
20IO 2nd International Conference on Software Technology and Engineering(ICSTE)

General Agent-based Architecture for Collaborative Dialogue Management

Tomas Nestorovic
Department of Computer Science and Engineering

University of West Bohemia in Pilsen
Pilsen, Czech Republic

nestorov@kiv.zcu.cz

Abstract-In this paper, we focus on our agent-based approach
to task-oriented dialogue management. We present our
deliberation process based on optimizing the length of
dialogue. As an uncommon feature, the manager
accommodates a two-layered structure for representing the
dialogue context, i.e., user's intentions detection and beliefs
management. At the end of the paper, we suggest future
extensions to the architecture.

Agent-based dialogue management; system adaptability;
dialogue systems; artificial intelligence

1. INTRODUCTION

Dialogue management focuses on finding the machine's
best response, given a user interaction history. During the
past decades, many approaches emerged. What they have in
common is the aim to manage and elicit knowledge from the
user within a dialogue, however, their theoretical
backgrounds differ. Ranging from simple finite state
machines through intelligent agents, and Markov decision
networks, there is a wide coJlection of methods on how to
implement a dialogue manager. However, we decided to
foJlow an agent-based approach to manage a spoken
dialogue. In our case it accepts domain data description and
intention satisfaction plans (instructing how to reach a
solution to a given domain task). The agent foJlows a scheme
of the BDI architecture (Beliefs, Desires, Intentions) [1].

The rest of the paper is divided as foJlows. First, we
outline manager's overaJl structure (Section 2). Next, we
move on to our approaches to modules storing and coping
with Beliefs, Desires, and Intentions (Section 3). The paper
is concluded with scheduled future work and a brief
summarization (Sections 4 and 5).

II. DIALOGUE MANAGER

The manager plays a role of a coJlaborative
conversational agent. It consists of five modules (Fig. 1). The
Context module maintains information about a current
dialogue (having some Beliefsl and defining some Desires).
The History module serves as a source of historical data
enabling user's utterances to be disambiguated ("the previous
train"). The Strategy Selection module recognizes familiar
situations within the dialogue and determines a
corresponding initiative mode to be selected for the agent's
next response production. The Core module controls aJl the

1 We will refer to the conceptual components of the BD! architecture with
corresponding terms with first letter capitalized.

previous modules - on the basis of given Desires and current
Beliefs it sets new Intentions. The manager produces
Concept-to-Speech (CTS) utterance descriptions and feeds
them into the Prompt Planer module (its aim is to transform
CTS descriptions into naturaJly sounding utterances).
However, this module is currently not regularly designed and
we substitute its function by merely passing the input to
output.

III. GENERAL DIALOGUE MANAGEMENT ARCHITECTURE

This section discusses each of the modules in detail,
providing a comprehensive description of the architecture.

A. Context Module

The Context module foJlows a two layered approach (Fig.
2), in which the upper layer serves for user's intentions
detection, while the lower layer maintains dialogue objects
and relations among them (i.e. , "data" obtained during the
past dialogue). An input semantics preprocessing results into
a block structure representation (Fig. 4) that passes through
both of the layers, leaving a specific imprint behind. In the
figure, boxes are objects we wiJl refer to as concepts
throughout this paper, and arrows are relations among them.
In both layers the imprints take the form of a facts
F ACT(concept, instance), instance2, cs, salience, belie.!),!

--+ &:munlic informntion now

Context System response !low

History

-1...

"''''��I ...
(ln����s) - - , r " , I \

I
I Prompt I I Planner _- - - _' \ Strategy \ I - _ >

Selection "- - - / ,

Figure I. Manager modules topology and interaction

The facts play a role of providing a belief about concepts
(the concept parameter in the fact definition) and relations
(the instance{l,2} parameters). The initial value for the belief
parameter (E <0;1> == < abs. disbelief; abs. confidence » is
the confidence score (cs, cs E <0.5;l.0» obtained from the
ASR module. The salience is an integer informing about
how actual is this fact.

