
University of West Bohemia
Department of Computer Science and Engineering

Univerzitní 8
30614 Plzeň

Czech Republic

Historical Document Analysis
Ph.D. Study Report

Josef Baloun

Technical Report No. DCSE/TR-2022-02
June 2022
Distribution: public



Technical Report No. DCSE/TR-2022-02
June 2022

Historical Document Analysis
Ph.D. Study Report

Josef Baloun

Abstract
Scanned documents are a rich source of various information that can be processed
utilizing a document analysis system. Such a system covers the areas of Machine
Learning, Computer Vision and Natural Language Processing. In the thesis, these
areas are covered with a focus on common and state-of-the-art approaches applicable
to historical document analysis, which is still challenging due to several difficulties
such as handwritten text. Finally, the current research results and aims of the future
doctoral thesis are presented.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Copyright c○ 2022 University of West Bohemia, Czech Republic

http://www.kiv.zcu.cz/en/research/publications/


Contents

1 Introduction 1

2 Neural Networks 3
2.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 5
2.2.2 Error Backpropagation . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 8
2.4 Fully Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Connectionist Temporal Classification . . . . . . . . . . . . . . . . . . 12
2.7 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Document Image Analysis 15
3.1 Graphical Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Layout Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Textual Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Keyword Spotting . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Text Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Natural Language Processing 31
4.1 Word Representation Using Word2Vec . . . . . . . . . . . . . . . . . 31
4.2 Contextual Representation . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Task Dependent Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Multilingual Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Multi-Modal Processing 36

6 Own Work 39
6.1 Handwritten Historical Chronicles Segmentation . . . . . . . . . . . . 39

6.1.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 FCN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 40



6.2 Historical Map Processing . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.1 Segmentation of Map Content . . . . . . . . . . . . . . . . . . 43
6.2.2 Localization of Graticule Lines Intersections . . . . . . . . . . 44
6.2.3 Historical Map Toponym Extraction . . . . . . . . . . . . . . 47

6.3 Multilingual HTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions and Aims of the Doctoral Thesis 50



Abbreviations

BERT Bidirectional Encoder Representation from Transformer. 33–36

BiLSTM Bidirectional Long Short-Term Memory. 29

CER Character Error Rate. 49

CNN Convolutional Neural Network. 8, 9, 24, 28

CTC Connectionist Temporal Classification. 12, 13, 21, 28–30

CV Computer Vision. 2, 43, 51

DIA Document Image Analysis. 1, 2, 15, 16

EDT Euclidean Distance Transform. 19

ELMo Embeddings from Language Models. 33

FCN Fully Convolutional Network. 9, 10, 18, 20, 21, 39, 40, 43, 44, 47

FgPA Foreground Pixel Accuracy. 20, 21, 42

GPT Generative Pre-trained Transformer. 33

GT Ground-Truth. 4, 5, 12, 21, 24, 34, 49

HTR Handwritten Text Recognition. 2, 12, 15, 26, 28–30, 36, 48–50

IoU Intersection over Union. 42

LSTM Long Short-Term Memory. 11

ML Machine Learning. 2, 3, 16, 28, 43, 50

MLP Multilayer Perceptron. 3, 6

NLP Natural Language Processing. 2, 3, 13, 31, 50

NN Neural Network. 1–6, 48



OCR Optical Character Recognition. 2, 15, 26, 28–30, 36, 47

PCA Principal Component Analysis. 32, 37

PHOC Pyramidal Histogram Of Characters. 28, 29

PPG Perpendicular Peak Group. 45, 46

QbE Query by Example. 28, 29

QbS Query by String. 28, 29

R-CNN Region-based Convolutional Neural Network. 24–26, 36, 47

ReLU Rectified Linear Unit. 4, 8

RNN Recurrent Neural Network. 11, 14, 21, 33

RoI Region of Interest. 22, 25, 26

RPN Region Proposal Network. 25

SGD Stochastic Gradient Descent. 5

SPP Spatial Pyramid Pooling. 24, 25, 28

YOLO You Only Look Once. 26, 47



Chapter 1

Introduction

Considerable efforts are currently being made to digitize documents and make them
available electronically in most areas, such as business or archives. The aim is usually
to make searching in these documents easier, reduce storage costs or make documents
available to the general public. They are a rich source of information not only for
historians, since they record various events including weather conditions for example.
The volume of scanned historical documents in the archives around the world is still
increasing and at the same time there is a growing need to process them into a more
searchable form allowing information retrieval or data mining.

The input of document analysis are usually scanned pages. The output can be
a set of detected key points, transcribed text or page representation. Compared to
modern printed documents, the historical ones are more challenging due to hand-
writing, different authors, scanning quality and also paper degradation. Moreover,
methods that work for modern documents usually do not work well for historical
ones. Thus, there is a need for new approaches. These new approaches benefit from
machine learning and are usually based on deep Neural Networks (NNs).

The main part of historical document analysis is Document Image Analysis
(DIA). It can be divided into textual and graphical processing which deals with
textual and graphical regions, respectively. [42] An important part is layout analy-
sis, where the goal is to describe the layout of the page and to obtain the areas like
text blocks, text lines, characters or images for example.

Once the text and graphic components are obtained, they can be further utilized.
As depicted in Fig. 1.1, the conventional document processing workflow focuses

Figure 1.1: Historical document analysis conventional workflow [46]

1



mainly on the text information. The crucial step for textual components is Optical
Character Recognition (OCR) or more challenging Handwritten Text Recognition
(HTR). It allows transcription into a full-text representation.

Nowadays, the need for information present in graphic areas is also growing.
Obviously, this information may supplement the information present in the text but
it could be also the main source of information. Generally, the historical document
analysis can include tasks like object detection, full-text transcription or image cap-
tioning. Therefore, it covers the areas of Machine Learning (ML), Computer Vision
(CV) and Natural Language Processing (NLP) and is thus a hybrid field. [46] For
example, NLP methods can analyze the text itself and provide more advanced func-
tionality such as named entity recognition or multilingual searching. The graphic
components can be processed by CV classification methods for example. Further,
graphic and text components can be utilized in multi-modal approaches that seems
promising and have not yet been sufficiently explored.

The goals of this work are to introduce the topic of historical document analysis,
summarize state-of-the-art approaches in the area, present the research results and
aims of the doctoral thesis.

This work starts with an introduction to NN and frequently used approaches in
the area of document analysis in order to simplify the understanding of methods
presented further. The next chapter is related to DIA including layout analysis,
textual and graphical processing. It is followed by chapters related to NLP and
multi-modal processing. After that, own work is presented. Finally, a summary and
the aims of the doctoral thesis are given.

2



Chapter 2

Neural Networks

NNs are currently the mainstream in the area of ML and state of the art in many
tasks including general classification, image segmentation, object detection, NLP
and also historical document analysis. They are able to extract features directly
from the input, so no preprocessing is needed. This is a great advantage not only in
historical document analysis. In this chapter, I will firstly introduce the basic model
and training. Further, I will highlight the main and frequently used approaches in
the area.

2.1 Multilayer Perceptron

Figure 2.1: MLP visualization: input (red), hidden fully-connected layer (blue), out-
put fully-connected layer (green)

Multilayer Perceptron (MLP) is the basic model of NN. As can be seen in Fig.
2.1, it consists of fully-connected layers, where each neuron is connected with all
neurons from the previous layer. The input of the neuron is generally a tensor,
which can be the input vector or the outputs of the neurons from previous layer.

In this type of network, the neuron output 𝑧 for the input 𝑥 of length 𝑀 is
computed according to Eq. 2.1, where 𝑤 are the weights of the neuron and 𝜙 stands
for the activation function (see Fig. 2.2). Bias 𝑤0 is a special weight that allows the

3



−5 0 5

0.5

1

(a) Sigmoid

−10 −5 0 5 10

5

10

(b) ReLU

Figure 2.2: Basic activation functions

x-axis shift of the activation function and thus 𝑥0 = 1.

𝑧 = 𝜙(
𝑀∑︁

𝑖=0
𝑤𝑖𝑥𝑖) (2.1)

Another important part is the loss function (also denoted as cost or error func-
tion). It is crucial for the training of NNs, since it computes the error of the prediction
(𝑝 of length 𝐾) compared to the Ground-Truth (expected output 𝑦 of length 𝐾).
Generally, the combination of the loss function and activation function in the last
output layer depends on the task. [6]

Linear activation function (Eq. 2.2) and mean squared error (Eq. 2.3) can be
used for regression problems.

𝜙𝑙(𝑥) = 𝑥 (2.2)

𝐶𝑀𝑆𝐸(𝑝, 𝑦) =
𝐾∑︁

𝑖=1
(𝑝𝑖 − 𝑦𝑖)2 (2.3)

Sigmoid activation function (Eq. 2.4) and a binary cross entropy loss function
(Eq. 2.5) are used for binary classification or multiple binary classifications, e.g.
multi-class multi-label classification.

𝜙𝑠(𝑥) = 1
1 + 𝑒−𝑥

(2.4)

𝐶𝐵𝐶𝐸(𝑝, 𝑦) = −
𝐾∑︁

𝑖=1
𝑦𝑖 · 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔(1 − 𝑝𝑖) (2.5)

Softmax outputs (Eq. 2.6) and corresponding categorical cross-entropy loss func-
tion (Eq. 2.7) are used for multi-class single-label classification for example.

𝜙𝑠𝑚(𝑥𝑖) = 𝑒𝑥𝑖∑︀𝐾
𝑗=1 𝑒𝑥𝑗

(2.6)

4



𝐶𝐶𝐶𝐸(𝑝, 𝑦) = −
𝐾∑︁

𝑖=1
𝑦𝑖 · 𝑙𝑜𝑔(𝑝𝑖) (2.7)

Presented losses are element wise, thus it sums the error between elements
of prediction 𝑝 and Ground-Truth (GT) 𝑦. For multiple data samples (e.g.
batches), average term is used in order to have the gradient independent of
the number of samples as presented in Sec. 2.2.1.

2.2 Training
The goal of NN training is to properly set the weights in order to minimize the error
on training data. It is usually done by backpropagation which consists of forward
pass, error backpropagation and weights update. [6] The forward pass was described
in the previous section. It is followed by error computation using the loss function
and error backpropagation, which obtains the gradients of the error function with
respect to the weights. Finally, the weight update is done based on these gradients.

2.2.1 Stochastic Gradient Descent
The straightforward approach for weight (𝑤) update is gradient descent that uses the
error gradient information (∇𝐸) to do a small step in the direction of the negative
gradient according to Eq. 2.8, where 𝜂 is known as learning rate.

𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂∇𝐸(𝑤(𝑡)) (2.8)

The error is defined with respect to the whole training set accordingly to Eq.
2.9, where the average term is used due to learning rate parameter in order to have
the gradient independent of the size of the dataset (or the batch size).

The evaluation and also the weight update in gradient descent is done based on
processing the whole training set. It is not beneficial, since it tends to get stuck at
local minima and it is problematic with large datasets.

𝐸 = 1
𝑁

𝑁∑︁
𝑛=1

𝐶(𝑦𝑛, 𝑝𝑛) (2.9)

𝐸 = 1
𝑁

𝑁∑︁
𝑛=1

𝐸𝑛 (2.10)

Stochastic Gradient Descent (SGD) is the basic optimizer for NN training. The
error function can be re-defined as in Eq. 2.10, where 𝐸𝑛 is the error with respect to
one training sample or a batch of training samples. Then, the update step is done
for each 𝐸𝑛 (after every sample or batch). This approach also allows to escape from
local minima since the stationary points should be different for 𝐸, 𝐸0 or 𝐸𝑛.

