
University of West Bohemia
Department of Computer Science and Engineering

Univerzitní 8
30614 Plzeň

Czech Republic

Computer muscle modelling
State of the Art and Concept of PhD. Thesis

Ing. Martin Červenka

Technical Report No. DCSE/TR-2022-03
20𝑡ℎ of August, 2022
Distribution: public

Technical Report No. DCSE/TR-2022-03
20𝑡ℎ of August, 2022

Computer muscle modelling
State of the Art and Concept of PhD. Thesis

Ing. Martin Červenka

Abstract
Nowadays, computer muscle modelling plays a more and more important role in the
threatment of various musculoskeletal diseases. For example, to find the appropri-
ate artificial joint replacement, physicians should know the anatomy and dynamic
properties of the specific patient. Various models and algorithms help physicians.
In this report, state-of-the-art methods are discussed. Then, a competitive modi-
fied position-based dynamics approach is presented. The speed/quality ratio of the
proposed method is adjustable and achieves certain results over a specified period.

This work was supported by the projects SGS-2019-016 of the Czech Ministry of
Education, GA 17-05534S of the Czech Science Foundation and partially by the
project IDEG-2021-027 of the West Bohemia University.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Copyright © 2022 University of West Bohemia, Czech Republic

http://www.kiv.zcu.cz/en/research/publications/

Acknowledgements

I greatly appreciate the long-term help and support of my supervisor doc.
Ing. Josef Kohout, Ph.D. I am als very greatful for all of the advice that
prof. Ing. Vaclav Skala, CSc provided, especially for the discussion on radial-
basis functions. My thanks also go to my partner and family, without whose
indirect help this work would not have been possible.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Muscle modelling pipeline 2

2 Data aquisition 5
2.1 Muscle-tendon units . 5
2.2 Muscle attachments . 6
2.3 Non-invasive methods . 7
2.4 Invasive methods . 8
2.5 Physiological signals . 9
2.6 Data registration . 10

3 Estimation techniques 12
3.1 Constant and piecewise linear estimation 13
3.2 Bezier curve . 13
3.3 Catmull-Rom spline . 14
3.4 Discrette Fourier transform 14
3.5 Radial basis functions . 15

3.5.1 Centre point distribution 16
3.5.2 Polynomial extension 17

4 Finite element method 19
4.1 Problem formulation in strong form 19

4.1.1 Laplace equation . 19
4.1.2 Poisson equation . 20
4.1.3 Second-order partial differential equation 20

4.2 Boundary condition . 21
4.3 Weak formulation . 22
4.4 One-dimensional problem . 22

4.4.1 Discretization . 22
4.4.2 Triangular basis . 23

4.5 Multidimensional triangular basis 24
4.5.1 2D triangular basis 24

4.6 Examples . 26

4.6.1 One-dimensional problem 26
4.6.2 Two-dimensional problem 29
4.6.3 Surface model problems 33

5 Existing methods 35
5.1 Hill-type model . 36
5.2 Via-points . 37
5.3 Wrapping obstacles . 38
5.4 Finite element method . 39
5.5 Other optimalization problems 41

5.5.1 Mass-spring system 41
5.5.2 ARAP . 43
5.5.3 PBD . 48

6 Experiments and Results 58
6.1 PBD results . 58

6.1.1 Collision detection and response 58
6.1.2 Muscle decomposition 59
6.1.3 Artificial data . 62
6.1.4 Iliacus . 63
6.1.5 Gluteus maximus . 64
6.1.6 Other muscles . 65
6.1.7 Quantitative tests . 65
6.1.8 Fibre length . 69
6.1.9 Speed . 69

6.2 Preliminary ARAP Results 71

7 Conclusion & Future Work 74
7.1 The ambitious goal . 74
7.2 ARAP & PBD . 76

A Publications 77

B Other activities 79

Notation

𝑎, 𝑏, 𝑐 scalar variables (italics)
𝑓, 𝑔, ℎ scalar functions (parameters not specified)
𝑥, 𝑦, 𝑧 cartesian coordinates of a point/vector in 3D

𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦), ℎ(𝑥, 𝑦) scalar functions with two parameters
f(𝑥),g(𝑥),h(𝑥) vector functions with single parameter

a,b, c vector variables (italics, bold)
A,B,C matrix variables (italics, bold, uppercase)

𝐷𝑓 domain of function 𝑓
𝐻𝑓 codomain of function 𝑓
× cartesian/cross product
· dot product

R,C real, complex numbers
|A| determinant of matrix A

||a|| = ||a||2 L2 (euclidean) norm of vector a
. . . ,

..., · · · , . . . pattern follows

Chapter 1

Introduction

Modern technology and rapid scientific and industrial progress are leading
us to live faster and less healthy lives. The consequence is that psychical
stress is all around us, and our physical body suffers. Fortunately, modern
healthcare is improving daily, perfecting old and new techniques, treatments,
technologies, tools and more.

Physical health is what this work focuses on. Tones of people go to their
jobs every day to work hard, stand all day, or do other monotonic jobs, which
may affect the human body in the way overused joints wear out (causing os-
teoarthritis). Alternatively, the bones weaken (osteoporosis) due to external
influences, such as monotonic work and inappropriate diet. In order to treat
and predict these diseases, physicians need to know as much as possible
about the human body, especially the individual patient.

The history of studying the human body goes back to 1800 BC when
our ancestors knew the basics, such as bones, muscles and internal organs
approximate location of the average human. The medical field is developing
rapidly and allows in-vivo exploration in particular. Combined with modern
technology, a physician can model a patient in-vivo on his or her computer,
which helps in making crucial treatment decisions.

The following text describes state-of-the-art methods of computerized
muscle modelling, my contribution to date on this topic and some suggestions
for further research.

1.1 Motivation
Osteoporosis is a disease with high prevalence [86], causing bone weakening
and, subsequently, bone fractures. Osteoarthritis is another musculoskeletal
disease where bone joints gradually wear out after time. In the osteoporosis
case, knowing the force values applied to bones by surrounding muscles helps
physicians estimate fracture predictions and suitable treatment even before
the fracture happens. In osteoarthritis cases, the internal forces involved in

1

the bone movement must be known to choose a suitable artificial joint [65],
as long as the wrong choice may lead to pain for the patient.

However, many more diseases and injuries require the modelling and pre-
dicting of musculoskeletal system movement. Another problem is patellar
dislocation, "with an estimated incidence rate of 43-77 per 100,000 individ-
uals in children and adolescents" [7]. Even in treating stroke and hemiplegic
diseases, computer muscle modelling can be used [92]. All these mentioned
problems (and many others) are leading researchers to develop a satisfactory
model of the musculoskeletal system.

Figure 1.1: Various muscle modelling approaches. From top to bottom, from
left to right: Hill-type model [50], Via-points model [39], Wrapping obstacles
model [56], Finite element model [22], Mass-spring model [40], PBD model

There are currently many muscle modelling approaches, some of them
are shown in Fig. 1.1. This report will describe the most significant of these
in more detail.

1.2 Muscle modelling pipeline
The whole muscle modelling process consists of many steps, starting with
the acquisition of suitable raw data and its subsequent transformation into
a useful form. The last step is the formulation of the mathematical model,
where the main problem is (among others) the definition of the muscle-bone
interaction.

An example of a complex pipeline (consisting of data acquisition, model
building and inverse kinematics) includes the following steps:

2

1. obtaining raw data of the patient at rest (contains muscles, bones,
muscle attachment areas, and movement data according to chapter 2),

2. extraction and transformation of the raw data into a useful form, using:

(a) segmentation – separation of different types of tissues (if they are
distinguishable). Segmentation can be manual, semi-automatic or
automatic (depends on the complexity of the segmentation),

(b) registration – mapping of data from different measurements and
modalities, see section 2.6,

(c) approximation and interpolation – if the data is partially cor-
rupted or some parts are missing, these methods are used. They
are further described in chapter 3,

3. acquiring some of general apriori knowledge, determined by human
anatomy, such as:

(a) defines how the attachment areas will be determined (calculation
based on apriori knowledge only or based on the measured muscle
attachment areas from chapter 2),

(b) defining how, for example, a bone is connected by a joint to an-
other bone or how a muscle is connected to a set of bones (at-
tachment areas), etc.,

(c) defining physiological parameters of studied muscles, such as in-
ternal muscle architecture (e.g. figre arrangement: parallel, pen-
nate, etc.), optimal (resting) length

4. creating a mathematical model that requires (these approaches are
further described in chapter 5):

(a) defining the data space (discretized or continuous),
(b) defining the shape of the data (triangular surface mesh, tetra-

hedral volumetric mesh, scattered data... / surface defined by
Fourier series, implicit RBF,...)

(c) defining the interaction between muscle and bone models and thus
determining whether or not a transformation of the measured
data is necessary.

5. transformation back into a useful form.

The next chapter 2 discusses the data used in musculoskeletal models,
and chapter 3 describes the basic mathematical procedures used for ap-
proximating and interpolating purposes in computer muscle modelling ap-
proaches. Chapter 4 describes the basic algorithm for modelling physical

3

phenomena, the finite element method, and chapter 5 presents existing ap-
proaches, followed by chapter 6, containing practical experiments. Conclu-
sion and future work are described in the last chapter, 7.

4

Chapter 2

Data aquisition

The basis of quality computer muscle modelling success is to obtain relevant
data; therefore, methods and possibilities of data acquisition are presented.

There are two categories of data, general and personalized data. Person-
alized data are those that have been measured on a given subject (in the
case of a patient’s illness or optimizing an athlete’s performance). In con-
trast, general data is data from someone else that will not be a good match to
a given patient (see [67], [43] and [71] for further reasons; the main problem
is with the high variability of muscle attachment sites between subjects).

2.1 Muscle-tendon units
The human body is a very complex system, so an accurate model of it (if
we could be able to build it) would be useless. Therefore, all state-of-the-art
musculoskeletal models have to simplify the problem to some extent, and
many phenomena are not taken into account (due to the complexity of the
human body). All the musculoskeletal models described below are just a set
of bones and muscles. Some methods also require models of the attachment
areas or information about the direction of the muscle fibres. All models must
be described by a geometric model. The muscle models described throughout
the following text actually approximate MTUs (muscle-tendon units), which
are made up of muscles, tendons, cartilages, aponeurosis, fats, blood vessels,
etc. Muscle (MTU) and bone models are often approximated by a triangular
mesh, so this would be implicitly assumed in the text unless otherwise stated.
The problem with model acquisition is due to the resolution of acquisition
methods discussed below.

5

2.2 Muscle attachments
To determine, which part of a muscle is connected to a certain part of a
bone, a muscle attachment area has to be defined. The determination of the
muscle attachment area can be done automatically or manually, and for the
decision, some additional data may be required. If the data are not provided
beforehand, there are two possibilities:

1. Fix the set of points of the muscle model that are "close enough" to
the bone surface or penetrate the bone before the movement happens.

2. Obtain a dedicated set of points which defines the attachment area
(e.g. boundary points [17] , scattered points over the area [46], points
from boudnary curve) from a user.

In the first case, the implementation is quite simple. However, there is a
problem that some muscle parts may be fixed incorrectly. The most common
example is a muscle part fixed to a bone joint, which introduces further
problems (forcing the muscle part into the joint etc.). The second case is more
robust but requires obtaining the whole area from the boundary points. We
addressed this issue in our paper [46], which works for simple cases but may
fail for more curved and complicated muscle attachment area shapes, mainly
where the surface bends several times. In the paper, we reached maximal
accuracy of 78.74%, which may be insufficient for some applications.

In the paper, we also experimented with surface plate reconstruction from
the set of point using RBF (described in section 3.5), achieving acceptable
results even for more complicated boundaries.

6

2.3 Non-invasive methods
Noninvasive methods are methods of data acquisition that allow for the ex-
traction of personalized data. CT, MRI and PET-based methods are the
most commonly used. CT is a well-known method (invented in the early
1970s by A. M. Cormack) that allows obtaining several X-ray images com-
bined into a 3D model (using the Radon transformation). Because there is
a large difference (in Hounsfield units HU) between bones and soft tissues),
X-rays images are suitable to distinguish between bones and soft tissues.
Soft tissue types are almost indistinguishable due to small HU differences
(bones: 200-600 HU, all soft tissue: 40-100 HU). The image of real data
obtained with the CT scanner is shown in Fig. 2.1.

Figure 2.1: CT result. Original data [60] on the left, same data adjusted
using the linear transfer function on the right.

In the early 1980s, the first MRI was installed. MRI is based on the
measurement of the spin echo after the application of a strong magnetic
pulse. The main advantages of MRI are that MRI does not produce ionizing
radiation, and MRI also generally has better visibility of soft tissues. These
advantages are strongly counteracted by a much longer acquisition time,
which is unpleasant to the physicians but even more for the patients. An
example of an MRI result is shown in Fig. 2.2.

More recently (in the late 1980s), diffusion-weighted imaging (DWI) was
introduced as an improved version of MRI. Its basic principle is to exploit the
rate of tissue water diffusion. For more detailed information, see. e.g. [68,72].

Diffusion-tensor imaging is a version of DWI where diffusion is defined
using tensor arithmetics. For example, DTI acquisition has been used to de-
termine the pennate angle of various human muscles [53], which is one of
the key parameters in musculoskeletal modelling that affects the magnitude

7

Figure 2.2: MRI result. Original data [60] on the left, The same data adjusted
using the linear transfer function on the right.

of the resulting forces. However, none of the acquisition methods can deter-
mine muscle attachment areas (bounded single/multiple area(s) of the bone
to where the given muscle is attached). Unfortunately, this measurement
cannot be performed by a noninvasive method because the attachment ar-
eas are not visible (or very poorly visible) on imaging. An at least partially
personalized approach can be used, where personalized bone and muscle
models are acquired, and then the attachment areas are estimated (by an
expert, a probabilistic model [29], etc.). Although individual muscles are also
difficult to distinguish using imaging methods, there are techniques [63] that
can do so automatically.

2.4 Invasive methods
For obvious ethical reasons, invasive methods (such as dissecting and other
cutting) cannot be used directly on the patient. Therefore, experiments on
the cadaver are necessary to obtain more detailed data. These experiments
allow producing more accurate models with precise measurements. Moreover,
some of the musculoskeletal features (which are indistinguishable on the
scanning devices) can be acquired. The most problematic are muscle/tendon
separation and attachment areas.

An example of obtaining the data in an invasive way is shown in Fig. 2.3.
This dataset has been acquired as a part of The Visible Human Project [60];
however, there are also Visible Human Chinese [93], and Visible Human Ko-
rea [70]. Two datasets were obtained (male and female), where each subject
was frozen and sliced. 256x256 MRI images were produced from the male
subject, spaced by 4mm. CT scans are 512x512 images and 1mm apart. In

8

figure 2.3, there are the data from 70mm photographs (digitised to 4096x2700
px) also 1mm apart. The female subject’s accuracy was three times better,
so the distance between slices was 0.33mm.

More details about acquiring these data can be found in [80], where the
Visible Human Male procedure is described.

Figure 2.3: The detailed cryosection image of the Visible Human Male [80].

Fukuda et al. [29] describe the other invasive method. The hip region was
dissected into individual muscles, and the attachment areas of the muscles
were tracked down using an optical tracker. They build a probabilistic model
using eight different cadaver specimens. However, they were outliers present
in the measurement, which had to be removed manually afterwards.

A cadaveric study from Carbone et al. [12]. The study produced a dataset
(TLEM 2.0 - Twente Lower Extremity Model) from cadaveric dissection.
This model includes, in total, 166 muscle-tendon elements for each leg. The
details about the procedure can be found in [12].

The invasive methods are also used for anatomic fibres and tendon mea-
surements, due to the fact that these more detailed features of the muscle are
complicated to measure using noninvasive methods. Lee et al. [53] describe
the problem and use cadaveric data to estimate the pennate angle of a given
muscle for that reason.

2.5 Physiological signals
The last set of data to consider is the physiological signals. The best exam-
ple of a physiological signal is EMG (Electromyography). This diagnostic

9

procedure measures motor neuron activation signals responsible for muscle
activation. This knowledge can be used to model a muscle movement, mod-
elling the muscle as realistic as possible. However, the muscle is so complex
and varies from person to person. The EMG is performed using a needle
electrode inserted directly into the patient’s muscle, and its electrical activ-
ity is recorded. Because of its invasionality, the direct personalized model
is not preferred, and the EMG is measured on the skin surface instead of
using a set of sensors. The skin measurement, however, is imprecise because
it cannot be located directly. These sensors can be placed on the shaved
and cleaned skin by sticking a patch or using rubber bands (the latter may
be omitted for more intense movement measurements). If the sensors are
located well, the measurements can be sufficient for some cases.

Movement data are also suitable for this task, not only because the move-
ment can be learned from it but also because it can be verified. These data
can be obtained using location sensors put on the patient. Then he/she is
requested to perform some movement activities (walking, running, jumping),
and the movement of various parts of his/her body is recorded.

These signals are more often used for muscle modelling using direct kine-
matics instead of the inverse one. Since the main focus of this report is on
the inverse kinematics approaches, these data are just mentioned here, and
further details are omitted. The movement data are used in further text to
determine the target bone locations, from which the muscle shape can be
inversely determined.

This chapter shows that the data may vary significantly. If the data do
not quite correspond to each other, registration should be done (e.g. Li et
al. [55], described in the next section 2.6). Nevertheless, the data are too
coarse or incomplete in many cases. For these reasons, an approximation
and interpolation method has to be used.

2.6 Data registration
This brief introduction to data acquisition modalities introduces the data’s
main issue: its diversity. Individual data have various positions, rotations,
and alignments, measured in different conditions. Because of this and also
according to the pipeline in 1.2, registration has to be done beforehand.
The registration is mapping a set of data measured by some modality to a
different set measured by a different modality or in different conditions. The
main two registration classes are rigid and non-rigid registration, the first
one preserves the shape and scale of the transformed object, and the latter
does not. With promising results, the registration of musculoskeletal models
has already been done by Zhao et al. [94]. However, the resulting data may
become self-intersecting. We also dealt a similar problem, which is described
in the bachelor thesis [16] (see Fig. 2.4, where 3D muscle surface and surface

10

muscle fibres (both measured with different modalities) have been registered
using the algorithm from Li et al. [55], an elastic registration approach, based
on surface plate reconstruction. The fibre models should lie on the plate,
further used to produce more dense fibres on the muscle surface. Unluckily,
the results were not as promising as it was at the beginning, mainly because
the noisiness of the input data was transferred and even enhanced to the
output fibres.

Figure 2.4: Muscle fibre model registration to the muscle model surface [16],
using a modified algorithm from Li et al. [55].

11

Chapter 3

Estimation techniques

The next step in the muscle modelling pipeline (see section 1.2) is an ap-
proximation or interpolation1. A key ingredient to make a smooth model is
to be able to approximate/interpolate in the part of a model (muscle, bone,
muscle fibre, attachment area and many more) where no data exists. Ex-
trapolation is not considered under the assumption that the border of the
model is known, accurate and well defined.

The Bezier curves for muscle modelling purposes have been used by Delp
et al. [22] followed by Kohout and Kukacka [48], but it has been shown [47]
that the modelled muscle fibres may self-intersect. To solve the issue, a
Catmull-Rom spline has been proposed.

Kohout and Cholt [47] proposed this approximation for the muscle fi-
bre model to make the fibres as smooth as the Bezier curves and non-self-
intersecting. Although this approach seems successful, estimation using the
higher smoothness curve would probably overperform their approach.

The next approach worth mentioning here is the radial basis function
(RBF) approximation and interpolation approach. The RBF has been de-
signed to tackle scattered data approximation and interpolation problems.
This approach is commonly used in many areas, e.g. image reconstruc-
tion [82], neural networks [36], surface reconstruction [69] and much more.
This approach was firstly proposed by Hardy [34]. Its main advantage is that
it can reach, in theory, infinite smoothness 𝐶∞, when, e.g. Gaussian RBFs
are used as a basis function, which is in contrast with Bezier or Catmull-
Rom, where polynomial basis functions are used. We already used RBF for
the muscle modelling purposes in our paper [46], more specifically for muscle
attachment area estimation.

This section describes these estimation techniques, which are suitable
for muscle modelling problems in detail. Each of the methods listed will be
described in a particular dimension. However, extending the idea to high-
er/lower dimensions is usually possible.

1Word "estimation" will be used further for both approximation and interpolation to
simplify the rest of the text.

12

3.1 Constant and piecewise linear estimation
The most simple estimation is the constant one. The idea is straightforward,
and we assign to the unknown independent value the value of the closest
independent value.

The piecewise linear estimation in one dimension takes into account two
closest values. The intermediate values lie on the straight line going through
the two closest values. Figure 3.1 shows the constant and piecewise linear
estimation. The red is the constant, and the linear estimation is green.

These kinds of estimations have a considerable drawback. They are at
most 𝐶0 smooth. Moreover, they can be non-continuous. It means they are
not differentiable on a nonempty finite set of points. The main issue is that
this is not how the muscle works. Muscle fibres and, therefore, whole muscles
are continuous and smooth. This model would not represent a physically
accurate real muscle, not to mention the problem the consequence is that
the resulting simulation would not look attractive to the user.

The higher dimension polynomial can be used to solve the problem of a
low degree of smoothness. There will be two mentioned approaches, although
there are many more to consider.

