
University of West Bohemia
Department of Computer Science and Engineering

Univerzitní 8
30614 Plzeň

Czech Republic

Compression of dynamic polygonal meshes
with constant and variable connectivity
The State of the Art and Concept of PhD. Thesis

Jan Dvořák

Technical Report No. DCSE/TR-2022-01
April 2022

Technical Report No. DCSE/TR-2022-01
April 2022

Compression of dynamic polygonal
meshes with constant and variable
connectivity
The State of the Art and Concept of PhD. Thesis

Jan Dvořák

Abstract
Polygonal mesh sequences with variable connectivity are incredibly versatile dy-
namic surface representations as they allow a surface to change topology or details
to suddenly appear or disappear. This, however, comes at the cost of large stor-
age size. Current compression methods inefficiently exploit the temporal coherence
of general data because the correspondences between two subsequent frames might
not be bijective. We study the current state of the art including the special class of
mesh sequences for which connectivity is static. We also focus on the state of the
art of a related field of dynamic point cloud sequences. Further, we point out parts
of the compression pipeline with the possibility of improvement. We present the
progress we have already made in designing a temporal model capturing the tem-
poral coherence of the sequence, and point out to directions for a future research.

This work was supported by the projects 20-02154S and 17-07690S of the Czech
Science Foundation and SGS-2019-016 of the Czech Ministry of Education.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Copyright c○ 2022 University of West Bohemia, Czech Republic

http://www.kiv.zcu.cz/en/research/publications/

Acknowledgements

I am grateful for the great guidance, valuable feedback, and extreme pa-
tience from my supervisor, Doc. Ing. Libor Váša PhD. I would also like to
acknowledge my colleagues from the scientific project 20-02154S, who con-
tributed significantly to the research presented in this thesis. Last but not
least, I would like to thank my family, who were always there to support me.

Contents

1 Introduction 1
1.1 Problem Definition . 3

1.1.1 Data Reduction Techniques 3
1.1.2 Performance Evaluation 6

2 Mesh and Point Cloud Representations of Dynamic Surfaces 9
2.1 Triangle Mesh Sequences . 9

2.1.1 Dynamic Mesh . 10
2.1.2 Time-Varying Mesh 11

2.2 Dynamic Point Cloud . 12
2.2.1 Voxelization . 14

3 Dynamic Mesh Compression 15
3.1 High-Fidelity Compression of Dynamic Meshes with Fine De-

tails Using Piece-wise Manifold Harmonic Bases 15
3.2 Motion-Aware Compression and Transmission of Mesh Ani-

mation Sequences . 16
3.3 3D Mesh Animation Compression Based on Adaptive Spatio-

temporal Segmentation . 17
3.4 Summary of Dynamic Mesh Compression 18

4 Time-Varying Mesh Compression 20
4.1 Registration and Partitioning-Based Compression of 3-D Dy-

namic Data . 21
4.2 Semi-Regular Representation and Progressive Compression of

3-D Dynamic Mesh Sequences 22
4.3 Time-Varying Mesh Compression Using an Extended Block

Matching Algorithm . 22
4.4 Geometry Compression for Time-Varying Meshes Using Coarse

and Fine Levels of Quantization and Run-Length Encoding . 23
4.5 Patch-Based Compression for Time-Varying Meshes 24
4.6 Deformation-Based Data Reduction of Time-Varying Meshes

for Displaying on Mobile Terminals 25

4.7 Toward Real-Time and Efficient Compression of Human Time-
Varying Meshes . 26

4.8 A Novel Compression Framework for 3D Time-Varying Meshes 28
4.9 Mesh Coding Extensions to MPEG-I V-PCC 29
4.10 Summary of Time-Varying Mesh Compression 30

5 Dynamic Point Cloud Compression 31
5.1 Multi-camera Tele-Immersion System with Real-Time Model

Driven Data Compression 32
5.2 Efficient Rate-Distortion Compression of Dynamic Point Cloud

for Grid-Pattern-Based 3D Scanning Systems 33
5.3 Real-Time Compression of Point Cloud Streams 35
5.4 Graph-Based Compression of Dynamic 3D Point Cloud Se-

quences . 36
5.5 Design, Implementation, and Evaluation of a Point Cloud

Codec for Tele-Immersive Video 38
5.6 Embedded Binary Tree for Dynamic Point Cloud Geometry

Compression with Graph Signal Resampling and Prediction 39
5.7 Motion-Compensated Compression of Dynamic Voxelized Point

Clouds . 40
5.8 Context-Based Octree Coding for Point-Cloud Video 41
5.9 MPEG Standards for Point Cloud Compression 41

5.9.1 MPEG V-PCC . 42
5.9.2 MPEG G-PCC . 43
5.9.3 Inter-based Methods Directly Inspired by MPEG Point

Cloud Compression Standardization Efforts 45
5.10 Geometry Coding for Dynamic Voxelized Point Clouds Using

Octrees and Multiple Contexts 47
5.11 MuSCLE: Multi Sweep Compression of LiDAR Using Deep

Entropy Models . 49
5.12 A Transform Coding Strategy for Dynamic Point Clouds . . 50
5.13 Real-Time Spatio-temporal LiDAR Point Cloud Compression 51
5.14 Silhouette 4D: An Inter-Frame Lossless Geometry Coder of

Dynamic Voxelized Point Clouds 52
5.15 Summary of Dynamic Point Cloud Compression 53

6 Potentially Related Methods in Different Research Areas 54
6.1 Geometry-Based Connectivity Coding 54
6.2 Versatile Temporal Coherence Estimation 57

7 Our Contribution 60
7.1 Error Propagation Control in Laplacian Mesh Compression . 60
7.2 Predictive Compression of Molecular Dynamics Trajectories 63
7.3 Towards Understanding Time-Varying Triangle Meshes . . . 65

7.4 As-Rigid-As-Possible Volume Tracking For Time-Varying Sur-
faces . 68

8 Future Work 71
8.1 Time-Varying Mesh Compression with a Versatile Temporal

Model . 72
8.2 Distant Goals . 75

9 Conclusions 77

Bibliography 78

A Activities 89
A.1 Publications in International Conferences 89
A.2 Publications in Impacted Journals 89
A.3 Participation in Scientific Projects 89
A.4 Teaching Activities . 90
A.5 Non-related Publications . 90
A.6 Stays Abroad . 90
A.7 Oral Presentations . 90

B Links to Full Versions of Related Published Work 91

Chapter 1

Introduction

3D surface representations, such as meshes and point clouds, have incredi-
ble representative power. When studying a certain object or a collection of
objects represented by a mesh or a point cloud, we can observe them from
any desired viewpoint and thus be able to detect details that might not be
observable in a static image. However, this is often still insufficient to infer
dynamic behavior. For example, given a scene consisting of a sphere and a
box, we cannot tell whether any of the objects are static or if any force is
being applied to them, if any collision might occur between the two objects,
and if so, whether any of the objects will deform. This can be addressed by
multiple representations capturing the scene at consecutive points in time
(see Figure 1.1).

Figure 1.1: Selected frames of a dynamic scene in which a sphere is slightly
deformed by collision with a box. Frames are sorted from left to right in
order of appearance.

While modern surface scanning hardware can output such data at suf-
ficient frame rates, there are, unfortunately, only a few publicly available
datasets of mesh or point cloud sequences. This can be attributed to their
large size. For example, the D-FAUST dataset [11] contains 129 sequences
with over 40 000 meshes overall, which requires around 129 GB of storage
in an uncompressed form. While the compression of a special class of mesh

1

sequences with constant connectivity, called dynamic meshes, is already con-
sidered a solved problem and some recent advancement has been made in
the compression of dynamic point clouds due to ongoing MPEG standard-
ization [3], the compression of general triangle mesh sequences (often called
time-varying meshes) remains an open problem. Even a few methods have
already been proposed, currently the most efficient way to store such data
is to compress each mesh separately even though the subsequent frames are
temporally coherent, and this fact is not being exploited at all. We believe
that providing an efficient time-varying compression format to the public
would motivate others to publish new mesh sequence datasets.

Some progress in time-varying mesh compression has actually been made
in a single specific scenario: tele-immersion. Tele-immersion is a way of com-
municating in augmented or virtual reality, where a person is being captured
by a surface scanning device and the resulting 3D model is transmitted in
real time to the receiver (see Figure 1.2). This situation is specific in the
sense that the transmitted data represents a human body in varying poses,
and thus it is a much simpler task to construct a mathematical model (e.g.,
a tracked skeleton) that drives the exploitation of the temporal coherence.
Additionally, the objectives for compression are also different from those in
the general scenario. Instead of preserving as much information as possible,
it is much more important to achieve real-time performance. This allows
the method, for example, to discard certain frame and replace it with an
already-transmitted frame that is warped to resemble the discarded shape,
or to remesh the surface. While some of the time-varying mesh compression
methods for tele-immersion can also be adjusted to work in more general
scenarios, they are quite inefficient in those cases. More interesting is the
adjustment in the opposite direction – if there was an efficient general mesh
sequence compression method, it might be altered to account for the real-
time scenario of tele-immersion.

Figure 1.2: Pipeline of the Holoportation tele-immersion system [78].

The structure of this thesis is as follows. In the rest of this chapter, we
will discuss mesh compression from a more general point of view and also
point out how the methods usually measure compression performance. In
Chapter 2, we will describe the mesh and point cloud sequences. The next

2

three chapters will discuss the state of the art of such data compression.
Chapter 6 will focus on methods addressing related problems that might
be incorporated to improve compression performance. After that, we will
describe the progress we have already made related to mesh sequence com-
pression. In Chapter 8, we will outline directions for future research. Last,
we will conclude the text in Chapter 9.

1.1 Problem Definition
Compression is the process of transforming input data 𝑋, which are rep-
resented by a certain sequence of 𝑚 bits, into a reduced representation of
𝑛 bits, where 𝑚 ≫ 𝑛, from which one can obtain a reconstruction �̂� by a
reverse process called decompression. If the compression is lossless, 𝑋 and
�̂� must be identical. In lossy compression, �̂� is distorted and is required to
resemble 𝑋 only in a defined sense.

In our case, the input data is a sequence of triangle meshes represented by
geometry (positions of the elements of the mesh), connectivity (information
about how the elements of the mesh are connected to each other) and other
properties of each mesh. The scope of our research is compression of only
the first two, with emphasis on the geometric information. The data will be
described in more detail in Chapter 2.

In terms of mesh geometry compression, the majority of methods are
lossy, meaning the reconstructed positions are different from the original
ones. This is because positions are represented by vectors of floating point
values, and such data is actually quite difficult to efficiently encode in a
lossless manner. Loss of information in this case is also less likely to be
detected by a viewer than if it occurred in connectivity.

For connectivity, the key criterion to classify a method as lossless is
whether a map exists between the vertices of the original and reconstructed
mesh, that is an isomorphism. Such definition permits lossless methods to
reorder vertices. Lossy methods usually perform remeshing, simplification or
filtering, which also implies loss of information in geometry. For a simpler
comparison of original and distorted data, it is desirable to preserve the
isomorphism.

1.1.1 Data Reduction Techniques
In this section, we will briefly describe several key concepts of general data
compression frequently used in methods discussed in Chapters 3, 4, 5 and 6.

The most prominent tool of lossy geometry compression is quantization,
a process of transforming a range or a large set of values into a smaller
discrete set. The simplest and most commonly used type of quantization is

3

performed by the trivial rounding:

�̄� = 𝑟𝑜𝑢𝑛𝑑(𝑥/𝑞),

where 𝑥 is the input value and 𝑞 is a quantization constant that controls the
resolution. The values can be reconstructed up to a specified precision by
simply multiplying by the quantization constant:

�̂� = 𝑞 · �̄�.

In our scenario, the quantization is usually applied to point coordinates or to
data derived from them, which are usually real values represented in a single
resp. double-precision floating-point number format requiring 32 (resp. 64)
bits for storage in an uncompressed form. Assuming there are 𝑛 possible
values after quantization, we can already reduce the data rate by assign-
ing each of the values a unique integer value represented by ⌈log2 𝑛⌉ bits.
However, we may achieve better results by combining the quantization with
other data-reduction techniques.

At the end of the compression pipeline, there is usually a lossless en-
coding method, which attempts to exploit an underlying model of encoded
symbols. In terms of mesh compression, most methods use entropy coding
(e.g., arithmetic or Huffman coding), which can adjust the number of bits
representing each symbol according to its probability of occurrence in the
data without considering the actual context. The entropy coding method
attempts to obtain an average number of bits per encoded symbol that is
close to its optimal lower bound – Shannon’s entropy:

𝐻 = −
∑︁
𝑥∈𝑆

𝑝(𝑥) log2 𝑝(𝑥), (1.1)

where 𝑆 is a set of all possible symbols and 𝑝(𝑥) is a probability of occurence
of the symbol 𝑥. Less often, a dictionary-based coding method (e.g. LZW)
is used. Such methods attempt to exploit the context of data by searching
for recurring patterns of symbols and encoding a reference to a dictionary
of patterns constructed during encoding instead.

Compressed data contains lot of redundant information that can be sim-
ply deduced from the coherence of values. A powerful tool for removing such
redundancy is a prediction. Instead of encoding the original value, the en-
coder can predict it using the information available from already processed
data (which is also available during the decompression) and encode only the
difference. Prediction itself is a lossless process, since it does not reduce the
number of encoded values, however, when combined with entropic coding, it
may result in a decreased bit rate. In terms of mesh sequence compression,
we distinguish two types of prediction: intra- and inter-based. Intra-based
prediction exploits the coherence in a single frame, while inter-based predic-
tion exploits the temporal coherence between frames. The majority of com-
pression methods we will discuss use both prediction types to some extent.

4

We will omit the description of intra only methods, which are equivalent to
applying a static mesh compression (a well-studied field) to each separate
frame.

From Eq. 1.1, it follows that the higher the probability of the encoded
symbol, the lower the number of bits required to represent its single instance
in entropy coding. Similarly to prediction, one can use the information ob-
tained from already-processed values to reduce the data rate using context
modeling. Instead of the overall probability of symbol 𝑝(𝑥), a conditional
probability 𝑝(𝑥|𝑐𝑡𝑥), given a context 𝑐𝑡𝑥, is utilized by the coder. If 𝑐𝑡𝑥 is
chosen reasonably well, the conditional probability of the correct encoded
symbol should be higher. A context can be deduced from various informa-
tion, e.g., the previously encoded value.

Another powerful tool is dimensionality reduction. For a certain vector
v ∈ R𝑛 , the goal is to obtain a transformed vector v̂ ∈ 𝒳 in a certain
subspace 𝒳 ⊂ R𝑛 of dimension 𝑘 = 𝑑𝑖𝑚(𝒳), 𝑘 ≪ 𝑛, which we can represent
more compactly. While there is no limitation on how this is achieved, due
to its simplicity, most approaches are based on orthogonal projection – for
a certain vector u, the closest vector u𝑤 in the direction of unit vector w is
computed as follows:

u𝑤 = (u · w)w.

Given a set of orthonormal vectors 𝐵𝒳 = {x1, . . . x𝑘} forming a basis of 𝒳 ,
the v̂ can be expressed as their linear combination:

v̂ =
𝑘∑︁

𝑖=1
𝛼𝑖x𝑖, (1.2)

where 𝛼𝑖 = v · x𝑖. It can be shown that v̂ = arg minw∈𝒳 ‖v − w‖2 . While v̂
is still of size 𝑛, we can actually encode a vector a = (𝛼1, . . . 𝛼𝑘)𝑇 , a ∈ R𝑘.
The v̂ can be fully recovered using Eq. 1.2, as long as both the encoder
and the decoder have access to 𝐵𝒳 . Unless v ∈ 𝒳 , the transformation is
lossy. The process allows for progressive coding by incrementally extending
the basis and encoding additional projection coefficients. The most crucial
part is selecting the appropriate 𝐵𝒳 , with the objective being to achieve the
lowest possible data rate while discarding the information that is less likely
to be detected as missing.

One way to find 𝐵𝒳 is using Principal Component Analysis (PCA),
which, for a set of vectors in R𝑛 with centroid at origin, finds an ordered
orthonormal basis of the given space, where each basis vector represents a di-
rection with the most variance in data if the information present in previous
basis vectors was removed. This is achieved by singular value decomposition
(SVD) of a matrix with encoded vectors as rows. The PCA requires all the
encoded vectors to be known, and thus the basis cannot be constructed by
the decoder. However, for a fairly coherent set of encoded vectors, the ma-
jority of the information is present in the first few principal directions, and a

5

significant reduction of the number of encoded values can be achieved even
when the basis vectors are encoded alongside the projection coefficients.

If the encoded vector v ∈ R𝑛 represents a signal over a certain discrete
domain (e.g., 𝑛 vertices of a mesh or a graph), 𝐵𝒳 can be chosen as a subset
of frequency basis. For a relatively smooth signal, most of the information
is contained in lower frequencies, and the high frequency information can
be discarded without being noticeable. The dimensionality reduction in this
case is equivalent to the Discrete Fourier Transform (the projection) fol-
lowed by a low-pass filter (selection of certain elements of frequency basis to
form the 𝐵𝒳). One can exploit the fact that in the continuous case, the sine
and cosine functions forming the frequency basis are eigenfunctions of the
Laplace operator and find the 𝐵𝒳 as a set of eigenvectors of the Laplacian
matrix L corresponding to a certain discretization of the Laplace operator
over the specified domain, as long as the L is real, symmetric, and positive
semi-definite. For this purpose, on graphs, the compression methods use a
graph Laplacian matrix. On meshes, this matrix corresponds to a discretiza-
tion mostly referred to as Kirchhoff’s (the connection between meshes and
graphs will be explained in Section 2.1). Additionally, the Cotan discretiza-
tion [81] can be used. In such a case, the 𝐵𝒳 is referred to as a Manifold
Harmonic Basis. However, since Cotan discretization requires mesh geom-
etry to construct 𝐿, some reference geometry must be known, or it can be
only used to compress other mesh properties. Full eigendecomposition of L is
not required since we are interested in only a selected subset of eigenvectors.

