C Programming/Print version

From Wikibooks, the open-content textbooks collection

Table of Contents

C Programming/PriNt VEISION.........ueieiuieeeiuiieeiieeeitieeenteeeseteessseeessseesssseesssseessssessssssessssssessssessssseeensees 1
From Wikibooks, the open-content textbooks COIECtION.........cccueeeriiiiiiiiiniiieiieeieeeeeeeen 1
INEFOAUCTION. ...ttt ettt et e et e st e e sabt e e st e e s bt e e s baeeesabeee s 6
WY LEAIN €7ttt ettt e et e et e e abee e sbteesabeeeesbeesasaeesnnseeensseeennnees 6
History of the C Programming Language...........cccueiiriiieiiiieniieeeiiee ettt e e 7
GELHNE STATTEA.eeoutteeiitie ettt et e et e et e e s bt e s st e e s bte e e sabeeeebaeeenareee 7
DIVttt ettt e bbbttt e e bt ettt e e eat e e bt e e eabteeeareee s 9
CC et e ettt e ettt e ettt e et e et e e ab e e e eah et e e hteeeaateeeehtee e abee e e hte e e ateee e bt ee e ntaeeeatbeeehbeeeeanbeeeanbeeeenbeeennraeens 9
INErOAUCLOTY EXETCISES. .eeutiieiiiieiiieeeiie ettt ettt ettt ettt e s e e st e e st e e sabee e sabeeeabeesnneesanee 11
BeZINNING C ...ttt ettt ettt et ettt et e e bt e bt et en 12
S Tl 1) T o] £SO USSP 12
Compilation: HOW D0eS € WOTK?.......ooiiiiiiiiiiieieee et 12
Integrated Development Environments (IDES)........cccooiiiiiiiniiiniiiiiieeecceceeeseeeeen 13
Block Structure, Statements, Scope, and WhiteSPace..........cceeevuveeeriieiiieeeiiieeiieeeeireeeseee e 13
Basics Of USING FUNCHONS.cccuiiiiiieiiie ettt e ae e st e e s eeeaeeesneeesanes 14
The Standard LIDIary.........ccccoociiiiiiiiiiie ettt 14
Comments and Coding SEYLE.......cc.eeimiiiiiiiiie e 14
T e PrOPIOCESSOTeiueiiiiiiie ettt ettt ettt et e e et e e et e e ettt e st e e eabeeesteeesnbaeennseeeensseesnseeesnnseenas 15
FFOOTNOLES. ...ttt ettt e bt e b e s et et et e s et e sat e et e eab e saaeenaeeenees 15
PrEPTOCESSOT. ... ettt ettt ettt e et e bt e st e e e eab e e e e bae e ebneeesaneeeeas 15
SYNLAX CRECKING. c...etiiiiieeie ettt et e et e e st e e s aneeesaaaee s 16
ODBJECE COAR....centieeiiiieeiteeet ettt ettt e e e e st e e s st e e st e e e bt e e ebbeeensbeesnseeesnbeaesabeesnneeeas 16
LANKIIIE .ttt e st e et e e e ab e e e ab e e et e e e it e e e eb e e e enabeeeeabeeeenanee 16
C SrUCUIE aNd SEYLC....cuviiiiiieeiiie ettt et e et e e sae e et eeesaeeensaeeessaeesnsseeennseeennnes 16
INETOAUCTION. ...ttt ettt e b e et e st e sbt e et e et e e st e eaeeeneee 16
Line Breaks and INAentation...........coouiiiiiiiiiiiiiiiiie ettt ettt 17
LINE BIEAKS. . ..eeeieiieeiiteeeee ettt ettt ettt e et e e st e sanaeas 17
INAENEATION. ...ttt ettt et ettt e b e bbb et 18
COMIMETIES. ...ttt ettt ettt e et e sttt e eab bt e st e e eabte e e bbbt e s eabeeesaabeeeebbeeeeaneee 18
Single-1Ne COMIMENTS.......cc.iiiiiiiiiiiieiieceee ettt s 19
MUlti-liNE COMIMENES.ceoiiiiiiiiiiieiiite ettt e ettt e st e e s iteeesabbee s et e e sabeeeenaaeeas 19

2 21 111 0] (< OO P PP 21
LINIKS ettt ettt et s e e b st e e e enaee 21
Handling divide DY ZEI0 EITOTS.....cccuuiiiiiieiiieiiieeiie ettt ettt ettt e sat e s beeebee e 22
VATTADLES. ..ttt ettt e sttt e st e st e e et e e e nre e e 22

Declaring, Initializing, and Assigning Variables...........c.cccooviiiiiiiniiiniiniieiceecceee e 23

INAMING VaTTIADIES.....cccuiiieiiieeiie ettt e e e et e e aae e s bee e e saeeesaeeennseeenseeennsees 23

| DR 11S) 21 PRSPPI 24
The FOUT BASIC TYPES.eiiiiiiiiiiiie ittt ettt e st e et e e s ate e e s aae e e 24
THE AN EY Pttt ettt ettt et e e ettt ettt e ettt e e s ata e e e sabeeesnbeeeensbaeeensneeeensseeennsseesnnsseeennsees 24
THE CRAT LYPC...etieieiiie ettt ettt e et e e st e e st b e e ssteeensbeeenbeeenssaeeenseeennnees 24
THE FlOAL LYPC...neeieiieetee ettt ettt e et e e et e s it e e et e e e nnteeeeanee 25
The AOUDIE LYPE....couniiiiiiieeieee ettt sttt e e e e 25
SIZEOT ..ttt ettt ettt e s ht et e et e naee e 26
Data tyPe MOAITIETS .. .eeeiiiieiiiie ettt et e ettt e et e s bt eeebteesbaeesabaeesaseeeenns 26
CONSE MIOAITTETeeitieeeiiei ettt e et et e e et e e et e e e s bt e e etaeeessaeeeessaeeesseeesnseeessssaennssaeensseeennns 26
IMAZIC NUIMIDETS. ...ttt ettt et a e e e at e e s st e s bt e sab e e eub e e esbeesabeeeabeeenbeeenbeeebee s 27
Using the CONSt KEYWOT.......coouiiiiiiiiiiiiieeice ettt et e e e 27
FACTINE. ..ottt ettt et ettt e b e b st 27
NS0 oSO U PO U PPPPRRROPPSPPRN 28
Other IMOGIEIETS. ...cueeeiteeeitee et ettt ettt e st e st e st e s e eaeee 28
COMCEPLS. ...ttt ettt et ettt s e et e b e e be e ean e e s ae e e saeesaneesaneenneeenneeen 29

L3I 3 Tt 0 10) DS 29
Simple INPut and OULPUL.....cc..eiiiiiiiiiie ettt ettt sb e e et esate e st eeesnbeeesnseeenanees 29
OUtput USING PIINEE().ceeerieeiiieeeiieeeiee ettt ettt et e st e e st e e s sabee e snbaeessabeessnseeesnseaennsees 30
Printing numbers and €SCaAPE SEQUEINCES.ccouueiruiiiriieeiiieeeiee et ee ettt et eesieeeesbeeeeaeeees 31
Placeholder COUES.coiiiiiiiiiiiiiie ettt e e e et ee e e e s aaaeae e e e nneeee 31

Tabs and NEWIINES.c...eoiuiiiiiiiiiiieeee ettt et 31
Other OULPUL MENOAS.c.viiiiiiiie e ettt e st e s eabe e e ssbeeeseeeas 32
L0 L] () TSP PTRRRRRRP 32
INPUL USTNE SCANT().1eenviieeeiiee ettt ettt e et e e et ee e s te e e e sabeessssaeeenssaeeensaeeasseaennns 33
EXAIMPIES. ...ttt ettt ettt ettt et e s ser e e 33
Operators and ASSIZNIMENES.ceeuvierieerierieeeteeiee et eere et esreereeseeeesseesreeneesaneenseesaneenreenns 33
TriZONOMELIIC FUNCHIOMNS. . .eiiiitiiieiiie ettt ettt e et e et e et e e et e e s abeeessbaeessseeennseesnsseeesseennns 34
The acos and asin fUNCHIONS.eeiiiiiiiiiiieiiet ettt 34
The atan and atan2 fUNCHOMNS.coeiuiiieeeeiiiiiee e eee e e et e e e e s eee e e s eaabeaeeseennnnaeeeas 35
The cos, Sin, and tan FUNCHIONS.uuuueeiiiiiiiieiee et e et e e e ettt e e eereaaeeeeeeaannnass 35
HyPerbOIIC fUNCHIONS.ccutiiiiiiiiiiie ettt e ettt e et e st e e e baeesbaeesaseeeeane 35
Exponential and logarithmic fUnCtions............coooviiiiiiiiiiiiiie e 36
THE EXP FUNCHOMNS. ..ccueteieiiiieeiiee ettt ettt et e et e e etaeeesbeeeesseeeensaeesnsseeeensaeeenssesennsees 36
The frexp, ldexp, and MOdf fUNCHONS.........cccuviieiiiiieeiiie e 36
The log and 10210 fUNCHIONS.......ccouiiiiiriiiiieei et 36
POWET TUNCLIONS.eouiiiiiiieiieiiect ettt ettt st ettt et et e s e e saneeneenanees 37
The POW FUNCHONS.vieiiiiie ettt ettt e et e e et ee e et e e eenbeeesnseeesnaeeennseeeensnes 37
The STt FUNCHOMNS.etieeiiieeiiie ettt et e ettt e et e st e e sbeeesbeeessaaeeensseesnnseeensseeennses 37
Nearest integer, absolute value, and remainder fUnCONS...........cocueeeriiiiriiiiiiiieeieeeeeeeeeae 37
The ceil and floOr fUNCHONS.cciiiiiiiiee ettt e e e e e e ree e s esebeaeeeennnns 37
The fabs fUNCHONS.coviiiiiiie ettt e ree e 37
The fMOd fUNCHIONS.eiiiiiiiiiiiie ettt et 38
L10) 115 ¢ o) F PR SRTRRUSPPRRN 38
L000) 116 11 T0) 1 - 1 P PRRRRRURPPRN 38
Relational and Equivalence EXPresSions:........couueeiiiiriiieniieiniieesiee et 39
LOo@ICal EXPIESSIONS: .cccuuiiiiiiieiiiieeiit ettt ettt et et e e st e e st e e ssabee e enbaeeennreeenanes 40
Bitwise Boolean EXPreSSiOns.uiiiiiiiiiiieiiiieeiieeeiite et esiee e ereesveeeseaeeesnaeeeesaeaennnees 40
The If-EISE StAtEMENL.eotiiiiiiiiiiiieeteet ettt ettt s s 41

010 oL O O OO P P UUPPPRUPPRR 44
WHILE LOOPS. ...ttt et ettt et ettt e esane e seneenaneenes 45
T J00PS et ettt sttt e et e et e e e e tbeeetaeeentaeeennees 46
DO-WHILE LOOPS. .. eeeieiiie ettt ettt et e st e e sttt e e s bt eeessbae e e sbaeeennsaeeannseeennns 47

ONE 1aSt thINEZ: ZOT0....uiiiiiiiiiiite ettt et ettt e sttt e st e et e e e st e e sabeeeeaneee 48

EXAIMIPIES. ...ttt ettt n e e e e e 49

Procedures and FUNCHONS.oooiiiiiiiieieeeeee ettt eeeeeeeeear e e eeeeeeeeeseentrarrenreeeeeens 49

IMOTE ON FUNCHIONS.uviiiiriiiiiee e e e e ettt e e e eee e e e e e e e eeeeeearareeeeeeeeeeeesttrrresaeeseeeeeanssstsesrereeens 49

Writing fUNCHONS TN C.eeniiiiiiiiiie ettt ettt e bbb esabe e saeeesbbee e 50
I @ENETAL ...ttt ettt et st et e e bt e e beeeas 50
RECUISION.uvviiiiieie ettt ee e e e e e e e e e ettt areeeeeeeeeeeeassaaeeeeeeeeeeeennnssreeees 51
SEALIC FUNCHIONS. .. .uviiiiiiieie ettt e e e e ee e e e e e e e eeeeeataarraeeeeeeeeeeeeensasssrereeeeens 52

USING C fUNCHOMNS. ¢..vttieiiiiieeiiie et eite et e et ee e et e e eseaeeesaeeeeabeeesasseesensaeesnnsaessnsseeesssaeeansseeennns 52

C'S BUIIt-1N FUNCHONS.cciiiiiiiiiiiiieieeeee et eee e e e e e e e e e e e eeseestrarrenreeeeeens 52

|3 (o 1 AT T 53
FHNICIUAC. .o ——————————————— 53

HEAACTS. ...vveeeeeiiee ettt ettt e et e e et e e e e e e e eeee st e aar e e aeeeeeeenenaanes 54
0] ;14 1 2 T PO SRRRPRR 54
L6 1S3 51 0 (SRS 54
100 F2 103 (0 1 SRR 57
FECTTO ..eeeeeeeeeeeecitteeeeee e e e eee e et eeeeeeeeeee et taaareeeeeeeeeeeseabasasaaaaaeeeeeaaaetrrrasesaeaeeeeeeenaatarsrareaeaaaeeeas 57
FEUINACT ... et e e e et e e e e e e e e e e e et b araaaeae e e e e e atarraaaaaeaeas 57
if,else,elif,endif (CONAItIONALS).....eveviiiiiiiiiiiiieeeeeee e 58
TEAEETENAET . ..ot e e e e e e e e et e e e e e e e e e et e e eseeeeeeaanaaaeseeenannnns 58

StaNAard LIDIAIES........ooooiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e eeeeaeeeeeeeeeererer e aaaaaaa 61

) H0 18 (06 10Te 4 o) o PO U 61

SETEAINIS. 1.vvveiieeeeeeeeeeitt ettt e e e eeee ettt e e e e eeeeeeetaaaaereeeeeeeeeeesassraeeeeeseeeesansassaarreeeseseeeeensttssrrreeeeeeeeens 61

FILE POINEEIS.vieiiiiieeiieeeiieeeiteeeette e et e e ettt e e teeeetteessateessssaeeessseesassaeeesseeesnseeesssaeesnssaeansseeennns 62

Opening and CIOSING FILES........cooiiiiiiiii e 62
OPENING FILES....cconiiiiiiiiiee et ettt e st e e et e e ee 62
CIOSING FALES.....eeiuiiieiiiieeee ettt e sttt e st e e st e e e be e e s abaeeenbeeenanees 63

Other file ACCESS TUNCHIONS.coeeieurrreeieieeeeeeeiiireeeeeeeeeeeeeeieerrreeeeeeeeeeeeeettrrreeeeeeeeeeeeeessnrrneereeeeeeens 64
The fIIUSH fUNCHON. c..vvvvviiiiiceeeiiee et e e e et e e e e e e e e eeeeeeeseessnsraeeeess 64
The SetbUL FUNCHON........cciiiiiiieeeeee e e e e e e e e e e e e e es s aaaereeeeeas 64
The SEtVDUL fUNCHION. ...ttt e e e e e e e e e eeeeesanrbbaereeeeees 64

Functions that Modify the File Position INdiCator............ccoocueiriiiiiiiniieiiieniieeeeeee e 65
The fgetpos and fSEtPOS fUNCHIONS.cccuviiiriieiiiiie ettt e e ae e 65
The fseek and ftell fUNCHOMNS.ooiiiiiiiieiiiee e e e e e et reeeee s 65
The 1eWINA fUNCHION........cooiiiiiiiiiiiiieeeeeeeeeeeee e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeasesnnnans 66

Error Handling FUNCHONS.c...coiiiiiiiiiiice et 66
The ClearerT FUNCHION.eeveiieiiiiieirieeeee et eeee et e e e e e eeeeerbaarareeeeeeeeeeenssrrereeeeens 66
The fEOf fUNCHION. ...t eeee et eeeeeeeeneeaarareeeeeas 66
The ferTOr FUNCHION.coiiiiiiiieeeeee et e e e e e e e e s et eereeeeeeeeesessnsanees 66
The PErTOr FUNCHION.eoiuiiiiiiitie ettt sttt sa e et e e st e e sateesabeeaas 66

Other Operations 0N FIIES.........c.uiiiiiiiiiieee ettt e e e 67
The reMOVE TUNCHON.vvviiiiiiiiieiiiiieeeee e e e eececirre et ee e e eeeeetrreeeeeeeeeeseettreeeeseeeeeseeansrrreeeeeeeeesennnnes 67
The reNamE fUNCHION.ccvvvviiiiiii ettt eeeeerr e e e e e e eesatreeeeeaeeeeesssbareeeeeeeeesennanes 67
The tMPLile fUNCHON.ccueiiiiieeieeee et et e e e e e b e e e saeeenbeeennnes 67

The tmpnam fUNCHION.c...iiiiiiiiiiiieeeee ettt s neeenee e 67

Reading from FAIES......ccviiiiiieeiiie ettt ettt et e et e e et e e e nbae e ensaeeenneeeenns 68

Character INput FUNCHIONS........coouiiiiiiiiiiieieeeee ettt 68
The £ELC TUNCHION.eiiiiiiieeiie ettt e 68

The fEEtS fUNCHON.....c.uiiiiiiieiiie et e e st e et e e eeteeesnseeesaseee s 68

TheE GELC TUNCHION. ...c.utiieiiieeetie ettt ettt e e ettt e et eeeabeeesabeeesanbeeenbeeesssaeesaseeeas 69

The getchar fUNCHION.oooiiiiiiii e e e 69

The ZEts TUNCHOMN......cc.uiiiiiiii e 69

The UNZELC fUNCHON.ccouiiiiiiiiiiiie ettt et e ettt eesbe e e s abeessaneee s 70
Direct input function: the fread fUNCION.cceevriiieiiiiiiiieeee e 70
Formatted input functions: the scanf family of functions.............cccccooiiiiiiniiiiiiinies 70
WIIING 10 FALES. ..ttt ettt ettt st e b e s enee 74
Character OUtput FUNCHOMNS.eiiiiiiiiieiiie ettt ettt et e s s 74
The fPULC FUNCHIOMN. c....eiiiiiiiiiiiiie ettt et e et e et e e e sabae e e 74

The fPULS fUNCHION. ...cuviieiiiieciie e et e e e sae e eseaee e estaeesnsaeeennneeenns 74

THeE PULC TUNCHION.etiieiiieeiiie ettt e ettt e e e e s taeessaaeeesaeeesnsaeesnsaessnsseesnns 74

The putchar fUNCHON.iiiiiiiiii ettt e e e 74

The PULS FUNCHON.eoitiiiiiiieiiiee ettt ettt e et e e e abeeesabeeeeane 74
Direct output function: the fwrite fUNCHON..........cccuiiiiiiiiiiiiie e 75
Formatted output functions: the printf family of functions............cccceeviieiiniiiiiniiiiiiieeeeen 75
VATTADLES. ...ttt ettt et e e bbbt e e bt e et e e et e e e 81
INAITHIIE. ¢ttt ettt e e bt e s ettt e ettt e e eabte e s bt eesbbeeeeabeeeenbeaeenanaeens 81
DA TYPES. .ttt ettt ettt et et e et e et e e e et e e e eabe e e e beeeentaeeearaeenn 81

F N 1241111 1S) 1| O OO PSR P PP 81
S (53 1<) 1103 1 <O SRPPPR 82
STMPLE IOttt et ettt e st e b e st esab e et e et e sbee e e 82
IPUL. ..t 82
OUIPUL. ..ttt ettt et e s e et sat e et e s et e e bt e st e e be e e st e sbeesaneesaneenneeeaneenen 82
Pro@ram FLOW.........cooviiiiiie ettt et e et e ettt e et e et e e entaeeentaeesnsaeesnsaeeenns 83
FUNCHIONS. .ttt ettt e sat e e sbt e et e sbt e nbeesabeesaneenbeesareeeas 83
IR . ettt e b e bt e e a bt e bt e e bt e e h b e e ehte e beeehbeenhteenbeeeabeenn 83
IN-dEPth C Ad@AS....ceiiuiiiiiiiee ettt ettt e et et e e 84
ATTAYS & STIINES. .. eeeeeiiiieeeiiie ettt ee et ettt e ettt e ettt e e sttt e e bteessaseeesasaeesabeesenseeessseeesnseeesnsseeenans 84
AATTAYS. .ttt ettt e et e ettt e ettt e ettt e eab b e e e bt e e e ab e e e eab e e e eab e e e e bt e e eabteeeanbeeenbeeeeabaeeenbeeeenn 84
S IIIES ettt ettt ettt h e h et h e h et e bt e e h bt e a bt e ehb e e ht e e bt e e a bt e eab e e eabeeehteeebeeebeeeanee 85
POINLEIS ANA ATTAYS. .cc.etiiieiiiitieiie ettt ettt et e sttt e bt e e bt e e ebbesabeesabeesbeeeabeeeareenns 86
DECIariNng POINLETS.veeiuiiieiiiiieeiie ettt ettt e sttt e et e e st e e e sabee e ebteessabeeesabaeeesnneeesanees 86
ASSIZNING VAIUES TO POINMEETS. ..cueteieiuiiieeeiieeeritee et ee et ee st e e etbeessbeeeesabeeeesbteesbbeeesanaeeeanees 86
POTNtEr deIefeIENCING. ... eiiiiiiiiiiiie ettt et e e e ettt e e et e e s aaeeesnsaeeesnnaeeeensees 88
POTNEETS QN ATTAYS...c.uvieiiiieeeiiieeeiiee ettt et e et ee ettt eeetaeeeseaaeesssbeeenseeesssseessnsaeeensseesnnsees 88
Pointers in FUNCON ATZUMENTS. ...c...coviiiiiiiiieiienieeeeeee e 91
Pointers and TEXt SIINES.coouveiiiiiiiiieeieeee ettt 91
PoINters to FUNCHONS.cc..eiiiiiiiiiiieiiec ettt e e 92
Examples Of POINtEr CONSITUCTES.uutiiititiiiiieiiiieeriteeet e e eieeeeiteeesbeeesiteeesibeeesanbeeesanaeeesnnes 93
SIZBOT ettt ettt h et e bt e e bt e e bt e e ab e e e ab e e eateeeateeaneeeanes 93
EXTEINAl LINKS.c...eiiiiiiiee ettt ettt ettt e e et e sbe e e eare e 94
MemOTy ManQ@EIMENL..........eiiiuiiiiiiiieiriieeiitee et eeitee ettt e et e e sibteesbbeesbbeessabeeessbeeesnsaeesasaeesnnseenans 94
IMALLOC. ..ttt ettt et st e st e et e e he e e eearee e 94
Err0r ChECKING. . ..eoiiiii ettt et e 95
The CalloC FUNCHION.cotiiiiiiiiiee ettt et b et e s e e saeeenabe e 96

THE TEALLOC TUNCHION. ..ottt e e et e e e et e e e et e e e e e e e eaaaeeenaaeeenanas 96

THE FTEE TUNCIION .« ettt e e e e e e e et eeeeeeeeeeeanaeeseeeeeeannaaaeseeesaananaananeees 96

SEIIIIEZS ettt et ettt ettt e st e bt et ettt e et eea e e a et et e bt e s n e set e e nan e e naeeenee 97
The <string.h> Standard Header..............cooiiiiiiiiiii e 97
The more commonly-used String fUNCHONS.cccvieiriiiiriieeriiee e 97
The SEICAt FUNCHOMN.eiiiiiieiiiie ettt ettt et e st e e st ee ettt e sataeesaseeesasaeesaseeeen 98

The StrChT fUNCHION.uiiiiieiiiieiee et e e e et e e e e ettt e e e e s sabbreeeeennraaeeeeeennnnes 98

The StrempP fUNCHOM. ..c..eiiiiiii e 99

The StICPY FUNCHON.ceiiiiiiiiiiieieeeet ettt et e e et e e sabee e s baeeesabeeeeas 100

The Strlen fUNCHON..........iiiiiiiiiiie et et e et e et ee s 101

The StNCAL FUNCHOMN.iiiiiiieeiiie et eciee ettt e etee e te e e ste e e eteeeesnbeeeenbeee e ntaeeessaesennnes 101

The SNCMP FUNCHON.eiieiiieeciie ettt et e e etee e st e e eteeeeteeeessbeeesaaesssseeessseeesseeenns 102

The StNCPY FUNCHON.eoiiiiiiiiieiiiie ettt et et e st e e ebreeesibeee e 102

The StTCAT fUNCHION.iiiiiiiiiiiie ettt et e e sibeeeeas 103

The less commonly-used String fUNCHONS.........cccueieriiireriiiie e e 103
COPYING FUNCHOMNS. ..ce.tieeiiieeiiieeiieeeitee ettt e ettt e st e e st e e sabeeessbeessabeeessseesenseeessseeesnsseensseesnns 104

The MEMCPY fUNCHON.cueiiiiiiiiiiiieree et 104

The MeMMOVE fUNCHON.uiiiiieiiiiiee e e e e e e e rre e e e eenereeaeeeas 104
ComPAariSON FUNCHOMNS.eeiiiieeiiieeiteeeiee ettt et ee et ee e et e e ebe e e esibeeeareessabeeesnseeesseeenas 105

The MeMCMP FUNCHOMN.......cieiiiiiiiiieeiiee ettt e e e e e esbeeesibeeeens 105

The strcoll and Strxfrm fUNCHONS.cccviieiiie e 105

SEArCh fUNCHONS.eeiiiieiiie ettt e et e e e tee e sabee e nbeeesbeeensaeeensaeeennes 105

The MemMChTr fUNCHON.ccoiiiiiiiiiiiee e et e e e e 105

The strcspn, strpbrk, and Strspn fUNCHIONS.covuiieiiiiiieiiiieeeieeeeeeee e 106

The SIS fUNCHION. ...c.eiiieiiieeciiie ettt te e ete e et e e et e e etaeeesebeeeesseeesssaeesnsaaeesseeennns 107

The StrtOK fUNCHON.cciiiiieiie ettt ettt et e e e aeeeeaeeeesseeeeseeennns 107
Miscellaneous fUNCHOMNS.cceiiiiiieeeeeiiiiee et e et e e ettt e e e eerraeeeeesnnaaeaeeseesnanaeeeeanns 108

The MemMSEt fUNCHOMN.........cciiiiiiiieeiiiiee ettt e e e et e e e e seraee e eensbeeeeensaeeeas 108

The StrerTOr fUNCHION. . .ccuiiiiiie ettt et e et e e et e e eetae e s ebeeesnnseee e 109
1111010 1RSSR 109
5 (S Y61 1L SRS 110
COMPIEX TYPES. ettt ettt ettt e sttt e e bttt e et e s bt e e sasbe e e abeeesbeeeseane 110
COMPIEX AALA LYPS..eeruriieeiiieeeiiee ettt e et ee ettt e sttt e ettt e e sttt e sabeeeebaeeesstaeensabeeesasseeennbaeesnnseeennnnes 110
POINLETS. ...ttt e st e e e bt e e st e e e abe e e sabeeeeataeesabbeeenaaeeas 110
SETUCES ..t eee ettt e ettt e e ettt e e ettt e e e ettt teeeeeeasbeeeeeaanbbeaeeeaasbbeeeeeenbeeeeesanbbeeeeeentbbeeeeannns 110
UNHOMIS. ¢ttt ettt eiee ettt e e e et e et e et e e tteeetaeeessseeeasseeeessaeesnseeeessaeeenssaeensseeenssaeensseesnssseennseens 111
TYPE MOIIIETS. ...ttt ettt e st e e st e e et e e s bteeseabeeesabeeesbeeenas 111
Networking in UNTXcooiiiiiiiieeee ettt ettt et e st e e e sabe e e sabeeeeaaeee 112
PN 1101 0] (ol 1 1<) 1 SRS PRRRPRR 112

FaNE 1101 0) (SRS <) SRR PSR 114
Useful netWOork fUNCHONS.cciiiiiiiiiiiiie ettt e e e e e e e e raee e esnssaeeeeenes 115

F QS ettt ettt e et e bt e et e e et e e e ht e et e et e e eabeeenee 115
What about stateless CONNECHIONS 7......ccuuiiriuiieriiieeiiiieeiee et eeieeeereeeiteeesreeesreeesbeeenes 115

HOow do I check fOr @ITOTS 7......oiiiiiiiieiiieee e et e e aee e 115
(000) 101 1010) 1 20 11 5 01RO TSP 115
Dynamic multidimensional arrays..........cooc.eeoeuieiiiiiiiieiieeeteeee et 116
Constructors aNd AESTIUCTOTS.iieriiieiriieeeitee et ee ettt et e ettt e e sbbeessbeeessibteesnseeessaeaeessnseeennns 116
NUING fTEEA POINLETS.....ceeuiiiiiiiieiiiieeeite ettt ettt e st e st e e s sabeeestbeeesabeeesabeessneeenas 117
IMACTO CONVENEIONS. ... vttiiiieeeiiieerieeeeiteeesiteeeseteeessseeessseeessseeasseeansseesssseessssessssnesssseessnseessssessnsseennns 118
(O 1o 07, 07 3 1 PSPPSR 118

Language EXIENSIONS. ...ccuuiiiiiiiiiieeiieetee ettt ettt st et e e e saneesaneenne e 118

EXTEINAL LINKS ettt ettt e e e e e e e e et e eee e e e e e e e aeaeeeeeeeaaaanaaaeseeeeeneennnnas 119

MiXING LaANGUAZES.....ceovtiieiiriieiieetteeite ettt ettt ettt sttt et s e sene e saneesneeneeenne e e 119
FOr further reading........c.c.ooiiiiiiiiii ettt 119
(@104 [5 L) v ORISR 119
Computer Programming..........cc.ceveieeiriieiniieeeiiieesiee e erteeeiteeerireessiteeesbeeesbeeessaeesssseesnsseeenns 120
C RefErenCe TabIES....ccuuviiiiieiiiiieeeeeee ettt e e ettt e e e e et eeeessbaeeeeesaaeaeeennns 120
S (&) (=) 1 T 1 o) (U SUR R 121
LISt Of K@Y WOTAS.eeeiiiieiiiiie ettt et e e sttt e st e e et e e e sabeeeenbbeeenasaeesnnseeas 121
List of Standard HEaders..........cooviiiiiiiiiiiiiiceeee et 121
L 0] (o) 0 1S 21 () USRS 122
Table of Operators FOOINOLES.uiiiiiiieeeiiie et et e et et e sae e e et e e e e e eesseeessbeeeenaneens 123
Table Of DAt TYPES. ...eeeuriieeiiiieeiite ettt ettt ettt e st e e st e e s eabb e e e sabeeesaneeas 124
Table of Data Types FOOtNOLES.c...uiiiiiiiiiiiieiiiie et et 127
LO10) 111071 53 4SO USRS 127
Free (O With @ fT€€ VETSION)......uuvuvviiiiiiiiiiiiiiiiieeeeeeee e et eeeee e e e e e e e eeenaaareereeeeeeeeas 127
(000) 101 101S] 3 21 BRSSPSR 128
VIS, .ttt ettt ettt e ettt e e e et e e e e et e e e e e et b ee e e e aabaeee e e ntaeaeeeaanntaaeeeeaanarataeeeannnees 128
Personal tOOIS.couiiiiiiiieeieeeee e 128
INAVIZALION. ..eeutteeeiiee et ee ettt et te ettt e et e e et e ettt e ettt e esabeesabbeesasaeessseeesnseeessseesnnseens 128
COMIMUINIEY ...ttt ettt ettt e ettt e st e et e e e st e e e sabe e e e st beeesaneeesanreeas 128
L0701) PRSPPI 129
In Other Jan@UAZES.coeiriiieiiiee et e e e 129
Introduction

| History —

Why Learn C?

The most popular Operating Systems right now are Microsoft Windows, Mac OS X, and
GNU/Linux. Each is written in C. Why? Because Operating Systems run directly on top of the
hardware. There is no lower layer to mediate their requests. Originally, this OS software was written
in the Assembly language, which results in very fast and efficient code. However, writing an OS in
Assembly is a tedious process, and produces code that will only run on one CPU architecture, such
as the Intel X86 or AMDG64. Writing the OS in a higher level language, such as C, lets programmers
re-target the OS to other architectures without re-writing the entire code.

But why 'C' and not Java or Basic or Perl? Mostly because of memory allocation. Unlike most
computer languages, C allows the programmer to address memory the way he/she would using
assembly language. Languages like Java and Perl shield the programmer from having to worry about
memory allocation and pointers. This is usually a good thing. It's quite tedious to deal with memory
allocation when building a high-level program like a quarterly income statement report. However,
when dealing with low level code such as that part of the OS that moves the string of bytes that
makes up that quarterly income report from the computer's memory to the network card's buffer so
they can be shipped to the network printer, direct access to memory is critical -- something you just
can't do with Java. C can be compiled into fast and efficient machine code.

So is it any wonder that C is such a popular language?

Like toppling dominoes, the next generation of programs follows the trend of its ancestors.

http://en.wikibooks.org/wiki/C_Programming/History

Operating Systems designed in C always have system libraries designed in C. Those system libraries
are in turn used to create higher-level libraries (like OpenGL, or GTK), and the designers of those
libraries often decide to use the language the system libraries used. Application developers use the
higher-level libraries to design word processors, games, media players, and the like. Many of them
will choose to program in the language that higher-level library uses. And the pattern continues on
and on and on... & Why learn CPWhat you need before you can learn —

History of the C Programming Language

In 1947, three scientists at Bell Telephone Laboratories, William Shockley, Walter Brattain, and
John Bardeen created the transistor. Modern computing was beginning. In 1956 at MIT the first
fully transistor based computer was completed, the TX-0. In 1958 at Texas Instruments, Jack Kilby
created the first integrated circuit. But even before the first integrated circuit existed, the first high
level language had already been written.