3.2 Bezier curve
Bezier curve is a curve that has two boundary points and a set of control
points. The bezier curve without any control point would collapse to a linear
curve. If the curve has only one control point, it is called the quadratic Bezier
curve. The cubic Bezier curve has two control points. The first boundary
point, together with the first control point, forms a derivative of the curve’s
start, similar to the last control point and the second boundary point forms
a derivate of the end of the curve.

The more general recursive definition can be formulated as the bezier
curve of degree 𝑛 is a point-to-point linear combination of the bezier curves of
degree 𝑛−1, one without the first boundary vertex and the other without the
second boundary vertex (in the first case, The first control point becomes the
first boundary point, and in the second one, the last control point becomes
second boundary point). The end of the recursion is secured by the fact that
the Bezier curve of degree 1 is just a vertex in space.

The definition is also the binomial distribution of all of the Bezier vertices
(both border and all control) while changing the probability of success forms
the bezier curve.

𝑃 (𝑡) =
[︁
1 𝑡 𝑡2 𝑡3

]︁ ⎡⎢⎢⎢⎣
1 0 0 0
3 −3 0 0
3 −6 3 0
−1 3 −3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
P0
P1
P2
P3

⎤⎥⎥⎥⎦ (3.1)

13

The cubic Bezier curve is shown in Figure 3.1 on blue. There can be seen
that the curve does not go through the control point. Thus it is instead an
approximation method.

3.3 Catmull-Rom spline
A Catmull-Rom spline [15] [90] is a cubic spline that interpolates all four
points. Its tangent is calculated using the previous and next control vertex
for both internal vertices. Tangents of the border vertices are not clearly
defined. However, the vertex itself can be used instead of the missing one.
The centripetal variant is defined as2:

𝑃 (𝑡) =
[︁
1 𝑡 𝑡2 𝑡3

]︁ ⎡⎢⎢⎢⎣
0 1 0 0
−1

2 0 1
2 0

1 −5
2 2 −1

2
−1

2
3
2 −3

2
1
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
P0
P1
P2
P3

⎤⎥⎥⎥⎦ (3.2)

Setting 𝑡 ∈ ⟨0, 1⟩ will produce the Catmull-Rom spline between two mid-
dle vertice 𝑃1 and 𝑃2. The general Catmull-Rom spline is, however, defined
with a parameter 𝜏 :

𝑃 (𝑡) =
[︁
1 𝑡 𝑡2 𝑡3

]︁ ⎡⎢⎢⎢⎣
0 1 0 0
−𝜏 0 𝜏 0
2𝜏 𝜏 − 3 3− 2𝜏 −𝜏
−𝜏 2− 𝜏 𝜏 − 2 𝜏

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
P0
P1
P2
P3

⎤⎥⎥⎥⎦ (3.3)

The Catmull-Rom spline overperforms Cubic bezier curves in three main
properties. The Catmull-Rom curve goes through all of the control ver-
tices. It does not need to specify first or second derivatives on any vertices.
Moreover, the centripetal 𝜏 = 0.5 (between uniform 𝜏 = 0 and chordal
𝜏 = 1) parametrization does not produce artefacts such as cups and self-
intersection.

The Catmull-Rom spline is also shown in Figure 3.1, the spline in ques-
tion is in pink colour.

3.4 Discrette Fourier transform
The discrete Fourier transform (DFT) is beneficial when the data are equidis-
tantly sampled. In this case, DFT decomposes the curve into the sum of indi-
vidual sinusoidal functions. In the case of interpolation, all of these function
has to be added together. An approximation is made otherwise. The advan-
tage of this estimation is that the extrapolation does not diverge (this is

2The definitions are in matrix form (derived from recurrent form) to be consistent with
other methods.

14

Figure 3.1: Constant (red), piecewise linear (green), Bezier (blue) and
Catmull-Rom (pink) interpolation of a set of points.

common in polynomial estimation cases). The main disadvantage is that the
data has to be equidistant (there is also non-uniform DFT [6], but it is more
complex than DFT). The formula is derived using Euler’s formula:

𝐹𝑘 =
𝑁−1∑︁
𝑛=0

𝑃𝑛𝑒
−2𝜋𝑖𝑘 𝑛

𝑁 (3.4)

The inverse operation is performed in the same fashion; however, the unit
circle has to be traversed in reverse, and the whole result has to be normed
by the number of functions.

𝑃𝑘 = 1
𝑁

𝑁−1∑︁
𝑛=0

𝐹𝑛𝑒
2𝜋𝑖𝑘 𝑛

𝑁 (3.5)

The resulting curve will be 𝐶∞ smooth. Many medical signals (like EKG,
EEG, and EMG) usually obey the equidistant distribution and have a pe-
riodical component. That is the reason it is described here. However, the
model’s shape usually does not obey equidistant distribution or periodicity,
so other estimation methods must be considered. The promising is the radial
basis function approximation and interpolation.

The extension to higher dimensions is simple: separate the vector com-
ponentwise, calculate DFT and put these components back together.

3.5 Radial basis functions
The RBF approach is formulated mathematically as:

𝑓 (x) =
𝑁∑︁
𝑖=1

𝜆𝑖𝜙 (||x−Pi||) (3.6)

It is just a linear combination of a set of RBFs 𝜙 with centres in points Pi,
forced to interpolate the vertices Pi using suitable weights 𝜆𝑖. The equation
is nothing else than the linear system equation Ax = b, where matrix A

15

consists of RBF function values, 𝜆𝑖 is an unknown vector and 𝑓 (x) will be
filled with known values in each of the input points.

In order to approximate, a lower number of RBF may be used, so the
problem will be overdetermined and has to be solved, e.g. using the least
squares approach (considering some drawbacks, see, e.g. Skala and Kansa
[78]).

𝑓 (x) =
𝑀∑︁
𝑖=1

𝜆𝑖𝜙 (||x− 𝜉i||) (3.7)

3.5.1 Centre point distribution
The crucial problem is to determine where the centre points 𝜉𝑖 should be
placed. There are some commonly used possibilities, and each of them has
(as always) its advantages and drawbacks.

Grid distribution

The grid centre point distribution is where all the centre points are arranged
in any form of a grid (regular, cartesian, rectilinear, curvilinear etc.) The
grid setup is simple but has major drawbacks. The biggest one is that the
regularities of the grid may cause ill-conditionality of the RBF matrix [20]
if the shape parameter is not chosen carefully. The other is that it does not
reflect the interpolated/approximated function features.

Halton distribution

The Halton distribution [33] is a quazi-random point distribution. The orig-
inal version is one-dimensional and operates on (0, 1) interval (which can be
scaled by a constant). The element of the sequence is described as:

Halton𝑘 (𝑝) =
⌊log𝑝 𝑘⌋∑︁
𝑖=0

1
𝑝𝑖+1

(︃⌊︃
𝑘

𝑝𝑖

⌋︃
mod 𝑝

)︃
(3.8)

where 𝑝 is an arbitrary prime number, and 𝑘 is the index of the se-
quence element. For multidimensional sequences, it is sufficient to choose
multiple distinct primes, and the result will be just a vector of the Halton
sequences with different prime 𝑝. For example, Halton sequence [2, 3] starts
with

[︁[︁
1
2 ,

1
3

]︁
,
[︁

1
4 ,

2
3

]︁
,
[︁

3
4 ,

1
9

]︁]︁
. Basically, it divides the (0, 1) space to 𝑝 equally

sized intervals, outputting the border points. Then, each subspace is then
subdivided, also outputting the border points. Breath-first politics is used
for the traversal, so the distribution is more spread than in the case of the
depth-first (recursion) approach.

The same sequence will be obtained if the 𝑘 will be written in base 𝑝,
inverted and written after the decimal point. For example of 𝑝 = 2:

16

0.12 = 1
2 , 0.012 = 1

4 , 0.112 = 3
4 , 0.0012 = 1

8 , 0.1012, 0.0112, 0.1112... (3.9)

The Halton sequence has the main advantage of fewer regularities, lead-
ing to ill-conditioned matrix avoidance and maintaining good interval cov-
erage. The disadvantage is that the borders, in most cases, have to be added
explicitly (0 and 1 are not included by default).

Iterative greedy search

In most cases, iterative approaches compete with direct methods in math-
ematics. It is also not an exception in the case of centre point search. The
most straightforward approach is to search the single centre point, which
decreases the difference between approximated function and approximant.
Then, more functions will be searched in the space of the two function dif-
ference to lower the difference as much as possible. This procedure will be
stopped if the overall error is sufficient or the number of centre points is
exhausted.

The main advantage is that the approximant respects the original func-
tion features. Also, the shape parameter in each greedy step can be adjusted
for a better fit. The disadvantage is its computational complexity. Each
"guess" leads to solving a linear equation (which may become pretty large)
and the sum of RBF. Some RBFs are expensive to evaluate on the computer.

Distribution with respect to original function

The justifiable approach is to choose the centre points, where the original
function has some features. The minima and maxima are likely candidates
because the RBFs have their extrema in the centre. Moreover, to cover more,
the inflexion points can be included.

We have already dealt with this approach in [21], but in a slightly differ-
ent scenario. As a result, the "sophisticated placement of radial basis func-
tions significantly improves the quality of the RBF approximation." [21]. The
main conclusion of the research was to avoid grid/equidistant centre point
distribution as much as possible.

3.5.2 Polynomial extension
Let us imagine a non-zero constant function to approximate with the RBF
approach. Without the polynomial extension, it would be difficult to approx-
imate the function accurately. The centre points have to be everywhere to
cover the whole function domain. That is why the polynomial is added to
deal with constant-like and polynomial-like functions.

17

The extension includes the polynomial approximation into the RBF equa-
tion, expanding the matrix by the same number of rows and columns as the
polynomial degree is used. It is done in the case of 21

2𝐷 function like this:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙11 . . . 𝜙1𝑁 1 𝑥1 𝑦1
... 1

𝜙𝑁1 . . . 𝜙𝑁𝑁 1 𝑥𝑁 𝑦𝑁
1 1 1 0 0 0
𝑥1 . . . 𝑥𝑁 0 0 0
𝑦1 . . . 𝑦𝑁 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆1
...
𝜆𝑁
𝑎0
𝑎1
𝑎2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓1
...
𝑓𝑁
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

where 𝜙𝑖𝑗 is the value of the RBF according to the distance from the
vertex 𝑖 to vertex 𝑗, 𝑥𝑖 and 𝑦𝑖 are the coordinates of the centre points, 𝑎0 is
the constant coefficient, 𝑎1, 𝑎2 are linear coefficients of the linear expression
𝑎0 + 𝑎1𝑥+ 𝑎2𝑦. The 𝑓𝑖 variables are function values of given vertices and 𝜆𝑖
is unknown RBF weight to solve.

This matrix can be further rewritten more compactly:[︃
A P
PT 0

]︃ [︃
𝜆
a

]︃
=
[︃

f
0

]︃
(3.11)

where A is an RBF submatrix, P is a polynomial submatrix, a is a
polynomial coefficient subvector, and f subvector contains the interpolat-
ed/approximated function values.

It is sufficient to fill the equation and get good results in practice. The
problem, however, is more theoretical. The issue lies in the different units
used in the matrix, 𝜙𝑖𝑗 is some form of distance, which went through the RBF
function (the units are somewhat unknown in the case of Gaussian RBF, it
is something like "exponential metres" (𝑒𝑚) if all constants are discarded.
However, the 𝑥𝑖 and 𝑦𝑖 are in function domain units, usually metres (𝑚).
However, this mix of apples and oranges leads to theoretical problems, which
are often not mentioned at all [54].

We have studied RBF to some depth [19–21,76,77,84] and can see some
potential of it for the approximation purposes. As far as I know, there was no
usage of RBF approximation methods used in the muscle modelling field. My
current contribution to applying RBF approach to muscle modelling problem
is described in the article "Non-planar Surface Shape Reconstruction from a
Point Cloud in the Context of Muscles Attachments Estimation" [46], where
RBF is used to reconstruct a surface from the set of attachment points.

This chapter explored some of the approximation and interpolation meth-
ods, which may be used for data preprocessing but also as a part of some
muscle modelling techniques. The first one is the finite element method
(FEM), used mainly for modelling various physical phenomena, including
muscle modelling. Even FEM uses an approximation method to work.

18

Chapter 4

Finite element method

The finite element method [5, 51] (FEM in short) is an option to perform
physically accurate modelling. It has been successfully used to solve heat
transfer problems [75], fluid dynamics [13] and more. Recently, George-
Ghiocel et al. [31] used the stress and strain approximation approach in
Storz coupling in fire hose coupling.

The mathematical formulation is described first to understand the basics,
because partial differential equations (PDE) often define these problems.

4.1 Problem formulation in strong form
It is best to start with the most straightforward problem and work out
the most general problem. The so-called "strong" form defines the problem
strictly. The weak form will follow afterwards. The easiest problem to discuss
is solving the Laplace equation.

4.1.1 Laplace equation
Laplace equation is a basic second-order partial differential equation mainly
describing situations of equilibrium and also time-independent phenomena.
The Laplace operator has already been described in section 5.5.2; however,
it will be described in more detail here.

The Laplace operatorΔ is also used for this purpose, but there it is
assumed it is zero everywhere. This assumption also means that there are
no sources or sinks, where the observed phenomenon could "enter" or "exit"
the enclosed observed space. In other words, a closed system is assumed.

∇2𝜓 = ∇ · ∇𝜓 = Δ𝜓 = 0 (4.1)
It is also true that the divergence of the gradient is another definition

of the Laplace operator. The definition (4.1) states that there is no source

19

or sink anywhere in the field because the divergence operator is zero every-
where. If the inner gradient terms are considered, there are no sources or
sinks of gradients in the field, implying the function has to be linear. In other
words, the curvature of the function has to be zero (in a single variable func-
tion case, the osculation circle has to have an infinite radius everywhere).
This restriction seems to be fairly strict, so more complex equations follow.

4.1.2 Poisson equation
The Poisson equation is a Laplace equation, but with the non-zero right side
of the equation, so it is defined:

Δ𝜓 = 𝑓 (4.2)
The unknown function here is 𝜓, 𝑓 function is known. When this equation

is compared with the Laplace equation 4.1, it can be noticed that the 𝑓
function describes the curvature of the 𝜓 function. As an example, if 𝑓
is a constant everywhere. The 𝜓 function describes a circle or sphere, or
hypersphere depending on the number of 𝜓 parameters. The function 𝑓 may
be called a "source term" because the positive value forces the 𝜓 function to
be convex (in many circumstances, a "hole") as well as the negative function
forces the 𝜓 to be concave (basically said a "hill").

The equation 4.2 also describes the relationship between second-order
derivative and a "constant" (meaning some independent term to 𝜓). Some
relation, however, may be needed between second-order derivative, first-order
derivative, function 𝜓 itself (zero-order) and "constant" term.

4.1.3 Second-order partial differential equation
In general, a second-order partial differential equation is defined in two vari-
ables as follows:

𝐴𝜓𝑥𝑥 + 2𝐵𝜓𝑥𝑦 + 𝐶𝜓𝑦𝑦 +𝐷𝜓𝑥 + 𝐸𝜓𝑦 + 𝐹𝜓 +𝐺 = 0 (4.3)
The subscript notation indicates partial derivative by subscripted vari-

able. If 𝐵 = 𝐷 = 𝐸 = 𝐹 = 𝐺 = 0 and 𝐴 = 𝐶 = 1, the Laplace equation
is obtained. If 𝐺 ̸= 0 is allowed, then it becomes a Poisson equation. If un-
known function 𝜓 would have more variables, more terms will be involved
(quadratic growth).

The mentioned problem is the most general and complicated case, so in
this technical report, we will limit ourselves only to the following equation:

𝐴Δ𝜓 +𝐵∇𝜓 + 𝐶𝜓 = 𝐷𝑓 (4.4)
Second derivatives over multiple different variables are not allowed, and

second and first-order derivative merging is not allowed, so each order is

20

multiplied with a single constant (𝐴 and 𝐵). The expression is also called
mixed partial derivative.

The ratio between second-order and first-order terms are specified by
Péclet number [89], which is defined related to 4.4 as:

𝑃𝑒 = 𝐵

𝐴
⇒ Δ𝜓 + 𝑃𝑒∇𝜓 + 𝐶

𝐴
𝜓 = 𝐷

𝐴
𝑓 (4.5)

In other words, it is a rate between advection and diffusion.

4.2 Boundary condition
A certain number of boundary conditions must be known to solve the dif-
ferential equation problem. The problem can be illustrated in a simple case.
Suppose the equation 𝜓′ = 0 on domain ⟨0, 1⟩. The formulation tells the
derivation is zero, so the single-parameter function is constant – the prob-
lem is to figure out the constant term. Because there would be an infinite
number of solutions, a single boundary condition at a single 𝑥 is required
to reduce the degree of freedom. If 𝜓(0.3) = 1.6 is defined, for example, the
function is defined as 𝜓(𝑥) = 1.6 ∀𝑥 ∈ ⟨0, 1⟩.

Similarly, suppose the equation 𝜓′′ (𝑥) = 0. The equation states that
second derivation is zero; in other words, the function is linear. To define a
linear function, two boundary conditions have to be known, and also one of
these two options:

1. 𝑥1, 𝑥2 ∈ 𝐷𝜓, 𝑥1 ̸= 𝑥2 : 𝜓 (𝑥1) = 𝑎 ∧ 𝜓 (𝑥2) = 𝑏

2. 𝑥1, 𝑥2 ∈ 𝐷𝜓, 𝑥1 ̸= 𝑥2 : 𝜓′ (𝑥1) = 𝑎 ∧ 𝜓 (𝑥2) = 𝑏

The first option means that two values for two different points are known.
Second the single function value and one first derivative value are known. It
is not enough to know two first derivative values, as these two values have
to be equal to the definition of the problem.

To simplify the explanation in the further text, let us call each boundary
condition by its name. If the boundary condition restricts function value,
it is called the Dirichlet (D) boundary condition. In the other case, if the
first derivative is known, it is called Neumann (N) boundary condition. The
naming is by their inventors – german mathematicians Johann Peter Gustav
Lejeune Dirichlet (1805-1859) and Carl Gottfried Neumann (1832-1925).

So in the simple problem, either two Dirichlet or one Dirichlet and one
Neumann boundary conditions must be defined. Reasons come from the line
definition – determined by two points (D+D) or a point and a direction
vector (D+N).

21

4.3 Weak formulation
Because solutions of PDEs can be quite complicated (e.g. (4.5) written in
the strong form), the weak formulation takes its place. In weak formulation,
each term by a test function 𝑣 is multiplied and resulting product over the
whole domain is integrated. So equation 4.5 will be rewritten in the weak
form to: ∫︁

Ω
Δ𝜓𝑣𝑑x + 𝑃𝑒

∫︁
Ω
∇𝜓𝑣𝑑x + 𝐶

𝐴

∫︁
Ω
𝜓𝑣𝑑x = 𝐷

𝐴

∫︁
Ω
𝑓𝑣𝑑x (4.6)

It is a tradeoff between the need for test function 𝑣 and linearising the
equation in some sense that one can solve approximately by linear approx-
imation methods. The test function 𝑣 describes the changes of the model
which is allowed – for example, the movement of the effector in a deforma-
tion problem or heating node or group of nodes in a heat flow problem.

The main advantage of the weak form in the FEM is that the integral
over a whole domain may be substituted with the sum of integrals over each
element. The integrals through all elements are simpler to solve because they
are just approximations (mainly linear functions) of the original problem.
The single-dimensional problem will now be described.

4.4 One-dimensional problem
At first, the focus is on the elementary one-dimensional problem to better
look at the problem itself. Assume a real problem modelled by equation 4.5
(4.6 in weak form). A real-life example that may be modelled this way is
a heat transfer of fluid in the tube, where the fluid is dynamic. The tube
is considered with an infinitely small radius or a laminar flow only, ensur-
ing problem one-dimensionality. Because of that, the function 𝜓 is a single
variable function 𝜓 (𝑥).

4.4.1 Discretization
As the finite element method comes in place, the considered space needs to
be discretized into intervals small enough to reach the desired approximation
error. There are many approaches to space discretization. Uniform sampling
is very simple but may neglect important function features [21] (for example
extrema points, inflex points, stationary points and more), regularity is also
sometimes not satisfactory.

If the input data discretization is sparse or unsuitable for a given problem,
the approximation and interpolation methods from chapter 3 will take place
on the data as a preprocessing step. The interpolation is, however, also used
as an integral part of the FEM. For further explanation purposes, the linear

22

interpolation method will be used1. However, let us point out that using a
different estimation is no big issue. It is enough to extend the ideas described
in further text.

In the following text, the discretized domain variables will be denoted as
𝑥1, 𝑥2, . . . 𝑥𝑛, so one-based indexing of 𝑛 domain nodes. Also, 𝑔𝑑 notation is
used for a discretized version of any function 𝑔.

Some basic functions have to be chosen to approximate function 𝜓, or
in other words, a set of functions, which linear combination produces the
discretized function 𝜓𝑑. There are many choices, e.g. 𝑠𝑖𝑛 and 𝑐𝑜𝑠 functions
getting Fourier approximation (see section 3.4), radial basis functions (see
section 3.5 or [21] [10]) family of functions or even more complex functions,
but here the simple to explain (but also complex enough to work in practice)
set of functions to explain are triangular functions.