Let us start with the lower layer storing Beliefs about a
dialogue. Considering a time-table domain data model (Fig.
3), the system may, for example, "belief' that a train is the

978-1-4244-8666-3/1 0/$26.00 © 2010 IEEE VI-207

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

desired transportation means and Prague is the particular city
of arrival. The lower layer stores all data-like information
(solid white or hatched concepts in Fig. 4). Knowledge the
lower layer represents can be arranged into a nested structure
as Fig. 5 shows.
The upper layer serves for user's intentions recognition. In a
task-oriented dialogue management, intentions are expressed
in some form of actions to perform. Instead of determining if
a semantics particular concept relates to an action, we detect
cases when it definitely does not. These are all concepts
except those that contain data only. More formally, we can
describe such concepts by introducing cardinality of
information they carry. The following listing discusses all
possibilities the car� may take on. 7 ------ inplIIsemantics

... ___ ' __ upper layer ;';' (intention detection)
........ /./. / �"--- lower layer ;';' (data storage)

Figure 2. Two-layered Context module approach.

Figure 3. Time-table domain data model.

Figure 4. Block structure of preprocessed semantics of a complete request
"When does a next train leave from Rotterdam to Prague?"; graphics

represents concepts value cardinality: shadowed = infinite, hatched = non­
zero, solid white = zero.

Figure 5. Lower layer contents only "data" mentioned in the dialogue.

TABLEt Upper Layer SEMANTICS Imprinting Resolution.

User's Sentence
Declarative Imperative Interrogative

Zero - - -
Cardinality Non-Zero - Imprinted Imprinted

Infinite - Imprinted Imprinted

• Let a leaf concept contain an atomic information
(single time point, e.g. "2p.m."); atomic
information has zero cardinality, i.e. , zero
uncertainty, and therefore, cannot carry any
intention as there is nothing to discuss about it.

• Let a leaf concept contain a non-atomic information
(time interval, e,g. "2p.m.-3p.m."); the information
has non-zero cardinality as it has a certain level of
uncertainty and as such may be a subject of a query.

• Let a leaf concept contain no information
(undefined time value); we define such concept to
have an infinite cardinality.

We recurrently can determine the cardinality of parent
concepts in the block structure by considering the rule:

• Let the concept C contain at least one sub-concept
with non-zero or infinite cardinality. Then C has a
non-zero cardinality.

With knowing just the cardinalities, we are still unable to
determine if a semantics segment should be imprinted into
the upper layer. If we are on detecting actions to perform, we
need to involve dialogue acts, more specifically, detect
imperative or interrogative sentences, Our final approach to
making imprints into the upper layer consists of combination
of both - cardinalities and dialogue acts as Table I shows.

Once the semantics has been imprinted, the most recent
intention is recognized. We use simple template matching
approach, where each intention has its own pattern (Fig. 6).
If it matches, the sum of concept saliences is computed. With
more than one match, the pattern with highest total salience
is considered as the actual user's intention.

To manage intentions, we have partially adopted Grosz
and Sidner's work on intentions in a dialogue [3] - a stack of
intentions managed by dominance among intentions. We
currently omit satisfaction-precedence (as we rely on having
exhaustive plan description) and user's interruptions (i.e.,
temporal changes of the dialogue course). The stack is
managed by a single rule dictating that the user may
introduce a new intention I without losing any of the current

(V Is E Stack: Is DOM I) � push(I) (2)

TTime-Table!--t Train !---tDeparture I--t Time

,:'Time-Table i ; ; " " �

(!.I?:p..�.':l:I.r.� ... !-': Ti.�� ,
Figure 6. The upper layer content with saliences (numbers) and the

DepartureTimeQuestion intention detection pattern (shadowed).

intentions already on the stack if each stacked intention Is
dominates I. If the rule does not apply, introducing I is
considered as a permanent change of the dialogue course,
causing intentions that do not dominate I to be popped out of
the stack immediately.

