
Themenblock: Dialogmodellierung

Das Resultat der *konzeptuelle Modellierung* wird auch *Benutzungsmodell* genannt

- Das Benutzungsmodell repräsentiert Entwurfsentscheidungen hinsichtlich der Objekt- und Dialogstrukturen aus der Sicht des Benutzers
- Es stellt eine Voraussetzung für ein strukturiertes Prototyping dar, das begleitend zum Entwurf als Explorations- und Validierungsmittel eingesetzt werden kann

Das Benutzungsmodell umfasst nach Mehrebenen-Modell:

- Ein Sichtenmodell
- Ein Dialogmodell

Ebenen der Dialogsteuerung

- Dialogabläufe auf der Ebene von Prozessen (Workflow)
 - > werden wir nicht weiter hier betrachtet
- Dialogabläufe auf der Ebene von Aufgaben (Fensterebene, grober Dialogablauf) Beschreiben die Abfolge von Sichten und den Aufruf von Anwendungsfunktionen in Abhängigkeit von Benutzereingaben mit zugehöriger Darstellung der Systemreaktion
 - → werden wir mittels Dialognetze beschreiben
- Dialogabläufe innerhalb von Aufgaben; Teilabläufe (feiner Dialogablauf) Beschreiben die Zustandswechsel der Oberflächenobjekte, die sich innerhalb von Sichten befinden und die von dem Zustand anderer Oberflächenobjekte oder Anwendungsdaten abhängen
 - → werden wir mittels Constraints beschreiben

(Janssen 1996)

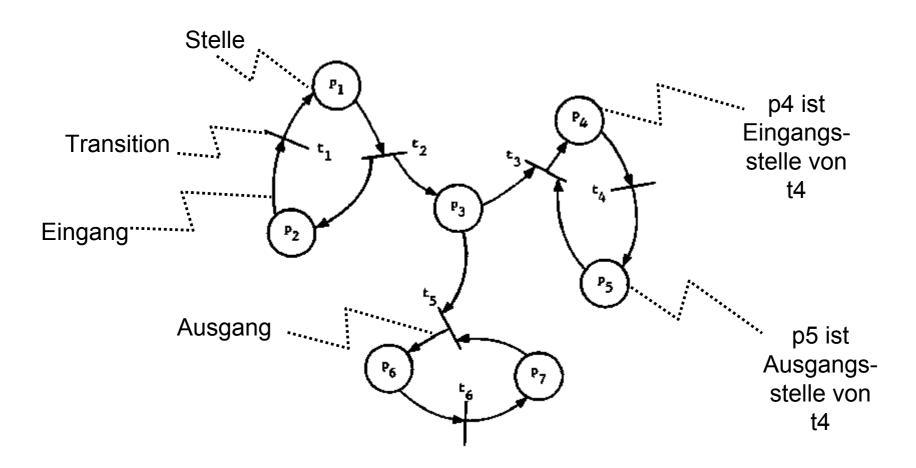
Kandidaten für Dialogmodelle

Bewertung von fünf grundlegenden Dialogmodellen anhand eines Kriterien-kataloges

Tab. 6.1, S. 77

	I —				
Dialogmodell	Zustands-				
	übergangs-	Gramma-	Ereignis-	Constraint-	
Kriterium	diagramme	tiken	modell	Modell	Petri-Netze
	<u>J</u>				
Abstraktionsgrad					
Abstraktionsgrad					
Mächtigkeit					
Washingken					
	_	_	_	_	_
Parallelität					
Ausführbarkeit					
Austuribarkeit					
Formale Prüfungen					
Strukturie-					
			()		
rungsmittel					
)					
Verständlichkeit					
Eignung für					
Fensterebene					
Eignung für					
Objektebene					
Objektebette	•				

Legende:



Mittel

Petri-Netze

Petri, C.A., "Kommunikation mit Automaten", Schriften des Rheinisch-Westfalischen Institutes für Instrumentelle Mathematik an der Universität Bonn, Heft 2, Bonn, 1962