4.4.2 Triangular basis
A triangular function is defined by three points 𝑎, 𝑏 and 𝑐 as follows:

Λ(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑎−𝑥
𝑎−𝑏 , 𝑎 < 𝑥 ≤ 𝑏
𝑥−𝑐
𝑏−𝑐 , 𝑏 < 𝑥 < 𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.7)

1

0

a b c

Figure 4.1: Triangular function Λ(𝑥) with parameters 𝑎, 𝑏 and 𝑐.

and is also illustrated in Fig. 4.1. This function has compact support –
the value is non-zero in a limited interval only. From the definition it can be
seen that this function is piecewise linear (four linear segments) with Λ(𝑥 <
𝑎) = Λ(𝑥 > 𝑐) = 0 and Λ(𝑏) = 1. The trick here is that a linear combination
of multiple Λ functions (basis) with different 𝑎, 𝑏 and 𝑐 (this can be seen in
Fig. 4.2) for each basis function can be done. Hence, obtaining a piecewise

1It reaches enough precision (better than the constant approximation) and is simple
enough to explain to the reader.

23

linear function with more and more segments (depending on the number
of basis functions) means approximating more complicated mathematical
functions with lower approximation error. The result of the method is a set
of weights of a linear combination of all functions (in this case, Λ(𝑥)).

x1 x2 x3 x4 x5 x6

b1
b2
b3
b4

Figure 4.2: Triangular basis functions 𝑏1, . . . , 𝑏4 on domain 𝜓𝑑 with 𝑛 = 6,
values 𝜓𝑑(𝑥1) and 𝜓𝑑(𝑥6) are fixed by Dirichlet boundary conditions at zero.
Idea adapted from [8].

4.5 Multidimensional triangular basis
As far as one-dimensional triangular basis were explored in section 4.4.2,
the more complicated 2D triangular basis description will be described. To
generalize the approach into higher dimensions, the transformation is similar
to that from 1D to 2D.

4.5.1 2D triangular basis
Solving the problem (in any dimension) requires some kind of tesselation of
the input space. The most common approach involving triangles is Delau-
nay triangulation; however, a general division into triangles (or simplices in
higher dimensions) is also possible, as you can see in Fig. 4.3. The FEM also
allows the usage of different shapes than simplexes; often, rectangles, cuboids
etc., are used. These shapes require different elements (single functions). For
the sake of simplicity, we stick in this report just with simplexes.

The elements will surely be more complex, as far as there are two dimen-
sions there. By induction, the one-dimensional approach will be extended
using the same idea to two dimensions. Each basis function 𝑏𝑖 was piecewise
linear, with value 1 at a specific point 𝑥𝑖 and zero elsewhere on each sample.
So the conditions for all basic functions are:

24

Figure 4.3: General 2D tesselation – triangulation.

∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} 𝑏𝑖(𝑥𝑗) =
⎧⎨⎩1, 𝑖 = 𝑗

0, 𝑖 ̸= 𝑗
(4.8)

In this sense, basis functions are defined in two dimensions with the same
properties. To do so equation 4.8 is used and single scalar argument 𝑥𝑗 is
replaced by two parameters 𝑥𝑗𝑥, 𝑥𝑗𝑦 (two cartesian coordinates 𝑥 and 𝑦 of
the node vector x𝑗). However, each 𝑏𝑖 on a domain R2 has to be defined, not
just for 𝑛 discrete points and even with the piecewise linear property.

The trick to solving this problem is taking into account only adjacent
triangles of the corresponding basis node and scaling the codomain of these
triangles into ⟨0, 1⟩ interval. Elsewhere the value will be zero. The function
𝑏𝑖 will be obtained with compact support again.

The approach is illustrated in Figure 4.4. Value at node [𝑥𝑗1, 𝑥𝑗2] equals
one (node surrounded by red color = 1). Then the value is linearly inter-
polated according to adjacent triangles (outlined by black colour) perpen-
dicularly to opposite edges, where the value of the function 𝑏𝑗 reaches zero
(green colour). On the function domain outside the adjacent triangles, the
function is also zero (green).

The last step is taking a linear combination of 𝑏𝑖 to produce a two-
dimensional interpolating triangular surface over the domain of 𝜓.

25

[xj1,yj2]

Figure 4.4: An illustration of single basis function 𝑏𝑗 with compact support
using heightmap (0–green, 1–red). The bold area has the value 0 on the
outside vertices and one on the inside vertex.

4.6 Examples
Implementation in GNU Octave has been chosen for the finite element
method mainly because of its rapid prototype development in combination
with its GPL licence. At first, we will look at the one-dimensional problem
because it is the most simple case to discuss.

4.6.1 One-dimensional problem
As a simple example, a heat distribution along a 1D approximation of a rod
has been selected. There are two boundary conditions specified on both ends
of the rod. The first end has a predefined temperature of 0 ∘C; the second end
loses one degree Celsius every second (its derivative is −1). These conditions
are mathematically described in Equ. (4.9). In the case of a single dimension,
the unknown function 𝜓 has only a single scalar parameter of 𝑥.

𝜓 (0) = 0 𝜓′ (1) = −1 𝜓′′ (𝑥) = 1 (4.9)

The problem to solve is a second-order partial differential equation, so
it is required to have two boundary conditions (D+D or D+N). The rod
domain is ⟨0, 1⟩, and the discretization is random using 100 samples (with
explicitly defined 0 and 1 as a part of the sample set).

26

To check the result, the problem is also analytically solved. The two
boundary conditions are known and also second derivative being one on the
whole domain. It is also known that if the second derivative is constant, it
produces a parabolic function in equation (4.10).

𝜓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐 ⇒ 𝜓′ (𝑥) = 2𝑎𝑥+ 𝑏 ⇒ 𝜓′′ (𝑥) = 2𝑎 (4.10)

From the formulation above, variable 𝑎 = 1
2 , 𝑏 can be computed from

−1 = 2𝑎𝑥+ 𝑏 = 21
21+ 𝑏⇒ 𝑏 = −2 and 𝑐 will be 0 = 𝑎*0+ 𝑏*0+ 𝑐⇒ 𝑐 = 0.

The parabola equation is hence 𝑦 = 𝜓 (𝑥) = 1
2𝑥

2−2𝑥 with roots 0 and 4 and
center on [2,−2]. I can argue that part of the parabola in Fig. 4.5 may be a
good approximation of a part of the parabola 𝑦 = 1

2𝑥
2 − 2𝑥 as far as there

is no evidence against this hypothesis. The analytic function 𝑦 = 1
2𝑥

2 − 2𝑥
is also shown in Fig. 4.5 in red.

0 0.5 1

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Figure 4.5: One-dimensional advection-diffusion problem with Dirichlet
boundary condition 𝜓 (0) = 0 and Neumann boundary condition 𝜓′ (1) =
−1. The blue curve is calculated using FEM, the analytical function in red.

Listings 4.1 shows the relevant Octave source code. The program exe-
cutes with a single parameter, Péclet number 𝑃𝑒, but its default value is 1.
At first, the count of samples on the domain and constants dirichlet=1 and
neumann=2 are specified. The fourth line prepares the equation’s right-hand
side by heat sources applied to each element (linear segment). Splitting the
domain to the defined number of nodes randomly with uniform distribu-
tion (to demonstrate the dependency of the solution on the discretization
method) is the next step, but one can choose uniform sampling. After linear
system allocation, each element is assembled into a global matrix diff_op,
describing discretized first derivative operator. Each element is described
via a small matrix containing derivatives of corresponding two non-zero ba-
sis functions at the element. The 𝑃𝑒 value is also involved in the creation of
each element.

When this is done, at the thirteenth line, boundary conditions are speci-
fied, Dirichlet 𝜓 (0) = 0 (at node with index 1) and Neumann 𝜓′ (1) = −1 (at

27

last node count). To set up these boundary conditions, iteration over all of
them are performed, and it is also determined which condition is which type.
In the case of the Neumann condition, the value from the right-hand side
(this is fairly simple, that is why we can refer to the FEM-related literature
about Neumann boundary condition as "natural") is subtracted.

On the other hand, much more for the Dirichlet condition (for every
problem, we need at least one Dirichlet boundary condition, which is why
some FEM-related literature called this type of condition "essential") has to
be done. It is required to set the previously unknown value to the specified
one (by setting the corresponding row and column to zero, leaving the value
"one" on the diagonal. The other way around is just putting out the row and
column from the equation) and correct the right-hand side of the equation
(lines 19 and 22). Finally, the equation can be solved, and the result is
plotted.

1 function fem1d(peclet =1)
2 count = 100;
3 [dirichlet , neumann] = (@() size ([1 ,2]))();
4 sources = 1.* ones (1,count -1);
5 domain = [0 sort(rand (1,count -2)) 1];
6 right_side = (diff_op = zeros(count))(: ,1);
7 for e=2: count
8 idel = peclet ./(domain (e)-domain (e -1));
9 pos =[e-1,e];

10 diff_op (pos ,pos)+=[- idel idel; idel -idel];
11 right_side (pos)+= sources (e -1) *.5.*[1;1]./ idel;
12 endfor
13 conds = [dirichlet ,1 ,0; neumann ,count , -1];
14 for i=1: size(conds ,1)
15 pos = conds(i ,2);
16 if conds(i ,1) == neumann
17 right_side (pos) -=conds(i ,3);
18 elseif conds(i ,1) == dirichlet
19 right_side -= conds(i ,3)* diff_op (:, conds(i ,2));
20 diff_op (:, pos)= diff_op (pos ,:) =0;
21 diff_op (pos ,pos)=1;
22 right_side (pos)=conds(i ,3);
23 endif
24 endfor
25 sol= diff_op \ right_side ;
26 plot(domain ,sol ,’-ob’,’LineWidth ’,2,’MarkerFaceColor ’,

’g’,’MarkerSize ’ ,7);
27 axis equal;
28 endfunction

Listing 4.1: One-dimensional problem solution

28

The result of the algorithm 4.1 (with 𝑃𝑒 = 1 leaving default to make
it less confusing) is shown in Fig. 4.5. Random sample distributions can be
seen in the figure, fixed values at zero to zero and also first derivate on one
set to −1, proving declared boundary conditions were satisfied.

So far, the results of FEM in one dimension have been shown, and results
were also verified. It is time to test more complex problems involving more
than one dimension.

4.6.2 Two-dimensional problem
A two-dimensional example may be a heat distribution problem on a 2D
plate. Let us assume a plate where the borders are fixed on 0∘C. The fol-
lowing example will show how it would end up when there is added heat to
half of the plate. There are two examples, one on the square plane and one
on the circular plane in Fig. 4.6 and Fig. 4.7, respectively. The square plane
has domain ⟨0, 1⟩ × ⟨0, 1⟩ and consists of 400 uniformly (in 2D) sampled
samples. The circular plane has a maximum radius of one, the distance from
the centre is uniform from zero to one, and the angle is linear, with a golden
ratio step (see equation (4.11)). For both the cases, the (artificial) problem
is 26𝜓′′ + 2𝜓 + 0.05𝜓 = 𝑓 (Péclet number 𝑃𝑒 = 1

13).
As the differential operator matrix is assembled for the one-dimensional

problem, the problem is that it has to be done the same in two dimensions.
And this is the purpose of the function first_derivative listed in 4.2. It
takes two input parameters: tri matrix of 𝑡 × 3 elements (where 𝑡 is the
number of triangles) containing in each line three indices describing triangle
structure; and also points matrix of 𝑛×2 elements, two coordinates in each
line. The function produces a differential operator matrix A.

The code starts with preparing variables for the readability of the code.
Variable dim will contain the dimension of the problem (the code is further
also used in 3D), n is the dimension of the output square differential operator
matrix A, allocated afterwards at line 4.

29

Then, while the iterations over all triangles are performed, the lengths
of the triangle edges are calculated and then normalized. For each edge of
the triangle, dj element is created and put into global matrix at positions
ds and dt. The local matrix derives from the derivative of a single basis
function.

1 function A = first_derivative (tri , points)
2 dim = size(points ,2);
3 n = size(points ,1)*dim;
4 A = spalloc (n,n,dim*dim *3* size(tri ,1));
5 for i=1: size(tri ,1)
6 d= points (tri(i ,:) ,:)-points (shift(tri(i ,:) ,-1) ,:);
7 d./= sqrt(sum(d.^2 ,2));
8 for j=1:3
9 dj = d(j ,:) ’*d(j ,:);

10 ds = (1: dim)+(tri(i,j) -1)*dim;
11 dt = (1: dim)+(tri(i,mod(j ,3) +1) -1)*dim;
12 A(ds ,dt) -=A(dt ,ds) -(A(dt ,ds) -=dj);
13 A(ds ,ds) += dj;
14 A(dt ,dt) += dj;
15 endfor
16 endfor
17 endfunction

Listing 4.2: Matrix with first derivative of basis functions

In two dimensions, there is a need for some point distribution there. The
uniform distribution, Halton, random, and "spiral" distribution have been
tested.

The listings 4.3 shows dedicated Octave code to a uniform distribu-
tion problem. The function accepts one single parameter (number of desired
points, the requirement is that this is a square number) and outputs matrix
coords of size 𝑛× 2 containing 𝑥 and 𝑦 coordinates of each vector and also
matrix b of size 2× 𝑛 consists of boundary condition index and value.

1 function [coords ,b] = uniform (n)
2 sn = sqrt(n);
3 [x,y] = meshgrid (linspace (0,1,sn));
4 coords = [x(:) y(:)];
5 b = [2:sn -1 1:sn:n-sn sn:sn:n-sn n-sn +1:n;...
6 zeros (1,sn *4 -4)];
7 endfunction

Listing 4.3: Uniform distribution with boundary conditions

To be able to solve the differential equation, one needs at least a sin-
gle Dirichlet "essential" boundary condition. The code designated for it is
at the listing 4.4. It accepts four parameters in total – A is differential op-
erator matrix, b is right hand side vector of the equation, dimension is

30

self-explanatory (there it is 2, but it may be used for 3D as well) and bnds
is a list of Dirichlet boundary conditions.

At first, the code iterates over all of the conditions. For each of them, it
stores the value at the given node. Next, in the inner loop, the right-hand
side and A matrix are modified by zeroing the corresponding row and column
except the diagonal; there will be one value. Finally, both modified A and b
are returned.

1 function [A,b] = dirichlet (A,b,dimension ,bnds)
2 for i=1: size(bnds ,2)
3 val = bnds (2,i);
4 for j=(dimension *bnds (1,i)-dimension +1): dimension *

bnds (1,i)
5 b-= val*A(:,j);
6 A(:,j)=A(j ,:) =0;
7 A(j,j)=1;
8 b(j)=val;
9 endfor

10 endfor
11 endfunction

Listing 4.4: Function which sets up Dirichlet boundary conditions

The code above can fix the particular node at a selected value. Domain
nodes can also be discretized programmatically. The code to assemble the
differential operator has already been shown, so it is time to put it all to-
gether. There is the main function which has a single input parameter in
listings 4.5 – while non-zero, it loads the data from files. Otherwise, it gen-
erates them by uniform distribution already discussed and shown at listings
4.3. When the data are loaded or created, the differential operator is cre-
ated, and the right-hand side of the equation is set to one for each node in
which the 𝑦 coordinate is above average. Else it is set to zero. The problem
26𝜓′′ + 2𝜓 + 0.05𝜓 = 𝑓 (Péclet number 𝑃𝑒 = 1

13) is specified and Dirichlet
conditions loaded/created are applied. In line 20, the linear system equa-
tion problem is solved, and the results are rearranged to fit correctly into
visualization, which is done afterwards (depending on the data dimension).

31

1 function fem2d(load =1)
2 if load ~=0
3 tri = csvread (’tri.csv ’);
4 points = csvread (’points .csv ’);
5 bnds = csvread (’bounds .csv ’) ’;
6 else
7 bound = [-1 -1; 1 1];
8 count = 20;
9 sources = zeros(count .^2 ,1) +1;

10 [points ,bnds] = uniform (count .^2);
11 points = points .*(bound (2 ,:) -bound (1 ,:))+bound (1 ,:);
12 tri = delaunay (points);
13 endif
14 dim = size(points ,2);
15 A = first_derivative (tri , points);
16 b = zeros(size(A ,1) ,1);
17 b+= repmat (points (: ,2) ’>mean(points ,1) (2) ,dim ,1) (:);
18 A =(0.05* eye(size(A))+2*A+26*A*A);
19 [A,b]= dirichlet (A,b,dim ,bnds);
20 x=sqrt(sum(reshape ((A\b),size(points ,2) ,size(points ,1)

) ’.^2 ,2));
21 if dim ==3
22 trisurf (tri , points (: ,1) ,points (: ,2) ,points (: ,3) ,-x);
23 axis equal off;
24 elseif dim ==2
25 trisurf (tri , points (: ,1) ,points (: ,2) ,-x);
26 endif
27 endfunction

Listing 4.5: Main function

Now, the results of the implemented FEM method in two dimensions
follow. At first, the result of the unmodified code is in Fig. 4.6. The part
where 𝑦 is above average (𝑦 > 0, right part of the image) is deformed much
more because the right-hand side was 1 there (it is like a heat distribution
problem with some heat sources on the right side of the image). The Dirichlet
boundary conditions are set from the code – zeroes on each point on the
domain boundary.

The program can be modified to use some different distribution. In the
Fig. 4.7, the points were generated in a "spiral" kind of shape, mathematically
speaking like this:

32

x𝑖 = 𝜅
(︂
𝑖

𝑛
, 𝑖𝜙

)︂
𝑖 ∈ {1, . . . , 𝑛}, 𝜙 = 1 +

√
5

2 (4.11)

𝜅 (𝑟, 𝜃) = [𝑟 cos 𝜃, 𝑟 sin 𝜃]

where vector function 𝜅 converts polar coordinates to cartesian ones,
and 𝜙 is a golden ratio, providing good distribution in the circular area. As
it can be seen, the choice of distribution may be significant. In the circular
example, the more dense centre shows some phenomena which are not visible
otherwise.

4.6.3 Surface model problems
The simplest example on a triangular surface mesh is performing a heat
distribution over it.

Figure 4.6: Tesselation of uniformly sampled 2D space with heat distribution.

33

Figure 4.7: Tesselation of a spiral with heat distribution.

In this particular case, the data has been loaded instead of generated
(using the parameter of the program 4.5 were non-zero) because the creation
of a realistic surface model data automatically is a complicated task. For
testing purposes, a model of man has been used, illustrated in Fig. 4.8.
Head and body area (𝑦 > 𝑦) have a right-hand side of the equation set to
one. Also, the nose area is "anchored" by Dirichlet conditions on two nodes.

Figure 4.8: A heat distribution on a complex surface triangular mesh.

Application of the "essential" boundary conditions causes the values to
transition around the nose and in the belt area, where the right-hand side
of the equation drops from one to zero (from right to left). The detail of
diffusion phenomena is shown in Fig. 4.9.

Figure 4.9: Diffusion phenomena in the belt area (detail of Fig. 4.8).

There is the opportunity to load a different model or even tweak the
parameters of the partial differential equation in the code described above
to approximate the solution of various problems.

34

Chapter 5

Existing methods

There are many methods of performing modelling of human movement and
muscle modelling. These methods can be classified by the dimension they
operate. The first methods are methods in one dimension, modelling muscle
by a line, curve or set of lines/curves.

An exhaustive review of state-of-the-art methods has been recently done
by Dereshgi et al. [23] and also previously by Lee et al. [52]. Although they
seem to briefly summarise many currently existing methods, only a citation
is needed. This paper covers fewer methods in more depth. Moreover, the
statement by Dereshgi et al., "Although mechanical properties of muscles
such as force, power, and work are well known", [23] shows a considerable
overestimation of the current state-of-the-art, considering the exhausting list
of recently published papers about the topic.

Description of the basic ideas of muscle modelling and some of the most
appropriate methods follow.

The main distinction of muscle modelling is between forward and inverse
kinematics approaches. The forward kinematics simulates the electrical ex-
citation of the muscle cell, cell response, fibre response and muscle response
in total. The latter simulates the muscle motion the other way around. We
need to know the "result" (bone motions in general) to do inverse kinemat-
ics. Furthermore, the goal is to figure out how the muscle has to change to
produce the motion. The ultimate task (which is not addressed here) is to
figure out the electrical excitation of all muscle units; hence, figure out all
of the internal muscle force. All of this allows performing direct kinematics
simulation of the given muscle. However, this report aims mainly to describe
inverse kinematics methods; hence, further details are omitted. More details
can be found in Ezati et al. [26].

For this purpose of modelling, the muscle model is further approximated
with a limited set of lines or curves (approximating the real muscle fibres),
with the same direction as it is on real muscle (because the real muscle is
anisotropic).

35

5.1 Hill-type model
The main idea behind the Hill-type models is to approximate the real muscle
fibre by the triplet of parallel, serial and contractile elements. It is the most
basic and probably the oldest mathematical model of the muscle presented
by Hill [37] in 1938. He experimented on frog muscles and described the
muscle contraction dynamic (supported by experiments) by the equation:

(𝐹 + 𝑎) 𝑣 = 𝑏 (𝐹0 − 𝐹) (5.1)

where 𝐹 denotes the current muscle force, 𝐹0 is the maximum strength
of the muscle, 𝑎 is in the units of force and depends mainly on the maxi-
mum strength of the muscle (thus, indirectly on muscle size, mainly on the
cross-sectional area), meaning that 𝑎

𝑃0
is a constant, even disregarding the

temperature of the muscle. Variable 𝑏 is in velocity units and is a constant
(assuming constant temperature). The constant will increase in higher tem-
peratures, allowing quicker muscle contraction. It is also proportional to the
muscle length 𝑙 (the measurement parallel to the muscle fibre from one at-
tachment area to the other, 𝑏

𝑙
is a (nearly) constant). Variable 𝑣 denotes the

velocity of the shortening.
The equation (5.1) may be written also as:

(𝐹 + 𝑎) (𝑣 + 𝑏) = 𝑐𝑜𝑛𝑠𝑡. (5.2)

It means that the load 𝐹 and velocity 𝑣 are inversely proportional, so a
more significant load will be moved slower.