In 1954 Fortran, the Formula Translator, had been written. It began as Fortran I in 1956. Fortran
begot Algol 58, the Algorithmic Language, in 1958. Algol 58 begot Algol 60 in 1960. Algol 60
begot CPL, the Combined Programming Language, in 1963. CPL begot BCPL, Basic CPL, in 1967.
BCPL begot B in 1969. B begot C in 1971.

B was the first language in the C lineage directly, having been created at Bell Labs by Ken
Thompson. B was an interpreted language, used in early, internal versions of the UNIX operating
system. Thompson and Dennis Ritchie, also of Bell Labs, improved B, calling it NB; further
extensions to NB created C, a compiled language. Most of UNIX was rewritten in NB and then C,
which led to a more portable operating system.

B was of course named after BCPL, and C was its logical successor.

The portability of UNIX was the main reason for the initial popularity of both UNIX and C. So
rather than creating a new operating system for each new machine, system programmers could
simply write the few system-dependent parts required for the machine, and write a C compiler for
the new system. Thereafter since most of the system utilities were written in C, it simply made sense
to also write new utilities in that language. « HistoryUsing a Compiler —

Getting Started

This book is intended to be an introduction to C programming. Although some basic computer
literacy is assumed, no special knowledge is needed.

The minimum software required to start programming in C is a text editor to create C source files,
and C compiler to turn those source files into executable programs.

Many programmers, however, prefer to use a IDE (Integrated development environments). This is a
program which combines editing, compiling and debugging into a convenient all-in-one interface.
There are a variety of these available on almost every computer platform. Some can be downloaded
free-of-charge while others are commercial products.

C Compilers:

Platform License Extra
. Open
OpenWatcom [11 DOS, Windows, Netware, OS/2
source

Borland C [2] Windows Freeware

http://www.borland.com/products/downloads/download_cbuilder.html
http://openwatcom.org/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikibooks.org/wiki/C_Programming/Using_a_Compiler
http://en.wikibooks.org/wiki/C_Programming/History
http://en.wikibooks.org/w/index.php?title=Programming:B&action=edit
http://en.wikibooks.org/w/index.php?title=Programming:BCPL&action=edit
http://en.wikibooks.org/w/index.php?title=Programming:CPL&action=edit
http://en.wikibooks.org/w/index.php?title=Programming:Algol&action=edit
http://en.wikibooks.org/wiki/Programming:Fortran
http://en.wikibooks.org/wiki/C_Programming/What_you_need_before_you_can_learn
http://en.wikibooks.org/wiki/C_Programming/Why_learn_C%3F

Compiler
DQOS, Cygwin (w32), MinGW Open De facto standard. Ships
(w32)0S/2, Mac OS X, Unix source with most Unix systems.

GNU C Compiler [3]

Tiny C Compiler [4] GNU/Linux, Windows Open Small, fast compiler
(tcc) source
IDEs:
Platform License Extra
Windows, . .
CDT 5 Mac OS X, Open source A C/C++ plug-in for Eclipse, a popular open
Unix source IDE.
Little C 6 Free for non-
Compiler] Windows commercial
@LCO) use.
Anjuta [z Unix Open source A QTK+2 IDE for the GNOME desktop
1 environment
Available on the "Developer Tools" disc with most
8 recent-model Apple computers, or as download
Xeode 1 MacOS X Freeware when registered (free) as ADC-member at
http://developer.apple.com/ .
[9 Windows, \ \
Pelles C 1 Pocket PC free

For Windows, Dev-C++ is recommended for its ease-of-use and simplicity of installation.

Installing the GNU C Compiler on Linux can vary in method from Linux distribution to
distribution.

For Redhat, get a gcc RPM, e.g. using Rpmfind and then install (as root) using rpm —ivh
gcc-version-release.arch.rpm

For Fedora Core, install the GCC compiler (as root) by using yum install gcc.

For Mandrake, install the GCC compiler (as root) by using urpmi gcc

For Debian, install the GCC compiler (as root) by using apt—get install gcc.

For Ubuntu, install the GCC compiler by using sudo apt—-get install gcc,or by
using Synaptic. You do not need Universe enabled.

For Slackware, the package is available on their website - simply download, and type
installpkg gcc-xxxxx.tgz

For Gentoo, you should already have GCC already installed as it will have been used when
you first installed. To update it run (as root) emerge —-uav gcc

For Arch GNU/Linux, install the GCC compiler (as root) by using pacman —-Sy gcc.
For FreeBSD, NetBSD, OpenBSD, DragonFly BSD, Darwin the port of GNU gcc is
available in the base system, or it could be obtained using the ports collection or pkgsrc.

If you cannot become root, get the GCC tarball from ftp://ftp.gnu.org/ and follow the
instructions in it to compile and install in your home directory. Be warned though, you need
a C compiler to do that - yes, gcc itself is written in C.

You can use some commercial C compiler/IDE.

A text editor with syntax highlighting is recommended, as it can make code easier to read at a
glance. Highlighting can also make it easy to spot syntax errors. Most programmers' text editors on
Windows and Unix systems can do this. &« What you need before you can learhA taste of C —

http://en.wikibooks.org/wiki/C_Programming/A_taste_of_C
http://en.wikibooks.org/wiki/C_Programming/What_you_need_before_you_can_learn
http://en.wikipedia.org/wiki/syntax_highlighting
ftp://ftp.gnu.org/
http://en.wikipedia.org/wiki/pkgsrc
http://en.wikipedia.org/wiki/Darwin
http://en.wikipedia.org/wiki/DragonFly_Bsd
http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Gentoo
http://www.slackware.com/pb/
http://en.wikipedia.org/wiki/Slackware
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/yum
http://en.wikipedia.org/wiki/Fedora_Core
http://en.wikipedia.org/wiki/RPM_Package_Manager
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/Linux_distribution
http://smorgasbordet.com/pellesc/
http://smorgasbordet.com/pellesc/
http://en.wikibooks.org/wiki/Pelles_C
http://developer.apple.com/
http://developer.apple.com/tools/xcode
http://developer.apple.com/tools/xcode
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/GNOME
http://anjuta.org/
http://anjuta.org/
http://www.cs.virginia.edu/~lcc-win32
http://www.cs.virginia.edu/~lcc-win32
http://en.wikipedia.org/wiki/Little_C_Compiler
http://en.wikipedia.org/wiki/Little_C_Compiler
http://en.wikipedia.org/wiki/Little_C_Compiler
http://en.wikipedia.org/wiki/Eclipse_(computing)
http://eclipse.org/cdt
http://eclipse.org/cdt
http://www.tinycc.org/
http://www.edm2.com/0101/emx.html
http://mingw.org/
http://mingw.org/
http://cygwin.com/
http://delorie.com/djgpp
http://gcc.gnu.org/
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

Dev-C++

Dev C++, as mentioned before, is an Integrated Development Enviroment (IDE) for the C++
programming language, available from Bloodshed Software.

C++ is a programming language which contains within itself most of the C language, plus a few
extensions - as such, most C++ compilers also compile C programs, sometimes with a few
adjustments (like invoking it with a different name or commandline switch). Therefore you can use
Dev C++ for C developement.

Dev C++ is not, however, the compiler: It is designed to use the MinGW or Cygwin versions of
GCC - both of which can be downloaded as part of the Dev C++ package, although they are
completely different projects.

Dev C++ simply provides an editor, syntax highlighting, some facilities for the visualisation of code
(like class and package browsing) and a graphical interface to the chosen compiler. Because Dev
C++ analyses the error messages produced by the compiler and attempts to distinguish the line
numbers from the errors themselves, the use of other compiler software is discouraged since the
format of their error messages is likely to be different.

The current version of Dev-C++ is a beta for version 5 - as such, it still has a significant number of
bugs. However, all the features are there and it is quite usable - as such, it is still considered one of
the best free software C IDEs available for Windows.

A version of Dev-C++ for Linux is in the pipeline; it is not quite usable yet, however Linux users
already have a wealth of IDEs available to them (for example KDevelop and Anjuta.) Also, almost
all the graphical text editors, and other common editors such as emacs and vi(m), support syntax

highlighting.

gee

The GCC is a free set of compilers developed by the Free Software Foundation, with Richard
Stallman as one of the main architects.

Detailed Steps for Obtaining the Free, Widely Respected and Easy to Use GCC Compiler if
You're on Windows:

1. Go to http://www.cygwin.com and click on the "Install Cygwin Now" button in the upper right
corner of the page.

2. Click "run" in the window that pops up, and click "next" several times, accepting all the default
settings.

3. Choose any of the Download sites ("ftp.easynet.be", etc.) when that window comes up; press
"next" and the Cygwin installer should start downloading.

4. When the "Select Packages" window appears, scroll down to the heading "Devel" and click on the
"+" by it. In the list of packages that now displays, scroll down and find the "gcc-core" package; this
is the compiler. Click once on the word "Skip", and it should change to some number like "3.4" etc.
(the version number), and an "X" will appear next to "gcc-core" and several other related packages
that will now be downloaded.

5. Click "next" and the compiler as well as the Cygwin tools should start downloading; this could
take a while. While you're waiting, go to http://www.crimsoneditor.com and download that free
programmer's editor; it's powerful yet easy to use for beginners.

6. Once the Cygwin downloads are finished and you have clicked "next", etc. to finish the

http://www.crimsoneditor.com/
http://www.cygwin.com/
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/free_software
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/syntax_highlighting
http://en.wikipedia.org/wiki/syntax_highlighting
http://en.wikipedia.org/wiki/beta_version
http://en.wikipedia.org/wiki/GCC
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/MinGW
http://www.bloodshed.net/
http://en.wikipedia.org/wiki/Integrated_Development_Enviroment
http://en.wikipedia.org/wiki/Dev-C_Plus_Plus

installation, double-click the Cygwin icon on your desktop to begin the Cygwin "command prompt".
Your home directory will automatically be set up in the Cygwin folder, which now should be at
"C:\cygwin" (the Cygwin folder is in some ways like a small unix/linux computer on your Windows
machine -- not technically of course, but it may be helpful to think of it that way).

7. Type "gcc" at the Cygwin prompt and press "enter"; if "gcc: no input files" or something like it
appears you have succeeded and now have the gcc compiler on your computer (and congratulations
-- you have also just received your first error message!).

Detailed Steps for Compiling and Running Your First '"Hello, world!"' Program on Windows:

1. Open Notepad or another text editor (like the Crimson Editor listed above), and copy and paste
this program into a new file:

#include <stdio.h>

int main ()

{
printf ("Hello, world!\n");
return (0);

2. Save this file as "hello.c" in the folder with your username, in the "home" folder in the Cygwin
folder (i.e., somewhere like, "C:\cygwin\home\your-username-here").

3. Double-click the Cygwin icon on your desktop to start a Cygwin command prompt, and type "Is"
to list the contents of your home folder; you should see your program "hello.c" listed if you have
saved your program to the location listed in step #2, above.

4. Now type "gcc -o hello hello.c" and press enter to compile your program. If any error messages
come up, make sure your "hello.c" file looks exactly like the code above, and make sure you are in
the same folder as your "hello.c" file (you can enter "cd" at the prompt at any time to return to the
"C:\cygwin\home\you-username-here" folder if you are unsure where you are.)

5. If all goes well and no error messages come up, type "Is" again at the prompt and you should now
see "hello.c" as well as "hello.exe", your newly compiled program.

6. Type "hello.exe" and press enter to run your program; you should see "Hello, world!" printed out
-- welcome to the miracle of computing! (On newer versions it may help to type "./hello.exe"

The current stable (usable) version is 4.0 published on 20 April 2005, which supports several
platforms. In fact, GCC is not only a C compiler, but a family of compilers for several languages,
such as C++, Ada [, Java, and Fortran.

To get started using GCC, you can simply call gee from the command line, followed by some of the
modifiers:

-c: indicates that the compiler is supposed to generate an object file, which can be later linked to
other files to form a final program.

-0: indicates that the next parameter is the name of the resulting program (or library). If this option
is not specified, the compiled program will, for historic reasons, end up in a file called "a.out" or
"a.exe" (for cygwin users).

http://en.wikibooks.org/wiki/Programming:Fortran
http://en.wikibooks.org/wiki/Java
http://en.wikibooks.org/wiki/Ada_Programming
http://en.wikibooks.org/wiki/Image:75%25.png

-g3: indicates that debugging information should be added to the results of compilation
-O2 -ffast-math: indicates that the compilation should be optimized

-W -Wall -fno-common -Wecast-align -Wredundant-decls -Wbad-function-cast -Wwrite-strings
-Waggregate-return -Wstrict-prototypes -Wmissing-prototypes: indicates that gcc should warn
about many types of suspicious code that are likely to be incorrect

-E: indicates that gcc should only preprocess the code; this is useful when you are having trouble
understanding what gcc is doing with #include and #define, among other things

For example, to compile the file &ello.c into the program hello, use

gcc -0 hello hello.c

< Using a CompildrIntro exercise —

Like in every other programming language learning book we use the Hello world program to
introduce you to C.

/*1*/ #include <stdio.h>

/*2%/

/*3*/ int main(void)

/*4*/

/*5%/ printf ("Hello, world!\n");

/*6*/ return 0;

/*Tx/)

/*8%/

This program prints "Hello, world!" and then exits. The numbers are added for our benefit to refer to
certain lines and would not be part of the real program.

Line 1 tells the C compiler to find a file called stdio.h and add the contents of that file to this
program. In C, you often have to pull in extra optional components when you need them. stdio.h
contains descriptions of standard input/output functions; in other words, stuff you can use to send
messages to a user, or to read input from a user.

Line 3 is something you'll find in every C program. Every program has a main function. Generally,
the main function is where a program begins. However, one C program can be scattered across
multiple files, so you won't always find a main function in every file. The int at the beginning means
that main will return an integer to whatever made it run when it is finished and void in the
parenthesis means that main takes no parameters (parameters to main typically come from a shell
when the program is invoked).

Line 5 is the statement that actually sends the message to the screen. printfis a function that is
declared in the file stdio.h - which is why you had to #include that at the start of the program. \n is a
so-called escape code which adds a new line at the end of the printed text.

Line 6 will return zero (which is the integer referred to on line 3) to the operating system. When a
program runs successfully its return value is zero (GCC4 complains if it doesn't when compiling). A
non-zero value is returned to indicate a warning or error.

Line 8 is there because it is (at least on UNIX) considered good practice to end a file with a new
line. < A taste of CPreliminaries —

Introductory Exercises
If you are using a Unix(-like) system, such as GNU/Linux, Mac OS X, or Solaris, it will probably

http://en.wikipedia.org/wiki/Solaris_Operating_Environment
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikibooks.org/wiki/C_Programming/Preliminaries
http://en.wikibooks.org/wiki/C_Programming/A_taste_of_C
http://en.wikipedia.org/wiki/en:Integer_(computer_science)
http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikibooks.org/wiki/C_Programming/Intro_exercise
http://en.wikibooks.org/wiki/C_Programming/Using_a_Compiler

have GCC installed. Type the hello world program into a file called first.c and then compile it with
gcc. Just type:

gcc first.c

Then run the program by typing:

./a.out

or

a.exe

if you are using cygwin.

There are a lot of options you can use with the gcc compiler. For example, if you want the output to
have a name other than a.out, you can use the -o option. Also, you can ask the compiler to print
warnings while it handles your code. The following shows a few examples:

gcc -Wall -ansi -pedantic -o first first.c
All the options are well documented in the manual page for gcc and at even more length in the info
material for gcc.

If you are using a commercial IDE you may have to select console project, and to compile you just
select build from the menu or the toolbar. The executable will appear inside the project folder, but
you should have a menu button so you can just run the executable from the IDE.

Beginning C

« Intro exerciseCompiling —

Basic Concepts

Before one jumps headlong into learning C syntax and programming constructs, it is beneficial to
learn the meaning of a few key terms that are central to a thorough understanding of C. Good luck
using this guide for your studies!

Compilation: How Does C Work?

Like any programming language, C by itself is completely incomprehensible to a microprocessor. Its
purpose is to provide an intuitive way for humans to provide instructions that can be easily
converted into machine code. The program you use to convert C code into executable machine code
is called a compiler [10]. If you are working on a project in which several source code files are
involved, a second program called the linker is invoked. The purpose of the linker is to "connect"
the files and produce either an executable program or a library. A library is a set of routines, not a
stand-alone program, but can be used by other programs or programmers. Compilation and linking
are so closely related that programmers usually treat them as one step. One thing to keep in mind is
that compilation is a "one way street"; compiling a C source file into machine code is easy, but
"decompiling" (turning machine code into the C source that creates it) is not. Decompilers for C do
exist, but they rarely create useful code. Probably the most popular compiler available is the GNU C
Compiler, which comes with most UNIX and UNIX-like systems.

http://gcc.gnu.org/
http://gcc.gnu.org/
http://en.wikibooks.org/wiki/C_Programming/Print_version#fn_compiler_to_machine_code
http://en.wikibooks.org/wiki/C_Programming/Compiling
http://en.wikibooks.org/wiki/C_Programming/Intro_exercise

Integrated Development Environments (IDEs)

An IDE is a program that combines a set of programs that developers need into one convenient
package, usually with a graphical user interface. These programs include a compiler, linker, and text
editor. They also typically include a debugger, a tool that will preserve your C source code after
compilation and enable you to do such things as step manually through it or alter data in an attempt
to uncover errors. A very popular IDE is Microsoft Visual C++ (MS VC++); a popular free IDE is
DevC++, available at http://www.bloodshed.net. Also Pelles C at
http://www.smorgasbordet.com/pellesc/ (Don't be put off by the 'C++"; C++ is almost a superset of
C, so almost all C++ compilers also come with a C compiler, e.g. MS VC++ or GCC, the GNU
Compiler Collection.) If you are running Mac OS X the Xcode IDE is included on the Developer
Tools CD that came with your computer, you can also download it free at the Apple Developer
Connection. It is recommended you find a good IDE before you begin learning C (or any other
language), but you do not need one. If you have a decent text editor (Microsoft Word and
WordPerfect are not text editors, they are word processors. Notepad is a text editor though.) and a
compiler, they will do as well. There are many text editors (see List of Text Editors on Wikipedia),
the most popular being vi and its clones (such as vim) and Emacs.

Block Structure, Statements, Scope, and Whitespace

Now we discuss the basic structure of a C program. If you're familiar with PASCAL, you may
have heard it referred to as a block structured language. C does not have complete block structure
(and you'll find out why when you go over functions in detail) but it is still very important to
understand what blocks are and how to use them. A block is a group of source code statements
intended to control scope. In C, blocks begin with a "left curly" (" { ") and end with a "right curly"
("} ™). Blocks can contain sub-blocks, which can contain their own sub-blocks, and so on.

So what's in a block? Generally, a block consists of executable statements and the whitespace that
surrounds them. A statement is text the compiler will attempt to turn into executable instructions.
Statements always end with a semicolon (;) character. Multiple statements can share a single line in
the source file. There are several kinds of statements, including assignment, conditional and flow-
control. A good portion of this book deals with statement construction.

Whitespace refers to the tab, space and newline/EOL (End Of Line) characters that separate the text
characters that make up source code lines. Like many things in life, it's hard to appreciate
whitespace until it's gone. To a C compiler, the source code

puts ("Hello world"); return 0;

is the same as

puts ("Hello world");
return O;

is the same as

puts (
"Hello world")

return O;

The compiler simply skips over whitespace. However, it is common practice to use spaces (and tabs)

http://en.wikipedia.org/wiki/List_of_text_editors
http://developer.apple.com/
http://developer.apple.com/
http://en.wikipedia.org/wiki/Xcode
http://www.smorgasbordet.com/pellesc/
http://www.bloodshed.net/

to organize source code for human readability.

In C, most of the time we do not want other functions or other programmer's routines accessing data
that we are currently manipulating. This is why it is important to understand the concept of scope.
Scope describes the level at which a piece of data or a function can be seen or manipulated. There
are two kinds of scope in C, local and global. When we speak of something being global, we speak
of something that can be seen or manipulated from anywhere in the program. When we speak of
something being local, we speak of something that can be seen or manipulated only within the
block it was declared, or its sub-blocks. (Sub-blocks can access data local to their encompassing
block, but a block cannot access local data local to a sub-block.)

TIP: You can use blocks without an if, loop, et al statement to organize your code.

Basics of Using Functions

Functions are a big part of programming. A function is a special kind of block that performs a well-
defined task. If a function is well-designed, it can enable a programmer to perform a task without
knowing anything about how the function works. The act of requesting a function to perform its task
is called a function call. Many functions require a caller to hand it certain pieces of data needed to
perform its task; these are called arguments. Many functions also return a value to the caller when
they're finished; this is called a return value.

« The things you need to know before calling a function are:

« What the function does
« The data type (discussed later) of the arguments and what they mean
« The data type of the return value, and what it means

All code other than global data definitions and declarations needs to be a part of a function.

Every executable program needs to have one and only one main function, which is where the
program begins executing.

The Standard Library

In 1983, when C was in the process of becoming standardized, the standardization committee
decided that there needed to be a basic set of functions common to each implementation of C. This
is called the Standard Library. The Standard Library provides functions for tasks such as
input/output, string manipulation, mathematics, files, memory allocation, and more. The Standard
Library does NOT provide functions for anything that might be dependent on hardware or operating
system, like graphics, sound, or networking. In the "Hello, World", program, a Standard Library
function is used - puts -- which outputs lines of text to the standard output stream.

Comments and Coding Style

Comments are text inserted into the source code of a program that serve no purpose other than
documenting the code. In C, they begin with /* and end with */. Good commenting is considered
essential to software development, not just because others may need to read your code, but you may
need to come back to your code a long time after writing it and immediately understand how it
works. In general, it is a good idea to comment anything that is not immediately obvious to a
competent programmer. However, it is not a good idea to comment every line. This may actually
make your code more difficult to read and it will waste space.

http://en.wikipedia.org/wiki/standard_output

Good coding style habits are important to adopt for the simple reason that code should be intuitive
and readable, which is, after all, the purpose of a high-level programming language like C. In
general, provide ample white space, indent so that the opening brace of a block and the closing
brace of a block are vertically aligned, and provide intuitive names for your functions and variables.
Throughout this text we will be providing more style and coding style tips for you. Do try and follow
these tips: they will make your code easier for you and others to read and understand.

The Preprocessor

Many times you will need to give special instructions to your compiler. This is done through
inserting preprocessor directives into your code. When you begin compiling your code, a
subprogram called the preprocessor first finds these directives and interprets them before the
compilation process begins. One thing to remember is that these directives are NOT compiled as
part of your source code. In C language, all preprocessor directives begin with the hash character
(#). You can see one preprocessor directive in "Hello, World!", #include. #include opens a
file and conceptually replaces the #include directive with the file's contents. There is another
common preprocessor directive, #define, that will be discussed later.

Footnotes

1. 4t Actually, GCC's(GNU C Compiler) ce (C Compiler) translates the input .c file to the
target cpu's assembly, output is written to an .s file. Then as (assembler) generates a machine
code file from the .s file. Pre-processing is done by another sub-program cpp (C
PreProcessor).

< PreliminarielStructure and style —

Now that we have covered the basic concepts of C programming, we can briefly discuss the process
of compilation.

Compilation is basically translation -- a computer program called the compiler takes our C source
code and translates it into the binary language used by computers. Of course, it is more complicated
than that; but the basic idea applies.

To those new to programming, this seems fairly simple. A naive compiler might read in every

source file, translate everything into machine code, and write out an executable. This could work but
has two serious problems. First, for a large project, the computer may not have enough memory to
read all of the source code at once. Second, if you make a change to a single source file, you would
rather not have to recompile the entire application. To deal with these problems, compilers break
their job down into steps; for each source file (each . c file), the compiler reads the file, reads the
files it # includes, and translates it to machine code. The result of this is an "object file" (. o).
Once every object file is made, a "linker" collects all of the object files and writes the actual
program. This way, if you change one source file, only that file needs to be recompiled and then the
application needs to be re-linked.

Without going into the painful details, it can be beneficial to have a superficial understanding of the
compilation process, and here we will briefly discuss it:

Preprocessor

In this stage the "preprocessor directives" are dealt with. These include # includes, macros, and
#pragma compiler settings. The result of the preprocessor is a text string.

http://en.wikibooks.org/wiki/C_Programming/Structure_and_style
http://en.wikibooks.org/wiki/C_Programming/Preliminaries
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#fn_compiler_to_machine_code_back

Syntax Checking

This step ensures that the code is valid and will sequence into an executable program.

Object Code

The compiler produces a machine code equivalent of the source code that can then be linked into
the final program. This step ensures that the code is valid and will sequence into an executable
program.

Linking

Linking combines the separate object codes into one complete program by integrating libraries and
the code into the final executable format. < CompilingError handling —

C Structure and Style

This is a basic introduction to producing effective code structure in the C Programming Language.
It is designed to provide information on how to effectively use Indentation, Comments, and other
elements that will make your C code more readable. It is not a tutorial on actually programming in
C.

New programmers will often not see the point in following structure in their programs, because they
often think that code is designed purely for the reading by a compiler. This is usually not the case, as
well-written code that follows a well-designed structure is usually much easier for programmers
(who haven't worked on the code for months) to read, and edit.

In the following sections, we will attempt to explain good programming techniques that will in turn
make your programs more effective.

Introduction

The following two blocks of code are essentially the same: Both of them contain exactly the same
code, and will compile and execute with the same result; however there is one essential difference.

Which of the following programs do you think is easier to read?

#include <stdio.h>
int main()
{printf ("Hello, World!\n");return(0);}

or

#include <stdio.h>

int main ()

{
printf ("Hello, World!\n");
return(0);

}

The simple use of indents and line breaks can greatly improve the readability of the code; without
making any impact whatsoever on how the code performs. By having readable code, it is much
easier to see where functions and procedures end, and which lines are part of which loops and

http://en.wikibooks.org/wiki/C_Programming/Error_handling
http://en.wikibooks.org/wiki/C_Programming/Compiling

procedures.

This book is going to focus on the above piece of code, and how to improve it. Please note that
during the course of the tutorial, there will be many (apparently) redundant pieces of code added.
These are only added to provide examples of techniques that we will be explaining, without
breaking the overall flow of code that the program achieves.

Line Breaks and Indentation

The addition of white space inside your code is arguably the most important part of good code
structure. Effective use of it can create a visual gauge of how your code flows, which can be very
important when returning to your code when you want to maintain it.

Line Breaks

Line breaks should be used in three main parts of your code

« After precompiler declarations.

- After new variables are declared.

- Between new paths of code. (i.e. Before the declaration of the function or loop, and after the
closing '}' bracket).

The following lines of code have line breaks between functions, but not any indention. Note that we
have added line numbers to the start of the lines. Using these in actual code will make your
compiler fail, they are only there for reference in this book.

10 #include <stdio.h>

20 int main ()

30 {

40 int 1=0;

50 printf ("Hello, World!");
60 for (i=0;1i<1l;i++){

70 printf ("\n");

80 break;

90 }

100 return(0);
110 1}

120

Based on the rules we established earlier, there should now be four line breaks added.

« Between lines 10 and 20, as line 10 is a precompiler declaration

- Between lines 40 and 50, as the block above it contains variable declarations
« Between lines 50 and 60, as it is the beginning of a new path (the 'for' loop)
« Between lines 90 and 100, as it is the end of a path of code

This will make the code much more readable than it was before:

10 #include <stdio.h>

11

20 int main ()

30 {

40 int i=0;

41

50 printf ("Hello, World!");
51

60 for (i=0;i<1l;i++) {

70 printf ("\n");

80 break;

90 }

91

100 return(0);
110 '}

120

But this still isn't as readable as it can be.

Indentation

Although adding simple line breaks between key blocks of code can make code marginally easier to
read, it provides no gauge of the flow of the program. The use of your tab key can be very useful
now: indentation visually separates paths of code by moving their starting points to a new column in
the line. This simple practice will make it much easier to read code. Indentation follows a fairly
simple rule:

+ All code inside a new path (i.e. Between the two '{' brackets '}") should be indented by one
tab more than the code in the previous path.

So, based on our code from the previous section, there are two paths that require indentation:

+ Lines 40 to 100
« Lines 70 and 80
10 #include <stdio.h>
11
20 int main()
30 {
40 int 1i=0;
41
50 printf ("Hello, World!");
51
60 for (i=0;i<1;i++){
70 printf ("\n");
80 break;
90 }
91
100 return(0) ;
110 }
120

It is now fairly obvious as to which parts of the program fit inside which paths of code. You can tell
which parts of the program will loop, and which ones will not. Although it might not be
immediately noticeable, once many nested loops and paths get added to the structure of the
program, the use of indentation can be very important.

NOTE: Many text editors automatically indent appropriately when you hit the enter/return key.

Comments

Comments in code can be useful for a variety of purposes. They provide the easiest way to point out
specific parts of code (and their purpose); as well as providing a visual "split" between various parts
of your code. Having a good commentary throughout your code will make it much easier to
remember what specific parts of your code do.

Comments in modern flavours of C (and many other languages) can come in two forms:

//Single Line Comments

and

/*Multi-Line
Comments*/

Note that Single line comments are only a very recent addition to C, and that some
compilers may not support them. A recent version of GCC will have no problems supporting
them.

This section is going to focus on the various uses of each form of commentary.

Single-line Comments

Single-line comments are most useful for simple 'side' notes that explain what certain parts of the
code do. The best places to put these comments are next to variable declarations, and next to pieces
of code that may need explanation.

Based on our previous program, there are two good places to place comments

« Line 40, to explain what 'int i' is going to do
+ Line 80, to explain why there is a 'break’ keyword.

This will make our program look something like

10 #include <stdio.h>

11

20 int main()

30 {

40 int 1=0; //Temporary variable used for 'for' loop.
41

50 printf ("Hello, World!");

51

60 for (1i=0;i<1l;i++){

70 printf ("\n");

80 break; //Exits 'for' loop.
90 }

91

100 return(0);

110 }

Multi-line Comments

Multi-line comments are most useful for long explanations of code. They can be used as
copyright/licensing notices, and they can also be used to explain the purpose of a path of code. This
can be useful in two facets: They make your functions easier to understand, and they make it easier
to spot errors in code (if you know what a path is supposed to do, then it is much easier to find the
piece of code that is responsible).

As an example, suppose we had a program that was designed to print "Hello, World! " a certain
number of times, on a certain number of lines. There would be many for loops in this program. For
this example, we shall call the number of lines i, and the number of strings per line as j.

A good example of a multi-line comment that describes 'for' loop i's purpose would be:

/* For Loop (int i)

Loops the following procedure i times (for number of lines). Performs 'for'
loop j on each loop,

and prints a new line at end of each loop.
*/

This provides a good explanation of what 'i's purpose is, whilst not going into detail of what '}’ does.
By going into detail over what the specific path does (and not ones inside it), it will be easier to

http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikibooks.org/wiki/Image:Warning_icon.png

troubleshoot the path.

Similarly, you should always include a multi-line comment as the first thing inside a function, to
explain the name of the function; the input that it will take, how it takes that input; the output; and
the overall procedure that the function is designed to perform. Always leave the technical details to
the individual code paths inside your program - this makes it easier to troubleshoot.

A function descriptor should look something like:

/* Function : int hworld (int 1i,int 3J)
Input : int i1 (Number of lines), int j (Number of instances per line)
Output : 0 (on success)
Procedure: Prints "Hello, World!" j times, and a new line to standard output
over 1 lines.
*/

This system allows for an at-a-glance explanation of what the function should do. You can then go
into detail over how each aspect of the program is achieved later on in the program.

Finally, if you like to have aesthetically-pleasing source code, the multi-line comment system allows
for the easy addition of starry borders to your comment. These make the comments stand out much
more than they would without the border (especially buried deep in source code). They should take
a format similar to:

/***************************************

* This is a multi line comment *
* That 1is surrounded by a *
* Cool, starry border! *

***************************************/

Applied to our original program, we can now include a much more descriptive and readable source
code:

10 #include <stdio.h>

11

20 int main ()

30 {

31
/***
* kK Kk %

32 * Function: int main()

*

33 * Input : none

*

34 * Output : Returns 0 on success

*

35 * Procedure: Prints "Hello, World!" and a new line to standard output then
exits. *

36

R R b b b b b b I b b b b b b b b b b b b 2 b db b b b b b b b b I b b b b b b b b b b b b b b db b db b db b b ab b b b db b b b b b b b b ab db db b b b I b d b b b g 4
****/

40 int 1=0; //Temporary variable used for 'for' loop.

41

50 printf ("Hello, World!");

51

52 /* FOR LOOP (int 1)

53 Prints a new line to standard output, and exits */

60 for (i=0;i<1;i++){

70 printf ("\n");

80 break; //Exits '"for' loop.

90 }

91

100 return(0);
110 1}

This will allow any outside users of the program an easy way to understand what the code does, and
how it works. It also prevents confusion with other like-named functions.

