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Abstract-In this paper, we focus on our agent-based approach 
to task-oriented dialogue management. We present our 
deliberation process based on optimizing the length of 
dialogue. As an uncommon feature, the manager 
accommodates a two-layered structure for representing the 
dialogue context, i.e., user's intentions detection and beliefs 
management. At the end of the paper, we suggest future 
extensions to the architecture. 
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1. INTRODUCTION 

Dialogue management focuses on finding the machine's 
best response, given a user interaction history. During the 
past decades, many approaches emerged. What they have in 
common is the aim to manage and elicit knowledge from the 
user within a dialogue, however, their theoretical 
backgrounds differ. Ranging from simple finite state 
machines through intelligent agents, and Markov decision 
networks, there is a wide coJlection of methods on how to 
implement a dialogue manager. However, we decided to 
foJlow an agent-based approach to manage a spoken 
dialogue. In our case it accepts domain data description and 
intention satisfaction plans (instructing how to reach a 
solution to a given domain task). The agent foJlows a scheme 
of the BDI architecture (Beliefs, Desires, Intentions) [1]. 

The rest of the paper is divided as foJlows. First, we 
outline manager's overaJl structure (Section 2). Next, we 
move on to our approaches to modules storing and coping 
with Beliefs, Desires, and Intentions (Section 3). The paper 
is concluded with scheduled future work and a brief 
summarization (Sections 4 and 5). 

II. DIALOGUE MANAGER 

The manager plays a role of a coJlaborative 
conversational agent. It consists of five modules (Fig. 1). The 
Context module maintains information about a current 
dialogue (having some Beliefsl and defining some Desires). 
The History module serves as a source of historical data 
enabling user's utterances to be disambiguated ("the previous 
train"). The Strategy Selection module recognizes familiar 
situations within the dialogue and determines a 
corresponding initiative mode to be selected for the agent's 
next response production. The Core module controls aJl the 

1 We will refer to the conceptual components of the BD! architecture with 
corresponding terms with first letter capitalized. 

previous modules - on the basis of given Desires and current 
Beliefs it sets new Intentions. The manager produces 
Concept-to-Speech (CTS) utterance descriptions and feeds 
them into the Prompt Planer module (its aim is to transform 
CTS descriptions into naturaJly sounding utterances). 
However, this module is currently not regularly designed and 
we substitute its function by merely passing the input to 
output. 

III. GENERAL DIALOGUE MANAGEMENT ARCHITECTURE 

This section discusses each of the modules in detail, 
providing a comprehensive description of the architecture. 

A. Context Module 

The Context module foJlows a two layered approach (Fig. 
2), in which the upper layer serves for user's intentions 
detection, while the lower layer maintains dialogue objects 
and relations among them (i.e. , "data" obtained during the 
past dialogue). An input semantics preprocessing results into 
a block structure representation (Fig. 4) that passes through 
both of the layers, leaving a specific imprint behind. In the 
figure, boxes are objects we wiJl refer to as concepts 
throughout this paper, and arrows are relations among them. 
In both layers the imprints take the form of a facts 
F ACT(concept, instance), instance2, cs, salience, belie.!),! 
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Figure I. Manager modules topology and interaction 

The facts play a role of providing a belief about concepts 
(the concept parameter in the fact definition) and relations 
(the instance{l,2} parameters). The initial value for the belief 
parameter (E <0;1> == < abs. disbelief; abs. confidence » is 
the confidence score (cs, cs E <0.5;l.0» obtained from the 
ASR module. The salience is an integer informing about 
how actual is this fact. 