B. Core Module

Once the intention stack is updated, the agent starts to
process a plan on how to satisfY the top-positioned intention.

VI-208

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

The plan resembles a tree [4] where nodes are holders of
agent's activity (i.e. , dictate utterances to say or back-end
interaction to do). An example of a plan for a
DepartureTimeQuery intention may be seen in Fig. 7. As
first, the user is asked to say a transportation means to find
time-table information for (the result is bound to the M
variable for further processing). Next, the train parameters
are constrained by posing some of the disambiguation
questions. Finally, the database is queried and results
presented to the user. After presenting them, the agent
considers the user's intention to be satisfied. However, we
postpone the popping of agent's corresponding desire out of
the stack with respect to the user's next utterance - if s/he
reopens the intention (by changing the underlying data in the
lower layer), the desire remains on the stack, otherwise it is
popped out [4].

The plan in Fig. 7 is a rather simple one, however, it is
sufficient enough do demonstrate the first level of agent's
adaptability. This kind of adaptability simply swaps plan tree
branches according to the lower layer data salience. We are
motivated by adopting the results of user's initiative - if s/he
prefers to discuss certain part of a task prior to discussing the
rest, the agent adopts the decision. As an example, consider
user's elliptical utterance "by train to Rotterdam" is
misrecognized by not understanding the transportation
means. The city of arrival (Rotterdam) now has the highest
salience in the lower layer. From the agent's point of view,
the user wants to first discuss the city of arrival and then
move to the rest. As a result it adjusts the plan tree structure
by positioning the corresponding branch at the beginning of
the plan (Fig. 8). However, this time the mandatory variable
M is unbound due to the misrecognition. As a result, the
agent starts to search the tree structure to find how to reach a
value. After having found a solution, it puts the cor­
responding branch at the beginning of a plan again (Fig. 9).

TABLE II. EVENT TYPES (ORDERED DESCENDING BY IMPORTANCE);
Applicability (IN PARENTHESES): L = LOWER LAYER, U = UPPER LAYER, P = PLAN, S = STACK

Event Type Event Description
Desire An event of the most importance processed as
satisfaction (P) soon as the manager is able to satisfY a desire on

top of the stack.
Generalization A given concept needs to be a part of a more
(U, L) general concept (e.g., City can be either of

Departure or Arrival).
Disambiguation A concept queries a database and the number of
(P) results returned exceeds the number of results

allowed.
Validation The ASR module recognized the given concept
(U, L, S) with a low confidence score and it needs to be

further validated by the user.
Missing A concept is missing an information (i.e., Time
information (L) concept exists but carries no value).
Concept More detailed information is needed (the counter-
specification (P) event to the Concept-Generalization event).

D····'·.; .. ·· .. ··· ··'·B
···
'
··
G
····
.
·
.
·····
:
·
.. >/ •................

.............. =-,

r Move: Query J
<M>.Dcp.City

lMove: Query J
<M>.Dcp.Timc

/Mwe: Query J
<M>.Arr.Cily

{Move: Query J
<M>.Arr.Timc

{ Move: Statement}
The next <R>

from «R>.Dcp.Cily>
to «R>.Arr.Cit\'>

departures -
at «R>.Ocp.Timc>.

Figure 7. Initial plan for satisfYing the DepartureTimeQuery intention.

AN!:!. .•.

''''S',\'''''G .• : ...
.
•

... :// <
.

.J " :J . •
.

..
...
. / �

•..
..... . / ./ .\ ..