Examples

Links

 Aladdin's C coding guidelines - A more definitive C coding guideline.
« C/C++ Programming Styles GNU Coding styles & Linux Kernel Coding style

« Structure and styleVariables —

C has no native support for error handling (properly known as exception handling). The programmer
must instead prevent errors from occurring in the first place, often testing return values from
functions. -1 and NULL are used in several functions such as socket() (Unix socket programming)
or malloc() respectively to indicate problems that the programmer should be aware about. In a worst
case scenario where there is an unavoidable error and no way to recover from it, a C programmer
usually tries to log the error and "gracefully" terminate the program.

There is an external variable called "errno", accessible by the programs after including <errno.h> -
that file comes from the definition of the possible errors that can ocurr in some Operating Systems
(e.g. Linux - in this case, the definition is in include/asm-generic/errno.h) when programs ask for
resources. Such variable indexes error descriptions, that is accessible by the function 'strerror(
errno)'.

The following code tests the return value from the library function malloc to see if dynamic
memory allocation completed properly:

#include <stdio.h>

#include <errno.h> // errno
#include <stdlib.h> // malloc
#include <string.h> // strerror

extern errno;

int main(void)
{

/* pointer to characters (bytes) , requesting dynamic allocation of
5000000000000000000000 storage elements */

char *ptr = (char *) malloc(5000000000000000000000 * sizeof(int))
if(ptr == NULL)

fprintf (stdout, strerror(errno));
else

{
/* the rest of the code hereafter can assume that 1000 bytes were
successfully allocated */
/* L. K/
free(ptr);
}

exit (EXIT_SUCCESS); /* exiting program */

http://en.wikibooks.org/wiki/C_Programming/Variables
http://en.wikibooks.org/wiki/C_Programming/Structure_and_style
http://www.mycplus.com/c.asp?ID=12
http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm

The code snippet above shows the use of the return value of the library function malloc to check for
errors. Many library functions have return values that flag errors, and thus should be checked by the
astute programmer. In the snippet above, a NULL pointer returned from malloc signals an error in
allocation, so the program exits. In more complicated implementations, the program might try to
handle the error and try to recover from the failed memory allocation.

Handling divide by zero errors

A common pitfall made by C programmers is not checking if a divisor is zero before a division
command. The following code will produce a runtime error and in most cases, exit.

int dividend = 50;
int divisor = 0;
int quotient;

quotient = (dividend/divisor); /* This will produce a runtime error! */

For reasons beyond the scope of this document, you must check or make sure that a divisor is never
zero. Alternatively for *nix processes, you can stop the OS from terminating your process by
blocking the SIGFPE signal.

The code below fixes this by checking if the divisor is zero before dividing.

int dividend = 50;
int divisor = 0;
int quotient;

if (divisor == 0) {

// Handle the error here...

}

quotient = (dividend/divisor);

< Error handlingSimple Input and Qutput —

Variables

Like most programming languages, C is able to use and process named variables and their contents.
Variables are most simply described as names by which we refer to some location in memory - a
location that holds a value with which we are working.

It often helps to think of variables as a "pigeonhole", or a placeholder for a value. You can think of a
variable as being equivalent to its value. So, if you have a variable i that is initialized to 4, i+1 will
equal 5.

Since C is a relatively low-level programming language, it is necessary for a C program to claim the
memory needed to store the values for variables before using that memory. This is done by
declaring variables, the way in which a C program shows the number of variables it needs, what
they are going to be named, and how much memory they will need.

Within the C programming language, when we manage and work with variables, it is important for
us to know the type of our variables and the size of these types. This is because C is a sufficiently
low-level programming language that these aspects of its working can be hardware specific - that is,
how the language is made to work on one type of machine can be different from how it is made to

http://en.wikibooks.org/wiki/C_Programming/Simple_Input_and_Output
http://en.wikibooks.org/wiki/C_Programming/Error_handling

work on another.

All variables in C are typed. That is, you must give a type for every variable you declare.

Declaring, Initializing, and Assigning Variables

Here is an example of declaring an integer, which we've called some_number. (Note the
semicolon at the end of the line - that is how your compiler separates one program statement from
another.)

int some_number;

This statement means we're declaring some space for a variable called some_number, which will be
used to store integer data. Note that we must specify the type of data that a variable will store.
There are specific keywords to do this - we'll look at them in the next section.

You can also declare multiple variables with one statement:

int anumber, anothernumber, yetanothernumber;

We can also declare and assign some content to a variable at the same time. This is called
initialization because it is the "initial" time a value has been assigned to the variable:

int some_number=3;

In C, all variable declarations (except for globals) must be done at the beginning of a block. You
cannot declare your variables, insert some other statements, and then declare more variables.
Variable declarations (if there are any) are always the first part of any block.

After declaring variables, you can assign a value to a variable later on using a statement like this:

some_number=3;

You can also assign a variable the value of another variable, like so:

anumber = anothernumber;

Or assign multiple variables the same value with one statement:

anumber = anothernumber = yetanothernumber = 3;

This is because the assignment (x = y) returns the value of the assignment. x =y =z is really
shorthand for x = (y = z).

Naming Variables
(Note: Several words in this section should be made into links.)

Variable names in C are made up of letters (upper and lower case) and digits. The underscore
character ("_") is also permitted. Names must not begin with a digit. Unlike some languages (such
as Perl and some BASIC dialects), C does not use any special prefix characters on variable names.

Some examples of valid (but not very descriptive) C variable names:

foo

Bar

BAZ
foo_bar
_foo4d2

http://en.wikipedia.org/wiki/BASIC_programming_language
http://en.wikipedia.org/wiki/Perl

QuUx

Some examples of invalid C variable names:

2foo (must not begin with a digit)

my foo (spaces not allowed in names)

Sfoo ($ not allowed —-- only letters, digits, and _)
while (language keywords cannot be used as names)

As the last example suggests, certain words are reserved as keywords in the language, and these
cannot be used as variable names.

In addition there are certain sets of names that, while not language keywords, are reserved for one
reason or another. For example, a C compiler might use certain names "behind the scenes", and this
might cause problems for a program that attempts to use them. Also, some names are reserved for
possible future use in the C standard library. The rules for determining exactly what names are
reserved (and in what contexts they are reserved) are too complicated to describe here, and as a
beginner you don't need to worry about them much anyway. For now, just avoid using names that
begin with an underscore character.

The naming rules for C variables also apply to other language constructs such as function names,
struct tags, and macros, all of which will be covered later.

Literals

Anytime within a program in which you specify a value explicitly instead of referring to a variable
or some other form of data, that value is referred to as a literal. In the initialization example above,
3 is a literal. Literals can either take a form defined by their type (more on that soon), or one can use
hexadecimal (hex) notation to directly insert data into a variable regardless of its type. Hex numbers
are always preceded with Ox. For now, though, you probably shouldn't be too concerned with hex.

The Four Basic Types

In Standard C there are four basic data types. They are int, char, f£1loat, and double.

The int type

The int type, which you've already seen, is meant to store integers, which you may also know as
"whole numbers". An integer is typically the size of one machine word, which on most modern
home PCs is 32 bits (4 octets). Examples of literals are whole numbers (integers) such as 1,2,3, 10,
100... When int is 32 bits (4 octets), it can store any whole number (integer) between -2147483648
and 2147483647. A 32 bit word (number) has the possibility of representing 4294967296 numbers (2
to the power of 32).

If you want to declare a new int variable, use the int keyword. For example:

int numberOfStudents, i, j=5;

In this declaration we declare 3 variables, numberOfStudents, i1 & j, j here is assigned the literal 5.

The char type

The char type is similar to the int type, yet it is only big enough to hold one ASCII character. It

http://en.wikipedia.org/wiki/ASCII

stores the same kind of data as an int (i.e. integers), but always has a size of one byte. It is most
often used to store character data, hence its name.

Examples of character literals are 'a’, 'b', '1', etc., as well as special characters such as '\ 0' (the null
character) and '\n' (endline, recall "Hello, World").

The reason why one byte is seen as the ideal size for character data is that one byte is large enough
to provide one slot for each member of the ASCII character set, which is a set of characters which
maps one-to-one with a set of integers. At compile time, all character literals are converted into their
corresponding integer. For example, 'A' will be converted to 65 (0x41). (Knowing about the ASCII
character set is often useful.)

When we initialize a character variable, we can do it two ways. One is preferred, the other way is
bad programming practice.

The first way is to write

char letterl='a';

This is good programming practice in that it allows a person reading your code to understand that
letter is being initialized with the letter "a" to start off with.

The second way, which should not be used when you are coding letter characters, is to write
char letter2=97; /* in ASCII, 97 = 'a' */

This is considered by some to be extremely bad practice, if we are using it to store a character, not a
small number, in that if someone reads your code, most readers are forced to look up what character
corresponds with the number 97 in the encoding scheme. In the end, letter] and letter2 store both
the same thing -- the letter "a", but the first method is clearer, easier to debug, and much more
straightforward.

One important thing to mention is that characters for numerals are represented differently from their
corresponding number, i.e. '1' is not equal to 1.

There is one more kind of literal that needs to be explained in connection with chars: the string
literal. A string is a series of characters, usually intended to be output to the string. They are
surrounded by double quotes (" ", not '). An example of a string literal is the "Hello, world!\n" in
the "Hello, World" example.

The float type

float is short for Floating Point. It stores real numbers also, but is only one machine word in size.
Therefore, it is used when less precision than a double provides is required. £ 1oat literals must be
suffixed with F or f, otherwise they will be interpreted as doubles. Examples are: 3.1415926f, 4.0f,
6.022e+423f. float variables can be declared using the £1oat keyword.

The double type

The double and f1loat types are very similar. The f1oat type allows you to store single-
precision floating point numbers, while the double keyword allows you to store double-precision
floating point numbers - real numbers, in other words, both integer and non-integer values. Its size
is typically two machine words, or 8 bytes on most machines. Examples of double literals are
3.1415926535897932, 4.0, 6.022e+23 (scientific notation). If you use 4 instead of 4.0, the 4 will be
interpreted as an int.

http://en.wikipedia.org/wiki/Scientific_notation

The distinction between floats and doubles was made because of the differing sizes of the two types.
When C was first used, space was at a minimum and so the judicious use of a float instead of a
double saved some memory. Nowadays, with memory more freely available, you do not really need
to conserve memory like this - it may be better to use doubles consistently. Indeed, some C
implementations use doubles instead of floats when you declare a float variable.

If you want to use a double variable, use the double keyword.

sizeof

If you have any doubts as to the amount of memory actually used by any type (and this goes for
types we'll discuss later, also), you can use the sizeof operator to find out for sure. (For
completeness, it is important to mention that sizeof is an operator, not a function, even though it
looks like a function. It does not have the overhead associated with a function, nor do you need to
#include anything to use it.) Syntax is:

int i;

i = sizeof (int);

i will be set to 4, assuming a 32-bit system. The result of sizeof is the amount of data used for an
object in multiples of char.

Data type modifiers

One can alter the data storage of any data type by preceding it with certain modifiers.

long and short are modifiers that make it possible for a data type to use either more or less
memory. The int keyword need not follow the short and 1ong keywords. This is most
commonly the case. A short can be used where the values fall within a lesser range than that of an
int, typically -32768 to 32767. A Long can be used to contain an extended range of values. It is
not guaranteed that a short uses less memory than an int, nor is it guaranteed that a long takes up
more memory than an int. It is only guaranteed that sizeof(short) <= sizeof(int) <= sizeof(long).
Typically a short is 2 bytes, an int is 4 bytes, and a long either 4 or 8 bytes.

In all of the types described above, one bit is used to store the sign (positive or negative) or a value.
If you decide that a variable will never hold a negative value, you may use the unsigned modifier
to use that one bit for storing other data, effectively doubling the range of values while mandating
that those values be positive. The unsigned specifier may also be used without a trailing int, in
which case the size defaults to that of an int. There is also a signed modifier which is the
opposite, but it is not necessary and seldom used since all types are signed by default.

To use a modifier, just declare a variable with the data type and relevant modifiers attached:

unsigned short int 1i;
short things;
unsigned long apples;

const modifier

When const is added as a modifier, the declared variable must be initialized at declaration. It is
then not allowed to be changed, unless a cast is done. While the idea of a variable that never
changes may not seem useful, there are good reasons to use const. For one thing, many compilers

can perform some small optimizations on data when it knows that data will never change. For
example, if you need the value of II in your calculations, you can declare a const variable ofpi, so a
program or another function written by someone else cannot change the variable of pi.

Magic numbers

When you write C programs, you may be tempted to write code that will depend on certain
numbers. For example, you may be writing a program for a grocery store. This complex program
has thousands upon thousands of lines of code. The programmer decides to represent the cost of a
can of corn, currently 99 cents, as a literal throughout the code. Now, assume the cost of a can of
corn changes to 89 cents. The programmer must now go in and manually change each entry of 99
cents to 89. While this is not that big of a problem, considering the "global find-replace" function of
many text editors, consider another problem: the cost of a can of green beans is also initially 99
cents. To reliably change the price, you have to look at every occurrence of the number 99.

C possesses certain functionality to avoid this. This functionality is approximately equivalent,
though one method can be useful in one circumstance, over another.

Using the const keyword

The const keyword helps eradicate magic numbers. By declaring a variable const corn at the
beginning of a block, a programmer can simply change that const and not have to worry about
setting the value elsewhere.

There is also another method for avoiding magic numbers. It is much more flexible than const,
and also much more problematic in many ways. It also involves the preprocessor, as opposed to the
compiler. Behold...

#define

When you write programs, you can create what is known as a macro, so when the computer is
reading your code, it will replace all instances of a word with the specified expression.

Here's an example. If you write
#define PRICE_OF_CORN 0.99

when you want to, for example, print the price of corn, you use the word PRICE_OF_CORN instead
of the number 0.99 - the precompiler will replace all instances of PRICE_OF__CORN with the zext
"0.99", which the compiler will interpret as the literal double 0.99. Notice that, since this is a
special directive (the compiler will never know that this line was there), there is no need for a
semicolon.

It is important to note that #de f ine has basically the same functionality as the "find-and-replace"
function in a lot of text editors/word processors.

For some purposes, #def ine can be harmfully used, and it is usually preferable to use const if
#define is unnecessary. It is possible, for instance, to #def ine, say, a macro DOG as the number
3, but if you try to print the macro, thinking that DOG represents a string that you can show on the
screen, the program will have an error. #def ine also has no regard for type. It disregards the
structure of your program, replacing the text everywhere (in effect, disregarding scope), which could
be advantageous in some circumstances, but can be the source of problematic bugs.

You will see further instances of the #def ine directive later in the text. It is good convention to

write #def ined words in all capitals, so a programmer will know that this is not a variable that
you have declared but a #def ined macro.

Scope

In the Basic Concepts section, the concept of scope was introduced. It is important to revisit the
distinction between local types and global types, and how to declare variables of each. To declare a
local variable, you place the declaration at the beginning (i.e. before any non-declarative statements)
of the block the variable is intended to be local to. To declare a global variable, declare the variable
outside of any block. If a variable is global, it can be read, and written, from anywhere in your
program.

Global variables are not considered good programming practice, and should be avoided whenever
possible. They inhibit code readability, create naming conflicts, waste memory, and can create
difficult-to-trace bugs. Excessive usage of globals is usually a sign of laziness and/or poor design.
However, if there is a situation where local variables may create more obtuse and unreadable code,
there's no shame in using globals. (Implementing malloc, which is a function discussed later, is one
example of something that is simply too much more difficult to write without at least one global
variable.)

Other Modifiers

Included here, for completeness, are more of the modifiers that standard C provides. For the
beginning programmer, sfatic and extern may be useful. volatile is more of interest to advanced
programmers. register and auto are largely deprecated and are generally not of interest to either
beginning or advanced programmers.

static is sometimes a useful keyword. It is a common misbelief that the only purpose is to make
a variable stay in memory.

When you declare a function or global variable as static it will become internal. You cannot access
the function or variable through the extern (see below) keyword from other files in your project.
When you declare a local variable as static, it is created just like any other variable. However, when
the variable goes out of scope (i.e. the block it was local to is finished) the variable stays in memory,
retaining its value. The variable stays in memory until the program ends. While this behaviour
resembles that of global variables, static variables still obey scope rules and therefore cannot be
accessed outside of their scope.

Variables declared static are initialized to zero (or for pointers, NULL) by default.

You can use static in (at least) two different ways. Consider this code, and imagine it is in a file
called jfile.c:

static int j = 0;

void upj(void)

{
static int k = 0;
J++i

}

void downij (void)
{

j——i
}

The j var is accessible by both upj and downj and retains its value. the k var also retains its value,
but is only accessible to upj. static vars are a good way to implement encapsulation, a term from the
object-oriented way of thinking that effectively means not allowing changes to be made to a variable
except through function calls.

extern is used when a file needs to access a variable in another file that it may not have
#included directly. Therefore, extern does not actually carve out space for a new variable, it just
provides the compiler with sufficient information to access the remote variable.

volatile is a special type modifier which informs the compiler that the value of the variable may
be changed by external entities other than the program itself. This is necessary for certain programs
compiled with optimizations - if a variable were not defined volatile then the compiler may
assume that certain operations involving the variable are safe to optimize away when in fact they
aren't. volatile is particularly relevant when working with embedded systems (where a program may
not have complete control of a variable) and multi-threaded applications.

auto is a modifier which specifies an "automatic" variable that is automatically created when in
scope and destroyed when out of scope. If you think this sounds like pretty much what you've been
doing all along when you declare a variable, you're right: all declared items within a block are
implicitly "automatic". For this reason, the aufo keyword is more like the answer to a trivia question
than a useful modifier, and there are lots of very competent programmers that are unaware of its
existence.

register is a hint to the compiler to attempt to optimize the storage of the given variable by
storing it in a register of the computer's CPU when the program is run. Most optimizing compilers
do this anyway, so use of this keyword is often unnecessary. In fact, ANSI C states that a compiler
can ignore this keyword if it so desires -- and many do. Microsoft Visual C++ is an example of an
implementation that completely ignores the register keyword.

Concepts
Concepts
« Variables
- Types
. Data Structures
« Arrays

In this section

- Cvariables

« Ctypes
- Carrays

< VariablesSimple math —

Simple Input and Output

When you take time to consider it, a computer would be pretty useless without some way to talk to
the people who use it. Just like we need information in order to accomplish tasks, so do computers.
And just as we supply information to others so that they can do tasks, so do computers.

These supplies and returns of information to a computer are called input and output. 'Input' is

http://en.wikibooks.org/wiki/C_Programming/Simple_math
http://en.wikibooks.org/wiki/C_Programming/Variables
http://en.wikibooks.org/wiki/C_Programming/Arrays
http://en.wikibooks.org/wiki/C_Programming/Types
http://en.wikibooks.org/wiki/C_Programming/Variables
http://en.wikibooks.org/w/index.php?title=Programming:Data_Structures:Arrays&action=edit
http://en.wikibooks.org/wiki/Programming:Data_Structures
http://en.wikibooks.org/wiki/Programming:Types
http://en.wikibooks.org/wiki/Programming:Variables
http://en.wikibooks.org/wiki/Programming:Key_concepts_in_programming

information supplied to a computer or program. 'Output' is information provided by a computer or
program. Frequently, computer programmers will lump the discussion in the more general term
input/output or simply, I/O.

In C, there are many different ways for a program to communicate with the user. Amazingly, the
most simple methods usually taught to beginning programmers may also be the most powerful. In
the "Hello, World" example at the beginning of this text, we were introduced to a Standard Library
file stdio.h, and one of its functions, printf(). Here we discuss more of the functions that stdio.h
gives us.

Output using printf()

Recall from the beginning of this text the demonstration program duplicated below:

#include <stdio.h>
int main (void)
{

printf ("Hello, world!\n");
return O;

If you compile and run this program, you will see the sentence below show up on your screen:

Hello, world!

This amazing accomplishment was achieved by using the function printf (). A function is like a
"black box" that does something for you without exposing the internals inside. We can write
functions ourselves in C, but we will cover that later.

You have seen that to use printf () one puts text, surrounded by quotes, in between the brackets.
We call the text surrounded by quotes a literal string (or just a string), and we call that string an
argument to printf.

As a note of explanation, it is sometimes convenient to include the open and closing parentheses
after a function name to remind us that it is, indeed, a function. However usually when the name of
the function we are talking about is understood, it is not necessary.

As you can see in the example above, using printf () can be as simple as typing in some text,
surrounded by double quotes (note that these are double quotes and not two single quotes). So, for
example, you can print any string by placing it as an argument to the printf () function:

printf ("This sentence will print out exactly as you see it...");

And once it is contained in a proper main () function, it will show:

This sentence will print out exactly as you see it...

http://en.wikibooks.org/wiki/Programming:C#A_taste_of_C

Printing numbers and escape sequences

Placeholder codes

The printf function is a powerful function, and is probably the most-used function in C
programs.

For example, let us look at a problem. Say we don't know what 1905 + 31214 is. Let's use C to get
the answer.

We start writing

#include <stdio.h> /* this is important, since printf
can't be used without this line */

(For more information about the line above, see The Preprocessor).

int main(void)

{
printf ("1905+31214 is");
return 0O;

but here we are stuck! printf only prints strings! Thankfully, printf has methods for printing
numbers. What we do is put a placeholder format code in the string. We write:

printf("1905+31214 is %d", 1905+31214);

The placeholder %d literally "holds the place" for the actual number that is the result of adding 1905
to 31214.

These placeholders are called format specifiers. Many other format specifiers work with printf.
If we have a floating-point number, we can use $ £ to print out a floating-point number, decimal
point and all. An incomplete list is:

+ %Ii - int (same as %d)
+ %f - float

+ %]If - double

* %s - string

+ %X - hexadecimal

A more complete list is in the File I/O section.

Tabs and newlines

What if, we want to achieve some output that will look like:

1905
31214 +

printf will not put line breaks in at the end of each statement: we must do this ourselves. But
how?

What we can do is use the newline escape character. An escape character is a special character that
we can write but will do something special onscreen, such as make a beep, write a tab, and so on.

http://en.wikibooks.org/wiki/Programming:C_The_Preprocessor

To write a newline we write \n. All escape characters start with a backslash.

So to achieve the output above, we write
printf (" 1905\n31214 +\n-———- \n%d", 33119);

or to be a bit clearer, we can break this long printf statement over several lines. So our program will
be:

#include <stdio.h>

int main(void)

{
printf (" 1905\n");
printf ("31214 +\n");
printf("-————- \n");
printf ("%d", 33119);
return 0;

There are other escape characters we can use. Another common one is to use \t to write a tab. You
can use \a to ring the computer's bell, but you should not use this very much in your programs, as
excessive use of sound is not very friendly to the user.

Other output methods

puts()

The puts() function is a very simple way to send a string to the screen when you have no
placeholders to be concerned about. It works very much like the printf() function we saw the "Hello,
World!" example:

puts ("Print this string.");

will print to the screen:

Print this string.

followed by the newline character (as discussed above). (The put s function appends a newline
character to its output.) The fput s function is similar:

fputs ("Print this string via fputs", stdout);

will print to the stdout file (usually the screen):

Print this string via fputs

without a newline tacked on to the end.

Since puts() and fputs() do not allow the placeholders and the associated formatting that printf()
allows, for most programmers learning printf() is sufficient for their needs.

Input using scanf()

The scanf() function is the input method equivalent to the printf() output function - simple yet
powerful. In its simplest invocation, the scanf format string holds a single placeholder representing
the type of value that will be entered by the user. These placeholders are exactly the same as the
printf() function - %d for ints, %f for floats, and %lIf for doubles.

There is, however, one variation to scanf() as compared to printf(). The scanf() function requires the
memory address of the variable to which you want to save the input value. While pointers are
possible here, this is a concept that won't be approached until later in the text. Instead, the simple
technique is to use the address-of operator, &. For now it may be best to consider this "magic"
before we discuss pointers.

A typical application might be like this:

#include <stdio.h>

int main(void)
{

int a;

printf ("Please input an integer value: ");
scanf ("&d", &a);

If you are trying to input a string using scanf, you should not include the & operator.

If you were to describe the effect of the scanf() function call above, it might read as: "Read in an
integer from the user and store it at the address of variable a ".

Note of caution on inputs: When data is typed at a keyboard, the information does not go straight
to the program that is running. It is first stored in what is known as a buffer - a small amount of
memory reserved for the input source. Sometimes there will be data left in the buffer when the
program wants to read from the input source, and the scanf() function will read this data instead of
waiting for the user to type something. The function fflush(stdin) may fix this issue on some
computers and with some compilers, by clearing or "flushing" the input buffer. But this isn't
generally considered good practice and may not be portable - if you take your code to a different
computer with a different compiler, your code may not work properly.

Examples

<« Simple Input and OutputFurther math —

Operators and Assignments

In C, simple math is very easy to handle. The following operators exist: + (addition), - (subtraction),
* (multiplication), / (division), and % (modulus); You likely know all of them from your math
classes - except, perhaps, modulus. It returns the remainder of a division (e.g. 5 % 2 = 1).

Care must be taken with the modulus, because it's not the equivalent of the mathematical modulus:
(-5) % 2 is not 1, but -1. Division of integers will return an integer, and the division of a negative
integer by a positive integer will round towards zero instead of rounding down (e.g. (-5) /3 =-1
instead of -2).

http://en.wikibooks.org/wiki/C_Programming/Further_math
http://en.wikibooks.org/wiki/C_Programming/Simple_Input_and_Output

There is no inline operator to do the power (e.g. 5~ 2 is not 25, and 5 ** 2 is an error), but there is a
power function.

The mathematical order of operations does apply. For example (2 + 3) *2 =10 while 2 + 3 * 2 =8.
The order of precedence in C is BFDMAS: Brackets, Functions, Division or Multiplication (from
left to right, whichever comes first), Addition or Subtraction (also from left to right, whichever
comes first).

Assignment in C is simple. You declare the type of variable, the name of the variable and what it's
equal to. For example, int x = 0; double y = 0.0; char z ="a’;

#include <stdio.h>

int main ()

{
int i =0, j = 0;

while((1 < 5) && (j < 5)) { /* while i is less than 5 AND j is less than 5,
loop */

++7j; /* prefix increment, increases by 1 immediately */

printf ("i equals: %d\tj equals: %d\n", i, j); /* will print current
variable values */

i++; /* postfix increment, increases by 1 next time the variable is
called, therefore i will be equal to 0 in the beginning */

}

return 0O;

}

will display the following:

i equals: 0 j equals: 1
i equals: 1 j equals: 2
i equals: 2 j equals: 3
i equals: 3 j equals: 4
i equals: 4 j equals: 5

< Simple mathControl —

The <math.h> header contains prototypes for several functions that deal with mathematics. In the
1990 version of the ISO standard, only the double versions of the functions were specified; the
1999 version added the f1oat and 1ong double versions.

The functions can be grouped into the following categories:

Trigonometric functions

The acos and asin functions

The acos functions return the arccosine of their arguments in radians, and the asin functions
return the arcsine of their arguments in radians. All functions expect the argument in the range [-1
,+1]. The arccosine returns a value in the range [0,II]; the arcsine returns a value in the range [-II
12,+11/2].

#include <math.h>

float asinf(float x); /* C99 */
float acosf(float x); /* C99 */
double asin(double x)

4

http://en.wikibooks.org/wiki/C_Programming/Control
http://en.wikibooks.org/wiki/C_Programming/Simple_math
http://en.wikibooks.org/wiki/C_Programming/Further_math#Power_functions

double acos (double x);
long double asinl (long double x); /* C99 */
long double acosl(long double x); /* C99 */

The atan and atan2 functions

The atan functions return the arctangent of their arguments in radians, and the atan?2 function
return the arctangent of y/x in radians. The atan functions return a value in the range [-11/2,+11/2]
(the reason why £11/2 are included in the range is because the floating-point value may represent
infinity, and atan(+w) = +11/2); theat an2 functions return a value in the range [-11,+II]. Foratan2,
a domain error may occur if both arguments are zero.

#include <math.h>

float atanf (float x); /* C99 */

float atan2f(float y, float x); /* C99 */

double atan(double x);

double atan2(double y, double x);

long double atanl(long double x); /* C99 */
long double atan2l(long double y, long double x); /* C99 */

The cos, sin, and tan functions

The cos, sin, and tan functions return the cosine, sine, and tangent of the argument, expressed in
radians.

#include <math.h>

float cosf(float x); /* C99 */
float sinf(float x); /* C99 */
float tanf(float x); /* C99 */
double cos (double x);
double sin(double x);

double tan (double x);

long double cosl(long double x); /* C99 */
long double sinl(long double x); /* C99 */
long double tanl(long double x); /* C99 */

Hyperbolic functions

The cosh, sinh and tanh functions compute the hyperbolic cosine, the hyperbolic sine, and the
hyperbolic tangent of the argument respectively. For the hyperbolic sine and cosine functions, a
range error occurs if the magnitude of the argument is too large.

#include <math.h>

float coshf(float x); /* C99 */
float sinhf(float x); /* C99 */
float tanhf (float x); /* C99 */

double sinh(double x

double tanh (double x);

long double coshl(long double x); /* C99 */
long double sinhl(long double x); /* C99 */
long double tanhl(long double x); /* C99 */

(

(;
double cosh (double x);

()i

(

Exponential and logarithmic functions

The exp functions

The exp functions compute the exponential function of x (e*). A range error occurs if the
magnitude of x is too large.

#include <math.h>

float expf (float x); /* C99 */

double exp(double x);
long double expl (long double x); /* C99 */

The frexp, 1dexp, and modf functions

The frexp functions break a floating-point number into a normalized fraction and an integer
power of 2. It stores the integer in the object pointed to by ex.

The frexp functions return the value x such that x has a magnitude of either [1/2, 1) or zero, and
value equals x times 2 to the power *ex. If value is zero, both parts of the result are zero.

The 1dexp functions multiply a floating-point number by a integral power of 2 and return the
result. A range error may occur.

The modf function breaks the argument value into integer and fraction parts, each of which has
the same sign as the argument. They store the integer part in the object pointed to by *iptr and
return the fraction part.

#include <math.h>

float frexpf(float value, int *ex); /* C99 */

double frexp(double value, int *ex);

long double frexpl(long double value, int *ex); /* C99 */

float ldexpf (float x, int ex); /* C99 *x/

double ldexp (double x, int ex);

long double ldexpl (long double x, int ex); /* C99 */

float modff (float value, float *iptr); /* C99 *x/

double modf (double value, double *iptr);

long double modfl (long double value, long double *iptr); /* C99 */

The 1og and 10g10 functions

The 1og functions compute the natural logarithm of the argument and return the result. A domain
error occurs if the argument is negative. A range error may occur if the argument is zero.

The 10g10 functions compute the common (base-10) logarithm of the argument and return the
result. A domain error occurs if the argument is negative. A range error may occur if the argument
1s zero.

#include <math.h>

float logf(float x); /* C99 */

double log(double x);

long double logl(long double x); /* C99 */
float loglOf(float x); /* C99 */

double 1loglO(double x);
long double loglOl(long double x); /* C99 */

Power functions

The pow functions

The pow functions compute x raised to the power y and return the result. A domain error occurs if
x 1s negative and y is not an integral value. A domain error occurs if the result cannot be
represented when x is zero and y is less than or equal to zero. A range error may occur.

#include <math.h>

float powf (float x, float y); /* C99 */

double pow(double x, double y);
long double powl (long double x, long double y); /* C99 */

The sqrt functions

The sgrt functions compute the nonnegative square root of x and return the result. A domain error
occurs if the argument is negative.

#include <math.h>

float sqrtf(float x); /* C99 */

double sgrt (double x);

long double sqgrtl(long double x); /* C99 */

Nearest integer, absolute value, and remainder functions

The ceil and floor functions

The ceil functions compute the smallest integral value not less than x and return the result; the
floor functions compute the largest integral value not greater than x and return the result.

#include <math.h>

float ceilf (float x); /* C99 */

double ceil (double x);

long double ceill(long double x); /* C99 */
float floorf(float x); /* C99 */

double floor (double x);

long double floorl(long double x); /* C99 */

The fabs functions

The fabs functions compute the absolute value of a floating-point number x and return the result.

#include <math.h>
float fabsf(float x); /* C99 */
double fabs (double x);

long double fabsl(long double x); /* C99 */

The £mod functions

The fmod functions compute the floating-point remainder of x /vy and return the value x - i * vy, for
some integer i such that, if y is nonzero, the result has the same sign as x and magnitude less than
the magnitude of y. If v is zero, whether a domain error occurs or the fmod functions return zero is
implementation-defined.

#include <math.h>

float fmodf (float x, float y); /* C99 */

double fmod(double x, double vy);
long double fmodl (long double x, long double y); /* C99 */

< Further mathProcedures and functions —

Control

Very few C programs follow exactly one control path and have each instruction stated explicitly. In
order to program effectively, it is necessary to understand how one can alter the steps taken by a
program due to user input or other conditions, how some steps can be executed many times with few
lines of code, and how programs can appear to demonstrate a rudimentary grasp of logic. C
constructs known as conditionals and loops grant this power.

From this point forward, it is necessary to understand what is usually meant by the word block. A
block is a group of code statements that are associated and intended to be executed as a unit. In C,
the beginning of a block of code is denoted with { (left curly), and the end of a block is denoted
with }. It is not necessary to place a semicolon after the end of a block. Blocks can be empty, as in
{}. Blocks can also be nested; i.e. there can be blocks of code within larger blocks.