Markierung von Petri-Netzen

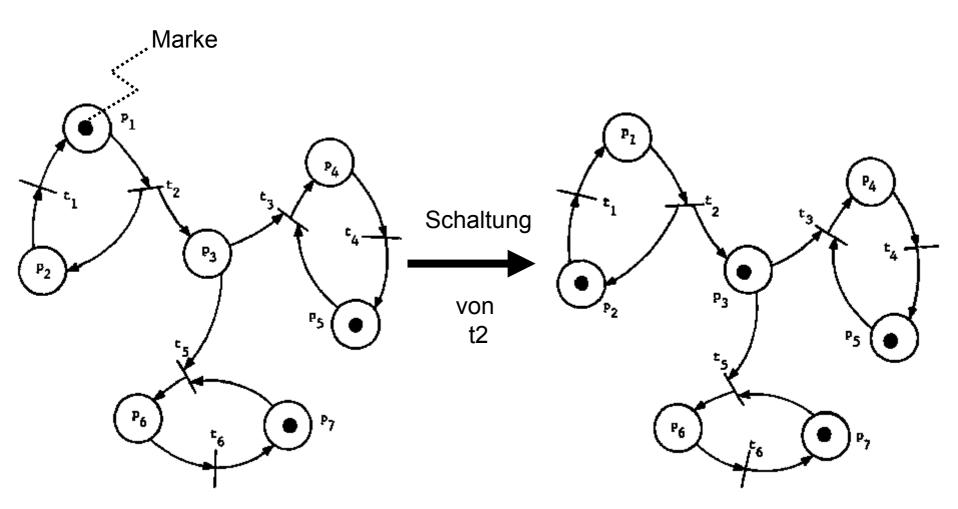
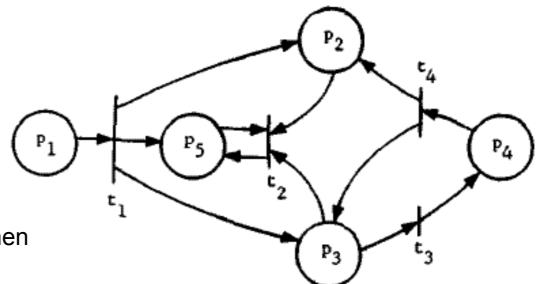



Abbildung aus Peterson 1977

Formale Definition

Ein Petri-Netz C ist ein 4-Tuple (*P*, *T*, *I*, *O*), wobei:

- P ist eine Menge von Stellen
- *T* ist eine Menge von Transitionen
- $P \cap T = \emptyset$
- I ist eine Funktion, die für jede t ∈ T die Menge der Eingangsstellen von t definiert
- O ist eine Funktion, die für jede $t \in T$ die Menge der Augangsstellen von t definiert
- I(t) wird auch geschrieben als *tO(t) wird auch geschrieben als t *

$$C = (P, T, I, O)$$

$$P = \{p_1, p_2, p_3, p_4, p_5\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

$$I(t_1) = \{p_1\} \qquad O(t_1) = \{p_2, p_3, p_5\}$$

$$I(t_2) = \{p_2, p_3, p_5\} \qquad O(t_2) = \{p_5\}$$

$$I(t_3) = \{p_3\} \qquad O(t_3) = \{p_4\}$$

$$I(t_4) = \{p_4\} \qquad O(t_4) = \{p_2, p_3\}$$

Die Markierungsfunktion

Ein markiertes Petri-Netz ist ein 5-Tuple (P, T, I, O, μ), wobei:

(P, T, I, O) ist ein Petri-Netz $\mu = (\mu_1, \mu_2, ..., \mu_i)$ ist ein Vektor, der für jede Stelle $p \in P$ die Menge der Marken anzeigt $(\mu: P \to N)$

$$\mu(p_i) = \mu_i$$

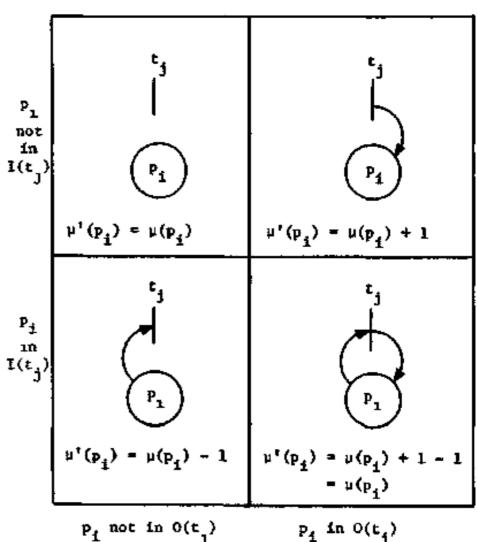
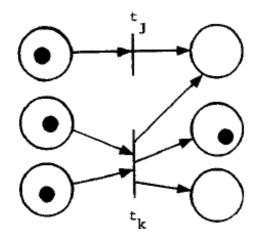
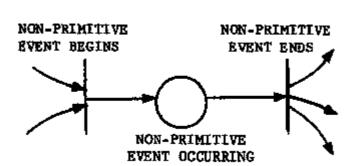



Abbildung aus Peterson 1977


Prinzipielle Eigenschaften

Non-Determinismus

Zeitlosigkeit von Ereignissen

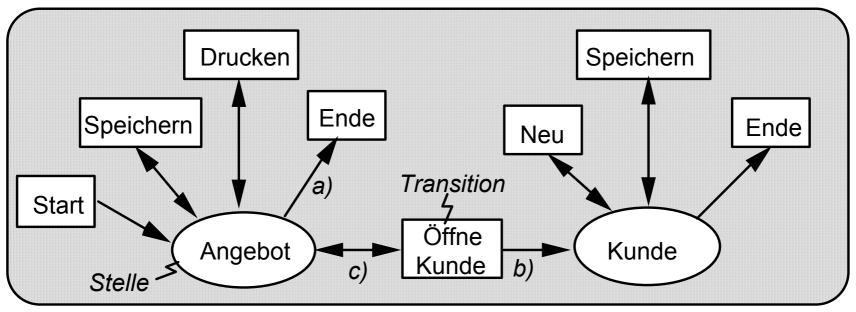
Nebenläufigkeit (Concurrency)

P₁ • t_k

Konflikt

Modellierung von Dauer

Hierarchisierung von Modellen


Abbildung aus Peterson 1977

Definition Dialognetz

Ein Dialognetz ist ein 6-Tupel $DN=(S, T, F, t_0, b, B)$.

- Hierbei ist S eine Menge von Stellen,
- T eine Menge von Transitionen,
- F eine Flußrelation, und es gilt, $S \cap T = \emptyset$ und $F \subseteq (S \times T) \cup (T \times S)$
- t_0 heißt Starttransition. Es gelte stets $t_0 = \emptyset \land t_0 \neq \emptyset$
- B ist eine Menge von Beschriftungen und $b: S \cup T \rightarrow B$ heißt Beschriftungsfunktion mit b(t0)="Start".

Beispiel für ein Dialognetz mit (unspezifizierten) Beschriftungen

a) In Transition eingehender Fluß: Eingangsstelle; b) ausgehender Fluß: Ausgangsstelle; c) beidseitiger Fluß: Nebenstelle

Markierung und Schaltregel für Transitionen

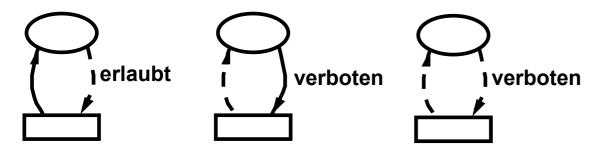
Sei DN=(S, T, F, t0, b, B) ein Dialognetz.

Eine Funktion $m: S \rightarrow \{0,1\}$ heißt *Markierungsfunktion* oder *Markierung*.