The main problem here is that the 𝑎 and 𝑏 variables are hard to obtain
for each muscle in the human body [37]. The next problem of this model
is that muscle shape varies from person to person. Another problem here
is (due to contraction) the cross-sectional area (the most significant area
parallel to every fibre in the muscle) and length changes during the muscle
activity; thus, 𝑎 and 𝑏 also.

According to Hill, "when a muscle shortens, in a tetanically maintained
contraction, it liberates extra energy in two forms, (i) as "shortening heat",
in amount proportional to the shortening, and (ii) as external mechanical
work. The shortening heat is independent of the load, and therefore of the
work done and the shortening speed." [37]. This idea was to model muscle
fibres using three elementary units, sufficient energy, shortening heat and ex-
ternal mechanical work, arranged in a series-parallel connection. The model
is shown in Figure 5.1.

The Hill model [37] has been improved significantly. The main addition
was parallel element addition [91] in 1989. The improvements are called "Hill-
type" models. The next addition is also a viscous damping element [42].

36

Figure 5.1: Hill-type model of a muscle fibre [2]. PEE = parallel element,
SEE = serial element, CE = contractile element, 𝛼 - pennate angle.

This Hill model has been proved to be insufficient to calculate internal
muscle forces in some cases. According to Modenese et al., "from the me-
chanical point of view, this (Hill-type model, author’s note) is a valid rep-
resentation of a three-dimensional muscle only as long as the line segments
pass through the centroids of the force distribution in the considered mus-
cle sections" [61], which proved to not to be the case very often. Moreover,
Martins et al. show that there are some "medical applications with muscle
structures that are not reducible to 1D (like the muscles of the pelvic floor
[...] and the diaphragm that separates thorax and abdomen)" [58]. Valente
et al. [83] added that the muscle modelling using only a single line segment
could produce errors of muscle force estimation up to 75% (while modelling
gluteus minimus muscle). The solution is to model the muscle fibre using
more complex curves.

There are still some applications of the pure Hill-type models [11]. How-
ever, the issue is to find the model variables 𝑎, 𝑏 and pennate angle 𝛼. That
is why methods do not model musculoskeletal model using Hill-type fibres
nowadays, but instead incorporate the Hill-type fibre model idea into differ-
ent approaches (PBD, FEM ...), trying to find the variable values or at least
mimic the Hill-type model behaviour using fewer parameters.

5.2 Via-points
A via-points approach works on a predefined set of points. This set of points
defines where the muscle fibre model should go through. When performing
inverse kinematics movement, the goal is to reduce the number of intersec-
tions, mainly the muscle model with the closest adjacent bone model.

There are many options on how to define these points. The most common
ones are points directly fixed to a bone, so whenever the bone moves, the
point moves accordingly. The second option is that the point is present only
if a condition is met (for example, if the joint flexion angle is more than 𝑥),
so the natural shape of the fibre model is partially restored. The third option
is a point which may move depending on some state (for example, depending
on some angle, typically between two bones), following a predefined curve
(see Fig. 5.2. These three variants are used in OpenSim modelling software).

37

Figure 5.2: Via-points control curve inside a muscle [39]

There are, however, some catches. The first obvious one lies in the via-
points definition. There has to be an approach to define these points because
the user-defined points will be time-consuming for the physician and costly
and subjective. The second main problem is that the fibre models may in-
tersect other models or even self-intersect no matter what. Furthermore,
the resulting muscle fibre model will not be smooth in some cases. Mod-
enese stated that "straight-lines representation of muscles surrounding the
hip joint was limiting the accuracy of hip contact force predictions" [61]. The
better approach maybe not go through a set of points but "wrap around" a
predefined set of geometric objects [30].

5.3 Wrapping obstacles
The wrapping obstacles approach has been developed to address some of the
abovementioned problems. Some of the problems are still present:

• The geometric objects must be specified in the same fashion as the
via-points.

• In the case of wrong curve selections, the intersection problem stays.

The improvement is in the smoothness of the curve. A curve which wraps
around a sphere will be smooth even in the worst case, which cannot be said
about the via-points approach. The wrapping around a cylinder is illustrated
in Figure 5.3.

The main issue here is that infinitely many curves wrap around a volu-
metric object. From these curves, we can select the shortest one, the one with
the least average curvature, maximum curvature etc. The selection depends
mainly on the application (on the required precision, computing power etc.).
The issue is even more present in some extreme bone arrangements.

The wrapping obstacles approach has been used (concerning muscle mod-
els) by, e.g. Lloyd et al. [56] and Kohout et al. [45]. Lloyd et al. wrap around
an arbitrary geometrical model, subdividing the curve into segments divided

38

Figure 5.3: Wrapping obstacles approach. A line of action is wrapped around
a single cylinder [45].

by knots with elastic forces to draw the knots together and keep them from
penetrating obstacles. The latter (and significantly older) approach is limited
to the sphere, single-cylinder and sphere-capped cylinder.

5.4 Finite element method
The finite element (FE) method has already been described in detail in
chapter 4; however, its application for the muscle modelling problem has
been omitted until now. For some reference, the most relevant approaches
are described in chronological order.

Although multiple FE methods were published dealing with soft tissue
modelling, the first paper on musculoskeletal modelling using the FE method
is probably from Martins et al. [59] published in 1998. They incorporated the
Hill-type model into their FE model (however, the same coauthor in 2006
showed that the Hill-type model might be insufficient in some cases [58]).
They divided brachialis muscle into 4050 tetrahedra and assumed constant
material constant (not considering muscle anisotropy). The external force
has been applied just to an arbitrary part of the muscle ("right end").

Delp and Blemker [22] in 2005 used a template, which is then projected
onto the target mesh. The projected template is then deformed using the
finite element method. They consider the resolution of magnetic resonation

39

(MR) imaging of that time for template creation. To find out the boundary
condition, they identified the tendon region from MR (the complete process
is not described in detail, but I assume that some manual effort is necessary
because of the phrasing "using [...] and knowledge of anatomy"). As a basis
function for the FEM, they use Bernstein Basis Functions, which have been
proven to approximate in the limit (in the sense of Weierstrass theorem) any
continuous function defined on a finite interval.

Boubacker et al. [9] did a considerable amount of work to publish a
survey on this topic and serves the purpose of a good problem introduction.
However, it is worth noting that it was published in 2006. Therefore, some
information there is obsolete.

Oberhofer et al. [66] in 2009 used cubic Hermite interpolation function
in their FE approach to ensure 𝐶1 smoothness of the model. Moreover, the
boundary condition in attachment areas is used with the via-point approach
(see section 5.2) to ensure no muscle penetrates any bone. These via-points
are then integrated into the FE itself. The objective function consists of a
distance between landmarks and targets and a Sobolev smoothing constraint.

Kaze et al. [24] in 2017 used FE to divide the model using tetrahedra.
The boundary condition has been derived from muscles using the anatomic
muscle attachment area. For the sake of simulating a tendon, a mass-spring-
like system has been adopted (further details below in section 5.5.1). Their
work’s main focus was to estimate maximal strain.

Wei et al. [88] in 2019 also used FE to model a human hand. They used
Nolan model [64] for hyperelastic soft tissue modelling (the main purpose
was to model the human skin accurately). Their work mainly focused on
analysing pressure generated by different hand grips.

Currently, there are many methods involving the pure finite element
method. Fougeron et al. [28] currently use FE for above-knee socket load
analysis. Using FE, Vila Pouca et al. [85] study muscle fatigue on a pelvic
floor. Sun et al. [81] models spine movement also using the FE method.

Although the FE methods may produce great results, the main problem
with FE methods is that they are difficult to set up because they require too
many parameters [73]. Also, a disadvantage of the FE methods is that they
are often hard to calculate. Fourgeron et al. [28] claim that their approach
runs on 2 CPU machines for 40 minutes, which is far from real-time sim-
ulation. Due to this fact, the FE methods are introduced briefly, probably
in less detail than they deserve. The main goal of this work to seek a faster
method (real-time if possible) with comparable results.

There are multiple other methods currently available for muscle mod-
elling (PBD, MSS), Moreover, some candidates will also be used for this
purpose (ARAP). They promise comparable results using a smaller amount
of computing power.

40

5.5 Other optimalization problems
The following methods work on the function minimisation principle. The
optimisation is performed to find a geometric model (of muscle, muscle fibre)
respecting some restrictions (e.g. volume preservation, shape preservation,
fibre length etc.)

Some of the solutions go against each other. For example, if a muscle
is stretched, the fibre length restriction wants to shorten the fibres back,
but volume preservation wants to extend them to fill more space. Thus,
these restrictions are often weighted according to modelling requirements.
For all of the techniques, there are two common restrictions. The muscle is
attached to a set of bones, so adjacent parts of the muscle must be fixed to
the corresponding bone surface. Also, it is not appropriate for the muscle to
be able to penetrate the bone. A collision detection and response (CD/R)
form has to be implemented to avoid this issue. The following methods
will describe what is optimised and how, but these two restrictions may be
omitted because they are shared. Also, these restrictions are often threatened
as strict (the second one may be a bit relaxed), meaning that there is no
attachment displacement or collision should occur.

5.5.1 Mass-spring system
The mass-spring system (MSS) works as its name suggests, simulates com-
plex motion by masses (point of masses) connected via virtual springs. The
motion propagation is then done by transferring force through a series of
springs. The spring is described using not such a complicated equation:

F𝑖𝑗 = −𝑘d𝑖𝑗 (5.3)
Where F𝑖𝑗 is the force produced by the spring between 𝑖-th and 𝑗-th par-

ticle, variable 𝑘 denotes spring constant (force required to restore the spring
to its original shape per unit of spring extension). The spring displacement
is the variable d𝑖𝑗.

As far as the basic concept is not so complicated, there are many im-
plementations of the approach. One of them is from Georgii and Wester-
mann [32], who implemented this problem effectively on GPU.

There is a work from Aubel and Thalmann [3], using 1D mass-spring sys-
tem model for each muscle fibre model independently, however, with some
problems (mainly holes between the muscles). They also introduce angular
springs, which hold the angle between two spring segments. Main problem
with their work is their an almost lax attitute to collision detection: "At-
tempting to handle all muscle-muscle and musclebone collisions is unreason-
able. In our framework, preventing muscle-bone collisions is easy and fast
using repulsive force fields" [3]

41

The most considerable work is from Janak [40], the other work that
combined mass-spring system and muscle modelling. He also considers the
muscle fibre models as a whole and does not threaten them independently.
Contrary to Aubel and Thalman, Janak’s work works on muscle fibre models
in continuous space. He decomposed the triangular mesh muscle model into a
muscle fibre model, and these fibres were sampled uniformly to obtain nodes
(masses) which he finally connected with edges (springs). His results show
that his approach may work partially, but the problem is also his collision
detection approach, where he approximated the surface mesh with spheres,
meaning "the collision response is not perfectly precise and therefore the
surfaces of the objects might partly intersect" [40].

The uniform sampling and connection between the mass points are il-
lustrated on Figure 5.4. It should be noted that the author also considered
randomisation and its consequences.

Figure 5.4: Mass-spring system, simulating a closer non-specified human
muscle. The problem is with a part below, which is not approximated what-
soever. Image is taken from [41].

Optimization

If the springs are placed correctly, it is sufficient to optimise for spring length
(respecting two common restrictions). In this case, we solve for:

𝑚𝑖x′′
𝑖 + 𝑐x′

𝑖 +
∑︁

∀𝑗∈N𝑖

F𝑖𝑗 = F𝑒
𝑖 (5.4)

where 𝑚𝑖 is 𝑖-th particle mass, x𝑖 is its position, 𝑐 is a damping coefficient,
N is a neighbourhood of 𝑖-th node, F𝑖𝑗 is a force of the spring, and F𝑒

𝑖 is an
external force vector. The damping coefficient 𝑐 can be calculated using the
formula [41]:

42

𝑐 = 2
√︃

2𝑚
(︂

2 + 4
𝑘𝑎

)︂
(5.5)

where 𝑘𝑎 is average stiffness. The exact solution can be obtained using
integration over time. For computational purposes, it is sufficient to approx-
imate the solution using finite differences, with a short time step 𝑑𝑡. The
result is as follows:

x𝑖 (𝑡+ 𝑑𝑡) = F𝑇
𝑖 (𝑡)
𝑚𝑖

𝑑𝑡2 + 2x𝑖 (𝑡)− x𝑖 (𝑡− 𝑑𝑡) (5.6)

F𝑇
𝑖 (𝑡) = F𝑒

𝑖 −
∑︁

∀𝑗∈N𝑖

F𝑖𝑗 − 𝑐
x𝑖 (𝑡)− x𝑖 (𝑡− 𝑑𝑡)

𝑑𝑡
(5.7)

This approach’s main problem is its setup (variable 𝑘 may vary between
springs). This approach also does not preserve the original volume of the
model, which is one of the desired outputs for muscle modelling. This could
be probably solved using the approach described by Hong et al. [38], however,
it would increase computational time dramatically.

5.5.2 ARAP
ARAP [79] stands for As-Rigid-As-Possible and is a method of finding min-
imal non-rigid transforms in the surface mesh. Its main contribution is that
no internal structure is needed (for comparison, see e.g. [44], which is a very
similar method to ARAP in some ways and includes volume constraints.
However, it requires an internal structure "skeleton" to be defined). ARAP
approach was used for medical purposes by Fasser et al. [27], where they
used ARAP to morph the template of pelvic bone onto the subject-specific
landmarks. However, they neglect some important features of the bone, for
example, its volume, which the original ARAP cannot preserve. Wang et
al. [87] also explored the ARAP approach. However, they discarded using
the ARAP because "none of the methods worked well. [...] these methods pro-
duce non-smooth shapes with spikes (ARAP, BBW, FEM)" [87]. Moreover,
their proposed approach also neglects the volume preservation requirement.

As-Rigid-As-Possible deformation should deform the model as little as
possible. Any non-rigid transform is penalised via a cost function. The prob-
lem is mathematically formulated as finding the solution to a nonhomoge-
nous system of linear equations. The matrix is a discrete Laplace operator of
the mesh (after applying all boundary conditions, mainly fixed points), and
the right-side vector contains second differences of each vertex concerning
the close neighbourhood.

43

Laplace operator

The Laplace operator Δ is a second-order differential operator defined also as
a divergence of the gradient. This leads to the assumption that the operand
has to be a twice-differentiable function. The mathematical description is as
follows (assuming 𝑥𝑖 is a single cartesian coordinate of a vector produced by
function 𝑓):

Δ𝑓 = ∇2𝑓 = ∇ · ∇𝑓 =
𝑁∑︁
𝑖=1

𝜕2𝑓

𝜕𝑥2
𝑖

(5.8)

The primary motivation behind Laplace operator usage is its significant
local shape changes. If a Laplace operator is used on a triangular mesh,
the definition in continuous space has to be modified to the discrete space.
This step is done when optimal translation and rotation are computed (see
the optimisation steps in 5.5.2 below). The discrete version of the Laplace
operator over a manifold is also called the Laplace-Beltrami operator.

Volume preservation

The original ARAP approach is a fast and precise algorithm. However, it
does not consider the preservation of the initial model volume. In the case
of muscle modelling, this is crucial since muscle does not change its volume
significantly while contracting.

To produce the correct volume, one can scale the whole model by scalar
value so the volume will be restored. It can be done by factor1:

3

√︃
𝑉0

𝑉
(5.9)

The simple idea is to multiply all coordinates by the initial and current
volume ratio. Because there are three coordinates in 3D, it has to be cube
rooted.

Although this is a simple and elegant solution, it also works in the case
of concave shape, we cannot use it in the case where the muscle is attached
to multiple bones in general at particular coordinates because these points
are fixed and cannot be moved, so some volume will be missing/extra.

There is also a formula from Aubel & Thalman [4] which describes the
scale factor as the square root of muscle elongation, but according to the
authors, "We experimentally measured for various muscle shapes a maximal
volume variation of 6% when the muscles shorten by 30%". The naive solu-
tion (used by the PBD algorithm, though) shows more accurate results [18]
than Aubel’s and Thalman’s formula.

Seylan et al. [74] use ARAP for shape deformation with volume preserva-
tion; their approach for volume preservation was adding more edges, which

1This factor has no source because I derived it myself.

44

improves the result. However, according to them, the volume loss still occurs.
After our experimenting in 2020 with the volume preservation, Dvorak et
al. [25] used ARAP and volume tracking together for the time-varying sur-
faces, admittedly overperforming my preliminary experiments significantly
(see section 6.2). Since their approach works well for the noiseless data (con-
firming our knowledge with problematic noise data) and its purpose is for
general mesh, some ideas may be adopted from they work in our future
work into muscle modelling techniques. The main issue there, however, is
that they do not consider collisions between objects. There is also an issue
where they require to deduce the internal structure of the surface mesh, so
whenever they work with the internal structure, the algorithm’s complexity
rises from 2D to 3D, hence adding a degree of complexity and slowing down
the modelling process. With that said, there are still some specific problems
to solve (e.g. muscle anisotropy, collision detection and response, execution
speed).

Optimization

In the ARAP approach, the optimisation is composed of two aspects, the
optimal translation and rotation of a point in a given neighbourhood. The
goal of ARAP is to minimise the energy in Equ. (5.10) [79]. A variable
labelled with an apostrophe (′) belongs to the deformed mesh. Otherwise, it
belongs to the original mesh.

𝐸 (𝑆 ′) =
𝑛∑︁
𝑖=1

𝑤𝑖
∑︁
𝑗∈N(𝑖)

𝐸
⃒⃒⃒⃒⃒⃒(︁

p′
𝑖 − p′

𝑗

)︁
−R𝑖 (p𝑖 − p𝑗)

⃒⃒⃒⃒⃒⃒
(5.10)

In the energy equation, 𝐸 is the resulting energy, 𝑆 is the triangular
mesh on which the energy is calculated, and 𝑤𝑖 is the weight of a connection
between each vertex pair. The weights can calculate using the cotangent for-
mula (described in Equ. 5.13), Tutte formula, Kirchhoff formula or anything
else suitable for the given problem. Variable 𝑛 describes the total number
of vertices in the mesh, N (𝑖) denotes the neighbourhood of the vertex 𝑖 (all
vertices which are connected via an edge). The position of the 𝑖-th vertex is
labelled as p𝑖, and the rigid rotation in the 𝑖-th cell denotes the variable R𝑖.

The optimal translation and rotation of each vertex in the surface mesh in
ARAP can also be described as follows. Let us start with optimal translation:

• Find centroid c̄ of original vertices

• Find centroid c̄′ of transformed vertices

• Optimal translation = c̄′ − c̄

The centroid is calculated as a weighted average coordinate of neigh-
bouring vertices (all vertices connected by an edge) using the weights in
Equ. (5.13). The optimal rotation can be calculated as follows:

45

• Shift origins to centroids: o′
𝑖 = p′

𝑖 − c̄′ and o𝑖 = p𝑖 − c̄

• Stack o𝑖 into matrix P (3×𝑁) and o′
𝑖 into matrix P′ (3×𝑁)

• Compute covariance matrix C = PP′𝑇 (3× 3)

• Compute Singular Value Decomposition (SVD) C = PP′T = UΣV

• Optimal rotation R𝑖 = (UV)𝑇

It has been shown [79] that it is sufficient to alternate between these two
transformations until the error is reasonably small.

Linear equation system

When the local translation vectors and rotation matrices have been found.
While optimal local rotations are independent of each other (a rotation in
each cell can be calculated independently using SVD described above), the
optimal translations are not independent (if a vertex moves, it affects all
adjacent cells). Sokrine [79] derived that using the Laplace-Beltrami operator
on the already deformed positions p (using local rotation R𝑖) solves the
problem of minimising the energy (see [79] for further details). The system
will be further noted as Lp′ = p and each part of it will be further described.

An example of the linear equation system matrix L construction is in
Fig. 5.5. The weight of each edge is there just "1" in the example for the sake
of simplicity. The negative vertex degree is stored on each position on the
main diagonal (sum of all weights in general). For the other cases, if there is
an edge between the given pair of vertices, there is a value of 1 (edge weight
in general), zero otherwise. Given definition assures that sum in each row
and column stays zero. The nonzero elements become more complicated if
different weights are introduced (e.g. cotangent weight in 5.13).

L =

⎛⎜⎜⎜⎜⎜⎜⎝
−2 1 1 0 0

1 −3 0 1 1
1 0 −1 0 0
0 1 0 −2 1
0 1 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎠

Figure 5.5: An example of ARAP linear equation system. The Laplace-
Bertrami operator L on the right is deduced from the mesh connectivity
on the left.