Let us start with the lower layer storing Beliefs about a 
dialogue. Considering a time-table domain data model (Fig. 
3), the system may, for example, "belief' that a train is the 

978-1-4244-8666-3/1 0/$26.00 © 2010 IEEE VI-207 



2010 2nd International Conference on Software Technology and Engineering(ICSTE) 

desired transportation means and Prague is the particular city 
of arrival. The lower layer stores all data-like information 
(solid white or hatched concepts in Fig. 4). Knowledge the 
lower layer represents can be arranged into a nested structure 
as Fig. 5 shows. 
The upper layer serves for user's intentions recognition. In a 
task-oriented dialogue management, intentions are expressed 
in some form of actions to perform. Instead of determining if 
a semantics particular concept relates to an action, we detect 
cases when it definitely does not. These are all concepts 
except those that contain data only. More formally, we can 
describe such concepts by introducing cardinality of 
information they carry. The following listing discusses all 
possibilities the car� may take on. 7 ------ inplIIsemantics 

... ___ ' __ upper layer ;';' (intention detection) 
........ /./. ...... . / �"--- lower layer ;';' (data storage) 

Figure 2. Two-layered Context module approach. 

Figure 3. Time-table domain data model. 

Figure 4. Block structure of preprocessed semantics of a complete request 
"When does a next train leave from Rotterdam to Prague?"; graphics 

represents concepts value cardinality: shadowed = infinite, hatched = non­
zero, solid white = zero. 

Figure 5. Lower layer contents only "data" mentioned in the dialogue. 

TABLEt Upper Layer SEMANTICS Imprinting Resolution. 

User's Sentence 
Declarative Imperative Interrogative 

Zero - - -
Cardinality Non-Zero - Imprinted Imprinted 

Infinite - Imprinted Imprinted 

• Let a leaf concept contain an atomic information 
(single time point, e.g. "2p.m."); atomic 
information has zero cardinality, i.e. , zero 
uncertainty, and therefore, cannot carry any 
intention as there is nothing to discuss about it. 

• Let a leaf concept contain a non-atomic information 
(time interval, e,g. "2p.m.-3p.m."); the information 
has non-zero cardinality as it has a certain level of 
uncertainty and as such may be a subject of a query. 

• Let a leaf concept contain no information 
(undefined time value); we define such concept to 
have an infinite cardinality. 

We recurrently can determine the cardinality of parent 
concepts in the block structure by considering the rule: 

• Let the concept C contain at least one sub-concept 
with non-zero or infinite cardinality. Then C has a 
non-zero cardinality. 

With knowing just the cardinalities, we are still unable to 
determine if a semantics segment should be imprinted into 
the upper layer. If we are on detecting actions to perform, we 
need to involve dialogue acts, more specifically, detect 
imperative or interrogative sentences, Our final approach to 
making imprints into the upper layer consists of combination 
of both - cardinalities and dialogue acts as Table I shows. 

Once the semantics has been imprinted, the most recent 
intention is recognized. We use simple template matching 
approach, where each intention has its own pattern (Fig. 6). 
If it matches, the sum of concept saliences is computed. With 
more than one match, the pattern with highest total salience 
is considered as the actual user's intention. 

To manage intentions, we have partially adopted Grosz 
and Sidner's work on intentions in a dialogue [3] - a stack of 
intentions managed by dominance among intentions. We 
currently omit satisfaction-precedence (as we rely on having 
exhaustive plan description) and user's interruptions (i.e., 
temporal changes of the dialogue course). The stack is 
managed by a single rule dictating that the user may 
introduce a new intention I without losing any of the current 

(V Is E Stack: Is DOM I) � push( I) (2) 

TTime-Table!--t Train !---tDeparture I--t Time 

,:'Time-Table i ; ................................... ; " .  . . . . .  " ....... � 

(!.I?:p..�.':l:I.r.� ... !-': ........ Ti.�� ......... , 
Figure 6. The upper layer content with saliences (numbers) and the 

DepartureTimeQuestion intention detection pattern (shadowed). 

intentions already on the stack if each stacked intention Is 
dominates I. If the rule does not apply, introducing I is 
considered as a permanent change of the dialogue course, 
causing intentions that do not dominate I to be popped out of 
the stack immediately. 