Conditionals

There is likely no meaningful program written in which a computer does not demonstrate basic
decision-making skills. It can actually be argued that there is no meaningful human activity in
which some sort of decision-making, instinctual or otherwise, does not take place. For example,
when driving a car and approaching a traffic light, one does not think, "I will continue driving
through the intersection." Rather, one thinks, "I will stop if the light is red, go if the light is green,
and if yellow go only if I am traveling at a certain speed a certain distance from the intersection."
These kinds of processes can be simulated in C using conditionals.

A conditional is a statement that instructs the computer to execute a certain block of code or alter
certain data only if a specific condition has been met. The most common conditional is the If-Else
statement, with conditional expressions and Switch-Case statements typically used as more
shorthanded methods.

Before one can understand conditional statements, it is first necessary to understand how C
expresses logical relations. C treats logic as being arithmetic. The value O (zero) represents false,
and all other values represent true. If you chose some particular value to represent true and then
compare values against it, sooner or later your code will fail when your assumed value (often 1)
turns out to be incorrect. Code written by people uncomfortable with the C language can often be
identified by the usage of #define to make a "TRUE" value.

http://en.wikibooks.org/wiki/C_Programming/Procedures_and_functions
http://en.wikibooks.org/wiki/C_Programming/Further_math

Because logic is arithmetic in C, arithmetic operators and logical operators are one and the same.
Nevertheless, there are a number of operators that are typically associated with logic:

Relational and Equivalence Expressions:

a<b

1 if a is less than b, O otherwise.
a>b

1 if a is greater than b, O otherwise.
a<=b

1 if ais less than or equal to b, O otherwise.
a>=b

1 if a is greater than or equal to b, O otherwise.
Q==

1 if ais equal to b, O otherwise.
al=b

1 if ais not equal to b, O otherwise

New programmers should take special note of the fact that the "equal to" operator is ==, not =. This
is the cause of numerous coding mistakes and is often a difficult-to-find bug, as the statement (a =
b) sets a equal to b and subsequently evaluates to b, while (a == b), which is usually intended,
checks if a is equal to b. It needs to be pointed out that, if you confuse = with ==, your mistake will
often not be brought to your attention by the compiler. A statement suchas if (¢ = 20) {1is
considered perfectly valid by the language, but will always assign 20 to ¢ and evaluate as true.

A note regarding testing for equality against a truth constant: never do it.

#define TRUE 42
if (SomethingsAfoot () == TRUE) // bad code :7(

Instead it is much safer and more elegant to just write
if (SomethingsAfoot()) // good code :")

This is because someone could have defined TRUE erroneously such that an expression such as (A
< B) == TRUE would actually evaluate to FALSE when A is indeed less than B. So let's repeat:
Avoid testing for equality against TRUE.

One other thing to note is that the relational expressions do not evaluate as they would in
mathematical texts. That is, an expression myMin < value < myMax does not evaluate as you
probably think it might. Mathematically, this would test whether or not value is between myMin and
myMax. But in C, what happens is that value is first compared with myMin. This produces either a 0
or a 1. It is this value that is compared against myMax. Example:

int value = 20;
if (0 < value < 10) {

/* do some stuff */

}

Because value is greater than 0, the first comparison produces a value of 1. Now 1 is compared to be
less than 10, which is true, so the statements in the if are executed. This probably is not what the
programmer expected. The appropriate code would be

int value = 20;

if (0 < value && value < 20) { // the && means "and"
/* do some stuff */

}

If you're looking for a programming language that matches the mathematical notation, try Python.

Logical Expressions:

allb

1 if either a or b is not zero, O otherwise.
a&&b

1 if both a and b are not zero, 0 otherwise.
la

lifais 0, Oif a is not zero.

Here's an example of a logical expression. In the statement:

e = ((a && b) || (c >d));

e is set equal to 1 if a and b are non-zero, or if c is greater than d. In all other cases, e is set to 0.

C uses short circuit evaluation of logical expressions. That is to say, once it is able to determine the
truth of a logical expression, it does no further evaluation. This is often useful as in the following:

int myArray[12];

if (1 < 12 && myArray[i] > 3) |

In the snippit of code, the comparison of i with 12 is done first. If it evaluates to O (false), i would be
out of bounds as an index to myArray. In this case, the program never attempts to access
myArrayl[i] since the truth of the expression is known to be false. Hence we need not worry here
about trying to access an out-of-bounds array element if it is already known that i is greater than or
equal to zero. A similar thing happens with expressions involving the or Il operator.

while(doThis () || doThat())

DoThat() is never called if doThis() returns a non-zero (true) value.

Bitwise Boolean Expressions

The bitwise operators work bit by bit on the operands. The operands must be of integral type (one of
the types used for integers). The six bitwise operators are & (AND), | (OR), ” (exclusive OR,
commonly called XOR), ~ (NOT, which changes 1 to 0 and O to 1), << (shift left), and >> (shift
right). The negation operator is a unary operator which preceeds the operand. The others are binary
operators which lie between the two operands. The precedence of these operators is lower than that
of the relational and equivalence operators; it is often required to parenthesize expressions involving
bitwise operators.

For this section, recall that a number starting with 0x is hexadecimal, or hex for short. Unlike the
normal decimal system using powers of 10 and digits 0123456789, hex uses powers of 16 and digits
0123456789abcdef. It is commonly used in C programs because a programmer can quickly convert
it to or from binary (powers of 2 and digits 01). C does not directly support binary notation, which
would be really verbose anyway.

a&b

bitwise boolean and of a and b
Oxc & Oxa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

alb
bitwise boolean or of a and b
Oxc | Oxa produces the value Oxe (in binary, 1100 | 1010 produces 1110)

a’b
bitwise xor of a and b
Oxc ” Oxa produces the value 0x6 (in binary, 1100 ~ 1010 produces 0110)

~a
bitwise complement of a.
~0xc produces the value -1-0xc (in binary, ~1100 produces ...11110011 where "..." may be
many more 1 bits)

a<<b
shift a left by b (multiply a by 2b)
0xc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value 11000)

a>>b
shift a right by b (divide a by 2b)
0Oxc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

The If-Else statement
If-Else provides a way to instruct the computer to execute a block of code only if certain conditions
have been met. The syntax of an If-Else construct is:

if (/* condition goes here */)

{

/* if the condition is non-zero (true), this code will execute */
}
else
{

/* 1f the condition is 0 (false), this code will execute */

}

The first block of code executes if the condition in parentheses directly after the if evaluates to non-
zero (true); otherwise, the second block executes.

The else and following block of code are completely optional. If there is no need to execute code if a
condition is not true, leave it out.

Also, keep in mind that an if can directly follow an else statement. While this can occasionally be
useful, chaining more than two or three if-elses in this fashion is considered bad programming
practice. We can get around this with the Switch-Case construct described later.

Two other general syntax notes need to be made that you will also see in other control constructs:
First, note that there is no semicolon after if or else. There could be, but the block (code enclosed in
{ and }) takes the place of that. Second, if you only intend to execute one statement as a result of an
if or else, curly braces are not needed. However, many programmers believe that inserting curly
braces anyway in this case is good coding practice.

The following code sets a variable ¢ equal to the greater of two variables a and b, or 0 if a and b are
equal.

if(a > b)

c = b;
}
else
{

c = 0;

Consider this question: why can't you just forget about else and write the code like:
if(a > b)

There are several answers to this. Most importantly, if your conditionals are not mutually exclusive,
two cases could execute instead of only one. If the code was different and the value of a or b
changes somehow (e.g.: you reset the lesser of a and b to 0 after the comparison) during one of the
blocks? You could end up with multiple if statements being invoked, which is not your intent. Also,
evaluating if conditionals takes processor time. If you use else to handle these situations, in the case
above assuming (a > b) is non-zero (true), the program is spared the expense of evaluating
additional if statements. The bottom line is that it is usually best to insert an else clause for all cases
in which a conditional will not evaluate to non-zero (true).

The conditional expression

A conditional expression is a way to set values conditionally in a more shorthand fashion than If-
Else. The syntax is:

(/* logical expression goes here */) ? (/* if non-zero (true) */) : (/* if O
(false) */)

The logical expression is evaluated. If it is non-zero (true), the overall conditional expression
evaluates to the expression placed between the ? and :, otherwise, it evaluates to the expression after
the :. Therefore, the above example (changing its function slightly such that c is set to b when a and
b are equal) becomes:

c = (a>b) ?2 a: b;

Conditional expressions can sometimes clarify the intent of the code. Nesting the conditional
operator should usually be avoided. It's best to use conditional expressions only when the

expressions for a and b are simple. Also, contrary to a common beginner belief, conditional
expressions do not make for faster code. As tempting as it is to assume that fewer lines of code
result in faster execution times, there is no such correlation.

The Switch-Case statement

Say you write a program where the user inputs a number 1-5 (corresponding to student grades,
A(represented as 1)-D(4) and F(5)), stores it in a variable grade and the program responds by
printing to the screen the associated letter grade. If you implemented this using If-Else, your code
would look something like this:
if (grade == 1)
{
printf ("A\n") ;
}
else if (grade == 2)
{
printf ("B\n");
}

else if /* etc. etc. */

Having a long chain of if-else-if-else-if-else can be a pain, both for the programmer and anyone
reading the code. Fortunately, there's a solution: the Switch-Case construct, of which the basic
syntax is:

switch(/* integer or enum goes here */)
{
case /* potential value of the aforementioned int or enum */:
/* code */
case /* a different potential value */:
/* different code */
/* insert additional cases as needed */
default:
/* more code */

}

The Switch-Case construct takes a variable, usually an int or an enum, placed after switch, and
compares it to the value following the case keyword. If the variable is equal to the value specified
after case, the construct "activates", or begins executing the code after the case statement. Once the
construct has "activated", there will be no further evaluation of cases.

Switch-Case is syntactically "weird" in that no braces are required for code associated with a case.

Very important: Typically, the last statement for each case is a break statement. This causes
program execution to jump to the statement following the closing bracket of the switch statement,
which is what one would normally want to happen. However if the break statement is omitted,
program execution continues with the first line of the next case, if any. This is called a fall-through.
When a programmer desires this action, a comment should be placed at the end of the block of
statements indicating the desire to fall through. Otherwise another programmer maintaining the
code could consider the omission of the 'break’ to be an error, and inadvertently 'correct' the
problem. Here's an example:

switch (someVariable) {
case 1:
printf ("This code handles case 1\n");
break;
case 2:
printf ("This prints when someVariable is 2, along with...\n");

/* FALL THROUGH */

case 3:
printf ("This prints when someVariable is either 2 or 3.\n");

break;

If a default case is specified, the associated statements are executed if none of the other cases match.
A default case is optional. Here's a switch statement that corresponds to the sequence of if - else if
statements above.

Back to our example above. Here's what it would look like as Switch-Case:

switch (grade)
{
case 1:
printf ("A\n");
break;
case 2:
printf ("B\n");
break;
case 3:
printf ("C\n");
break;
case 4:
printf ("D\n");
break;
default:
printf ("F\n") ;
break;

A set of statements to execute can be grouped with more than one value of the variable as in the
following example. (the fall-through comment is not necessary here because the intended behavior

is obvious)

switch (something)

{
case 2:
case 3:
case 4:
/* some statements to execute for 2, 3 or 4 */
break;
case 1:
default:
/* some statements to execute for 1 or other than 2,3,and 4 */

break;

Switch-Case constructs are particularly useful when used in conjunction with user defined enum
data types. Some compilers are capable of warning about an unhandled enum value, which may be
helpful for avoiding bugs.

Loops

Often in computer programming, it is necessary to perform a certain action a certain number of
times or until a certain condition is met. It is impractical and tedious to simply type a certain
statement or group of statements a large number of times, not to mention that this approach is too
inflexible and unintuitive to be counted on to stop when a certain event has happened. As a real-

world analogy, someone asks a dishwasher at a restaurant what he did all night. He will respond, "I
washed dishes all night long." He is not likely to respond, "I washed a dish, then washed a dish, then
washed a dish, then...". The constructs that enable computers to perform certain repetitive tasks are
called loops.

While loops

A while loop is the most basic type of loop. It will run as long as the condition is non-zero (true).
For example, if you try the following, the program will appear to lock up and you will have to
manually close the program down. A situation where the conditions for exiting the loop will never
become true is called an infinite loop.
int a=1;
while (42) {

a = a*2;

}

Here is another example of a while loop. It prints out all the exponents of two less than 100.

int a=1;

while (a<100) {
printf("a is %d \n",a);
a = a*2;

The flow of all loops can also be controlled by break and continue statements. A break statement
will immediately exit the enclosing loop. A continue statement will skip the remainder of the block
and start at the controlling conditional statement again. For example:

int a=1;
while (42) { // loops until the break statement in the loop is executed
printf("a is %d ",a);
a = a*2;
if (a>100)
break;
else if (a==64)
continue; // Immediately restarts at while, skips next step

printf("a is not 64\n");

In this example, the computer prints the value of a as usual, and prints a notice that a is not 64
(unless it was skipped by the continue statement).

Similar to If above, braces for the block of code associated with a While loop can be omitted if the
code consists of only one statement, for example:

int a=1;
while(a < 100)
a = a*2;

This will merely increase a until a is not less than 100.

It is very important to note, once the controlling condition of a While loop becomes 0 (false), the
loop will not terminate until the block of code is finished and it is time to reevaluate the conditional.
If you need to terminate a While loop immediately upon reaching a certain condition, consider
using break.

A common idiom is to write:

int i = 5;

while (i—-)
printf("java and c# can't do this\n");

This executes the code in the while loop 5 times, with 1 having values that range from 4 down to 0.
Conveniently, these are the values needed to access every item of an array containing 5 elements.

For loops

For loops generally look something like this:

for(initialization; test; increment)
{

/* code */
}

The initialization statement is executed exactly once - before the first evaluation of the test
condition. Typically, it is used to assign an initial value to some variable, although this is not strictly
necessary. The initialization statement can also be used to declare and initialize variables used in the
loop.

The test expression is evaluated each time before the code in the for loop executes. If this expression
evaluates as 0 (false) when it is checked (i.e. if the expression is not true), the loop is not (re)entered
and execution continues normally at the code immediately following the FOR-loop. If the
expression is non-zero (true), the code within the braces of the loop is executed.

After each iteration of the loop, the increment statement is executed. This often is used to increment
the loop index for the loop, the variable initialized in the initialization expression and tested in the
test expression. Following this statement execution, control returns to the top of the loop, where the
test action occurs. If a continue statement is executed within the for loop, the increment statement
would be the next one executed.

Each of these parts of the for statement is optional and may be omitted. Because of the free-form
nature of the for statement, some fairly fancy things can be done with it. Often a for loop is used to
loop through items in an array, processing each item at a time.

int myArray[1l2];

int ix;
for (ix = 0; ix<12; ix++)
myArray[ix] = 5 * ix + 3;

The above for loop initializes each of the 12 elements of myArray. The loop index can start from any
value. In the following case it starts from 1.

for(ix = 1; ix <= 10; 1ix++)
{

printf("sd ", ix);
}

which will print
123456789 10

You will most often use loop indexes that start from 0, since arrays are indexed at zero, but you will
sometimes use other values to initalize a loop index as well.

The increment action can do other things, such as decrement. So this kind of loop is common:
for (i =5; 1 > 0; i--)

{
printf("sd ",1i);

which yields
54321

Here's an example where the test condition is simply a variable. If the variable has a value of 0 or
NULL, the loop exits, otherwise the statements in the body of the loop are executed.

for (t = list_head; t; t = NextItem(t)) {
/*body of loop */
}

A WHILE loop can be used to do the same thing as a FOR loop, however a FOR loop is a more
condensed way to perform a set number of repetitions since all of the necessary information is in a
one line statement.

A FOR loop can also be given no conditions, for example:

for(;;) |
/* block of statements */
}

This is called a forever loop since it will loop forever unless there is a break statement within the
statements of the for loop. The empty test condition effectively evaluates as true.

It is also common to use the comma operator in for loops to execute multiple statements.

int i, j, n = 10;

for(i =0, j = 0; 1 <= n; 1i++,j+=2)
printf("i = %4 , j = %4 \n",1i, 3J);
Do-While loops

A DO-WHILE loop is a post-check while loop, which means that it checks the condition after each
run. As a result, even if the condition is zero (false), it will run at least once. It follows the form of:

do

{
/* do stuff */
} while (condition);

Note the terminating semicolon. This is required for correct syntax. Since this is also a type of while
loop, break and continue statements within the loop function accordingly. A continue statement
causes a jump to the test of the condition and a break statement exits the loop.

It is worth noting that Do-While and While are functionally almost identical, with one important
difference: Do-While loops are always guaranteed to execute at least once, but While loops will not
execute at all if their condition is O (false) on the first evaluation.

One last thing: goto

goto is a very simple and traditional control mechanism. It is a statement used to immediately and
unconditionally jump to another line of code. To use goto, you must place a label at a point in your
program. A label consists of a name followed by a colon (:) on a line by itself. Then, you can type
"goto label;" at the desired point in your program. The code will then continue executing beginning
with label. This looks like:

MyLabel:

/* some code */
goto MyLabel;

The ability to transfer the flow of control enabled by gotos is so powerful that, in addition to the
simple if, all other control constructs can be written using gotos instead. Here, we can let "S" and
"T" be any arbitrary statements:

if (cond) {
S;

}

else {
T;

}

/* ... */

The same statement could be accomplished using two gotos and two labels:
if (cond) goto Labell:

T;

goto Label?2;
Labell:

S;
Label2:

VA

Here, the first goto is conditional on the value of "cond". The second goto is unconditional. We can
perform the same translation on a loop:

while (condl) {

S;
if (cond2) break;
T;

}

/* L. %/

Which can be written as:

Start:
if (!condl) goto End;
S;
if (cond2) goto End;
T;
goto Start;

End:
VA

As these cases demonstrate, often the structure of what your program is doing can usually be
expressed without using gotos. Undisciplined use of gotos can create unreadable, unmaintainable
code when more idiomatic alternatives (such as if-elses, or for loops) can better express your
structure. Theoretically, the goto construct does not ever have to be used, but there are cases when it
can increase readability, avoid code duplication, or make control variables unnecessary. You should

consider first mastering the idiomatic solutions first, and use goto only when necessary. Keep in
mind that many, if not most, C style guidlines strictly forbid use of goto, with the the only common
exceptions being the following examples.

One use of goto is to break out of a deeply nested loop. Since break will not work (it can only
escape one loop), goto can be used to jump completely outside the loop. Breaking outside of deeply
nested loops without the use of the goto is always possible, but often involves the creation and
testing of extra variables that may make the resulting code far less readable than it would be with
goto. The use of goto makes it easy to undo actions in an orderly fashion, typically to avoid failing
to free memory that had been allocated.

Another accepted use is the creation of a state machine. This is a fairly advanced topic though, and
not commonly needed.

Examples

< ContrdIPreprocessor —

Procedures and Functions

A function is a section of code that has some separate functionality or does some function that will
be reused over and over again.

As a basic example, if you are writing code to print out the first 5 squares of numbers, then the first
5 cubes, then the next 5 squares again, instead of writing something like
for(i=1; i <= 5; i++)

{

printf("sd ", i*i);

which duplicates the same loop twice. We may want to separate this code somehow and simply
jump to this code when we want its functionality.

This is what precisely functions are for.

More on functions

A function is like a black box. It takes in an input, does something to that input, then spits out an
answer.

Note that a function may not take any inputs at all, or it may not return anything at all. In the above
example, if we were to make a function of that loop, we may not need any inputs, and we aren't
returning anything at all (Text output doesn't count - when we speak of returning we mean to say
meaningful data that the program that used the function can use).

http://en.wikibooks.org/wiki/C_Programming/Preprocessor
http://en.wikibooks.org/wiki/C_Programming/Control

We have some terminology to refer to functions:

A function, call it f, that uses another function g, is said to call g. For example, f calls g to
print the squares of ten numbers.

- A function's inputs are known as its arguments

A function that wants to give f back some data that g calculated is said to return that data.
For example, g returns the sum of its arguments.

Writing functions in C

It's always good to learn by example. Let's write a function that will return the square of a number.
int
square (int x)
{
int square_of_x;
square_of_x = x * x;
return square_of_x;

To understand how to write such a function like this, it may help to look at what this function does
as a whole. It takes in an int, x, and squares it, storing it in the variable square_of_x. Now this
value is returned.

The first int at the beginning of the function declaration is the type of data that the function returns.
In this case when we square an integer we get an integer, and we are returning this integer, and so
we write int as the return type.

Next is the name of the function. It is good practice to use meaningful and descriptive names for
functions you may write. It may help to name the function after what it is written to do. In this case
we name the function "square", because that's what it does - it squares a number.

Next is the function's first and only argument, an int, which will be referred to in the function as x.
This is the function's input.

Inbetween the braces is the actual guts of the function. It declares an integer variable called
square_of_x that will be used to hold the value of the square of x. Note that the variable
square_of_x can only be used within this function, and not outside. We'll learn more about this sort
of thing later, and we will see that this property is very useful.

We then assign x multiplied by x, or x squared, to the variable square_of_x, which is what this
function is all about. Following this is a return statement. We want to return the value of the
square of x, so we must say that this function returns the contents of the variable square_of_x.

Our brace to close, and we have finished the declaration.

Note this should look familiar - you have been writing functions already, in fact - main is a function
that is always written.

In general

In general, if we want to declare a function, we write

type
name (typel argl, type2 arg2, ...)
{

/* code */

}

We've previously said that a function can take no arguments, or can return nothing, or both. What do
we write for the type of nothing? We use C's void keyword. void basically means "nothing" - so
if we want to write a function that returns nothing, for example, we write

void
sayhello (int number_of_times)

{
int 1i;
for(i=1l; i <= number_of_times; i++)
printf ("Hello!\n");

Notice that there is no return statement in the function above. Since there's none, we write void
as the return type.

What about a function that takes no arguments? If we want to do this, we can write for example

float
calculate_number (void)
{
float to_return=1; int i;
for(i=0; i < 100; i++)
{
to_return += 1;
to_return = 1/to_return;

}

return to_return;

}

Notice this function doesn't take any inputs, but merely returns a number calculated by this function.

Naturally, you can combine both void return and void in arguments together to get a valid function,
also.

Recursion

Here's a simple function that does an infinite loop. It prints a line and calls itself, which again prints
a line and calls itself again, and this continues until the stack overflows and the program crashes. A
function calling itself is called recursion, and normally you will have a conditional that would stop
the recursion after a small, finite number of steps.

void infinite_recursion()

\\ don't run that!

{
printf ("Infinite loop!\n");
infinite_recursion();

A simple check can be done like this. Note that ++depth is used so the increment will take place
before the value is passed into the function. Alternatively you can increment on a separate line
before the recursion call. If you say print_me(3,0); the function will print the line Recursion 3 times.

void print_me (int j, int depth)
{
if (depth < 3J)
{
printf ("Recursion! depth = %d j = %d\n",depth,j);//j always the same
print_me(j, ++depth);

Recursion is most often used for jobs such as directory tree scans, seeking for the end of a linked
list, parsing a tree structure in a database and factorising numbers (and finding primes) among other
things.

Static Functions

If a function is to be called only from within the file in which it is declared, it is appropriate to
declare it as a static function. When a function is declared static, the compiler will now compile to
an object file in a way that prevents the function from being called from code in other files.
Example:

static short compare(short a, short b)

{

return (a+4 < b)? a : b;

}

Using C functions

We can now write functions, but how do we use them? When we write main, we place the function
outside the braces that encompass main.

When we want to use that function, say, using our calculate_number function above, we can
write something like

float £f;
f = calculate_number () ;

If a function takes in arguments, we can write something like
int square_of_10;

square_of_10 = square(10);

If a function doesn't return anything, we can just say

say_hello();

since we don't need a variable to catch its return value.

C's Built-in Functions

« printf

< Procedures and functionsLibraries —

Preprocessors are a way of making text processing with your C program before they are actually
compiled. Before the actual compilation of every C program it is passed through a Preprocessor.
The Preprocessor looks through the program trying to find out specific instructions called
Preprocessor directives that it can understand. All Preprocessor directives begin with the # (hash)
symbol.

The preprocessor is a part of the compiler which performs preliminary operations (conditionally
compiling code, including files etc...) to your code before the compiler sees it. These
transformations are lexical, meaning that the output of the preprocessor is still text.

http://en.wikipedia.org/wiki/Preprocessor
http://en.wikibooks.org/wiki/C_Programming/Libraries
http://en.wikibooks.org/wiki/C_Programming/Procedures_and_functions
http://en.wikibooks.org/wiki/Programming:C_procedures_and_functions_printf

NOTE: Technically the output of the preprocessing phase for C consists of a sequence of
tokens, rather than source text, but it is simple to output source text which is equivalent to the
given token sequence, and that is commonly supported by compilers via a —E or /E option --
although command line options to C compilers aren't completely standard, many follow
similar rules.

Directives

Directives are special instructions directed to the preprocessor (preprocessor directive) or to the
compiler (compiler directive) on how it should process part or all of your source code or set some
flags on the final object and are used to make writing source code easier (more portable for
instance) and to make the source code more understandable. Directives are handled by the
preprocessor, which is either a separate program invoked by the compiler or part of the compiler
itself.

#include

C has some features as part of the language and some others as part of a standard library, which is
a repository of code that is available alongside every standard-conformant C compiler. When the C
compiler compiles your program it usually also links it with the standard C library. For example, on
encountering a #include <stdio.h> directive, it replaces the directive with the contents of the
stdio.h header file.

When you use features from the library, C requires you to declare what you would be using. The
first line in the program is a preprocessing directive which should look like this:

#include <stdio.h>

The above line causes the C declarations which are in the stdio . h header to be included for use in
your program. Usually this is implemented by just inserting into your program the contents of a
header file called stdio.h in a system-dependent location. The location of such files may be
described in your compiler's documentation. A list of standard C header files is listed below in the
Headers table.

The stdio.h header contains various declarations for input/output (I/O) using an abstraction of
I/0 mechanisms called streams. For example there is an output stream object called stdout which
is used to output text to the standard output, which usually displays the text on the computer screen.

If using angle brackets like the example above, the preprocessor is instructed to search for the
include file along the development environment path for the standard includes.

#include "other.h"

If you use quotation marks (" "), the preprocessor is expected to search in some additional, usually
user-defined, locations for the header file, and to fall back to the standard include paths only if it is
not found in those additional locations. It is common for this form to include searching in the same
directory as the file containing the #include directive.

NOTE: You should check the documentation of the development environment you are using
for any vendor specific implementations of the # include directive.

http://en.wikipedia.org/wiki/Header_(information_technology)
http://en.wikipedia.org/wiki/compiler

Headers

The C90 standard headers list:

« assert.h « locale.h + stddef.h

- ctype.h - math.h - stdio.h

- errno.h - setjmp.h « stdlib.h

- float.h - signal.h - string.h

« limits.h - stdarg.h e time.h
Headers added since C90:

- complex.h + 1s0646.h + tgmath.h

« fenv.h + stdbool.h + wchar.h

- inttypes.h - stdint.h - wctype.h
#pragma

The pragma (pragmatic information) directive is part of the standard, but the meaning of any
pragma depends on the software implementation of the standard that is used.

Pragmas are used within the source program.

#pragma token(s)

You should check the software implementation of the C standard you intend on using for a list of the
supported tokens.

For instance one of the most implemented preprocessor directives, #pragma once when placed
at the beginning of a header file, indicates that the file where it resides will be skipped if included
several times by the preprocessor.

NOTE: Other methods exist to do this action that is commonly refered as using include
guards.

#define

The #define directive is used to define values or macros that are used by the preprocessor to
manipulate the program source code before it is compiled. Because preprocessor definitions are
substituted before the compiler acts on the source code, any errors that are introduced by #define
are difficult to trace.

By convention, values defined using #def ine are named in uppercase. Although doing so is not a
requirement, it is considered very bad practice to do otherwise. This allows the values to be easily
identified when reading the source code.

Today, #define is primarily used to handle compiler and platform differences. E.g, a define might
hold a constant which is the appropriate error code for a system call. The use of #def ine should
thus be limited unless absolutely necessary; t ypedef statements and constant variables can often
perform the same functions more safely.

Another feature of the #define command is that it can take arguments, making it rather useful as

a pseudo-function creator. Consider the following code:

#define ABSOLUTE_VALUE(x) (((x) < 0) ? —(x) : (x))
int x = -1;
while(ABSOLUTE_VALUE(x)) {

}

It's generally a good idea to use extra parentheses when using complex macros. Notice that in the
above example, the variable "x" is always within its own set of parentheses. This way, it will be
evaluated in whole, before being compared to 0 or multiplied by -1. Also, the entire macro is
surrounded by parentheses, to prevent it from being contaminated by other code. If you're not
careful, you run the risk of having the compiler misinterpret your code.

Because of side-effects it is considered a very bad idea to use macro functions as described above.

int x = -10;
int y = ABSOLUTE_VALUE(x++);

If ABSOLUTE_VALUE() was a real function 'x' would now have the value of '-9', but because it
was an argument in a macro it was expanded 3 times (in this case) and thus has a value of -7.

NOTE: Try to use const and inline instead of #define.

It is common practice when using #define and macros to name them all upper and use
separators, this will make clear to a reader that the value is not alterable and in case of a
macro, that the construct requires care, some subtle errors can be created if using enum and
macros with the same name. A const is easier to debug, too, since the compiler and linker
recognizes a constant variable name, unlike a macro.

Example:

To illustrate the dangers of macros, consider this naive macro
#define MAX(a,b) a>b?a:b

and the code

MAX (2,3)+5;
MAX (3,2)+5;

]

Take a look at this and consider what the the value after execution might be. The statements
are turned into

int 1 = 2>3722:3+45;
int j 3>2723:245;

Thus, after execution 1=8 and j=3 instead of the expected result of 1=5=8! This is why you
were cautioned to use an extra set of parenthesis above, but even with these, the road is
fraught with dangers. The alert reader might quickly realize that if a, b contains expressions,
the definition must parenthesise every use of a, b in the macro defintion, like this:

#define MAX(a,b) ((a)>(b)?(a): (b))

This works, provided a, b have no side effects. Indeed,

= 2;
= MAX (i++, Jj++);

N~ P

would result in k=4, 1=3 and j=5. This would be highly surprising to anyone expecting
MAX () to behave like a function.

So what is the correct solution? The solution is not to use macro at all. A global, inline
function, like this

inline max(int a, int b) { return a>b?a:b }

has none of the pitfalls above, but will not work with all types.

(#, ##)
The # and ## operators are used with the #def ine macro. Using # causes the first argument after
the # to be returned as a string in quotes. For example, the command

#define as_string(s) # s

will make the compiler turn this command

puts(as_string(Hello World!)) ;

into

puts("Hello World!"™);

Using ## concatenates what's before the ## with what's after it. For example, the command

#define concatenate(x, y) x ## vy

int xy = 10;

will make the compiler turn

printf("%d", concatenate(x, vy));

into

printf("%d", xy);

which will, of course, display 10 to standard output.

It is possible to concatenate a macro argument with a constant prefix or suffix to obtain a valid
identifier as in

#define make_function(name) int my_ ## name (int foo) {}
make_function(bar)

which will define a function called my_Dbar (). But it isn't possible to integrate a macro argument
into a constant string using the concatenation operator. In order to obtain such an effect, one can use
the ANSI C property that two or more consecutive string constants are considered equivalent to a
single string constant when encountered. Using this property, one can write

#define eat(what) puts("I'm eating " #what " today.")
eat (fruit)

which the macro-processor will turn into

puts("I'm eating " "fruit" " today.")

which in turn will be interpreted by the C parser as a single string constant.

macros

Macros aren't type-checked and so they do not evaluate arguments. Also, they do not obey scope
properly, but simply take the string passed to them and replace each occurrence of the macro
argument in the text of the macro with the actual string for that parameter (the code is literally
copied into the location it was called from).

An example on how to use a macro:

#include <stdio.h>

#define SLICES 8
#define ADD(x) ((x) / SLICES)

int main ()

{
int a = 0, b =10, ¢ = 6;

a = ADD(b + c);
printf ("$d\n", a);
return O;

}

-- the result of "a" should be "2" (b + ¢ = 16 -> passed to ADD -> 16 / SLICES -> result is "2")

NOTE:
It is usually bad practice to define macros in headers.

A macro should be defined only when it is not possible to achieve the same result with a
function or some other mechanism. Some compilers are able to optimize code to where calls
to small functions are replaced with inline code, negating any possible speed advantage.
Using typedefs, enums, and inline (in C99) is often a better option.

#error

The #error directive halts compilation. When one is encountered the standard specifies that the
compiler should emit a diagnostic containing the remaining tokens in the directive. This is mostly
used for debugging purposes.

#error message

#undef

The #undef directive undefines a macro. The identifier need not have been previously defined.

if else,elif,endif (conditionals)
The #if command checks whether a controlling conditional expression evaluates to zero or nonzero,
and excludes or includes a block of code respectively. For example:

#if 1

/* This block will be included */

#endif

#if 0

/* This block will not be included */

#endif

The conditional expression could contain any C operator except for the assignment operators,
increment, and decrement operators.

One unique operator used in preprocessing and nowhere else is the defined operator. It returns 1 if
the macro name, optionally enclosed in parentheses, is currently defined; O if not.

The #endif command ends a block started by #if, #ifdef, or #ifndef.