46

The right-hand side of the equation b is a bit more complicated to express
than the matrix L. Each element of the vector is equal to:

b𝑖 =
∑︁
𝑗∈N(𝑖)

𝑤𝑖𝑗
2 (R𝑖 + R𝑗) (p𝑖 − p𝑗) (5.11)

If some vertices are fixed, the number of dependent variables is reduced,
thus the matrix becomes rectangular. To solve the system anyway, the rows
of the matrix with the same indices as the fixed points can be simply ignored
(removed), or the Ordinary Least Squares approach can be used to solve the
recangular matrix system:

Ax = b
A𝑇Ax = A𝑇b(︁

A𝑇A
)︁−1

A𝑇Ax =
(︁
A𝑇A

)︁−1
A𝑇b (5.12)

x =
(︁
A𝑇A

)︁−1
A𝑇b

Edge weights

The weight of an edge may differ by the computing power requirements, ac-
curacy requirements or usage in general. The simplest case is 𝑤𝑖𝑗 = 1 (called
Kirchhoff), so all edges are considered the same. This approach works well
for equilateral polygons, and its computing power requirements are negli-
gible. The resulting matrix (see Fig. 5.5), however, produces a diagonally
dominant matrix, which is often hard to solve computationally (because of
number precision issues).

In order to solve the issue, each row can be divided by the value on the
diagonal. This normalisation step would produce values −1 on the diagonal.
The normalisation step may be the better approach for some numerical
methods; also, it is better for compression purposes (diagonal does not need
to be stored anymore). This approach is called Tutte.

These two approaches belong to a combinatorial Laplacian group, which
does not consider anything else but mesh connectivity. There is also a cotan-
gent formula, which considers the mesh’s geometry. The weight is calculated
as an average of the contangent of the angles opposite the given edge, ensur-
ing that longer edges (with wider angles) would get lower weight than the
shorter ones. Mathematically speaking, it is described as:

𝑤𝑖𝑗 = 1
2 (cot𝛼𝑖𝑗 + cot 𝛽𝑖𝑗) (5.13)

where angles 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are angles opposite to the edge between vertices
𝑖 and 𝑗.

47

This approach has been successfully tested, and there was also an idea
to extend the approach with volume preservation constraints. These results
can be seen in section 6.2.

5.5.3 PBD
Position-based dynamics [62] is a fast approach used mainly in the animation
industry to model elastic object (and cloth) deformations. Nowadays, it is
making its way into physical simulations as well. The original algorithm does
not consider the possibility of object anisotropy as far as the algorithm has
been developed for general objects. The method accepts a manifold surface
mesh and produces its deformed variant as input.

The PBD also exists in xPBD form (extended). It incorporates the con-
cept of elastic potential energy and eliminates the need to know the time
step and iteration count. For further detail, the reader may be interested in
Macklin et al. [57].

Romeo et al. [73] is the first main contribution, which uses the PBD
algorithm for muscle modelling problems. They mention the problem of using
FEM or FVM: "Unfortunately, FEM and FVM, while providing excellent
results, are known for not complying with the requirements [...]" which are
"fast convergence of simulation, easy to set up, intuitive controls and artistic
control" [73]. Their basic idea is to build an internal structure above the
surface mesh to respect the anisotropy of the muscle (the internal structure
respects the general direction of the muscle fibres). With an intelligent edge-
creation process, they can create a volumetric model better suitable for the
PBD2 algorithm.

Angles et al. [1] developed a PBD-based approach for muscle modelling
in 2019. Their approach virtually decomposes the muscle into "rods" (which
may approximate the muscle fibres). These rods are allowed to change their
diameter wherever to preserve their volume. Their main contribution is the
capability to provide real-time simulation, which Romeo’s approach is inca-
pable of because "its ≈ 40s/frame of processing time makes it unsuitable to
interactive applications" [1].

My contribution to using PBD for muscle modelling started with my
master’s thesis [17], in which the basic PBD approach was developed, sup-
plemented by the anisotropy respect (finished the same year as Romeo’s ar-
ticle [73], working concurrently on the same). After my master’s thesis, the
article "Fast and Realistic Approach to Virtual Muscle Deformation" [18]
followed, where the approach has been extensively tested and integrated
into an existing framework. The article "Muscle Deformation using Position
Based Dynamics" [49] then further tests the approach and compares the re-
sults to an existing FEM approach. The main advantage of our proposed

2They use the XPBD - eXtended version of PBD, which respects the concept of elastic
potential energy.

48

approach is that no interior is needed. Even the anisotropy is calculated on
the surface of the mesh only, using muscle fibres on the mesh surface, defin-
ing the fibre direction. During my PhD study, also the implementation has
been integrated into OpenSim, a well-known and widely used platform for
modelling various physical phenomena. Currently, a publication abstract in
collaboration with Havlicek is submitted, where we extend his ideas from his
bachelor’s thesis [35], improving collision detection and response approaches.

The output of the algorithm is a deformed surface triangular mesh. This
serves the visualisation purposes well, but to calculate, e.g. force of the
muscle, the muscle has to be transformed into a set of fibres. This process
is called muscle decomposition and its details can be found in Kohout and
Kukacka [48] or Kohout and Cholt [47] papers.

The pseudocode of the algorithm can be seen in Listings 1. The 𝑥𝑖 variable
is the position of each vertex, 𝑣𝑖 is its velocity, Δ𝑡 is the discretisation step
(the smaller, the better if the accuracy is considered). Variable 𝑤𝑖 is the
inverse of the weight of each vertex, and 𝑝𝑖 is a "working" position of each
vertex (to ensure that the whole mesh’s position will change coherently).
The most complicated is the 𝐶𝑖 variable, which describes a constraint, will
be described further in the following text.

Mathematical background

The basic mathematic idea behind the PBD algorithm is the iterative min-
imisation of cost function 𝐶. Definitions of each 𝐶 will be described further
in the text. The cost function is a 𝑛-variable scalar function. The goal is
to minimise the function value. Minimisation is done by gradient descent. A
gradient of 𝐶 is therefore required to express. If we neglect varying mass from
the equation (we can do it as far as the muscles are assumed homogenous),
the change of point position Δp𝑖 is defined by equation 5.14.

Δp𝑖 = − ▽𝑝𝑖
𝐶 (p1, . . . ,p𝑛)∑︀

𝑗

⃒⃒⃒
▽𝑝𝑗

𝐶 (p1, . . . ,p𝑛)
⃒⃒⃒2 · 𝐶 (p1, . . . ,p𝑛) (5.14)

Given equation can be understood as simply moving the point in the the
opposite direction of the gradient (numerator) with the magnitude of the
cost function value (expression after fraction). It is required to normalise
the fraction by the sum of gradients to obtain directions somewhere between
⟨0; 1⟩ as the sum of every normalized vector magnitudes should equal one.

The simple sum of Δp𝑖 through all of the cost functions will become a
weighted sum if we take into account point mass. The weights will be the
inversion of mass. The movement will be opposite to the gradient direction
(thus the minus sign) – gradient descent is performed.

Because the problem consists of multiple cost functions, the problem be-
comes a nonlinear equation system problem. This system will be solved by

49

Algorithm 1 PBD algorithm [17].
1: for all vertices i do
2: initialize x𝑖 = x0

𝑖 , v𝑖 = v0
𝑖 , 𝑤𝑖 = 1

𝑚𝑖
.

3: end for
4: loop
5: for all verticies 𝑖 do
6: v𝑖 ← v𝑖+ Δ𝑡𝑤𝑖f𝑒𝑥𝑡 (x𝑖)
7: end for
8: dampVelocities(v1, . . . ,v𝑁)
9: for all verticies 𝑖 do

10: p𝑖 ← x𝑖+ Δ𝑡v𝑖
11: end for
12: for all verticies do
13: generateCollisionConstraints(x𝑖 → p𝑖)
14: end for
15: loop solverIterations times
16: projectConstraints(𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙

,p1, . . . ,p𝑁)
17: end loop
18: for all verticies 𝑖 do
19: v𝑖 ← p𝑖−x𝑖

Δ𝑡
20: x𝑖 ← p𝑖
21: end for
22: velocityUpdate(v1, . . . ,v𝑁)
23: end loop

the Gauss-Seidel method, ignoring the nonlinearity of the equations. Each
equation will be solved independently, propagating results between equa-
tions. It ensures massive speedup and, unfortunately, as shown afterwards,
some acceptable errors.

Point distance cost function

The essential is to maintain initial distances between each point in the mesh.
Maintenance is done in a very similar fashion as it is in mass-spring [41]

system. Cost is zero if and only if the distance between pair of points is the
same as at the beginning of the simulation. If it is longer or shorter, the cost
rises.

Equation 5.15 describes the distance constraint [62]. Function 𝐶 is the
scalar cost function of two variables (points), and its value describes the
deviation from the initial distance. Vector variables p1 and p2 are temporary
point positions (see Listings 1), value 𝑑 is the original distance between given
pair of points.

50

𝐶 (p1,p2) = |p1 − p2|2 − 𝑑 (5.15)
In order to allow further calculation, it is necessary to determine the

gradient of the cost function 𝐶 with respect to p1 and also p2
Gradient of two vector difference norm First, the gradient of 𝐿2 norm

from equation 5.15 has to be determined. This is done in 5.16 for the gradient
respecting point p1, for p2 the derivation will be very similar.

▽p1 |p1 − p2|2 = ▽p1

√︁
(𝑝1𝑥 − 𝑝2𝑥)2 + (𝑝1𝑦 − 𝑝2𝑦)2 + (𝑝1𝑧 − 𝑝2𝑧)2

= 1
2 |p1 − p2|2

▽p1

(︁
(𝑝1𝑥 − 𝑝2𝑥)2 + (𝑝1𝑦 − 𝑝2𝑦)2 + (𝑝1𝑧 − 𝑝2𝑧)2

)︁

=

[︁
𝜕(𝑝1𝑥−𝑝2𝑥)2

𝜕𝑝1𝑥

𝜕(𝑝1𝑦−𝑝2𝑦)2

𝜕𝑝1𝑦

𝜕(𝑝1𝑧−𝑝2𝑧)2

𝜕𝑝1𝑧

]︁
2 |p1 − p2|2

=
2
[︁
𝜕(𝑝1𝑥−𝑝2𝑥)

𝜕𝑝1𝑥

𝜕(𝑝1𝑦−𝑝2𝑦)
𝜕𝑝1𝑦

𝜕(𝑝1𝑧−𝑝2𝑧)
𝜕𝑝1𝑧

]︁
2 |p1 − p2|2

= p1 − p2

|p1 − p2|2

(5.16)

Resulting gradient of the cost function 𝐶 is (using previous derivation
5.16) shown in 5.17.

▽p1𝐶 (p1,p2) = ▽p1 (|p1 − p2|2 − 𝑑) = p1 − p2

|p1 − p2|2
= u

▽p2𝐶 (p1,p2) = ▽p2 (|p1 − p2|2 − 𝑑) = p2 − p1

|p1 − p2|2
= −u

(5.17)

These cost function derivations are just direction vectors of the edges
formed by the involved points. By common sense, it has to be this way to
change the distance between points. It is logical to move along the directional
vector. The result is further illustrated on 5.6.

p1

p2
d

u

p1-p2

p1C

p2C

Figure 5.6: Cost of the distance change. The gradient is highlighted in blue.

51

Volume preservation

It is also a required feature of the muscle to preserve its initial volume. In the
case of the musculoskeletal system and muscles especially, this requirement is
reasonable because the muscles do not change their volume due to constant
density.

At first, we must figure out how to calculate the volume of triangular,
closed and manifold mesh. It may seem like a complex problem, as mesh
may have different shapes (even more complex for higher genera). Luckily,
the problem is elegant and straightforward to solve. At first, an arbitrary
point in the space has to be selected. For the sake of simplicity, often (0, 0, 0)
is selected. Sometimes, the centre of gravity is selected instead, which may
be numerically more stable. Then, for each triangle, we calculate the tetra-
hedra volume involving the triangle connected to our arbitrary point. The
tetrahedra volume is just a sixth of the volume of the parallelogram formed
by the three vectors originated in the arbitrary centre point and ending in
each vertex of the triangle, as it is written in 5.18 with an arbitrary point
at the origin of the coordinate system. Sometimes the volume may end up
negative, which is also desired phenomenon because it allows subtracting
concave parts or parts forming a higher genus of the mesh.

𝑉𝑡𝑒𝑡𝑟𝑎 = 1
6

⃒⃒⃒⃒
⃒⃒⃒𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧

⃒⃒⃒⃒
⃒⃒⃒ = a · (b× c) (5.18)

Vectors a, b and c are edges of the tetrahedra sharing a common vertex.
In this case, the origin is used, simplifying the calculation so we can use the
vertexes p of the triangle mesh instead.

An example is visualized on image 5.7. Cross product of vectors a and b
gives vector d (in pink) has length the same as the area of the yellow region.
Then, the dot product of this vector with c vector, we obtain the volume of
the whole parallelogram. This procedure is also called triple product. A sixth
of the volume of the obtained parallelogram is the desired tetrahedra.

We can now also determine the cost function of the volume change. The
equation is shown on 5.19.

𝐶 (p1, . . . ,p𝑛) =
𝑚∑︁
𝑖=1

(︁
p𝑡𝑖1 ·

(︁
p𝑡𝑖2 × p𝑡𝑖3

)︁)︁
− 𝑘𝑉0 (5.19)

In the equation, 𝑚 is the total triangle count, p𝑡𝑖1 denotes the first vertex
of 𝑖-th triangle in the mesh. Variable 𝑉0 represents the initial volume of the
mesh (so the cost function value will be zero if it ever becomes the same).
An optional parameter 𝑘 allows us to change the volume over time, and we
leave it for now at a value of 1.

Derivative of the cost function can be done either from 5.19 or from
determinant sum in 5.18. At first, choose a vertex of the mesh to determine

52

c

b

a

|d|=|b☓c|

d

Figure 5.7: Volume of the tetrahedra formed by vectors a, b and c.

the derivative. A single triangle was selected for simplicity, where the derivate
will be derived. The resulting total gradient is obtained using the sum rule
of derivatives and is shown on 5.20.

▽p𝑖
𝐶 (p1, . . . ,p𝑛) =

⃒⃒⃒⃒
⃒⃒⃒𝑝𝑖𝑥 𝑝𝑖𝑦 𝑝𝑖𝑧
𝑝𝑗𝑥 𝑝𝑗𝑦 𝑝𝑗𝑧
𝑝𝑘𝑥 𝑝𝑘𝑦 𝑝𝑘𝑧

⃒⃒⃒⃒
⃒⃒⃒+ · · · = p𝑗 × p𝑘 + . . . (5.20)

The equation implies equality between the derivative in a vertex triangle
and the cross product of the other two points. If we put all triangles together,
the derivative of a vertex equals the cross product of each pair of vertices
sharing the triangle with the selected vertex. Mathematically speaking, like
in 5.21.

▽p𝑖
𝐶 (p1, . . . ,p𝑛) =

𝑡∑︁
ℎ=1

p𝑗 × p𝑘; 𝑖 ̸= 𝑗 ̸= 𝑘 (5.21)

Variable 𝑡 denotes a total number of triangles that share the vertex with
index 𝑖, vertices with indexes 𝑖, 𝑗 and 𝑘 lie on the same triangle. The control
variable ℎ we do not need in this particular case.

In his work, Janak [41] did not consider volume preservation, which may
enhance his results further. However, math between volume preservation in
the mass-spring system is highly complitaced [38].

Shape preservation

The last restriction is to preserve the initial shape of the muscle. One of the
possibilities is to preserve the dihedral angle between each pair of adjacent
triangles as much as possible.

It is also necessary to describe how the dihedral angle between two adja-
cent triangles is calculated. For vertices are given: p1, p2, p3 and p4, Vertices

53

with indices one and two are shared, whereas index three belongs to the first
triangle only. Moreover, index four belongs to the second one. Using the
cross product, we obtain triangle normals like in equation 5.22.

u = (p2 − p1)× (p3 − p1)

n = u
|u|2

(5.22)

Here the u vector is declared to simplify the following derivation. The
vector has the same direction as the normal but may not have the length of
one in general. Vertices p1, p2 and p3 belongs to first triangle, in which the
normal is calculated. The second triangle will be calculated similarly.

Thus, the angle between two adjacent triangles can be determined. At
first, both normals (n1 and n2) are required. Then, the angle between the
two normals is obtained from the definition of the dot product. Definition
and derivation are shown on equation 5.23.

cos𝜙 = n1 · n2

|n1|2 |n2|2
= n1 · n2

𝜙 = arccos (n1 · n2)
(5.23)

The next step is a cost function definition. The same approach will be
applied with volume and distance cost functions, subtracting the initial and
current angle values. It is defined in 5.24.

𝐶 (p1,p2,p3,p4) = 𝜙− 𝜙0

= arccos (n1 · n2)− 𝜙0

= arccos
(︃

(p2 − p1)× (p3 − p1)
|(p2 − p1)× (p3 − p1)|2

· (p2 − p1)× (p4 − p1)
|(p2 − p1)× (p4 − p1)|2

)︃
− 𝜙0

(5.24)

In the equation, 𝜙0 denotes inital angle (calcualted according to equation
5.23).

The derivative is a bit more complicated in this case. At first, we use the
property that the cost function value is translation-invariant, so the pair of
the triangles can be moved so one of the vertices will lie on the coordinate
system origin.

If we translate each point with the vector −p1, the first vertex would
lie on the origin, and the calculation of the normal vector of both triangles
simplifies enormously. By translating the whole system, the dihedral angle
will not change.

It is also written in equation 5.25, vectors with apostrophes are the ones
translated by −p1.

54

n1 = (p2 − p1)× (p3 − p1)
|(p2 − p1)× (p3 − p1)|2

= p′
2 × p′

3
|p′

2 × p′
3|2
⇔ p′

1 = 0

n2 = (p2 − p1)× (p4 − p1)
|(p2 − p1)× (p4 − p1)|2

= p′
2 × p′

4
|p′

2 × p′
4|2
⇔ p′

1 = 0
(5.25)

Finally, with the knowledge of the derivative of the function arccos (de-
fined as 𝑑

𝑑𝑥
arccos𝑥 = − 1√

1−𝑥2), the gradients for each cost functions are
obtainable (via equation 5.26). Because we choose p1 to be zero, it will be
defined differently than the second shared vertex p1. The p3 and p4 will be
very similar due to symmetry. The gradient does not depend on the absolute
location of the object, so we do not need to do any backwards translation.

𝑑 =n1 · n2

▽p′
4𝐶 =− 1√

1− 𝑑2

(︁
▽p′

4 (n2) · n1
)︁

▽p′
3𝐶 =− 1√

1− 𝑑2

(︁
▽p′

3 (n1) · n2
)︁

▽p′
2𝐶 =− 1√

1− 𝑑2

(︁
▽p′

2 (n1) · n2 +▽p′
2 (n2) · n1

)︁
▽p′

1𝐶 =−
4∑︁
𝑖=2
▽p′

𝑖
𝐶

(5.26)

The basic idea behind determining the normal gradients of the triangles
is decomposing the normals into cross products, which can also be written
in matrix calculus. Each element of the matrix can then be solved indepen-
dently. This is further explained on n2 normal at vertex p′

4. The next step
is to determine the partial derivative of the normalised cross product.

Normalized cross-product partial derivative Let me first substitute the
cross product with vector r (as shown in 5.27) to simplify the further deriva-
tion process.

r = p′
2 × p′

4 (5.27)

The next step is to calculate just the partial derivative of the cross-
product (without normalisation, see 5.28). The result is a matrix A, which,
after multiplying with a vector, produces the cross product of given vector
and p′

2 vertex.

55

▽p4r =

⎡⎢⎢⎢⎢⎣
𝜕𝑝′

2𝑦𝑝
′
4𝑧−𝑝′

4𝑦𝑝
′
2𝑧

𝜕𝑝′
4𝑥

𝜕𝑝′
2𝑦𝑝

′
4𝑧−𝑝′

4𝑦𝑝
′
2𝑧

𝜕𝑝′
4𝑦

𝜕𝑝′
2𝑦𝑝

′
4𝑧−𝑝′

4𝑦𝑝
′
2𝑧

𝜕𝑝′
4𝑧

𝜕𝑝′
4𝑥𝑝

′
2𝑧−𝑝′

2𝑥𝑝
′
4𝑧

𝜕𝑝′
4𝑥

𝜕𝑝′
4𝑥𝑝

′
2𝑧−𝑝′

2𝑥𝑝
′
4𝑧

𝜕𝑝′
4𝑦

𝜕𝑝′
4𝑥𝑝

′
2𝑧−𝑝′

2𝑥𝑝
′
4𝑧

𝜕𝑝′
4𝑧

𝜕𝑝′
2𝑥𝑝

′
4𝑦−𝑝′

4𝑥𝑝
′
2𝑦

𝜕𝑝′
4𝑥

𝜕𝑝′
2𝑥𝑝

′
4𝑦−𝑝′

4𝑥𝑝
′
2𝑦

𝜕𝑝′
4𝑦

𝜕𝑝′
2𝑥𝑝

′
4𝑦−𝑝′

4𝑥𝑝
′
2𝑦

𝜕𝑝′
4𝑧

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎣ 0 −𝑝′
2𝑧 𝑝′

2𝑦
𝑝′

2𝑧 0 −𝑝′
2𝑥

−𝑝′
2𝑦 𝑝′

2𝑥 0

⎤⎥⎦ = A

(5.28)

Next, the norm is taken into account, as is shown on 5.29, result is the
cross product again, but now with normal vector n2.