1.1.2 Performance Evaluation
Efficiency of lossless compression is quantified by the resulting data size.
Lossy compression, however, requires relating the size to the amount of in-
troduced distortion. In the rest of this section, we will describe how such
measures are evaluated in terms of meshes.

While the overall size of the compressed data is the simplest measure, it
is much more difficult to relate the results between different input datasets.
Much more prominent is data rate, which measures the number of bits re-
quired to represent a certain element of data, e.g., a vertex or a face. Another
popular measure is the compression ratio, the relationship between the sizes
of the original and compressed data.

Measuring the distortion that is present in compressed meshes is a much
more difficult problem. Depending on the purpose of the data, one must
select a correct metric. Additionally, the performance of various compression
methods differs depending on the metrics used in evaluation.

Technical applications require an upper bound on error in absolute co-
ordinates, which is usually determined from the precision of the technology
processing the data (e.g., in manufacturing). These objectives require mech-
anistic error metrics such as Mean Squared Error (MSE) and Peak Signal to

6

Noise Ratio (PSNR), which relate corresponding vertex positions in original
and distorted meshes. When the isomorphism between meshes is lost, one can
use the Haussdorf distance or Chamfer distance. These are, however, much
more expensive to evaluate, because they require frequent closest point query
evaluation. An example of a static mesh compression method that performs
well under mechanistic criteria is the Parallelogram prediction [95].

In other areas (e.g., in entertainment or marketing), visual similarity is
much more important. To this end, it is better to use perceptual metrics.
These metrics are shown to better correlate with human perception of dis-
tortion in data by comparing their results to various user studies. Examples
of such metrics are MSDM2 [57], DAME [102], FMPD [107], TPDM [94]
and TPDMSP [28], to name a few. For more information on this topic, we
refer the reader to the survey by Corsini et al. [18]. An example of a static
mesh compression method that performs well under perceptual criteria is
High-pass coding [86].

An additional concern arises in the dynamic setting, where a sequence
of meshes is considered. Even for a small distortion, a large discrepancy
between the frames can occur. As an example of such behavior, Corsini
et al. [18] discuss a case in which one frame of the animation is distorted
by applying a sine function, while the next frame is distorted by a cosine
function. Although this distortion might not be visible when examining the
frames separately, it results in a flickering effect, which is easily detectable
when the frames are examined in fast succession. Quite a few methods for
compressing mesh sequences use static metrics applied on separate frames
even though such an approach cannot detect this behavior. This is because no
temporal metric has been proposed for general mesh sequences. Only a few
temporal metrics are designed for dynamic meshes, a special class of mesh
sequences with a common connectivity (e.g. KG error [50] and STED [104]).

0 1 2 3 4 5 6

0.025

0.050

0.075

0.100

0.125

0.150

Rate [bpv]

E
rr

or

Method A

Method B

Method C

Figure 1.3: An example of an RD curve. While Method A performs better
than Method B at higher data rates, it is unclear which method has a better
overall performance. On the other hand, Method C clearly outperforms other
methods at all data rates.

7

Not only do various methods perform differently under various metrics,
but their performance also differs for different data rates. For a more thor-
ough evaluation of performance, Rate-Distortion (RD) curves are used. They
show how the change in data rate influences the distortion in a selected
metric. Figure 1.3 shows an example comparison of multiple compression
methods using RD curves. It is trivial to obtain an RD curve for a method
that is controlled by a single parameter directly influencing the data rate
(e.g., the quantization constant). A more complex configuration, however,
requires an optimization process (e.g., [100]) to find a curve that actually
represents the best performance achievable by the method.

8

Chapter 2

Mesh and Point Cloud
Representations of Dynamic
Surfaces

Data considered in this thesis is assumed to represent a continuously moving
two-dimensional, smooth manifold surface 𝒮 embedded in R3 and sampled
at discrete points in time. A representation ℱ𝑖 (resp. ℳ𝑖 for mesh, 𝒫𝑖 for
point cloud) of each sampled time point 𝑡𝑖 will be referred to as a frame.
The continuous movement implies temporal coherence in frames in the sense
that two consecutive frames are often visually nearly indistinguishable.

The temporal coherence between the frames can be described by a cor-
respondence function 𝑓𝑖𝑗 : ℱ𝑖 ↦→ ℱ𝑗, which for any point x ∈ ℱ𝑖 assigns a
corresponding point 𝑓𝑖𝑗(x) ∈ ℱ𝑗 if it exists. Correspondences not only can be
used for inter-frame prediction, but also allow temporally coherent mapping
of values on the surfaces, e.g., texture [12].

There are multiple criteria to consider when choosing an appropriate
surface representation. The most important is representation versatility. We
are interested not only in what classes of surfaces can be represented, but
also at what cost. Other things to consider are obtaining, rendering, and
processing complexity. Since this thesis studies the representations from the
compression perspective, we will also list some of the properties specific for
this problem.

2.1 Triangle Mesh Sequences
Triangle mesh is currently considered the most popular representation of
3D surfaces due to its simplicity, approximation quality, and native sup-
port on graphics cards. It is a piecewise planar surface usually defined as
ℳ = (𝑉, 𝑇), where 𝑉 is a set of vertices, and 𝑇 is a set of triangles that
connect them. A vertex is usually represented by its geometry (position)

9

and properties (normal, color, texture coordinate, etc.), while a triangle is
represented as an ordered triplet of indices, and the order of vertices induces
its orientation (the direction of a normal). Considering a set of edges 𝐸 that
form all the triangles in 𝑇 , we can also interpret the mesh as an undirected
graph 𝐺 = (𝑉, 𝐸). This allows application of many techniques from graph
theory. When talking about mesh geometry, we will refer to the positions
of vertices, while connectivity will refer to the combinatorial information
(vertex indices, triangles, or edges). For the sake of simplicity, we will focus
only on orientable manifold meshes, i.e., meshes in which the orientation of
triangles can be unified, vertices coincide only with a single triangle fan, and
no edge is connected to more than two triangles. Nevertheless, some of the
listed related work in Section 4 did not make such assumptions.

2.1.1 Dynamic Mesh
Dynamic meshes (DMs) are a special class of triangle mesh sequences. The
distinguishing property of a dynamic mesh is a common connectivity 𝑇
shared by all frames:

𝑇0 = 𝑇1 = . . . = 𝑇𝑛−1 = 𝑇,

where 𝑛 is the number of frames. This also indicates that the number of
vertices and their order are constant through time. Only the geometry and
properties change between frames, and thus the connectivity needs to be
encoded only once.

One of the main advantages of a dynamic mesh is that the vertex corre-
spondences are explicitly coded in the connectivity:

∀𝑣𝑘 ∈ 𝑉 : 𝑓𝑖𝑗(x𝑖
𝑘) = x𝑗

𝑘

for any pair of frames (𝑖, 𝑗), where x𝑖
𝑘 is the position of 𝑘-th vertex in the

𝑖-th frame. The correspondence function for any point x𝑖 ∈ ℳ𝑖 can be
directly generalized from vertex correspondences using barycentric coordi-
nates (𝜆𝑎, 𝜆𝑏, 𝜆𝑐) : x𝑖 = 𝜆𝑎x𝑖

𝑎 + 𝜆𝑏x𝑖
𝑏 + 𝜆𝑐x𝑖

𝑐 in triangle 𝑡 = (𝑣𝑎, 𝑣𝑏, 𝑣𝑐), which
contains 𝑥:

𝑓𝑖𝑗(x𝑖) = 𝜆𝑎𝑓𝑖𝑗(x𝑖
𝑎) + 𝜆𝑏𝑓𝑖𝑗(x𝑖

𝑏) + 𝜆𝑐𝑓𝑖𝑗(x𝑖
𝑐) = 𝜆𝑎x𝑗

𝑎 + 𝜆𝑏x𝑗
𝑏 + 𝜆𝑐x𝑗

𝑐.

For dynamic meshes, the function 𝑓𝑖𝑗 is always an isomorphism. Instead of
treating the geometry of each frame separately by assigning each vertex 𝑣𝑘

a position x𝑖
𝑘 ∈ R3, a static mesh ℳ = (𝑉, 𝑇) can be considered, where for

each vertex 𝑣𝑘 the geometry is represented as a trajectory t𝑘 ∈ R3𝑛. This al-
lows for global coding approaches (in terms of time), e.g., PCA coding [103].

The simplest dynamic meshes are usually synthetic data obtained by
continuously deforming a certain shape using, for example, skinning. It is,

10

however, often more efficient to encode the deformation parameters than to
encode the resulting mesh sequence. More complex sequences are obtained
by surface tracking or by 4D reconstruction (e.g., [91, 105]); however, most
methods require a prior mathematical model of the data as an input (e.g.,
template shape), and the whole process is quite complex and prone to errors.

Visualizing a dynamic mesh usually consists of rendering the first frame
and then updating only the geometry, which allows for a higher rendering
frequency. While simple and easy to work with, the dynamic mesh lacks
the representation versatility. Not only is the time-evolving topology not
allowed, but since the connectivity complexity directly influences the ability
to represent fine details, any fine detail must also be accounted for even if it
appears only in a single frame.

2.1.2 Time-Varying Mesh
Time-varying mesh (TVM) is any mesh sequence in which the number of
vertices and/or connectivity changes over time. While the temporal coher-
ence of the connectivity might be present (e.g., in synthetic data), it cannot
be generally assumed. Thus, most of the time, it must be encoded for each
frame separately.

Not only are the correspondences of time-varying mesh frames unable
to be directly derived from the connectivity, but they are also difficult to
estimate. This is caused by the fact that the bijective property of the cor-
respondence function is lost with the merging and separation of parts (see
Figure 2.1). This renders exploiting the temporal coherence a much more
difficult problem.

Figure 2.1: Example of bijectivity loss of correspondences. There are no
correspondences for vertices at the back of the arm in the highlighted area.

11

The earliest time-varying meshes were similar to dynamic meshes in the
sense that the connectivity changed only by simple updates (e.g., by subdi-
vision, contraction, or vertex removal). More importantly, TVMs have been
used to represent dynamic volumetric environments (e.g., fluid simulations).
Such data is usually obtained by extracting the iso-surface of each frame from
a certain implicit function. In recent years, improvements in the performance
of capturing systems allowed real-time surface capture of dynamic scenes.
Such systems can output a large number of mesh frames; however, these con-
tain a considerable amount of noise and self-contact. This leads to frequent
spurious topology changes, even for surfaces that originally showed constant
topology. While in some scenarios such noisy TVMs could be converted to a
dynamic mesh with great difficulty, often it is much more preferable to work
directly with the time-varying mesh data.

Visualizing a TVM requires rendering a different mesh in each separate
frame, which made it almost impossible to render at satisfying frame rates
on past consumer-grade devices. As the computer technology advances, this
is becoming less of an issue and the advantages of the TVMs prevail. The
connectivity can adapt to accommodate any detail in the data at any time,
allowing an increase in the complexity of the mesh frame only when it is
necessary.

2.2 Dynamic Point Cloud
A point cloud is a set of points 𝒫 = {x0, . . . x𝑚−1} , x𝑘 ∈ R3, sampled from
the represented surface, where 𝑚 is the number of points. Similarly to a
triangle mesh vertex, a point can be represented by its geometry and at-
tributes. In the case of point clouds, the literature does not consider any
special cases of sequences in which only the positions of points change over
time, and any point cloud sequence is usually referred to as a dynamic point
cloud. From the compression standpoint, a point cloud frame 𝒫𝑖 is equiv-
alent to a mesh ℳ𝑖 = (𝑉𝑖, ∅) with empty set of triangles. For this reason,
a dynamic point cloud compression combined with connectivity coding can
be considered a method for compression of time-varying meshes and, con-
versely, a TVM compression method that ignores the connectivity data can
be considered a method for compression of dynamic point clouds.

A correspondence function of point clouds can be defined only on the
points since the point cloud is discrete and there is no surface representation
between the points. Similarly to TVMs, correspondences on point clouds are
generally not bijective and are difficult to estimate.

Dynamic point clouds have also benefited from recent improvements in
capturing systems. Compared to time-varying meshes, they can be obtained
at a much lower cost. A special type of dynamic point cloud is obtained using
LiDAR (Light Detection and Ranging) sensors. Such sensors are usually

12

mounted on a moving vehicle (e.g., a car or drone) and emit light rays in
rotating motion while measuring the distance from the point where the ray
hits the scanned environment. LiDAR data is commonly used for navigating
autonomous vehicles. Unlike the general point clouds, the frames are usually
also accompanied by additional measurements (e.g., accelerometer data).
While it is possible to treat the LiDAR point cloud as an image, in which
the position of each pixel represents cylindrical coordinates and the value
represents the distance, several compression methods treat it as a point
cloud, while still using its specific properties.

Rendering dynamic point clouds is easier than rendering TVMs, since no
connectivity has to be passed to the GPU. The points are usually rendered as
a certain primitive, e.g., a cube, a sphere, or a disc. Selecting an appropriate
scale for the rendered primitives given the current viewpoint should result
in the illusion of a smooth surface.

Figure 2.2: Advantages of the mesh representation over point clouds. Left:
Separation of geodetically distant vertices in near proximity in space. Right:
Highly non-uniform representation. Illustrations are courtesy of Hanocka
et al. [41].

The main advantage of the point cloud representation over a triangle
mesh is its simplicity, which allows storage and processing of even large
models with points numbered in the millions. On the other hand, since it
lacks information about connectivity, obtaining the direct neighborhood of
a point must be done by querying positions in space, which is much more
difficult than just examining the edges in the case of a triangle mesh, and the
result might contain points that are in near proximity in space, but quite far
apart in terms of geodetic distance. Additionally, the mesh allows for a highly
non-uniform representation in which planar regions with a lack of detail can
be represented by a small number of large triangles and, conversely, regions
with lots of detail can be represented by a large number of small triangles. In
the case of point clouds, highly non-uniform sampling might result in visible

13

holes in a surface during rendering. Both of these advantages of the triangle
mesh are shown in Figure 2.2.

2.2.1 Voxelization
A majority of dynamic point cloud compression methods consider so-called
voxelized point clouds. Voxelization is a process in which the point cloud is
stored in a cubic grid of size 2𝑑×2𝑑×2𝑑, where 𝑑 is a parameter controlling the
level of detail. Each cell is marked occupied or unoccupied, based on whether
it contains any of the input points. All the points inside an occupied grid cell
are discarded and replaced by the centroid of the cell. An octree is usually
built from the binary occupancy data (see Figure 2.3), since it allows more
efficient storage and progressive coding.

Figure 2.3: Different levels of a single octree representing a voxelized point
cloud. Source: [48]

Voxelization is a process similar to quantization in the sense that the
real valued coordinates of points are transformed to grid indices. However,
it also alters the number of points, compromising the one-to-one correspon-
dence between the original and voxelized data. This is why certain dynamic
voxelized point cloud compression methods claim to be lossless – the vox-
elized data already has reduced precision.

14

Chapter 3

Dynamic Mesh Compression

Due to all the advantages of the dynamic mesh representation listed in Sec-
tion 2.1.1, it is possible to design highly efficient compression methods us-
ing both spatial and temporal prediction. This is why the development of
dynamic mesh compression was so divergent from the development of time-
varying mesh compression. As of 2021, this field was already considered
well-studied. Since the main scope of this thesis is the TVM compression,
we will describe only the most recent dynamic mesh compression methods.
For more details about this field, we refer the reader to the 3D mesh com-
pression survey by Maglo et al. [69].

3.1 High-Fidelity Compression of Dynamic
Meshes with Fine Details Using Piece-
wise Manifold Harmonic Bases

The method proposed by Chen et al. [17] is based on the assumption that
since the dynamic mesh is usually created by deforming a static mesh over
time, the frames with similar poses should have similar fine details.

The method represents the positions of vertices in each frame by a single
vector f𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛, 𝑦𝑖,1, . . . , 𝑦𝑖,𝑛, 𝑧𝑖,1, . . . , 𝑧𝑖,𝑛)𝑇 , where 𝑖 is the index of
the frame and 𝑛 is the number of vertices. The frames are clustered using
a k-medoids algorithm based on the Manhattan norm. Unlike in k-means
clustering, the k-medoids algorithm selects a center frame (medoid) that is
closest to all frames in the cluster instead of to the mean cluster frame. The
medoids are then selected as key frames and encoded using a state-of-the-
art static mesh compression algorithm. For each frame in the cluster, the
low-frequency information is encoded using dimensionality reduction with
manifold harmonic basis [96] constructed from the key frame geometry. The
projection coefficients are further compressed using linear predictive coding.
Finally, the fine detail (high-frequency information) is introduced by detail

15

transfer from the key frame (see Figure 3.1).

Figure 3.1: Detail transfer from the key-frame. Source: [17]

3.2 Motion-Aware Compression and Trans-
mission of Mesh Animation Sequences

The method introduced by Yang et al. [110] is also based on clustering of
frames; however, it does not consider similarity of shape, but of motion.

