Stubblefield 2004, pp. 623-630 

80. ^ Robotics:  
o ACM 1998, I.2.9, 
o Russell & Norvig 2003, pp. 901-942, 
o Poole, Mackworth & Goebel 1998, pp. 443-460 

81. ^ a b Moving and configuration space:  



o Russell & Norvig 2003, pp. 916-932 
82. ^ Robotic mapping (localization, etc):  

o Russell & Norvig 2003, pp. 908-915 
83. ^ Machine perception: Russell & Norvig 2003, pp. 537-581, 863-898, Nilsson 1998, 

~chpt. 6 
84. ^ Computer vision:  

o ACM 1998, I.2.10 
o Russell & Norvig 2003, pp. 863-898 
o Nilsson 1998, chpt. 6 

85. ^ Speech recognition:  
o ACM 1998, ~I.2.7 
o Russell & Norvig 2003, pp. 568-578 

86. ^ Object recognition:  
o Russell & Norvig 2003, pp. 885-892 

87. ^ Emotion and affective computing:  
o Minsky 2007 
o Picard 1997 

88. ^ Gerald Edelman, Igor Aleksander and others have both argued that artificial 
consciousness is required for strong AI. CITATION IN PROGRESS Ray Kurzweil, 
Jeff Hawkins and others have argued that strong AI requires a simulation of the 
operation of the human brain. CITATION IN PROGRESS 

89. ^ AI complete:  
o Shapiro 1992, p. 9 

90. ^ a b Nilsson (1998, p. 7) characterizes newer approaches to AI as "sub-symbolic". 
91. ^ The analogy with aeronautical engineering is due to Russell & Norvig (2003, p. 3). 
92. ^ a b Neats vs. scruffies:  

o McCorduck 2004, pp. 421-424, 486-489 
o Crevier 1993, pp. 168 

93. ^ Haugeland 1985, pp. 112-117 
94. ^ Cognitive simulation, Newell and Simon, AI at CMU (then called Carnegie Tech):  

o McCorduck 2004, pp. 139-179, 245-250, 322-323 (EPAM) 
o Crevier 2004, pp. 145-149 

95. ^ Soar (history):  
o McCorduck 2004, pp. 450-451 
o Crevier 1993, pp. 258-263 

96. ^ McCarthy's opposition to "cognitive simulation":  
o Science at Google Books 
o McCarthy's presentation at AI@50 

97. ^ McCarthy and AI research at SAIL and SRI:  
o McCorduck 2004, pp. 251-259 
o Crevier 1993, pp. Check 

98. ^ AI research at Edinburgh and in France, birth of Prolog:  
o Crevier 1993, pp. 193-196 
o Howe 1994 

99. ^ AI at MIT under Marvin Minsky in the 1960s :  
o McCorduck 2004, pp. 259-305 
o Crevier 1993, pp. 83-102, 163-176 
o Russell & Norvig 2003, p. 19 

100. ^ Cyc:  
o McCorduck 2004, p. 489, who calls it "a determinedly scruffy enterprise" 



o Crevier 1993, pp. 239−243 
o Russell & Norvig 2003, p. 363−365 
o Lenat & Guha 1989 

101. ^ Knowledge revolution:  
o McCorduck 2004, pp. 266-276, 298-300, 314, 421 
o Russell & Norvig 2003, pp. 22-23 

102. ^ The most dramatic case of sub-symbolic AI being pushed into the 
background was the devastating critique of perceptrons by Marvin Minsky and 
Seymour Papert in 1969. See History of AI, AI winter, or Frank Rosenblatt. 

103. ^ Embodied approaches to AI:  
o McCorduck 2004, pp. 454-462 
o Brooks 1990 
o Moravec 1988 

104. ^ Revival of connectionism:  
o Crevier 1993, pp. 214-215 
o Russell & Norvig 2003, p. 25 

105. ^ See IEEE Computational Intelligence Society 
106. ^ "The whole-agent view is now widely accepted in the field" Russell & 

Norvig 2003, p. 55. 
107. ^ The intelligent agent paradigm:  

o Russell & Norvig 2003, pp. 27, 32-58, 968-972, 
o Poole, Mackworth & Goebel 1998, pp. 7-21, 
o Luger & Stubblefield 2004, pp. 235-240 

108. ^ Agent architectures, hybrid intelligent systems:  
o Russell & Norvig (1998, pp. 27, 932, 970-972) 
o Nilsson (1998, chpt. 25) 

109. ^ Albus, J. S. 4-D/RCS reference model architecture for unmanned ground 
vehicles. In G Gerhart, R Gunderson, and C Shoemaker, editors, Proceedings of the 
SPIE AeroSense Session on Unmanned Ground Vehicle Technology, volume 3693, 
pages 11—20 

110. ^ Search algorithms:  
o Russell & Norvig 2003, pp. 59-189 
o Poole, Mackworth & Goebel 1998, pp. 113-163 
o Luger & Stubblefield 2004, pp. 79-164, 193-219 
o Nilsson 1998, chpt. 7-12 

111. ^ a b Forward chaining, backward chaining, Horn clauses, and logical deduction 
as search:  

o Russell & Norvig 2003, pp. 217-225, 280-294 
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