5



For the batch version of 𝐸𝑛, the average term is added to pass Eq. 2.10 in
order to have the gradients independent of the batch size.

2.2.2 Error Backpropagation
The goal of the error backpropagation is to compute the gradients of the error
function with respect to each weight in the NN that is needed for weights update.
It relies on the chain rule, which is the formula for computing the derivative of the
composed function according to Eq. 2.11.

𝑓(𝑥) = 𝑔(ℎ(𝑥)),
𝑓 ′(𝑥) = 𝑔′(ℎ(𝑥))ℎ′(𝑥),

𝑑𝑓

𝑑𝑥
= 𝑑𝑔

𝑑𝑥
= 𝑑𝑔

𝑑ℎ
· 𝑑ℎ

𝑑𝑥

(2.11)

The forward pass in MLP from Eq. 2.1 can be divided into computing the
weighted sum of the inputs according to Eq. 2.12 and applying activation func-
tion according to Eq. 2.13. The notation 𝑤

(𝑙)
𝑗𝑖 represents the 𝑖th weight of the 𝑗th

neuron that is present in the 𝑙th layer.

𝑎
(𝑙)
𝑗 =

𝑀∑︁
𝑖=0

𝑤
(𝑙)
𝑗𝑖 𝑧

(𝑙−1)
𝑖 (2.12)

𝑧
(𝑙)
𝑗 = 𝜙(𝑎(𝑙)

𝑗 ) (2.13)

En
y

z(L)a(L)

w(L)

z(L-1)a(L-1)

w(L-1)

z(L-2)

Figure 2.3: MLP computational graph

The computational graph of the MLP is illustrated in Fig. 2.3. Using the chain
rule, the partial derivative for the weights in the last layer can be reformulated
according to Eq. 2.14. This allows to directly compute the partial derivatives for
each weight in the last layer of the MLP.

𝜕𝐸𝑛

𝜕𝑤
(𝐿)
𝑗𝑖

= 𝜕𝐸𝑛

𝜕𝑧
(𝐿)
𝑗

𝜕𝑧
(𝐿)
𝑗

𝜕𝑎
(𝐿)
𝑗

𝜕𝑎
(𝐿)
𝑗

𝜕𝑤
(𝐿)
𝑗𝑖

(2.14)

6



An example for regression task with mean squared error and linear activation
function can be seen in Eq. 2.15.

𝜕𝐸𝑛

𝜕𝑧
(𝐿)
𝑗

= 𝜕

𝜕𝑧
(𝐿)
𝑗

𝐾∑︁
𝑖=1

(𝑧(𝐿)
𝑖 − 𝑦𝑖)2 = 2(𝑧(𝐿)

𝑗 − 𝑦𝑗), (2.15a)

𝜕𝑧
(𝐿)
𝑗

𝜕𝑎
(𝐿)
𝑗

= 𝜕

𝜕𝑎
(𝐿)
𝑗

𝜙𝑙(𝑎(𝐿)
𝑗 ) = 𝜕

𝜕𝑎
(𝐿)
𝑗

𝑎
(𝐿)
𝑗 = 1, (2.15b)

𝜕𝑎
(𝐿)
𝑗

𝜕𝑤
(𝐿)
𝑗𝑖

= 𝜕

𝜕𝑤
(𝐿)
𝑗𝑖

𝑀∑︁
𝑘=0

𝑤
(𝐿)
𝑗𝑘 𝑧

(𝐿−1)
𝑘 = 𝑧

(𝐿−1)
𝑖 (2.15c)

Then, the error for the last output layer is given according to Eq. 2.16, where
𝛿

(𝐿)
𝑗 stands for the error of the 𝑗th neuron in 𝐿th layer.

𝛿
(𝐿)
𝑗 = 𝜕𝐸𝑛

𝜕𝑎
(𝐿)
𝑗

= 𝜕𝐸𝑛

𝜕𝑧
(𝐿)
𝑗

𝜕𝑧
(𝐿)
𝑗

𝜕𝑎
(𝐿)
𝑗

(2.16)

For the precedent layers 𝑙 (𝐿 − 1, 𝐿 − 2 etc.), the error is backpropagated ac-
cordingly to Eq. 2.17. Compared to forward pass visualized in Fig. 2.1, the error
backpropagation is in reversed direction. Therefore, the sum runs over the 𝑘 con-
nections to which the output of 𝑗th neuron in 𝑙th layer is connected. Note that the
𝛿

(𝑙+1)
𝑘 is already computed.

𝛿
(𝑙)
𝑗 = 𝜕𝐸𝑛

𝜕𝑎
(𝑙)
𝑗

=
∑︁

𝑘

𝜕𝐸𝑛

𝜕𝑎
(𝑙+1)
𝑘

𝜕𝑎
(𝑙+1)
𝑘

𝜕𝑧
(𝑙)
𝑗

𝜕𝑧
(𝑙)
𝑗

𝜕𝑎
(𝑙)
𝑗

=
∑︁

𝑘

𝛿
(𝑙+1)
𝑘

𝜕

𝜕𝑧
(𝑙)
𝑗

(
𝑀∑︁

𝑖=0
𝑤

(𝑙+1)
𝑘𝑖 𝑧

(𝑙)
𝑖 ) 𝜕

𝜕𝑎
(𝑙)
𝑗

𝜙(𝑎(𝑙)
𝑗 )

= 𝜙′(𝑎(𝑙)
𝑗 )

∑︁
𝑘

𝑤
(𝑙+1)
𝑘𝑗 𝛿

(𝑙+1)
𝑘

(2.17)

Finally, the partial derivative with respect to weights in 𝑙th layer can be com-
puted according to Eq. 2.18. This can be iterated for additional layers providing all
necessary gradients for weights update.

𝜕𝐸𝑛

𝜕𝑤
(𝑙)
𝑗𝑖

= 𝜕𝐸𝑛

𝜕𝑎
(𝑙)
𝑗

𝜕𝑎
(𝑙)
𝑗

𝜕𝑤
(𝑙)
𝑗𝑖

= 𝛿
(𝑙)
𝑗 𝑧

(𝑙−1)
𝑖 (2.18)

It should be clear, that the combination of the specific loss function and activa-
tion function does not matter for the backpropagation, as long as their derivatives
can be obtained. On the other hand, the combination is usually done to satisfy Eq.

7



2.19 since a linear gradient in the output layer is beneficial for convergence reasons.

𝛿
(𝐿)
𝑗 = 𝜕𝐸𝑛

𝜕𝑎
(𝐿)
𝑗

= 𝑧
(𝐿)
𝑗 − 𝑦𝑗 (2.19)

This can be verified for mean squared error and linear activation function from
Eq. 2.15a and 2.15b.

In summary, error backpropagation can be done in three steps as follows:

1. Compute the error of the output layer using Eq. 2.16 or 2.19.

2. Backpropagate the error using Eq. 2.17.

3. Compute the derivatives using Eq. 2.18.

For the batch training, only the average term is added. It results in averaging
the gradients of data samples in the batch. It is not equal to computing the
gradients of average error due to non-linear activation functions.

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are widely used especially for image classi-
fication, but can also be useful in other tasks. Main parts of CNN are convolutional,
pooling and fully-connected layers which allow to extract features, propagate the
important ones and then classify, respectively.

Figure 2.4: Convolutional layer without activation function ignoring the bias for
simplicity with stride 1 (left) and 2 (right): input (blue), output (red), kernel (green)

As depicted in Fig. 2.4, the neurons in the convolutional layers have a limited field
of view and shared weights. Thus, they are computationally and memory efficient
and they are able to extract the features independently of their position in the
input. The shared weights are referred to as kernel. Based on stride parameter, the
computation briefly moves the kernel over the input and performs the dot product.
Usually, the Rectified Linear Unit (ReLU) activation function (see Fig. 2.2b) follows.
Frequently, more kernels are used and their results are stacked together. The result
of the convolutional layer is referred to as a feature map and its number of channels
(sometimes referred to as depth) depends on the number of kernels used.

8



Figure 2.5: 2x2 max-pooling operation

Pooling layer usually follows after convolutional ones to filter or aggregate the
information. The max-pooling layer selects the maximal activation from the area
as illustrated in Fig. 2.5. Alternatively, the average can be computed. Finally, the
fully-connected layers are employed.

Figure 2.6: ResNet residual block (left) and bottleneck residual block (right) [26]

These layers are crucial for CNNs such as VGG-19 [54] which is a 19 layers
deep architecture. On the other hand, the increasing number of layers is not always
beneficial as presented in ResNet paper [26]. An 18-layer CNN was better than a
34-layer on the ImageNet dataset. The probable explanation discussed in the paper
is that “the deep plain nets may have exponentially low convergence rates”. To solve
this problem, they used residual blocks (see Fig. 2.6) which consist of convolutional
layers and provide shortcuts for the information and also the gradient flow resulting
in 152-layer CNN and stunning results.

2.4 Fully Convolutional Networks
Fully Convolutional Networks (FCNs) consist of convolutional and pooling layers.
They evolved from CNNs as a much more efficient model for “sliding window” clas-
sification tasks. For example, the task of image segmentation can be solved as a
pixel labeling problem, where each pixel is classified into corresponding classes. The
classification of neighbouring pixels can be done with CNN in a sliding window
manner. But, it results in huge overlap of the input windows and also the computed
features. Moreover, the neuron in fully-connected layer has limited field of view and
“shared” weights for each window so it could be replaced with convolutional layer.
The benefit is that the overlapped features are computed only once.

9



Figure 2.7: Architecture of U-Net [51]

Figure 2.8: 2x2 upsampling operation

An example of FCN is a well-known U-Net [51] for biomedical image segmenta-
tion. It has significantly affected general image segmentation including the document
image segmentation. It is used in a sliding window manner providing segmentation
mask for each tile of the input image. According to Fig. 2.7, the architecture con-
sists of an encoder (left part) and a decoder (right part). Since it is FCN, it consists
mainly of convolutional layers. They are used to extract features and to process these
features to reconstruct the segmentation mask in the encoder and decoder part, re-
spectively. Skip-connections (see “copy and crop” in Fig. 2.7) are an important part
that allows combination of local and contextual features and thus improve localiza-
tion accuracy in the result. They work similarly to residual blocks discussed in the
previous section. According to Fig. 2.8, the upsampling is used as a reverse operation
to max-pooling in order to match dimensions of encoder and decoder parts. This is
followed by a convolutional layer reducing the depth of the feature map (noted as
“up-conv 2x2” in Fig. 2.7). An alternative for upsampling is a transposed convolu-

10



tional layer, which can be understood as the reverse operation for the convolutional
layer. According to Fig. 2.9, it basically outputs the kernel multiplied by the input
value.

Figure 2.9: Transposed convolutional layer without activation function with stride
2: input (red), output (blue), kernel (green)

2.5 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are adapted for data sequences such as time
series or text where both global (long-term) and local (short-term) dependencies
usually play an important role. For example, the information provided by speech
depends on the currently spoken words but also on the context of the conversation.

There is a concept of “memory” or, in other words, storing the information. The
information can be stored for example in recursive connection where the output of
the neuron at time step 𝑡𝑛 is taken as the input of the same neuron at time step 𝑡𝑛+1.
But this type of a recursive network has problems with long-term dependencies and
is prone to vanishing and exploding gradient problem. [27]

These problems are adressed by Long Short-Term Memory (LSTM) [27, 19, 56]
which can memorize both long-term and short-term dependencies. According to Fig.
2.10, the LSTM cell visualization contains input 𝑥, output ℎ, time step 𝑡, cell state
𝐶, cell state update candidate 𝑔, forget gate 𝑓 , input gate 𝑖 and output gate 𝑜.