Für die Anfangsmarkierung m_0 gelte $m_0(s)=0$ für alle $s\in S$ Die möglichen Markierungen in DN ergeben sich aus den folgenden Schaltregeln für Transitionen:

- (1) $t \in T$ heißt aktiviert in einer Markierung m, wenn für alle $s \in t$ m(s)=1 und für alle $s \in t$ m(s)=0.
- (2) t_0 ist in m_0 aktiviert.
- (3) t schaltet eine Markierung m_1 zu m_2 , wenn t in m_1 aktiviert ist und für m_2 gilt: $m_2(s)=0$ für $s \in t \setminus t$ und $m_2(s)=1$ für $s \in t$

Man schreibt $m_1 \rightarrow m_2$


Optionale Flussrelationen

Ein Dialognetz $DN=(S, T, F, t_0, b, B, F_p)$ heißt Dialognetz mit optionaler Flußrelation F_p , $F_p \subseteq F$ Für alle $(t, s) \in Fp$ gelte $t \neq t_0$.

Es gelte für
$$t \in T$$
 $(t \setminus t_p) \cap t_p = t_p \cap t_p = \emptyset$.

Die Schaltregel (1) aus voriger Definition spezialisiert sich wie folgt (die Regeln (2) und (3) werden unverändert übernommen):

(1a) $t \in T$ heißt aktiviert in einer Markierung m, wenn für alle $s \in t \setminus t_p$ m(s)=1 und für alle $s \in t \setminus t \setminus t_p$ m(s)=0 gilt.

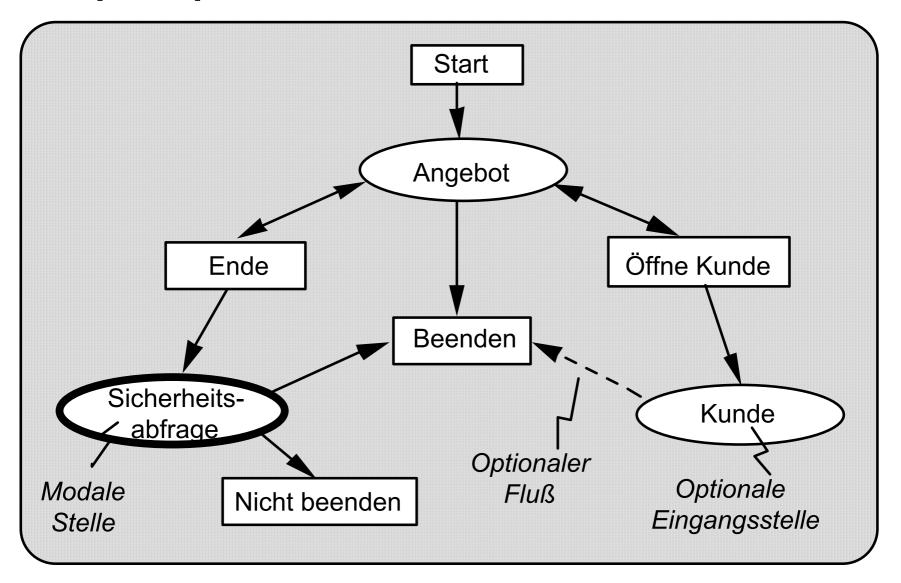
Modale Stellen

Ein Dialognetz $DN=(S, T, F, t_0, b, B, F_p, S_m, q_0)$ heißt Dialognetz mit $modalen Stellen S_m \subseteq S$, wobei für alle $s \in S_m$ und $(s, t), (t, s) \in F$ gelte $(s, t) \notin F_p \land (t, s) \notin F_p$ und für $t \in T$ die reinen Ausgangsstellen $t \land t$ maximal ein $s \in S_m$ enthalten.