▽p′
4 |r|2 = ▽p′

4

√︁
𝑟2
𝑥 + 𝑟2

𝑦 + 𝑟2
𝑧 = 1

2 |r|2
▽p′

4

(︁
𝑟2
𝑥 + 𝑟2

𝑦 + 𝑟2
𝑧

)︁
= 1

2 |r|2

[︂
𝜕𝑟2

𝑦+𝑟2
𝑧

𝜕𝑝′
4𝑥

𝜕𝑟2
𝑥+𝑟2

𝑧

𝜕𝑝′
4𝑦

𝜕𝑟2
𝑥+𝑟2

𝑦

𝜕𝑝′
4𝑧

]︂
= 1
|r|2

[︁
𝑟𝑦𝑝

′
2𝑧 − 𝑟𝑧𝑝′

2𝑦 −𝑟𝑥𝑝′
2𝑧 + 𝑟𝑧𝑝

′
2𝑥 𝑟𝑥𝑝

′
2𝑦 − 𝑟𝑦𝑝′

2𝑥

]︁
= r× p′

2
|r|2

= |r|2 n2 × p′
2

|r|2
= n2 × p′

2 = b

(5.29)

Last but not least it is necessary to join both partial derivative together
(from 5.28 and 5.29). We apply the derivative division rule and get the result
in 5.30.

▽p′
4

r
|r|2

= A |r|2 − r · b
|r|22

= 1
|r|2

(A− n2 · b)

= 1
|p′

2 × p′
4|2

⎛⎜⎝
⎡⎢⎣ 0 −𝑝′

2𝑧 𝑝′
2𝑦

𝑝′
2𝑧 0 −𝑝′

2𝑥
−𝑝′

2𝑦 𝑝′
2𝑥 0

⎤⎥⎦− n2 · (n2 × p′
2)

⎞⎟⎠ (5.30)

Similarly, the other partial derivative in 5.26 would be obtained, it will dif-
fer only in indices and signs. The result of the partial derivative is put into
equation 5.26 determining the final partial derivative of the cost function.
Following the same path as other restrictions, the movement will be accord-
ing to 5.14 because we already know everything required to do so.

The whole idea is also illustrated on picture 5.8. For the sake of simplicity,
only two triangles are shown. Normal vectors of both triangles are drawn
in green (n1 and n2). The gradient in vertices p3 and p4 is shown for both
vertices by two blue vectors forming a surface (in grey), where these vertices
may move. Movement in the other direction would not change the angle

56

φ

p2

p1
p4

p3

n2

n1

Figure 5.8: Angle 𝜙 preservation between two triangles (dihedral angle).

between the triangle pair. The middle point gradients were not illustrated
due to complex p1 and p2 gradients.

In this chapter, seven considerable approaches to muscle modelling have
been described: Hill-type model, Via-points, Wrapping obstacles, Finite el-
ement method, Mass-spring system, ARAP and PBD. The following table
5.1 provides a summary of these methods, with (partially subjective) speed
and precision comparison.

Algorithm Muscle model form Speed Precision Reference
Hill-type Single line + + + −−− [37] [91] [11]
Via-points Polyline ++ −− [39] [30]
Wrap. obst. Complex curve + − [45] [56]
FEM Volumetric model −−− + + + [59] [9] [22]
MSS Volumetric model ++ − [32] [3] [40]
ARAP Surface model ++ ? [79] [4] [25]
PBD Surface model3 ++ ? [62] [73] [49]

Table 5.1: Comparison of the muscle modelling approaches.

3With the exception in the paper from Romeo et al. [73], where they introduced vol-
umetric data to improve their results.

57

Chapter 6

Experiments and Results

At this point, the theoretical aspects of muscle modelling have been ex-
hausted, so the further direction of this text goes towards the practical ex-
periments.

6.1 PBD results
The real data and an artificial dataset (described below) have been used
to test the proposed approach described in section 5.5.3 and also in our
papers [17, 18, 49]. The results of the experiments are described in detail
below. In each iteration, a bone (or its artificial replacement) moves in a
given direction. Also, in that particular iteration, there are some sub itera-
tions (the user gives the number), where the bones do not move, but it is
used for muscle movement stabilisation (reducing the Δ𝑡 but also increasing
the computational time). Unless stated otherwise, three sub-iterations have
occurred in the following tests and each iteration step.

6.1.1 Collision detection and response
In order to simplify the problem, the decision to use a simple voxelisation
approach has been made. The space has been subdivided into smaller cubes
(the number of cubes depends on the user specification and model size),
and to each box, information has been assigned whether it "contains" a part
of the bone. The collision of muscle with bone has been approximated by
detecting a triangle (from a muscle mesh) collision with the small box.

This simple idea, however, leads to some problems. Luckily, some ideas
are already to entirely improve or even fix the problem, using more complex
collision detection algorithms. Havlicek [35] changed the collision detection
to DiscreGrid (using a signed distance field) and FLC (using a binary search
tree), beating the voxelisation approach in terms of accuracy. However, there
is still some work to do because even those methods do not work correctly in

58

the case of some extreme conditions, mainly if the movement is rapid (see1

section 11.4, especially Fig. 11.13 in [35]).
The collision response is a complicated task as well. Assume that two

bones move towards each other and narrowly miss each other (like shear
blades). If a muscle is attached to both of the bones and appears to be
in between the bones, there is no such room to go. This problem seems
artificial but happens fairly often on a smaller scale, near joints especially,
where two bones move close. My former solution [17] was to assume, in this
particular case, only one of the bones and move a muscle in the direction
opposite of it, but it shortly proved to be insufficient. Havlicek [35] targets
this problem especially, and he proposed a better approach of considering all
adjacent bones and moving opposite to the sum of all collision vectors. Even
his approach, however, even his approach does not fix the problem entirely,
as said before.

6.1.2 Muscle decomposition
The approaches described so far work primarily with the surface model,
however, the last step of the pipeline in section 1.2 has to be performed for
others to determine the muscle’s internal forces (and other physical prop-
erties). It can be done using, for example, Kohout and Kukacka, CHMD,
or VIPER muscle decomposition methods, which were proposed in [48], [47]
and [1], respectively. In the following subsections, these methods are briefly
introduced.

1The original paper is in the Czech language.

59

Kohout and Kukacka decomposition

The inputs of the Kohout & Kukacka decomposition method [48] are:

• triangular (and manifold) surface model of the muscle to decompose,

• fibre template, giving information about internal fibre arrangement,

• attachment areas to adjacent bones (origin and insertion), defined by
a set of points lying on the adjacent bone surface models

Decomposition is then done as follows. Attachment areas are projected
from the bone surface onto the muscle surface to define the muscle parts
that are subsequently removed. Isocontours are computed using a piecewise
linear scalar field on the modified muscle model. The scalar field has its
maximum on the insertion boundary vertices, whereas its minimum is on
the origin boundary vertices. Users can specify how many isocontours are
generated in this process.

Similarly to [22], muscle fibre architecture (template) is represented by
a unit 3D space with an arbitrary (user-defined) number of fibres inside the
space. The fibres are represented analytically by Bezier spline curves. One of
the predefined templates is selected according to the muscle being modelled
(depends on if it has parallel or pennate fibres, optionally on a pennate angle,
etc.), and it is mapped one-to-one on isocontours calculated in the previous
step, forming the fibres going through the muscle model. Finally, noise is
eliminated using quadratic smoothing to make the result more realistic and
visually plausible.

Figure 6.1: Gluteus maximus decomposed to individual fibres by Kohout &
Kukacka’s [48] algorithm.

60

CHMD decomposition

A technique by Kohout & Cholt [47] performs a centripetal Catmull-Rom
interpolation of the input fibres lying on the surface model of the muscle or
nearby to get the fibres inside the muscle. Their approach can even work
with multiple-headed muscles, distributing the fibres automatically among
the heads.

Compared to Kohout & Kukacka’s proposed method, this method needs
the specification of fibres on the surface, which typically requires some man-
ual effort because these are not obtainable for the patient automatically.
For the data to be valuable in practice, it must be adopted from a cadav-
eric dataset. On the other hand, it can work with multiple-headed muscles,
whereas Kohout & Kukacka’s approach can not. To avoid this problem, the
authors used split multi-headed muscles into multiple biheaded, which par-
tially works, but introduced a problem of multiple "submuscle" intersections
and overlaps.

Figure 6.2: Gluteus maximus decomposed to fibres by Kohouts’s & Cholt’s
[47] algorithm.

VIPER decomposition

Angles et al. [1] proposed in 2019 a complete muscle modelling approach,
including their muscle decomposition technique. They decompose the muscle
into a predefined number of "rods", using similar techniques as Kohout and
Kukacka’s approach above uses; however, they require 3D volumetric model
instead of a 2D surface model as an input model. They also require the
attachment area definition, which they specify manually on the muscle.

61

6.1.3 Artificial data
To test collision detection and behaviour in extreme cases, we prepared an
artificial dataset where a box of 5292 triangles on its surface is squished
between two plates (12 triangles each). The initial setup is visualized in Fig.
6.3. The goal of the test was to deform the muscle abnormally and test
whether it regained its initial shape or not (in other words, if the internal
forces will be capable of overcoming the external forces eventually).

Figure 6.3: Input artificial data.

At first, in one hundred iterations, the top plate moves to decrease the
space between both places. The distance between plates in 100𝑡ℎ iteration
is 10% of the distance in the first iteration. Inverse movement is then per-
formed between 100𝑡ℎ and 200𝑡ℎ iteration, returning the plates to their initial
position. Additional one hundred iterations are used for box stabilisation.

As shown in Fig. 6.4, the box is squished quite a lot. Even though it
returns to its original shape in 300𝑡ℎ iteration (only with slight rotation
caused by asymmetrical triangulation). Even in 200𝑡ℎ iteration, the results
are acceptable, except for one corner of the box.

0 50 100

150 200 300

Figure 6.4: Results in different simulation frames (artificial data). The two
black areas are just shadows from the grey plates, and no collision occurs.

The artificial muscle has been forced to squish, so the volume changed
drastically during the simulation. The result is plotted in Fig. 6.5, the min-
imal volume was lower than 30% of the original volume of the artificial
muscle.

62

0 50 100 150 200 250 300
20

40

60

80

100

120

Iteration

V
o
lu

m
e
 p

e
rc

e
n
ta

g
e

Figure 6.5: Volume change over 300 PBD iterations. The muscle was squished
to less than 30% of its original volume during simulation.

6.1.4 Iliacus
We also tested the iliacus muscle, which connects the femur and pelvic bones
from the front side. The bones and the muscle are visualised in Fig. 6.6.
The muscle and bones are closed triangular meshes with 13858 triangles for
muscle and 254442 (42456 for femur) triangles for all the bones.

Figure 6.6: Input iliacus muscle and adjacent bones.

A similar simulation scenario like the artificial data case has been applied
to the iliacus dataset. The first hundred iterations are used for hip flexion, in
which the femur bone rotates one radian during this movement. The second
hundred iteration is allocated for the inverse movement. The last hundred
(200𝑡ℎ-300𝑡ℎ) iterations are there to stabilise the muscle movement.

The posterior part of the iliacus muscle is pushed into the joint during
the flexion, as can be seen in Fig. 6.7. The explanation for this behaviour
is as follows. The main problem is that vertices near the joint have been
incorrectly fixed to the femur bone (see bullet 1 in the section 2.2). This
problem leads to a situation when (due to flexion) the near part of the

63

0 50 100

150 200 300

Figure 6.7: Results in different simulation frames (Iliacus muscle data).

muscle is pulled into the joint. Also, this part of the mesh is unrealistically
arched towards the joint and, therefore, distance and local shape constraints
tend to move the points of this part closer to the joint. As the femur and
pelvic bones do not touch, there is a narrow space into which this part of
the mesh can squeeze, making it difficult to get out. Even though the result
is not visually plausible, the quantitative tests (described later) show that
all critical factors of the muscle are preserved as much as possible.

6.1.5 Gluteus maximus
The Gluteus maximus muscle is attached to the same bones as the iliacus
but from the other side. The triangular mesh consists of 19752 triangles.
Fig. 6.8 shows how the model looks like.

Figure 6.8: Input gluteus maximus muscle and adjacent bones.

The muscle undergoes the same movement scenario as the iliacus men-
tioned above. Visualization in six important iterations is shown in Fig. 6.9.
As we can see, the result in iteration 300 is nearly the same as in the first
iteration (the original muscle pose).

64

0 50 100

150 200 300

Figure 6.9: Results in different simulation frames (gluteus maximus muscle
data).

6.1.6 Other muscles
The gluteus medius and adductor brevis muscles within this testing proce-
dure have been tested. Both muscles deform quite realistically, as can be seen
in Fig. 6.10 and Fig. 6.11, where the situation in the maximal hip flexion
(same scenario as in the gluteus maximus and iliacus case) is shown.

Figure 6.10: Gluteus medius in maximum flexion position.

6.1.7 Quantitative tests
To make some exact results, we use quantitative tests. These tell us how
well constraints are satisfied during simulation.

The volume preservation constraint is tested by determining the ratio
between original and actual volumes. Fig. 6.12 for artificial data, Fig. 6.13
and Fig. 6.14 for real data respectively, show us the volume preservation
results.

65

Figure 6.11: Adductor brevis in maximum flexion position.

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l v

o
lu

m
e
 r

a
ti
o

Volume preservation - Artificial

Volume ratio

Figure 6.12: Volume preservation of artificial data.

0 50 100 150 200 250 300
0.99

0.992

0.994

0.996

0.998

1

1.002

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l v

o
lu

m
e
 r

a
ti
o

Volume preservation - Iliacus

Volume ratio

Figure 6.13: Volume preservation of iliacus muscle data.

As we can see from the results, the volume is well preserved in both
real data (the error is less than 1% in both cases). A nice curve describes
squishing (reducing) box volume during the simulation and restoring artifi-
cial data.

The next measurable property is average edge extension. At first, we
cannot say much about artificial data (squished box) from the plot in Fig.
6.15. As for the iliacus muscle, some edges remain more prolonged than
expected (see Fig. 6.16) because they are stuck in the hip joint. In the case
of the gluteus maximus dataset (Fig. 6.17), the first 100 iterations show edge
extension during hip flexion (it is correct behaviour because muscle extends

66

0 50 100 150 200 250 300
0.99

0.992

0.994

0.996

0.998

1

1.002

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l v

o
lu

m
e
 r

a
ti
o

Volume preservation - Glut. max.

Volume ratio

Figure 6.14: Volume preservation of gluteus maximus muscle data.

in this phase), and the second hundred iterations return the average length
extension to almost 1 (i.e., the muscle returns to its original pose correctly).
We can also see that the last 100 iterations are not crucial in this scenario.

0 50 100 150 200 250 300
0.6

0.8

1

1.2

1.4

1.6

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l e

d
g

e
 le

n
g

th

Edge length extension - Artificial

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.15: Average edge extension of artificial data.

0 50 100 150 200 250 300
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l e

d
g

e
 le

n
g

th

Edge length extension - Iliacus

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.16: Average edge extension of iliacus muscle data.

We also tested how well the dihedral angles were preserved during the
simulation. In this paper, the dihedral angle is the angle between two adja-
cent triangles in the muscle triangle mesh. According to plots in Fig. 6.18,
Fig. 6.19 and Fig. 6.20, we can conclude that there are some pairs of trian-
gles which do not preserve their original angle to the acceptable2 extends,
but most of them do.

2Depends on multiple factors, but the absolute distance deviation below 0.5cm is still

67

0 50 100 150 200 250 300
0.9

1

1.1

1.2

1.3

1.4

Iteration

A
c
tu

a
l/
o
ri

g
in

a
l e

d
g

e
 le

n
g

th

Edge length extension - Glut. max.

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.17: Average edge extension of gluteus maximus muscle data.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Iteration

A
b

s
o
lu

te
 d

ih
e
d

ra
l a

n
g

le
 c

h
a

n
g

e
 [
d

e
g

re
e
s
]

Dihedral angle preservation - Artificial

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.18: Average absolute dihedral angle change of artificial data.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

Iteration

A
b

s
o
lu

te
 d

ih
e
d

ra
l a

n
g

le
 c

h
a

n
g

e
 [
d

e
g

re
e
s
]

Dihedral angle preservation - Iliacus

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.19: Average absolute dihedral angle change of iliacus muscle data.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

Iteration

A
b

s
o
lu

te
 d

ih
e
d

ra
l a

n
g

le
 c

h
a

n
g

e
 [
d

e
g

re
e
s
]

Dihedral angle preservation - Glut. max.

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 6.20: Average absolute dihedral angle change of gluteus maximus
muscle data.

inside a measurable error interval in the worst case, luckily, the higher error is often
acceptable. 68

6.1.8 Fibre length
Last but not least, the lengths of fibres were analysed. In the iliacus mus-
cle case, as we can see in Fig. 6.21, many length curves exhibit two big
bumps shortly after 100𝑡ℎ iteration. A part of the muscle stuck in the hip
joint (as discussed previously) causes the problem. Nevertheless, when the
bones return to their initial rest-pose (i.e., after 200 iterations), most fibres
restore their original lengths quite well. Gluteus maximus muscle behaves as
expected – see Fig. 6.22. During the flexion, all lengths increase; during the
extension, they decrease.

0 50 100 150 200 250 300
140

160

180

200

220

240

Iteration number

F
ib

re
 le

n
g

th
 [
m

m
]

Fibre lengths - Iliacus

Figure 6.21: Total length of each fibre during simulation in iliacus muscle.

0 50 100 150 200 250 300
150

200

250

300

350

400

Iteration number

F
ib

re
 le

n
g

th
 [
m

m
]

Fibre lengths - Gluteus maximus

Figure 6.22: Total length of each fibre during simulation in gluteus maximus
muscle.

6.1.9 Speed
The proposed method was designed to be mainly fast and precise. It was
implemented in C++ using the VTK toolkit. Its current version is publicly
available at https://github.com/cervenkam/muscle-deformation-PBD.

All testing scenarios above have been measured how fast each one was.
FPS (Frames Per Second) is used as a speed metric in this case.

69

https://github.com/cervenkam/muscle-deformation-PBD

All tests were performed on Intel® Core™ i7-4930K 3.40GHz CPU, Rade-
on HD 8740 GPU and WDC WD40EURX-64WRWY0 4TB HDD. Results
are listed on Tab.6.1.

Deforming object Triangle count FPS
Gluteus maximus 19752 33.85
Abductor brevis 17124 35.89
Iliacus 13858 47.21
Gluteus medius 10622 57.12
Artificial box 5292 153.61

Table 6.1: FPS of each simulation

The results show that FPS strictly depends on triangle count (Spear-
man’s 𝜌 = −1). The more triangles are used, the slower the method is.

Even though the program is primarily unoptimised and runs sequentially
at the moment, the FPS is sufficient for considered purposes in general. For
more details about the approach, see our paper [18].

70

6.2 Preliminary ARAP Results
In the experiments with ARAP, volume preservation has been added. There
are results illustrated on the figures 6.23-6.26. Original models are shown in
yellow. User deformation is then in grey. Two variants of linear equation
assembly and two rotation tests were performed in the testing phase. The
simple "interleaving" approach to preserve muscle volume was introduced
in each test. In each step, the shape has been fixed by the original ARAP
approach, and then the volume has been fixed using the formula (5.9).

Figure 6.23: Results of four ARAP approaches with volume preservation,
rotation of a box face around the Y axis.

The input model is a triangular mesh of a block. Its base has been dis-
cretised uniformly using a 20x20 grid, and 12 samples have been uniformly
sampled at the height of the block. Finally, the sampled block has been
triangulated.

The first option to assemble the linear system is to remove the rows and
columns of the fixed points to get a regular square matrix (referred to as
"remove"). The other option is to solve the rectangular system using ordi-
nary least squares ("OLS"). A variant of the rotation approach is to rigidly
rotate the object in each iteration ("each"). The other variant is to rotate it
only once ("first only"), generating different results (probably acceptable for
different applications).

OLS produces empirically better results. However, it has a higher com-
putational cost in general. The reason behind the computational cost is the
OLS, where (typically) sparse matrix has to be multiplied with its transpo-
sition (producing a more dense matrix) followed by matrix decomposition.

The methods produces satisfying result in the case of the artificial data
(6.23-6.25), however, real data of the gluteus maximus muscle are problem-

71

Figure 6.24: Results of four ARAP approaches with volume preservation,
translation of men’s legs.

atic (see 6.26), because of the rougher surface and noisiness of the original
(real) data.

Figure 6.25: Results of four ARAP approaches with volume preservation,
rotation of a box face around the X axis.

The ARAP method is capable of smooth deformation in general. How-

72

ever, it does not work as it is in the case of muscle data with the volume
preservation requirement forced by switching between shape and volume
constraints. The possibility is to combine PBD and ARAP methods and (in
an ideal case) get the best of both worlds. A promising way is to use ARAP
as an initial guess for the PBD, drastically reducing convergence time.

Figure 6.26: Results of four ARAP approaches with volume preservation,
stretching gluteus maximus muscle.

We have successfully provided the muscle with a smooth surface only,
but a simple "interleaving" approach test to include the restriction of the
same volume does not work, so this is a candidate for future work, probably
using some ideas from Dvorak’s et al. work [25]. My initial idea was to
alternate between all three aspects (local translation, rotation and volume
preservation), but this simple idea failed because the volume and shape
restriction goes against each other. So the final result either preserves volume
but does not respect local shape features, or vice versa. The more complex
approach, either involving internal structure [25] or involving a cost function
and optimisation approach, is required; however, this is an idea for future
work.