An overview of the method is shown in Figure 3.2. The method first
represents the movement of each vertex as a spatial curve it traces through
time. Curvature 𝜅 and torsion 𝜏 of the curve are estimated using finite
differences for points on the curve corresponding to all the frames. The
method then proceeds with k-means clustering representing the frame as a
vector f𝑖 = (𝜅𝑖,1, 𝜏𝑖,1, . . . , 𝜅𝑖,𝑛, 𝜏𝑖,𝑛)𝑇 , where 𝑖 is the index of the frame and
𝑛 is the number of vertices, using Euclidean distance. Each cluster is then
spatially segmented by applying the k-means method to vertices, considering
the average position of the vertex through all the frames in the cluster, and
curvature and torsion estimations in such frames. Connectivity, clustering,
and spatial segmentation data is encoded. To compress the geometry of each
segment in each frame cluster, Graph Fourier Transform (GFT) is used.
After reducing the number of projection coefficients, which removes high-
frequency information, the remaining coefficients are encoded using SPIHT
coding [84].

16

Figure 3.2: Overview of the compression process of [110]. Source: [110]

3.3 3D Mesh Animation Compression Based
on Adaptive Spatio-temporal Segmenta-
tion

Contrary to [17] and [110], Luo et al. [65–67] proposed a more local approach.
The frames are processed sequentially. Initially, the method attempts to find
a boundary frame index 𝑏1 in a sequence 𝑆 of the first 𝛾𝑖𝑛𝑖𝑡 unprocessed
frames, which separates the 𝑆 into two subsequences with distinctive dy-
namic behavior. If 𝑏1 = 𝛾𝑖𝑛𝑖𝑡, no distinctive behavior was detected and 𝑆
is passed directly into the encoding stage (Fig. 3.3 (I)). Otherwise a spa-
tial segmentation follows. The method measures the maximal edge length
change and a certain percentage of the least deforming edges when modeling
the measured values as exponential probability distribution is selected and
all the vertices connected to such edges are labeled as rigid. Clusters are
created by merging topologically connected rigid vertices. Connected clus-
ters with similar trajectories are merged together until a specified number of
vertex groups is achieved. Then, the initial temporal boundary is adjusted
by examining the next 𝛾𝑚𝑎𝑥 frames. For each segment separately, the PCA
is applied to its trajectories and the number of the most significant principal
components 𝑛 is obtained by thresholding the corresponding eigenvalues of

17

the covariance matrix used to obtain the components. The method grad-
ually increments the temporal boundary and examines the recomputed 𝑛
until it changes. The largest frame index 𝑏2, where 𝑛 does not change, is the
final temporal boundary of the segment. Segmentation data and geometry
up to frame 𝑏2 are encoded. If 𝑏2 = 𝛾𝑚𝑎𝑥, no temporal segmentation was
detected in the examined frames (Fig. 3.3 (III)). Thus, the spatial segmen-
tation is reused for temporal segmentation on the next 𝛾𝑚𝑎𝑥 frames (Fig. 3.3
(IV)). Otherwise (Fig. 3.3 (II)), the spatial segmentation is discarded and
the method continues to the initial temporal cut of the next 𝛾𝑖𝑛𝑖𝑡 frames.

Figure 3.3: Four different classes of encoded subsequences. (I) directly
encoded, (II) temporal boundary detected, (III) temporal boundary not
detected, (IV) spatial segmentation reused from previous subsequence.
Source: [66]

The geometry of each spatio-temporal segment is compressed using pro-
jection onto a reduced PCA basis. In [65], the PCA data required for the
reconstruction (basis, projection coefficients, and average trajectory) was
encoded directly. In [66], such data was further compressed using lossless
zLib compression. Most recently [67], the authors proposed a more efficient
strategy based on reshaping. Once all the spatio-temporal segments are ob-
tained, they are clustered using k-means clustering. To obtain the vector
representations required for clustering, for each segment, a histogram of a
fixed number of bins is constructed over its coded values. The earth mover’s
distance [83] 𝑑𝑖,𝑗 is computed for each pair of histograms (𝐻𝑖, 𝐻𝑗) and the
vector representation of the 𝑘-th segment is s𝑘 = (𝑑𝑘,1, . . . , 𝑑𝑘,𝑁)𝑇 , where 𝑁
is the number of all segments. Each PCA cluster is processed separately by
combining PCA data for all of its segments in a 2D matrix, which is then
compressed. Although the authors used zLib compression which does not
fully use the structure of 2D data, image compression can also be used.

3.4 Summary of Dynamic Mesh Compres-
sion

Most modern dynamic mesh compression methods are based on global ap-
proaches, mainly the dimensionality reduction. The methods presented in

18

this chapter usually introduced only an incremental improvement in data
rates by grouping similar data to reduce the number of dimensions required
to store the information to be preserved. Nevertheless, it is actually difficult
to decrease the average data rate significantly since the reconstructed data
already looks indistinguishable from the original at ranges from 2 to 5 bits
per vertex in a single frame, depending on the complexity of the input data.
For this reason, we do not believe there will be any further breakthrough in
this area in the near future.

19

Chapter 4

Time-Varying Mesh
Compression

An overview of all the time-varying mesh compression methods presented
in this chapter and their classifications is shown in Table 4.1. The methods
can be classified by the type of inter-prediction they utilize. The simplest
approaches, based on motion estimation (ME), usually align two consecu-
tive frames and predict the encoded geometry using their proximity. Another
simple approach is to construct a spatial data structure from the vertices,
e.g., a grid or octree, and inter-predict the structure (Structural). These two
approaches usually make few to no assumptions about the input data. To
benefit from the already mature fields of image and video compression, the
projection-based methods transform the encoded data into the 2D domain
(Projection). The last class of methods uses a mathematical model repre-
senting the sequence, e.g., a skeleton or tracked template (Model).

Table 4.1: Overview of all methods presented in this chapter in the order of
corresponding sections. Conn. denotes whether the method considers con-
nectivity coding; Iso. denotes whether the method preserves the one-to-one
mapping between encoded and decoded vertices. *[40] does not preserve the
one-to-one mapping in special cases.

Section Method Type Input data Conn. Iso.
4.1 Gupta et al. [37] ME synthetic yes yes
4.2 Yang et al. [111] Model general yes no
4.3 Han et al. [39] ME/Structural general no yes
4.4 Han et al. [40] Structural general no no*

4.5 Yamasaki – Aizawa [109] ME general yes yes
4.6 Nakagawa et al. [76] Model human yes no
4.7 Doumanoglou et al. [23] Model human yes opt.
4.8 Hou et al. [42] Projection const. top. yes no
4.9 Faramarzi et al. [27] Projection general yes yes

The methods also differ in the types of input data they are able to handle.

20

While the majority of methods handle general TVMs, some focus on more
specific input. For example, [37] assumes synthetic data created by modeling
software (synthetic), in which the connectivity changes with simple updates.
Other methods expect the input data to represent a human person (human),
and therefore data can be effectively represented by various mathematical
models. Lastly, the method presented in [42] is limited only to TVMs with
constant topology (const. top.).

4.1 Registration and Partitioning-Based Com-
pression of 3-D Dynamic Data

To the best of our knowledge, the earliest work in the field of time-varying
mesh compression was done by Gupta et al. [37]. They assumed that the
movement of the compressed model was piece-wise rigid. Their algorithm di-
vides the model into segments, which are then matched between two consec-
utive frames using the iterative closest point (ICP) registration algorithm [9].
The registration process yields a rigid transformation for each segment, map-
ping its positions from the previous to the current frame with some error
introduced. Depending on the amount of error, the segments are then di-
vided into three groups. The first group can be sufficiently described by the
rigid transform. The second group requires residuals to be encoded to cor-
rect the encoded positions. The third group cannot be described by the rigid
transform and thus must be encoded independently.

To encode the connectivity of a frame, correspondences found by align-
ment with segments of the previous frame are used to find vertices that have
been added or deleted. For deleted vertices, only their index is encoded.
For added vertices, the algorithm encodes their closest neighbor. Then, a
Delaunay triangulation is performed to obtain a connectivity prediction in
changed parts of the mesh. To correct the prediction, the following data
needs to be encoded: indices of triangles that are to be deleted and indices
of all vertices of added triangles.

Figure 4.1: Example of synthetic time-varying mesh data. An adaptive re-
finement approach is used to represent more complex facial expressions.
Source: [37]

21

The algorithm assumes that the compressed data is synthetic (i.e., cre-
ated by a software; see Figure 4.1), limiting the change in connectivity only
to the operation of insertion or deletion of vertices. Nowadays, this is a very
special case of a time-varying triangle mesh. For real data (3D scans), this
connectivity coding is very inefficient and highly impractical.

4.2 Semi-Regular Representation and Pro-
gressive Compression of 3-D Dynamic
Mesh Sequences

The method proposed by Yang et al. [111] is based on remeshing the sequence
to obtain a semi-regular structure. First, the first frame of the sequence is
simplified using the quadric error metric [35], resulting in a so-called base
mesh. Vertices of the original mesh are then mapped on the base mesh, and
by applying the butterfly subdivision scheme, multiple levels of detail are
created.

The base mesh is then gradually transformed to match each frame. This
is done by first simplifying the current frame to obtain its base mesh. The
base meshes are then aligned using rigid ICP [9]. Then, alignment-driven seg-
mentation is done so that if an error for a single segment exceeds a threshold,
the segment is split and an alignment is done on the split regions. If there is
a sufficiently small segment next to a large one, these are merged together.
Subsequently, a vertex-wise motion refinement for each subdivision level of
the previous frame is done by minimizing energy consisting of three parts:
change of spring energy, change of curvature and normals, and matching
itself.

At each subdivision level, to obtain a prediction of a currently encoded
vertex, a butterfly subdivision is done on the lower level of the current frame
and the motion-extrapolated previous frame. The residuals are then encoded
using wavelet compression.

The method is progressive because first, only the base mesh data is trans-
mitted, and the decompressed result grows more precise with each subdivi-
sion step. However, the resulting sequence is no longer a time-varying mesh.
Also, issues might occur when the frames are not complete and thus not
every vertex has a correspondence with a vertex in the previous frame.

4.3 Time-Varying Mesh Compression Using
an Extended Block Matching Algorithm

Han et al. [39] proposed a method based on the block matching algorithm
(BMA) widely used in video compression [47]. The method divides the

22

bounding box of a frame into cubic blocks of a specified size. The surface
in each block is then translated for its centroid to lie at the center of the
block. For each block, a corresponding block in the previous frame is found
by matching weighted average normal vectors of the surfaces. Residuals (so-
called motion vectors) are then calculated as displacement vectors between
the closest points between the two blocks (see Figure 4.2). Such residuals
are then quantized and transformed in the frequency domain.

Figure 4.2: (a) Motion vectors estimated by the EBMA. (b) Detail for the
rectangular regions. Source: [39]

The method is still quite limited, as it requires the encoded TVM to
consist of only a single connected component (regardless of the topology of
the component). The method also assumes the connectivity of each frame
is known to both the coder and decoder and does not consider such data
when measuring bit rates. It turns out, however, that such data should be
considered as well since the connectivity might actually take a large portion
of the complete encoded data size. Additionally, to restore the position of a
vertex, the ID of a corresponding vertex needs to be encoded as well. This
is unfortunately not apparent from the paper since authors compared their
method only to a slightly degraded version of the method itself in spite of
the existence of many static compression algorithms at that time.

4.4 Geometry Compression for Time-Varying
Meshes Using Coarse and Fine Levels of
Quantization and Run-Length Encoding

As a follow-up to their work described in the previous section, Han et al. [40]
proposed another method based on domain subdivision into blocks. The
subdivision occurs on two levels. The coarse level is used to indicate which
parts of the domain contain surface and which do not (see Figure 4.3). This

23

is represented by a binary function. To reduce the temporal redundancy, an
XOR operation is performed on functions of consecutive frames. The frames
must be aligned beforehand to further improve the results. Since the result
of the XOR operation indicates which blocks changed their values between
frames, it is expected that the number of these blocks is small relative to
the number of all blocks, and thus run-length coding of a raster scan is
performed to reduce bit rate. Each block containing a surface is then further
divided into sub-blocks. The edge length of each sub-block should be smaller
than the length of the shortest edge in the TVM to prevent singularities.
A binary function is used to represent which sub-blocks contain vertices.
Again, raster scanning is performed to obtain a sequence of blocks for which
the values of the given binary function are encoded using run-length coding.

Figure 4.3: Block splitting of the TVM. There is visible temporal coherence
of occupied blocks between consecutive frames. Source: [40]

This method does not consider connectivity data either. Although it
is not explicitly stated, the approach changes vertex ordering, and some
vertices might also be deleted in the fine-level quantization process. This
makes the connectivity coding even more difficult. However, if the vertex
order does not matter, the method can also be used for compression of
dynamic point clouds. Although a comparison with [39] was done showing
great improvements, the results still cannot be related to any static mesh
compression approach.

4.5 Patch-Based Compression for Time-Varying
Meshes

The first method that accounted for connectivity data was proposed by
Yamasaki – Aizawa [109]. They proposed two approaches, inter- and intra-
frame. Both approaches divide each frame into patches of almost constant

24

surface area. PCA is then applied to each patch and it is transformed so
that its centroid lies at the origin and its principal components are aligned
with the coordinate system.

In the intra-frame approach, the patch is then compressed using spectral
compression [49]. In the inter-frame approach, the corresponding aligned
patch from previous frame which minimizes vertex-wise Chamfer distances is
found. Instead of encoding IDs of corresponding vertices, for each vertex only
a certain number of correspondences is encoded, which results in reordering.
Then, the corresponding vertex is used as a prediction and the residuals are
encoded using vector quantization.

Although they did not propose any specific method for connectivity en-
coding, they were the first to admit that it significantly influences the re-
sulting bitrate. The method was compared to both [39] and [40], with con-
nectivity data omitted. The authors attempted to make a comparison with
static mesh compression methods, which, however, were not suited for the
data used in the experiments (non-manifold meshes with irregularities and
noise that were produced by 3D scanning techniques).

4.6 Deformation-Based Data Reduction of
Time-Varying Meshes for Displaying on
Mobile Terminals

Nakagawa et al. [68, 76] proposed a skeleton-based compression method mo-
tivated by the limited processing and rendering capabilities of smart mobile
devices at the time of publishing their work. To be able to decode and ren-
der time-varying triangle meshes at high enough rates using such devices
required a drastic data reduction and low computational complexity on the
decoder side. The method is a direct continuation of their previous work
described in [68]. Since the main idea behind both approaches is identical,
we will describe only the latter approach.

The overview of the method is shown in Figure 4.4. First, the skeletal in-
formation is extracted for each frame. After that, all the frames are simplified
using a modified QSLIM algorithm [35], which preserves the important parts
of the surface, such as the hands, face, and surroundings of skeletal joints. A
representing frame (e.g., first frame) is then propagated in space using skele-
tal information to match the subsequent frames, creating a mesh sequence
with constant connectivity described only by the representing frame and its
deformation, while the original sequence is discarded. A separate reference
triangle mesh with precomputed skeletal information is available to both
the coder and the decoder and is used to further reduce the data rate by
transforming it to match the currently coded frame. For each point on the
frame, a corresponding point on the reference mesh is found by considering

25

the relative position of the point to the skeleton and is used as a prediction.
Only the skeletal transformations and correction vectors are encoded.

Figure 4.4: Overview of the compression method proposed by Nakagawa
et al. Source: [76]

The method can be used only for human models, and discarding the
original data causes loss of the one-to-one correspondence between encoded
and decoded vertices. Also, the method depends on the quality of the skele-
tal information found. To address this, the authors created an interactive
application in which the user could modify this information to obtain bet-
ter results. The method achieved high compression rates and low decoding
complexity, which allowed it to be performed on mobile devices at the time.
Since then, however, the computational and rendering capabilities of mobile
devices have increased significantly and these obstacles are of no concern.
The increased resolution of the mobile displaying devices also makes the high
distortion of the decompressed data more apparent.

4.7 Toward Real-Time and Efficient Compres-
sion of Human Time-Varying Meshes

The method by Doumanoglou et al. [23] was motivated by the needs of tele-
immersion systems. Its main idea was to exploit the skeletal information
extracted in real time by the 3D scanning tools used to produce human
time-varying meshes. They introduced three types of frames that should be
treated differently: I (intra-coded), P (predicted), and EP (enhanced P).

The I-frame is treated as a static triangle mesh and compressed using
the method proposed in [71]. P-frames are reconstructed by animating the
last encoded I-frame using rigid skinning. Although the P-frame is described
in the paper, the final version of the method uses only I and EP-frames. To

26

encode an EP-frame, the last encoded I-frame is used for prediction. Rigging
is performed on both frames and a per-bone ICP algorithm is used to describe
skeletal motion as a rigid transformation of bones. Those transformations
need to be encoded to be known to both the encoder and the decoder. Next,
the I-frame is transformed and a nearest neighbor for each vertex of the
EP-frame is found and used as a prediction. Similarly to [109], instead of
encoding the correspondences explicitly, the number of correspondences for
each vertex of the I-frame is encoded, leading to a reordering of vertices of
the EP-frame.

To force the reordering in the encoded connectivity, the authors proposed
a modification of the TFAN algorithm [71]. They assumed there is a high
probability that if two vertices share an edge, they are both in the set of
𝑘 nearest neighbors of each other (𝑘 ≪ |𝑉 |). During the TFAN traversal,
for each processed vertex 𝑣𝑖, an ordered list 𝑁𝑚(𝑣𝑖) of 𝑚 nearest neighbors
is constructed. If a topological neighbor 𝑣𝑗 is part of the list, its number
excluding already encoded vertices is encoded. Otherwise, the correct index
value must be encoded, indicated by a negative sign.