Eine Funktion $q_i: S_m \to N$, $i \in N$ heißt *Modusfunktion* Es gelte $q_0(s) = 0$ für $s \in S_m$. Die Schaltregeln spezialisieren sich wie folgt:

(1b) $t \in T$ heißt *aktiviert* in einer Markierung m_i wenn t nach (1a) für optionale Flüsse aktiviert ist und

$$\left(\forall s \in S_{\mathbf{m}} \ m_i(s) = 0\right) \vee \left(\exists s_{\mathbf{m}} \in S_{\mathbf{m}} \ s_{\mathbf{m}} \in t \land \ q_i(s_{\mathbf{m}}) = \max\left(\left\{q_i(s) | s \in S_{\mathbf{m}}\right\}\right)\right)$$


(3a) t schaltet eine Markierung m_1 zu m_2 nach (3), wobei t nach (1b) aktiviert sein muss und zusätzlich folgendes gilt:

$$\forall s \in S_{\mathrm{m}} \ s \in t \setminus t \Rightarrow q_{2}(s) = 0 \quad \text{und}$$

$$\forall s \in S_{\mathrm{m}} \ s \in t \setminus t \Rightarrow q_{2}(s) = \max \left(\left\{ q_{1}(s') | s' \in S_{\mathrm{m}} \right\} \right) + 1 \quad \text{und}$$

$$\forall s \in S_{\mathrm{m}} \left(s \notin t \setminus t \land s \notin t \setminus t \right) \Rightarrow q_{2}(s) = q_{1}(s)$$

Beispiel optionaler Fluß und modale Stelle

Hierarchische Gliederung von Dialognetzen

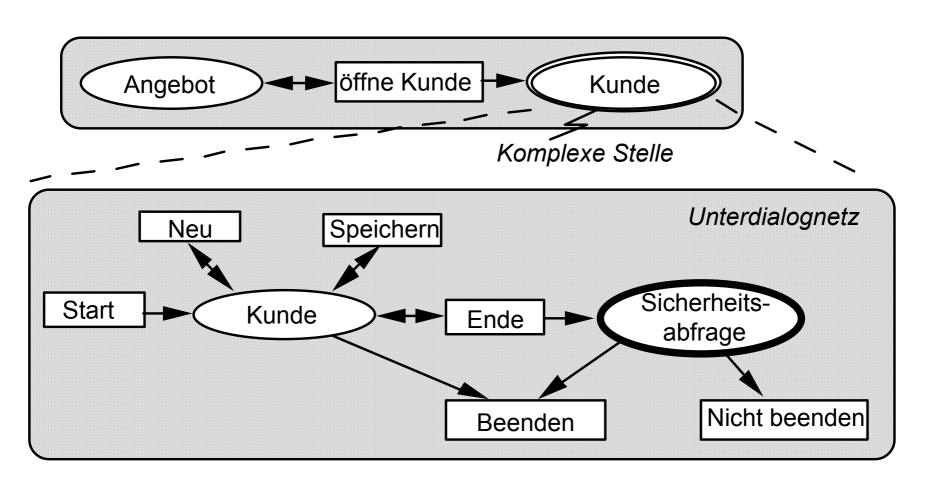
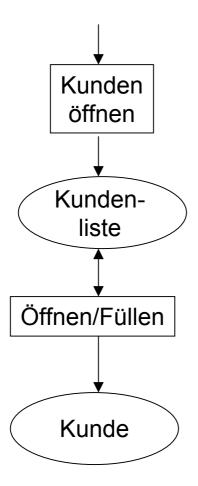
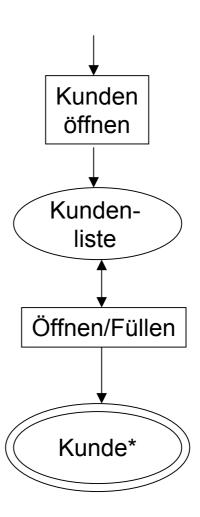
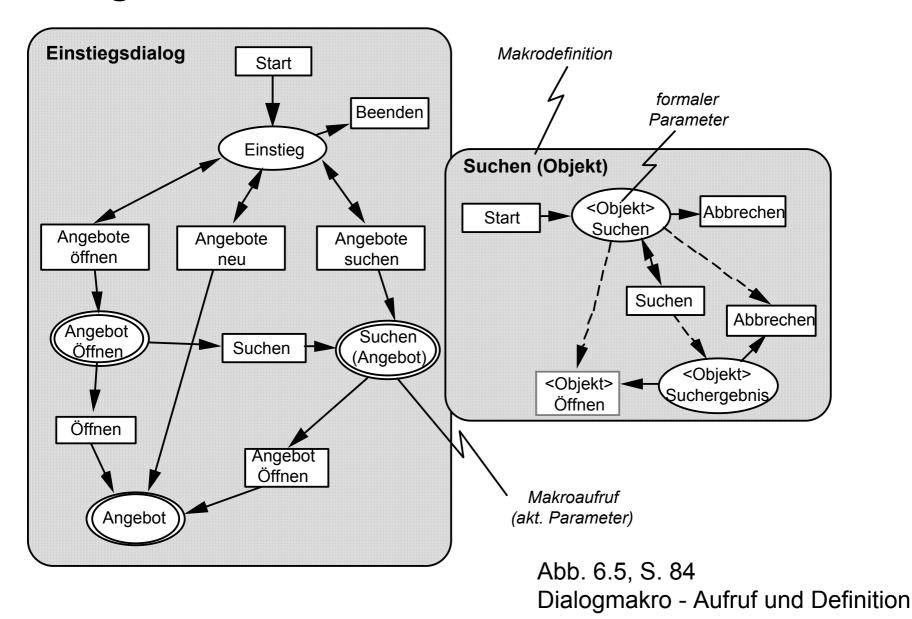