The #elif command is similar to #1 f, except that it is used to extract one from a series of blocks of
code. E.g.:

#if /* some expression */

#elif /* another expression */
/* imagine many more #elifs here ... */
#else

/* The optional #else block is selected if none of the previous #if or
#elif blocks are selected */

#endif /* The end of the #if block */

ifdef,ifndef

The #ifdef command is similar to # 1 £, except that the code block following it is selected if a macro
name is defined. In this respect,

#ifdef NAME

is equivalent to

#if defined NAME

The #ifndef command is similar to #ifdef, except that the test is reversed:

#ifndef NAME

is equivalent to

#if !defined NAME

T arn
-

LI =
i

"."’.'!x_ 1FEDI A

Wikipedia has more about this subject:
C preprocessor

< PreprocessarStandard libraries —

A library in C is merely a group of functions and declarations. The library has an interface
expressed in a file with a . h extension and an implementation expressed in a file with a . c
extension (which may be precompiled or otherwise inaccessible).

Libraries may call functions in other libraries such as the Standard C or math libraries to do various
tasks.

For example, suppose you want to write a function to parse arguments from the command line.
Arguments on the command line could be by themselves:

-1i

have an optional argument that is concatenated to the letter:

—-ioptarg

or have the argument in a separate argv-element:

-i optarg

Suppose you want the ability to bunch switches in one argv-element as well. Anyway, after much
writing, you come up with this:

#include <stdio.h> /* for fprintf() and EOF */

#include <string.h> /* for strchr() */

/* variables */

int opterr = 1; /* getopt prints errors if this is on */
int optind = 1; /* token pointer */

int optopt; /* option character passed back to user */
char *optarg; /* flag argument (or wvalue) */

/* function */
/* return option character, EOF if no more or ? if problem.
The arguments to the function:

argc, argv - the arguments to the main() function. An argument of "--"
stops the processing.
opts — a string containing the valid option characters.
an option character followed by a colon (:) indicates that
the option has a required argument.
*/
int

getopt (int argc, char **argv, char *opts)

{

static int sp = 1; /* character index into current token */
register char *cp; /* pointer into current token */
if (sp == 1)

{
/* check for more flag-like tokens */
if (optind >= argc || argv[optind] [0] != '-' || argv[optind] [1] == '\O")
return EOF;
else if (strcmp (argv[optind], "--") == 0)
{
optind++;
return EOF;

http://en.wikipedia.org/wiki/Concatenate
http://en.wikipedia.org/wiki/Parse
http://en.wikibooks.org/wiki/C_Programming/Standard_libraries
http://en.wikibooks.org/wiki/C_Programming/Preprocessor
http://en.wikipedia.org/wiki/C_preprocessor
http://en.wikipedia.org/wiki/
http://en.wikibooks.org/wiki/Image:Wikipedia.png

}

optopt = argv[optind] [sp];
if (optopt == ':' || (cp = strchr (opts, optopt)) == NULL)
{
if (opterr)
fprintf (stderr, "%s: invalid option —-- '%c'\n", argv[0], optopt);
/* 1f no characters left in this token, move to next token */
if (argv[optind] [++sp] == '\0'")
{
optind++;
sp = 1;

}
return '?';
}
if (*++4cp == ':")
{
/* 1if a value 1is expected, get it */
if (argv[optind][sp + 1] != '"\0")
/* flag value is rest of current token */
optarg = argv[optind++] + (sp + 1);
else if (++optind >= argc)
{
if (opterr)
fprintf (stderr, "%s: option requires an argument -- '%c'\n",
argv[0], optopt);
sp = 1;
return '?"';
}
else
/* flag value is next token */
optarg = argv[optind++];
sp = 1;
}
else

{

/* set up to look at next char in token, next time */
if (argv[optind] [++sp] == '\0")
{
/* no more in current token, so setup next token */
sp = 1;
optind++;
}
optarg = 0;
}
return optopt;

}
/* END OF FILE */

The implementation would be the code above. The interface would be the following:

#ifndef GETOPT_H

#define GETOPT_H

/* exported variables */

extern int opterr, optind, optopt;
extern char *optarg;

/* exported function */

int getopt(int, char **, char *);
#endif

/* END OF FILE */

All the programmer that is supposed to use this library sees (if he doesn't want to or can't look at the
implementation) is the interface and the documentation that the library programmer wrote. The
documentation should say that neither pointer can be null (or why would you be using the getopt

function anyway?) and state what each parameter is for and the return value. The programmer that
uses this library is not interested in the implementation of the library (unless the implementation has
a bug, in which case he would want to complain somehow). < LibrariekFile 10 —

Standard Libraries

o

“F

The Print version module is a stub. You can help Wikibooks by expanding it.
If possible, use a bookshelf-specific categorization template.

« Standard librariesBeginning exercises —

Introduction

The stdio.h header declares a broad assortment of functions that perform input and output to
files and devices such as the console. It was one of the earliest headers to appear in the C library. It
declares more functions than any other standard header and also requires more explanation because
of the complex machinery that underlies the functions.

The device-independent model of input and output has seen dramatic improvement over the years
and has received little recognition for its success. FORTRAN II was touted as a machine-
independent language in the 1960s, yet it was essentially impossible to move a FORTRAN program
between architectures without some change. In FORTRAN II, you named the device you were
talking to right in the FORTRAN statement in the middle of your FORTRAN code. So, you said
READ INPUT TAPE 5 on atape-oriented IBM 7090 but READ CARD to read a card image on
other machines. FORTRAN IV had more generic READ and WRITE statements, specifying a
logical unit number (LUN) instead of the device name. The era of device-independent I/O had
dawned.

Peripheral devices such as printers still had fairly strong notions about what they were asked to do.
And then, peripheral interchange utilities were invented to handle bizarre devices. When cathode-
ray tubes came onto the scene, each manufacturer of consoles solved problems such as console
cursor movement in an independent manner, causing further headaches.

It was into this atmosphere that Unix was born. Ken Thompson and Dennis Ritchie, the developers
of Unix, deserve credit for packing any number of bright ideas into the operating system. Their
approach to device independence was one of the brightest.

The ANSI C <stdio.h> library is based on the original Unix file I/O primitives but casts a wider
net to accommodate the least-common denominator across varied systems.

Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or whether
to or from files supported on structured storage devices, are mapped into logical data streams,
whose properties are more uniform than their various inputs and outputs. Two forms of mapping are
supported: text streams and binary streams.

A text stream is an ordered sequence of characters composed into lines, each line consisting of zero

http://en.wikibooks.org/wiki/C_Programming/Beginning_exercises
http://en.wikibooks.org/wiki/C_Programming/Standard_libraries
http://en.wikibooks.org/wiki/Help:Stub#Templates_for_bookshelves
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&action=edit
http://en.wikibooks.org/wiki/Wikibooks:Stub
http://en.wikibooks.org/wiki/C_Programming/File_IO
http://en.wikibooks.org/wiki/C_Programming/Libraries
http://en.wikibooks.org/wiki/Image:Puzzle_stub.png

or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added, altered,
or deleted on input and output to conform to differing conventions for representing text characters in
a stream and those in the external representation. Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream only if the data consist only of
printable characters and the control characters horizontal tab and new-line, no new-line character is
immediately preceded by space characters, and the last character is a new-line character. Whether
space characters that are written out immediately before a new-line character appear when read in is
implementation-defined.

Unix adopted a standard internal format for all text streams. Each line of text is terminated by a
new-line character. That's what any program expects when it reads text, and that's what any program
produces when it writes text. If such a convention doesn't meet the needs of a text-oriented
peripheral attached to a Unix machine, then the fixup occurs out at the edges of the system. None of
the code in the middle needs to change.

A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

Nothing in Unix prevents the program from writing arbitrary 8-bit binary codes to any open file, or
reading them back unchanged from an adequate repository. Thus, Unix obliterated the long-standing
distinction between text streams and binary streams.

FILE pointers

The <stdio.h> header contains a definition for a type FILE (usually via a typedef) which is
capable of recording all the information needed to control a stream, including its file position
indicator, a pointer to the associated buffer (if any), an error indicator that records whether a
read/write error has occurred, and an end-of-file indicator that records whether the end of the file
has been reached.

It is considered bad manners to access the contents of FILE directly unless the programmer is
writing an implementation of <stdio.h> and its contents. How, pray tell, is one going to know
whether the file handle, for example, is spelt handle or _Handle? Access to the contents of
FILE is better provided via the functions in <stdio.h>.

It can be said that the FILE type is an early example of object-oriented programming.

Opening and Closing Files

To open and close files, the <stdio.h> library has three functions: fopen, freopen, and
fclose.

Opening Files
#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode, FILE *stream);

The fopen and freopen functions open files.

The fopen function opens the file whose name is in the string pointed to by £ilename and

http://en.wikibooks.org/w/index.php?title=Object-oriented_programming&action=edit

associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

r open a text file for reading

W truncate to zero length or create a text file for writing

a append; open or create text file for writing at end-of-file
rb open binary file for reading

whb truncate to zero length or create a binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)

W+ truncate to zero length or create a text file for update

a+ append; open or create text file for update

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create a binary file for update
a+b or ab+ append; open or create binary file for update

Opening a file with read mode ('r' as the first character in the mode argument) fails if the file does
not exist or cannot be read.

Opening a file with append mode ('a" as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then-current end-of-file, regardless of intervening
calls to the £ seek function. In some implementations, opening a binary file with append mode ('b
as the second or third character in the above list of mode arguments) may initially position the file
position indicator for the stream beyond the last data written, because of null character padding.

When a file is opened with update mode ('+' as the second or third character in the above list of
mode argument values), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call to the ff1ush
function or to a file positioning function (£seek, fsetpos, or rewind), and input may not be
directly followed by output without an intervening call to a file positioning function, unless the
input operation encounters end-of-file. Opening (or creating) a text file with update mode may
instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators are cleared.

The fopen function returns a pointer to the object controlling the stream. If the open operation
fails, fopen returns a null pointer.

The freopen function opens the file whose name is the string pointed to by £ i lename and
associates the stream pointed to by st ream with it. The mode argument is used just as in the
fopen function.

The freopen function first attempts to close any file that is associated with the specified stream.
Failure to close the file successfully is ignored. The error and end-of-file indicators for the stream
are cleared.

The freopen function returns a null pointer if the open operation fails, or the value stream if the
open operation succeeds.

Closing Files

#include <stdio.h>
int fclose(FILE *stream) ;

The £close function causes the stream pointed to by stream to be flushed and the associated file
to be closed. Any unwritten buffered data for the stream are delivered to the host environment to be
written to the file; any unread buffered data are discarded. The stream is disassociated from the file.

If the associated buffer was automatically allocated, it is deallocated. The function returns zero if
the stream was successfully closed or EOF if any errors were detected.

Other file access functions

The £f1ush function

#include <stdio.h>
int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation was
not input, the ££1ush function causes any unwritten data for that stream to be deferred to the host
environment to be written to the file; otherwise, the behavior is undefined.

If stream is a null pointer, the £ £ 1ush function performs this flushing action on all streams for
which the behavior is defined above.

The ££1ush functions returns EOF if a write error occurs, otherwise zero.

The reason for having a £ £1ush function is because streams in C can have buffered input/output;
that is, functions that write to a file actually write to a buffer inside the FILE structure. If the buffer
is filled to capacity, the write functions will call £f1ush to actually "write" the data that is in the
buffer to the file. Because £ £ 1ush is only called every once in a while, calls to the operating
system to do a raw write are minimized.

The setbuf function

#include <stdio.h>
void setbuf (FILE *stream, char *buf);

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values _TOFBF for mode and BUFSIZ for size, or (if buf is a null pointer)
with the value _TONBF for mode.

The setvbuf function

#include <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode, size_t size);

The setvbuf function may be used only after the stream pointed to by st ream has been
associated with an open file and before any other operation is performed on the stream. The
argument mode determines how the stream will be buffered, as follows: _TOFBF causes
input/output to be fully buffered; _TOLBF causes input/output to be line buffered; _TONBF causes
input/output to be unbuffered. If buf is not a null pointer, the array it points to may be used instead
of a buffer associated by the setvbuf function. (The buffer must have a lifetime at least as great as
the open stream, so the stream should be closed before a buffer that has automatic storage duration
is deallocated upon block exit.) The argument s1ize specifies the size of the array. The contents of
the array at any time are indeterminate.

The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or
if the request cannot be honored.

Functions that Modify the File Position Indicator

The stdio.h library has five functions that affect the file position indicator besides those that do
reading or writing: fgetpos, fseek, fsetpos, ftell, and rewind.

The fseek and ftell functions are older than fgetpos and fsetpos.

The fgetpos and fsetpos functions

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, const fpos_t *pos);

The fgetpos function stores the current value of the file position indicator for the stream pointed
to by stream in the object pointed to by pos. The value stored contains unspecified information
usable by the £setpos function for repositioning the stream to its position at the time of the call to
the fgetpos function.

If successful, the f getpos function returns zero; on failure, the f getpos function returns
nonzero and stores an implementation-defined positive value in errno.

The f£setpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which shall be a value obtained from an
earlier call to the fgetpos function on the same stream.

A successful call to the f setpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an f setpos call, the next
operation on an update stream may be either input or output.

If successful, the £ setpos function returns zero; on failure, the £ setpos function returns
nonzero and stores an implementation-defined positive value in errno.

The £fseek and ftell functions

#include <stdio.h>
int fseek (FILE *stream, long int offset, int whence);
long int ftell (FILE *stream);

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the file, is
obtained by adding of f set to the position specified by whence. Three macros in stdio.h
called SEEK_SET, SEEK_CUR, and SEEK_END expand to unique values. If the position specified
by whence is SEEK_SET, the specified position is the beginning of the file; if whence is
SEEK_END, the specified position is the end of the file; and if whence is SEEK_CUR, the
specified position is the current file position. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END.

For a text stream, either of f set shall be zero, or of £set shall be a value returned by an earlier
call to the ftell function on the same stream and whence shall be SEEK_SET.

The fseek function returns nonzero only for a request that cannot be satisfied.

The ftell function obtains the current value of the file position indicator for the stream pointed to
by stream. For a binary stream, the value is the number of characters from the beginning of the
file; for a text stream, its file position indicator contains unspecified information, usable by the

f seek function for returning the file position indicator for the stream to its position at the time of

the ftell call; the difference between two such return values is not necessarily a meaningful
measure of the number of characters written or read.

If successful, the ftell function returns the current value of the file position indicator for the
stream. On failure, the ftel1l function returns —1L and stores an implementation-defined positive
value in errno.

The rewind function
#include <stdio.h>

void rewind(FILE *stream);

The rewind function sets the file position indicator for the stream pointed to by st ream to the
beginning of the file. It is equivalent to

(void) fseek (stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

Error Handling Functions

The clearerr function
#include <stdio.h>

void clearerr (FILE *stream);

The clearerr function clears the end-of-file and error indicators for the stream pointed to by
Stream.

The feof function
#include <stdio.h>

int feof (FILE *stream) ;

The feof function tests the end-of-file indicator for the stream pointed to by st ream and returns
nonzero if and only if the end-of-file indicator is set for st ream, otherwise it returns zero.

The ferror function
#include <stdio.h>

int ferror (FILE *stream);

The ferror function tests the error indicator for the stream pointed to by st ream and returns
nonzero if and only if the error indicator is set for st ream, otherwise it returns zero.

The perror function

#include <stdio.h>
void perror (const char *s);

The perror function maps the error number in the integer expression errno to an error message.
It writes a sequence of characters to the standard error stream thus: first, if s is not a null pointer
and the character pointed to by s is not the null character, the string pointed to by s followed by a

colon (:) and a space; then an appropriate error message string followed by a new-line character.
The contents of the error message are the same as those returned by the strerror function with
the argument errno, which are implementation-defined.

Other Operations on Files

The stdio.h library has a variety of functions that do some operation on files besides reading and
writing.

The remove function

#include <stdio.h>
int remove (const char *filename) ;

The remove function causes the file whose name is the string pointed to by £i 1ename to be no
longer accessible by that name. A subsequent attempt to open that file using that name will fail,
unless it is created anew. If the file is open, the behavior of the remove function is
implementation-defined.

The remove function returns zero if the operation succeeds, nonzero if it fails.

The rename function

#include <stdio.h>
int rename (const char *old_filename, const char *new_filename) ;

The rename function causes the file whose name is the string pointed to by o1d_filename to
be henceforth known by the name given by the string pointed to by new_filename. The file
named old_filename is no longer accessible by that name. If a file named by the string pointed
to by new_filename exists prior to the call to the rename function, the behavior is
implementation-defined.

The rename function returns zero if the operation succeeds, nonzero if it fails, in which case if the
file existed previously it is still known by its original name.

The tmpfile function
#include <stdio.h>

FILE *tmpfile(void);

The tmpfile function creates a temporary binary file that will automatically be removed when it
is closed or at program termination. If the program terminates abnormally, whether an open
temporary file is removed is implementation-defined. The file is opened for update with "wb+"
mode.

The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be
created, the tmpfile function returns a null pointer.

The tmpnam function

#include <stdio.h>
char *tmpnam(char *s);

The tmpnam function generates a string that is a valid file name and that is not the name of an

existing file.

The tmpnam function generates a different string each time it is called, up to TMP_MAX times.
(TMP_MAX is a macro defined in stdio.h.) If it is called more than TMP_ MAX times, the behavior
is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

If the argument 1s a null pointer, the tmpnam function leaves its result in an internal static object
and returns a pointer to that object. Subsequent calls to the tmpnam function may modify the same
object. If the argument is not a null pointer, it is assumed to point to an array of at least L__tmpnam
characters (IL_tmpnam is another macro in stdio.h); the tmpnam function writes its result in
that array and returns the argument as its value.

The value of the macro TMP_ MAX must be at least 25.

Reading from Files

Character Input Functions

The fgetc function

#include <stdio.h>
int fgetc(FILE *stream);

The fgetc function obtains the next character (if present) as an unsigned char converted to
an int, from the input stream pointed to by st ream, and advances the associated file position
indicator for the stream (if defined).

The fgetc function returns the next character from the input stream pointed to by st ream. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns EOF (EOF
is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the error
indicator for the stream is set and fgetc returns EOF.

The fgets function

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

The fgets function reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s. No additional characters are read after
a new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array.

The fgets function returns s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a null pointer is returned. If
a read error occurs during the operation, the array contents are indeterminate and a null pointed is
returned.

Warning: some filesystems use the terminator \ r \n in text files; fget s will read those lines,
removing the \n but keeping the \ r as the last character of s. This expurious character should be
removed in the string s before the string is used for anything.

The getc function

#include <stdio.h>
int getc(FILE *stream);

The getc function is equivalent to fgetc, except that it may be implemented as a macro. If it is
implemented as a macro, the st ream argument may be evaluated more than once, so the argument
should never be an expression with side effects (i.e. have an assignment, increment, or decrement
operators, or be a function call).

The getc function returns the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF (EOF is
a negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the error indicator
for the stream is set and getc returns EOF.

The getchar function

#include <stdio.h>
int getchar (void);

The getchar function is equivalent to get c with the argument stdin.

The getchar function returns the next character from the input stream pointed to by stdin. If
stdin is at end-of-file, the end-of-file indicator for stdin is set and getchar returns EOF (EOF
is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the error
indicator for stdin is set and getchar returns EOF.

The gets function

#include <stdio.h>
char *gets(char *s);

The gets function reads characters from the input stream pointed to by stdin into the array
pointed to by s until an end-of-file is encountered or a new-line character is read. Any new-line
character is discarded, and a null character is written immediately after the last character read into
the array.

The gets function returns s if successful. If the end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a null pointer is returned. If
a read error occurs during the operation, the array contents are indeterminate and a null pointer is
returned.

This function and description is only included here for completeness. Most C programmers
nowadays shy away from using get s, as there is no way for the function to know how big the buffer
is that the programmer wants to read into. Commandment #5 of Henry Spencer's The Ten
Commandments for C Programmers (Annotated Edition) reads, "Thou shalt check the array bounds
of all strings (indeed, all arrays), for surely where thou typest foo someone someday shall type
supercalifragilisticexpialidocious." It mentions get s in the annotation: "As demonstrated by the
deeds of the Great Worm, a consequence of this commandment is that robust production software
should never make use of gets (), for it is truly a tool of the Devil. Thy interfaces should always
inform thy servants of the bounds of thy arrays, and servants who spurn such advice or quietly fail
to follow it should be dispatched forthwith to the Land Of Rm, where they can do no further harm to
thee."

http://en.wikibooks.org/w/index.php?title=Henry_Spencer&action=edit

The ungetc function

#include <stdio.h>
int ungetc(int ¢, FILE *stream);

The ungetc function pushes the character specified by ¢ (converted to an unsigned char)
back onto the input stream pointed to by stream. The pushed-back characters will be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening call
(with the stream pointed to by stream) to a file-positioning function (f seek, fsetpos, or
rewind) discards any pushed-back characters for the stream. The external storage corresponding to
the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
may fail.

If the value of ¢ equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the unget c function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back. For a text stream, the value of its
file-position indicator after a successful call to the ungetc function is unspecified until all pushed-
back characters are read or discarded. For a binary stream, its file position indicator is decremented
by each successful call to the unget c function; if its value was zero before a call, it is
indeterminate after the call.

The ungetc function returns the character pushed back after conversion, or EOF if the operation
fails.

Direct input function: the f£read function

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is
specified by size, from the stream pointed to by st ream. The file position indicator for the
stream (if defined) is advanced by the number of characters successfully read. If an error occurs, the
resulting value of the file position indicator for the stream is indeterminate. If a partial element is
read, its value is indeterminate.

The fread function returns the number of elements successfully read, which may be less than
nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero
and the contents of the array and the state of the stream remain unchanged.

Formatted input functions: the scanf family of functions

#include <stdio.h>

int fscanf (FILE *stream, const char *format, ...);
int scanf (const char *format, ...);

int sscanf (const char *s, const char *format, ...);

The fscanf function reads input from the stream pointed to by st ream, under control of the
string pointed to by format that specifies the admissible sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to receive

converted input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but are
otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: one or more white-space characters; an ordinary
multibyte character (neither % or a white-space character); or a conversion specification. Each
conversion specification is introduced by the character $. After the %, the following appear in
sequence:

+ An optional assignment-suppressing character *.

- An optional nonzero decimal integer that specifies the maximum field width.

- Anoptional h, 1 (ell) or L indicating the size of the receiving object. The conversion
specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument is
a pointer to unsigned short int rather than unsigned int,orby 1 ifitisa
pointer to unsigned long int. Finally, the conversion specifiers e, £, and g shall be
preceded by 1 if the corresponding argument is a pointer to double rather than a pointer to
float,or by L if itis a pointer to long double. If an h, 1, or L appears with any other
format specifier, the behavior is undefined.

A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as detailed
below, the £ scanf function returns. Failures are described as input failures (due to the
unavailability of input characters) or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-
white-space character (which remains unread) or until no more characters remain unread.

A directive that is an ordinary multibyte character is executed by reading the next characters of the
stream. If one of the characters differs from one comprising the directive, the directive fails, and the
differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the i sspace function) are skipped, unless the
specification includes a [, c, or n specifier. (The white-space characters are not counted against the
specified field width.)

An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest matching sequences of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of that length in the sequence. The
first character, if any, after the input item remains unread. If the length of the input item is zero, the
execution of the directive fails; this condition is a matching failure, unless an error prevented input
from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a $n directive, the count of
input characters) is converted to a type appropriate to the conversion specifier. If the input item is
not a matching sequence, the execution of the directive fails; this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already
received a conversion result. If this object does not have an appropriate type, or if the result of the

conversion cannot be represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d

Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument shall be a pointer to integer.

Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the strtol function with the value O for the base argument. The
corresponding argument shall be a pointer to integer.

Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 10 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 16 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

e, f,g

Matches an optionally signed floating-point number, whose format is the same as expected for
the subject string of the st rt od function. The corresponding argument will be a pointer to
floating.

Matches a sequence of non-white-space characters. (No special provisions are made for
multibyte characters.) The corresponding argument shall be a pointer to the initial character of
an array large enough to accept the sequence and a terminating null character, which will be
added automatically.

Matches a nonempty sequence of characters (no special provisions are made for multibyte
characters) from a set of expected characters (the scanset). The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which will be added automatically. The conversion specifier
includes all subsequent characters in the format string, up to and including the matching
right bracket (1). The characters between the brackets (the scanlist) comprise the scanset,
unless the character after the left bracket is a circumflex (*), in which case the scanset
contains all the characters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins with [] or ["], the right-bracket character is
in the scanlist and the next right bracket character is the matching right bracket that ends the

specification; otherwise, the first right bracket character is the one that ends the specification.
If a — character is in the scanlist and is not the first, nor the second where the first character is
a *, nor the last character, the behavior is implementation-defined.

Matches a sequence of characters (no special provisions are made for multibyte characters) of
the number specified by the field width (1 if no field width is present in the directive). The
corresponding argument shall be a pointer to the initial character of an array large enough to
accept the sequence. No null character is added.

Matches an implementation-defined set of sequences, which should be the same as the set of
sequences that may be produced by the $p conversion of the fprintf function. The
corresponding argument shall be a pointer to void. The interpretation of the input then is
implementation-defined. If the input item is a value converted earlier during the same
program execution, the pointer that results shall compare equal to that value; otherwise the
behavior of the $p conversion is undefined.

No input is consumed. The corresponding argument shall be a pointer to integer into which is
to be written the number of characters read from the input stream so far by this call to the
fscanft function. Execution of a $n directive does not increment the assignment count
returned at the completion of execution of the fscanf function.

Matches a single %; no conversion or assignment occurs. The complete conversion
specification shall be $%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e, g, and
X.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any
characters matching the current directive have been read (other than leading white space, where
permitted), execution of the current directive terminates with an input failure; otherwise, unless
execution of the current directive is terminated with a matching failure, execution of the following
directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread
in the input stream. Trailing white space (including new-line characters) is left unread unless
matched by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the $n directive.

The £scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the £ scanf funciton returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

The scanf function is equivalent to f scanf with the argument stdin interposed before the
arguments to scanf. Its return value is similar to that of fscanf.

The sscanf function is equivalent to £ scanf, except that the argument s specifies a string from
which the input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering the end-of-file for the f scanf function. If copying takes place between

objects that overlap, the behavior is undefined.
Writing to Files

Character Output Functions

The fputc function

#include <stdio.h>
int fputc(int ¢, FILE *stream);

The fputc function writes the character specified by c (converted to an unsigned char) to the
stream pointed to by stream at the position indicated by the associated file position indicator (if
defined), and advances the indicator appropriately. If the file cannot support positioning requests, or
if the stream is opened with append mode, the character is appended to the output stream. The
function returns the character written, unless a write error occurs, in which case the error indicator
for the stream is set and fputc returns EOF.

The fputs function

#include <stdio.h>
int fputs(const char *s, FILE *stream);

The fputs function writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written. The function returns EOF if a write error occurs, otherwise
it returns a nonnegative value.

The putc function

#include <stdio.h>
int putc(int ¢, FILE *stream);

The putc function is equivalent to fputc, except that if it is implemented as a macro, it may
evaluate st ream more than once, so the argument should never be an expression with side effects.
The function returns the character written, unless a write error occurs, in which case the error
indicator for the stream is set and the function returns EOF.

The putchar function
#include <stdio.h>

int putchar (int c);

The putchar function is equivalent to putc with the second argument stdout. It returns the
character written, unless a write error occurs, in which case the error indicator for stdout is set
and the function returns EOF.

The put s function

#include <stdio.h>
int puts(const char *s);

The puts function writes the string pointed to by s to the stream pointed to by stdout, and

appends a new-line character to the output. The terminating null character is not written. The
function returns EOF if a write error occurs; otherwise, it returns a nonnegative value.

Direct output function: the fwrite function

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size
is specified by size to the stream pointed to by st ream. The file position indicator for the stream
(if defined) is advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator for the stream is indeterminate. The function returns the
number of elements successfully written, which will be less than nmemb only if a write error is
encountered.

Formatted output functions: the print £ family of functions

#include <stdarg.h>

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...);

int printf (const char *format, ...);

int sprintf(char *s, const char *format, ...);

int viprintf (FILE *stream, const char *format, va_list arg);
int vprintf (const char *format, va_list arg);

int vsprintf (char *s, const char *format, va_list arqg);

Note: Some length specifiers and format specifiers are new in C99. These may not be available in
older compilers and versions of the stdio library, which adhere to the C89/C90 standard. Wherever
possible, the new ones will be marked with (C99).

The fprintf function writes output to the stream pointed to by st ream under control of the
string pointed to by format that specifies how subsequent arguments are converted for output. If
there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.
The fprintf function returns when the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: ordinary multibyte characters (not %), which are
copied unchanged to the output stream; and conversion specifications, each of which results in
fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

Each conversion specification is introduced by the character $. After the %, the following appear in
sequence:

« Zero or more flags (in any order) that modify the meaning of the conversion specification.

« An optional minimum field width. If the converted value has fewer characters than the field
width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an
asterisk * (described later) or a decimal integer. (Note that O is taken as a flag, not as the
beginning of a field width.)

« An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal-point character for a,
A, e, E, f, and F conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of characters to be written from a string in s

conversions. The precision takes the form of a period (.) followed either by an asterisk *
(described later) or by an optional decimal integer; if only the period is specified, the
precision is taken as zero. If a precision appears with any other conversion specifier, the
behavior is undefined.

An optional length modifier that specifies the size of the argument.

A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an
int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a — flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag characters and their meanings are:

space

The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a negative value is converted if this flag is not specified. The results of all
floating conversions of a negative zero, and of negative values that round to zero, include a
minus sign.)

If the first character of a signed conversion is not a sign, or if a signed conversion results in no
characters, a space is prefixed to the result. If the space and + flags both appear, the space flag
is ignored.

The result is converted to an "alternative form". For o conversion, it increases the precision, if
and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x
(or 0X) prefixed to it. For a, A, e, E, £, F, g, and G conversions, the result always contains a
decimal-point character, even if no digits follow it. (Normally, a decimal-point character
appears in the result of these conversions only if a digit follows it.) For g and G conversions,
trailing zeros are not removed from the result. For other conversions, the behavior is
undefined.

Ford, i, 0, u, %, X, a, A, e, E, £, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is performed.
If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions, if
a precision is specified, the 0 flag is ignored. For other conversions, the behavior is
undefined.

The length modifiers and their meanings are:

hh

(C99) Specifies that a following d, 1, o, u, %, or X conversion specifier applies to a signed
char orunsigned char argument (the argument will have been promoted according to
the integer promotions, but its value shall be converted to signed char or unsigned
char before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or
unsigned short int argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short int orunsigned short
int before printing); or that a following n conversion specifier applies to a pointer to a
short int argument.

1 (ell)

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; that a following n conversion specifier applies to a
pointer to a long int argument; (C99) that a following c conversion specifier applies to a
wint_t argument; (C99) that a following s conversion specifier applies to a pointer to a
wchar_t argument; or has no effect on a following a, A, e, E, £, F, g, or G conversion
specifier.

11 (ell-ell)

(C99) Specifies that a following d, 1, o, u, x, or X conversion specifier applies to a 1ong
long int orunsigned long long int argument; or that a following n conversion
specifier applies to a pointer to a long long int argument.

(C99) Specifies that a following d, 1, o, u, %, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier applies to a
pointer to an intmax_t argument.

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies toa size_t
or the corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

(C99) Specifies that a following d, 1, o, u, %, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a following n
conversion specifier applies to a pointer to a pt rdiff_t argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a 1ong
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i

The int argument is converted to signed decimal in the style [—]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

o, u, X, X

g,G

The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd, the letters abcdef£ are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of converting a zero value
with a precision of zero is no characters.

A double argument representing a (finite) floating-point number is converted to decimal
notation in the style [—]ddd . ddd, where the number of digits after the decimal-point character
is equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

(C99) A double argument representing an infinity is converted in one of the styles [—]/inf
or [-]infinity — which style is implementation-defined. A double argument representing
a NaN is converted in one of the styles [—/nan or [-nan (n-char-sequence) — which style,
and the meaning of any n-char-sequence, is implementation-defined. The ¥ conversion
specifier produces INF, INFINITY, or NAN instead of inf, infinity, or nan,
respectively. (When applied to infinite and NaN values, the —, +, and space flags have their
usual meaning; the # and 0 flags have no effect.)

A double argument representing a (finite) floating-point number is converted in the style
[—]d .ddde+dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier produces a number with E instead of e introducing the exponent.
The exponent always contains at least two digits, and only as many more digits as necessary to
represent the exponent. If the value is zero, the exponent is zero.

(C99) A double argument representing an infinity or NaN is converted in the style of an £
or F conversion specifier.

A double argument representing a (finite) floating-point number is converted in style £ or e
(or in style F or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as 1. The style used depends on
the value converted; style e (or E) is used only if the exponent resulting from such a
conversion is less than —4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result unless the # flag is specified; a decimal-point
character appears only if it is followed by a digit.

(C99) A double argument representing an infinity or NaN is converted in the style of an £
or F conversion specifier.