B. Core Module 

Once the intention stack is updated, the agent starts to 
process a plan on how to satisfY the top-positioned intention. 
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The plan resembles a tree [4] where nodes are holders of 
agent's activity (i.e. , dictate utterances to say or back-end 
interaction to do). An example of a plan for a 
DepartureTimeQuery intention may be seen in Fig. 7. As 
first, the user is asked to say a transportation means to find 
time-table information for (the result is bound to the M 
variable for further processing). Next, the train parameters 
are constrained by posing some of the disambiguation 
questions. Finally, the database is queried and results 
presented to the user. After presenting them, the agent 
considers the user's intention to be satisfied. However, we 
postpone the popping of agent's corresponding desire out of 
the stack with respect to the user's next utterance - if s/he 
reopens the intention (by changing the underlying data in the 
lower layer), the desire remains on the stack, otherwise it is 
popped out [4]. 

The plan in Fig. 7 is a rather simple one, however, it is 
sufficient enough do demonstrate the first level of agent's 
adaptability. This kind of adaptability simply swaps plan tree 
branches according to the lower layer data salience. We are 
motivated by adopting the results of user's initiative - if s/he 
prefers to discuss certain part of a task prior to discussing the 
rest, the agent adopts the decision. As an example, consider 
user's elliptical utterance "by train to Rotterdam" is 
misrecognized by not understanding the transportation 
means. The city of arrival (Rotterdam) now has the highest 
salience in the lower layer. From the agent's point of view, 
the user wants to first discuss the city of arrival and then 
move to the rest. As a result it adjusts the plan tree structure 
by positioning the corresponding branch at the beginning of 
the plan (Fig. 8). However, this time the mandatory variable 
M is unbound due to the misrecognition. As a result, the 
agent starts to search the tree structure to find how to reach a 
value. After having found a solution, it puts the cor­
responding branch at the beginning of a plan again (Fig. 9). 

TABLE II. EVENT TYPES (ORDERED DESCENDING BY IMPORTANCE); 
Applicability (IN PARENTHESES): L = LOWER LAYER, U = UPPER LAYER, P = PLAN, S = STACK 

Event Type Event Description 
Desire An event of the most importance processed as 
satisfaction (P) soon as the manager is able to satisfY a desire on 

top of the stack. 
Generalization A given concept needs to be a part of a more 
(U, L) general concept (e.g., City can be either of 

Departure or Arrival). 
Disambiguation A concept queries a database and the number of 
(P) results returned exceeds the number of results 

allowed. 
Validation The ASR module recognized the given concept 
(U, L, S) with a low confidence score and it needs to be 

further validated by the user. 
Missing A concept is missing an information (i.e., Time 
information (L) concept exists but carries no value). 
Concept More detailed information is needed (the counter-
specification (P) event to the Concept-Generalization event). 
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Figure 7. Initial plan for satisfYing the DepartureTimeQuery intention. 
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Figure 9. Feasible DepartureTimeQuery plan. 

The characteristic feature of an agent-based dialogue 
management is the ability to optimize the dialogue flow in 
some way. So far, we mentioned several supporting means 
the dialogue agent consists of - intentions stack, data lower 
layer, action upper layer, and plans. We were searching how 
to bridge all of these to enable optimization of the agent's 
behaviour, and as a response, we created an events 
foundation. Events of different types define and represent 
elemental operations the agent is able to do (similar 
approach can be found in [5], however, it is applied on 
dialogue data only). As the events always relate to a specific 
entity (concept, relation, plan node, or intention), we 
preliminary can define them as 

EVENT(entity, operation) . (3) 

For example, we might want to validate emerged 
intention on top of the stack by a validation event, or 
generalize a concept in the lower layer by a generalization 
event (e.g. , the Departure concept is a "generalization" of the 
Time concept). Table II gives an overview of all events we 
distinguish (in order of importance). 