Abb. 6.3, S. 82 Komplexe Stelle und zugehöriges Unterdialognetz

Dynamische Teildialoge



Wiederholtes Füllen eines Fensters

Dynamischer Aufruf Eines Unterdialogs

Dialogmakros

Voll spezifizierte Dialognetze

Ein *voll spezifiziertes Dialognetz* ist ein Dialognetz mit optionaler Flußrelation $VDN=(S,\ T,\ F,\ t_0,\ b,\ B,\ F_{\rm p},\ b_{\rm S},\ b_{\rm T},\ E,\ C,\ A).$

Hierbei ist E eine Menge von E reignissen, C eine Menge von E bedingungen und E eine Menge von E aktionen.

 $b_S: S \to A \times C \times A$ heißt spezifizierende Stellenbeschriftung und $b_T: T \to E \times C \times A$ spezifizierende Transitionenbeschriftung.

Es gelte stets $b_T(t_0)$ =("Start", "true", a), wobei "Start" das Startereignis, "true" die immer wahre Bedingung und a eine Aktion aus A bezeichne. Ferner sei b_S eindeutig bezüglich der Zuordnung eines $c \in C$ für alle $s \in S$ (also injektiv). Ebenso sei b_T für alle Transitionen t_1 , t_2 , die zueinander in Konflikt stehen $(t_1 \cap t_2 \neq \emptyset \vee (t_1^* \setminus t_1) \cap (t_2^* \setminus t_2) \neq \emptyset)$ eindeutig bezüglich der Zuordnung eines Paares $(e, c) \in E \times C$, um ein lokal deterministisches Netz zu erhalten.