Figure 4.5: Comparison of compression result on a single frame of the Xenia
sequence [7]. The first picture of every row is the original uncompressed
mesh. Top row from left to right: method proposed by Doumanoglou et al.
at 5.7 | 10.81 | 13.4 bpvf. Bottom row from left to right: TFAN [71] at 7.5 |
12.58 | 14.75 bpvf. Source: [23]

The authors also propose a slight modification of the method by seg-
menting the human model into parts according to the skinning information
and encoding only the parts with larger movement. The rest is reconstructed

27

by animating the corresponding part of the I-frame. After that, the parts
are merged together. Although this results in a lower data rate, original
connectivity information is lost.

Doumanoglou et al. [23] were the first to admit that the previous time-
varying mesh compression methods did not compare well to the static mesh
compression approaches. Their approach, on the other hand, performed bet-
ter than [71] at lower data rates, and comparably at higher data rates (see
Figure 4.5). Its main limitation is that the method is suited only for hu-
manoid models due to the fixed skeletal structure proposed by the authors.
It can be altered to work with other data by adjusting the structure; however,
it is not suited for data in which the ground truth structure is changing over
time. Nevertheless, the erroneous topological changes in human data due to
self-contact should result only in an increased data rate due to the imper-
fection of the predictions. This method is considered the state of the art
of human time-varying mesh compression methods preserving the original
connectivity.

4.8 A Novel Compression Framework for 3D
Time-Varying Meshes

A method proposed by Hou et al. [42] is based on so-called geometry videos
(GVs) [13]. It transforms time-varying 3D data into a sequence of 2D images
by encoding the x, y, and z coordinates as R, G, and B channels. To obtain
a GV, a polycube parameterization is performed, mapping the salient points
of each frame onto the same position in the parametric domain. Next, the
polycube is flattened and fitted into an image (see Figure 4.6).

The GV is further reduced before encoding. For each dimension (resp.
a color channel of the geometry video), a matrix M𝑑 ∈ R𝑉 ×𝐹 is formed,
where 𝑉 is the number of vertices of GV (these are not the vertices of the
original models) and 𝐹 is the number of frames. A matrix K𝑑 ∈ R𝑉 ×𝑘,
where 𝑘 ≤ 𝐹 ≪ 𝑉 is a compression parameter controlling the number of
preserved values, is computed as a low-rank approximation of M𝑑 using
randomized SVD, which is a form of dimensionality reduction. The reduced
matrices K𝑥, K𝑦, and K𝑧 are then reshaped to form so-called EigenGVs,
which have a reduced number of frames. The EigenGVs are then compressed
using a standard video compression algorithm.

To reconstruct M𝑑, a reconstruction matrix W𝑑 ∈ R𝑘×𝐹 is found so that

M𝑑 ≈ K𝑑W𝑑.

This is done by minimizing energy 𝐸(W𝑑):

𝐸(W𝑑) =
⃦⃦⃦
M𝑑 − K𝑑W𝑑

⃦⃦⃦2

𝐹
,

28

where ‖ · ‖2
𝐹 is the Frobenius norm of the matrix. The reconstruction matrix

is encoded directly with no compression applied.
The main issue with this approach is that converting the sequence into

a GV causes loss of the original connectivity of all frames and there is no
one-to-one correspondence between the original and decoded vertices. The
GVs have a regular structure-induced connectivity that is the same across
all the frames, thus the reconstructed sequence is no longer a TVM, but a
DM. Additionally, the polycube used for parameterization must be manually
set prior to the compression, must remain static through all the frames, and
must reflect the topology of the data. Thus, the method is actually limited
only to TVMs with constant topology, which makes it impractical in real-
world compression scenarios.

Figure 4.6: Process of obtaining a geometry video. (a) Salient points. (b)
Polycube parameterization. (c) Geometry video. Source: [42]

4.9 Mesh Coding Extensions to MPEG-I V-
PCC

A time-varying triangle mesh can be also compressed by combining a tem-
poral coherence-based point cloud compression applied on its vertices and a
connectivity codec. One such approach was presented in [27].

The method was one of the results of point cloud compression standard-
ization efforts by the MPEG, which will be described in more detail in Sec-
tion 5.9. The authors propose combining the video-based point cloud com-
pression method (MPEG V-PCC [4]) with Edgebreaker [82] or TFAN [71]
connectivity coding algorithms. The video-based codec divides the surface
into patches with similar orientation, which are then projected into the im-

29

age domain and encoded using video compression. However, the unmodified
codec, reorders the vertices, which is in conflict with connectivity coding,
which also results in reordering. It is thus impossible to relate the decoded
positions and connectivity without encoding any additional data, e.g., an
index map. To address this, the authors proposed to drive the patch gen-
eration process of the V-PCC by the order of vertices in the connectivity
coding traversal.

Compared with [31], the method performed slightly worse, possibly be-
cause the patch generation process was not as effective as in the original
V-PCC. However, since the standardization is still in process, there is a high
potential for follow-up work that will improve upon such results.

4.10 Summary of Time-Varying Mesh Com-
pression

Although the earliest work on TVM compression [37] dates back only four
years after the earliest work on dynamic meshes [58], the field remains mostly
unexplored. The simplest methods based on motion estimation or predic-
tion of spatial structures can handle general time-varying meshes. They are,
however, inefficient in comparison with other approaches. The model-based
methods are more promising since they achieve better compression perfor-
mance. Unfortunately, none of the model based methods presented to date
are suited for more general input. Both projection-based methods are also
quite effective; however, they have their own limitations.

When considering the methods that preserve the isomorphism between
encoded and decoded points, only the method shown in [23] outperforms
state-of-the-art static mesh (intra-frame) compression, though it is applica-
ble only to human time-varying triangle meshes. For more general data, the
static mesh methods are still preferable. Although it was already addressed,
connectivity coding remains one of the main challenges. The data rates of
current methods at satisfyingly low distortion range from 15 to 20 bits per
vertex which is significantly more than of dynamic mesh compression meth-
ods.

30

Chapter 5

Dynamic Point Cloud
Compression

The classification of inter-prediction methods for TVMs can also be applied
to dynamic point clouds. Table 5.1 shows an overview of all the methods
described in this chapter.

Table 5.1: Overview of all methods presented in this chapter in the order of
corresponding sections. Iso. denotes whether the method preserves one-to-
one mapping between encoded and decoded vertices.

Section Method Type Input data Iso.
5.1 Lien et al. [62] Model/Projection Articulated no
5.2 Daribo et al. [19] ME/Special Struct. light scans yes
5.3 Kammerl et al. [48] Structural General yes
5.4 Thanou et al. [93] ME/Structural General yes
5.5 Mekuria et al. [73] ME/Structural General no
5.6 Kathariya et al. [52] ME General yes
5.7 de Queiroz – Chou [21] ME/Structural General yes
5.8 Garcia – de Queiroz [33] Structural General yes

5.9.1 MPEG V-PCC [4] Projection General opt.
5.9.2 MPEG G-PCC [2] Intra General opt.
5.9.3 Schwarz et al. [85] Projection General opt.
5.9.3 Li et al. [61] Projection/ME General opt.
5.9.3 Kim et al. [54] Projection/ME General opt.
5.9.3 Cao et al. [14] Model/Projection General no
5.10 Garcia et al. [34] Structural General yes
5.11 Biswas et al. [10] Structural General yes
5.12 Milani et al. [74] Structural General yes
5.13 Feng et al. [29] Model/Projection LiDAR no
5.14 Peixoto et al. [80] Structural General yes

31

5.1 Multi-camera Tele-Immersion System with
Real-Time Model Driven Data Compres-
sion

The method proposed by Lien et al. [62] was motivated to significantly reduce
the transmission rate of geometry data in tele-immersion systems (e.g., in
online tai-chi classes) with near-real-time performance.

The method is based on skinning and assumes that most points will move
under rigid-body transform with the associated skeleton and that the ap-
pearances of the initial and remaining frames are usually similar. In order to
fit the data model, a skeleton is estimated for the first frame point cloud 𝑃
of the sequence offline during preprocessing. To encode a frame 𝑄, a skele-
tal transform 𝑇 (𝑃) must be found. To achieve this, the authors propose an
articulated version of the ICP algorithm [9]. 𝑄 is first clustered according
to normals represented in spherical coordinates and according to colors rep-
resented by hue and saturation. For each cluster, a k-d tree is constructed
using the positions of its points. The skeleton is treated as a tree graph with
bones as nodes and the torso as a root node in case of human data. The
transforms of each bone are found recursively, with a parent node transform
influencing the transforms of its children, using the ICP algorithm with cor-
respondences found in the surrounding clusters by using a nearest neighbor
search in the given k-d trees.

After the articulated ICP is finished, the 𝑇 (𝑃) is roughly aligned with
𝑄. However, the global error of the alignment can still be large enough. To
this end, the 𝑄 and 𝑃 are segmented so that each segment 𝑄𝑙 and 𝑃𝑙 are
assigned to a body part 𝑙. To calculate the global error for 𝑙, the second
moment 𝜇 is used:

|𝜇(𝑃𝑙) − 𝜇(𝑄𝑙)|.
If this error occurs over a given threshold for any of the parts, a global fitting
is applied. During this process, the articulated ICP algorithm is repeated,
but only on those parts that have larger value than the given threshold,
ignoring the rest. This process is iterated until the global error is low enough
for all the body parts or until it does not result in further improvement. After
that, the joint positions and angles of the skeleton are encoded.

To further improve the reconstruction, so-called prediction residuals are
encoded. These are acquired by projecting both 𝑃𝑙 and 𝑄𝑙 onto a grid em-
bedded in cylindrical coordinates defined by 𝑙, which results in two sets of
images: color and depth. Since 𝑃𝑙 and 𝑄𝑙 are aligned, it is expected that the
images are similar, and thus only their difference can be encoded to further
reduce the data rate (see Figure 5.1). By changing the resolution of the grid,
one can control the compression ratio and distortion.

The authors themselves have pointed out that the main limitation is
the assumption of a rigid movement of body parts, which does not hold, for

32

example, if the person has long hair or wears a skirt. However, such behavior
in data results only in an increase of the data rate. Other issues might arise
if the encoded sequence represents non-articulated moving objects, where
the skeleton structure is dynamic. Additionally, the points of decoded point
clouds do not correspond to the original, and thus distortion of the data
is more difficult to measure. The authors address this by measuring the
difference in the rendered images.

Figure 5.1: Skeleton-based compression of point clouds. Source: [62]

5.2 Efficient Rate-Distortion Compression of
Dynamic Point Cloud for Grid-Pattern-
Based 3D Scanning Systems

The work of Daribo et al. [19] is inspired by properties of grid-pattern-
based scanning systems (e.g., [30, 53]). Such systems consist of one or more
cameras and projectors. Each projector projects a different pattern onto the
scanned object, which is then captured by the cameras (see Figure 5.2). The
resulting points lie on the spatial curves formed by the distorted lines of the
grid pattern (see Figure 5.3). The authors have observed that such points
are also ordered so that if two points lie next to each other on a captured
spatial curve, they are also next to each other in the output stream of the
scanning system.

Generally, finding neighbors of a point in a point cloud is not a trivial
task. However, the structure of the grid-pattern-based 3D scan data allows
one to at least alleviate the problem by detecting the corresponding spatial
curves. This is done incrementally – initially, there is an empty set of curves
𝑆 and a curve 𝐶. Each incoming point x is tested to see if it is an outlier
for 𝐶. If it is not, it is inserted into 𝐶. Otherwise, 𝐶 is inserted into 𝑆 and
a new curve is created containing x. After the partitioning is done, all the
curves are coded separately.

33

Figure 5.2: Example configuration of a grid-pattern-based scanning system.
Source: [30]

To encode the points of the spatial curve, the method uses a competition-
based predictive approach. Multiple spatio-temporal predictors are consid-
ered for each point, and the one that is the most efficient is selected, quan-
tized, and encoded using entropy coding (e.g., a Huffman coder). The authors
suggest considering the following predictions:

∙ No prediction at all,

∙ Previous point on the curve,

∙ Continuation of a line through the previous two points on the curve,

∙ Continuation of a line fitted to all the previous points on the curve,

∙ Continuation of a curve with a turning angle determined from the
previous two points,

∙ Corresponding point on the closest curve in the previous frame to the
currently coded curve, and

∙ Continuation of a curve with a turning angle determined from the most
similar curve in the previous frame, considering curvature and torsion.

The prediction mode 𝑃 that minimizes the following Lagrangian func-
tional is selected:

𝐽(x, 𝑃, 𝑏𝑝) = 𝐷𝑝𝑟𝑒𝑑(x, 𝑃, 𝑏𝑝) + 𝜆(𝑏𝑝) · 𝑅𝑟𝑒𝑐(x, 𝑃, 𝑏𝑝),

where x is the encoded point, 𝑏𝑝 is a quantization constant, 𝐷𝑝𝑟𝑒𝑑(x, 𝑃, 𝑏𝑝)
is the distance between x and the prediction, 𝑅𝑟𝑒𝑐(x, 𝑃, 𝑏𝑝) is the number of

34

bits needed to encode all the data needed for 𝑃 , and 𝜆(𝑏𝑝) = 8·exp(−1.53·𝑏𝑝)
is a Lagrange parameter estimated experimentally by the authors.

Figure 5.3: Points are fitted to spatial curves during grid-pattern-based scan-
ning. Source: [19]

The method proposed by Daribo et al. [19] allows control of error propa-
gation, random access, and parallel encoding since all the curves are encoded
separately. It is also one of the few methods that do not disrupt the isomor-
phism between the original and decoded points. Unfortunately, it is limited
by the expected structure of the data, which is generally not present.

5.3 Real-Time Compression of Point Cloud
Streams

To the best of our knowledge, the method proposed by Kammerl et al. [48]
was the first method suited for general dynamic point clouds to consider
temporal coherence while preserving one-to-one mapping between encoded
and decoded vertices. The method stores the frames of the sequence in an
octree data structure. This structure can be serialized into a sequence of
bytes during a breadth-first traversal from the root of the tree to the occu-
pied nodes. Each non-leaf node yields a byte, whereas each bit represents
occupancy of the child node (see Figure 5.4).

To address the temporal coherence, the authors proposed so-called double-
buffering octree representing two consecutive frames of the sequence. Nodes
of this structure contain 16 instead of 8 children, corresponding to the nodes
of octrees of both frames. This allows one to serialize only the occurring
changes by using an XOR operation between the occupancies of the two
halves of the child nodes. The serialized sequence is then entropy coded.

The authors also compared two approaches to representing points in leaf
nodes. The first approach was to use a centroid of the voxel of the node.
This, however, results in the loss of the one-to-one mapping if two or more

35

points are in the same voxel. It can be resolved by increasing the resolu-
tion of the octree. However, the computational and memory requirements
increase exponentially. Another approach is to use the origin of a voxel as
a prediction value and encode the corrections. Unfortunately, this means
additional values must be encoded.

Figure 5.4: Serialization of the octree. Source: [48]

5.4 Graph-Based Compression of Dynamic
3D Point Cloud Sequences

The method proposed by Thanou et al. [93] can be considered an improved
version of the previous method. It also represents point clouds using an
octree. However, motion compensation as presented in [92] is used to reduce
the bit rate (see Figure 5.5).

Figure 5.5: Motion estimation of two frames of the sequence. (a) Superpo-
sition of both frames. (b) Correspondence estimation. (c) Superposition of
the encoded frame and motion-compensated first frame. The cubes represent
the leaf voxels. Source: [93]

36

To compensate for motion between two frames of the sequence, where
the first of the two frames is already known to both the encoder and the
decoder, both frames are inserted into octrees, and k-NN graphs are con-
structed between leaf voxels. The positions and colors are then interpreted
as signals on vertices of the graph. Then, feature vectors 𝜑𝑖, where 𝑖 is the
index of a vertex of a graph, are computed for each vertex of both graphs
using spectral graph wavelets. Instead of computing the full spectrum of the
graph Laplacian matrix, the wavelets are approximated using Chebyshev
polynomials [38]. The vertices between graphs are then matched using the
Mahalanobis distance:

𝜎(𝑚, 𝑛) = (𝜑𝑚 − 𝜑𝑛)𝑇 P(𝜑𝑚 − 𝜑𝑛), 𝑚 ∈ 𝑉𝑡, 𝑛 ∈ 𝑉𝑡+1

where 𝑉𝑡 and 𝑉𝑡+1 are sets of vertices of the two frames and P−1 is a co-
variance matrix estimated from training features that are known to be in
correspondence and describes the relation between different feature compo-
nents. After that, the vertices are clustered and a representing vertex with
the best score in each cluster is selected. The motion vectors of the selected
vertices are initially set as displacements to their correspondences. These
values are then propagated to the rest of the graph during an optimiza-
tion process that enforces smoothness of motion vectors with respect to the
neighboring vertices. The vectors are transformed into the frequency domain
using GFT, quantized, and encoded using an RLGR coder [70].

Figure 5.6: Relation between the coding rate of motion vectors and the
coding rate of geometry (including the motion vectors). The comparison
was also made to the static octree compression method proposed in [51].
Source: [93]

Then, the previous frame is motion compensated using the reconstructed
motion vectors, and the result is used to compute the serialized difference in

37

the octree structure as described in [48]. The authors show in their experi-
ments, that when the motion vectors are encoded at a low bit rate (≈ 0.1
bpv), the method achieves slightly better results (see Figure 5.6). The pre-
cision of the motion vectors affects only the bit rate.

5.5 Design, Implementation, and Evaluation
of a Point Cloud Codec for Tele-Immersive
Video

To meet the requirements of their tele-immersion system [106], Mekuria
et al. [73] proposed a progressive compression algorithm with near-real-time
performance. Like many other compression methods, it works with I- and
P-frames.