Figure 2.10: Long Short-Term Memory (LSTM) cell [56]

11



𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊 (𝑔)𝑥𝑡 + 𝑈 (𝑔)ℎ𝑡−1 + 𝑏(𝑔)) (2.20a)
𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 (𝑓)𝑥𝑡 + 𝑈 (𝑓)ℎ𝑡−1 + 𝑏(𝑓)) (2.20b)
𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 (𝑖)𝑥𝑡 + 𝑈 (𝑖)ℎ𝑡−1 + 𝑏(𝑖)) (2.20c)
𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 (𝑜)𝑥𝑡 + 𝑈 (𝑜)ℎ𝑡−1 + 𝑏(𝑜)) (2.20d)

Forget gate 𝑓𝑡 decides which data are forgotten since the output ranges from 0
to 1 and Hadamard multiplication is performed with cell state 𝐶𝑡−1.

For the input gate, new candidate values to update the current state are provided
by 𝑔𝑡. These are filtered by input gate 𝑖𝑡 in the same way as in forget gate. The result
is added to the current cell state resulting in 𝐶𝑡.

Similarly, the output gate 𝑜𝑡 decides which parts of the cell state 𝐶𝑡 to output.

2.6 Connectionist Temporal Classification

I
-
L
-
L

t1      t2      t3      t4      t5      t6

y1
I

y2
-

y3
L

y4
-

y5
L y6

L

Figure 2.11: The idea of CTC for HTR of labeling ILL: All possible paths are
visualized

Connectionist Temporal Classification (CTC) [22] trains the network to label
unsegmented sequences. The input can be speech signal but also the image of a
text line. It has made a huge impact in the field of HTR. Since there is no need for
character alignment, GT can be the transcription of the line.

The output is the sequence (further referred as path) that consists of an alphabet
and a blank. Blank is a special label (usually noted as “-”) which is used for repeated
labels. For example, ILL labeling can be represented as IL-L or IIII-LL-LLL de-
pending on the output sequence length. As depicted in Fig. 2.11, the crucial step is
that the network outputs are transformed into a conditional probability distribution
over label sequences. Given the labeling, we know the order of desired labels (I-L-L)
and thus all the possible paths. According to Fig. 2.11 given the inputs 𝑥 and pre-
dictions 𝑦, the probability estimate of path I-L-LL can be computed according to
Eq. 2.21.

𝑃 (𝐼 − 𝐿 − 𝐿𝐿|𝑥) = 𝑦𝐼
1 · 𝑦−

2 · 𝑦𝐿
3 · 𝑦−

4 · 𝑦𝐿
5 · 𝑦𝐿

6 (2.21)

12



The goal is to find the most probable labeling which can be found dynamically using
Viterbi algorithm as the best path. Once it is found, it can be used as the labeling
for weights update of the network.

But most probable path is not the most probable labeling. Thus, a many-to-one
mapping 𝛽 can be used alternatively (e.g. 𝛽(𝐼 −𝐿−𝐿𝐿) = 𝛽(𝐼𝐿𝐿−−𝐿) = 𝐼𝐿𝐿). It
sums the probabilities of all the paths corresponding to certain labeling accordingly
to Eq. 2.22 and it can be computed dynamically using the CTC forward-backward
algorithm [22].

𝑃 (𝐼𝐿𝐿|𝑥) =
∑︁

𝑝𝑎𝑡ℎ∈𝛽−1(𝐼𝐿𝐿)
𝑃 (𝑝𝑎𝑡ℎ|𝑥) (2.22)

2.7 Transformer
The architecture known as Transformer is presented in paper “Attention is all you
need” [63]. Transformer-based networks are now considered a state of the art in many
tasks and have a major impact on solving NLP tasks such as machine translation.

Figure 2.12: Transformer model architecture [63]

According to Fig. 2.12, it consists of an encoder and decoder part which encodes
the input and decodes it into the target domain, respectively. The crucial blocks

13



are Multi-Head and Masked Multi-Head Attention. Both blocks utilize scaled dot-
product attention according to Eq. 2.23.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (2.23)

The scaling term
√

𝑑𝑘 is used for gradient reasons. If 𝑄 and 𝐾 components are
independent random variable with mean 0 and variance 1, the 𝑄𝐾𝑇 has mean 0 and
variance 𝑑𝑘, but we prefer the variance of 1.

Q, K and V are matrices representing the query, key and value feature vectors.
These vectors are learned from the input vectors (word embeddings or other feature
vectors) via fully connected layer. For each query vector, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 part basically
weights the key vectors based on the similarity with query vector. This is visualized
in Fig. 2.13, where the dot-product of query vector 𝑞 with key vector 𝑘1 will be
greater than with 𝑘2. Multiplication with 𝑉 then provide the weighted sum of related
learned value vectors.

q
k1

k2

Figure 2.13: Dot-product attention idea

For every input vector (represented by query vector), this scenario allows to
aggregate information (represented by value vector) about other input vectors (rep-
resented by key vector). If the input is a word, its vector is able to aggregate informa-
tion about other words. Thus, it can provide contextual representation. Moreover,
it can be done parallelly and thus the computational time can be reduced compared
to RNNs due to input time steps dependencies.

On the other hand, the information about its position in the input is lost. There-
fore, the positional encoding is made. It adds the position vector to the embedding
vector so the information about position can be provided. In [63], the position vector
is based on 𝑠𝑖𝑛 and 𝑐𝑜𝑠 functions. Alternatively, the learned position vectors can be
used.

The network is initially proposed for machine translation, where the encoder
takes the whole source sentence and encodes it. The decoder then decodes it into
the target language in the next word prediction scenario. Therefore, the decoder
input is shifted target sentence. The attention block of the decoder takes the key and
value from the encoder. The query vector is obtained from target domain (decoder).
To allow parallel computation during training, the decoder attentions 𝑄𝐾𝑇 /

√
𝑑𝑘

in Masked Multi-Head Attention are masked so the model can not see the word it
should predict. Otherwise, it will only copy that word to the output.

During the inference, the decoder input starts with special SOS token. The pre-
diction is then the first translated word. Then, the new word extends the decoder
input until the EOS token is predicted.

14



Chapter 3

Document Image Analysis

Document Image Analysis (DIA) is the main part of historical document analysis
and “its objective is to recognize the text and graphics components in images, and
to extract the intended information as a human would” [42]. It includes tasks like
segmentation, object detection, OCR or HTR. As depicted in Fig. 3.1, these tasks
are usually divided into textual and graphical processing which deals with textual
and graphical regions, respectively. Usually, the processing is task-dependent and
therefore the processing structure presented in Fig. 3.1 can be modified.

Document Processing

Textual Processing Graphical Processing

Optical Character

Recognition

Page Layout
Analysis

Line Processing Region and

Symbol
Processing

Text Skew, text lines,
text blocks, and

paragraphs

Straight lines,
corners and curves

Filled regions

Figure 3.1: Document Image Analysis areas [42]

Since the input is usually the image of a scanned page, the first section is re-
lated to graphical processing. The layout analysis follows in a separate section since
it benefits from graphical processing methods and it can help to distinguish be-
tween textual and graphical regions. Finally, the textual processing approaches are
presented.

15



3.1 Graphical Processing
The task of historical DIA is usually very specific and problematic for conventional
methods thus it is beneficial to use (deep) ML. On the other hand, annotated data
are rare and the conventional methods can help.

For example, drastic improvement in localization accuracy or amount of data
needed can be achieved utilizing binarization and conventional image post-processing
methods as shown in [10].

3.1.1 Binarization

(a) Input grayscale image (b) Result of Otsu’s method [44]

(c) Result of Adaptive Document Binariza-
tion method [53]

(d) Result of Recursive Thresholding for
Documents [41]

Figure 3.2: Examples of binarization

Image binarization is a process that converts the image into black and white
image. A basic approach for image binarization is to select an adequate threshold
from gray level histogram. Then, pixels of gray level image are divided into two
classes.

16



Generally, the approaches can be divided into global and local (also referred to as
adaptive) thresholding. The global methods use a single threshold value which is not
appropriate for historical documents due to degradation, brightness inconsistency
and inhomogeneous objects like text. The adaptive methods use a local features that
allow them to overcome this problem. The quality of the result depends on the input
and selected binarization method as depicted in Fig. 3.2.

Otsu’s Method

Otsu’s method [44] is a straightforward non-parametric binarization method that
provides an automatic threshold selection.

In an ideal image histogram, there is a well-recognizable valley between two
peaks representing objects and background so the threshold can be easily selected.
Nevertheless, real pictures do not have such a histogram. Otsu’s method deals with
this problem by selecting the optimal threshold from histogram by maximizing the
separability of the two classes.

The gray-level histogram is normalized and regarded as a probability distribution
according to Equation 3.1, where 𝑝𝑖 represents the probability of the pixel with
intensity 𝑖, 𝑛𝑖 denotes the number of pixels with intensity 𝑖 and 𝑁 total number of
pixels. 𝐿 stands for the number of gray levels.

𝑝𝑖 = 𝑛𝑖

𝑁
, 𝑝𝑖 ≥ 0,

𝐿∑︁
𝑖=1

𝑝𝑖 = 1 (3.1)

Then, the optimal threshold k* is computed by maximizing the between-class
variance 𝜎2

𝐵(𝑘) according to Equation 3.2.

𝜎2
𝐵(𝑘) = [𝜇𝑇 𝜔(𝑘) − 𝜇(𝑘)]2

𝜔(𝑘)[1 − 𝜔(𝑘)]

𝜇𝑇 = 𝜇(𝐿) =
𝐿∑︁

𝑖=1
𝑖𝑝𝑖, 𝜇(𝑘) =

𝑘∑︁
𝑖=1

𝑖𝑝𝑖, 𝜔(𝑘) =
𝑘∑︁

𝑖=1
𝑝𝑖

(3.2)

Adaptive Document Binarization

Sauvola et al. [53], as a representative of a group of methods based on local mean and
standard deviation of pixel values, address the problems related to historical docu-
ments such as brightness inconsistency and differing quality. The goal of the method
is to provide the optimal threshold for each pixel. For the speed improvement, the
threshold is computed for every nth pixel and other thresholds are interpolated.

The text binarization method utilizes the local mean m and local standard de-
viation s. A threshold T is computed for each pixel according to the Equation 3.3.
According to [53], user defined parameters are set experimentally as 𝑅 = 128 and
𝑘 = 0.5.

𝑇 = 𝑚[1 + 𝑘(𝑠/𝑅 − 1)] (3.3)

17



Recursive Thresholding for Documents

The method for binarization of scanned documents that can deal with variable
writing style, stroke intensity and noise is presented in [41]. The authors stated
that: “Global thresholding suffers from the need to find a single threshold value that
will satisfactorily binarize the handwriting in a document.”

Selecting a single threshold value could lead to several problems in historical doc-
uments due to degradation and brightness inconsistency. On the other hand, locally
adaptive methods can amplify noise that is usually present in historical documents.
To deal with these problems, the method composes a set of pixels iteratively.

There is a great idea of background estimation and removal that significantly
improves binarization in handwritten documents. This idea also provides function-
ality similar to locally adaptive methods, although the thresholding is performed
globally. Since the background is removed, the brightest component in the image
simply represents the background.