(C99) A double argument representing a (finite) floating-point number is converted in the
style [—]0xh . hhhhp+d, where there is one hexadecimal digit (which is nonzero if the
argument is a normalized floating-point number and is otherwise unspecified) before the
decimal-point character (Binary implementations can choose the hexadecimal digit to the left

of the decimal-point character so that subsequent digits align to nibble [4-bit] boundaries.)
and the number of hexadecimal digits after it is equal to the precision; if the precision is
missing and FLT_RADIX is a power of 2, then the precision is sufficient for an exact
representation of the value; if the precision is missing and FLT_RADIX is not a power of 2,
then the precision is sufficient to distinguish (The precision p is sufficient to distinguish

values of the source type if 16°~! > b where b is FLT_RADIX and n is the number of base-b
digits in the significand of the source type. A smaller p might suffice depending on the
implementation's scheme for determining the digit to the left of the decimal-point character.)
values of type double, except that trailing zeros may be omitted; if the precision is zero and
the # flag is not specified, no decimal-point character appears. The letters abcdef£ are used
for a conversion and the letters ABCDEF for A conversion. The A conversion specifier
produces a number with X and P instead of x and p. The exponent always contains at least one
digit, and only as many more digits as necessary to represent the decimal exponent of 2. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an £ or F
conversion specifier.

If no 1 length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.

(C99) If an 1 length modifier is present, the wint_t argument is converted as if by an 1s
conversion specification with no precision and an argument that points to the initial element
of a two-element array of wchar_t, the first element containing the wint_t argument to
the 1c conversion specification and the second a null wide character.

If no 1 length modifier is present, the argument shall be a pointer to the initial element of an
array of character type. (No special provisions are made for multibyte characters.) Characters
from the array are written up to (but not including) the terminating null character. If the
precision is specified, no more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a null character.

(C99) If an 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are converted to multibyte
characters (each as if by a call to the wcrt omb function, with the conversion state described
by an mbstate_t object initialized to zero before the first wide character is converted) up to
and including a terminating null wide character. The resulting multibyte characters are written
up to (but not including) the terminating null character (byte). If no precision is specified, the
array shall contain a null wide character. If a precision is specified, no more than that many
characters (bytes) are written (including shift sequences, if any), and the array shall contain a
null wide character if, to equal the multibyte character sequence length given by the precision,
the function would need to access a wide character one past the end of the array. In no case is
a partial multibyte character written. (Redundant shift sequences may result if multibyte
characters have a state-dependent encoding.)

The argument shall be a pointer to void. The value of the pointer is converted to a sequence
of printable characters, in an implementation-defined manner.

The argument shall be a pointer to signed integer into which is written the number of

characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

o\

A % character is written. No argument is converted. The complete conversion specification
shall be $%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the correct
type for the corresponding coversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a
hexadecimal floating number with the given precision.

It is recommended practice that if FLT_RADIX is not a power of 2, the result should be one of the
two adjacent numbers in hexadecimal floating style with the given precision, with the extra
stipulation that the error should have a correct sign for the current rounding direction.

It is recommended practice that for e, E, £, F, g, and G conversions, if the number of significant
decimal digits 1s at most DECIMAL_DIG, then the result should be correctly rounded. (For binary-
to-decimal conversion, the result format's values are the numbers representable with the given
format specifier. The number of significant digits is determined by the format specifier, and in the
case of fixed-point conversion by the source value as well.) If the number of significant decimal
digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <D
< U, with the extra stipulation that the error should have a correct sign for the current rounding
direction.

The fprintf function returns the number of characters transmitted, or a negative value if an
output or encoding error occurred.

The printf function is equivalent to fprint £ with the argument stdout interposed before the
arguments to print f. It returns the number of characters transmitted, or a negative value if an
output error occurred.

The sprintf function is equivalent to fprint £, except that the argument s specifies an array
into which the generated input is to be written, rather than to a stream. A null character is written at
the end of the characters written; it is not counted as part of the returned sum. If copying takes place
between objects that overlap, the behavior is undefined. The function returns the number of
characters written in the array, not counting the terminating null character.

The vfprintf function is equivalent to fprint £, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vfprintf function does not invoke the va_end macro. The function returns the
number of characters transmitted, or a negative value if an output error occurred.

The vprintf function is equivalent to print £, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vprintf function does not invoke the va_end macro. The function returns the
number of characters transmitted, or a negative value if an output error occurred.

The vsprintf function is equivalent to sprintf, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vsprintf function does not invoke the va_end macro. If copying takes place
between objects that overlap, the behavior is undefined. The function returns the number of
characters written into the array, not counting the terminating null character. < File IQArrays —

Variables

Naming

1.
2.
3.

Can a variable name start with a number?
Can a variable name start with a typographical symbol (e.g. #, *, _)?
Give an example of a C variable name that would not work. Why doesn't it work?

Solution] Show]

. No, the name of a variable must begin with a letter (minuscule or majuscule), or a

underscore.
Only the underscore can be used.

. for example, p$t is not allowed because $ is not a valid character for the name of a variable.

Data Types

1.

W

List at least three data types in C
1. On your computer, how much memory does each require?

. Which ones can be used in place of another? Why?

1. Are there any limitations on these uses?
If so, what are they?
Is it necessary to do anything special to use the alternative?

. Can the name we use for a data type (e.g. 'int', 'float') be used as a variable?

Solution] Show]

3 data types : char, int,double.
On my computer :
« char: 1 byte
int : 4 bytes
double : 8 bytes
we can not use 'int' or 'float' as a variable 's name.

Assignment

1.
2.

How would you assign the value 3.14 to a variable called pi?
Is it possible to assign an int to a double?

javascript:toggleNavigationBar(3);
javascript:toggleNavigationBar(1);
http://en.wikibooks.org/wiki/C_Programming/Arrays
http://en.wikibooks.org/wiki/C_Programming/File_IO

1. Is the reverse possible?

Solution] Show]

double pi;
pi=3.14;

+ Yes, for example :

int a=67;
double b;
b=a;

+ Yes, but a cast is necessary and the double is truncated :

double a=89;
int b;
b=(int) a;

Referencing

1. A common mistake for new students is reversing the assignment statement. Suppose you
want to assign the value stored in the variable "pi" to another variable, say "pi2":
1. What is the correct statement?
2. What is the reverse? Is this a valid C statement (even if it gives incorrect results)?
3. What if you wanted to assign a constant value (like 3.1415) to "pi2":
1. What would the correct statement look like?
4. Would the reverse be a valid or invalid C statement?

Simple I/0

Input

1. scanf() is a very powerful function. Describe some features that make it so versatile.
2. Write the scanf() function call that will read into the variable "var":
1. afloat
3. anint
4. a double

Output
1. Write a program that reverses a string that is input to the system.
2. Write a program that prints each word of a sentence on a new line

3. Write a program that outputs this stopping at n, so n = 6 would look like

*
kg

keksk

javascript:toggleNavigationBar(5);

skeokeoskosk
Aekeskoskosk

eskeskoskoskosk

4. Write a program that outputs a sideways pyramid, so this if n =4

*
ok
Hokok
wokokok

kg

5. Write a program to do a right side up pyramid taking input n

Program Flow

1. Build a program where control passes from main to three different functions with 3 calls

2. Now make a while loop in main with the function calls inside it. Ask for input at the beginning of
the loop. End the while loop if the user hits Q

3. Next add conditionals to call the functions when the user enters numbers, so 1 goes to functionl,
2 goes to function 2, etc

4. Have function 1 call function a, which calls function b, which calls function ¢

5. Draw out a diagram of program flow, with arrows to indicate where control goes

Functions

1. Write a function to check if an integer is negative, the declaration should look like bool
is_positive(int 1);

2. Write a function to raise a floating point number to an integer power, so for example to when you
use it

float a = raise_to_power(2,3);//a gets 8

float b = raise_to_power(9,2);//b gets 81

float raise_to_power(float f, int power);//make this your declaration

Math

1. Write a function to calculate if a number is prime.
2. Write a function to determine the number of prime numbers below n.

3. Write a function to find the square root by using Newton's method.

4. Write functions to do trigonometric functions.

5. Try to write a random number generator.

In-depth C ideas

< Beginning exercisesPointers and arrays —

Arrays & Strings

Arrays in C act to store related data under a single variable name with an index, also known as a
subscript. It is easiest to think of an array as simply a list or ordered grouping of variables. As such,
arrays often help a programmer organize collections of data efficiently and intuitively.

Later we will consider the concept of a pointer, fundamental to C, which extends the nature of the
array. For now, we will consider just their declaration and their use.

Arrays

If we want an array of six integers , called "numbers", we write in C

int numbers([6];

For a character array called letters,

char letters[6];

and so on.

If we wish to initialize as we declare, we write

int vector[6]={0,0,1,0,0,0};

If we want to access a variable stored in an array, for example with the above declaration, the
following code will store a 1 in the variable x

int x;
x = vector[2];

Arrays in C are indexed starting at 0, as opposed to starting at 1. The first element of the array above
is vector [0]. The index to the last value in the array is the array size minus one. In the example
above the subscripts run from 0 through 5. C does not do bounds checking on array accesses. The
compiler will not complain about the following:

char y;
int z = 9;
char vector([6] = { 1, 2, 3, 4, 5, 6 };

//examples of accessing outside the array. A compile error is not raised
y = vector[1l5];
y = vector[-4];
N vector[z];

During program execution, an out of bounds array access does not always cause a run time error.
Your program may happily continue after retrieving a value from vector[-1]. To alleviate indexing
problems, the sizeof() expression is commonly used when coding loops that process arrays.

int ix;

short anArrayl[]= { 3, 6, 9, 12, 15 };

http://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays
http://en.wikibooks.org/wiki/C_Programming/Beginning_exercises

for (ix=0; ix< (sizeof (anArray)/sizeof (short)); ++ix) {
DoSomethingWith(anArray[ix]);
}

Notice in the above example, the size of the array was not explicitly specified. The compiler knows
to size it at 5 because of the five values in the initializer list. Adding an additional value to the list
will cause it to be sized to six, and because of the sizeof expression in the for loop, the code
automatically adjusts to this change. This technique is often used by experienced C programmers.

C also supports multi dimensional arrays. The simplest type is a two dimensional array. This creates
a rectangular array - each row has the same number of columns. To get a char array with 3 rows and
5 columns we write in C

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;
ch = two_d[2][4];

or

two_d[0][0] = 'x';

Similarly, a multi-dimensional array can be initialized like this:

int two_d[2]([3] = {{ 5, 2, 1 },
{6, 7, 8 }};

There are also weird notations possible:

int a[1007];
int i = 0;
if (alil==ilal)
{
printf ("Hello World!\n");
}

a[i] and i[a] point to the same location. (This is explained later in the next Chapter.)

Strings

C has no string handling facilities built in; consequently, strings are defined as arrays of characters.

char string([30];

However, there is a useful library of string handling routines which you can use by including
another header file.

#include <stdio.h>
#include <string.h> //new header file

int main (void) {

}

< ArraysMemory management —

http://en.wikibooks.org/wiki/C_Programming/Memory_management
http://en.wikibooks.org/wiki/C_Programming/Arrays

Pointers and Arrays

A pointer is a value that designates the address, or location in memory, of some value. There are
four fundamental things you need to know about pointers:

« How to declare them

« How to assign to them

« How to reference the value associated with the pointer (dereferencing) and
« How they relate to arrays

We'll also discuss the relationship of pointers with text strings and the more advanced concept of
function pointers.

Pointers are variables that hold a memory location -- the location of some other variable. One can
access the value of the variable pointed to using the dereferencing operator '*'. Pointers can hold any
data type, even functions.

The vast majority of arrays in C are simple lists, also called "1 dimensional arrays". We will briefly
cover multi-dimensional arrays in a later chapter.

Declaring pointers

Consider the following snippet of code which declares two pointers:

struct MyStruct {
int m_aNumber;
float num2;

bi

int * pd2;
struct MyStruct * pAnItem;

The first four lines define a structure. The next line declares a variable which points to an int, and
the bottom line declares a variable which points to something with structure MyStruct. So to declare
a variable as something which points to some type, rather than contains some type, the asterisk (*)
is placed before the variable name.

In the first of the following lines of code, var1 is a pointer to a long while var?2 is a long and not
a pointer to a long. In the second line p3 is declared as a pointer to a pointer to an int.

long * wvarl, var2;
int ** p3;

Pointer types are often used as parameters to function calls. The following shows how to declare a
function which uses a pointer as an argument. Since C passes function arguments by value, in order
to allow a function to modify a value from the calling routine, a pointer to the value must be passed.
Pointers to structures are also used as function arguments even when nothing in the struct will be
modified in the function. This is done to avoid copying the complete contents of the structure onto
the stack. More about pointers as function arguments later.

int MyFunction(struct MyStruct *pStruct);

Assigning values to pointers

So far we've discussed how to declare pointers. The process of assigning values to pointers is next.
To assign a pointer the address of a variable, the & or 'address of' operator is used.

http://en.wikibooks.org/wiki/C_Programming/Common_practices#Dynamic_multidimensional_arrays

int myInt;

int *pPointer;

struct MyStruct dvorak;
struct MyStruct *pKeyboard;

pPointer = &myInt;
pKeyboard = &dvorak;
Here, pPointer will now reference mylnt and pKeyboard will reference dvorak.

Pointers can also be assigned to reference dynamically allocated memory. The malloc() and calloc()
functions are often what are used to do this.

#include <stdlib.h>
struct MyStruct *pKeyboard;

pKeyboard = malloc(sizeof (struct MyStruct));

The malloc function returns a pointer to dynamically allocated memory (or NULL if unsuccessful).
The size of this memory will be appropriately sized to contain the MyStruct structure.

The following is an example showing one pointer being assigned to another and of a pointer being
assigned a return value from a function.

static struct MyStruct vall, val2, val3, val4;

struct MyStruct *ASillyFunction(int b)

{
struct MyStruct *myReturn;

if (b == 1) myReturn = &vall;
else 1if (b==2) myReturn = &valz;
else if (b==3) myReturn = &val3;
else myReturn = &val4;

return myReturn;

struct MyStruct *strPointer;

int *c, *d;

int 3

c = &3; /* pointer assigned using & operator */
d =c; /* assign one pointer to another */
strPointer = ASillyFunction(3); /* pointer returned from a function. */

When returning a pointer from a function, do not return a pointer that points to a value that is local
to the function or that is a pointer to a function argument. Pointers to local variables become invalid
when the function exits. In the above function, the value returned points to a static variable.
Returning a pointer to dynamically allocated memory is also valid.

Pointer dereferencing

Address
Value - Address
cl =

[

The pointer p points to the variable a.

To access a value to which a pointer points, the * operator is used. Another operator, the —>
operator is used in conjunction with pointers to structures. Here's a short example.

int c, d;

int *pj;

struct MyStruct astruct;
struct MyStruct *bb;

c = 10;

Pl = &c; /* pj points to c */

d = *pj; /* d is assigned the value to which pj points, 10 */
pj = &d; /* now points to d */

pj = 12; / d is now 12 */

bb = &astruct;

(*bb) .m_aNumber = 3; /* assigns 3 to the m_aNumber member of astruct */
bb->num2 = 44.3; /* assigns 44.3 to the num2 member of astruct */
pj = bb->m_aNumber; / egivalent to d = astruct.m_aNumber; */

The expression bb—>mem is entirely equivalent to (*bb) .mem. They both access the mem element
of the structure pointed to by bb. There is one more way of dereferencing a pointer, which will be
discussed in the following section.

When dereferencing a pointer that points to an invalid memory location, an error often occurs which
results in the program terminating. The error is often reported as a segmentation error. A common
cause of this is failure to initialize a pointer before trying to dereference it.

C is known for giving you just enough rope to hang yourself, and pointer dereferencing is a prime
example. You are quite free to write code that accesses memory outside that which you have
explicity requested from the system. And many times, that memory may appear as available to your
program due to the vagaries of system memory allocation. However, even if 99 executions allow
your program to run without fault, that 100th execution may be the time when your "memory
pilfering" is caught by the system and the program fails. Be careful to ensure that your pointer
offsets are within the bounds of allocated memory!

The declaration void *somePointer; isused to declare a pointer of some nonspecified type.
You can assign a value to a void pointer, but you must cast the variable to point to some specified
type before you can dereference it. Pointer arithmetic is also not valid with void * pointers.

Pointers and Arrays

Up to now, we've carefully been avoiding discussing arrays in the context of pointers. The
interaction of pointers and arrays can be confusing but here are two fundamental statements about
it:

-+ A variable declared as an array of some type acts as a pointer to that type. When used by

itself, it points to the first element of the array.
+ A pointer can be indexed like an array name.

http://en.wikibooks.org/wiki/Image:Pointers_in_programming.svg
http://en.wikibooks.org/wiki/Image:Pointers_in_programming.svg

The first case often is seen to occur when an array is passed as an argument to a function. The
function declares the parameter as a pointer, but the actual argument may be the name of an array.
The second case often occurs when accessing dynamically allocated memory. Let's look at examples
of each. In the following code, the call to calloc() effectively allocates an array of struct MyStruct
items.

float KrazyFunction(struct MyStruct *parml, int plsize, int bb)
{

int ix;

for (ix=0; ix<plsize; ix++) {

if (parml[ix].m_aNumber == Dbb)
return parml[ix].num2;
}
return 0.0f;

}

struct MyStruct myArrayl[4];

#define MY_ARRAY_SIZE (sizeof (myArray)/sizeof (struct MyStruct))
float v3;

struct MyStruct *secondArray;

int someSize;
int ix;
/* initialization of myArray ... */

v3 = KrazyFunction(myArray, MY_ARRAY_SIZE, 4);

secondArray = calloc(someSize, sizeof (struct MyStruct));

for (ix=0; ix<someSize; ix++) {
secondArray[i] .m_aNumber = ix *2;
secondArray[i] .num2 = .304 * ix * ix;

Pointers and array names can pretty much be used interchangably. There are exceptions. You cannot
assign a new pointer value to an array name. The array name will always point to the first element
of the array. In the function KrazyFunction above, you could however assign a new value to
parml, as it is just a copy of the value for myArray. It is also valid for a function to return a pointer
to one of the array elements from an array passed as an argument to a function. A function should
never return a pointer to a local variable, even though the compiler will probably not complain.

When declaring parameters to functions, declaring an array variable without a size is equivalent to
declaring a pointer. Often this is done to emphasize the fact that the pointer variable will be used in
a manner equivalent to an array.

/* two equivalent function definitions */

int LittleFunction(int *paramN);
int LittleFunction(int paramN[]);

Now we're ready to discuss pointer arithmetic. You can add and subtract integer values to/from
pointers. If myArray is declared to be some type of array, the expression * (myArray+7j), where j
is an integer, is equivalent to myArray [j]. So for instance in the above example where we had the
expression secondArray[i].num2, we could have written that as * (secondArray+1i) .num2 or
more simply (secondArray+i)->num2.

Note that for addition and subtraction of integers and pointers, the value of the pointer is not
adjusted by the integer amount, but is adjusted by the amount multiplied by the size (in bytes) of the
type to which the pointer refers. One pointer may also be subtracted from another, provided they
point to elements of the same array (or the position just beyond the end of the array). If you have a
pointer that points to an element of an array, the index of the element is the result when the array

name is subtracted from the pointer. Here's an example.

struct MyStruct someArray[20];
struct MyStruct *p2;
int idx;

/* array initialiation .. */

for (p2 = someArray; p2 < someArray+20; ++p2) {
if (p2->num2 > testValue) break;
}

idx = p2 - someArray;

You may be wondering how pointers and multidimensional arrays interact. Lets look at this a bit in
detail. Suppose A is declared as a two dimensional array of floats (Eloat A[D1] [D2] ;) and that
pf is declared a pointer to a float. If pf is initialized to point to A[0][0], then *(pf+1) is equivalent to
A[0][1] and *(pf+D?2) is equivalent to A[1][0]. The elements of the array are stored in row-major
order.

float A[6][8];

float *pf;

pf = &A[0][0];

(pf+l) = 1.3; / assigns 1.3 to A[O0][1] */
(pf+8) = 2.3; / assigns 2.3 to A[1][0] */

Let's look at a slightly different problem. We want to have an two dimensonal array, but we don't
need to have all the rows the same length. What we do is declare an array of pointers. The second
line below declares A as an array of pointers. Each pointer points to an float. Here's some applicable
code:

float linearA[30];
float *A[6];

A[0] = linearh; /* 5 — 0 =5 elements in row */
A[l] = linearA + 5; /* 11 — 5 = 6 elements in row */

A[2] = linearA + 11; /* 15 — 11 = 4 elements in row */

A[3] = linearA + 15; /* 21 - 15 = 5 elements */

A[4] = lineardA + 21; /* 25 — 21 = 4 elements */

A[5] = linearA + 25; /* 30 — 25 = 5 elements */

A[3][2] = 3.66; /* assigns 3.66 to linear([17]; */

A[3]1[-3] = 1.44; /* refers to linear([12];

negative indices are sometimes useful. */

We also note here something curious about array indexing. Suppose myArray is an array and idx is
an integer value. The expression myArray[idx] is equivalent to idx[myArray]. The first is equivalent
to *(myArray+idx), and the second is equivalent to *(idx+myArray). These turn out to be the same,
since the addition is commutative.

Pointers can be used with preincrement or post decrement, which is sometimes done within a loop,
as in the following example. The increment and decrement applies to the pointer, not to the object to
which the pointer refers. In other words, *pArray++ is equivalent to *(pArray++).

long myArray[20];

long *pArray;
int i;

/* Assign values to the entries of myArray */
pArray = myArray;
for (i=0; 1<10; ++1) {

5 + 3*1 + 12*i*i;
6 + 2*1 + T*ixi;

*pArray++
*pArray++

}

Pointers in Function Arguments

Often we need to invoke a function with an argument that is itself is a pointer. In many instances,
the variable is itself a parameter for the current function and may be a pointer to some type of
structure. The ampersand character is not needed in this circumstance to obtain a pointer value, as
the variable is itself a pointer. In the example below, the variable pStruct, a pointer, is a
parameter to function FunctTwo, and is passed as an argument to FunctOne. The second
parameter to FunctOne is an int. Since in function FunctTwo, mValue is a pointer to an int,
the pointer must first be dereferenced using the * operator, hence the second argument in the call is
*mValue. The third parameter to function FunctOne is a pointer to a long. Since pAA is itself a
pointer to a long, no ampersand is needed when it is used as the third argument to the function.

int FunctOne(struct SomeStruct *pValue, int iValue, long *1Value)

{

/* do some stuff ... */
return 0O;
}

int FunctTwo(struct someStruct *pStruct, int *mValue)

{

int J;
long AnArray[25];
long *pAA;

PAA = &AnArray[13];
j = FunctOne(pStruct, *mValue, pAA);
return j;

Pointers and Text Strings

Historically, text strings in C have been implemented as arrays of characters, with the last character
in the string being a zero, or the NULL character. Most C implementations come with a standard
library of functions for manipulating strings. Many of the more commonly used functions expect the
strings to be null terminated strings of characters. To use these functions requires the inclusion of
the standard C header file "string.h".

A statically declared, initialized string would look similar to the following:

static const char *myFormat = "Total Amount Due: %d";

The variable myFormat can be viewed as an array of 21 characters. There is an implied null
character (\O') tacked on to the end of the string after the 'd" as the 21st item in the array. You can
also initialize the individual characters of the array as follows:

static const char myFlower[] = { 'P', 'e', 't', 'u', 'n', 'i', 'a', '\0' };
An initialized array of strings would typically be done as follows:
static const char *myColors[] = {

"Red", "Orange", "Yellow", "Green", "Blue", "Violet" };

The initilization of an especially long string can be split across lines of source code as follows.

static char *longString = "Hello. My name is Rudolph and I work as a reindeer "
"around Christmas time up at the North Pole. My boss is a really swell guy."
" He likes to give everybody gifts.";

The library functions that are used with strings are discussed in a later chapter.

Pointers to Functions

C also allows you to create pointers to functions. Pointers to functions can get rather messy.
Declaring a typedef to a function pointer generally clarifies the code. Here's an example that uses a
function pointer, and a void * pointer to implement what's known as a callback. The
DoSomethingNice function invokes a caller supplied function TalkJive with caller data. Note
that DoSomethingNice really doesn't know anything about what dataPointerrefers to.

typedef int (*MyFunctionType) (int, void *); /* a typedef for a function
pointer */

int DoSomethingNice(int aVariable, MyFunctionType aFunction, wvoid
*dataPointer)

{
int rv = 0;
if (aVariable < THE_BIGGEST) {
/* invoke function through function pointer (old style) */
rv = (*aFunction) (aVariable, dataPointer);

/* invoke function through function pointer (new style) */
rv = aFunction (aVariable, dataPointer);

}

return rv;

struct sDatalINeed {
int colorSpec;
char *phrase;

}
typedef struct sDataINeed DatalNeed;

int TalkJive(int myNumber, void *someStuff)

{
/* recast void * to pointer type specifically needed for this function */
DataINeed *myData = someStuff;
/* talk jive. */
return 5;

static DatalINeed sillyStuff = { BLUE, "Whatcha talkin 'bout Willis?" };

DoSomethingNice(41, &TalkJive, &sillyStuff);

Some versions of C may not require an ampersand preceeding the TalkJive argument in the
DoSomethingNice call. Some implementations may require specifically casting the argument to
the MyFunctionType type, even though the function signature exacly matches that of the
typedef.

Function pointers can be useful for implementing a form of polymorphism in C. First one declares a
structure having as elements function pointers for the various operations to that can be specified
polymorphically. A second base object structure containing a pointer to the previous structure is
also declared. A class is defined by extending the second structure with the data specific for the

class, and static variable of the type of the first structure, containing the addresses of the functions
that are associated with the class. This type of polymorphism is used in the standard library when
file I/O functions are called.

A similar mechanism can also be used for implementing a state machine in C. A structure is defined
which contains function pointers for handling events that may occur within state, and for functions
to be invoked upon entry to and exit from the state. An instance of this structure corresponds to a
state. Each state is initialized with pointers to functions appropriate for the state. The current state of
the state machine is in effect a pointer to one of these states. Changing the value of the current state
pointer effectively changes the current state. When some event occurs, the appropriate function is
called through a function pointer in the current state.

Examples of pointer constructs

Find below some examples of pointer constucts which may will help you creating your needed
pointer.

int 1i; // integer variable

int *p; // pointer to integer variable

int all; // array of integer

int £(); // function with returnvalue integer

int **pp; // pointer to pointer to integer

int (*pa)ll; // pointer to an array of integer

int (*pf) (); // pointer to a function with returnvalue integer
int *apl]; // array of pointers to integer

int *fp(); // function, which returns a pointer to an integer
int ***ppp; // pointer to a pointer to a pointer to integer

int (**ppa ; // pointer to a pointer to an array of integer

) [
int (**ppf) (); // pointer to a pointer to a function with returnvalue integer
int *(*pap)[]; // pointer to an array of pointers to integer
int *(*pfp) (); // pointer to function with returnvalue pointer to integer
int **appl]; // array of pointer to pointer to integer
int (*apall)[l;// array of pointers to array of integer
int (*apfl])();// array of pointers to functions with returnvalue integer
int ***fpp(); // function with returnvalue pointer to pointer to pointer to int
int (*fpa())[1;// function with returnvalue pointer to array of integers
int (*fpf()) ();// function with returnvalue pointer to function, which returns

an integer

sizeof

The sizeof() operator is often used to refer to the size of a static array declared earlier in the same
function.

To find the end of an array (example from wikipedia:Buffer overflow):

/* better.c - demonstrates one method of fixing the problem */

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char buffer[10];
if (argc < 2)
{
fprintf (stderr, "USAGE: %s string\n", argv[0]);
return 1;
}
strncpy (buffer, argv[l], sizeof (buffer));
buffer[sizeof (buffer) - 1] = '\0';

http://en.wikipedia.org/wiki/Buffer_overflow

return O;

}

To iterate over every element of an array, use

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

for(i = 0; 1 < NUM_ELEM(array); i++)
{
/* do something with array[i] */

4

Note that the use of sizeof () above is only a convenience syntax, and works only because
buffer was declared as an array of 10 char's earlier in the function, and the compiler can thus
replace sizeof (buffer) with the number 10 at compile time (equivalent to us hard-coding 10
into the code in place of sizeof (buffer)). The information about the length of buf fer is not
actually stored anywhere in memory (unless we keep track of it separately) and cannot be
programmatically obtained at run time from the array/pointer itself.

Often a function needs to know the size of an array it was given. Unfortunately, (in C and C++) this
is not possible, because (as mentioned above) the size of an array is not stored anywhere.

There are 4 common ways to work around this fact:

« Write the function to require, for each array parameter, a "length" parameter. (Typically we
use sizeof() at the point where this function is called).

« Use a convention such as null-terminated string to mark the end of the array.

- Instead of passing raw arrays, pass a structure that includes the length of the array (".length")
as well as the array (or a pointer to the first element); similar to the string or vector
classes in C++.

External Links

Understanding C Pointers - Cheat Sheet « Pointers and arraysStrings —

Memory Management

In C, you have already considered creating variables for use in the program. You have created some
arrays for use, but you may have already noticed some limitations:

« that the size of the array must be known beforehand
- that the size of the array cannot be changed in the duration of your program

Dynamic memory allocation in C is a way of circumventing these problems.

Malloc

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void free(void *ptr);

void *malloc(size_t size);

void *realloc(void *ptr, size_t size);

http://en.wikibooks.org/wiki/C_Programming/Strings
http://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays
http://www.c4swimmers.esmartguy.com/c4sptr1.htm
http://en.wikipedia.org/wiki/null-terminated_string

The C function malloc is the means of implementing dynamic memory allocation. It is defined in
stdlib.h or malloc.h, depending on what operating system you may be using. Malloc.h contains only
the definitions for the memory allocation functions and not the rest of the other functions defined in
stdlib.h. Usually you will not need to be so specific in your program, and if both are supported, you
should use <stdlib.h>, since that is ANSI C, and what we will use here.

The corresponding call to release allocated memory back to the operating system is free.

When dynamically allocated memory is no longer needed, free should be called to release it back
to the memory pool. Overwriting a pointer that points to dynamically allocated memory can result
in that data becoming inaccessible. If this happens frequently, eventually the operating system will
no longer be able to allocate more memory for the process. Once the process exits, the operating
system is able to free all dynamically allocated memory associated with the process.

Let's look at how dynamic memory allocation can be used for arrays.

Normally when we wish to create an array we use a declaration such as

int array[10];

Recall array can be considered a pointer which we use as an array. We specify the length of this
array is 10 ints. After array[0], nine other integers have space to be stored consecutively.

Sometimes it is not known at the time the program is written how much memory will be needed for
some data. In this case we would want to dynamically allocate required memory after the program
has started executing. To do this we only need to declare a pointer, and invoke malloc when we wish
to make space for the elements in our array, or, we can tell malloc to make space when we first
initialize the array. Either way is acceptable and useful.

We also need to know how much an int takes up in memory in order to make room for it; fortunately
this is not difficult, we can use C's builtin sizeof operator. For example, if sizeof (int) yields
4, then one int takes up 4 bytes. Naturally, 2*sizeof (int) is how much memory we need for 2
ints, and so on.

So how do we malloc an array of ten ints like before? If we wish to declare and make room in one
hit, we can simply say

int *array = malloc(1l0*sizeof (int));

We only need to declare the pointer to the array, malloc gives us some space to store the 10 ints
afterward.

Important note! malloc does not initialize the array! Like creating arrays without dynamic
allocation, the programmer must initialize the array with sensible values before using it. Make sure
you do so, too. (See later the function memset for a simple method.)

It is not necessary to immediately call malloc after declairing a pointer for the allocated memory.
Often a number of statements exist between the declaration and the call to malloc, as follows:
int *array;

printf ("Hello World!!!"™);

/* more statements */

array = malloc(10*sizeof (int));
/* use the array */

Error checking

When we want to use malloc, we have to be mindful that the pool of memory available to the

programmer is finite. As such, we can conceivably run out of memory! In this case, malloc will
return NULL. In order to stop the program crashing from having no more memory to use, one should
always check that malloc has not returned NULL before attempting to use the memory; we can do
this by

int *pt;
pt = malloc(3 * sizeof(int));
if (pt == NULL)

{
printf ("Out of memory, exiting\n");
exit (1) ;

Of course, suddenly quitting as in the above example is not always appropriate, and depends on the
problem you are trying to solve and the architecture you are programming for. For example if
program is a small, non critical application that's running on a desktop quitting may be appropriate.
However if the program is some type of editor running on a desktop, you may want to give the
operator the option of saving his tediously entered information instead of just exiting the program. A
memory allocation failure in an embedded processor, such as might be in a washing machine, could
cause an automatic reset of the machine.

The calloc function

The calloc function allocates space for an array of items and initilizes the memory to zeros. The
calmArray = calloc(count, sizeof (struct V)) allocates count objects, each of
whose size is sufficient to contain an instance of the structure struct V. The space is initialized
to all bits zero. The function returns either a pointer to the allocated memory or, if the allocation
fails, NULL.

The realloc function

The realloc function changes the size of the object pointed to by ptr to the size specified by
size. The contents of the object shall be unchanged up to the lesser of the new and old sizes. If the
new size is larger, the value of the newly allocated portion of the object is indeterminate. If ptr is a
null pointer, the realloc function behaves like the mal1loc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by the calloc, malloc, or
realloc function, or if the space has been deallocated by a call to the free orrealloc
function, the behavior is undefined. If the space cannot be allocated, the object pointed to by ptr is
unchanged. If size is zero and ptr is not a null pointer, the object pointed to is freed. The
realloc function returns either a null pointer or a pointer to the possibly moved allocated object.