Experiments show that all of the mentioned methods have their advan-
tages and drawbacks. Using ARAP for muscle modelling may be suitable,
but there is a problem with putting together pure ARAP with volume preser-
vation. Using RBF for approximation and interpolation purposes also seems
promising. The challenge is finding suitable centre points and shape param-
eters to get the best (or at least plausible) results. PBD algorithm generates
excellent visual results, for the most part, but with some problems in the
joint area.

73

Chapter 7

Conclusion & Future Work

Approaches to muscle modelling are still evolving and cannot be expected to
stop one day. All of the described approaches to muscle modelling provide
good outcomes; however, each has some drawbacks. Some are inaccurate
(Hill-type model, Via-points), some are accurate but difficult to set up or
simply too slow to be useful (Finite element methods). Other methods are
"compromise solutions" in terms of accuracy and computational complexity
(MSS, PBD, ARAP). As you can probably imagine, there are still many
open problems to solve.

7.1 The ambitious goal
The more ambitious goal for future work is to develop a static model of the
musculoskeletal system using a representation other than a triangular surface
mesh. Returning to the pipeline in section 1.2, this would mean changing
step 4. (b). The model could be then used for a new, faster muscle modelling
approach. The main idea is to use the RBF approximation method to satisfy
these three points:

1. Smoothen the muscle and bone models to be more realistic, and over-
coming the current problems with the PBD implementation (particu-
larly the problem with rough surfaces near joints).

2. Reduce the number of parameters defining the model, thus reducing
the computational complexity. The current number of parameters de-
pends on number of verticies and connectivity, which should be further
reduced.

3. Create the most realistic (in the terms of e.g. muscle forces) and visu-
ally plausible simulation possible.

The PBD focuses primarily on the first point but fails in the other two.
The third point is met very well by finite element methods. However, they

74

fail fatally on the second point. Via-points and wrapping obstacles focus on
satisfying the second but seldom satisfying the third point.

The second and third points are slightly contradictory. In general, more
parameters are needed to obtain a more realistic output. The main idea
for future work is to reduce the number of parameters using a Gaussian
RBF function, which is used in many realistic scenarios. The Gaussian plate
would approximate realistic musculoskeletal models using fewer parameters
(few centre points and shape parameters) than the FEM grid, thus achiev-
ing similar results with fewer parameters. The implicit RBF was specifically
chosen for muscle approximation to allow deformation of a portion of the
muscle with only one manipulation of the centre point (movement or shape
parameter change). The RBF method has already been successfully used in
our research [46] as an attempt to recover the surface of the muscle attach-
ment area, so a natural extension to recover the entire muscle surface is right
on the table.

The main inspiration for the static model creation can be found in Carr
et al. [14], where the authors create an implicit RBF surface from a point
cloud. They are capable of reducing the number of parameters approxi-
matelly ten times opposite to the triangular mesh parameters, maintaining
the high accuracy of the resulting model, moreover, generating a smoother
model (which is desired in many scenarios, muscle modelling is one of them).

The first example of such a model can be seen in Fig. 7.1, where two RBF
functions are near each other and together create a single implicit surface.

Figure 7.1: Two Gaussian RBF functions "joined" together, forming a single
implicit surface.

Such a model would open a new possibility to develop a new approach to
deformation of this model, which would theoretically allow smooth and rapid
deformation of the muscle. The future deformation approach would ideally
require to handle a collision detection and response, volume preservation
and also take into account muscle anisotropy.

The ultimate challenge is changing implicit RBF parameters while main-
taining the volume of the internal part bounded by the implicit surface.

75

It can be done by changing the shape parameters of a subset of elemen-
tary RBF to match the original volume of the muscle. Another challenge is
the ability to avoid obstacles (bone models). A new issue arises: the bone
may theoretically force the muscle to "split" itself (this is not an issue from
the mathematical point of view because implicit RBF can describe not just
one but multiple surfaces at once), which is not possible in a real scenario.
The anisotropy is also a challenge because the anisotropy direction has to
be taken into account during the deformation, and the direction may also
change due to muscle movement. There are many problems which were not,
to our best knowledge, dealt with yet.

7.2 ARAP & PBD
The second work for the future to consider is the combination of ARAP [79]
and PBD [62] approaches to getting "the best of both worlds". The shape
preservation of the ARAP approach is fast and accurate, but the volume
preservation constraint is not solvable by simply introducing a new con-
straint into the system since the interleaving approach does not work there.
For this reason, the idea of a PBD solver in the ARAP approach may be the
key to solving the problem. Dvorak et al. [25] show some ideas. Unluckily,
their approach is far from using it directly for muscle modelling problems.
Our goal is to avoid the introduction of internal structure computation en-
tirely to reach lower computational complexity, meaning that their approach
has to be altered drastically.

The first option is to start with PBD and replace the shape preservation
constraint with the shape preservation constraint from the ARAP approach.
This would require a mathematical reformulation of the shape constraint and
finding a gradient expression for the ARAP shape preservation constraint.
The other option is to start with ARAP and replace the interleaving ap-
proach with gradient descent from PBD. Then, a volume constraint can be
added. Either way, both approaches should end up with the same result.

76

Appendix A

Publications

• Cervenka, M., Kohout, J.:
Fast and Realistic Approach to Virtual Muscle Deformation,
in Proceedings of the 13th International Joint Conference on Biomed-
ical Engineering Systems and Technologies - Volume 5: HEALTHINF,
ISBN 978-989-758-398-8, pages 217-227. (2020)
UT WoS: 000571479400020, EID: 2-s2.0-85083710925, OBD: 43929104
https://doi.org/10.5220/0009129302170227

• Kohout, J., Cervenka, M.:
Non-planar Surface Shape Reconstruction from a Point Cloud in the
Context of Muscles Attachments Estimation,
in Proceedings of the 17th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications,
ISBN 978-989-758-555-5, pages 236-243. (2022)
UT WoS: ×, EID: ×, OBD: ×
https://doi.org/10.5220/0010869600003124

• Kohout, J., Cervenka, M.:
Muscle Deformation Using Position Based Dynamics,
in: Ye X. et al. (eds) Biomedical Engineering Systems and Technolo-
gies. BIOSTEC 2020. Communications in Computer and Information
Science
vol 1400. Springer, Cham. (2021)
UT WoS: ×, EID: 2-s2.0-85107281398, OBD: 43932927
https://doi.org/10.1007/978-3-030-72379-8_24

• Cervenka, M., Skala, V.:
Behavioral Study of Various Radial Basis Functions for Approximation
and Interpolation Purposes,
IEEE 18th World Symposium on Applied Machine Intelligence and
Informatics, SAMI 2020,
pp.135-140, ISBN 978-1-7281-314, Slovakia, (2020) (Scopus)

77

https://doi.org/10.5220/0009129302170227
https://doi.org/10.5220/0010869600003124
https://doi.org/10.1007/978-3-030-72379-8_24

UT WoS: 000589772600026, EID: 2-s2.0-85087093548, OBD: 43929006
https://doi.org/10.1109/SAMI48414.2020.9108712

• Cervenka, M., Skala, V.:
Conditionality Analysis of the Radial Basis Function Matrix,
ICCSA 2020 proceedings, part II, LNCS, pp. 30-43,
Springer, (2020)
UT WoS: ×, EID: 2-s2.0-85093112881, OBD: 43932697
https://doi.org/10.1007/978-3-030-58802-1_3

• Cervenka, M., Smolik, M., Skala, V.:
A New Strategy for Scattered Data Approximation Using Radial Basis
Functions Representing Points of Inflection,
Computational Science and Its Application, ICSSA 2019 proceedings,
Part I, LNCS 11619, pp.322-226, ISSN 0302-9743, ISBN 978-3-030-
24288-6, Springer, (2019)
UT WoS: 000661318700024, EID: 2-s2.0-85069157052, OBD: 43926678
https://doi.org/10.1007/978-3-030-24289-3_24

• Skala, V., Cervenka, M.:
Novel RBF Approximation Method Based on Geometrical Properties
for Signal Processing with a New RBF Function: Experimental Com-
parison,
Informatics 2019, IEEE proceedings,
pp.357-362, ISBN 978-1-7281-3178-8, Poprad, Slovakia, (2019)
UT WoS: 000610452900074, EID: 2-s2.0-85087090327, OBD: 43929007
https://doi.org/10.1109/Informatics47936.2019.9119276

• Vasta, J., Skala, V., Smolik, M., Cervenka, M.:
Modified Radial Basis Functions Approximation Respecting Data Lo-
cal Features,
Informatics 2019, IEEE proceedings,
pp.445-449, ISBN 978-1-7281-3178-8, Poprad, Slovakia, (2019)
UT WoS: 000610452900015, EID: 2-s2.0-8508762067, OBD: 43928987
https://doi.org/10.1109/Informatics47936.2019.9119330

• Skala, V., Karim, S., Cervenka, M.:
Finding Points of Importance for Radial Basis Function Approxima-
tion of Large Scattered Data,
Computational Science - ICCS 2020,
Part VI, LNCS 12142, pp. 239-250, Springer, (2020)
UT WoS: ×, EID: 2-s2.0-85087274721, OBD: 43932925
https://doi.org/10.1007/978-3-030-50433-5_19

78

https://doi.org/10.1109/SAMI48414.2020.9108712
https://doi.org/10.1007/978-3-030-58802-1_3
https://doi.org/10.1007/978-3-030-24289-3_24
https://doi.org/10.1109/Informatics47936.2019.9119276
https://doi.org/10.1109/Informatics47936.2019.9119330
https://doi.org/10.1007/978-3-030-50433-5_19

Appendix B

Other activities

• Lecturer, Introduction to Computer Graphics (KIV/UPG):

– Summer semester of 2018/2019, one lecture per week
– Summer semester of 2019/2020, four lectures per week
– Summer semester of 2020/2021, five lectures per week
– Summer semester of 2021/2022, four lectures per week

• Lecturer, Programming Techniques (KIV/PT):

– Winter semester of 2020/2021, two lectures per week
– Winter semester of 2021/2022, two lectures per week

• Lecturer, Programming Techniques in English (KIV/PT-E)

– Winter semester of 2021/2022, one lecture per week

• Internship, LMU Munchen, from 7th of June 2022 till 1st of July 2022

• Student member of the education council (ROV in Czech)

79

Bibliography

[1] Angles, B., Rebain, D., Macklin, M., Wyvill, B., Barthe, L., Lewis, J.,
Von Der Pahlen, J., Izadi, S., Valentin, J., Bouaziz, S., Tagliasacchi,
A.: Viper: Volume invariant position-based elastic rods. Proc. ACM
Comput. Graph. Interact. Tech. 2(2) (jul 2019). https://doi.org/
10.1145/3340260, https://doi.org/10.1145/3340260

[2] Arslan, Y.Z., Karabulut, D., Ortes, F., Popovic, M.: Exoskeletons, Ex-
omusculatures, Exosuits: Dynamic Modeling and Simulation, pp. 305–
331 (04 2019). https://doi.org/10.1016/B978-0-12-812939-5.
00011-2

[3] Aubel, A., Thalmann, D.: Interactive modeling of the human muscu-
lature. pp. 167 – 255 (02 2001). https://doi.org/10.1109/CA.2001.
982390

[4] Aubel, A., Thalmann, D.: Efficient muscle shape deformation (05 2002).
https://doi.org/10.1007/978-0-306-47002-8_12

[5] Babuska, I., Melenk, J.: The partition of unity finite element method.
International Journal for Numerical Methods in Engineering 40, 38 (06
1995). https://doi.org/10.1002/nme.1459

[6] Bagchi, S., Mitra, S.: The nonuniform discrete fourier transform and
its applications in filter design. i. 1-d. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing 43(6), 422–433
(1996). https://doi.org/10.1109/82.502315

[7] Barzan, M., Carty, C., Maine, S., Brito da Luz, S., Lloyd, D., Mod-
enese, L.: Subject-specific knee kinematics during walking in children
and adolescents with recurrent patellar dislocation (10 2017)

[8] Blaheta, R.: Matematické modelování a metoda konečných prvků
(2012), in czech language only

[9] Boubaker, B., Pato, M., Pires, E.: A finite element model of skeletal
muscle. Virtual and Physical Prototyping 1, 159–170 (09 2006). https:
//doi.org/10.1080/17452750601040626

80

https://doi.org/10.1145/3340260
https://doi.org/10.1145/3340260
https://doi.org/10.1145/3340260
https://doi.org/10.1016/B978-0-12-812939-5.00011-2
https://doi.org/10.1016/B978-0-12-812939-5.00011-2
https://doi.org/10.1109/CA.2001.982390
https://doi.org/10.1109/CA.2001.982390
https://doi.org/10.1007/978-0-306-47002-8_12
https://doi.org/10.1002/nme.1459
https://doi.org/10.1109/82.502315
https://doi.org/10.1080/17452750601040626
https://doi.org/10.1080/17452750601040626

[10] Buhmann, M.: Radial basis functions: Theory and implementations.
Radial Basis Functions 12 (07 2003). https://doi.org/10.1017/
CBO9780511543241

[11] Burzyński, S., Sabik, A., Witkowski, W., Łuczkiewicz, P.: Influence of
the femoral offset on the muscles passive resistance in total hip arthro-
plasty. PLOS ONE 16(5), 1–12 (05 2021). https://doi.org/10.1371/
journal.pone.0250397

[12] Carbone, V., Fluit, R., Pellikaan, P., van der Krogt, M., Janssen, D.,
Damsgaard, M., Vigneron, L., Feilkas, T., Koopman, H., Verdonschot,
N.: Tlem 2.0–a comprehensive musculoskeletal geometry dataset for
subject-specific modeling of lower extremity. Journal of biomechanics
48 (01 2015). https://doi.org/10.1016/j.jbiomech.2014.12.034

[13] Carnevale, L., Anjos, G., Mangiavacchi, N.: Stream function-vorticity
formulation applied in the conjugated heat problem using the fem
with unstructured mesh (11 2018). https://doi.org/10.26678/ABCM.
ENCIT2018.CIT18-0173

[14] Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., Mccallum, B.,
Evans, T.: Reconstruction and representation of 3d objects with radial
basis functions. ACM SIGGRAPH (09 2001). https://doi.org/10.
1145/383259.383266

[15] Catmull, E., Rom, R.: A class of local interpolating splines. Computer
Aided Geometric Design - CAGD 74 (12 1974). https://doi.org/10.
1016/B978-0-12-079050-0.50020-5

[16] Cervenka, M.: Non-rigid registration of superficial muscle-tendon fasci-
cles. Bachelor’s Thesis (2017), supervisor: Kohout, J.

[17] Cervenka, M.: Muscle Fibres Deformation using Particle System. Mas-
ter’s thesis (2019), supervisor: Kohout, J.

[18] Cervenka., M., Kohout., J.: Fast and realistic approach to virtual mus-
cle deformation. In: Proceedings of the 13th International Joint Confer-
ence on Biomedical Engineering Systems and Technologies - HEALTH-
INF,. pp. 217–227. INSTICC, SciTePress (2020). https://doi.org/
10.5220/0009129302170227

[19] Cervenka, M., Skala, V.: Behavioral study of various radial basis func-
tions for approximation and interpolation purposes. In: 2020 IEEE 18th
World Symposium on Applied Machine Intelligence and Informatics
(SAMI). pp. 135–140 (2020). https://doi.org/10.1109/SAMI48414.
2020.9108712

81

https://doi.org/10.1017/CBO9780511543241
https://doi.org/10.1017/CBO9780511543241
https://doi.org/10.1371/journal.pone.0250397
https://doi.org/10.1371/journal.pone.0250397
https://doi.org/10.1016/j.jbiomech.2014.12.034
https://doi.org/10.26678/ABCM.ENCIT2018.CIT18-0173
https://doi.org/10.26678/ABCM.ENCIT2018.CIT18-0173
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.5220/0009129302170227
https://doi.org/10.5220/0009129302170227
https://doi.org/10.1109/SAMI48414.2020.9108712
https://doi.org/10.1109/SAMI48414.2020.9108712

[20] Cervenka, M., Skala, V.: Conditionality analysis of the ra-
dial basis function matrix (10 2020). https://doi.org/10.1007/
978-3-030-58802-1_3

[21] Cervenka, M., Smolik, M., Skala, V.: A New Strategy for Scat-
tered Data Approximation Using Radial Basis Functions Respecting
Points of Inflection, pp. 322–336 (06 2019). https://doi.org/10.
1007/978-3-030-24289-3_24

[22] Delp, S., Blemker, S.: Three-dimensional representation of com-
plex muscle architectures and geometries. Annals of biomedi-
cal engineering 33, 661–73 (06 2005). https://doi.org/10.1007/
s10439-005-1433-7

[23] Dereshgi, H., Serbest, K., Sahin, S., Balik, B.: Skeletal muscle mechanics
from hill-based muscle model to computer applications: State of the art
review 2, 27–39 (06 2021)

[24] Diffo Kaze, A., Maas, S., Arnoux, P.J., Wolf, C., Pape, D.: A finite ele-
ment model of the lower limb during stance phase of gait cycle including
the muscle forces. BioMedical Engineering OnLine 16, 138 (12 2017).
https://doi.org/10.1186/s12938-017-0428-6

[25] Dvořák, J., Káčereková, Z., Vaněček, P., Hruda, L., Váša,
L.: As-rigid-as-possible volume tracking for time-varying sur-
faces. Computers & Graphics 102, 329–338 (2022). https://doi.
org/https://doi.org/10.1016/j.cag.2021.10.015, https://www.
sciencedirect.com/science/article/pii/S0097849321002284

[26] Ezati, M., Ghannadi, B., McPhee, J.: A review of simulation meth-
ods for human movement dynamics with emphasis on gait. Multi-
body System Dynamics 47 (11 2019). https://doi.org/10.1007/
s11044-019-09685-1

[27] Fasser, M.., Jokeit, M., Kalthoff, M., Gomez Romero, D.A., Trache, T.,
Snedeker, J.G., Farshad, M., Widmer, J.: Subject-specific alignment
and mass distribution in musculoskeletal models of the lumbar spine.
Frontiers in Bioengineering and Biotechnology 9 (2021), www.scopus.
com, cited By :2

[28] Fougeron, N., Rohan, P.Y., Rose, J.L., Bonnet, X., Pillet, H.: Finite
element analysis of the stump-ischial containment socket interaction: a
technical note. Medical Engineering & Physics 105, 103829 (06 2022).
https://doi.org/10.1016/j.medengphy.2022.103829

[29] Fukuda, N., Otake, Y., Takao, M., Yokota, F., Ogawa, T., Uemura,
K., Nakaya, R., Tamura, K., Grupp, R., Farvardin, A., Sugano, N.,

82

https://doi.org/10.1007/978-3-030-58802-1_3
https://doi.org/10.1007/978-3-030-58802-1_3
https://doi.org/10.1007/978-3-030-24289-3_24
https://doi.org/10.1007/978-3-030-24289-3_24
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1186/s12938-017-0428-6
https://doi.org/https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/https://doi.org/10.1016/j.cag.2021.10.015
https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://doi.org/10.1007/s11044-019-09685-1
https://doi.org/10.1007/s11044-019-09685-1
www.scopus.com
www.scopus.com
https://doi.org/10.1016/j.medengphy.2022.103829

Sato, Y.: Estimation of attachment regions of hip muscles in ct im-
age using muscle attachment probabilistic atlas constructed from mea-
surements in eight cadavers. International Journal of Computer As-
sisted Radiology and Surgery 12 (02 2017). https://doi.org/10.
1007/s11548-016-1519-8

[30] Garner, B., Pandy, M.: Estimation of musculotendon properties in the
human upper limb. Annals of biomedical engineering 31, 207–20 (03
2003). https://doi.org/10.1114/1.1540105

[31] George-Ghiocel, O., Băbut, , C., Ungureanu, N., Deleanu, L.: Fem anal-
ysis of storz coupling 6, 249–258 (09 2021)

[32] Georgii, J., Westermann, R.: Mass-spring systems on the gpu. Simu-
lation Modelling Practice and Theory 13, 693–702 (11 2005). https:
//doi.org/10.1016/j.simpat.2005.08.004

[33] Halton, J.: Algorithm 247: Radical-inverse quasi-random point se-
quence. Commun. ACM 7, 701–702 (12 1964). https://doi.org/10.
1145/355588.365104

[34] Hardy, R.: Multiquadric equations of topography and other irregular
surfaces. Journal of Geophysical Research 76, 1905–1915 (03 1971).
https://doi.org/10.1029/JB076i008p01905

[35] Havlíček, O.: Fast collision detection in the context of muscle deforma-
tion by a position based dynamics method. Bachelor’s Thesis (2021),
supervisor: Kohout, J.