To deal with noise, bilateral filtering and hysteresis are employed. So, new pixels
are accepted only if they are connected to the previously identified text pixels. The
disadvantage of the method is the number of user defined parameters.

FCN Binarization

The document image binarization can be solved as a pixel-labeling task with FCN
accordingly to Sec. 2.4. It can significantly reduce noise or even complete the missing
parts. The drawback is that the training data are needed.

For example in [61], the input is a grayscale image together with relative darkness
features. The output is the mask of foreground probabilities that can be easily
thresholded resulting in a binarized image.

3.1.2 Segmentation
In image processing, it is important to extract objects of interest for further process-
ing. The task of image segmentation, or semantic segmentation, could be understood
as the task of extracting homogeneous components from an image. In document im-
age, homogeneous components may represent text characters, text blocks, lines of
text, tables or pictures. The goal is to provide the segmentation mask.

Terminologically, the task of segmentation does not include the classification
of components, but it is important to understand that these tasks are difficult to
separate since the segmentation basically classifies pixels.

A simple example of image segmentation can be the result of a binarized image
since the foreground and background are segmented. Conventional segmentation
approaches used for printed documents like Page Segmentation Based on Thinning
of Background [30] are now surpassed by deep learning approaches.

18



Thinning of Background

An interesting approach for page segmentation is based on thinning of background
[30]. It allows segmentation of an arbitrarily rotated page with a non-overlapping
layout.

The input of the method is a binarized image of the page. Firstly, the background
thinning is applied. Then, terminal pixels are filtered out, so only closed chains
remain. The next step removes unnecessary chains and merges the areas. Their
removal is done if they satisfy Eq. 3.4, where D represents the minimum distance
from chain to black pixels and W stands for the difference of average line widths of
two neighboring regions. Parameters 𝑡𝐷 and 𝑡𝑊 are set to 6 and 31, respectively.

𝑡𝐷 · 𝑊 + 𝑡𝑊 · 𝐷 ≤ 𝑡𝐷 · 𝑡𝑊 (3.4)

Watershed

(a) Input (b) EDT (c) Watershed re-
sult (d) Result

Figure 3.3: Coins segmentation with watershed example: different coins in different
colors

The watershed [5] segmentation can be used on a grey level image or on a bina-
rized image using Euclidean Distance Transform (EDT) according to Fig. 3.3. The
basic idea is placing the water source in a local minimum (Fig. 3.3b). The regions
are decided according to the positions where different water sources meet (Fig. 3.3c).

It can be also useful for instance segmentation (Sec. 3.1.3) since it can separate
the instances from segmentation mask in some cases. For example, the mask of coins
(Fig. 3.3a), which have the similar shape and size, can be multiplied by watershed
segmentation result (Fig. 3.3c) resulting in separate coins (Fig. 3.3d). On the other
hand, this is hard to achieve on general shape because the water source position has
to be decided correctly.

Graph-Based Image Segmentation

A graph-based image segmentation is proposed in [16]. It provides the region seg-
mentation as depicted in Fig. 3.4. Firstly, it divides an image into regions. Boundary
between two regions is then evaluated based on the inter-region and within-region

19



Figure 3.4: An example of graph-based image segmentation results [16]

differences comparison. The method is able to distinguish between low and high
variability regions.

dhSegment

Figure 3.5: Architecture of dhSegment: The yellow blocks correspond to modified
ResNet-50 [43]

The architecture combining U-Net [51] and ResNet-50 [26] is presented in [43] as
dhSegment. According to Fig. 3.5, the ResNet-50 is used as an encoder part of the
U-Net. It consists of the general mask prediction and task related post-processing
for fine-tuning. It is successfully used for page extraction, baseline detection and
document layout analysis.

FCN for Historical Document Segmentation

FCN for page segmentation of historical document images is proposed in [64] to-
gether with evaluation score Foreground Pixel Accuracy (FgPA). It comes with the
idea that only the foreground pixels are crucial for the document segmentation (see

20



Figure 3.6: Idea of Foreground Pixel Accuracy [64]

Fig. 3.6). The architecture (see Fig. 3.7) consists of encoder and decoder parts. Com-
pared to U-Net, there are no skip-connections and instead of up-sampling followed
by convolutional layer, transposed convolutional layers are used in the decoder. The
input is a downsampled document image and the output is in a form of segmentation
mask. The paper presents also the post-processing based on connected components.
The connected component label is selected as the most frequent one.

Figure 3.7: Architecture of FCN for page segmentation [64]

ARU-Net

A two-stage method for text line detection in historical documents is presented in
[23]. ARU-Net architecture is used for baseline mask prediction in the first stage.
The second stage consists of post-processing based on superpixel extraction and
their clustering.

The ARU-Net architecture extends the U-Net architecture by residual blocks (R)
and spatial attention (A). Residual blocks provides shortcuts for the information
flow. The attention briefly multiplies the RU-Net output to focus on related parts of
the input as depicted in Fig. 3.8. Since the input is provided at multiple resolutions,
this allows the network to focus on image content at different positions and scales.

Paragraph line segmentation with RNN

Another interesting method that allows the paragraph segmentation into the text
lines is proposed in [40]. It requires only the number of lines in the input paragraph
as GT. To do that it utilizes RNN and CTC. The network learns to label vertical
coordinates for the presence of the baselines. Thus, the solution is not ideal for
curved or rotated baselines.

21



Figure 3.8: ARU-Net architecture [23]

3.1.3 Object Detection
The goal of object detection, or instance segmentation, is to detect and delineate each
distinct object of interest in the input image. This is usually achieved by providing
the bounding boxes and their classes which allows to access the separate Regions of
Interest (RoIs).

This is hard to achieve with the segmentation mask provided by semantic seg-
mentation since it does not distinguish between objects. This can be illustrated in
Fig. 3.3a where we are interested in separate coins. Contrary to semantic segmenta-
tion, the instance segmentation should provide bounding box for each coin.

Template Matching

(a) Image (b) Template (c) Result

Figure 3.9: Template matching example: The match as the maximal value in the
result

Template matching is used to detect a given template in the image. It compares

22



directly the pixel values of the input image and the template in a sliding window
manner. One of the possibilities is the normalized correlation coefficient [7] which
is used for the result in Fig. 3.9c. It is related to Pearson correlation coefficient and
computed accordingly to the Eq. 3.5, where 𝐼 and 𝑇 denote the image and template
pixel values, respectively. Image and template coordinates are represented by 𝑥, 𝑦
and 𝑥𝑇 , 𝑦𝑇 , respectively.

𝑅(𝑥, 𝑦) =
∑︀

𝑥𝑇 ,𝑦𝑇
𝑇 (𝑥𝑇 , 𝑦𝑇 ) · 𝐼(𝑥 + 𝑥𝑇 , 𝑦 + 𝑦𝑇 )√︁∑︀

𝑥𝑇 ,𝑦𝑇
𝑇 (𝑥𝑇 , 𝑦𝑇 )2 · ∑︀

𝑥𝑇 ,𝑦𝑇
𝐼(𝑥 + 𝑥𝑇 , 𝑦 + 𝑦𝑇 )2

(3.5)

It can also be beneficial during post-processing. In [10], it was used for correction
of detected graticule lines intersections as illustrated in Fig. 3.9.

Hough Line Transform

50 0 50
Angles (degrees)

200

100

0

100

200

D
is

ta
n
ce

 (
p
ix

e
ls

)

Input Hough transform Detected lines

Figure 3.10: Lines detection using Hough line transform (inverted colors)

Hough line transform [15] is a powerful algorithm for detection of lines. It is
based on Hesse normal form of a line according to Eq. 3.6. It transforms the image
from 𝑥, 𝑦 space into 𝜃, 𝑟 parameter space by a voting procedure where each pixel
votes for a set of lines. The lines can be then detected as local maxima as depicted
in Fig. 3.10.

𝑟 = 𝑥 cos(𝜃) + 𝑦 sin(𝜃) (3.6)

Selective Search

The problem of generating possible object locations is addressed in [62]. The selective
search algorithm for region proposal starts with initial segmentation into regions
using [16] (see Sec. 3.1.2) at different scales (see Fig. 3.11). These regions are then
hierarchically grouped resulting in region proposals. Finally, region proposals are

23



Figure 3.11: Example of selective search at different scales [62]

classified using support vector machines classifier to filter the regions according to
GT.

Region-Based Convolutional Neural Networks

Currently, the mainstream methods in object detection are deep neural network
models like Region-based Convolutional Neural Networks (R-CNNs). These net-
works typically use pre-trained backbones (e.g ResNet-50 [26]) to extract features
and region proposals.

Similar to selective search [62], an approach for efficient object detection using
deep CNN has been proposed in [21]. R-CNN system consists of region proposal, fea-
ture extraction and classification modules. Proposed regions are separately processed

Figure 3.12: The idea of Spatial Pyramid Pooling [25]

24



and classified for presence of the desired objects. The system achieved promising re-
sults but the drawbacks are multi-stage training and the computational inefficiency
due to the number of RoIs and thus classifications per single image.

An approach based on Spatial Pyramid Pooling (SPP) has been proposed by He
et al. [25]. The main strength of this approach is the capability to use a specific
pooling operation that generates a fixed-length representation regardless of image
size or scale (also the bounding box size). According to Fig. 3.12, the pooling regions
are defined by the grid. Since convolutional layers can process varying input reso-
lutions thanks to shared parameters, the pooling is made on resulting feature maps
providing fixed-length representation for fully connected layers. The contribution is
that there is no need to resize and distort the input image.

In 2015, Ross Girshick went further in his research proposing Fast R-CNN [20]
with several innovations to deal with the drawbacks and speed-up. Compared to R-
CNN, the image features are calculated only once. Based on the regions, the region
features are pooled into a fixed size feature space using RoI pooling (which can be
understood as 1-level SPP) or RoI align (which employs also bilinear interpolation).
This way, the image features does not have to be computed per each RoI separately.

Figure 3.13: Feature sharing in the Faster R-CNN model [50]

The selective search algorithm for region proposals was still considered a draw-
back resulting in an end to end Faster R-CNN model [50]. Instead of selective search
algorithm, the model is extended by Region Proposal Network (RPN). RPN is im-
plemented by convolutional layers since it works in a sliding window manner. It
predicts the coordinates of the box and estimates the object’s presence probability.
As illustrated in Fig. 3.13, RPN shares the image features with the RoI classification

25



module and is faster than selective search.
Additionally, the mask R-CNN [24] combines semantic and instance segmenta-

tion. It adopts the Faster R-CNN [50] scenario and outputs also segmentation mask
for each RoI.

You Only Look Once

Figure 3.14: You Only Look Once (YOLO) model detections using a grid [49]

You Only Look Once (YOLO) [49] is even faster than Faster R-CNN and allows
real-time object detection. Briefly, as says the network name, you only look once at
the image to predict the bounding boxes, confidences and the class probabilities for
these boxes as depicted in Fig. 3.14. It uses the grid over the image and predicts the
boxes in each cell of the grid. The trade-off is that each cell in the grid predicts a
limited amount of boxes and has only one class. Compared to Faster R-CNN, this
could cause wrong classifications and problems if there are more nearby objects.

3.2 Layout Analysis
Document layout analysis is crucial for further processing of the documents. The
goal is basically to describe the input document page and separate it into RoIs.
Such a region can be a block of text, image, paragraph or text line. Sometimes more
detailed information is needed. For example, the text region can be of heading, page
number or main text type. Then, different processing can be made according to the
block type. It can take into account also reading order of the text blocks which is
beneficial in assembling the transcriptions of document by OCR/HTR methods.