The £free function

Memory that has been allocated usingmalloc, realloc, or calloc mustbe released back
to the system memory pool once it is no longer needed. This is done to avoid perpetually allocating
more and more memory, which could result in an eventual memory allocation failure. Memory that
is not released with free is however released when the current program terminates on most
operating systems. Calls to free are as in the following example.

int *myStuff = malloc(20 * sizeof(int));

if (myStuff != NULL) {

/* more statements here */
/* time to release myStuff */

free(myStuff);
}

It should be noted that £ree is neither intelligent nor recursive. The following code that depends on
the recursive application of free to the internal variables of a struct does not work.

typedef struct BSTNode

{
int value;
struct BSTNode* left;
struct BSTNode* right;

} BSTNode;

// Later:

BSTNode* temp = (BSTNode*) calloc(l, sizeof (BSTNode));
temp->left = (BSTNode*) calloc(l, sizeof (BSTNode));

free(temp) ;

free temp will *not* free temp->left.

Furthermore, using free when the pointer in question was never allocated in the first place often
crashes or leads to mysterious bugs further along. <~ Memory managementComplex types —

Strings

A string in C is merely an array of characters. The length of a string is determined by a terminating
null character: '\ 0"'. So, a string with the contents, say, "abc" has four characters: 'a"', 'b",
'c', and the terminating null character.

The terminating null character has the value zero.

The <string.h> Standard Header

Because programmers find raw strings cumbersome to deal with, they wrote the code in the
<string.h> library. It represents not a concerted design effort but rather the accretion of
contributions made by various authors over a span of years.

First, three types of functions exist in the string library:

+ the mem functions manipulate sequences of arbitrary characters without regard to the null
character;

+ the str functions manipulate null-terminated sequences of characters;

+ the strn functions manipulate sequences of non-null characters.

The more commonly-used string functions

The nine most commonly used functions in the string library are:

« strcat - concatenate two strings

+ strchr - string scanning operation

« strcmp - compare two strings

+ strcpy - copy a string

« strlen - getstring length

« strncat - concatenate one string with part of another

http://en.wikibooks.org/wiki/C_Programming/Complex_types
http://en.wikibooks.org/wiki/C_Programming/Memory_management
http://en.wikibooks.org/wiki/C_Programming/Complex_types

+ strncmp - compare parts of two strings
« strncpy - copy part of a string
« strrchr - string scanning operation

The strcat function
char *strcat (char * restrict sl, const char * restrict s2);

The strcat () function shall append a copy of the string pointed to by s2 (including the
terminating null byte) to the end of the string pointed to by s1. The initial byte of s2 overwrites the
null byte at the end of s1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns s1.

This function is used to attach one string to the end of another string. It is imperative that the first
string (s1) have the space needed to store both strings.

Example:

#include <stdio.h>
#include <string.h>

static const char *colors[] =
{"Red", "Orange", "Yellow", "Green", "Blue", "Purple" };
static const char *widths[] = {"Thin", "Medium", "Thick", "Bold" };

char *penText;

penColor = 3; penThickness = 2;

strcpy (penText, colors[penColor]);

strcat (penText, colors[penThickness]);

printf ("My pen is %s\n", penText); // prints 'My pen is GreenThick'

Before calling strcat (), the destination must currently contain a null terminated string or the
first character must have been initialized with the null character (e.g. penText [0] = '\0"';).

The following is a public-domain implementation of strcat:

#include <string.h>
/* strcat */
char *(strcat) (char *restrict sl, const char *restrict s2)

{

char *s = sl;
/* Move s so that it points to the end of sl1. */
while (*s != '"\0")

S++;

/* Copy the contents of s2 into the space at the end of sl. */
strcpy (s, s2);
return sl;

The strchr function
char *strchr (const char *s, int c¢);

The strchr () function shall locate the first occurrence of ¢ (converted to a char) in the string
pointed to by s. The terminating null byte is considered to be part of the string. The function returns
the location of the found character, or a null pointer if the character was not found.

This function is used to find certain characters in strings.

At one point in history, this function was named index. The st rchr name, however cryptic, fits
the general pattern for naming.

The following is a public-domain implementation of strchr:

#include <string.h>
/* strchr */
char *(strchr) (const char *s, int c)

{

/* Scan s for the character. When this loop is finished,
s will either point to the end of the string or the
character we were looking for. */

while (*s != '"\0' && *s != (char)c)

S++;
return ((*s == c¢) ? (char *) s : NULL);

The strcmp function
int strcmp(const char *sl, const char *s2);

A rudimentary form of string comparison is done with the strcmp() function. It takes two strings as
arguments and returns a value less than zero if the first is lexographically less than the second, a
value greater than zero if the first is lexographically greater than the second, or zero if the two
strings are equal. The comparison is done by comparing the coded (ascii) value of the chararacters,
character by character.

This simple type of string comparison is nowadays generally considered unacceptable when sorting
lists of strings. More advanced algorithms exist that are capable of producing lists in dictionary
sorted order. They can also fix problems such as strcmp() considering the string "Alpha2" greater
than "Alphal2". What we're saying is, don't use this strcmp () alone for general string sorting in
any commercial or professional code.

The strcmp () function shall compare the string pointed to by s1 to the string pointed to by s2.
The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the
strings being compared. Upon completion, strcmp () shall return an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is greater than, equal to, or less than the string pointed
to by s2, respectively.

Since comparing pointers by themselves is not practically useful unless one is comparing pointers
within the same array, this function lexically compares the strings that two pointers point to.

This function is useful in comparisons, e.g.

if (strcmp(s, "whatever") == 0) /* do something */

4

Because the type of string comparison done by strcmp () is rather simple minded, when it is used
to sort lists of strings, the lists are often not sorted as one would expect. It is generally considered
unacceptable to use strcmp in commercial software for general sorting of lists of strings. Better
comparison algorithms exist which result in string lists being sorted in the order they would appear
in a dictionary, and can deal with problems such as making sure that "Alpha2" compares as less
than "Alphal2". (In the previous example, "Alpha2" compares greater than "Alphal2"
because '2' comes after ' 1' in the character set.)

The collating sequence used by strcmp () is equivalent to the machine's native character set. The
only guarantee about the order is that the digits from '0' to '9 ' are in consecutive order.

The following is a public-domain implementation of strcmp:

#include <string.h>
/* strcmp */
int (strcmp) (const char *sl, const char *s2)
{
unsigned char ucl, uc2;
/* Move sl and s2 to the first differing characters
in each string, or the ends of the strings if they

are identical. */
while (*sl1 != '"\0' && *sl == *s2) {
sl++;
S2++;

}

/* Compare the characters as unsigned char and

return the difference. */
ucl = (*(unsigned char *) sl);
uc2 = (*(unsigned char *) s2);
return ((ucl < uc2) ? -1 : (ucl > uc2));

The strcpy function
char *strcpy(char *restrict sl, const char *restrict s2);

The strcpy () function shall copy the string pointed to by s2 (including the terminating null
byte) into the array pointed to by s1. If copying takes place between objects that overlap, the
behavior is undefined. The function returns s1. No value is used to indicate an error.

Example:

#include <stdio.h>
#include <string.h>

static const char *penType="round";
char penText[20];

strcpy (penText, penType);

Important: When you call this function, you must ensure that the destination is able to contain all
the characters in the source array. Not doing so can have very serious consequences including
compromising the security and integrity of your entire computer. This is also true with some of the
other functions such as strcat (). This is very unlikely and in most cases a problem will simply
result in the program crashing, or not functioning correctly. But this problem has been at the root of
many computer security problems that you may have read or heard about in recent times.

The s1 pointer must pointer to a buffer with enough space to store the string pointed to by s2, or
undefined behavior may result, including (but not limited to) monkeys flying out of your nose.

This function is used to copy one string to another, as direct assignment of pointers can be
unwieldingly tricky.

The following is a public-domain implementation of strcpy:

#include <string.h>
/* strcpy */
char *(strcpy) (char *restrict sl, const char *restrict s2)
{
char *dst = sl;
const char *src = s2;
/* Do the copying in a loop. */
while ((*dst++ = *src++) != '\0")

4
/* Return the destination string. */
return sl;

The strlen function
size_t strlen(const char *s);

The strlen () function shall compute the number of bytes in the string to which s points, not
including the terminating null byte. It returns the number of bytes in the string. No value is used to
indicate an error.

The following is a public-domain implementation of strlen:

#include <string.h>
/* strlen */
size_t (strlen) (const char *s)

{

char *p = s;
/* Loop over the data in s. */
while (*p != '\0")
p++;
return (size_t)(p - s);

The strncat function

char *strncat (char *restrict sl, const char *restrict s2, size_t
n);

The strncat () function shall append not more than n bytes (a null byte and bytes that follow it
are not appended) from the array pointed to by s2 to the end of the string pointed to by s1. The
initial byte of s2 overwrites the null byte at the end of s1. A terminating null byte is always
appended to the result. If copying takes place between objects that overlap, the behavior is
undefined. The function returns s1.

The following is a public-domain implementation of strncat:

#include <string.h>
/* strncat */
char *(strncat) (char *restrict sl, const char *restrict s2, size_t n)

{

char *s = sl;
/* Loop over the data in sl. */
while (*s != '\0")

S++;

/* s now points to sl's trailing null character, now copy
up to n bytes from s2 into sl stopping if a null character
is encountered in s2.
It is not safe to use strncpy here since it copies EXACTLY n

characters, NULL padding if necessary. */
while (n != 0 && (*s = *s2++) != "\0") {

n-—;

S++;
}
if (*s != '"\0")

*s = '"\0';

return sl;

The strncmp function
int strncmp(const char *sl, const char *s2, size_t n);

The strncmp () function shall compare not more than n bytes (bytes that follow a null byte are
not compared) from the array pointed to by s1 to the array pointed to by s2. The sign of a non-zero
return value is determined by the sign of the difference between the values of the first pair of bytes
(both interpreted as type unsigned char) that differ in the strings being compared. See
strcmp for an explanation of the return value.

This function is useful in comparisons, as the strcmp function is.

The following is a public-domain implementation of strncmp:

#include <string.h>
/* strncmp */
int (strncmp) (const char *sl, const char *s2, size_t n)
{

unsigned char ucl, uc2;

/* Nothing to compare? Return zero. */

if (n == 0)

return 0;
/* Loop, comparing bytes. */

while (n—-- > 0 && *sl == *s2) {
/* If we've run out of bytes or hit a null, return zero
since we already know *sl == *s2. */
if (n == || *s1 == '\0")
return 0;
sl++;
S2++;
}
ucl = (*(unsigned char *) sl);
uc2 = (*(unsigned char *) s2);
(

return (ucl < uc2) ? -1 : (ucl > uc?));

The strncpy function

char *strncpy(char *restrict sl, const char *restrict s2, size_t
n;

The strncpy () function shall copy not more than n bytes (bytes that follow a null byte are not
copied) from the array pointed to by s2 to the array pointed to by s1. If copying takes place
between objects that overlap, the behavior is undefined. If the array pointed to by s2 is a string that
is shorter than n bytes, null bytes shall be appended to the copy in the array pointed to by s1, until
n bytes in all are written. The function shall return s1; no return value is reserved to indicate an
error.

It is possible that the function will not return a null-terminated string, which happens if the s2
string is longer than n bytes.

The following is a public-domain version of strncpy:

#include <string.h>
/* strncpy */
char *(strncpy) (char *restrict sl, const char *restrict s2, size_t n)
{

char *dst = sl;

const char *src = s2;

/* Copy bytes, one at a time. */

while (n > 0) {

n--;

if ((*dst++ = *src++) == '\0'") {
/* If we get here, we found a null character at the end
of s2, so use memset to put null bytes at the end of

sl. */
memset (dst, '\0', n);
break;

}
}

return sl;

The strrchr function
char *strrchr (const char *s, int c¢);
strrchr is similar to strchr, except the string is searched right to left.

The strrchr () function shall locate the last occurrence of ¢ (converted to a char) in the string
pointed to by s. The terminating null byte is considered to be part of the string. Its return value is
similar to strchr's return value.

At one point in history, this function was named rindex. The strrchr name, however cryptic,
fits the general pattern for naming.

The following is a public-domain implementation of strrchr:

#include <string.h>

/* strrchr */

char *(strrchr) (const char *s, int c¢)
{

const char *last = NULL;

/* If the character we're looking for is the terminating null,
we just need to look for that character as there's only one
of them in the string. */

if (¢ == '"\0")

return strchr(s, c);
/* Loop through, finding the last match before hitting NULL. */
while ((s = strchr(s, c¢)) != NULL) {

last = s;

S++;
}

return (char *) last;

The less commonly-used string functions
The less-used functions are:

+ memchr - Find a byte in memory

+ memcmp - Compare bytes in memory

+ memcpy - Copy bytes in memory

+ memmove - Copy bytes in memory with overlapping areas
« memset - Set bytes in memory

« strcoll - Compare bytes according to a locale-specific collating sequence
« strcspn - Get the length of a complementary substring
+ strerror - Get error message

« strpbrk - Scan a string for a byte

« strspn - Get the length of a substring

« strstr - Find a substring

« strtok - Split a string into tokens
« strxfrm - Transform string

Copying functions

The memcpy function

void *memcpy(void * restrict sl, const void * restrict s2, size_t
n);

The memcpy () function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is undefined.
The function returns s1.

Because the function does not have to worry about overlap, it can do the simplest copy it can.

The following is a public-domain implementation of memcpy:

#include <string.h>
/* memcpy */
void * (memcpy) (void * restrict sl, const void * restrict s2, size_t n)

{

char *dst = sl;

const char *src = s2;

/* Loop and copy. */

while (n—-—- != 0)
*dst++ = *src++;

return sl;

The memmove function
void *memmove (void *sl, const void *s2, size_t n);

The memmove () function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first
copied into a temporary array of n bytes that does not overlap the objects pointed to by s1 and s2,
and then the n bytes from the temporary array are copied into the object pointed to by s1. The
function returns the value of s1.

The easy way to implement this without using a temporary array is to check for a condition that
would prevent an ascending copy, and if found, do a descending copy.

The following is a public-domain implementation of memmove:

#include <string.h>
/* memmove */
void * (memmove) (void *sl, const void *s2, size_t n)
{
/* note: these don't have to point to unsigned chars */
char *pl = sl;
const char *p2 = s2;
/* test for overlap that prevents an ascending copy */
if (p2 < pl && pl < p2 + n) {
/* do a descending copy */

P2 += n;
pl += n;
while (n-- != 0)
*—-pl = *—-p2;
} else
while (n—— != 0)

*pl++ = *p2++;

return sl;

Comparison functions

The memcmp function
int memcmp (const void *sl, const void *s2, size_t n);

The memcmp () function shall compare the first n bytes (each interpreted as unsigned char) of
the object pointed to by s1 to the first n bytes of the object pointed to by s2. The sign of a non-zero
return value shall be determined by the sign of the difference between the values of the first pair of
bytes (both interpreted as type unsigned char) that differ in the objects being compared.

The following is a public-domain implementation of memcmp:

#include <string.h>
/* memcmp */
int (memcmp) (const void *sl, const void *s2, size_t n)

{

(unsigned char *) sl;

unsigned char *usl

unsigned char *us2 = (unsigned char *) s2;
while (n——- != 0) {
if (*usl != *us2)
return (*usl < *us2) ? -1 : +1;
usl++;
us2++;

}

return O;

The strcoll and strxfrm functions

int strcoll(const char *sl, const char *s2);

size_t strxfrm(char *sl, const char *s2, size_t n);
The ANSI C Standard specifies two locale-specific comparison functions.

The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale. The return value is
similar to strcmp.

The strxfrm function transforms the string pointed to by s2 and places the resulting string into
the array pointed to by s1. The transformation is such that if the st rcmp function is applied to the
two transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to
the result of the strcoll function applied to the same two original strings. No more than n
characters are placed into the resulting array pointed to by s1, including the terminating null
character. If n is zero, s1 is permitted to be a null pointer. If copying takes place between objects
that overlap, the behavior is undefined. The function returns the length of the transformed string.

These functions are rarely used and nontrivial to code, so there is no code for this section.

Search functions

The memchr function

void *memchr (const void *s, int ¢, size_t n);

The memchr () function shall locate the first occurrence of ¢ (converted to an unsigned char)
in the initial n bytes (each interpreted as unsigned char) of the object pointed to by s. If c is
not found, memchr returns a null pointer.

The following is a public-domain implementation of memchr:

#include <string.h>
/* memchr */
void * (memchr) (const void *s, int c, size_t n)
{
const unsigned char *src = s;
unsigned char uc = c;
while (n-- !'= 0) {
if (*src == uc)
return (void *) src;
Src++;

}
return NULL;

The strcspn, strpbrk, and strspn functions

size_t strcspn(const char *sl, const char *s2);
char *strpbrk(const char *sl, const char *s2);
size_t strspn(const char *sl, const char *s2);

The strcspn function computes the length of the maximum initial segment of the string pointed
to by s1 which consists entirely of characters not from the string pointed to by s2.

The strpbrk function locates the first occurrence in the string pointed to by s1 of any character
from the string pointed to by s2, returning a pointer to that character or a null pointer if not found.

The strspn function computes the length of the maximum initial segment of the string pointed to
by s1 which consists entirely of characters from the string pointed to by s2.

All of these functions are similar except in the test and the return value.

The following are public-domain implementations of strcspn, strpbrk, and strspn:

#include <string.h>

/* strcspn */

size_t (strcspn) (const char *sl, const char *s2)
{

const char *scl;

for (scl = sl; *scl != '\0'; scl++)
if (strchr(s2, *scl) != NULL)
return (scl - sl);
return scl - sl; /* terminating nulls match */

#include <string.h>

/* strpbrk */

char *(strpbrk) (const char *sl, const char *s2)
{

const char *scl;

for (scl = sl; *scl != '\0'; scl++)
if (strchr(s2, *scl) != NULL)
return (char *)scl;
return NULL; /* terminating nulls match */

}

#include <string.h>

/* strspn */
size_t (strspn) (const char *sl, const char *s2)

{

const char *scl;

for (scl = sl; *scl != '"\0'; scl++)
if (strchr(s2, *scl) == NULL)
return (scl - sl);
return scl - sl; /* terminating nulls don't match */

The strstr function
char *strstr (const char *sl, const char *s2);

The strstr () function shall locate the first occurrence in the string pointed to by s1 of the
sequence of bytes (excluding the terminating null byte) in the string pointed to by s2. The function
returns the pointer to the matching string in s1 or a null pointer if a match is not found. If s2 is an
empty string, the function returns s1.

The following is a public-domain implementation of strstr:

#include <string.h>
/* strstr */
char *(strstr) (const char *sl, const char *s2)
{
size_t s2len;
/* Check for the null s2 case. */

if (*s2 == '\0")
return (char *) sl;
s2len = strlen(s2);
for (; (sl = strchr(sl, *s2)) != NULL; sl++)

if (strncmp(sl, s2, s2len) == 0)
return (char *) sl;
return NULL;

The strtok function
char *strtok(char *restrict sl, const char *restrict delimiters);

A sequence of calls to strtok () breaks the string pointed to by s1 into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by delimiters. The first call in
the sequence has s1 as its first argument, and is followed by calls with a null pointer as their first
argument. The separator string pointed to by delimiters may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is not
contained in the current separator string pointed to by delimiters. If no such byte is found, then
there are no tokens in the string pointed to by s1 and strtok () shall return a null pointer. If such
a byte is found, it is the start of the first token.

The strtok () function then searches from there for a byte (or multiple, consecutive bytes) that is
contained in the current separator string. If no such byte is found, the current token extends to the
end of the string pointed to by s1, and subsequent searches for a token shall return a null pointer. If
such a byte is found, it is overwritten by a null byte, which terminates the current token. The
strtok () function saves a pointer to the following byte, from which the next search for a token
shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

The strtok () function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

Because the strtok () function must save state between calls, and you could not have two
tokenizers going at the same time, the Single Unix Standard defined a similar function,
strtok_r (), that does not need to save state. Its prototype is this:

char *strtok_r (char *s, const char *delimiters, char **lasts);

The strtok_r () function considers the null-terminated string s as a sequence of zero or more
text tokens separated by spans of one or more characters from the separator string delimiters.
The argument lasts points to a user-provided pointer which points to stored information necessary
for strtok_r () to continue scanning the same string.

In the first call to strtok_r (), s points to a null-terminated string, delimiters to a null-
terminated string of separator characters, and the value pointed to by lasts is ignored. The
strtok_r () function shall return a pointer to the first character of the first token, write a null
character into s immediately following the returned token, and update the pointer to which lasts
points.

In subsequent calls, s is a null pointer and 1asts shall be unchanged from the previous call so that
subsequent calls shall move through the string s, returning successive tokens until no tokens
remain. The separator string delimiters may be different from call to call. When no token
remains in s, a NULL pointer shall be returned.

The following public-domain code for strtok and strtok_r codes the former as a special case
of the latter:

#include <string.h>

/* strtok_r */

char *(strtok_r) (char *s, const char *delimiters, char **lasts)
{

char *sbegin, *send;

sbegin = s ? s : *lasts;
sbegin += strspn(sbegin, delimiters);
if (*sbegin == '\0') {

*lasts = "";

return NULL;
}

send = sbegin + strcspn(sbegin, delimiters);

if (*send != '\0")
*send++ = '\0';
*lasts = send;

return sbegin;

}
/* strtok */
char *(strtok) (char *restrict sl, const char *restrict delimiters)

{
static char *ssave = "";
return strtok_r(sl, delimiters, &ssave);

Miscellaneous functions

These functions do not fit into one of the above categories.

The memset function

void *memset (void *s, int ¢, size_t n);

The memset () function converts c into unsigned char, then stores the character into the first
n bytes of memory pointed to by s.

The following is a public-domain implementation of memset:

#include <string.h>
/* memset */
void * (memset) (void *s, int ¢, size_t n)
{

unsigned char *us = s;

unsigned char uc = c;

while (n-- != 0)

*us++ = uc;
return s;

The strerror function
char *strerror(int errorcode);

This function returns a locale-specific error message corresponding to the parameter. Depending on
the circumstances, this function could be trivial to implement, but this author will not do that as it
varies.

The Single Unix System Version 3 has a variant, strerror_r, with this prototype:
int strerror_r (int errcode, char *buf, size_t buflen);

This function stores the message in buf, which has a length of size buflen.

examples

To determine the number of characters in a string, the strlen () function is used.

#include <stdio.h>
#include <string.h>

int length, length2;

char *turkey;

static char *flower= "begonia";
static char *gemstone="ruby ";

length = strlen(flower);
printf ("Length = %d\n", length); // prints 'Length = 7'
length2 = strlen(gemstone);

turkey = (char *)malloc(length + length2 + 1);
if (turkey) {

strcpy (turkey, gemstone);

strcat (turkey, flower);

printf("$s\n", turkey); // prints 'ruby begonia'
free(turkey);

}

Note that the amount of memory allocated for 'turkey' is one plus the sum of the lengths of the
strings to be concatenated. This is for the terminating null character, which is not counted in the
lengths of the strings.

Exercises

1. The string functions use a lot of looping constructs. Is there some way to portably unravel
the loops?
2. What functions are possibly missing from the library as it stands now?

< StringsNetworking in UNIX —

Complex Types

< Programming:C

In the section C types we looked at some basic types. However C complex types allow us greater
flexibility in managing data in our C program.

Complex data types

A data structure ("struct") contains multiple pieces of data. Each piece of data (called a "member")
can be accessed by the name of the variable, followed by a '.", then the name of the member.
(Another way to access a member is using the member operator '->'). The member variables of a
struct can be of any data type and can even be an array or a pointer.

Pointers

Pointers are variables that don't hold the actual data. Instead they point to the memory location of
some other variable. For example,

int *pointer = &variable;

defines a pointer to an int, and also makes it point to the particular integer contained in
variable.

The "*' is what makes this an integer pointer. To make the pointer point to a different integer, use the
form

pointer = &sandwitches;
Where & is the address of operator. Often programmers set the value of the pointer to NULL like
this:

pointer = 0;

which tells us that the pointer isn't currently pointing to any real location.

Additionally, to dereference (access the thing being pointed at) the pointer, use the form:

value = *pointer;

Structs
A data structure contains multiple pieces of data. One defines a data structure using the struct
keyword. For example,

struct mystruct

{

http://en.wikibooks.org/wiki/C_Programming/Types
http://en.wikibooks.org/wiki/Programming:C
http://en.wikibooks.org/wiki/C_Programming/Networking_in_UNIX
http://en.wikibooks.org/wiki/C_Programming/Strings

int int_member;

double double_member;

char string_member [25];
} variable;

variable is an instance of mystruct. You can omit it from the end of the struct declaration
and declare it later using:

struct mystruct variable;

It is often common practice to make a type synonym so we don't have to type "struct mystruct" all
the time. C allows us the possibility to do so using a typedef statement, which aliases a type:

typedef struct
{

} Mystruct;

The struct itself has no name (by the absence of a name on the first line), but it is aliased as
Mystruct. Then you can use

Mystruct variable;

Note that it is commonplace, and good style to capitalize the first letter of a type synonym.
However in the actual definition we need to give the struct a tag so we can refer to it: we may have a
recursive data structure of some kind.

Unions

The definition of a union is similar to that of a struct. The difference between the two is that in a
struct, the members occupy different areas of memory, but in a union, the members occupy the same
area of memory. Thus, in the following type, for example:
union {

int 1i;

double d;
}ou;

The programmer can access either u. 1 or u.d, but not both at the same time. Since u.i and u.d
occupy the same area of memory, modifying one modifies the value of the other, sometimes in
unpredictable ways.

The size of a union is the size of its largest member.

Type modifiers

register is a hint to the compiler to attempt to optimise the storage of the given variable by
storing it in a register of the computer's CPU when the program is run. Most optimising compilers
do this anyway, so use of this keyword is often unnecessary. In fact, ANSI C states that a compiler
can ignore this keyword if it so desires -- and many do. Microsoft Visual C++ is an example of an
implementation that completely ignores the register keyword.

volatile is a special type modifier which informs the compiler that the value of the variable may
be changed by external entities other than the program itself. This is necessary for certain programs
compiled with optimisations - if a variable were not defined volatile then the compiler may
assume that certain operations involving the variable were safe to optimise away when in fact they
aren't. volatile is particularly relevant when working with embedded systems (where a program may

not have complete control of a variable) and multi-threaded applications.

auto is a modifier which specifies an "automatic" variable that is automatically created when in
scope and destroyed when out of scope. If you think this sounds like pretty much what you've been
doing all along when you declare a variable, you're right: all declared items within a block are
implicitly "automatic". For this reason, the auto keyword is more like the answer to a trivia question
than a useful modifier, and there are lots of very competent programmers that are unaware of its
existence.

extern is used when a file needs to access a variable in another file that it may not have #included
directly. Therefore, extern does not actually carve out space for a new variable, it just provides the
compiler with sufficient information to access the remote variable.

< Complex typesCommon practices —

Networking in UNIX

Network programming under UNIX is relatively simple in C.

This guide assumes you already have a good general idea about C, UNIX and networks.

A simple client

To start with we'll look at one of the simplest things you can do, initialize a stream connection and
receive a message from a remote server.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define MAXRCVLEN 500
#define PORTNUM 2343

int main(int argc, char *argvl[])

{

char buffer [MAXRCVLEN+1]; /* +1 so we can add null terminator */

int len, mysocket;

struct sockaddr_in dest;

mysocket = socket (AF_INET, SOCK_STREAM, O0);

dest.sin_family = AF_INET;

dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* Sets destination IP number */
dest.sin_port = htons (PORTNUM); /* Sets destination port number */
memset (& (dest.sin_zero), '\0', 8); /* Zeroes rest of struct */
connect (mysocket, (struct sockaddr *)é&dest,sizeof (struct sockaddr));
len=recv(mysocket, buffer, MAXRCVLEN, O0);

buffer[len]="'\0"'; /* We have to null terminate the received data ourselves */

printf ("Rcvd: %s",buffer);

http://en.wikibooks.org/wiki/C_Programming/Common_practices
http://en.wikibooks.org/wiki/C_Programming/Complex_types

close (mysocket); /* Close the file descriptor when finished */
return EXIT_SUCCESS;
}

This is the very bare bones of a client; in practice, we would check every function that we called for
failure, however for clarity, error checking the code has been left out for now.

As you can see, the code mainly resolves around "dest" which is a struct of type sockaddr_in; in this
struct we store information about the machine we want to connect to.

mysocket = socket (AF_INET, SOCK_STREAM, 0);

The socket function tells our OS that we want a file descriptor for a socket which we can use for a
network stream connection , what the parameters mean is mostly irrelevent for now.

dest.sin_family = AF_INET;

dest.sin_addr.s_addr = inet_addr ("127.0.0.1"); /*Sets destination IP number*/
dest.sin_port = htons (PORTNUM); /*Sets destination port number*/
memset (& (dest.sin_zero), '\0', 8); /*Zeroes rest of struct*/

Now we get on to the interesting part,

The first line sets the address family, this should be the same as was used in the socket function, for
most purposes AF_INET will serve.

The second line is where we set the IP of the machine we need to connect to. The variable
dest.sin_addr.s_addr is just an integer stored in Big Endian format, but we don't have to know that as
the inet_addr function will do the conversion from string into Big Endian integer for us.

The third line sets the destination port number, the htons() function converts the port number into a
Big Endian short integer. If your program is going to be solely run on machines which use Big
Endian numbers as default then dest.sin_port = 21; would work just as well, however for portability
reasons htons() should be used.

The fourth line uses memset to zero the rest of the struct.

Now that's all the preliminary work done, now we can actually make the connection and use it,

connect (mysocket, (struct sockaddr *)é&dest,sizeof (struct sockaddr));

This tells our OS to use the socket mysocket to create a connection to the machine specified in dest.

inputlen=recv (mysocket, buffer, MAXRCVLEN, O0);

Now this receives upto MAXRCVLEN bytes of data from the connection and stores them in the
buffer string. The number of characters received is returned by recv(). It is important to note that the
data received will not automatically be null terminated when stored in buffer hence we need to do it
ourselves with buffer[inputlen]="\0'".

And that's about it !

The next step after learning how to receive data is learning how to send it, if you've understood the
previous section than this is quite easy, all you have to do is used the the send() function which uses
the same parameters as receive. If in our previous example "buffer" had the text we wanted to send
and its length was stored in "len" we would do send(mysocket, buffer, len, 0), send() returns the
number of bytes that were sent. It is important to remember send() for various reasons may not be
able to send all of the bytes so it is imporant to check that this value is equal to the number of bytes
you were sending (in most cases this can be resolved by resending the unsent data).

A simple server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORTNUM 2343

int main(int argc, char *argvl[])

{

char buffer[]="Hello World !\n";

int socksize; /*we use this to store the size of out sockaddr_in struct */

int mysocket; /* The socket we use to listen with */

int consocket; /* Once we have a connection we get a "session" socket to use */
struct sockaddr_in dest; /* Info on the machine connecting to us */

struct sockaddr_in serv; /* Info on our server */

socksize = sizeof (struct sockaddr_in);

mysocket = socket (AF_INET, SOCK_STREAM, O0);

serv.sin_family = AF_INET;

serv.sin_addr.s_addr = INADDR_ANY; /* Set the IP to our IP (given by
INADDR_ANY) */

serv.sin_port = htons (PORTNUM); /*Sets server port number*/
memset (& (dest.sin_zero), '\0', 8); /*Zeroes rest of struct*/

bind (mysocket, (struct sockaddr *)&serv,sizeof (struct sockaddr)); /*bind serv
information to mysocket */

listen(mysocket,1l); /* start listening, allow a queue of upto 1 pending
connection*/

while (1)
{

consocket = accept (mysocket, (struct sockaddr *)&dest, &socksize); /* Get data
— the program waits here for a connection*/

printf ("Incoming connection from %$s - sending
welcome\n", inet_ntoa(dest.sin_addr));

send (consocket, buffer, strlen(buffer), 0);

close(consocket) ;

}

close (mysocket) ;
return EXIT_SUCCESS;

}

Superficially this is very similar to the client, the first important difference is that rather than
creating a sockaddr_in with information about the machine we're connecting to we create it with
information about the server, and then we "bind" it to the socket. This allows the machine to know
the data recieved on the port specified in the sockaddr_in should be handled by our specified socket.

The listen command then tells our program to start listening using that socket, the second parameter
of listen() allows us to specify the maximum number of connections that can be queued. Each time a
connection is made to the server it is added to the queue, we take connections from the queue using
the accept() function.

Then we have the core of the server code, we use the accept() function to take a connection from the
queue, if there is no connection waiting on the queue the function causes the program to wait until a
connection is received. The accept() function returns us another socket this is essentially a "session"
socket solely for communicating with connection we took of the queue. The original socket

(mysocket) continues to listen on the prespecified port for further connections.

Once we have "session" socket we can treated it in the same way as with the client using send() and
receive() to handle data transfers.

Note that this server can only accept one connection at a time, if you want to simultaneously handle
multiple clients then you'll need to use forking off seperate processes to handle the connections.