[36] Haykin, S.: Neural Networks: A Comprehensive Foundation (2nd Edi-
tion) Neural Networks: A Comprehensive Foundation (01 1998)

[37] Hill, A.: The heat of shortening and the dynamic constants of muscle.
Proc. R. Soc. Lond. B 126, 612–745 (01 1938)

[38] Hong, M., Jung, S., Choi, M.H., Welch, S.W.: Fast volume preservation
for a mass-spring system. IEEE Computer Graphics and Applications
26(5), 83–91 (2006). https://doi.org/10.1109/MCG.2006.104

[39] Hájková, J., Kohout, J.: Human body model movement support: Au-
tomatic muscle control curves computation. pp. 196–211 (05 2014).
https://doi.org/10.1007/978-3-319-07148-0_18

[40] Janák, T.: Fast soft-body models for musculoskeletal modelling. Tech.
rep., University of West Bohemia, Faculty of Applied Sciences (2012)

83

https://doi.org/10.1007/s11548-016-1519-8
https://doi.org/10.1007/s11548-016-1519-8
https://doi.org/10.1114/1.1540105
https://doi.org/10.1016/j.simpat.2005.08.004
https://doi.org/10.1016/j.simpat.2005.08.004
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/355588.365104
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1109/MCG.2006.104
https://doi.org/10.1007/978-3-319-07148-0_18

[41] Janák., T., Kohout., J.: Deformable muscle models for motion simula-
tion. In: Proceedings of the 9th International Conference on Computer
Graphics Theory and Applications - GRAPP, (VISIGRAPP 2014). pp.
301–311. INSTICC, SciTePress (2014). https://doi.org/10.5220/
0004678903010311

[42] Jin, Z., Li, J., Chen, Z.: Computational Modelling of Biomechanics and
Biotribology in the Musculoskeletal System (10 2020)

[43] Kaptein, B., van der Helm, F.: Estimating muscle attachment con-
tours by transforming geometrical bone models. Journal of Biomechan-
ics 37(3), 263–273 (2004). https://doi.org/https://doi.org/10.
1016/j.jbiomech.2003.08.005, https://www.sciencedirect.com/
science/article/pii/S0021929003003257

[44] Kellnhofer, P., Kohout, J.: Time-convenient deformation of muscu-
loskeletal system (09 2012)

[45] Kohout, J., Clapworthy, G.J., Zhao, Y., Tao, Y., Gonzalez-Garcia, G.,
Dong, F., Wei, H., Kohoutová, E.: Patient-specific fibre-based models of
muscle wrapping. Interface Focus 3(2), 20120062 (2013). https://doi.
org/10.1098/rsfs.2012.0062, https://royalsocietypublishing.
org/doi/abs/10.1098/rsfs.2012.0062

[46] Kohout, J., Cervenka, M.: Non-planar surface shape reconstruction
from a point cloud in the context of muscles attachments estimation. pp.
236–243 (01 2022). https://doi.org/10.5220/0010869600003124

[47] Kohout, J., Cholt, D.: Automatic reconstruction of the muscle archi-
tecture from the superficial layer fibres data. Computer Methods and
Programs in Biomedicine 150 (08 2017). https://doi.org/10.1016/
j.cmpb.2017.08.002

[48] Kohout, J., Kukačka, M.: Real-time modelling of fibrous muscle. Com-
puter Graphics Forum 33 (05 2014). https://doi.org/10.1111/cgf.
12354

[49] Kohout, J., Červenka, M.: Muscle deformation using position based dy-
namics. In: Ye, X., Soares, F., De Maria, E., Gómez Vilda, P., Cabitza,
F., Fred, A., Gamboa, H. (eds.) Biomedical Engineering Systems and
Technologies. pp. 486–509. Springer International Publishing, Cham
(2021)

[50] Kutilek, P., Viteckova, S., Svoboda, Z., Smrcka, P.: The use of arti-
ficial neural networks to predict the muscle behavior. Central Euro-
pean Journal of Engineering 3 (09 2013). https://doi.org/10.2478/
s13531-012-0067-4

84

https://doi.org/10.5220/0004678903010311
https://doi.org/10.5220/0004678903010311
https://doi.org/https://doi.org/10.1016/j.jbiomech.2003.08.005
https://doi.org/https://doi.org/10.1016/j.jbiomech.2003.08.005
https://www.sciencedirect.com/science/article/pii/S0021929003003257
https://www.sciencedirect.com/science/article/pii/S0021929003003257
https://doi.org/10.1098/rsfs.2012.0062
https://doi.org/10.1098/rsfs.2012.0062
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2012.0062
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2012.0062
https://doi.org/10.5220/0010869600003124
https://doi.org/10.1016/j.cmpb.2017.08.002
https://doi.org/10.1016/j.cmpb.2017.08.002
https://doi.org/10.1111/cgf.12354
https://doi.org/10.1111/cgf.12354
https://doi.org/10.2478/s13531-012-0067-4
https://doi.org/10.2478/s13531-012-0067-4

[51] Larson, M., Bengzon, F.: The Finite Element Method: Theory, Imple-
mentation, and Applications, vol. 10 (01 2013). https://doi.org/10.
1007/978-3-642-33287-6

[52] Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: Modeling and
simulation of skeletal muscle for computer graphics: A survey. Founda-
tions and Trends® in Computer Graphics and Vision 7, 229 (01 2012).
https://doi.org/10.1561/0600000036

[53] Lee, D., Li, Z., Sohail, Q.Z., Jackson, K., Fiume, E., Agur, A.: A three-
dimensional approach to pennation angle estimation for human skeletal
muscle. Computer methods in biomechanics and biomedical engineer-
ing 18, 1–11 (05 2014). https://doi.org/10.1080/10255842.2014.
917294

[54] Lewis, J., Pighin, F., Anjyo, K.: Scattered data interpolation for com-
puter graphics. ACM SIGGRAPH 2014 Courses, SIGGRAPH 2014 (01
2010). https://doi.org/10.1145/1900520.1900522

[55] Li, H., Sumner, R., Pauly, M.: Global correspondence optimization for
non-rigid registration of depth scans. Computer Graphics Forum 27 (07
2008). https://doi.org/10.1111/j.1467-8659.2008.01282.x

[56] Lloyd, J.E., Roewer-Després, F., Stavness, I.: Muscle path wrapping
on arbitrary surfaces. IEEE Transactions on Biomedical Engineer-
ing 68(2), 628–638 (2021). https://doi.org/10.1109/TBME.2020.
3009922

[57] Macklin, M., Müller, M., Chentanez, N.: Xpbd: Position-based simula-
tion of compliant constrained dynamics (10 2016). https://doi.org/
10.1145/2994258.2994272

[58] Martins, J.A.C., Pato, M.P.M., Pires, E.B.: A finite element model
of skeletal muscles. Virtual and Physical Prototyping 1(3), 159–
170 (2006). https://doi.org/10.1080/17452750601040626, https:
//doi.org/10.1080/17452750601040626

[59] Martins, J., Pires, E., Salvado, R., Dinis, P.: A numerical model of
passive and active behavior of skeletal muscles. Computer Methods in
Applied Mechanics and Engineering 151(3), 419–433 (1998). https:
//doi.org/https://doi.org/10.1016/S0045-7825(97)00162-X,
https://www.sciencedirect.com/science/article/pii/
S004578259700162X, containing papers presented at the Sympo-
sium on Advances in Computational Mechanics

[60] of Medicine, N.L.: Visible human project, https://www.nlm.nih.gov/
research/visible/visible_human.html

85

https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1561/0600000036
https://doi.org/10.1080/10255842.2014.917294
https://doi.org/10.1080/10255842.2014.917294
https://doi.org/10.1145/1900520.1900522
https://doi.org/10.1111/j.1467-8659.2008.01282.x
https://doi.org/10.1109/TBME.2020.3009922
https://doi.org/10.1109/TBME.2020.3009922
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1080/17452750601040626
https://doi.org/10.1080/17452750601040626
https://doi.org/10.1080/17452750601040626
https://doi.org/https://doi.org/10.1016/S0045-7825(97)00162-X
https://doi.org/https://doi.org/10.1016/S0045-7825(97)00162-X
https://www.sciencedirect.com/science/article/pii/S004578259700162X
https://www.sciencedirect.com/science/article/pii/S004578259700162X
https://www.nlm.nih.gov/research/visible/visible_human.html
https://www.nlm.nih.gov/research/visible/visible_human.html

[61] Modenese, L., Kohout, J.: Automated generation of three-dimensional
complex muscle geometries for use in personalised musculoskeletal mod-
els. Annals of Biomedical Engineering 48 (03 2020). https://doi.org/
10.1007/s10439-020-02490-4

[62] Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based
dynamics. Journal of Visual Communication and Image Represen-
tation 18(2), 109–118 (2007). https://doi.org/https://doi.org/
10.1016/j.jvcir.2007.01.005, https://www.sciencedirect.com/
science/article/pii/S1047320307000065

[63] Ni, R., Meyer, C., Blemker, S., Hart, J., Feng, X.: Automatic seg-
mentation of all lower limb muscles from high-resolution magnetic
resonance imaging using a cascaded three-dimensional deep convolu-
tional neural network. Journal of Medical Imaging 6, 1 (12 2019).
https://doi.org/10.1117/1.JMI.6.4.044009

[64] Nolan, D., Gower, A., Destrade, M., Ogden, R., McGarry, P.: A robust
anisotropic hyperelastic formulation for the modelling of soft tissue (09
2020)

[65] Oatis, C.A.: Biomechanics of skeletal muscle (2017)

[66] Oberhofer, K., Mithraratne, K., Stott, N., Anderson, I.: Anatomically-
based musculoskeletal modeling: Prediction and validation of muscle
deformation during walking. The Visual Computer 25, 843–851 (09
2009). https://doi.org/10.1007/s00371-009-0314-8

[67] Otake, Y., Yokota, F., Fukuda, N., Takao, M., Takagi, S., Yamamura,
N., O’Donnell, L.J., Westin, C.F., Sugano, N., Sato, Y.: Patient-specific
skeletal muscle fiber modeling from structure tensor field of clinical
ct images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P.,
Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Com-
puter Assisted Intervention – MICCAI 2017. pp. 656–663. Springer In-
ternational Publishing, Cham (2017)

[68] Oudeman, J., Nederveen, A., Strijkers, G., Maas, M., Luijten, P., Froel-
ing, M.: Techniques and applications of skeletal muscle diffusion tensor
imaging: A review. Journal of Magnetic Resonance Imaging 43, n/a–
n/a (07 2015). https://doi.org/10.1002/jmri.25016

[69] Pan, R., Skala, V.: Continuous global optimization in surface recon-
struction from an oriented point cloud. Computer-Aided Design 43,
896–901 (08 2011). https://doi.org/10.1016/j.cad.2011.03.005

[70] Park, J.S., Chung, M., Hwang, S., Lee, Y., Har, D.H., Park, H.: Visible
korean human: Improved serially sectioned images of the entire body.

86

https://doi.org/10.1007/s10439-020-02490-4
https://doi.org/10.1007/s10439-020-02490-4
https://doi.org/https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/https://doi.org/10.1016/j.jvcir.2007.01.005
https://www.sciencedirect.com/science/article/pii/S1047320307000065
https://www.sciencedirect.com/science/article/pii/S1047320307000065
https://doi.org/10.1117/1.JMI.6.4.044009
https://doi.org/10.1007/s00371-009-0314-8
https://doi.org/10.1002/jmri.25016
https://doi.org/10.1016/j.cad.2011.03.005

IEEE transactions on medical imaging 24, 352–60 (04 2005). https:
//doi.org/10.1109/TMI.2004.842454

[71] Pellikaan, P., van der Krogt, M., Carbone, V., Fluit, R., Vigneron, L.,
Van Deun, J., Verdonschot, N., Koopman, H.: Evaluation of a mor-
phing based method to estimate muscle attachment sites of the lower
extremity. Journal of Biomechanics 47 (01 2013). https://doi.org/
10.1016/j.jbiomech.2013.12.010

[72] Ranzenberger LR, S.T.: Diffusion tensor imaging (2021), https://www.
ncbi.nlm.nih.gov/books/NBK537361/

[73] Romeo, M., Monteagudo, C., Sánchez-Quirós, D.: Muscle Simulation
with Extended Position Based Dynamics. In: García-Fernández, I.,
Ureña, C. (eds.) Spanish Computer Graphics Conference (CEIG). The
Eurographics Association (2018). https://doi.org/10.2312/ceig.
20181146

[74] Çağlar Seylan, Sahillioğlu, Y.: 3d shape deformation using stick fig-
ures. Computer-Aided Design 151, 103352 (2022). https://doi.
org/https://doi.org/10.1016/j.cad.2022.103352, https://www.
sciencedirect.com/science/article/pii/S0010448522001075

[75] Shi, X., Lu, L.Z., Wang, H.: New superconvergence estimates of fem
for time-dependent joule heating problem. Computers & Mathematics
with Applications 111, 91–97 (04 2022). https://doi.org/10.1016/
j.camwa.2022.02.011

[76] Skala, V., Abdul Karim, A.P.T.D.S.A., Cervenka, M.: Finding Points
of Importance for Radial Basis Function Approximation of Large
Scattered Data, pp. 239–250 (06 2020). https://doi.org/10.1007/
978-3-030-50433-5_19

[77] Skala, V., Cervenka, M.: Novel rbf approximation method based on
geometrical properties for signal processing with a new rbf func-
tion: Experimental comparison (06 2019). https://doi.org/10.1109/
Informatics47936.2019.9119276

[78] Skala, V., Kansa, E.: Why is the least square error method dangerous?
Computación y Sistemas 25 (02 2021). https://doi.org/10.13053/
cys-25-1-3473

[79] Sorkine, O., Alexa, M.: As-Rigid-As-Possible Surface Modeling. In:
Belyaev, A., Garland, M. (eds.) Geometry Processing. The Euro-
graphics Association (2007). https://doi.org/10.2312/SGP/SGP07/
109-116

87

https://doi.org/10.1109/TMI.2004.842454
https://doi.org/10.1109/TMI.2004.842454
https://doi.org/10.1016/j.jbiomech.2013.12.010
https://doi.org/10.1016/j.jbiomech.2013.12.010
https://www.ncbi.nlm.nih.gov/books/NBK537361/
https://www.ncbi.nlm.nih.gov/books/NBK537361/
https://doi.org/10.2312/ceig.20181146
https://doi.org/10.2312/ceig.20181146
https://doi.org/https://doi.org/10.1016/j.cad.2022.103352
https://doi.org/https://doi.org/10.1016/j.cad.2022.103352
https://www.sciencedirect.com/science/article/pii/S0010448522001075
https://www.sciencedirect.com/science/article/pii/S0010448522001075
https://doi.org/10.1016/j.camwa.2022.02.011
https://doi.org/10.1016/j.camwa.2022.02.011
https://doi.org/10.1007/978-3-030-50433-5_19
https://doi.org/10.1007/978-3-030-50433-5_19
https://doi.org/10.1109/Informatics47936.2019.9119276
https://doi.org/10.1109/Informatics47936.2019.9119276
https://doi.org/10.13053/cys-25-1-3473
https://doi.org/10.13053/cys-25-1-3473
https://doi.org/10.2312/SGP/SGP07/109-116
https://doi.org/10.2312/SGP/SGP07/109-116

[80] Spitzer, V., Ackerman, M., Scherzinger, A., Whitlock, D.: The visible
human male: A technical report. Journal of the American Medical In-
formatics Association:JAMIA 3, 118–30 (03 1996). https://doi.org/
10.1136/jamia.1996.96236280

[81] Sun, X., Wang, H., Wang, W., Li, N., Hamalainen, T., Ristaniemi, T.,
Liu, C.: A statistical model of spine shape and material for population-
oriented biomechanical simulation. IEEE Access PP, 1–1 (11 2021).
https://doi.org/10.1109/ACCESS.2021.3129097

[82] Uhlir, K., Skala, V.: Reconstruction of damaged images using radial ba-
sis functions. 13th European Signal Processing Conference, EUSIPCO
2005 (01 2005)

[83] Valente, G., Martelli, S., Taddei, F., Farinella, G., Viceconti, M.: Mus-
cle discretization affects the loading transferred to bones in lower-limb
musculoskeletal models. Proceedings of the Institution of Mechanical
Engineers. Part H, Journal of engineering in medicine 226, 161–9 (02
2012). https://doi.org/10.1177/0954411911425863

[84] Vasta, J., Skala, V., Smolik, M., Cervenka, M.: Modified radial ba-
sis functions approximation respecting data local features (06 2020).
https://doi.org/10.1109/Informatics47936.2019.9119330

[85] Vila Pouca, M., Areias, P., Göktepe, S., Ashton-Miller, J., Natal Jorge,
R., Parente, M.: Modeling permanent deformation during low-cycle
fatigue: Application to the pelvic floor muscles during labor. Jour-
nal of the Mechanics and Physics of Solids 164, 104908 (04 2022).
https://doi.org/10.1016/j.jmps.2022.104908

[86] Wade, S., Strader, C., Fitzpatrick, L., Anthony, M., O’Malley, C.: Esti-
mating prevalence of osteoporosis: Examples from industrialized coun-
tries. Archives of osteoporosis 9, 182 (12 2014). https://doi.org/10.
1007/s11657-014-0182-3

[87] Wang, B., Matcuk, G., Barbič, J.: Modeling of personalized anatomy
using plastic strains. ACM Trans. Graph. 40(2) (jun 2021). https:
//doi.org/10.1145/3443703, https://doi.org/10.1145/3443703

[88] Wei, Y., Zou, Z., Wei, G., Ren, L., Qian, Z.: Subject-specific finite ele-
ment modelling of the human hand complex: Muscle-driven simulations
and experimental validation. Annals of Biomedical Engineering 48 (12
2019). https://doi.org/10.1007/s10439-019-02439-2

[89] Winter, V.J.: Numerical methods for scalar convection-dominated prob-
lems (2014)

88

https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1109/ACCESS.2021.3129097
https://doi.org/10.1177/0954411911425863
https://doi.org/10.1109/Informatics47936.2019.9119330
https://doi.org/10.1016/j.jmps.2022.104908
https://doi.org/10.1007/s11657-014-0182-3
https://doi.org/10.1007/s11657-014-0182-3
https://doi.org/10.1145/3443703
https://doi.org/10.1145/3443703
https://doi.org/10.1145/3443703
https://doi.org/10.1007/s10439-019-02439-2

[90] Yuksel, C., Schaefer, S., Keyser, J.: On the parameterization of
catmull-rom curves. In: 2009 SIAM/ACM Joint Conference on Ge-
ometric and Physical Modeling. pp. 47–53. ACM, New York, NY,
USA (2009). https://doi.org/10.1145/1629255.1629262, http://
doi.acm.org/10.1145/1629255.1629262

[91] Zajac, F.: Muscle and tendon: Properties, models, scaling, and applica-
tion to biomechanics and motor control. Critical reviews in biomedical
engineering 17, 359–411 (02 1989)

[92] Zhang, G., Wang, C., Liu, Q., Wei, J., Luo, C., Duan, L., Long, J.,
Zhang, X., Wang, G.: Development of skeletal muscle model for bridge-
style movement rehabilitation. Journal of Physics: Conference Se-
ries 2026, 012061 (09 2021). https://doi.org/10.1088/1742-6596/
2026/1/012061

[93] Zhang, S.X., Heng, P.A., Liu, Z.J., Tan, L.W., Qiu, M.G., Li, Q.Y., Liao,
R.X., Li, K., Cui, G.Y., Guo, Y.L., Yang, X.P., Liu, G.J., Shan, J.L.,
Liu, J.J., Zhang, W.G., Chen, X.H., Chen, J.H., Wang, J., Chen, W.,
Xie, Y.M.: Creation of the chinese visible human data set. Anatomical
record. Part B, New anatomist 275, 190–5 (11 2003). https://doi.
org/10.1002/ar.b.10035

[94] Zhao, Y., Clapworthy, G., Kohout, J., Dong, F., Tao, Y., Wei, S., Mc-
farlane, N.: Laplacian musculoskeletal deformation for patient-specific
simulation and visualisation. pp. 505–510 (07 2013). https://doi.org/
10.1109/IV.2013.67

89

https://doi.org/10.1145/1629255.1629262
http://doi.acm.org/10.1145/1629255.1629262
http://doi.acm.org/10.1145/1629255.1629262
https://doi.org/10.1088/1742-6596/2026/1/012061
https://doi.org/10.1088/1742-6596/2026/1/012061
https://doi.org/10.1002/ar.b.10035
https://doi.org/10.1002/ar.b.10035
https://doi.org/10.1109/IV.2013.67
https://doi.org/10.1109/IV.2013.67

	Introduction
	Motivation
	Muscle modelling pipeline

	Data aquisition
	Muscle-tendon units
	Muscle attachments
	Non-invasive methods
	Invasive methods
	Physiological signals
	Data registration

	Estimation techniques
	Constant and piecewise linear estimation
	Bezier curve
	Catmull-Rom spline
	Discrette Fourier transform
	Radial basis functions
	Centre point distribution
	Polynomial extension

	Finite element method
	Problem formulation in strong form
	Laplace equation
	Poisson equation
	Second-order partial differential equation

	Boundary condition
	Weak formulation
	One-dimensional problem
	Discretization
	Triangular basis

	Multidimensional triangular basis
	2D triangular basis

	Examples
	One-dimensional problem
	Two-dimensional problem
	Surface model problems

	Existing methods
	Hill-type model
	Via-points
	Wrapping obstacles
	Finite element method
	Other optimalization problems
	Mass-spring system
	ARAP
	PBD

	Experiments and Results
	PBD results
	Collision detection and response
	Muscle decomposition
	Artificial data
	Iliacus
	Gluteus maximus
	Other muscles
	Quantitative tests
	Fibre length
	Speed

	Preliminary ARAP Results

	Conclusion & Future Work
	The ambitious goal
	ARAP & PBD

	Publications
	Other activities