26



Figure 3.15: Classes of layout: (a) rectangular, (b) Manhattan, (c) non-Manhattan,
(d, e) overlapping layout [31]

These blocks can be distributed differently in the input page as depicted in
Fig. 3.15. The layout classes are rectangular, Manhattan, non-Manhattan and over-
lapping [31]. The layout of historical handwritten documents is usually the most
challenging overlapping layout where the blocks can overlap. It is often the case in
handwritten chronicles where the text can overlap the image (Fig. 3.15.d) or text
(Fig. 3.15.e).

Figure 3.16: Aletheia text region annotation example [13]

Alehteia [13] is a helpfull tool for time consuming annotation of document pages
which works with xml-based PAGE (Page Analysis and Ground-truth Elements)
format. It allows precise and detailed annotation of several regions including text,
image or separator. The region is represented by boundary polygon as depicted in
Fig. 3.16. Additionally, there are several metadata options related to specific regions.
For example, the text region can contain text transcription, text and background
color, font, subtype and so on. There is also an option to specify reading order,

27



baselines and other objects related to layout and document analysis. Additionally
to manual tools, it provides automatic tools for layout and document analysis which,
unfortunately, do not work well for handwritten documents.

The tasks of layout analysis can be successfully solved by semantic (Sec. 3.1.2)
or instance segmentation (Sec. 3.1.3) as in the OCR system for historical documents
[36]. It employs semantic segmentation models for text, baseline and separator seg-
mentation. The separator is basically a line which divides the page and separates the
text blocks. The reading order is then determined recursively using the separator
information. Finally, the text recognition is done with CTC-based model (see Sec.
3.3.2 for more details).

3.3 Textual Processing
Transcription of a text image into a full-text representation is one of the most
wanted and usable parts of document analysis. It allows to automate processes and
significantly reduces the time of searching for related information. It can be solved
with OCR, HTR or keyword spotting approaches.

According to [39], the first patent on OCR is from 1929, so OCR is quite an old
task and it is practically solved. Several fonts like OCR-B [18] were proposed for
easier OCR. The solution can be made even with conventional approaches based on
template matching for example.

Compared to OCR for printed text, HTR is more challenging due to connected
characters in handwritten text. The visual differences occur even between same
characters written by the same author. There are even more problems in historical
documents caused mainly by document degradation. Moreover, there is not defined
layout and the baselines are not even straight and often rotated. Because of these
challenging problems, the number of specialties and dependencies, it is beneficial
to learn these using ML approaches. This may be the reason why (deep-)learning
methods are much better than conventional approaches in HTR area.

3.3.1 Keyword Spotting
The early approaches for processing of handwritten text were based on keyword
spotting and solved as an image similarity problem. In Query by Example (QbE),
the input is a template image and the desired result is a list of similar images, usually
word images. There is also Query by String (QbS) scenario, where the input is a
string and a result is a list of word images containing corresponding text.

The PHOC-Net [58] approach employs CNN and Spatial Pyramid Pooling [25]
thus it accepts different input resolutions. The input is an image of a word for which
the Pyramidal Histogram Of Characters (PHOC) vector is predicted. As depicted
in Fig. 3.17, the PHOC vector for the training phase is created from the string
transcription according to the selected levels. In level 2 for example, it provides 2
binary vectors for the presence of the character in the first and second half of the
word. The resulting vector is the concatenation of these vectors.

28



Figure 3.17: Example of PHOC vector for 1, 2 and 3 levels [58]

Since all word images have their own PHOC vector predicted by PHOC-Net,
this approach allows both, QbE and QbS, scenarios. For QbE, the PHOC vector of
the input template image is predicted. For QbS, the PHOC vector is created in the
same way as in the training phase. Finally, the spotting is performed by comparing
the input PHOC vector with other PHOC vectors.

3.3.2 Text Recognition
Compared to keyword spotting, the transcription into full-text provides more options
and better usability.

OCR and HTR can be successfully solved as a labeling task with CTC. It is used
for example in [36]. The typical architecture (Fig. 3.18) takes text line image as an
input and extracts visual features using convolutional and max pooling layers. Then,
fully-connected and Bidirectional Long Short-Term Memory (BiLSTM) layers are
employed as a character-level language model. Finally, the sequence is labeled using
the CTC (see Sec. 2.6).

An example of the Transformer-based (see Sec. 2.7) approach is presented in
[34]. The vanilla Transformer [63] is used for “translation” of text line image into its
transcription. The result is new state of the art in both OCR and HTR. According
to Fig. 3.19, the encoder input consists of image patches. The decoder then works
with a sequence of ground truth tokens from text transcription.

The modification of the Transformer for HTR is presented in [28]. Contrary
to [34], it uses ResNet-50 [26] as an image feature extractor providing the input for
Transformer encoder. The ground-truth, decoder input and output is character-level.

In [65], the authors warn about the usage of Transformers for HTR since the
Transformer requires a larger training dataset in order to overcome CTC-based
approaches. On the other hand, it is able to learn a strong language model. The
approach to reduce the amount of data needed is presented in the same paper. It
consist of forward and backward Transformer and voting procedure. The forward
Transformer works in reading order and the backward in reverse order. Voting is
based on matching the predictions and resolving the conflicts using several heuristics.

29



1300 x 40 x 1

First Convolutional Layer

Input image

1300 x 40 x 40

MaxPooling Layer

650 x 20 x 40

Second Convolutional Layer

MaxPooling Layer

650 x 20 x 40

325 x 10 x 40

Dense Layer

325 x 400

325 x 128

Reshape

d-ee--r	ii-nn	u-n-s	d-ii-e	M-ee-nn

der in uns die Men

BiLSTM

BiLSTM

325 x 256

325 x 512

325 x 90

Dense
Layer

Softmax

325 x 256

325 x 256

325 x 256

Concatenated
BiLSTMs

Figure 3.18: Architecture for OCR/HTR with CTC [36]

Figure 3.19: Transformer-based approach for OCR [34]

30



Chapter 4

Natural Language Processing

NLP goes further and its added value is natural language “understanding”. Accord-
ing to [12], it faces three major problems: thought process, the representation and
meaning of the linguistic input and the world knowledge.

Therefore, an NLP system, usually, starts at word level representations. Natu-
rally, the word has a meaning and represents a part of speech or a lnamed entity.
Moreover, there are words like “orange” that have several meanings. That meaning
depends on the context (surrounding words) which should be taken into account.
Therefore, the next step are contextual word representations. The combination of
words can further result in the meaning of a sentence or overall environment.

Usually, the vector representation in multidimensional space is used and is further
discussed in Sec. 4.1 and 4.2. These representations help to solve the tasks such as
sentence classification, question answering or sentence tagging as presented in Sec.
4.3. The result can be utilized for information retrieval, more detailed analysis and
additional functionality such as semantic or multilingual searching.

4.1 Word Representation Using Word2Vec
Breakthrough Word2Vec [37] word representations utilize the idea that the word
meaning (and representation) corresponds to the context it usually appears in. Ac-
cording to Fig. 4.1, the goal of the Skip-gram model is to predict the surrounding
words of the input word and its training objective is to maximize the average log
probability as defined in Eq. 4.1 where the seguence of 𝑇 words (𝑤) is given.

1
𝑇

𝑇∑︁
𝑡=1

∑︁
−𝑐≤𝑗≤𝑐,𝑗 ̸=0

log 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) (4.1)

The word representations that are useful for surrounding words prediction are
obtained as a “side product”. These representations have interesting properties and
may encode linguistic regularities which can be represented as linear translation or
other basic operations as depicted in Fig. 4.2. For example as presented in [37],
the combination of vec(Berlin) − vec(Germany) + vec(Poland) is a vector close
to vec(Warsaw) and the combination of vec(Spain) + vec(capital) is close to

31



Figure 4.1: The Skip-gram model architecture [37]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 4.2: Learned Word2Vec representation of countries and their capitals pro-
jected by PCA [37]

32



vec(Madrid). These examples show the possibility of learning the relations and
meaning of the words.

4.2 Contextual Representation
The contextual representation takes into account also the context of the word. For
example, the word orange can represent the color or fruit. Contrary to Word2Vec
representation which will result in the same vector per both situations, we expect
different representations based on the context.

Figure 4.3: Contextual representation approaches [14]

According to Fig 4.3, this can be achieved with RNN as in [45] which is known
as Embeddings from Language Models (ELMo). It is able to gather context as a
combination of left and right context. There are also Transformer-based (see Sec.
2.7) approaches such as Bidirectional Encoder Representation from Transformer
(BERT) [14] and Generative Pre-trained Transformer (GPT) [47] which utilize the
encoder and decoder part of the Transformer, respectively. GPT utilizes only the
left context, whereas BERT can utilize the left and right context directly which is
beneficial but it also prevents efficient standard conditional language model training
for the next word prediction (e.g. text generation task).

The idea is that the model is pre-trained on a huge amount of text and then fine-
tuned on a specific task. As depicted in Fig. 4.4, the BERT input consists of two
sentences. It is pre-trained as a masked language model so it predicts the masked
words. At the same time, it classifies if sentence B follows sentence A. This way,
the training data can be easily created from general text and general contextual
representations are obtained. These days, there is al plethora of pre-trained models
available for many languages and tasks. The pre-training can be understood as a
“good initialization of weights” for a wide range of tasks.

4.3 Task Dependent Fine-Tuning
Given the pre-trained model that contains good general language understanding, the
various tasks can be solved using fine-tuning on a specific task. It is expected that
using pre-trained model allows faster training, using smaller dataset and obtaining
good results.

33



BERT BERT

E
[CLS] E

1 E
[SEP]... E

N
E

1
’ ... E

M
’

C T
1

T
[SEP]... T

N
T

1
’ ... T

M
’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E
[CLS] E

1 E
[SEP]... E

N
E

1
’ ... E

M
’

C T
1

T
[SEP]... T

N
T

1
’ ... T

M
’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 4.4: BERT pre-training and fine-tuning for specific task such as question
answering [14]

The BERT model, discussed in previous section, can be fine-tuned for tasks like
classification, question answering or sentence tagging as illustrated in Fig. 4.5.

For the classification (Fig. 4.5.a and 4.5.b), the CLS token representation, that
is pre-trained to classify if sentence A follows sentence B, is utilized as an input for
classification head (e.g. fully connected layer).

The fine-tuning for sentence tagging is straightforward as depicted in Fig. 4.5.d.
Given the corresponding GT, each input token (or word) representation is classified
into corresponding class.

The question answering highlights the answer in the input paragraph as depicted
in Fig. 4.5.c. To do that, the idea of dot-product attention can be used. Two learned
vectors are used as a query for start and end span. The token representations of the
input paragraph are considered as keys. Then, the dot-product of the query vector
with all key vectors is performed and followed by softmax. It results in a sequence
for both start and end span queries. The start and end sequence is then utilized for
deciding the start and end span position of the answer, respectively.

4.4 Multilingual Approaches
A multilingual system basically works for data related to two and more languages.
Usually, the biggest part of available training data relates to English but a model
trained for English will not work properly for other languages without adjustments.
There are also poorly-resourced languages with rare training data which can share
similar grammar rules with other languages. Therefore, the multilingual models are
trained on several languages as in case of mBERT [14] or SlavicBERT [2]. These
models are usually fine-tuned on concrete language and task.

Alternatively, the cross-lingual linear transformations can be used as in [8] where
bilingual dictionaries are used to project monolingual semantic spaces into a shared
space.