Voll spezifizierte Dialognetze

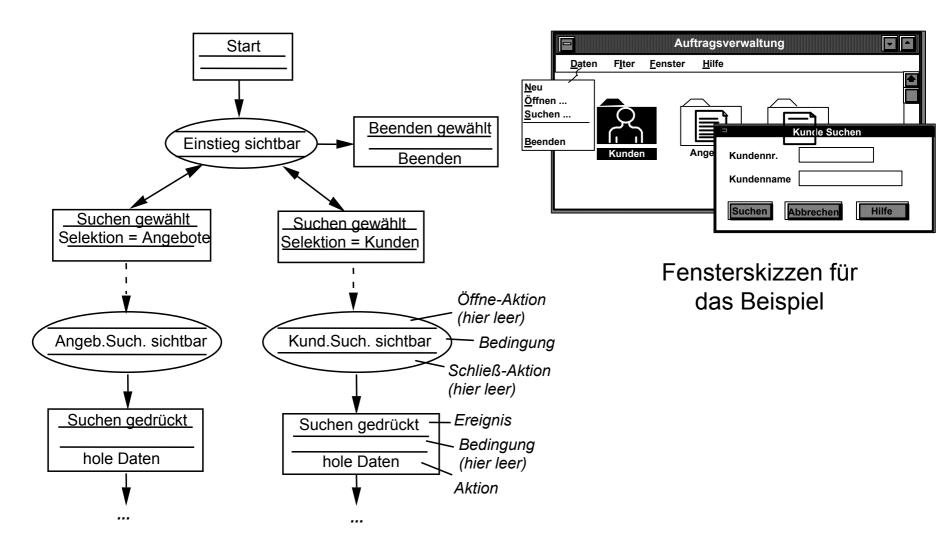


Abb. 6.6, S. 85 Beispiel für ein voll spezifiziertes Dialognetz

Constraints

```
Button "Suchen" ist sensitiv ::=

(Feld "Kundennr." ist nicht leer) oder

(Feld "Kundenname" ist nicht leer);
```

Ableitungs eines Constraints aus einem Netz (aus voriger Folie):

```
Suchen ist sensitiv ::= ((Einstieg sichtbar) und (Angebote selektiert) und (Angeb.Such nicht sichtbar))

oder ((Einstieg sichtbar) und (Kunden selektiert) und (Kund.Such nicht sichtbar));
```

Generierung ausführbarer Regeln

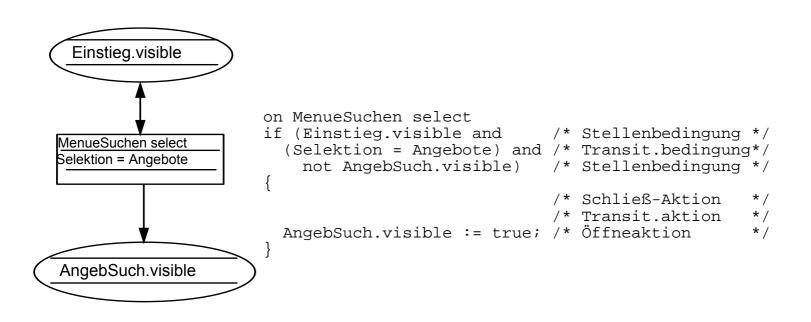
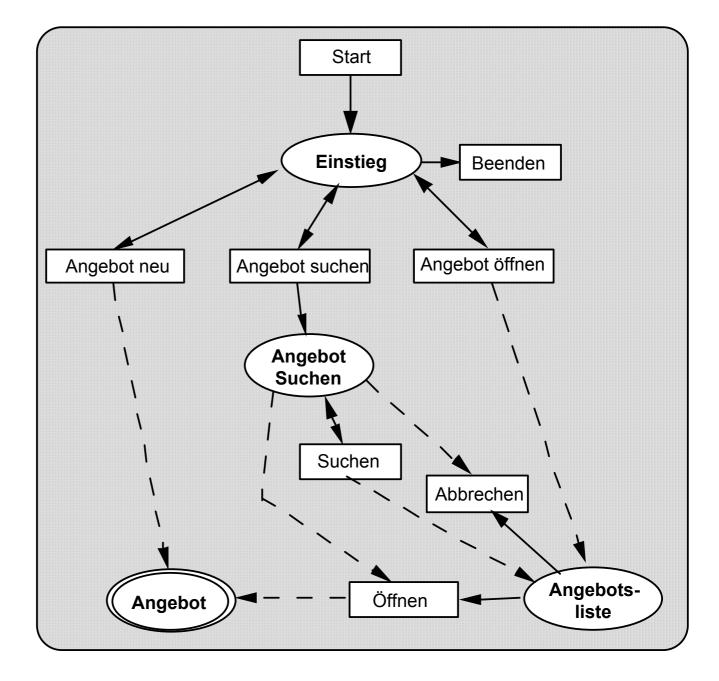
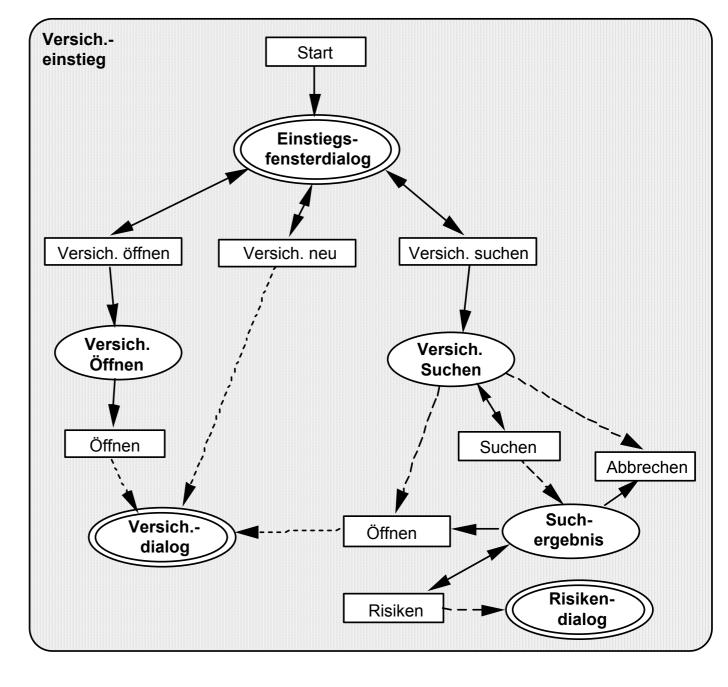