The I-frame is encoded as follows: In the first step, outliers are filtered and
a bounding box is calculated. The bounding box is then slightly expanded by
a certain margin. The box is used for the octree representation of the point
cloud. The geometry is encoded using a modified version of the approach
in [48], which allows coding of two levels of detail. For color compression,
the values are serialized to a grid in a zig-zag pattern in order of depth-first
tree traversal and encoded using a JPEG codec.

To determine whether the frame is intra- or inter-coded (I or P), the
method checks whether it fits into the extended bounding box of the previ-
ous I-frame. If it does not, it is treated as a new I-frame and coded as such.
Otherwise, the extended bounding box of the previous I-frame is used for
the octree representation of this frame as well. For octrees of both I- and
P-frames, macroblocks are generated at level 𝐾 above the final level of detail
(𝐾 is a parameter, and the authors chose 𝐾 = 4). For each macroblock, a
decision is made whether it should be inter- or intra-coded. To be able to
code a macroblock using prediction, the same macroblock should be occu-
pied in the I-frame as well, their number of points and color values should
not differ much, and ICP registration should result in rigid transformation
with a fitness value over a certain threshold. If a macroblock fits all the crite-
ria, it can be replaced by the predicting macroblock. Only a rigid transform,
color difference, and indices representing the position of the predicting mac-
roblock are thus encoded. The indices of macroblocks are encoded to allow
the macroblock coding to be parallelized. If the macroblock does not match
all of the criteria, it is more conveniently encoded in the intra-predictive
manner. For this purpose, a separate point cloud frame consisting of all the
rejected macroblocks is constructed and encoded separately.

The algorithm is simple enough to meet the near-real-time requirements
of tele-immersion systems. It was also used as a first reference platform for
the development of point cloud compression in MPEG-4 [3]. However, since

38

some of the blocks of the point cloud in a P-frame are replaced by blocks
of another point cloud, it is no longer possible to trivially calculate the
distortion of the data. For this reason, the authors have proposed using the
sum of the distances to the nearest points of the distorted point cloud for
each vertex of the original point cloud. Additionally, they have carried out
a user study to evaluate the subjective quality of the compression. However,
the study was more driven to compare the algorithm with the avatar user
representation that was formerly used in their system (see Figure 5.7). No
comparison with any other compression method was done.

Figure 5.7: Reverie tele-immersion system [106]. Comparison with real-
time encoded point clouds and synthetic avatar-based representations.
Source: [73]

5.6 Embedded Binary Tree for Dynamic Point
Cloud Geometry Compression with Graph
Signal Resampling and Prediction

Kathariya et al. [52] proposed a lossy compression based on motion compen-
sation between blocks represented by cells of a k-d tree.

The method first divides the frames into subgroups. For each subgroup, a
k-d tree is constructed from the points of the first frame. The tree represents
a partitioning of the domain into blocks, and this partitioning is reused for
each following frame in the subgroup. Each frame is encoded block-wise
using the corresponding blocks in the previous (reference) frame. First, the
block in the reference frame is resampled so that the number of points in
both blocks is identical. To this end, the authors proposed to construct a
k-NN graph (𝑘 = 10) and to use eigenvectors of the graph Laplacian matrix
to cluster the points. Each eigenvector partitions the graph into a set of

39

connected groups of vertices with the same sign of values it assigns to them.
The number of groups grows with the corresponding frequency that the
eigenvector represents. The first partitioning that yields at least |𝑚 − 𝑛|
groups, where 𝑚 is the number of points of the currently coded block and
𝑛 is the number of points in the reference block, is selected. If there are
fewer points in the reference block, a centroid for each group of points is
inserted. Otherwise, the median point of each group is deleted. After that,
the correspondences are found by graph pruning of a k-NN graph between
the two blocks until the graph is bipartite and the vertices of the coded block
are reordered to match the order of the corresponding reference points. The
residues are then computed between the corresponding reference and coded
points. The residues are treated as points centered around the origin and
encoded using octree serialization. It is unclear from the paper how to relate
the residuals back to the points, since such coding alters the number of
points and results in additional reordering.

According to the authors, to be able to reconstruct the values, the de-
coder needs to know which eigenvector was selected for partitioning, the
serialized octree and its bounding box coordinates. For the first frame of
each subgroup, there is no reference for prediction. Thus, instead of encod-
ing residues, the positions themselves are encoded in the octree.

The authors did not provide any rate-distortion or performance compar-
ison with other compression methods, which is surprising since the dataset
used in their experiments is bundled with the implementation of [73]. Addi-
tionally, one could be concerned with the computational complexity of the
method since it requires finding an unknown number of eigenvectors of a
graph Laplacian matrix for each block of the frame.

5.7 Motion-Compensated Compression of Dy-
namic Voxelized Point Clouds

The method proposed by de Queiroz – Chou [21] also works with I- and
P-frames. It represents the voxels of the point cloud with x, y, and z coordi-
nates of the centroids and their YUV color values. For an I-frame, a static
octree compression is applied, combined with Region-Adaptive Hierarchical
Transform (RAHT) [20] coding for color compression.

A P-frame is divided into 𝑁 ×𝑁 ×𝑁 blocks, where 𝑁 is a parameter, and
motion vectors are computed for each block. The authors do not propose any
method for motion estimation; however, they suggest that motion vectors
are sometimes a byproduct of point cloud reconstruction methods (e.g., [22]).
If the motion vector of each voxel in the block is known, the representing
motion vector of the block is selected as one that is closest to the average
value. The method then decides whether the block is inter- or intra-coded
based on the estimated encoding rates and distortions of both approaches.

40

The calculated distortion consists of correspondence and projection-based
metrics. The correspondence metric is calculated using spatial and color
distances between corresponding voxels. For the projection-based metric,
the point cloud is projected onto six sides of a cube at the limits of the
voxel space and differences in Y color values are used. The intra-coding of
the P-frame block also uses a static octree method and RAHT for color
compression. If the block is inter coded, only a motion vector is encoded
using the RAHT.

The authors describe blocking artifacts that might occur when using
inter-prediction. To address this issue, they propose using a smoothing filter
followed by morphological closing to close any gaps.

5.8 Context-Based Octree Coding for Point-
Cloud Video

Garcia – de Queiroz [33] proposed a simple lossless compression method
based on the work of Kammerl et al. [48]. It assumes that an encoded octree
has a similar distribution of symbols representing the nodes to that of the
prediction.

During the encoding, the predicting tree is constructed similarly to the
method in [48], with a single difference in the fact that Garcia – de Queiroz
propose using multiple frames merged into a single octree instead of a single
previous frame. However, instead of encoding the XOR of the two octrees,
the nodes of the prediction octree are sorted in ascending order of the bytes
representing their occupancy, since they can be interpreted as numbers be-
tween 0 and 255. The sorting order of the prediction is applied to the en-
coded octree, which is then coded. Since the sorted prediction contains long
sequences of repeated symbols, the reordered data should in theory con-
tain such sequences as well. Additionally, the worst case results only in a
scrambled version with similar properties to the original octree.

Context-based octree coding is very simple and outperforms [48]. Al-
though the authors did not make that claim, in theory, one could be able to
combine it with [93] as well.

5.9 MPEG Standards for Point Cloud Com-
pression

The growing need for an efficient compression method for point cloud data
was also recognized by the Moving Picture Experts Group (MPEG). This
led to the call for proposals in early 2017 [3]. The work of Mekuria et al.
[73] was selected as a baseline for comparison with all the proposed meth-
ods. As a result, 13 proposed solutions were collected from various industry

41

and research contributors and three different test model cases were identi-
fied: TMC1 for static data (e.g, cultural heritage), TMC2 for dynamic data,
and TMC3 for dynamically acquired data (e.g., LiDAR). Eventually, due to
the similarities in the approaches, TMC1 and TMC3 were merged to form
TMC13, which led to the development of geometry-based point cloud com-
pression (MPEG G-PCC), the ISO/IEC 23090-9 standard [2]. The method
evolved from TMC2 is called video-based point cloud compression (MPEG
V-PCC), the ISO/IEC 23090-5 standard [4]. As of early 2021, the V-PCC
was in the approval stage of the final draft, while the draft of the G-PCC was
still being finalized. Since both methods are quite complex and still under
continuous development, we will give only an overview of the approaches in
both codecs.

5.9.1 MPEG V-PCC

Figure 5.8: Example of the images encoded in V-PCC (from left to right):
occupancy map, geometry image, attribute image. Source: [36]

The motivation for the video-based codec was to quickly deliver an effi-
cient method benefiting from video compression, which is already a mature
field of research. Similarly to [42], it is based on compressing projected ge-
ometry into the image domain. First, the point cloud frame is divided into
patches. For each point, a normal vector is estimated. The point is then as-
signed to one of six principal orthographic projection directions by selecting
the direction that yields the highest dot product with the normal vector.
The assignment is refined with the local neighborhood of the point taken
into account. The points are then clustered using the connected component
algorithm and projected to the faces of the bounding box in the assigned
direction. This results in a set of 2D patches 𝐻(𝑢, 𝑣) , where 𝑢 and 𝑣 are the
coordinates not altered by the projection and the value is the distance of the
point along the projection. It is important to note that multiple points can
share the same 𝑢 and 𝑣 in a single patch, which must be accounted for if the
compression should be lossless. After that, all the patches must be placed
into the image domain. The patches are sorted by size and incrementally

42

inserted into the image in the first empty place found in the raster scan
order, considering eight different rotations of the patch. To exploit the tem-
poral coherence, the method attempts to place similar patches in the same
place as in the previous frame. This is done by estimating correspondences
using the intersection-over-union (IOU) metric. A patch pair is considered
corresponding when its IOU is over a specified threshold. Not only does this
allow more efficient video coding, but it can also be used later. After the
position of each patch is established, three sets of images are constructed:
geometry and attribute images, and occupancy maps (see Figure 5.8). The
geometry images contain the values 𝐻(𝑢, 𝑣) in the luminance channel, and
all the other channels are zero. Attribute images contain the colors assigned
to points and have the same resolution as the geometry images. To address
the multiple points projected onto the same pixel, more than one geometry
and attribute image might be constructed for a single frame. The occupancy
maps are binary images that indicate the parts of the image domain that
contain the desired information. They can be encoded in a lossy manner by
reducing the resolution in comparison with the other two images. To utilize
the properties of the video codec used, the empty pixels in the geometry
and attribute images are filled to obtain a piecewise smooth transition of
values. After that, all the images are encoded using a state-of-the-art video
compression algorithm (e.g., MPEG-HEVC [89]). To reconstruct the values,
patch metadata (e.g., position in the 2D and 3D domain and bounding box
size) is encoded as well. The temporal patch correspondence, if available,
can be used to predict such values. After the reconstruction, the positions
and attributes of the patch boundary points can be smoothed to attenuate
any visual artifacts that might occur.

5.9.2 MPEG G-PCC
Contrary to the previously described standard, the G-PCC encodes the point
cloud directly in 3D. The attribute data is encoded separately and the de-
scription of the coding process will be omitted. The standard consists of three
geometry compression modes: octree entropy coding, trisoup, and geometry
prediction.

The octree entropy coding mode represents the point cloud by an octree
with variable depth, which means that not all leaf nodes are on the same
level. In fact, the boxes of the octree are subdivided until they contain only a
single point or until a maximum depth is reached. The tree is then encoded
during a breadth-first search traversal by an entropic coding strategy with
context modeling called OBUF (Optimal Binarization with Update On-the-
Fly), in which an occupancy bit is encoded by a coder chosen from a set of
𝑁 continuously updated entropic coders by examining the dependency state
of the bit. The state is determined from information available to both sides,
e.g., the occupancy of already coded neighbors of the current node, parent

43

node, and its neighbors and value predictions. The predictions are ternary
functions of values: predicted occupied, predicted unoccupied, and unpre-
dicted. Currently, only a single intra-prediction method is utilized, which
takes the weighted sum of adjacent node values and deduces the value by
thresholding. However, the authors plan to propose other types of predic-
tors, including ones utilizing inter-frame coherence, for future successors of
the standard [56]. The OBUF strategy is, however, inefficient for isolated
points since such points have no neighborhood for deducing the dependency
state. For such points, their relative position to the node volume is directly
encoded and the selection of the direct coding is indicated in the stream.

The trisoup approach represents the coded point cloud by octree with
reduced depth. After encoding the octree parent nodes, the points within
each leaf cell are represented by a surface that intersects with each edge of
the block at most once. Instead of coding the points, only the vertices, which
are all the intersections between the surfaces and edges, are encoded. The
intersections are shared between neighboring blocks. For each edge, a flag
representing whether it contains an intersection or not is encoded. Then,
for each occupied edge, a scalar is coded representing the position of the
intersection. The scalar value is quantized to a specified number of levels of
precision. The decoder reconstructs the surfaces by triangulated non-planar
polygon. The reconstructed point cloud is then generated by regular grid
sampling of the triangles.

The geometry prediction is a mode introduced later in the development
of the standard [32]. It was designed for LiDAR data, however, its core
concepts could be used to compress general point clouds. It is based on re-
ordering the points in space (e.g., using Morton codes or azimuthal sorting).
A prediction tree is then constructed over the points, where up to three hi-
erarchical predecessors are used to predict the positions of the points. There
are multiple prediction modes and multiple strategies for constructing the
prediction tree. For the sake of simplicity, these are omitted here.

Despite the original use cases, both standards can be used to represent
general point cloud data. The main difference is that for now, V-PCC is more
suited for dense clouds, while G-PCC is better for sparse data. One limitation
of the V-PCC codec is that it uses only the temporal coherence in the image
domain since the position of the patch in 2D does not correspond to its
position in 3D. In the future, V-PCC will improve with the development of
video coding, while G-PCC will be improved itself [15]. It is expected that
G-PCC will utilize inter-prediction and should at some point outperform the
video-based codec even for dense data.

44

5.9.3 Inter-based Methods Directly Inspired by MPEG
Point Cloud Compression Standardization Ef-
forts

The development of both MPEG standards motivated a considerable amount
of effort that resulted in quite a few scientific papers studying various aspects
of point cloud compression. For the sake of simplicity, in this section we will
describe only the work that studied the inter-frame coherence of the data
and was not eventually included in the standard itself.

The method proposed by Schwarz et al. [85] was one of the contributions
to the initial call for proposals. It was similar to the one selected for TMC2,
which evolved into the V-PCC standard. The approach was also video-based.
However, instead of segmenting the point cloud into patches, it is orthog-
onally projected as is onto a series of planes rotating around the bounding
box. Since some of the points might be occluded by the projection, the point
cloud is projected multiple times onto the same plane while removing the
previously projected points (see Figure 5.9). Instead of using the occupancy
map, this information is signaled through the geometry image. This, how-
ever, means that only the attribute image can be padded to improve the
compression performance of the video codec. Although the method is not
as effective as V-PCC, it is much simpler since no patch segmentation is
required. Also, the projection method allows one to utilize more temporal
coherence information since points of two subsequent frames projected on
the same pixels are usually close to each other spatially. This, however, does
not hold for V-PCC.

Figure 5.9: Projected attribute and geometry information. After four pro-
jections, the successfully projected points were removed. Source: [85]

45

Li et al. [61] pointed out that projecting the patches onto the image
domain causes the loss of a decent amount of temporal coherence. For video
coding, V-PCC usually uses the HEVC algorithm [89], which uses motion
prediction in the image domain, where the predicting vector is selected from
a candidate list. The authors propose estimating the correspondences in 3D
by searching for the nearest points in the previous frame. Then, a 2D motion
vector is extracted from positions of both points in the image domain and is
inserted into the candidate list. While this approach results in compression
improvements, it relies heavily on the fact that the HEVC algorithm is used,
which is not enforced by the V-PCC standard.

To address the issues of [61], Kim et al. [54] proposed a 3D motion-
estimation-based method independent of the video codec used. The method
works with intra (I) and predicted (P) frames. A frame is considered an
I-frame if it cannot be efficiently predicted by the previous I-frame. Such
frames are encoded using the original V-PCC method. When a P-frame is
encoded, each point of the I-frame is paired with a corresponding point in a
search range of the P-frame based on similarity of color. Instead of the ge-
ometry and attribute images, the motion vector and attribute difference are
encoded. Since the 𝑥, 𝑦, and 𝑧 coordinates of the motion vectors are indepen-
dent, those are encoded as separate images. The P-frame is reconstructed
by translating the points of the I-frame and adjusting the colors using the
encoded data. Compared to the original V-PCC, the method performs well
at lower bit rates. However, the MPEG standard is still more efficient for
higher bit rates.

Figure 5.10: Motion prediction of [54]. The arrows on top denote which frame
was used for prediction, and the red arrows indicate a failed prediction.
Source: [54]

46

Cao et al. [14] proposed a V-PCC-based method for compression of dy-
namic human point clouds. The method segments points of each frame into
detected body parts by projecting the point cloud orthogonally onto four
planes around the bounding box and applying 2D pose detection on each
of the projections. Each point is then classified considering the assignments
found by the pose detection algorithm. Then, for a pair of subsequent frames,
an affine transform for each body part is found. The sequence is subdivided
into groups of subsequent frames. The first frame of each group is encoded
using the original V-PCC algorithm. For the rest of the frames in the group,
only the metadata representing the affine transformations is encoded. To
reconstruct the frames, the first frame of the group is deformed using the
reconstructed transformations. Finally, an interpolation is applied on bound-
aries of each body part to prevent gaps. Although the method achieves a
decent bit rate reduction, it has quite a few limitations. For example, it relies
heavily on the efficiency of the pose estimation algorithm. If the captured
data contains deformable clothes, long hair, and objects, the pose estimation
labels such surfaces incorrectly, which might lead to issues with estimating
the affine transformations.

5.10 Geometry Coding for Dynamic Voxelized
Point Clouds Using Octrees and Multi-
ple Contexts

The method presented in [34] is based on an octree serialization (see Figure
5.4), similar to [33, 48, 93]. It is based on the assumption that once the
predicting octree represents the encoded frame well, there are only a few
possible outcome reconstructions for a single predicting byte representing
the node of the tree.

(a) Super-Resolution by Example
(b) Super-Resolution by Neighbor-
hood Inheritance

Figure 5.11: Inter-prediction modes for constructing the reference octree.
Source: [34]

47

Each frame of the sequence is encoded as follows. First, the predicting
octree 𝑂𝑝 is constructed. Then, both octrees are serialized and the sequences
are compared to find a map of frequencies 𝜑𝑖𝑗, which stores the number of
predicting nodes with symbol 𝑖 that predict a value 𝑗. The map is treated
as a 3D surface and encoded as another octree with entries 𝜑𝑖𝑗 = 0 ignored.
The first level of the coded octree is transmitted as is, and on each sub-
sequent level, only the nonzero symbols are coded. For each symbol of the
currently coded level, both the encoder and the decoder examine the value
𝑏 in the prediction and select a context for the entropy encoding of the sym-
bol determined from the probabilities of symbols relative to the symbol of 𝑏.
Since only few possible symbols are expected when 𝑏 is present, the context
switching should, in theory, result in a much lower bit rate than using a
single context for every symbol.

In order for the context switching to be effective, the prediction should
be as close to the predicted octree as possible. To address this, the authors
proposed three different prediction modes based on the fact that when en-
coding a level of the octree of the current frame, the previous frame and
the previously encoded levels of the current frame are known to both the
encoder and the decoder. The first mode is intra-predictive and can be used
for the first frame. When encoding a symbol of a node using this mode,
the prediction is simply the value of the parent node. Both other modes
shown in Figure 5.11 are inter-predictive and use the previous frame octree
𝑂𝑟 as a reference. The first inter-prediction mode, called Super-Resolution
by Example, matches the neighborhoods of the previous levels of the current
and previous frames. Once the voxel with the best-matching neighborhood
within a spatial window is found, its value is used for prediction. To find bet-
ter matches, the currently coded level in the reference octree is incrementally
displaced in all directions, and down-sampled versions of each displacement
are considered. In the second inter-prediction mode, called Super-Resolution
by Neighborhood Inheritance, the reference octree is once again incremen-
tally displaced in all directions and the symbols are analyzed to construct a
dictionary, which for each voxel with a given neighborhood stores the most
likely child configuration. Such values are then used for prediction. The pre-
diction mode that yields the smallest Hamming distance to the correct value
is selected for a set of nodes with a shared parent. A symbol indicating which
mode was selected is encoded alongside the octree data using an arithmetic
coder.

The proposed method is simple and easily extendable in the sense that
one can introduce a different prediction mode from the three above men-
tioned. It compresses the data in a lossless manner, which can be considered
an advantage but also a limitation since the lossy methods allow for addi-
tional bitrate reduction. Both inter-prediction modes are also quite complex
and do not allow for near-real-time performance.

48

5.11 MuSCLE: Multi Sweep Compression of
LiDAR Using Deep Entropy Models

Biswas et al. [10] focused on size reduction of LiDAR data. Their method is
also based on octree coding. Like [34], it is based on modeling the probabil-
ities of the symbols during entropy coding based on the context. The data
they consider consists of the occupancy symbols, voxel intensities, and offset
of points in each voxel. however, they claim that in the case of offsets, no
patterns in the data could be found, so such data was coded directly. Since
we focus on geometry encoding, the compression of intensities will also be
omitted.

To model the probabilities of the occupancy symbols, the authors pro-
posed trainning a neural network. The overview of the whole probability
model can be seen in Figure 5.12. For each symbol, feature vectors are con-
structed using the information already known to both coding sides: the oc-
cupancy of the ancestors of the node and the occupancy of the previous
frame. Such vectors are then processed by multilayer perceptrons, one for
hierarchical and one for temporal data. The data from the previous frame is
aggregated through continuous convolution [108] to create spatio-temporal
feature vectors so that only the nodes spatially close to the currently coded
node influence the probability. The spatio-temporal and hierarchical feature
vectors are finally aggregated and given as an input to the neural network.
The output layer represents each symbol (0, . . . , 255) and is converted to
probabilities using the softmax function. The loss used to train the net-
work is computed as a cross entropy with the probabilities derived from the
already encoded data.

(a) Top-down Pass
(b) Bottom-up Pass

Sweep t - 1 Sweep t

(2) Prior Octree Dependence (1) Ancestral Node Dependence

(3) Spatio-Temporal
Aggregation

z

x

y

Octree Occupancy Entropy Model (Sec. 2.3) Intensity Entropy Model (Sec. 2.4)

Sweep t - 1 Sweep t

Geometry
Bitstream

Probability
Estimation

Intensity
Bitstream

Continuous
Convolution

Continuous
Convolution

z

x

y

Sweep t - 1 Sweep t

Input Point Cloud à
Octree (Sec 2.1)

Probability
Estimation

Figure 5.12: Overview of the deep entropy model. Source: [10]

The authors compared their results with multiple compression methods,
e.g., [2] and [73]. In addition to compression performance, they studied how
the compression impacts downstream tasks, for example, segmentation or
detection. In every case, the method outperformed its competitors.

Although it was proposed to work with LiDAR data, it should, in our
opinion, be applicable to a general dynamic point cloud. Additionally, only

49

a single GPU pass is required per level of the octree in a frame, and thus
the method should perform quite fast.

5.12 A Transform Coding Strategy for Dy-
namic Point Clouds

Recently, Milani et al. [74] proposed yet another octree coding strategy based
on a cellular automata transform of symbols representing blocks of the octree
(see Figure 5.13).

They assumed that if binary symbols representing the occupancy of nodes
that are most likely to occur contain the greatest number of bits equal to
1, the encoded sequence, when treated in separate streams per each bit
position in symbols, should contain large runs of 1, which could be exploited
by the entropy coder. To be able to reconstruct the values, the transform
must be reversible, which limits it to a permutation of the symbols. The
authors propose sorting the symbols by probability, assigning the highest
value (255) to the most likely symbol and the lowest (1) to the least likely
one. The symbol 0 never occurs since such symbols can be detected from
the structure of the previous level of the octree. The authors have proven
that such a transform results in minimal bit rate when using an arithmetic
coder. To decrease the entropy of the data, conditional probabilities given the
context of the node, i.e., the already coded neighboring nodes, are considered.
Instead of encoding the probabilities, which would lead to an increase of the
data size, the authors propose two strategies. The first is intra-predictive and
involves constructing the probability model on an example dataset known
to both coder and decoder. Better results can be obtained by tailoring the
probabilities to the actual data as in the second strategy, which is inter-
predictive and calculates the probabilities using the previous frame.

Figure 5.13: Example of cellular automata transform of symbols. Source: [74]

50

5.13 Real-Time Spatio-temporal LiDAR Point
Cloud Compression

Feng et al. [29] proposed a compression method utilizing the properties of the
LiDAR point cloud sequences, where each frame contains a full 360 degree
view around the scanning device and is accompanied by internal sensory
data that allows one to estimate the difference in position and orientation
between frames. Figure 5.14 shows an overview of the method.

Range Image
Conversion

Motion (6 DoF)
Transformation

Spatial
Encoding

Key Point
Cloud

Predicted
Point Clouds

Temporal Encoding
Lossless
Encoding

Encoded
Point Clouds

K-Frame
Encoded K-Frame

P-Frames

Encoded
P-Frames

LiDAR

Transformation
Compensation

Plane
Testing

Motion

Scene

Figure 5.14: Overview of the plane-fitting-based LiDAR compression
method. Source: [29]

The method considers two types of frames, K (key) and P (predicted).
For the K-frame, it first converts the point cloud into a range image by
transforming the Cartesian coordinates (𝑥, 𝑦, 𝑧) of points into spherical co-
ordinates (𝜃, 𝜑, 𝑟). The 𝜃 and 𝜑 are quantized to obtain the coordinates of the
corresponding pixel, while 𝑟 represents its value. The pixels in each horizontal
line are then processed by a divide-and-conquer plane-fitting algorithm, in
which two neighboring pixel regions are merged if there is a plane represent-
ing both regions with error below a specified threshold. For each region, only
the following values are encoded: the starting index of the region, the length,
and coefficients 𝑎, 𝑏, and 𝑐 representing the fitting plane 𝑥 + 𝑎𝑦 + 𝑏𝑧 + 𝑐 = 0.
The positions are reconstructed by calculating the intersection between a
ray of given 𝜃 and 𝜑 and the decoded plane. Since no additional offset is en-
coded, the error threshold for the plane fitting controls the distortion. Not
all the pixels can be represented efficiently by plane fitting. Thus, a residual
map is constructed for such points and encoded directly.

The P-frame is first transformed into the coordinate system of the previ-
ous K-frame using the internal sensory data. After that, it is converted to a
range image as well. However, the transform causes some points to be quan-
tized into the same pixel. If this occurs, the method considers only the point
closer to the sensor, while the rest are discarded. To account for temporal
coherence, the planes parallel to the ones found in the previous K-frame are
used first. This accounts for some translation error introduced by the motion
transformation and allows omitting the 𝑎 and 𝑏 coefficients of the plane. In
the second phase, an attempt is made to fit different planes to the rest of the
pixel groups. Such planes are encoded identically to how they were encoded
in the K-frame. The rest of the pixels are again encoded in a residual map.

The method is fast enough to accommodate the capturing process in real
time. It is one of the few methods that truly exploit the temporal coherence

51

of the geometry. The authors also pointed out that the planes fitted dur-
ing the compression could be utilized directly by downstream tasks (e.g.,
segmentation or object detection), essentially skipping the decompression
process. Unfortunately, the method is tailored closely to LiDAR data and
does not work with general dynamic point clouds since the frames of such
sequences cannot generally be converted to range images.

5.14 Silhouette 4D: An Inter-Frame Lossless
Geometry Coder if Dynamic Voxelized
Point Clouds

Peixoto et al. [80] proposed an inter-frame extension of their lossless intra-
frame compression method based on dyadic decomposition of the voxelized
dynamic point clouds [79]. Although it utilizes structural coherence, it is not
based on an octree coding scheme.

Figure 5.15: All the slices involved in encoding 𝑌𝐿. Source: [80]

The point cloud is voxelized into a regular grid of size 𝑁×𝑁×𝑁 . For each
frame, a binary tree structure is constructed in which each node represents a
slice of the volume along a selected principal axis, and its children split the
slice in half. The tree has 𝑁 leaf nodes, each representing a binary image of
the size 𝑁 × 𝑁 . During the compression, the tree is traversed in pre-order
fashion, from left to right. The slice of the processed node is projected along
the axis to create a so-called silhouette image. Silhouettes are encoded using
a context-adaptive arithmetic coder suited for binary images. However, the
number of encoded pixels can be reduced significantly when considering that
a pixel in non-leaf node is occupied if and only if a corresponding pixel of
at least one of the child nodes is occupied. If a pixel in a parent node is
empty, all of the corresponding pixels in child nodes must be empty as well.
Additionally, if a parent pixel is occupied, but the corresponding pixel in the

52

left child is not, the same pixel must be occupied in the right child. In both
cases, this information is apparent to both sides and thus it can be omitted
from the coding stream. The bit rate is also reduced by building a context for
the encoded pixel used in the entropy coder. It consists of three components:
a 2D context that consists of the values of the three already encoded neighbor
pixels in the same slice, a 3D context that consists of the corresponding pixel
and its eight neighbor pixels in a slice above the axis if such a slice exists,
and a 4D context that consists only of the value of the corresponding pixel
in the previous frame (see Figure 5.15). In their experiments, the authors
noted that in some cases, the previous intra method that did not utilize
the 4D context and had more pixels in the 2D context still obtained better
compression results. To address this, they proposed mode selection, which
switches between the two prediction modes based on which mode provides
better conditional probabilities.

The authors showed, that although for some datasets the method per-
formed comparable to their previous work, it provides up to 15% gain for oth-
ers. They also compared it with [34], which it outperformed on all datasets.

5.15 Summary of Dynamic Point Cloud Com-
pression

Although dynamic point cloud representation became popular only recently,
dynamic point cloud compression is already a well-studied area. This can
be mainly credited to the attention this topic received thanks to the MPEG
standardization process. Since an octree is a natural representation of vox-
elized point cloud data, it is not a surprise that the majority of the inter-
prediction methods are octree-based. Most recent methods are versatile
and can outperform intra-frame prediction methods with data rates already
around 1 bit per occupied voxel. MPEG standardization is still ongoing and
multiple research groups are still interested in improving the current state of
the art. Additional large improvements are still expected in the near future.

53

Chapter 6

Potentially Related Methods in
Different Research Areas

Some of the limitations of current time-varying mesh compression methods
have already been addressed, albeit in different contexts. We will briefly
describe some of this work in this chapter. We believe the field of TVM
compression would benefit significantly from incorporating similar strategies.

6.1 Geometry-Based Connectivity Coding
Many static mesh and some dynamic mesh compression methods are connec-
tivity driven – the geometry and connectivity are encoded simultaneously
during a mesh connectivity traversal. This allows for efficient exploitation
of spatial coherence in the data. In the case of the time-varying mesh, how-
ever, the connectivity-driven compression significantly limits how much of
the temporal coherence is utilized. To the best of our knowledge, all of the
time-varying mesh compression methods that consider connectivity encode
such data separately from geometry. The issue with this approach is that
both geometry and connectivity compression often lead to reordering of ver-
tices, causing inconsistency in data. As was shown in [27], enforcing the order
of vertices in geometry compression might hurt performance. A more feasible
approach might be to encode the geometry first and then use this informa-
tion to reconstruct the connectivity. Note that separate encoding allows one
to treat the geometry as a dynamic point cloud.

Doumanoglou et al. [23] have already considered the geometry-based con-
nectivity coding in terms of time-varying mesh compression (see Section 4.7).
However, their approach is quite inefficient even though at the time which
the method was proposed, several geometry-based connectivity compression
methods had also already beem proposed.

The geometry-based approach was popularized by Lewiner et al., who
proposed a compression method for general convex complexes in arbitrary di-

54

mensions [59]. An overview of the method is shown in Figure 6.1. It traverses
the mesh from the initial cell, where the adjacent cells are reconstructed by
encoding the tip vertices. This is done by first encoding the number of tip
vertices (in the case of triangle meshes, the number is always equal to 1, and
thus this step can be omitted). Then, values are assigned to all candidate
vertices by a so-called geometric function. A range that contains all the cor-
rect tip vertices is encoded. All the vertices in the encoded range are then
sorted by a geometric criterion. After that, an index in the sorted list for
each tip vertex is encoded. For geometric functions and criteria, the authors
propose, for example, the distance to the barycenter of the front cell or the
circumradius.

Figure 6.1: Overview of the connectivity compression scheme proposed by
Lewiner et al. Source: [59]

The method proposed by Marais et al. [72] traverses the mesh similarly
to the Edgebreaker algorithm [82]. To encode the tip of an unprocessed
triangle, the method predicts its position and encodes the rank of the correct
vertex in the list of nearest neighbors of the prediction. The method discusses
two prediction strategies: parallelogram [95] and midpoint prediction. To
better suit the geometry, the prediction is further improved by considering
curvature and scaling (see Figure 6.2). For the first of the two, the prediction
is rotated around the gate edge so that it lies on the plane formed by the edge
and the average position of the vertices in front of it. The scaling is adjusted
so that the prediction lies as close as possible to the nearest vertex in a
frustum in front of the gate edge. To choose between the two strategies, the

55

method first tests both on all the triangles and selects the one with a higher
number of successful attempts. An attempt is successful if the correct vertex
has rank 1. If none of the strategies achieves this, the successful attempt is
selected as the one with the lower rank.

Figure 6.2: Prediction adjustments performed by Marais et al. [72]. Left:
Rotation to accommodate for curvature. Right: Scaling to accommodate
sampling irregularity. Source: [72].

The most recent geometry-based approach, presented in [16], is very well
suited for highly regular data. It is based on a surface reconstruction algo-
rithm called convection (see Figure 6.3). In convection, a Delaunay tetra-
hedronization of the points is constructed. A surface that is initialized as a
convex hull of the points is incrementally adjusted. All its faces are inserted
into the queue. Once a face has been removed from the queue, its Gabriel
half-sphere is checked. If it contains any other vertex, the face is removed
from the surface and replaced by the three other faces of its tetrahedron,
which are also inserted into the queue. The process ends when the queue is
empty. Since this reconstruction can be performed on both sides, only the
times between events are encoded when the process attempts to remove a
face that is present in the data or when it preserves a face that is not present.
This process is applicable only to faces that are part of the Delaunay tetra-
hedronization of the points. The other faces are encoded separately in a less
efficient manner.

Figure 6.3: Example process of convection. Source: [16]

56

6.2 Versatile Temporal Coherence Estimation
As pointed out in Section 4.10, the main issue with the current model-based
TVM compression methods is their lack of versatility. This is, however, not
an issue of the approach itself, but of the applied models. In order to achieve
better results for more general data, the model should make little to no
assumptions other than that of the presence of the temporal coherence itself.
In this section, we will briefly describe the most prominent approaches for
revealing temporal coherence.

The most popular approach is tracking, which for any point on a surface
at a time 𝑡𝑎 attempts to estimate its position at a time 𝑡𝑏. Most tracking
methods propagate a certain template shape (e.g., first frame) over time to
match all the frames, incorporating a non-rigid registration with estimated
correspondences. Without any additional work, this limits tracking only to
surfaces with a constant topology equivalent to that of the template shape.

Figure 6.4: Backwards texture propagation. Source: [12]

This was, however, addressed by Bojsen-Hansen et al. [12]. Their method
also uses the first frame as a template. It is, however, frequently refined
to better match the data. For non-rigid registration, the method uses the
bi-resolution approach proposed by Li et al. [60]. On the coarse level, the
deformation is represented by an embedded graph, which is formed by sub-
sampling vertices of the template and connected using 𝑘-nearest neighbors
considering geodetic distance. Only the vertices of the graph are fitted to the
target frame; for the rest, the deformation is computed using linear blend
skinning of the nearest graph vertices. On the fine level, all the vertices are
considered in fitting, however, the process is much simpler than on the coarse
level. Instead of estimating the correspondences from features, the method
simply projects the points onto the target surface in the normal direction,
which is much more robust to topology change. Since the deformation might
introduce irregularities into the template shape, it is improved by subdivi-
sion of long edges and large triangles and contraction of short edges and
small triangles.

The second and most important refinement is in the sense of topology.
To this end, the authors propose a constrainTopology operation, which takes
the mesh to be refined and a signed distance function (SDF) of a certain
surface as an input. The SDF is sampled on a regular grid. In grid cells

57

where the mesh and isosurface of SDF have a different local topology, the
mesh is resampled using a marching cubes reconstruction of the isosurface
in the cell. This operation is applied twice to the template, first using the
SDF of the template itself to remove topologically complex parts (e.g., self-
intersections), and second using the SDF of the target frame. To preserve
the consistency, the method stores a record for each update of the template.
The record contains set of input and output vertices and mappings of values
between them. The method by Bojsen-Hansen et al. [12] allows, for example,
propagation of texture (see Figure 6.4), or application of displacement maps
to liquid simulation results without requiring one to rerun the simulation.
However, it cannot be used in compression since the tracking results require
a larger storage capacity than the original data itself.

Closely similar to and sometimes interchangeable with tracking is 4D
reconstruction, which focuses on reconstructing evolving shapes from in-
complete observations of data, e.g., color or depth images, point clouds, or
incomplete meshes. Although it is not the main objective, most of the meth-
ods aim to obtain a temporally coherent representation. Describing all the
interesting work in this field is out of the scope of this thesis, and we re-
fer the reader to the report by Zollhöfer et al. [112], for example, for more
information.

Inspired by the optical flow in video, scene flow might be considered an
orthogonal approach to tracking since it does not aim to find the deformed
shape but to find a flow field representing its movement.

Figure 6.5: Two reconstruction examples from [77]. Source: [77]

58

Recently, Niemeyer et al. [77] proposed a method that combines 4D recon-
struction and scene flow. Their method represents the data by an occupancy
function and a vector field that deforms it (see Figure 6.5), both parame-
terized by a neural network. To train the networks, the authors use two loss
functions. The first one, denoted ℒ𝑟𝑒𝑐𝑜𝑛, treats the problem of obtaining the
occupancy function at a certain time as a classification problem, in which
the ground truth occupancy at a point p in time 𝑡 = 𝜏 is matched with pre-
dicted occupancy at a position obtained by backward propagation through
the vector field to a time 𝑡 = 0. The second loss function, ℒ𝑐𝑜𝑟𝑟, is used
only for training the vector field, is optional, and can be used when prior
correspondence information is known. It calculates the Euclidean distance
between a point s in time 𝑡 = 0 propagated to time 𝑡 = 𝜏 and its correspond-
ing point at that time. After the training process is finished, the isosurface
mesh is extracted from the occupancy function at time 𝑡 = 0. To obtain the
positions in a specific frame, only the vertices of the mesh are propagated to
the corresponding time. This is much faster than extracting the isosurface
in all the frames and correspondences are explicitly encoded in the data.
Unfortunately, this limits the obtained surface only to constant topology in-
fluenced mostly by the first frame. However, this does not affect the vector
field, which, in theory, should be able to represent even the movement of the
surfaces of time-varying topology.

59

Chapter 7

Our Contribution

We have published four papers relevant to the topic of this thesis. For the
sake of simplicity, we will discuss only the crucial parts of each work. For
more details, we refer the reader to the original papers.

7.1 Error Propagation Control in Laplacian
Mesh Compression

Our first contribution relevant to the topic of this thesis was concerned with
improving performance under the mechanistic distortion metrics of high-pass
coding [86], a method first proposed for compressing static meshes but later
adapted to dynamic meshes as well [99, 101].

High-pass coding, often called Laplacian mesh compression, is a compres-
sion strategy based on encoding differential coordinates obtained by applying
a discrete Laplace operator to the input geometry. Assuming the geometry
is represented by a matrix X ∈ R|𝑉 |×3, the differential coordinate matrix
D ∈ R|𝑉 |×3 is obtained as follows:

D = MX,

where M ∈ R|𝑉 |×|𝑉 | is a Laplacian matrix corresponding to the chosen
Laplace operator discretization. Naïvely, one could try to quantize and en-
code the values in D and reconstruct the geometry by solving the Poisson
equation:

MX̂ = D̂,

where D̂ is the matrix of differential coordinates distorted by quantization.
However, M is a singular matrix (differential coordinates are translation in-
variant) and the problem cannot be solved trivially. To this end, the original
authors proposed to select one or more vertices per connected component of
the mesh as anchor vertices [86]. For each anchor vertex, a row with a single
nonzero unit element at a position corresponding to the index of such ver-
tex is appended to M, and a rectangular Laplacian matrix M+ is obtained.

60

Using the rectangular Laplacian matrix, an extended differential coordinate
matrix D+ is obtained. The values that are added with respect to D are
actually the positions of anchor vertices. With the linear system extended
by anchor data, X̄ can be reconstructed using the least squares method:

M𝑇
+M+X̄ = M𝑇

+D̄+.

Due to the properties of the normal matrix M𝑇
+M+ (symmetric, sparse,

PSD), the problem can be solved using Cholesky factorization.
Mechanistic approaches (e.g., parallelogram prediction [95]), which work

directly on Euclidean coordinates of vertices, tend to produce high-frequency
artifacts at low data rates that are easily visible, especially in flat or generally
smooth parts of input surfaces. The high-pass coding approach, on the other
hand, tends to produce low-frequency distortion, which is much less likely
to be detected visually. However, it does not perform well under mechanistic
measures since it is not able to control the upper bound of the absolute
coordinate error – while the positions of anchor points are distorted only by
the quantization, the distortion of positions of other vertices is influenced by
the distortion of all the vertices lying between the given vertex and nearby
anchor point. This issue was already addressed in [5, 64], however, while
both approaches improve the mechanistic properties, neither of them brings
the performance on par with parallelogram prediction.

Our approach is based on two proposals. The first is to encode the anchor
data separately and use a reduced Laplacian matrix M′ instead of M+. It
is obtained by removing all the rows and columns corresponding to anchor
vertices from the original matrix and updating D so that it contains known
values. If at least one anchor point was selected per connected component,
M′ has full rank and the reconstruction can be done by solving a simple linear
system. If the original Laplacian matrix M was symmetric and positive semi-
definite, the Cholesky decomposition can be applied to the reduced matrix
as well. This approach was already studied in the original work; however,
the authors pointed out that it led to higher error accumulation and caused
spikes around anchor points. Nevertheless, we show that when it is combined
with the following process, these issues are mitigated.

The key novelty of our approach is based on deeper exploration of the
reconstruction process. The decoder first constructs the factor L such that
LL𝑇 = M′. Then, it solves LȲ = D̄ by forward substitution. Finally, X̄ is
obtained by solving L𝑇 X̄ = Ȳ. Our focus is on the forward substitution. An
𝑖-th row of Ȳ is computed as follows:

ŷ𝑖 =
d̂𝑖 − ∑︀𝑖−1

𝑗=1 𝐿𝑖,𝑗ŷ𝑗

𝐿𝑖,𝑖

.

The error accumulation is caused by the influence of the distortion intro-
duced in the previous 𝑖 − 1 rows. However, the encoder knows the ground-
truth value of Y = L𝑇 X. We thus propose adjusting the value of d̂𝑖 on

61

the fly so that ŷ𝑖 is as close as possible to its original value. While some
error accumulation is also present in backward substitution, the total effect
is substantially reduced by having an error-limited Ȳ.

Table 7.1: Static mesh compression results in comparison with high-pass
coding (HPC) [86], error diffusion [5], and weighted parallelogram (WP) [98].

rate[bpv] proposed HPC Diffusion WP proposed HPC Diffusion WP

bunny 10 4.046E-08 3.507E-08 4.368E-08 8.894E-08 9.877E-09 6.819E-07 3.758E-08 8.874E-09

35946 15 1.166E-08 1.063E-08 1.291E-08 2.596E-08 7.318E-10 4.203E-08 3.541E-09 7.490E-10

bimba 10 9.975E-06 8.628E-06 1.060E-05 3.118E-05 1.094E-05 5.962E-04 5.643E-05 7.449E-06

8857 15 6.056E-07 5.965E-07 6.807E-07 8.626E-06 9.278E-07 4.329E-05 5.063E-06 5.919E-07

fandisk 10 1.520E-04 1.141E-04 1.573E-04 5.909E-04 3.748E-05 1.278E-02 1.639E-04 4.143E-05

6475 15 3.756E-05 3.018E-05 4.066E-05 1.221E-04 1.893E-06 8.643E-04 1.058E-05 2.975E-06

maxplanck 10 1.645E-05 1.605E-05 1.877E-05 3.347E-05 4.820E-06 3.367E-04 3.137E-05 4.322E-06

25445 15 5.411E-06 5.348E-06 6.073E-06 9.277E-06 4.795E-07 3.062E-05 2.408E-06 3.396E-07

chindragon 10 9.577E-04 8.346E-04 1.038E-03 2.315E-03 4.843E-04 2.319E-02 2.212E-03 5.310E-04

585018 15 3.622E-04 3.251E-04 3.866E-04 7.176E-04 5.463E-05 2.384E-03 2.522E-04 5.072E-05

palmyra 10 1.476E-05 1.450E-05 1.635E-05 2.757E-05 8.002E-06 3.893E-04 4.888E-05 7.350E-06

492465 15 4.749E-06 4.541E-06 5.031E-06 7.240E-06 7.950E-07 3.563E-05 4.421E-06 5.322E-07

welshdragon 10 1.086E-02 1.180E-02 1.187E-02 2.083E-02 6.320E-03 3.391E-01 3.332E-02 5.401E-03

291892 15 3.446E-03 3.529E-03 3.599E-03 5.188E-03 5.810E-04 3.039E-02 3.065E-03 3.568E-04

DAME MSE

Not only does our method achieve better control over the propagation
of error, which yields results similar to state-of-the-art methods considering
both mechanistic and perception criteria (see Tables 7.1 and 7.2), but it also
leads to a performance increase in decoding. The reduced Laplacian matrix
has lower fill-in than the originally used normal matrix, and obtaining its
factorization can be done much faster. Additionally, the performance increase
is a result of the fact that the normal matrix is not computed at all. M′ is
also better conditioned. Although it may seem that our method requires
the decoder to use Cholesky factorization for geometry reconstruction, it is
actually independent of the technique used for solving a linear system.

Table 7.2: Dynamic mesh compression results in comparison with respect to
different Laplace operator discretizations. Comparison was done with high-
pass coding [86] and error diffusion [5].

Kirchhoff

Diffusion

Kirchhoff

Proposed

Kirchhoff Cotan

Diffusion

Cotan

Proposed

Cotan

dataset

samba 0.0236 0.0247 0.0215 0.0145 0.0141 0.0125

march 0.0221 0.0223 0.0200 0.0148 0.0147 0.0138

handstand 0.0376 0.0405 0.0345 0.0358 0.0502 0.0246

jump 0.0220 0.0213 0.0209 0.0199 0.0193 0.0197

samba 1.0474 0.5165 0.2643 0.8621 0.4093 0.1968

march 0.8566 0.4777 0.2943 0.5882 0.3659 0.2665

handstand 1.5786 0.8550 0.4320 1.7947 1.3516 0.3721

jump 0.6632 0.3213 0.2901 0.4956 0.2991 0.2879

STED error

KG error

62

On the other hand, the encoding process is slower since the encoder must
additionally compute the factorization. The proposed modification is appli-
cable only to Laplace-Beltrami discretizations that yield a symmetric Lapla-
cian matrix. The most significant limitation is, however, its performance on
highly regular meshes, where the differential coordinates are usually of small
magnitude. On such surfaces, the method tends to overcompensate in a zig-
zag pattern, raising the entropy to higher values than those of the original
method.

7.2 Predictive Compression of Molecular Dy-
namics Trajectories

We have also developed a compression method for dynamic geometry of
molecular structures that exploits the characteristic movement of atoms.
While such data is not directly related to TVMs, some of its properties are
actually similar to dynamic meshes.

Molecular dynamics trajectories capture the dynamic behavior of molec-
ular structures. They are represented by atoms with positions evolving over
time and bonds between them that are usually assumed not to change during
the captured phenomenon. When considering compression, bonds are usu-
ally omitted from the compressed data since they represent only a fraction
of the overall size. However, they must be taken into consideration as an
input since they constrain movement significantly.

Figure 7.1: Molecular movement is mainly constrained to so-called dihedral
angles.

For molecular data, mechanistic approaches are more desirable (yet there
are few methods based, for example, on PCA, e.g., the PCZ format) since
the compressed data is expected to be further analyzed after decompression.
Most of the compression formats in use are being developed as a part of
various molecular dynamics simulation tools (e.g., Gromacs XTC [1] and
TNG [88]). HRTC [46], the most recent compression format, promises data

63

rates below 1 bit per coordinate (bpc), however, we were unable to reproduce
such results in our experiments. The current limitation of the previous work,
in our opinion, is that the atom bond information is not exploited to its full
potential.

Our key observations are that the molecular movement is quite con-
strained (e.g., distance between two atoms forming a bond does not change
much throughout the sequence) and that the greatest variance in atom posi-
tions over time occurs in so-called dihedral angle movement (see Figure 7.1).

p

i

root

PC
j

k

Figure 7.2: The situation during one step of a DFS traversal in predictive
molecule compression. Already encoded atoms are black, atoms to be en-
coded are white, and the current atom is 𝑖.

We first construct a canonical frame that captures the general features
common in all the input frames in an iterative process, where the neigh-
borhood of an atom is aligned with the canonical representation and the
representation is refined to better match the original positions. It is then en-
coded using a simple prediction method based on a depth-first search (DFS)
traversal, in which the position of an atom is predicted by the position of its
predecessor in the traversal. The molecular dynamics trajectories are also
encoded during a DFS traversal; however, the canonical frame is used for
prediction. Edges representing a bond between a currently processed atom
𝑎𝑖 and its predecessor in the traversal 𝑎𝑝 in current and canonical frames
are transformed so that 𝑎𝑖 lies at the origin of the coordinate system and
the edge is aligned with the z-axis. Next, the local neighborhood (see Fig-
ure 7.2) in the current frame is rotated around the z-axis so that the pre-
ceding neighborhood 𝒫 is aligned with the canonical molecule. After that,
we find an angle 𝛼 parameterizing a rotation matrix R𝛼 around the z-axis,
which achieves the best alignment between the current and canonical frames
for the currently coded neighborhood 𝒞. The angle is quantized and encoded.
Due to the dihedral angle movement, a temporal coherence in encoded angles
is expected and we can further reduce the entropy of the data by differential
coding. The predicted positions of coded neighbors in 𝒞 are then achieved
by rotating their canonical positions using R�̂�, where �̂� is the rotation angle
distorted by quantization. The corrections are computed simply as differ-
ences between the predictions and the original values. An entropic coder is

64

used to compress the quantized angles and corrections.

Table 7.3: Comparison of the proposed PMC against other formats in terms
of relative size of compressed data (lower values are better). H5 denotes
the HDF5 format with MAFISC [45] compression filter for general multi-
dimensional data. The maximal allowed error limit was ≈ 0.00866 Å. HRTC
and PCZ may exceed this limit.

Relative size of compressed data [bpc]
H5 XTC TNG HRTC PCZ PMC

p53 13.4 10.1 8.0 10.2 9.4 5.2
p53-0.05 11.9 10.2 6.4 8.2 9.7 5.1
ARID 14.1 10.2 9.0 16.5 5.6 5.2
DhaA31 14.7 10.1 8.1 12.9 6.6 5.2
ethanol 15.5 9.4 9.4 14.6 7.5 7.0
water 15.4 8.8 8.8 13.8 14.7 7.5

Max. error [Å]
HRTC PCZ

0.00875 2.54
0.00880 1.55
0.00050 3.72
0.00906 3.56
0.00883 25.79
0.00876 11.91

Our results are substantially better than the results obtained with other
state-of-the-art methods and allow either saving 1.3–3.8 bits per coordinate
at the same precision or providing up to 10× better precision at the same
data rate. (see Table 7.3). The biggest increase in performance can be ob-
served for large molecular structures (e.g., proteins). The method is relatively
simple, with the most complex operation being the rotational alignment of
an atom neighborhood. However, we show that this problem can actually be
solved in closed form using a simple formula and does not require computing
an SVD of any matrix, as is usual in solving an alignment problem. While
the atoms must be processed in a sequential order determined from the DFS,
the method can be parallelized in terms of frame positions of single atoms
as long as the differential coding of angles is performed when all the frames
are processed. The method does not support streaming, since the data is
processed in two passes (canonical molecule construction and encoding).