34



BERT

E
[CLS] E

1 E
[SEP]

... E
N

E
1
’ ... E

M
’

C T
1

T
[SEP]

... T
N

T
1
’ ... T

M
’

[CLS]
Tok

1
[SEP]... Tok

N
Tok

1
... Tok

M

Question Paragraph

BERT

E
[CLS]

E
1

E
2

E
N

C T
1

T
2

T
N

Single Sentence

...

...

BERT

Tok 1 Tok 2 Tok N...[CLS]

E
[CLS]

E
1

E
2

E
N

C T
1

T
2

T
N

Single Sentence

B-PERO O

...

...E
[CLS] E

1 E
[SEP]

Class
Label

... E
N

E
1
’ ... E

M
’

C T
1

T
[SEP]

... T
N

T
1
’ ... T

M
’

Start/End Span

Class
Label

BERT

Tok 1 Tok 2 Tok N...[CLS] Tok 1[CLS][CLS]
Tok

1
[SEP]... Tok

N
Tok

1
... Tok

M

Sentence 1

...

Sentence 2

Figure 4.5: BERT task dependent fine-tuning and available datasets [14]

35



Chapter 5

Multi-Modal Processing

Multi-modality is a natural property in many tasks. However, its usage in machine
learning for historical document analysis is not fully explored and the tasks are
mostly solved using only one modality. Intuitively, layout analysis should benefit
from text transcription. Text transcription can benefit from graphical areas and
layout information related to the text. The graphical areas should benefit from
text around etc. Therefore, several related research areas and methods where multi-
modality is already employed are summarized in this chapter.

Although there is relatively little work in the field of multi-modal document
analysis, it has been shown in many studies that multi-modal processing is beneficial
and gives better scores than methods using only one modality as for instance in the
case of named entity recognition [38], sentiment analysis [59] or emotion recognition
[48]. Multi-modality is also often utilized in video data as proposed in [11] where
the authors solve the task of lecture retrieval.

One of the recent papers [17] utilizes EfficientNet [60] in combination with BERT
[14] for the document image classification task. The approach uses BERT for captur-
ing the semantic information from recognized text and combines it with the image
input handled by the EfficientNet. The two networks are used separately and the
final result is obtained from their combination. There is thus room for designing
better/joint models to improve the results in these areas.

A Transformer-based approach for joint handwriting and named entity recogni-
tion in historical documents is presented in [52]. The architecture is similar to [28]
which is discussed in Sec. 3.3.2. Firstly, the model is trained only for HTR. Then,
the named entity tags are added and the model is fine-tuned.

Visual and textual features are used for semantic segmentation of historical news-
papers in [29]. It utilizes dhSegment architecture (see Sec. 3.1.2) and adds the text
embedding map as depicted in Fig. 5.1 which is the only modification. It improves
the results significantly.

Li et al. [35] proposed a self-supervised document representation pre-training
approach. It utilizes textual, visual and layout information to capture the context
of individual blocks in the document. Trained Faster R-CNN (see Sec. 3.1.3) is
used as an object detector and visual feature extractor. Then, OCR and BERT
are applied to provide textual features. The Cross-Modality Encoder taking into

36



Figure 5.1: Text embedding map visualization using PCA projection (R, G, B) [29]

Figure 5.2: Cross-Modality Encoder layer (A) and Modality-Adaptive Attention (B)
[35]

Figure 5.3: Multi-modal Transformer architecture and Modality Aware Fusion block
[32]

37



account both features is proposed accordingly to Fig. 5.2. Pre-training is based
on masking strategies that are often used in the Transformer-based architectures.
The model is then fine-tuned and evaluated for document entity recognition and
document classification tasks using the Modality-Adaptive Attention (Fig. 5.2) to
fuse the visual and textual features.

Interesting approach for multi-modal sarcasm explanation is presented in [32].
According to Fig. 5.3, it uses the Transformer architecture for “transcribing the
sarcasm into its explanation”. It utilizes the text and also the audio and video input.
To do that, the encoder is extended by Modality Aware Fusion block that allows
to use contextual audio and video inputs. These contextual inputs are processed
separately with Context-Aware Self-Attention [67] block and then fused in Global
Information Fusion block.

Context-Aware Self-Attention [67] allows to encode contextual information into
vector representation. Given the context vector 𝐶, it basically modifies the query
𝑄 and key 𝐾 vector of Multi-Head Attention block (see Sec. 2.7) according to Eq.
5.1 where 𝑈𝑄 and 𝑈𝐾 are trainable weight matrices and 𝜆𝑄 and 𝜆𝐾 weights the
importance of context representation.[︃

�̂�

�̂�

]︃
= (1 −

[︃
𝜆𝑄

𝜆𝐾

]︃
)

[︃
𝑄
𝐾

]︃
+

[︃
𝜆𝑄

𝜆𝐾

]︃
(𝐶

[︃
𝑈𝑄

𝑈𝐾

]︃
) (5.1)

Finally, it uses scaled dot-product attention 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̂�, �̂�, 𝑉 ) according to Eq.
2.23 as in Multi-Head Attention block.

38



Chapter 6

Own Work

The proposed approaches and the results encountered on the topic of historical
document analysis are presented in this chapter.

6.1 Handwritten Historical Chronicles Segmenta-
tion

This section focuses on the segmentation of historical handwritten documents, name-
ly chronicles, for the purposes of layout analysis. We take image, text and background
classes into account. For this goal, a new dataset including precise pixel-level anno-
tations in PAGE format is created in [4].

Further in [4], we build on that database but also utilize other datasets for
transfer learning in order to improve the results. We discuss a series of experiments,
including a novel data augmentation method which creates artificial pages, that eval-
uate possibilities how to train FCN for image, text and background segmentation.

Based on the experiments, we can say that high resolution is not crucial for the
chronicle segmentation into text, image and background. FCN model can generalize
well on the documents that are similar but it is hard to create one generalized FCN
model that can segment pages of different types and characteristics (e.g. modern
printed magazines and historical handwritten documents). In such a case, the model
tends to output more noise than the specialized one.

The outcome, in a form of segmentation method with relatively low computa-
tional costs and great results, is integrated into the Porta fontium portal to improve
its possibilities of searching and publication of the documents.

6.1.1 Dataset Description
The dataset is composed of scanned pages from several chronicles of varying styles
provided by Porta fontium portal1. The main part of the dataset consists of 5 chron-
icles in a total of 38 double-sided pages from which 18 contain images.

1http://www.portafontium.cz/

39

http://www.portafontium.cz/


There is also an experimental part that contains 20 printed pages from docu-
ments of different types. This set contains rare pages that can be used in different
application areas. Additionally, this part contains 29 standalone images of old pho-
tographs. The experimental part is further used in experiments.

Totally, there are images of 58 good-quality pages of documents and their di-
mensions vary from 2000 to 5777 pixels.

6.1.2 FCN Architecture
The U-Net-based [51] architecture is designed to segment the entire input page at
once. It uses padding in the convolutional layers which can help to suppress noise at
the borders of scanned document pages and preserves dimensions so that the input
resolution matches the output resolution.

Shared parameters in the convolutional layers allow variable input dimensions. In
order to prevent skip-connection dimension inconsistency, the model input dimension
has to be multiple of 24 = 16 (given by four 2×2 max-pooling layers).

If there is a high-resolution input, the memory limitations appear. Then, there is
again the need to trade-off between localization accuracy and the use of context as
discussed in [51]. The high resolution input can be processed in the sliding window
manner using small context of the page or it can be down-sampled and processed
with less details, bigger context but worse localization accuracy. To reduce compu-
tational costs, the input image size is limited to 512×512 pixels as depicted in Fig.
6.1. This setup has been identified based on our preliminary experiments and it is
also supported by the work of Wick and Puppe [64] where the authors used input
of 260×390 pixels.

FCN

Figure 6.1: Input image segmentation process: The input limit of 512×512 pixels is
represented by squares before and after FCN box. [4]

6.1.3 Experimental Results
We have designed a set of experiments for techniques that are used to enhance the
recognition results if only small amount of data is available. Namely, we experiment
with extending the training data, transfer learning and loss function weighting (Fig.
6.2).

We also evaluate the influence of input resolution (Fig. 6.3) and a post-processing
step. The results are reported in Table 6.1 and compared to the baseline setup which
represents the model trained only on the 6 pages of chronicles that contains an image.
Based on the experiments the combined setup of the model is made.

40



ground-truth

0

1 weights

2

4

6

8

10

Figure 6.2: Calculated weights for loss function weighting to improve the separation
of the components. [4]

Figure 6.3: Example predictions with different input limits (from left: input image,
128×128, 256×256, 512×512 and 1024×1024 input limits)

For transfer learning, the model is pre-trained on the printed documents from
other dataset and then fine-tuned as the baseline setup. The results are slightly
worse and the model mispredicts the handwritten text as image more likely. On the
other hand, it works better for the glued printed text blocks. This is probably due
to the learned features for printed documents during pre-training. The fine-tuning is
very fast and takes about 20 epochs compared to 160 epochs for the baseline setup.
If the model is trained further for roughly the same number of epochs as baseline,
the results are comparable.

The combined setup is also used for the transfer learning and results are reported
for pre-trained and fine-tuned model separately. For the fine-tuned model, the char-
acteristics are the same as in the previous case. The predictions of pre-trained model
are not directly usable as can be seen in Figure 6.4.

The automatic creation of artificial pages from the existing ones is also presented
as a data augmentation approach that deals with the problem of class imbalances and
brings significant improvements. It allows to utilize annotated pages without images

Figure 6.4: From left: the input image, prediction of pre-trained model, prediction
after fine-tuning (23 epochs)

41



Table 6.1: Average results (in %) of the experiments on the validation part: Baseline
is a referential setup with 512×512 input limit and the model is trained only on
6 pages that contain images. Baseline setup modifications are presented in next
three blocks (different input size, loss function weighting, training data). Based on
the experiments, the combined setup is reported in the next block. The last block
contains modifications to the combined setup using post-processing, transfer learning
and extended training data.

Accuracy Precision Recall F1 score IoU FgPA
Baseline 95.3 91.8 92.6 92.0 85.5 98.5
128×128 input 86.6 79.9 82.7 80.7 68.0 93.4
256×256 input 93.9 89.9 91.8 90.7 83.1 98.4
1024×1024 input 95.5 94.1 91.6 92.6 86.5 98.8
Weighted sep. areas 95.3 94.6 90.7 92.3 85.9 99.0
Weighted classes 94.9 92.5 91.4 91.8 85.0 98.3
Augmentation 95.5 93.2 92.7 92.8 86.7 98.4
Artificial pages 96.1 94.0 94.3 94.0 88.9 99.2
Printed pages 95.5 94.2 92.1 93.0 87.1 98.8
Transfer learning 94.8 94.0 89.8 91.6 84.6 98.5
Combined 96.4 94.5 94.3 94.2 89.2 99.2
Post-process 95.9 93.4 94.6 93.9 88.6 99.0
Pre-trained 82.4 73.6 73.8 65.8 52.0 90.1
Fine-tuned 95.8 94.7 91.9 93.1 87.2 99.0
Extended 96.3 95.1 93.3 94.1 89.0 99.4

from the experimental part of the dataset. These no-image pages are problematic
for training because of class imbalances. On the other hand, they contain specialties
like different writing styles and decorations that are useful for training. To be able
to use them, the images are added randomly into a no-image page as depicted in
Figure 6.5 with reasonable size and position restrictions.