/1 oriable: M J _', I Alove: QllelY /• {Tmin, Bus, Ship}

I Move: QIII!lY I I Move: QllelY I
<M>.Arr.Cily <M>.Dcp.Timc

I Move: QlfelyJ /Move: QllelY J

<M>.Dcp.City <M>.Arr.Time

/1 'or;able: R }
f MOlle: £n�c I

selecl ... \\ hcre M

I Move: 5iwtemelll J

The next <R>
rrom «R>.Dep.Cily> 10 «R>.Arr.City>

dcp.'lrtures
OIl «R>.Ocp.Timc>.

Figure 8. The DepartureTimeQuery plan with swapped branches.

AN'? ..•.

<
.

.

.

.

.
..

.

.

.

.•..•
} :::;:;b�u�,j //:/\\ j ��::b1:?x:c J

{Train, Bus, Ship} .' •. "" ""..• selccl ... wherc M

r Move: Query J
<M>.AIT.Cily

I Move: Query J
<M>.Dep.Timc

{Mow: Query J
<M>.Dcp.Cily

{Move: Query J
<M>.AIT.Timc

{Move: Sratemenr }
Thc ncxt <R>

from «R>.Dep.Cily>
to «R>.AIT.City>

departures'
at «R>.Dep.Timc>.

Figure 9. Feasible DepartureTimeQuery plan.

The characteristic feature of an agent-based dialogue
management is the ability to optimize the dialogue flow in
some way. So far, we mentioned several supporting means
the dialogue agent consists of - intentions stack, data lower
layer, action upper layer, and plans. We were searching how
to bridge all of these to enable optimization of the agent's
behaviour, and as a response, we created an events
foundation. Events of different types define and represent
elemental operations the agent is able to do (similar
approach can be found in [5], however, it is applied on
dialogue data only). As the events always relate to a specific
entity (concept, relation, plan node, or intention), we
preliminary can define them as

EVENT(entity, operation) . (3)

For example, we might want to validate emerged
intention on top of the stack by a validation event, or
generalize a concept in the lower layer by a generalization
event (e.g. , the Departure concept is a "generalization" of the
Time concept). Table II gives an overview of all events we
distinguish (in order of importance).

Each event is considered as one option the manager is
offered to take at a specific point in time. If the existence
purpose of the event has been met (e.g. a concept the

VJ-209

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

validation event relates to has been validated by the user), we
say that the event has been satisfied. As there may be more
pending events in the context, the manager is given more
choices regarding which one to start with at each of its turns.
To find out the best order in that the events should be
satisfied is the subject of the deliberation mechanism (see
below).

We split events into phases. For majority of the events,
the agent must 1) utter to the user, 2) wait for an answer, and
finally 3) check the event satisfaction. All events follow this
cascade model. Additionally, we track the state of recovery
for each of the events. An event is said to be recovered if it
reached the satisfaction phase but user's interaction has
turned it back to the first phase (by making making changes
in the context). Therefore, the final definition of an event is

EVENT(entity, operation, phase, recovered). (4)

As we noted above, events are means for the agent to
make decisions, i.e., plan its behaviour. For example, given a
Time concept with the Validation and Generalization events,
the agent may either 1) first attempt to satisfY the Validation
("Did you say <time>?") followed by the Generalization
("Does the time <time> refer to departure or arrival?"), or 2)
it may attempt to satisfY straight the Generalization, as the
Validation is involved (implicit validation).

In our implementation, we currently consider only one
agent's behaviour optimization criterion (although there may
be more): the length of the dialogue in terms of dialogue
turns. From this point of view, the second mentioned choice
(implicit validation) would be less penalized. Our future
work also considers implementation of the optimization that
regards the length in terms of elapsed real time. However, a
missing clue still is how to combine both criteria into a
single decision pattern.

The current context (upper and lower layers, intention
stack and active plan) with all its events is considered as one
of possible worlds from which we can move to another one
by satisfYing one or more of pending events. We search a
space of possible worlds until it has been found the one in
which the desire on top of the stack is satisfied. Fig. 10
shows the underlying algorithm.
To reach the optimization of agent's behaviour we use the
events penalization scheme (Table III) to construct a plan.
Recall that we consider a plan to be a sequence of events that
is optimal with respect to the "minimal dialogue length"
criterion above. Once the plan has been calculated, finding
out what the system should say next is to follow the plan up
to the nearest point where an interaction with the user is
necessary. This is usually the point where the agent is
missing some information, and hence, utters a query.
Additionally, the agent may also utter a final answer that
satisfies its desire, and hence, makes a statement. Agent's
queries and statements are two of dialogue moves (Table IV)
fed into the dialogue moves stack. The stack gathers moves
performed by either of the participants. The purpose of the
stack is to keep track of unfinished dialogue games [6]
currently being played.

I
2

3

VI-210

TABLE III. Event Penalization Criteria

Penalty Criterion and Explanation
Event does not support a desire on top of the stack.

The more dominant desire it supports, the higher penalty, i.e.,
we want to support narrowed topics in the dialogue.

Event cannot be reacted (is unavailable) due to a missing piece
of information.

The system cannot query a time-table database if a
transportation means is unknown; this results in an infinite
penalty, i.e., stopping exploration in this direction.

Concept salience.
The longer a given concept did not appear in the dialogue, the
higher penalty - we want to stick to the current course of the
dialogue.

The number of pending events covered by the event.
For example, at least two events are covered in an implicit
confirmation utterance: at least one validation event + some of
information elicitation events; the lower the number, the
higher the penalty.

Event is not recovered
Recovered events signal that the user has made corrections in
the past dialogue - serving the corrections is given higher
priority, i.e. not recovered events penalized.

Event phase.
Events in their last processing phase are preferred - once
user's answer is gained, we want to check if it satisfies
system's question; events which do not meet this condition are
penalized.

Event type.
Events of most importance are preferred - see the previous
section for ordered list of event types.

TABLE IV. Spoken Dialogue Moves

Dialogue Example Move
Query "When does a next train leave?" (user)

"What time would you like to departure?"
(system)

YN-Query "Do you want to buy a ticket?" (system)
Validation "Did you say . . . ?" (system)
Statement "Tomorrow morning" (user)

'The next train departures at 7a.m. " (system)
Grounding "I want" "Yes" "No" (user)

"Ok" (svstem)

Duplicate the current world.
Repeat until you have to query the user, or you satisfY a desire on
top of the stack.
2.1 Choose one of unsatisfied events.
2.2 Emulate a response to satisfY the selected event (e.g., validate

a given concept). Here, we consider the domain of the event.
E.g., for the Missing-information event we omit any
emulation as the algorithm does not work with it at all,
whereas for the Concept -specification and Generalization
events we consider user's all immediate possible responses
(we assume the number of them is always low in this case).

Recurrently repeat from step I.

Figure 10. Searching algorithm for agent's deliberation.

TABLE V. Dialogue Strategies Criteria

2010 2nd International Conference on Software Technology and Engineering(lCSTE)

• dialogue quality · dialogue quality • dialogue
estimation estimation quality

• correction of • higher initiative estimation
information strategy elicited • correction of
elicited using information information
higher initiative correction el icited using
strategy • acceptable higher

· information to recognition score initiative
get has a large strategy
range • high

• low recognition recognition
score score

• high recognition · user's intention
accuracy demand is unknown
(unimplemented)

C. Strategy Selection Module

The purpose of the dialogue moves stack is to keep track
of the very recent spoken interaction history. For example,
despite we currently do not have the Prompt Planner module
(Fig. 1) implemented, we yet are able to avoid agent's
repetitive utterances by comparing agent's current move with
moves already done. If there is a match, the agent may keep
silent during its tum (handing the initiative back to the user).