Useful network functions

int gethostname (char *hostname, size_t size);

This function takes as parameter a pointer to an array of chars and the size of that array, if possible
it then finds out the hostname of the localhost and stores it in the array. On failure it returns -1.

struct hostent *gethostbyname (const char *name);

This function obtains information about a domain name and stored it in a hostent struct, in the
hostent structure the most useful part is the (char**) h_addr_list field, this is a null terminated array
of IP addresses associated with that domain. The field h_addr is a pointer to the first IP address in
the h_addr_list array. Returns NULL on failure.

FAQs

What about stateless connections ?

If you don't want to exploit the properties of TCP in your program but rather just have to use a UDP
protocol then you can just switch "SOCK_STREAM" in your socket call for "SOCK_DGRAM" and
use it in the same way. It is important to remember that UDP does not guarantee delivery of packets
and order of delivery, so checking is important.

If you want to exploit the properties of UDP, then you can use sendto() and recvfrom() which
operate like send() and recv() except you need to provide extra parameters specifiying who you are
communicating with.

You should have more info on correcting a failed condition. I have a network connection that is lost.
I was looking for the recovery methods. Maybe some information on "netstat -a | grep ##.##.##.##"
would help. Thanks

How do I check for errors ?

The functions socket(), recv() and connect() all return -1 on failure and use errno for further details.
«— Networking in UNIXILanguage extensions —

Common Practices

With its extensive use, a number of common practices and conventions have evolved to help avoid
errors in C programs. These are simultaneously a demonstration of the application of good software
engineering principles to a language and an indication of the limitations of C. Although few are
used universally, and some are controversial, each of these enjoys wide use.

http://en.wikibooks.org/wiki/C_Programming/Language_extensions
http://en.wikibooks.org/wiki/C_Programming/Networking_in_UNIX

Dynamic multidimensional arrays

Although one-dimensional arrays are easy to create dynamically using malloc, and fixed-size
multidimensional arrays are easy to create using the built-in language feature, dynamic
multidimensional arrays are trickier. There are a number of different ways to create them, each with
different tradeoffs. The two most popular ways to create them are:

+ They can be allocated as a single block of memory, just like static multidimensional arrays.
This requires that the array be rectangular (i.e. subarrays of lower dimensions are static and
have the same size). The disadvantage is that the syntax of declaration the pointer is a little
tricky for programmers at first. For example, if one wanted to create an array of ints of 3
columns and rows rows, one would do

int (*multi_array) [3] = malloc(rows * sizeof (int[3]));
(Note that here multi_array is a pointer to an array of 3 ints.)

Because of array-pointer interchangeability, you can index this just like static
multidimensional arrays, i.e. multi_array[5] [2] is the element at the 6th row and 3rd
column.

« They can be allocated by first allocating an array of pointers, and then allocating subarrays
and storing their addresses in the array of pointers (this approach is also known as an Iliffe
vector). The syntax for accessing elements is the same as for multidimensional arrays
described above (even though they are stored very differently). This approach has the
advantage of the ability to make ragged arrays (i.e. with subarrays of different sizes).
However, it also uses more space and requires more levels of indirection to index into, and
can have worse cache performance. It also requires many dynamic allocations, each of which
can be expensive.

For more information, see the comp.lang.c FAQ. question 6.16.

In some cases, the use of multi-dimensional arrays can best be addressed as an array of structures.
Before user-defined data structures were available, a common technique was to define a multi-
dimensional array, where each column contained different information about the row. This approach
is also frequently used by beginner programmers. For example, columns of a two-dimensional
character array might contain last name, first name, address, etc.

In cases like this, it is better to define a structure that contains the information that was stored in the
columns, and then create an array of pointers to that structure. This is especially true when the
number of data points for a given record might vary, such as the tracks on an album. In these cases,
it is better to create a structure for the album that contains information about the album, along with a
dynamic array for the list of songs on the album. Then an array of pointers to the album structure
can be used to store the collection.

Constructors and destructors

In most object-oriented languages, objects cannot be created directly by a client that wishes to use
them. Instead, the client must ask the class to build an instance of the object using a special routine
called a constructor. Constructors are important because they allow an object to enforce invariants
about its internal state throughout its lifetime. Destructors, called at the end of an object's lifetime,
are important in systems where an object holds exclusive access to some resource, and it is desirable
to ensure that it releases these resources for use by other objects.

http://www.eskimo.com/~scs/C-faq/q6.16.html
http://en.wikipedia.org/wiki/Iliffe_vector
http://en.wikipedia.org/wiki/Iliffe_vector

Since C is not an object-oriented language, it has no built-in support for constructors or destructors.
It is not uncommon for clients to explicitly allocate and initialize records and other objects.
However, this leads to a potential for errors, since operations on the object may fail or behave
unpredictably if the object is not properly initialized. A better approach is to have a function that
creates an instance of the object, possibly taking initialization parameters, as in this example:
struct string {
size_t size;

char *data;

bi

struct string *create_string(const char *initial) {
assert (initial != NULL);
struct string *new_string = malloc(sizeof (*new_string));
if (new_string != NULL) {
new_string->size = strlen(initial);
new_string->data = strdup(initial);
}

return new_string;

Similarly, if it is left to the client to destroy objects correctly, they may fail to do so, causing
resource leaks. It is better to have an explicit destructor which is always used, such as this one:

void free_string(struct string *s) {

assert (s != NULL);
free(s->data); /* free memory held by the structure */
free(s); /* free the structure itself */

It is often useful to combine destructors with #Nulling freed pointers.

Sometimes it is useful to hide the definition of the object to ensure that the client does not allocate it
manually. To do this, the structure is defined in the source file (or a private header file not available
to users) instead of the header file, and a forward declaration is put in the header file:

struct string;

struct string *create_string(const char *initial);
void free_string(struct string *s);

Nulling freed pointers

As discussed earlier, after free () has been called on a pointer, it becomes a dangling pointer.
Worse still, most modern platforms cannot detect when such a pointer is used before being
reassigned.

One simple solution to this is to ensure that any pointer is set to a null pointer immediately after
being freed:

free(p);
p = NULL;

Unlike dangling pointers, a hardware exception will arise on many modern architectures when a null
pointer is dereferenced. Also, programs can include error checks for the null value, but not for a
dangling pointer value. To ensure it is done at all locations, a macro can be used:

#define FREE (p) do { free(p); (p) = NULL; } while(O0)

(To see why the macro is written this way, see #Macro conventions.) Also, when this technique is

http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Macro_conventions
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Nulling_freed_pointers

used, destructors should zero out the pointer that they are passed, and their argument must be passed
by reference to allow this. For example, here's the destructor from #Constructors and destructors
updated:

void free_string(struct string **s) {

assert (s != NULL && *s != NULL);
FREE ((*s)->data); /* free memory held by the structure */
FREE (*s) ; /* free the structure itself */

Unfortunately, this idiom will not do anything to any other pointers that may be pointing to the freed
memory. For this reason, some C experts regard this idiom as dangerous due to creating a false
sense of security.

Macro conventions

Because preprocessor macros in C work using simple token replacement, they are prone to a number
of confusing errors, some of which can be avoided by following a simple set of conventions:

1. Placing parentheses around macro arguments wherever possible. This ensures that, if they
are expressions, the order of operations does not affect the behavior of the expression. For
example:

« Wrong: #define square(x) x*x

2. Better: #define square (x) (x)*(x)

3. Placing parentheses around the entire expression if it is a single expression. Again, this
avoids changes in meaning due to the order of operations.

« Wrong: #define square(x) (x)*(x)

4. Better: #fdefine square(x) ((x)*(x))

5. If a macro produces multiple statements, or declares variables, it can be wrapped inado { ...
} while(0) loop, with no terminating semicolon. This allows the macro to be used like a
single statement in any location, such as the body of an if statement, while still allowing a
semicolon to be placed after the macro invocation without creating a null statement. Care
must be taken that any new variables do not potentially mask portions of the macro's
arguments.

« Wrong: #define FREE (p) free(p); p = NULL;

6. Better: #define FREE (p) do { free(p); p = NULL; } while(0)

7. Avoiding using a macro argument twice or more inside a macro, if possible; this causes
problems with macro arguments that contain side effects, such as assignments.

8. If a macro may be replaced by a function in the future, considering naming it like a function.

C and beyond
< Common practicesMixing languages —

Language Extensions

Most C compilers have one or more "extensions" to the standard C language, to do things that are
inconvenient to do in standard, portable C.

Some examples of language extensions:

« in-line assembly language
« interrupt service routines

http://en.wikibooks.org/wiki/C_Programming/Mixing_languages
http://en.wikibooks.org/wiki/C_Programming/Common_practices
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Constructors_and_destructors

- variable-length data structure (a structure whose last item is a "zero-length array").

+ re-sizeable multidimensional arrays

« various "#pragma" settings to compile quickly, to generate fast code, or to generate compact
code.

- bit manipulation, especially bit-rotations and things involving the "carry" bit

- storage alignment

« Arrays whose length is computed at run time.

External links

« GNU C: Extensions to the C Language
- SDCC: Storage Class LLanguage Extensions

< Language extensionsCode library —

Mixing Languages

N,

¥

The Print version module is a stub. You can help Wikibooks by expanding it.
If possible, use a bookshelf-specific categorization template.

For further reading

- Embedded Systems/Mixed C and Assembly Programming

<« Mixing languagekReference Tables —

Code Library

The following is an implementation of the Standard C99 version of <assert .h>:

/* assert.h header */

#undef assert

#ifdef NDEBUG

#define assert(_Ignore) ((void)O0)

felse

void _Assertfail (char *, char *, int, char *);

#define assert (_Test)
((_Test)?((void)O0) :_Assertfail (#_Test,_ FILE_ ,_ LINE_ ,_ func_))
#endif

/* END OF FILE */

/* xassertfail.c —-- _Assertfail function */
#include <stdlib.h>
#include <stdio.h>
void
_Assertfail (char *test, char *filename, int line_number, char *function_name)
{
fprintf (stderr, "Assertion failed: %s, function %s, file %s, line %d.",
test, function_name, filename, line_number) ;
abort () ;
}
/* END OF FILE */

http://en.wikibooks.org/wiki/C_Programming/Reference_Tables
http://en.wikibooks.org/wiki/C_Programming/Mixing_languages
http://en.wikibooks.org/wiki/Embedded_Systems/Mixed_C_and_Assembly_Programming
http://en.wikibooks.org/wiki/Help:Stub#Templates_for_bookshelves
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&action=edit
http://en.wikibooks.org/wiki/Wikibooks:Stub
http://en.wikibooks.org/wiki/C_Programming/Code_library
http://en.wikibooks.org/wiki/C_Programming/Language_extensions
http://sdcc.sourceforge.net/doc/sdccman.html/node56.html
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
http://en.wikibooks.org/wiki/Image:Puzzle_stub.png

Computer Programming

The following articles are C adaptions from articles of the Computer programming book.

This Computer programming article is available in pseudocode, Ada, C, C++, Delphi and Python.

Note: there are some simplifications in the explanations below. Don't take anything too literally.

Most programming languages have the concept of a statement. A statement is a command that the
programmer gives to the computer. For example:

puts ("Hi there!");

This command has a verb ("puts") and other details (what to print). In this case, the command
"puts" means "show on the screen," not "print on the printer." The programmer either gives the
statement directly to the computer (by typing it while running a special program), or creates a text
file with the command in it. You could create a file called "hi.txt", put the above command in it, and
give the file to the computer.

If you have more than one command in the file, each will be performed in order, top to bottom. So
the file could contain:

puts ("Hi there!");
puts ("Strange things are afoot...");

The computer will perform each of these commands sequentially. It's invaluable to be able to "play
computer” when programming. Ask yourself, "If I were the computer, what would I do with these

statements?" If you're not sure what the answer is, then you are very likely to write incorrect code.

Stop and check the manual for the programming language you're using.

In the above case, the computer will look at the first statement, determine that it's a put s statement,
look at what needs to be printed, and display that text on the computer screen. It'll look like this:

Hi there!

Note that the quotation marks aren't there. Their purpose in the program is to tell the computer
where the text begins and ends, just like in English prose. The computer will then continue to the
next statement, perform its command, and the screen will look like this:

Hi there!
Strange things are afoot...

When the computer gets to the end of the text file, it stops. There are many different kinds of
statements, depending on which programming language is being used. For example, there could be a
beep statement that causes the computer to output a beep on its speaker, or a window statement
that causes a new window to pop up.

Also, the way statements are written will vary depending on the programming language. These
differences are fairly superficial. The set of rules like the first two is called a programming
language's syntax. The set of verbs is called its library.

This article is available in pseudocode, Ada, C, C++, Delphi and Python - do have a look at the
other languages as well.

C Reference Tables

This section has some tables and lists of C entities. « Code library

http://en.wikibooks.org/wiki/C_Programming/Code_library
http://en.wikibooks.org/wiki/Python_Programming/Statements
http://en.wikibooks.org/wiki/Programming:Delphi:Statements
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Statements
http://en.wikibooks.org/wiki/C_Programming/Statements
http://en.wikibooks.org/wiki/Ada_Programming/Statements
http://en.wikibooks.org/wiki/Computer_programming/Statements
http://en.wikibooks.org/wiki/Python_Programming/Statements
http://en.wikibooks.org/wiki/Programming:Delphi:Statements
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Statements
http://en.wikibooks.org/wiki/C_Programming/Statements
http://en.wikibooks.org/wiki/Ada_Programming/Statements
http://en.wikibooks.org/wiki/Computer_programming/Statements
http://en.wikibooks.org/wiki/Computer_programming
http://en.wikibooks.org/wiki/Computer_programming

Reference Tables

List of Keywords
ANSI C (C89)/1SO C (C90) keywords:

- auto - double - int -+ struct

+ break - else « long « switch

- case + enum + register + typedef
+ char - extern « return + union

- const - float - short + unsigned
- continue - for - signed - void

- default - goto - sizeof - volatile
- do - if - static « while

Keywords added to ISO C (C99) (Supported only in new compilers):

+ _Bool « _Imaginary + restrict
- _Complex + inline

Specific compilers may (in a non-standard-compliant mode) also treat some other words as
keywords, including asm, cdecl, far, fortran, huge, interrupt, near, pascal,
typeof.

Very old compilers may not recognize some or all of the C89 keywords const, enum, signed,
void, volatile as well as the C99 keywords.

See also the list of reserved identifiers.

List of Standard Headers
ANSI C (C89)/ISO C (C90) headers:

- assert.h « limits.h + signal.h + stdlib.h
« ctype.h « locale.h + stdarg.h « string.h
e errno.h - math.h « stddef.h e time.h

- float.h - setjmp.h - stdio.h

Headers added to ISO C (C94/C95) in Amendment 1 (AMD]1):

- 1s0646.h - wchar.h - wctype.h

Headers added to ISO C (C99) (Supported only in new compilers):
« complex.h - inttypes.h + stdint.h
- fenv.h « stdbool.h « tgmath.h

Very old compilers may not include some or all of the C89 headers 1s0646.h, locale.h,
wchar .h, wctype.h, nor the C99 headers.

http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm

Table of Operators

Operators in the same group have the same precedence and the order of evaluation is decided by
the associativity (left-to-right or right-to-left). Operators in a preceding group have higher
precedence than those in a subsequent group.

Operators Description Example Usage Associativity
Postfix operators
() function call operator swap (x, Vy)
[] array index operator arr [1]

member access operator
for an object of class/union

type
or a reference to it

obj.member Left to right

member access operator
—> for a pointer to an object of ptr—->member
class/union type

Unary Operators

! logical not operator 'eof_reached
~ bitwise not operator ~mask
+ L unary plus/minus operators ~ —num
post-increment/decrement
e+ —— num++
operators
e pre-increment/decrement e num Right to left
operators
address-of operator &data
indirection operator *ptr
sizeof sizeof operatorfor sizeof 123
expressions
sizeof () sizeof operator for types sizeof (int)
(type) cast operator (float) 1
Multiplicative Operators
iplicati ivisi Left to right
X /s multiplication, division and celsius diff * 9 / 5§ g
modulus operators
Additive Operators
addition and subtraction Left to right
+ - end - start + 1
operators
Bitwise Shift Operators
<< left shift operator bits << shift_len Left to right

>> right shift operator bits >> shift_len

http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Operators_Footnotes

&&

14

_ . operators

Relational Inequality Operators

less-than, greater-than, less-

than or

equal-to, greater-than or i < num_elements
equal-to

operators

Relational Equality Operators

equal-to, not-equal-to choice != 'n'
Bitwise And Operator
bits &

clear_mask_complement

Bitwise Xor Operator

bits ~ invert_mask

Bitwise Or Operator

bits | set_mask

Logical And Operator

arr !'= 0 && arr—->len

0

Logical Or Operator

arr == || arr—>len

0
Conditional Operator

size != 0 ? size

Assignment Operators
assignment operator i=0

shorthand assignment

num /= 10
(foo op= bar represents

foo = foo op bar)

Comma Operator

Table of Operators Footnotes

[]]Very old compilers may not recognize the unary + operator.

Left to right

Left to right

Left to right

Left to right

Left to right

— Left to right

Left to right

Right to left

Right to left

Left to right

Table of Data Types

Type Size in Bits

Comments

Primitive Types in ANSI C (C89)/ISO C (C90)

char >8

. same as
signed char
char
. same as
unsigned char
char
> 16, = size
short ’
of char
unsigned short same as
short

sizeof gives the size in units
of chars. These "C bytes" need
not be 8-bit bytes (though
commonly they are); the number
of bits is given by the
CHAR_BIT macro in the
limits.h header.

Signedness is implementation-
defined.

Any encoding of 8 bits or less
(e.g. ASCII) can be used to store
characters.

Integer operations can be
performed portably only for the
range 0 ~ 127.

All bits contribute to the value
of the char, i.e. there are no
"holes" or "padding" bits.

Characters stored like for type
char.
Can store integers in the range

-127 ~ 127 portablytH.

Characters stored like for type
char.

Can store integers in the range 0
~ 255 portably.

Can store integers in the range

-32767 ~ 32767 portably2L.
Used to reduce memory usage
(although the resulting
executable may be larger and
probably slower as compared to
using int.

Can store integers in the range 0
~ 65535 portably.

Used to reduce memory usage
(although the resulting
executable may be larger and
probably slower as compared to

Alternate Names

short int,
signed short,
signed short
int

unsigned
short int

http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes

int

unsigned int

long

unsigned long

float

double

long double

long long

> 16, = size
of short

same as int

> 32, > size
of int

same as
long

> size of
char

> size of
float

> size of
double

using int.

Represents the "normal" size of
data the processor deals with
(the word-size); this is the
integral data-type used normally.
Can store integers in the range

-32767 ~ 32767 portablyl2l.

Can store integers in the range 0
~ 65535 portably.

Can store integers in the range
-2147483647 ~ 2147483647

portablym.

Can store integers in the range 0
~ 4294967295 portably.

Used to reduce memory usage
when the values used do not
vary widely.

The floating-point format used
is implementation defined and
need not be the IEEE single-
precision format.

unsigned cannot be specified.

Represents the "normal" size of
data the processor deals with;
this is the floating-point data-
type used normally.

The floating-point format used
is implementation defined and
need not be the IEEE double-
precision format.

unsigned cannot be specified.

unsigned cannot be specified.

Primitive Types added to ISO C (C99)

> 64, > size
of long

Can store integers in the range
-9223372036854775807 ~
9223372036854775807

portablym.

signed, signed
int

unsigned

long int,
signed long,
signed long
int

unsigned long
int

long long int,
signed long
long, signed

long long int

http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes

+ Can store integers in the range 0
same as

unsigned long long ~ 18446744073709551615 unsigned. long
long long portably. long int
User Defined Types
> sum of .
struct size of each + Said to be an aggregate type. o
member
2 size of the - Said to be an aggregate type
union largest ' —
member
« Enumerations are a separate type
> size of from ints, though they are
enum - —
char mutually convertible.
same as the + typedef has syntax similar to
typedef typ.e being a storlage class like static, .
given a register or extern.
name
Derived TypesIil
0 always represents the null
pointer (an address where no
data can be placed), irrespective
of what bit sequence represents
the value of a null pointer.
« Pointers to different types may
have different representations,
which means they could also be
of different sizes. So they are not
convertible to one another.
type*) « Even in an implementation
> size of .
‘ char whlch guarantess all data ' —
(pointer) pointers to be of the same size,
function pointers and data
pointers are in general
incompatible with each other.
- For functions taking variable
number of arguments, the
arguments passed must be of
appropriate type, so even 0 must
be cast to the appropriate type in
such function-calls.
type > integer X « The brackets ([]) follow the —
[integert®l] size of identifier name in a declaration.

type

http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes#Table_of_Data_Types_Footnotes

+ In a declaration which also
initializes the array (including a
function parameter declaration),
the size of the array (the integer)
can be omitted.

« type [] isnotthe same as
type*. Only under some
circumstances one can be
converted to the other.

(array)

+ Functions declared without any

L , storage class are extern.

gi.l imited list + The parentheses (()) follow the
types/declaratio o identifier name in a declaration, L
ns) e.g. a 2-arg function pointer:

int (* fptr) (int

argl, int arg2).

type (comma-

(function)

Table of Data Types Footnotes
[1]_128 can be stored in two's-complement machines (i.e. most machines in existence). Very old
compilers may not recognize the signed keyword.

(2] -32768 can be stored in two's-complement machines (i.e. most machines in existence). Very old
compilers may not recognize the signed keyword.

131 12147483648 can be stored in two's-complement machines (i.e. most machines in existence).
Very old compilers may not recognize the signed keyword.

4] -9223372036854775808 can be stored in two's-complement machines (i.e. most machines in
existence).

151 The precedences in a declaration are:
[1, () (left associative) — Highest

* (right associative) — Lowest

6] The standards do NOT place any restriction on the size/type of the integer, it's implementation
dependent. The only mention in the standards is a reference that an implementation may have
limits to the maximum size of memory block which can be allocated, and as such the limit on
integer will be size_of_max_block/sizeof(type).

Compilers

Free (or with a free version)

« lcc-win32 - This software is not freeware, it is copyrighted by Jacob Navia. It's free for non-
commercial use. Windows (98/ME/XP/2000/NT).

- GCC

http://gcc.gnu.org/
http://www.cs.virginia.edu/~lcc-win32

Open Watcom Open Source development community to maintain and enhance the Watcom
C/C++ and Fortran cross compilers and tools. Version 1.4 released in December 2005.

Host Platforms: Win32 systems (IDE and command line), 32-bit OS/2 (IDE and command
line), DOS (command line), and Windows 3.x (IDE)

Target Platforms: DOS (16-bit), Windows 3.x (16-bit), OS/2 1.x (16-bit), Extended DOS,
Win32s, Windows 95/98/Me, Windows NT/2000/XP, 32-bit OS/2, and Novell NLMs

Experimental / Development: Linux, BSD, *nix, PowerPC, Alpha AXP, MIPS, and Sparc
v8

MonoDevelop A free GNOME IDE primarily designed for C#

Commercial

@ieved from "http://en.wikibooks.org/wiki/C Programming/Print version"
tegories: Books with print version | C Programming | Stubs | Computer Programming

Views

Module
Discussion

Edit this page
History

Personal tools

Log in / create account

Navigation

Main Page
Help

Recent changes
Wikijunior
Bookshelves
Featured Books
Donations

Community

Bulletin Board

Community Portal

Staff lounge
Module cleanup

Go Search

, 14/12/06
<!-- Pre-expand include size: 361863 bytes
Post-expand include size: 350872 bytes
Template argument size: 4172 bytes
Maximum: 2048000 bytes
-->

, 14/12/06
Saved in parser cache with key enwikibooks:pcache:idhash:90742-0!1!0!default!!en!2 and timestamp 20061213232645

http://en.wikibooks.org/wiki/Wikibooks:Wikibooks_maintenance
http://en.wikibooks.org/wiki/Wikibooks:Staff_lounge
http://en.wikibooks.org/wiki/Wikibooks:Community_Portal
http://en.wikibooks.org/wiki/Wikibooks:Bulletin_board
http://wikimediafoundation.org/wiki/Fundraising
http://en.wikibooks.org/wiki/Wikibooks:Featured_books
http://en.wikibooks.org/wiki/Wikibooks:All_bookshelves
http://en.wikibooks.org/wiki/Wikijunior
http://en.wikibooks.org/wiki/Special:Recentchanges
http://en.wikibooks.org/wiki/Help:Contents
http://en.wikibooks.org/wiki/Main_Page
http://en.wikibooks.org/w/index.php?title=Special:Userlogin&returnto=C_Programming/Print_version
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&action=history
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=Talk:C_Programming/Print_version&action=edit
http://en.wikibooks.org/wiki/C_Programming/Print_version
http://en.wikibooks.org/wiki/Category:Computer_Programming
http://en.wikibooks.org/wiki/Category:Stubs
http://en.wikibooks.org/wiki/Category:C_Programming
http://en.wikibooks.org/wiki/Category:Books_with_print_version
http://en.wikibooks.org/wiki/Special:Categories
http://en.wikibooks.org/wiki/C_Programming/Print_version
http://www.monodevelop.com/
http://www.openwatcom.org/

Toolbox

Search this book
What links here
Related changes

Upload file

Special pages
Printable version

Permanent link

In other languages

Italiano
Polski
Italiano
Italiano
Deutsch
Polski
Italiano
Italiano
Polski
Polski

. Poyvanrazl By
(% 1] pmedicwii

A
..' WIKIMEDIA

project

This page was last modified 11:33, 9 September 2006.
All text is available under the terms of the GNU Free Documentation License (see

Copyrights for details).
Wikibooks® is a registered trademark of the Wikimedia Foundation, Inc.

Privacy policy
About Wikibooks
Disclaimers

, 14/12/06
Served by srv79 in 4.336 secs.

, 14/12/06
end of the left (by default at least) column

http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.wikibooks.org/wiki/Wikibooks:About
http://en.wikibooks.org/wiki/Wikibooks:Privacy_policy
http://en.wikibooks.org/wiki/Wikibooks:Copyrights
http://en.wikibooks.org/wiki/GNU_Free_Documentation_License
http://pl.wikibooks.org/wiki/C/??czenie_z_innymi_j?zykami
http://pl.wikibooks.org/wiki/Programowanie:C:Wska?niki
http://it.wikibooks.org/wiki/Linguaggio_C/Vettori_e_puntatori/Interscambiabilit?_tra_puntatori_e_vettori
http://it.wikibooks.org/wiki/Linguaggio_C/Vettori_e_puntatori/Vettori
http://pl.wikibooks.org/wiki/C/Preprocesor
http://de.wikibooks.org/wiki/C-Programmierung:_Pr?prozessor
http://it.wikibooks.org/wiki/Linguaggio_C/Compilatore_e_precompilatore/Istruzioni_al_precompilatore
http://it.wikibooks.org/wiki/Linguaggio_C/Blocchi_e_funzioni/Funzioni
http://pl.wikibooks.org/wiki/C/Zmienne
http://it.wikibooks.org/wiki/Linguaggio_C/Variabili%2C_operatori_e_costanti/Variabili
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&oldid=578959
http://en.wikibooks.org/w/index.php?title=C_Programming/Print_version&printable=yes&printable=yes
http://en.wikibooks.org/wiki/Special:Specialpages
http://en.wikibooks.org/wiki/Special:Upload
http://en.wikibooks.org/wiki/Special:Recentchangeslinked/C_Programming/Print_version
http://en.wikibooks.org/wiki/Special:Whatlinkshere/C_Programming/Print_version
http://www.google.com/custom?sa=Google+Search&domains=en.wikibooks.org/wiki/C_Programming&sitesearch=en.wikibooks.org/wiki/C_Programming
http://www.mediawiki.org/
http://wikimediafoundation.org/

	C Programming/Print version
	From Wikibooks, the open-content textbooks collection
	 Introduction
	 Why Learn C?
	 History of the C Programming Language
	 Getting Started
	 Dev-C++
	 gcc

	 Introductory Exercises
	 Beginning C

	 Basic Concepts
	 Compilation: How Does C Work?
	 Integrated Development Environments (IDEs)
	 Block Structure, Statements, Scope, and Whitespace
	 Basics of Using Functions
	 The Standard Library
	 Comments and Coding Style
	 The Preprocessor
	 Footnotes
	 Preprocessor
	 Syntax Checking
	 Object Code
	 Linking
	 C Structure and Style
	 Introduction
	 Line Breaks and Indentation
	 Line Breaks
	 Indentation

	 Comments
	 Single-line Comments
	 Multi-line Comments

	 Examples
	 Links
	 Handling divide by zero errors
	 Variables
	 Declaring, Initializing, and Assigning Variables
	 Naming Variables

	 Literals
	 The Four Basic Types
	 The int type
	 The char type
	 The float type
	 The double type

	 sizeof
	 Data type modifiers
	 const modifier
	 Magic numbers
	 Using the const keyword
	 #define

	 Scope
	 Other Modifiers
	 Concepts
	 In this section

	 Simple Input and Output
	 Output using printf()
	 Printing numbers and escape sequences
	 Placeholder codes
	 Tabs and newlines

	 Other output methods
	 puts()

	 Input using scanf()
	 Examples
	 Operators and Assignments

	 Trigonometric functions
	 The acos and asin functions
	 The atan and atan2 functions
	 The cos, sin, and tan functions

	 Hyperbolic functions
	 Exponential and logarithmic functions
	 The exp functions
	 The frexp, ldexp, and modf functions
	 The log and log10 functions

	 Power functions
	 The pow functions
	 The sqrt functions

	 Nearest integer, absolute value, and remainder functions
	 The ceil and floor functions
	 The fabs functions
	 The fmod functions

	 Control
	 Conditionals
	 Relational and Equivalence Expressions:
	 Logical Expressions:
	 Bitwise Boolean Expressions
	 The If-Else statement
	 The conditional expression

	 The Switch-Case statement

	 Loops
	 While loops
	 For loops
	 Do-While loops

	 One last thing: goto
	 Examples
	 Procedures and Functions
	 More on functions
	 Writing functions in C
	 In general
	 Recursion
	 Static Functions

	 Using C functions
	 C's Built-in Functions
	 Directives
	 #include
	 Headers

	 #pragma
	 #define
	 macros
	 #error
	 #undef
	 if,else,elif,endif (conditionals)
	 ifdef,ifndef

	 Standard Libraries
	 Introduction
	 Streams
	 FILE pointers
	 Opening and Closing Files
	 Opening Files
	 Closing Files

	 Other file access functions
	 The fflush function
	 The setbuf function
	 The setvbuf function

	 Functions that Modify the File Position Indicator
	 The fgetpos and fsetpos functions
	 The fseek and ftell functions
	 The rewind function

	 Error Handling Functions
	 The clearerr function
	 The feof function
	 The ferror function
	 The perror function

	 Other Operations on Files
	 The remove function
	 The rename function
	 The tmpfile function
	 The tmpnam function

	 Reading from Files
	 Character Input Functions
	 The fgetc function
	 The fgets function
	 The getc function
	 The getchar function
	 The gets function
	 The ungetc function

	 Direct input function: the fread function
	 Formatted input functions: the scanf family of functions

	 Writing to Files
	 Character Output Functions
	 The fputc function
	 The fputs function
	 The putc function
	 The putchar function
	 The puts function

	 Direct output function: the fwrite function
	 Formatted output functions: the printf family of functions

	 Variables
	 Naming
	 Data Types
	 Assignment
	 Referencing

	 Simple I/O
	 Input
	 Output

	 Program Flow
	 Functions
	 Math
	 In-depth C ideas

	 Arrays & Strings
	 Arrays
	 Strings
	 Pointers and Arrays
	 Declaring pointers
	 Assigning values to pointers
	 Pointer dereferencing
	 Pointers and Arrays
	 Pointers in Function Arguments
	 Pointers and Text Strings
	 Pointers to Functions
	 Examples of pointer constructs
	 sizeof

	 External Links
	 Memory Management
	 Malloc
	 Error checking

	 The calloc function
	 The realloc function
	 The free function
	 Strings
	 The <string.h> Standard Header
	 The more commonly-used string functions
	 The strcat function
	 The strchr function
	 The strcmp function
	 The strcpy function
	 The strlen function
	 The strncat function
	 The strncmp function
	 The strncpy function
	 The strrchr function

	 The less commonly-used string functions
	 Copying functions
	 The memcpy function
	 The memmove function

	 Comparison functions
	 The memcmp function
	 The strcoll and strxfrm functions

	 Search functions
	 The memchr function
	 The strcspn, strpbrk, and strspn functions
	 The strstr function
	 The strtok function

	 Miscellaneous functions
	 The memset function
	 The strerror function

	 examples
	 Exercises

	 Complex Types
	 Complex data types
	 Pointers
	 Structs
	 Unions

	 Type modifiers
	 Networking in UNIX
	 A simple client
	 A simple server
	 Useful network functions
	 FAQs
	 What about stateless connections ?

	 How do I check for errors ?

	 Common Practices
	 Dynamic multidimensional arrays
	 Constructors and destructors
	 Nulling freed pointers
	 Macro conventions
	 C and beyond

	 Language Extensions
	 External links
	 Mixing Languages
	 For further reading
	 Code Library
	 Computer Programming
	 C Reference Tables

	 Reference Tables
	 List of Keywords
	 List of Standard Headers
	 Table of Operators
	 Table of Operators Footnotes

	 Table of Data Types
	 Table of Data Types Footnotes

	 Compilers
	 Free (or with a free version)
	 Commercial
	Views
	Personal tools
	Navigation
	Community
	Toolbox
	In other languages

	search:
	go:
	fulltext:

