
 The Queen’s Comm
An Object-Oriented Dia

Ian O’Neill*, Philip Hanna*, Xingkun

*School of Computer
Queen’s University, Belfas

{i.oneill,p.hanna,xingkun.l

°School of Computing and
University of Ulster, Jordanst

mf.mctear@ulster.a

Abstract

This paper presents some of the main features of a prototype
spoken dialogue manager (DM) that has been incorporated
into the DARPA Communicator architecture. Developed in
Java, the object components that constitute the DM separate
generic from domain-specific dialogue behaviour in the
interests of maintainability and extensibility. Confirmation
strategies encapsulated in a high-level DiscourseManager
determine the system’s behaviour across transactional
domains, while rules of thumb encapsulated in a suite of
domain experts enable the system to guide the user towards
completion of particular transactions. We describe the nature
of the generic confirmation strategy and the domain experts’
specialised dialogue behaviour. We describe how rules of
thumb fire given certain combinations of user-supplied values
– or in the light of the system’s own interaction with its
database.

1. Introduction
The aim of the current research is to explore the manner in
which mainstream object-oriented development techniques
might be used to create a spoken dialogue manager (DM) that
encapsulates generic and domain-specific dialogue
management strategies. Implemented in Java, the DM
receives semantically tagged user input via the Phoenix
Semantic Frame Parser [1] and generates output using the
Festival speech synthesiser [2]. The DM communicates with
these and other service providers within the DARPA
Communicator architecture [3], based on the Galaxy hub, a
software router developed by the Spoken Language Systems
group at MIT [4] and subsequently released as an open source
package in collaboration with the MITRE Corporation [5].
Our working ‘testbed’ application is based on the components
supplied with the CU Communicator [6], from which we have
removed the dialogue management components and replaced
them with components of our own. At present the system
accepts keyed natural language input via the parser and
outputs key phrases rather than well-formed sentences to the
speech synthesiser: a fully implemented speech user interface
is planned.

The present Java implementation is based broadly on a
Prolog++ prototype [7, 8] which was used to explore the
relationship between generic confirmation strategies and
domain-specific heuristics for furthering transactions. By
using suites of domain-specific dialogue-furthering heuristics

– co
imple
progra
heuris
encom
the u
manag
of thu
the s
suppli
looku
hand
should
has pr
case g
specif

2.1. O

Altho
comp
orthod
of ho
engin
manag
dialog
gener
partic
extend
Java D

2.1.1.

Dialo
Dialo
taking
(Acco
exper
Disco

D
select
maint
The D
outpu
agains
the sc
unicator:
logue Manager

 Liu*, Michael McTear°

Science
t, N. Ireland
iu}@qub.ac.uk

Mathematics
own, N. Ireland
c.uk

ded declaratively and then parsed – the Java
mentation has captured much of the intuitive
mming style of its Prolog predecessor. Moreover, these
tics or ‘rules of thumb’ have now been expanded to
pass not only the interaction between the system and
ser, but also the interaction between the dialogue
er and a database. Thus, there are two flavours of ‘rules
mb’. On the one hand user-focussed rules determine

ystem’s response to particular combinations of data
ed by the user: the system might attempt a database
p or ask the user for more information. On the other
database-focussed rules guide the system as to how it
 attempt an alternative database request when the user
ovided an invalid combination of data values. In each
eneric behaviour determines how the system’s domain-
ic determinations are conveyed to the user.

2. Architecture

verview

ugh some currently available dialogue systems use object
onents in accordance with the latest software engineering
oxy [9], little published research addresses the question
w established techniques of object-oriented software
eering [10, 11] can contribute to the dialogue
ement task. It is hoped that our OO approach to spoken
ue management will provide a framework within which

ic confirmation strategies and rules-of-thumb specific to
ular business domains can be intuitively maintained and
ed. Figure1 shows some of the key components of the
M, as well as the inheritance hierarchy.

 DialogServer, DialogManager and DomainSpotter

gServer provides an interface to the hub. It contains a
gManager, which as well as co-ordinating dialogue turn-
, has a suite of business domain experts
mmodationExpert is one example). These domain
ts are grandchildren and great-granchildren of
urseManager below.
ialogueManager also has a DomainSpotter that helps
 domain expertise, and a DiscourseHistory that
ains a record of user-system interaction across domains.

omainSpotter supplies each domain expert with the
t of the semantic parse. Each expert scores that parse
t the semantic categories that it can process and returns
ore to the DomainSpotter. The domain expert that

scores highest will be the one that the DialogManager will ask
to apply its domain-specific heuristics to the more detailed
processing of the enquiry. For example, an
AccommodationExpert might score highest and so become
handling expert if the user has been asking about hotels in
Belfast. The ‘enquiry focus’ will remain with this handling
expert, until the parsed input indicates that another domain
expert would make a more appropriate handling expert.

In a variation on this approach we are now implementing
functionality that will allow expert superclasses – e.g.
EnquiryExpert – to poll their subclasses and have them
supply a natural language phrase that conveys their area of
expertise, information that can be used to direct the user when
he or she has made a very vague or ambiguous enquiry that
could potentially fall to a number of handling experts. We
believe this will simplify the process of adding new expertise
to the system.

2.1.2. DiscourseManager, EnquiryExpert and subclasses

The DiscourseManager is responsible for the DM’s generic
discourse behaviour. It determines the system’s response to
new, modified or negated information from the user, and it
determines when the domain-specific rules of thumb,
encapsulated in the suite of domain experts, should be allowed
to fire. The system’s utterances typically take the form of an
implicit confirmation of new information supplied by the user
(in a fully generated form the system utterance might be “So,
I’ve got you staying at the Hilton in Belfast from June 20th -”)
followed immediately by the system’s next question (“- what
day will you be leaving?”). If the user has modified or negated
information that the system had previously recorded, the
system’s next utterance concentrates on correcting the
modified or negated information rather than seeking further
information. The DiscourseManager is at the top of the
inheritance hierarchy. Its behaviour therefore colours the
manner in which its grandchildren and great-granchildren
(EnquiryExpert subclasses like AccommodationExpert and
TheatreExpert) interact with the user in their own domains
(accommodation, events, etc.).

The DiscourseManager is able to work out what has been
repeated, modified or negated by the user by comparing a

frame
with
state.
been
inform
system
suppli
state t
uttera
uttera
inform
“So, I
(unles
confir

Th
comp
Enqui
dialog
as an
maint
stack
of A
doma
doma
Disco
strateg

2.1.3.

The D
metho
and re

Th
more
slots t
a part
gener
specif
things
Dialo
partic
accom
 of information relating to the user’s latest utterance,
a corresponding frame representing the last discourse
 This last discourse state indicates what information had
provided by the user, the status of each piece of
ation (repeated, modified, negated, etc.) and the
’s previous intentions for confirming or repairing

ed or missing information. Using the last discourse
he system is therefore able to interpret the user’s latest
nce in the light of the intention behind its own last
nce (e.g. if the user does not attempt to modify the
ation conveyed by the system’s implicit confirmation

’ve got you staying at the Hilton…”, then the Hilton can
s it is subsequently modified) be regarded as the
med accommodation name.
e DiscourseManager makes use of a number of other

onents. In order to let each of its domain-specific
ryExpert subclasses update the record of the evolving
ue, it takes on the DialogManager’s DiscourseHistory
 inheritable attribute of its own. DiscourseHistory
ains a record of the evolving dialogue in the form of a
of DialogFrames, each of which in turn comprises a set
ttribute objects relevant to the particular business
in. EnquiryExpert and its subclasses represent the
in-specific expertise that augment the behaviour of
urseManager once the latter’s generic confirmation
ies have been applied.

 Discourse History, Dialogue Frame, Attribute

iscourseHistory is a stack of DialogFrames and contains
ds that assist the DiscourseManager in adding frames to
trieving frames from the stack
e DialogFrame is a set of attributes (of class Attribute –
about this presently) that corresponds to the frame of
hat must typically be filled to complete a transaction in
icular domain - events or accommodation, say. The

ic DialogFrame has methods that are not domain-
ic and that enable calling objects to (among other
) addAttribute and getAttribute. Specialisations of
gFrame are initialised with attributes relevant to a
ular enquiry type: for example a frame for an
modation booking (AccommodationDialogFrame)
Figure 1: High level UML class diagram for the Java dialogue manager