The example situation depicted above is a very special
one, more specifically, it requires high user speech
recognition scores and smooth dialogue progress. However,
as both factors may vary during the dialogue, this interaction
style is not guaranteed to work each time, and the agent is
forced to adapt what it says to the current situation observed.
As a solution, we introduce four dialogue strategies: system­
initiative, mixed-initiative, and user-initiative [7, 9]. All
strategies are named with respect to the level of initiative the
agent exhibits in each of them. Table V conceives a listing of
dialogue features detected to determine the strategy the agent
should use to generate its response (inspired by [7]). The
decision process is similar to the Jaspis architecture [8]: with
having three strategies to decide between, it is selected the
one whose features reach the highest score.

D. History Module

The structure of the History module (Fig. I) has not been
changed since our last work [2], therefore, its description
will be omitted in this paper.

IV. FUTURE WORK

In this paper, we have omitted to describe our approach
to the History module, user's corrections, and structure of our
semantics, however, all of these topics are covered in [2].

Our deliberation approach motivates us to an interesting
direction of research � adaptability of intelligence based on
an instant system performance. We perceive this as a good
direction for the manager to be applicable in queuing service
domains. We would like to simulate these experiments,
instead of make real human tests. As a performance
measurement we want to apply the PARADISE framework
[10]. Last but not least, apart of the time-table domain, we
also would like to apply the above presented dialogue
manager in a personal assistance domain, considering e­
mails and appointments management.

V. CONCLUSION

This paper presented our general dialogue management
architecture, designed as a deliberative agent. We have
presented a broad scale of algorithms that provide manager's
particular capabilities some of which derive from well
known approaches. One of the features the manager
accommodates is the two-layered approach to detect user's
intentions and maintain beliefs.

This paper presented foremost theoretical background of
our research. The necessary changes to the architecture
mentioned above are the subject of our current work.

ACKNOWLEDGMENT

This work was supported by grant no. 2C06009 Cot­
Sewing.

REFERENCES

[I] A S Rao, and M. P Georgeff, "BDI agents: From theory to
practice," Proc. I st International Conference on Multi-Agent Systems
(ICMAS), San Francisco, pp. 312-319, 1995.

[2] T. Nestorovic, "A Frame-Based Dialogue Management
Approach," Proc. 2nd International Conference on the Applications of
Digital Information and Web Technolgies (ICADIWT), London, pp.
338-343,2009.

[3] B. Grosz, and C L. Sidner, "Attention, Intention and the Structure of
Discourse," Computational Linguistics, vol XII(3), 1986, pp. 175-204.

[4] e Rich, C L. Sidner, and N. Lesh, "COLLAGEN: Applying
Collaborative Discourse Theory to Human-computer Interaction," AI
Magazine, vol XXII, 2001, pp. 15-25.

[5] S. McGlashan, "Towards Multimodal Dialogue Management," Proc.
11th Twente Workshop on Language Technology, Twente, pp. 1-10,
1996.

[6] 1. C Kowtko, S. D. Isard, and G. M. Doherty, "Conversational
Games Within Dialogue," Research Paper HCRCIRP-31, Human
Communication Research Centre, University of Edinburgh, 1993.

[7] S.-W. Chu, I. O'Neill, P. Hanna, M. McTear, "An Approach to Multi­
strategy Dialogue Management", Proc. INTERSPEECH, pp. 865-868,
2005.

[8] M. Turunen, 1. Hakulinen, "Agent-based Adaptive Interaction and
Dialogue Management Architecture for Speech Applications," Proc.
of the 4th International Conference on Text, Speech and Dialogue,
Springer, pp. 357-364,2001.

[9] T. Nestorovic, "Dialogue Systems," technical report Nr. DCSEfTR-
2009-05, University of West Bohemia (UWB), Pilsen, 2009.

[10] M. A Walker, D. 1. Litman, C A Kamm, A Abella, "Evaluating
Spoken Dialogue Agents with PARADISE Two Case Studies,"
Computer Speech and Language, vol. XIV(4), 1998, pp. 317-348.

Vl-211