Each event is considered as one option the manager is 
offered to take at a specific point in time. If the existence 
purpose of the event has been met (e.g. a concept the 
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validation event relates to has been validated by the user), we 
say that the event has been satisfied. As there may be more 
pending events in the context, the manager is given more 
choices regarding which one to start with at each of its turns. 
To find out the best order in that the events should be 
satisfied is the subject of the deliberation mechanism (see 
below). 

We split events into phases. For majority of the events, 
the agent must 1) utter to the user, 2) wait for an answer, and 
finally 3) check the event satisfaction. All events follow this 
cascade model. Additionally, we track the state of recovery 
for each of the events. An event is said to be recovered if it 
reached the satisfaction phase but user's interaction has 
turned it back to the first phase (by making making changes 
in the context). Therefore, the final definition of an event is 

EVENT(entity, operation, phase, recovered). (4) 

As we noted above, events are means for the agent to 
make decisions, i.e., plan its behaviour. For example, given a 
Time concept with the Validation and Generalization events, 
the agent may either 1) first attempt to satisfY the Validation 
("Did you say <time>?") followed by the Generalization 
("Does the time <time> refer to departure or arrival?"), or 2) 
it may attempt to satisfY straight the Generalization, as the 
Validation is involved (implicit validation). 

In our implementation, we currently consider only one 
agent's behaviour optimization criterion (although there may 
be more): the length of the dialogue in terms of dialogue 
turns. From this point of view, the second mentioned choice 
(implicit validation) would be less penalized. Our future 
work also considers implementation of the optimization that 
regards the length in terms of elapsed real time. However, a 
missing clue still is how to combine both criteria into a 
single decision pattern. 

The current context (upper and lower layers, intention 
stack and active plan) with all its events is considered as one 
of possible worlds from which we can move to another one 
by satisfYing one or more of pending events. We search a 
space of possible worlds until it has been found the one in 
which the desire on top of the stack is satisfied. Fig. 10 
shows the underlying algorithm. 
To reach the optimization of agent's behaviour we use the 
events penalization scheme (Table III) to construct a plan. 
Recall that we consider a plan to be a sequence of events that 
is optimal with respect to the "minimal dialogue length" 
criterion above. Once the plan has been calculated, finding 
out what the system should say next is to follow the plan up 
to the nearest point where an interaction with the user is 
necessary. This is usually the point where the agent is 
missing some information, and hence, utters a query. 
Additionally, the agent may also utter a final answer that 
satisfies its desire, and hence, makes a statement. Agent's 
queries and statements are two of dialogue moves (Table IV) 
fed into the dialogue moves stack. The stack gathers moves 
performed by either of the participants. The purpose of the 
stack is to keep track of unfinished dialogue games [6] 
currently being played. 

I 
2 

3 
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TABLE III. Event Penalization Criteria 

Penalty Criterion and Explanation 
Event does not support a desire on top of the stack. 

The more dominant desire it supports, the higher penalty, i.e., 
we want to support narrowed topics in the dialogue. 

Event cannot be reacted (is unavailable) due to a missing piece 
of information. 

The system cannot query a time-table database if a 
transportation means is unknown; this results in an infinite 
penalty, i.e., stopping exploration in this direction. 

Concept salience. 
The longer a given concept did not appear in the dialogue, the 
higher penalty - we want to stick to the current course of the 
dialogue. 

The number of pending events covered by the event. 
For example, at least two events are covered in an implicit 
confirmation utterance: at least one validation event + some of 
information elicitation events; the lower the number, the 
higher the penalty. 

Event is not recovered 
Recovered events signal that the user has made corrections in 
the past dialogue - serving the corrections is given higher 
priority, i.e. not recovered events penalized. 

Event phase. 
Events in their last processing phase are preferred - once 
user's answer is gained, we want to check if it satisfies 
system's question; events which do not meet this condition are 
penalized. 

Event type. 
Events of most importance are preferred - see the previous 
section for ordered list of event types. 