*

1

1

1
1

*

Create

*1

111*

1

1

1

*

DialogFrame

-- provide generic
dialog frame
functionality

Attribute

-- individual dialog
frame attribute,
e.g. Price, Date

EventDialogFrame

-- frame containing
event related
attributes

AccoDialogFrame

-- frame containing
accommodation
related attributes

DiscourseHistory

-- store previous
dialog frames for
all experts

DialogServer

-- provide Galaxy
hub interface

DialogManager

-- contains a number of
EnquiryExpert subclass
instances

-- contains a DiscourseHistory
instance shared between the
instantiated experts

-- contains a DomainSpotter
instance to exercise high-
level control over
instantiated experts

DomainSpotter

-- determine and
maintain enquiry
focus

TheatreExpert

-- domain-specific
theatre enquiry
expertise

CinemaExpert

-- domain-specific
cinema enquiry
expertiseEventExpert

-- domain-specific
processing for
events

AccommodationExpert

-- domain-specific
processing for
accommodation

EnquiryExpert

-- generic
processing for
domain-experts

DiscourseManager

-- implement generic
confirmation
strategy

DB_Request

-- encapsulate
expert initiated DB
request

ExpertRuleSequence

-- collection of
related, expert-
provided, rules

ExpertRule

-- individual
database- or user-
focussed rule

might include the attributes accommodation type, date from,
date to, etc. We tag all instances of a frame of a particular
type with a distinctive identifier – e.g. “Accommodation” for
an AccommodationDialogFrame. This gives us the option of
using DiscourseHistory’s method getLastMatchingFrame to
retrieve a frame that furthers a particular discourse strand (an
accommodation enquiry, say), from among other types of
frames in the DiscourseHistory’s stack. These other frames
may be generated if, for example, the user enquires about
going to a show in the course of an accommodation enquiry.

Each object of class Attribute within a DialogFrame
comprises a number of data values – attributeName,
attributeValue, confirmationStatus (modified_by_user, etc),
discoursePeg (incremented as the value is repeatedly
confirmed by the user, reset to zero when modified etc.)
systemIntention (repair_confirm, etc.) – which collectively
inform the system of the status of each piece of information
that will be used to complete the transaction. Here object-
orientation is being used to create a multi-facetted view of
each piece of information being considered by the system.

2.2. The domain experts’ heuristics

Terminating the inheritance hierarchy are the domain experts:
AccommodationExpert, EventExpert, CinemaExpert,
TheatreExpert, etc. (CimemaExpert and TheatreExpert are
children of EventExpert and represent further specialisations
of their parent’s event-handling expertise.) These experts
contain a battery of domain-specific rules that enable them to
respond appropriately to the user, given that the user has
supplied a particular combination of confirmed attribute
values. The behaviour inherited from the DiscourseManager
ensures that domain experts confirm or query information
appropriately, before assuming that it has been supplied and
recognised correctly. Only when information has been (at
least implicitly) confirmed is it used to trigger the handling
domain expert’s heuristics, expressed as sets of transaction
rules. Provision has been made within the object hierarchy to
allow rules that are more domain-specific to fire first and
rules that are more generic to be tried next in the case where
the object hierarchy is extended below the first level of
domain experts.

The transaction rules encapsulated in the domain experts
fall into two main sequences:

• user-focussed rules: rules that are used to trigger the
system’s immediate response to specific confirmed
combinations of information supplied by the user and
recorded in the evolving dialogue frame – the rules may
cause the system to ask for more information, or may
initiate a database search.

e.g. IF (the user has not given
 accommodation name [e.g. ‘Hilton’]
 or accommodation type [e.g. ‘Hotel’])
THEN ask for accommodation type (1)

• database-focussed rules: rules that are applied in the
light of the system’s failed attempts to retrieve
information from or validate information against the
database. These failed searches may result from a
particular combination of search constraints, whether
these are supplied by the user, or by the system when it
attempts to retrieve information to assist the user. The
database-focussed rules may therefore recommend that a

c
g
h

e

Th
that e
enqui
free to
system
system
will s
pass t

Th
encap
kinds
the pa
clerk
more
enqui
might
locati

W
declar

St
[R

[A

[R

while

St
[R

[A

[R

Sp
some
suite o
subtle
develo
will b

 H
addre
param
metho
and
Exper
exper
anoth
Enqui
onstraint (e.g. the class of hotel) be relaxed in order to
et a database match for other user requirements (e.g. the
otel location that the user has requested).

.g. IF (failed search was to find accommodation name
 [e.g. Hilton, Holiday Inn, etc.]

AND constraints were location Belfast and class
four-star and accommodation type hotel)

THEN relax constraint class four-star and re-do
 search (2)

e database-focussed rules represent recovery strategies
nable the system to offer viable alternatives when an
ry might otherwise reach an impasse. The user remains
 reformulate the enquiry in a way that differs from the
’s suggestion; indeed, in circumstances where the
 has no specific recommendation to make, the system

imply explain why the database search has failed and
he initiative back to the user.
e user-focussed and database-focussed rules that are

sulated in the domain experts are representative of the
of decision making that characterise a human expert in
rticular domain – a booking clerk at a theatre, or a desk
at an hotel. We intend to refine the rules in the light of

detailed studies of interactions between human
rers and human agents. For example, in (2) above, it
 on occasion be preferable to search for a different hotel
on, while maintaining the class constraint.
ithin each domain expert, each rule is specified
atively. For example, (1) above appears as

ring userFocussedRule1 = "
ULE]

{ AccoName UNSPECIFIED }
{ AccoType UNSPECIFIED }

CTION]
{ INTENTION AccoType SPECIFY }

ULE-END]"; (3)

 (2) above appears as

ring dbFocussedRule1 = "
ULE]

{ AccoName TARGET }
{ AccoType CONSTRAINING }
{ Location CONSTRAINING }
{ AccoClass CONSTRAINING }

CTION]
{ RELAX \" AccoClass \" }

ULE-END]"; (4)

ecifying rules declaratively in this manner recreates
of the intuitiveness of rule-based programming – the
f rules can be easily extended or reduced to capture the

ty of human behaviour. In creating the rules the
per is not so much concerned with how the behaviour

e implemented as with what the behaviour should be.
owever, implementing the behaviour needs to be

ssed somewhere. The rule specifications are used as
eters for building ExpertRule objects, which contain
ds for extracting and analysing the contents of the rule,
these rule objects are in turn built into

tRuleSequence objects (typically, for each domain
t, there will be a sequence for user-focussed rules and
er for database-focussed rules). Each instance of
ryExpert (whether an AccommodationExpert, an

EventExpert or a still more specialised subclass) is permitted
by the generic confirmation strategy to test its rule sequences
when there are no user-initiated modifications or negations to
be addressed. A user-focussed rule may thus cause a
SPECIFY intention to be set against an attribute in a dialogue
frame, or it may initiate a database search, and if this search
fails to return the value(s) sought, the query may be
resubmitted in amended form in accordance with the expert’s
database-focussed rules. System output is currently in the
form of key phrases – so an implicit confirmation followed by
a SPECIFY intention might be output as: “Implicit_Confirm
AccoType = Hotel; Specify Location.” We intend to develop
a natural language generation module that will accept this or
similar semantic output and generate a well-formed utterance.

2.3. Some new generic behaviour

In order to deal with the novel situation of the domain expert
using its database-focussed rules to reformulate database
queries that were originally composed on the basis of the
user’s confirmed utterances, we have had to create two new
generic confirmation statuses to extend the set originally
proposed by Heisterkamp and McGlashan [12]. Thus,
alongside new for system, inferred by system, repeated by
user, modified by user and negated by user, we have added
modified by system and negated by system – to deal with
situations where the system, after running a modified or
‘relaxed’ database query, has found, respectively, one or
several alternative values to the failed constraint supplied by
the user. The generic confirmation strategy encapsulated in
the DiscourseManager uses an enhanced set of evolve rules,
extended from the original set described in [7], to set these
statuses. The system’s response to the user must now address
the possibility that a domain expert may have negated a user
value but found no alternatives, negated a value and found
several alternatives or modified an invalid constraint to a
valid one. Accordingly system intentions now include
requests for the user to reformulate the enquiry, choose one of
the suggested alternative constraints, or explicitly confirm a
constraint value that the system has modified.

2.4. Working with the Galaxy hub

A further element of the object-oriented solution is the means
by which the DialogueManager communicates with the
database server via the Galaxy hub. Whenever an
EnquiryExpert subclass needs to make a database search, it
creates a DB_Request object whose attributes record which
values are sought, which search constraints are to be used for
the database search, and which constraints have been relaxed
(i.e. require new values). The object must pass between two
servers (going from the DialogServer to the DatabaseServer
and back again) via the Galaxy hub. The DB_Request class
therefore includes the encoding and decoding functionality
that allows its instances to be encapsulated at the
DialogServer as a bitstream within a Galaxy hubframe and
reconstituted at a receiving DatabaseServer as an object. The
contents of the DB_Request object are then used to formulate
an SQL database query. The DB_Request object is populated
with the results of the database search. It is encoded again
and sent back via the Galaxy hub to the dialog manager
where it is reconstituted and passed back to the domain expert
that initiated the search. The domain expert can then apply its
rules of thumb to the data in the DB_Request object.

In cre
contin
doma
comp
and m
system
confir
frame
doma
high
extend
exper
parser
spotti
outpu
curren
uttera

This r
GR/R

[1] W
P
C
(

[2] h
[3] h
[4] h
[5] h
[6] h
[7] O

M
M
2

[8] O
M
N
C

[9] A
G
D
1

[10] B
A
R

[11] B
M
L

[12] H
M
2

3. Conclusions

ating our prototype dialogue manager in Java we have
ued to explore the possibility of separating generic from

in-specific dialogue behaviour. A range of dialogue
onents are now represented as objects, with data content
ethods to manipulate those data. The objects within our
 include data items supplied by a user and tagged with

mation status and system intention; enquiry-specific
s of information in an evolving discourse history;
in experts with their own agent-like behaviours; and
level, inheritable confirmation strategies. As well as
ing our range of domain experts to cover other areas of

tise (e.g. travel enquiries), we will be expanding our
 grammars to support the more comprehensive phrase-
ng required for free-form spoken input. For spoken
t we will be exploring means of converting the system’s
t output concepts into well-formed natural language

nces.

4. Acknowledgements

esearch is supported by the EPSRC under grant number
91632/01.

5. References

ard, W., “Understanding Spontaneous Speech: the
hoenix System”, Proceedings of the International
onference on Audio, Speech and Signal Processing

ICASSP), 365-367, 1991.
ttp://www.cstr.ed.ac.uk/projects/festival/
ttp://www.darpa.mil/iao/communicator.htm
ttp://www.sls.lcs.mit.edu/sls/technologies/galaxy.shtml
ttp://fofoca.mitre.org/
ttp://communicator.colorado.edu
’Neill, I.M., McTear, M.F., “A Pragmatic Confirmation
echanism for an Object-Based Spoken Dialogue
anager”, Proceedings of ICSLP-2002, Vol. 3, 2045-

048. Denver, September 2002.
’Neill, I.M., McTear, M.F., “Object-Oriented
odelling of Spoken Language Dialogue Systems”,
atural Language Engineering 6 (3-4), 341-362,
ambridge University Press, 2000.
llen, J., Byron, D. Dzikovska, M., Ferguson, F.,
alescu, L. and Stent, A., “An Architecture for a Generic
ialogue Shell”, Natural Language Engineering 6 (3-4),
-16, Cambridge University Press, 2000.
ooch, G., Object-Oriented Analysis and Design with
pplications (2nd Edition). Benjamin/Cummings,
edwood City, CA, 1994.
ooch, G., Rumbaugh, J. and Jacobson, I., The Unified
odeling Language User Guide, Addison Wesley
ongman, Reading, MA, 1998.
eisterkamp, P. and McGlashan, S. “Units of Dialogue
anagement: An Example”, Proceedings of ICSLP96,

00-203, Philadelphia, 1996.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	Also by Philip Hanna

	headREa1: EUROSPEECH 2003 - GENEVA
	pagenumber593: 593
	headREa2: EUROSPEECH 2003 - GENEVA
	Radio:
	pagenumber594: 594
	headREa3: EUROSPEECH 2003 - GENEVA
	pagenumber595: 595
	headREa4: EUROSPEECH 2003 - GENEVA
	pagenumber596: 596