+

Figure 6.5: Creation of artificial pages: Images are added randomly into document
page [4]

42



6.2 Historical Map Processing
This section relates to processing of historical maps and contains winning approaches
of “MapSeg” competition [10] task 2 (segmentation of map content) and 3 (localiza-
tion of graticule lines intersections).

6.2.1 Segmentation of Map Content

Figure 6.6: Segmentation of map content result example: The map image overlayed
with map content area segmentation mask

We propose an efficient approach for automatic map segmentation which com-
bines conventional CV techniques with deep learning methods. It utilizes results of
FCN, binarization and post-processing to obtain map content area. ML can easily
deal with hardly definable specialties in the documents. Whereas the conventional
CV approach can improve the results and further reduce the amount of data needed.
Compared to using solely ML or traditional CV techniques, this combination is able
to provide excellent results with a small amount of training data as illustrated in
6.6.

We have identified experimentally that predicting only border areas (Fig. 6.7.d)
is a much easier learning objective than predicting the whole map content area.
In our opinion, the reason for that is given in the following example. If we train
the FCN to predict the whole map content area (Fig. 6.7.e), we want to predict
every pixel there as positive (e.g. roads, buildings or text). There are also similar
objects outside the map content that we want to predict as negative (legends for
example). We find this conflict problematic for training. On the other hand, it is
much easier to predict only the border areas. The network can focus for example
on lines, transitions between “empty” and “non-empty” areas, border decorations or
legends. The border contours also appear close to image borders, thus the network
can use that information provided by padding as discussed in [4]. Therefore, we
proposed the segmentation process accordingly to Fig. 6.7.

43



&

a b c

fd e

Figure 6.7: Map content area segmentation process: (a) input image, (b) binarized
input image, (c) binarized image b masked with estimated mask e, (d) FCN border
prediction, (e) estimated mask as post-processed border prediction d, (f) result as
post-processed c

Our approach significantly outperforms other approaches (CMM [10], IRISA [3]
and L3IRIS [10]) as can be seen in Fig. 6.8 where the 95th percentile variant of
Hausdorff distance is used as error measure.

Rank Team Hausdorf 95 (pix.) ↓
1 UWB 19
2 CMM 85
3 IR ISA 112
4 L3IR IS 126 101 102 103

Error (pixels)

CMM

IRISA

UWB

L3IRIS

Figure 6.8: Test images errors (left) and error distribution (right) for map content
area segmentation task (UWB is ours)

6.2.2 Localization of Graticule Lines Intersections
Important features that can be used for geo-referencing the maps are graticule lines
indicating the North/South/East/West major coordinates and their intersections.
Another use case is assembling the single map sheets into a larger seamless map.
We proposed a novel method that detects a grid as a whole. Based on the results
we deduce that focusing on bigger part of the grid (whole grid, cross, longest line
etc.) brings more correct detections and is thus more robust.

44



Figure 6.9: Graticule candidate generation process: Hough accumulator (top) peaks
from the same PPG and their visualization (bottom) have the same color. Note that
image origin is placed at top left corner and y-axis is inverted so the angle goes
clockwise.

The approach is based on Hough transform accompanied with a sophisticated
post-processing. It works without any training and does not require any annotated
data. The proposed approach is very efficient in detecting the rectangular grid and
the intersection points. The robustness of the proposed method is demonstrated by
evaluating it on another dataset composed of significantly different cadastral map
images with excellent results.

Based on formulated presumptions, the grid-forming lines are detected in Hough
accumulator in several steps as depicted in Fig. 6.9. The proposed method firstly
detects peaks in the Hough accumulator and selects angle candidates. Based on
the angle candidates, peaks are grouped into Perpendicular Peak Groups (PPGs).

TM .

a b

d

c

e f g

Figure 6.10: Graticule lines intersection refinement process: (a) cropped binarized
input image, (b) cropped result of template matching, (c) red refinement of green
estimated point using maximal value of d, (d) pixel-wise product of b and f, (e) tem-
plate for template matching, (f) Gaussian hill with estimated point as center, (g) red
refinement of green estimated point visualization.

45



Further steps include filtering, correcting, fixing, rating and filling the PPG. The
rating is inspired by heart rate variability analysis [9]. The bigger amount and more
stable intervals results in lower rating. The lower the rating, the better it is. As a
result, we have several graticule candidates that are represented by the PPGs and
contain information about their rating, angle and distance between the lines. Based
on these, we can select the best candidate, detect intersection points and also refine
them.

Intersections are determined using homogeneous coordinates [55]. It is straight-
forward if we represent lines in normal form and detect peaks with angle and distance
coordinates. The presumption on straight lines is not usually satisfied so detected
intersections are rather estimates of intersections and their localization can be im-
proved as can be seen in Fig. 6.10. To do that, we use template matching where
the template is a cross rotated accordingly to the grid (Fig. 6.10.e). The result of
the template matching is multiplied with Gaussian hill to limit the refinement dis-
tance and also to approximate error distribution. The center of the Gaussian hill is
positioned at the intersection estimate. Finally, the maximal value determines the
position of refined intersection.

Figure 6.11: Grid detection example in different images.

The proposed method shows excellent results even on noisy historical map im-
ages. Moreover, it can be applied to general image as illustrated in Fig. 6.11. As can
be seen in Fig. 6.12, our method surpassed the other methods (CMM [10], IRISA
[3] and L3IRIS [10]) by a significant margin.

Rank Team Detection score (%) ↑
1 UWB 92.5
2 IR ISA 89.2
3 CMM 86.6
4 L3IR IS 73.6 0.0 0.2 0.4 0.6 0.8 1.0

Normalized distance

0.00

0.25

0.50

0.75

1.00

F
=
0
.5

Method
CMM
IRISA
L3IRIS
UWB

Figure 6.12: Final detection score (left) and results for each distance threshold (right)
[10]

46



6.2.3 Historical Map Toponym Extraction
In [33], we deal with detection, classification and recognition of toponyms in hand-
drawn historical cadastral maps. Toponyms are local names of towns, villages and
landscape features such as rivers, forests etc. The detected and recognized toponyms
are utilized as keywords in an information retrieval system that allows intelligent and
efficient searching in historical map collections. We create a novel annotated dataset
that is freely available for research and educational purposes. Then, we propose
a novel approach for toponym classification based on KAZE descriptor. Next we
compare and evaluate several state-of-the-art methods for text and object detection
including FCN, YOLO or R-CNN. We further show the results of toponym text
recognition using popular Tesseract [57] engine.

The overall pipeline is depicted in Fig. 6.13. Three blue boxes represent models
for particular sub-tasks: text detection, toponym classification and OCR.

The proposed algorithm for toponym classification into printed and handwrit-
ten categories is inspired by the algorithm for writer identification based on image
descriptors from [66] and it relies on KAZE [1] descriptor.

As described in Fig. 6.14, the first step of the proposed classification algorithm is
a codebook generation. It is based on a training set with known labels. The KAZE
detector is applied on all preprocessed regions. We thus obtain a set of key-points
and corresponding descriptors for each region. All descriptors are put together and
the resulting set of descriptor vectors is clustered with K-means algorithm.

Input Map Sheet

Text Detection
Model

Detected and Cropped
Toponym regions

Toponym
Classifier

Printed Topnyms

Handwritten TopnymsOCR

IR System

Figure 6.13: Historical map toponym extraction overall processing pipeline

47



Training set
KAZE

KAZE
descriptors

K-means
Clustering

...
K = 100 centroids

Figure 6.14: Codebook generation process

Image representation is calculated based on the codebook. For each descriptor
vector, we find the closest cluster. The representation is then a histogram of size 𝐾
where each bin represents how many times the given centroid was the closest to a
descriptor vector. Finally, the histograms are size-normalized.

The prediction of an unknown text region is based on comparison of its repre-
sentation with representations of known samples (training set). We first preprocess
the image and obtain its histogram representation. Then, we find 𝑁 most similar
histograms from the training set using Bhattacharyya distance. Based on our exper-
iments, this distance is more suitable for the comparison of histograms than other
traditional distance measures. The predicted class is determined as the majority
class occurring in the 𝑁 most similar histograms. Fig 6.15 shows the prediction
phase of our approach.

KAZE
KAZE

descriptors

Closest
Centroids

Input Image

Histogram

N Nearest
Histograms

Predicted
Label

Figure 6.15: Test image prediction process

The biggest advantage of this algorithm is the fact that only a small amount of
training examples is sufficient for reasonable results (comparing to the NN models).

6.3 Multilingual HTR
This section presents preliminary results in the area of multilingual HTR. For the
experiments, we utilized the model from [36] (see Sec. 3.3.2) and a private subset
of approx. 9 thousand lines from 13 chronicles (10 pages from each) containing two
languages, namely Czech and German.

48



As illustrated in Fig. 6.16, the multilingual model trained in both languages and
all chronicles produced surprisingly good results despite the high variety of writing
styles. On the test part, we achieved 0.18 Character Error Rate (CER) in average.
The results on separate chronicles ranged from 0.13 to 0.29 CER.

(a) Example from Blovice:
nýbrž aby od soudců opatem ustanovených v Nepomuku neb Blovicích (GT)
nýbrž aby od soudců apatem ustanovených v Nepomuku neb Blovicích (predicted)

(b) Example from Svojšín:
und sämmtliche hierüber vernommenen k. Kreisämter und Konsi- (GT)
zund sämmtliche hierüber vernwnenen k Kreisinter un d Jonsi- (predicted)

(c) Example from Karlovy Vary:
Karassek vom Karlsbad wegkam wurde mir zu Anfang des Jahres (GT)
Karesek von Karlsbad wergkann wurde mir zu Anfang des Juhnes (predicted)

(d) Example from Třebeň:
Nach Abzug der lutherischen Pfarrer wurde Trebendorf administrirt und zwar von 1628
1644 (GT)
dNach Azug der lutherischen Pfarer wurdl Trebendorf administrirt und zwar von 1628
Ex4r (predicted)

Figure 6.16: HTR examples

49



Chapter 7

Conclusions and Aims of the
Doctoral Thesis

This work provides summary of beneficial and state-of-the-art approaches in the
area of historical document analysis. It presents also our contribution in the area.
Finally, the conclusions and aims of the doctoral thesis are discussed further in this
chapter.

Based on the presented methods and their analysis, we can say that the analysis
of modern printed documents works quite well. On the other hand, the analysis
of historical documents is still challenging due to handwriting, different authors,
scanning quality and also paper degradation. Moreover, the methods that work for
modern documents usually do not work well for historical ones. Thus, there is a
need for new approaches. These days, new approaches benefit from ML and are
usually based on deep learning. An important limitation is a significant amount of
annotated training data needed. At the same time, the annotated data are still rare
and very time consuming to create and thus expensive. So there are two conflicting
requirements on the amount of data.

Since we need to learn due to specificity of documents, it is beneficial to use ML
approaches and it is problematic to replace them. On the other hand, the models
could use easier learning objective and post-processing or they could be optimized
for lower amount of data as was partially shown in our research (see Chapter 6).
Another possibility to deal with the data is to make annotation easier utilizing
current models and improving them iteratively with a growing amount of data.

There are languages that share common grammar and rules like Slavic or Ger-
manic languages. Therefore, transfer learning and multilingual approaches look very
promising especially for poorly resourced languages. An interesting opportunity lies
in employing pre-trained models from related areas such as NLP for multi-modal
processing. But there are problems like different historical language or not negligible
character error rate in HTR. These problems should be carried out in order to fully
utilize current progress in NLP.