TABLE IV. Spoken Dialogue Moves 

Dialogue Example Move 
Query "When does a next train leave?" (user) 

"What time would you like to departure?" 
(system) 

YN-Query "Do you want to buy a ticket?" (system) 
Validation "Did you say . . .  ?" (system) 
Statement "Tomorrow morning" (user) 

'The next train departures at 7a.m. "  (system) 
Grounding "I want" "Yes" "No" (user) 

"Ok" (svstem) 

Duplicate the current world. 
Repeat until you have to query the user, or you satisfY a desire on 
top of the stack. 
2.1 Choose one of unsatisfied events. 
2.2 Emulate a response to satisfY the selected event (e.g., validate 

a given concept). Here, we consider the domain of the event. 
E.g., for the Missing-information event we omit any 
emulation as the algorithm does not work with it at all, 
whereas for the Concept -specification and Generalization 
events we consider user's all immediate possible responses 
(we assume the number of them is always low in this case). 

Recurrently repeat from step I. 

Figure 10. Searching algorithm for agent's deliberation. 

TABLE V. Dialogue Strategies Criteria 
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• dialogue quality · dialogue quality • dialogue 
estimation estimation quality 

• correction of • higher initiative estimation 
information strategy elicited • correction of 
elicited using information information 
higher initiative correction el icited using 
strategy • acceptable higher 

· information to recognition score initiative 
get has a large strategy 
range • high 

• low recognition recognition 
score score 

• high recognition · user's intention 
accuracy demand is unknown 
(unimplemented) 

C. Strategy Selection Module 

The purpose of the dialogue moves stack is to keep track 
of the very recent spoken interaction history. For example, 
despite we currently do not have the Prompt Planner module 
(Fig. 1) implemented, we yet are able to avoid agent's 
repetitive utterances by comparing agent's current move with 
moves already done. If there is a match, the agent may keep 
silent during its tum (handing the initiative back to the user). 

The example situation depicted above is a very special 
one, more specifically, it requires high user speech 
recognition scores and smooth dialogue progress. However, 
as both factors may vary during the dialogue, this interaction 
style is not guaranteed to work each time, and the agent is 
forced to adapt what it says to the current situation observed. 
As a solution, we introduce four dialogue strategies: system­
initiative, mixed-initiative, and user-initiative [7, 9]. All 
strategies are named with respect to the level of initiative the 
agent exhibits in each of them. Table V conceives a listing of 
dialogue features detected to determine the strategy the agent 
should use to generate its response (inspired by [7]). The 
decision process is similar to the Jaspis architecture [8]: with 
having three strategies to decide between, it is selected the 
one whose features reach the highest score. 

D. History Module 

The structure of the History module (Fig. I) has not been 
changed since our last work [2], therefore, its description 
will be omitted in this paper. 

IV. FUTURE WORK 

In this paper, we have omitted to describe our approach 
to the History module, user's corrections, and structure of our 
semantics, however, all of these topics are covered in [2]. 

Our deliberation approach motivates us to an interesting 
direction of research � adaptability of intelligence based on 
an instant system performance. We perceive this as a good 
direction for the manager to be applicable in queuing service 
domains. We would like to simulate these experiments, 
instead of make real human tests. As a performance 
measurement we want to apply the PARADISE framework 
[10]. Last but not least, apart of the time-table domain, we 
also would like to apply the above presented dialogue 
manager in a personal assistance domain, considering e­
mails and appointments management. 

V. CONCLUSION 

This paper presented our general dialogue management 
architecture, designed as a deliberative agent. We have 
presented a broad scale of algorithms that provide manager's 
particular capabilities some of which derive from well 
known approaches. One of the features the manager 
accommodates is the two-layered approach to detect user's 
intentions and maintain beliefs. 

This paper presented foremost theoretical background of 
our research. The necessary changes to the architecture 
mentioned above are the subject of our current work. 
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