Abb. 6.8, S. 88 Codegenerierung aus Dialognetzen für ereignisorientierte UIMS

Beispiele 1

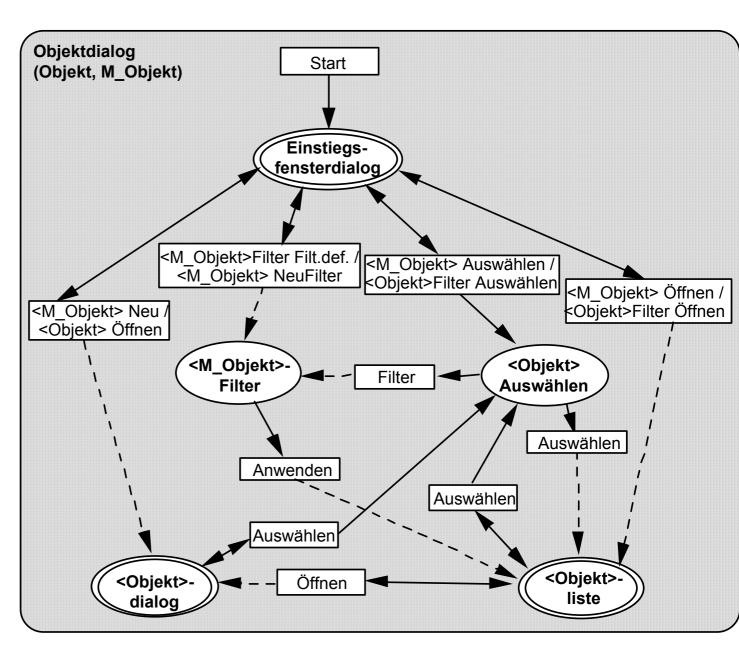



Abb. 6.10, S. 90

Dialognetz für einen Einstiegsdialog

Beispiele 2

Abb. 6.11, S. 93


Einstiegsdialog der Versicherungsanwendung für den Objektbereich "Versicherungen"

Beispiele 3

Abb. 6.12, S. 95

Dialogmakro für die Auswahl von Objekten im PPS-System, parametrisiert mit dem Objektnamen (z.B. *Auftrag*) und dem zugehörigen Mengenobjekt (z.B. *Aufträge*)