50



Therefore, the aims of the doctoral thesis relate to document analysis and dealing
with low amount of data. From the above mentioned, the aims are as follows:

1. Proposing new methods dealing with the possibilities of combining deep learn-
ing with conventional CV approaches to improve the results of individual meth-
ods for document analysis.

2. Analyzing the weaknesses of the current single-modal document analysis meth-
ods and proposing novel multi-modal approaches using pre-trained models and
transfer learning to improve the final results.

3. Handling the issue of small amount of annotated data for model training by
proposing novel document analysis methods dealing with weak supervision.

51



Bibliography

[1] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison. Kaze
features. In Computer Vision – ECCV 2012, pages 214–227, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[2] Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and Alexey Sorokin. Tun-
ing multilingual transformers for language-specific named entity recognition.
In Proceedings of the 7th Workshop on Balto-Slavic Natural Language Process-
ing, pages 89–93, Florence, Italy, August 2019. Association for Computational
Linguistics.

[3] Lemaitre Aurelie and Camillerapp Jean. Segmentation of historical maps with-
out annotated data. In The 6th International Workshop on Historical Document
Imaging and Processing, pages 19–24, 2021.

[4] Josef Baloun, Pavel Král, and Ladislav Lenc. Chronseg: Novel dataset for seg-
mentation of handwritten historical chronicles. In Proceedings of the 13th Inter-
national Conference on Agents and Artificial Intelligence - Volume 2: ICAART,,
pages 314–322. INSTICC, SciTePress, 2021.

[5] Serge Beucher. Use of watersheds in contour detection. In Proceedings of the
International Workshop on Image Processing. CCETT, 1979.

[6] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-
chine learning, volume 4. Springer, 2006.

[7] Roberto Brunelli. Template matching techniques in computer vision: theory and
practice. John Wiley & Sons, 2009.

[8] Tomáš Brychcín. Linear transformations for cross-lingual semantic textual sim-
ilarity. Knowledge-Based Systems, 187:104819, 2020.

[9] A John Camm, Marek Malik, J Thomas Bigger, Günter Breithardt, Sergio
Cerutti, Richard J Cohen, Philippe Coumel, Ernest L Fallen, Harold L Kennedy,
Robert E Kleiger, et al. Heart rate variability: standards of measurement,
physiological interpretation and clinical use. task force of the european society
of cardiology and the north american society of pacing and electrophysiology.
Circulation, 1996.

52



[10] Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand
Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen,
Josef Baloun, Ladislav Lenc, and Pavel Král. Icdar 2021 competition on his-
torical map segmentation. In Proceedings of the 16th International Conference
on Document Analysis and Recognition (ICDAR’21), Lausanne, Switzerland,
2021.

[11] Huizhong Chen, Matthew Cooper, Dhiraj Joshi, and Bernd Girod. Multi-modal
language models for lecture video retrieval. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 1081–1084, 2014.

[12] Gobinda Chowdhary. Natural language processing, volume 37. Information
Today, Inc., 2003.

[13] Christian Clausner, Stefan Pletschacher, and Apostolos Antonacopoulos.
Aletheia-an advanced document layout and text ground-truthing system for
production environments. In 2011 International Conference on Document Anal-
ysis and Recognition, pages 48–52. IEEE, 2011.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[15] Richard O Duda and Peter E Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[16] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image
segmentation. International journal of computer vision, 59(2):167–181, 2004.

[17] Javier Ferrando, Juan Luis Domínguez, Jordi Torres, Raúl García, David Gar-
cía, Daniel Garrido, Jordi Cortada, and Mateo Valero. Improving accuracy
and speeding up document image classification through parallel systems. In
International Conference on Computational Science, pages 387–400. Springer,
2020.

[18] Adrian Frutiger. Ocr-b: A standardized character for optical recognition. The
Journal of Typographic Research, 1:137–146, 1967.

[19] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), December 2015.

[21] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

53



[22] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhu-
ber. Connectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd international con-
ference on Machine learning, pages 369–376, 2006.

[23] Tobias Grüning, Gundram Leifert, Tobias Strauß, Johannes Michael, and
Roger Labahn. A two-stage method for text line detection in historical docu-
ments. International Journal on Document Analysis and Recognition (IJDAR),
22(3):285–302, 2019.

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE transac-
tions on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[28] Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés, and Mauricio Villegas. Pay
attention to what you read: Non-recurrent handwritten text-line recognition.
arXiv preprint arXiv:2005.13044, 2020.

[29] Frédéric Kaplan, Sofia Ares Oliveira, Simon Clematide, Maud Ehrmann, and
Raphaël Barman. Combining visual and textual features for semantic segmen-
tation of historical newspapers. Journal of Data Mining & Digital Humanities,
2021.

[30] K. Kise, O. Yanagida, and S. Takamatsu. Page segmentation based on thinning
of background. In Proceedings of 13th International Conference on Pattern
Recognition, volume 3, pages 788–792 vol.3, 1996.

[31] Koichi Kise. Page Segmentation Techniques in Document Analysis, pages 135–
175. Springer London, London, 2014.

[32] Shivani Kumar, Atharva Kulkarni, Md Shad Akhtar, and Tanmoy Chakraborty.
When did you become so smart, oh wise one?! sarcasm explanation in multi-
modal multi-party dialogues. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
5956–5968, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics.

54



[33] Ladislav Lenc, Jiří Martínek, Josef Baloun, Martin Prantl, and Pavel Král.
Historical map toponym extraction for efficient information retrieval. In Inter-
national Workshop on Document Analysis Systems, pages 171–183. Springer,
2022.

[34] Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang,
Zhoujun Li, and Furu Wei. Trocr: Transformer-based optical character recog-
nition with pre-trained models. arXiv preprint arXiv:2109.10282, 2021.

[35] Peizhao Li, Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong Zhao, Rajiv
Jain, Varun Manjunatha, and Hongfu Liu. Selfdoc: Self-supervised document
representation learning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5652–5660, 2021.

[36] J. Martínek, L. Lenc, and P. Král. Building an efficient OCR system for histor-
ical documents with little training data. Neural Computing and Applications,
pages 1–19, 2020. Received: 25 December 2019, Accepted: 06 April 2020, Pub-
lished: 09 May 2020.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems, 26, 2013.

[38] Seungwhan Moon, Leonardo Neves, and Vitor Carvalho. Multimodal named en-
tity recognition for short social media posts. arXiv preprint arXiv:1802.07862,
2018.

[39] Shunji Mori, Ching Y Suen, and Kazuhiko Yamamoto. Historical review of ocr
research and development. Proceedings of the IEEE, 80(7):1029–1058, 1992.

[40] Bastien Moysset, Christopher Kermorvant, Christian Wolf, and Jérôme
Louradour. Paragraph text segmentation into lines with recurrent neural net-
works. In 2015 13th international conference on document analysis and recog-
nition (ICDAR), pages 456–460. IEEE, 2015.

[41] Oliver Nina, Bryan Morse, and William Barrett. A recursive otsu threshold-
ing method for scanned document binarization. In 2011 IEEE Workshop on
Applications of Computer Vision (WACV), pages 307–314. IEEE, 2011.

[42] Lawrence O’Gorman and Rangachar Kasturi. Document image analysis, vol-
ume 39. Citeseer, 1995.

[43] Sofia Ares Oliveira, Benoit Seguin, and Frederic Kaplan. dhsegment: A generic
deep-learning approach for document segmentation. In 2018 16th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR), pages
7–12. IEEE, 2018.

[44] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

55



[45] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations, 2018.

[46] James P Philips and Nasseh Tabrizi. Historical document processing: A survey
of techniques, tools, and trends. arXiv preprint arXiv:2002.06300, 2020.

[47] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. 2018.

[48] Hiranmayi Ranganathan, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Multimodal emotion recognition using deep learning architectures.
In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 1–9. IEEE, 2016.

[49] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. Advances in neural
information processing systems, 28:91–99, 2015.

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim Horneg-
ger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, pages 234–241,
Cham, 2015. Springer International Publishing.

[52] Ahmed Cheikh Rouhou, Marwa Dhiaf, Yousri Kessentini, and Sinda Ben Salem.
Transformer-based approach for joint handwriting and named entity recognition
in historical document. Pattern Recognition Letters, 155:128–134, 2022.

[53] Jaakko Sauvola, Tapio Seppanen, Sami Haapakoski, and Matti Pietikainen.
Adaptive document binarization. In Proceedings of the Fourth International
Conference on Document Analysis and Recognition, volume 1, pages 147–152.
IEEE, 1997.

[54] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[55] Václav Skala. Intersection computation in projective space using homogeneous
coordinates. International Journal of Image and Graphics, 8(04):615–628, 2008.

[56] Kamilya Smagulova and Alex Pappachen James. A survey on lstm memristive
neural network architectures and applications. The European Physical Journal
Special Topics, 228(10):2313–2324, 2019.

56



[57] Ray Smith. An overview of the tesseract ocr engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE, 2007.

[58] Sebastian Sudholt and Gernot A Fink. Phocnet: A deep convolutional neural
network for word spotting in handwritten documents. In 2016 15th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR), pages
277–282. IEEE, 2016.

[59] Zhongkai Sun, Prathusha K Sarma, William Sethares, and Erik P Bucy. Multi-
modal sentiment analysis using deep canonical correlation analysis. arXiv
preprint arXiv:1907.08696, 2019.

[60] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International conference on machine learning,
pages 6105–6114. PMLR, 2019.

[61] Chris Tensmeyer and Tony Martinez. Document image binarization with fully
convolutional neural networks. In 2017 14th IAPR international conference on
document analysis and recognition (ICDAR), volume 1, pages 99–104. IEEE,
2017.

[62] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154–171, 2013.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[64] Christoph Wick and Frank Puppe. Fully convolutional neural networks for page
segmentation of historical document images. In 2018 13th IAPR International
Workshop on Document Analysis Systems (DAS), pages 287–292. IEEE, 2018.

[65] Christoph Wick, Jochen Zöllner, and Tobias Grüning. Transformer for hand-
written text recognition using bidirectional post-decoding. In International
Conference on Document Analysis and Recognition, pages 112–126. Springer,
2021.

[66] Yu-Jie Xiong, Ying Wen, Patrick S P Wang, and Yue Lu. Text-independent
writer identification using sift descriptor and contour-directional feature. In
2015 13th International Conference on Document Analysis and Recognition (IC-
DAR), pages 91–95, 2015.

[67] Baosong Yang, Jian Li, Derek F Wong, Lidia S Chao, Xing Wang, and Zhaopeng
Tu. Context-aware self-attention networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pages 387–394, 2019.

57


	Introduction
	Neural Networks
	Multilayer Perceptron
	Training
	Stochastic Gradient Descent
	Error Backpropagation

	Convolutional Neural Networks
	Fully Convolutional Networks
	Recurrent Neural Networks
	Connectionist Temporal Classification
	Transformer

	Document Image Analysis
	Graphical Processing
	Binarization
	Segmentation
	Object Detection

	Layout Analysis
	Textual Processing
	Keyword Spotting
	Text Recognition


	Natural Language Processing
	Word Representation Using Word2Vec
	Contextual Representation
	Task Dependent Fine-Tuning
	Multilingual Approaches

	Multi-Modal Processing
	Own Work
	Handwritten Historical Chronicles Segmentation
	Dataset Description
	FCN Architecture
	Experimental Results

	Historical Map Processing
	Segmentation of Map Content
	Localization of Graticule Lines Intersections
	Historical Map Toponym Extraction

	Multilingual HTR

	Conclusions and Aims of the Doctoral Thesis