7.3 Towards Understanding Time-Varying Tri-
angle Meshes

To address the lack of versatility of models used in time-varying mesh com-
pression, we have presented a tracking pipeline that outputs a representation
of the underlying movement with interesting properties that the TVM com-
pression could benefit from.

Our idea follows from the fact that in many practical scenarios where
a surface is captured from multiple viewpoints, the overall enclosed volume
changes negligibly – it does not suddenly appear or disappear. This, however,
does not hold for the surface itself, where a part might disappear due to self-

65

contact (see Figure 7.3). Instead of points on a surface, we propose to track
a fixed number of volumetric centers: points representing a small volume
surrounding them. Our objective is to find the positions of such centers
that evolve over time so that they cover all parts of each frame, are evenly
distributed over the volume, and move consistently with their surrounding
centers.

time

sp
a

ce

captured surface

hidden surface due to self-contact

tracked position of a center

Figure 7.3: Schematic of volume tracking in 1D space: during the sequence,
two objects (green and blue) touch and then separate.

Our method is applied to each frame as follows. First, we sample an indi-
cator (occupancy) function in a regular grid over the frame’s bounding box.
Then we find an initial distribution of centers. This is done by initializing the
centers in randomly selected occupied voxels and performing Lloyd’s algo-
rithm [63], which repeatedly computes a Voronoi partitioning of the enclosed
volume with centers as generators and moves the centers into centroids of
corresponding cells. Since it is quite difficult to evaluate the centroid po-
sition analytically, we approximate it as an average position of centers of
occupied voxels inside the corresponding Voronoi cell. For the first frame,
the method already terminates. For any subsequent frame, we next apply
the Kuhn-Munkers algorithm [55] to estimate correspondences between the
centers of the previous and current frames, using squared distances as a cost
function. However, we penalize any correspondence outside the volume (see
Figure 7.4). Finally, we apply an optimization process ensuring the consis-
tence of the represented movement. Our energy 𝐸 consists of uniformity and
smoothness terms: 𝐸 = 𝐸𝑢 + 𝛽𝐸𝑠. The uniformity term

𝐸𝑢 = 1
2

∑︁
c𝑖∈𝐶

‖c𝑖 − m𝑖‖2,

where c𝑖 is a position of 𝑖-th center and m𝑖 is a position of the centroid of its
corresponding Voronoi cell, ensures uniform distribution of centers inside the

66

volume. The movement between frames can be represented by a vector field
v sampled at the centers in the previous frame. We measure the smoothness
of the movement by a squared length of Laplacian Δv using the Laplace
operator discretization proposed by Belkin [8]:

𝐸𝑠 =
∑︁

ĉ𝑖∈𝐶

‖Δv(ĉ𝑖)‖2 = 1
|𝐶|

∑︁
ĉ𝑖∈𝐶

‖
∑︁

ĉ𝑗∈𝐶

𝐻 𝑡(ĉ𝑖, ĉ𝑗)(v𝑗 − v𝑖)‖2,

where 𝐻 𝑡(x, y) = 1
(4𝜋𝑡)

5
2
𝑒− ‖x−y‖2

4𝑡 is a Gaussian kernel with parameter 𝑡, and
v(ĉ𝑖) = c𝑖 − ĉ𝑖 = v𝑖 is a displacement vector between the position of the
center in the previous frame ĉ𝑖 and its current position c𝑖. We solve the
optimization using a gradient descent.

Figure 7.4: Correspondences outside the volume are inherently wrong and
lead to a transfer of centers between separate parts of the object.

The resulting centers capture, to some extent, the underlying motion (see
Figure 7.5). We show that a simple implicit function can be derived from
the tracking results that has an isosurface approximating the original data.
Even in an uncompressed form, the tracked centers have much lower storage
requirements than the original data. Additionally, since the center ordering
is consistent in time, we can further reduce the data size using PCA. We
show that for a selected human performance dataset, 90% of the information
is already contained in the first 50 out of 1638 principal components.

Figure 7.5: Results of the original volume tracking method on selected human
performance datasets.

67

The tracking pipeline, as proposed in this original paper, still has some
limitations. Mainly the smoothness term does not capture a global rigid
movement (see Figure 7.6b) and the weighting based on proximity of cen-
ters actually leads to a transfer of centers between separate parts of the
tracked object. The transfer is, however, caused by multiple other factors.
For example, while the correspondence estimation penalizes the correspon-
dence between different parts, it does not prevent such assignment. Besides
that, the selected optimizing strategy requires a large number of iterations
and does not guarantee a convergence.

7.4 As-Rigid-As-Possible Volume Tracking For
Time-Varying Surfaces

We have presented improvements to the volume-tracking pipeline that ad-
dress some of the issues that arose in the original method described in Section
7.3.

One of the most problematic parts of the original pipeline was the cor-
respondence estimation. Combined with the initial distribution of centers,
its goal was to provide an initial configuration for the optimization process.
In our experiments, however, it turned out that much better results were
obtained when the initial configuration was created by extrapolating the
centers from the previous frame. Not only does this adjustment make the
tracking more stable, but it also does not require the application of Lloyd’s
algorithm to each frame – only to the first one.

The biggest improvements were achieved by changes in the optimiza-
tion step. We incorporated a different smoothing term 𝐸𝑠, inspired by the
as-rigid-as-possible (ARAP) approach already used in various similar opti-
mization scenarios [6]. The ARAP energies ensure that points move rigidly
or nearly rigidly with their neighborhood. We evaluate 𝐸𝑠 as a squared dis-
tance between the current center position and a prediction achieved by an
estimated rigid movement:

𝐸𝑠 = 1
2

∑︁
c𝑖∈𝐶

‖c𝑖 − p𝑖‖2,

where p𝑖 = 𝒜𝑖(ĉ𝑖) = R𝑖ĉ𝑖 +t𝑖, R𝑖 is a rotation matrix and t𝑖 is a translation
vector, such that

(R𝑖, t𝑖) = arg min
R∈SO(3),t∈R3

∑︁
𝑤𝑖𝑗≥𝜇

𝑤𝑖𝑗 ‖c𝑗 − (Rĉ𝑗 + t)‖2 ,

where 𝑤𝑖𝑗 is an affinity weight of an ordered pair of centers (𝑐𝑖, 𝑐𝑗) and 𝜇 is a
weight threshold. The alignment problem yielding the rigid transformation
has a closed form solution obtained using a weighted Kabsch algorithm [87].

68

Given that both energy terms can now be interpreted as a squared dis-
tance between the actual center position and some prediction (Voronoi cell
centroid m𝑖, rigid movement prediction p𝑖), we can utilize a different opti-
mization strategy. If we ignore that both predictions depend on the optimized
center positions and consider them fixed, the optimal center position can be
simply computed as a weighted average:

c𝑖 = m𝑖 + 𝛽p𝑖

1 + 𝛽
.

Similarly to update step in Lloyd’s algorithm, we can alternate between
fixing the centers and updating predictions, and fixing the predictions and
updating the centers. Our experiments show that such an optimization strat-
egy requires many fewer iterations to obtain satisfying results, however, we
still have no guarantee of convergence.

Basing the weight 𝑤𝑖𝑗 in the smoothness term only on the proximity
turned out to be problematic in the original method. To this end, we propose
combining this information with similarity of motion:

𝑤𝑖𝑗 = 𝑎𝑝
𝑖𝑗 �̃�

𝑓
𝑖𝑗,

where 𝑎𝑝
𝑖𝑗 = exp(−𝜎𝑝 ·‖ĉ𝑖 − ĉ𝑗‖2) is the proximity term and �̃�𝑓

𝑖𝑗 is the filtered
motion affinity at current frame 𝑓 , which is computed as follows:

�̃�0
𝑖𝑗 = 𝑎𝑝

𝑖𝑗,

�̃�𝑓 ̸=0
𝑖𝑗 = 𝛼𝑎𝑚

𝑖𝑗 + (1 − 𝛼)�̃�𝑓−1
𝑖𝑗 ,

where the parameter 0 < 𝛼 < 1 controls the response falloff. We employ
such an infinite impulse response (IIR) filter to accumulate the motion in-
formation from previous frames. The unfiltered motion affinity 𝑎𝑚

𝑖𝑗 for a given
frame is evaluated using the dissimilarity of rigid transformations:

𝑎𝑚
𝑖𝑗 = exp(−𝜎𝑚 · 𝑑𝑖(𝒜𝑖, 𝒜𝑗)2),

𝑑𝑖(𝒜, ℬ)2 = 1
|𝑉𝑖|

∑︁
v𝑘∈𝑉𝑖

‖𝒜(v𝑘) − ℬ(v𝑘)‖2 ,

where 𝒜𝑖 and 𝒜𝑗 are the final estimated rigid transformation from the op-
timization process in the last frame and 𝑉𝑖 is a set of all the positions of
voxels in the Voronoi cell generated by the center ĉ𝑖 [43].

To quantify the quality of tracking results, we have proposed two met-
rics: PCA compactness (PCAC) and deviation from uniformity (DFU). The
PCAC measures the complexity of the tracked center trajectories:

𝑃𝐶𝐴𝐶 =
3𝐹 −1∑︁
𝑖=0

𝑖
𝑁−1∑︁
𝑗=0

|𝑐𝑗
𝑖 |,

69

where 𝑐𝑗
𝑖 is a PCA projection coefficient of the 𝑗-th center trajectory onto the

𝑖-th principal direction, 𝑁 is the number of centers, and 𝐹 is the number of
frames. The complexity of the tracked trajectories is given by the complex-
ity of the input movement itself, together with the redundant complexity
caused by tracking errors. The DFU measures the average relative standard
deviation of Voronoi cell sizes:

𝑣𝑓 = 1
𝑁

𝑁∑︁
𝑖=0

𝑣𝑓
𝑖 ,

𝐷𝐹𝑈𝑓 =

⎯⎸⎸⎷ 1
𝑁

𝑛−1∑︁
𝑖=0

(𝑣𝑓
𝑖 − 𝑣𝑓)2,

𝐷𝐹𝑈 = 1
𝐹

𝐹 −1∑︁
𝑓=0

𝐷𝐹𝑈𝑓

𝑣𝑓

,

where 𝑣𝑓
𝑖 is the number of voxels in the Voronoi cell generated by a center

c𝑖 in the frame 𝑓 . To show the superiority of one method over another, the
better one must provide better results in one criterion while also achieving
better or comparable results in the other.

(a) Improved (b) Original

Figure 7.6: Tracking results of a rotating pentagonal prism. The original
method fails to recognize such motion.

When compared with the original method, not only do we achieve bet-
ter results in the proposed metrics, but the tracking results are also much
more visually pleasing. The transfer of centers between different parts is sig-
nificantly reduced, but unfortunately still not completely eliminated. Our
method is also able to detect large global rigid motions (see Figure 7.6).
ARAP-based tracking also shows better overall performance when applied
to noisy datasets, although it may spawn a local motion in cases where the
global movement is ambiguous.

70

Chapter 8

Future Work

As we already stated, we have decided to focus our future work only on
the compression of time-varying meshes since dynamic mesh compression
is already a well-studied area. We plan to work on a compression method
with a similar overall structure to the method proposed by Doumanoglou
et al. [23] in the sense that it will encode the geometry first, which will then
be used to drive the connectivity coding. Geometry encoding of a single
frame will consist of 1) propagating the geometry of the previous frame
using a certain temporal model to obtain a reference shape and 2) applying
a certain data reduction technique given the redundant data with respect to
such a reference shape. The structure is outlined in Figure 8.1. At the end
of this chapter, we will also discuss some goals that should be addressed in
a more distant future.

Figure 8.1: Outline of the structure of a TVM compression with a versatile
temporal model 𝑀 . Thin arrows represent the data flow, while bold arrows
represent the order of operations. ℳ𝑖 denotes a mesh at the 𝑖-th frame, ℛ𝑖

denotes its reference shape, 𝒫𝑖 is a point cloud consisting of its vertices, and
𝑇𝑖 is its connectivity. The bar above a symbol denotes data distorted by
compression.

71

8.1 Time-Varying Mesh Compression with a
Versatile Temporal Model

The most crucial part of designing such a compression method will be se-
lecting an appropriate temporal model. Although, for example, [48] showed
it is possible to use the previous frame itself as a reference shape for inter-
coding of the current frame geometry, the compression performance can be
improved upon if a temporal model is used to adjust the reference shape
with respect to the underlying motion because such reference, in theory,
should be closer to the coded shape. This is, however, based on the as-
sumption that the model sufficiently captures the dynamic behavior of the
sequence. To achieve higher versatility of the method, the model must also
handle topological changes. Not only must it be able to represent surfaces
with varying topology, but it should also be able to adjust the genus of the
reference shape in cases, when the topology change occurs between consec-
utive frames. While this adjustment is not required for the method to be
applicable to such data, the compression performance might be negatively
affected if this is not addressed.

When selecting the model, it is also important to consider its data foot-
print since it will be encoded alongside the data as well. Note that the
amount of information present in the model is indirectly connected to the
efficiency of the inter-coding. For example, given a model that basically out-
puts the correct triangle mesh as a reference shape, little to no information
is required to be transmitted during the inter-coding, but the model itself
may take the majority of the resulting data size. While this can be, to some
extent, addressed by lossless compression of the model, it is better to allow
for a loss of information, preferably with intuitive control over the size of
the model and the quality of the prediction.

With the improvements proposed in our latest work, we believe that
the volume tracking results adequately represent the temporal information
present in data. One additional advantage of the tracked centers approach
is that it was designed with the data footprint in mind. Since the center
ordering is consistent throughout the sequence, the size of the model can
be compressed through the PCA. Additionally, we can directly control the
quality of the model through the encoding process by choosing the number of
principal directions to preserve. To allow the applicability of tracked centers
as a temporal model in time-varying mesh compression, we must still derive a
process that relates the motion of the centers to the motion of coded vertices
to be able to deform the previous frame to obtain the reference shape. This
can be done, for example, by using an embedded deformation approach [90] in
which the corresponding position of a point p is obtained by linear blending

72

of rigid transformations assigned to tracked centers:

p̄ =
𝑛∑︁

𝑖=1
𝑤𝑖(p) [R𝑖(p − c𝑖) + c𝑖 + t𝑖] ,

where 𝑤𝑖(p) are weight functions usually based on the Euclidean distance
in R3 between the point p and center c𝑖. The main issue of embedded defor-
mation, and of similar approaches as well, is that they ignore the interior-
exterior information. This means that different parts of the shape influence
each other even when not directly connected, and that there is no mecha-
nism for handling self-intersections. While it is desirable for some parts of
the surface to come into contact, self-intersections are not desired. We are
currently working on incorporating the geodesic distance in the volume into
the weights, which might solve the problem of influence by separate parts,
but the latter issue remains unsolved. Addressing these issues is, in our opin-
ion, the most challenging part of the future work, on which we should focus
with the highest priority.

Another temporal model that can be considered is the vector field neural
network of Niemeyer et al. [77]. However, similarly to the approach presented
above, the vector field does not consider interior-exterior information. Given
that the vector field is continuous and is defined outside of the surface vol-
ume, it has difficulties with representing closely located motions of opposite
direction. This indicates that no self-intersections occur. However, not only
it is impossible for two parts of the surface to come into contact, but when at-
tempting to do so, these parts are also undesirably deformed (see Figure 8.2).
In our opinion, it is much more desirable to allow self-intersections than not
to allow self-contact. While the neural network is itself a reduced represen-
tation of a dense time-dependent vector field, it is much more complicated
to reduce the size further. Nevertheless, we will also be closely monitoring
other newly proposed methods in 4D reconstruction and related problems
since this area currently receives a lot of attention.

Figure 8.2: Collision of objects propagated by continuous vector is impossi-
ble. Instead, the objects are undesirably deformed.

Another challenge in obtaining the reference shape, independently of
which approach is selected as a base for the temporal model, will be ad-

73

dressing the change of topology between consecutive frames. If we apply
the deformation directly to the vertices of the previous frame, the reference
shape will have a different topology from the coded frame. We believe this
could be alleviated by deforming an implicit representation of the shape in-
stead, followed by surface extraction. However, while this approach solves
the merging of parts, other adjustments are required to address their sepa-
ration.

Another important part of the compression pipeline is the geometry cod-
ing given the reference shape obtained by the temporal model. The simplest
approach is the prediction present in the work by Doumanoglou et al. [23]:
each encoded vertex is predicted by its nearest neighbor in the reference
shape. We will also consider dynamic point cloud approaches based on the
coherence of spatial data structures. By incorporating the reference shape in
an XOR prediction of octrees [48], a method equivalent to the one in [93] is
obtained with an alternative mechanism for motion compensation. It is also
possible to consider the Silhouette 4D approach based on context modeling.
However, since all the listed point cloud approaches work on voxelized point
clouds, there is a possibility of multiple vertices falling inside a single voxel.
If this is not signaled to the decoder, such vertices are to be replaced by a
single vertex when reconstructing the point cloud from a voxelized repre-
sentation, which destroys the isomorphism between the original and recon-
structed data. Signaling such information, however, introduces additional
data to be encoded, and thus the objective is to perform the voxelization
process with caution to reduce the occurrence of this phenomenon.

One possible challenge we might need to address is the dependence of
all the listed geometry coding approaches on the relative sampling density
between the reference and the coded shape. Compared to cases, when the
sampling density is similar, in a case when the sampling density of the refer-
ence is much higher, the prediction by Doumanoglou et al. [23] will have to
encode much more symbols representing that a reference vertex is not used
to predict any coded vertex, and conversely, in a case when it is much lower,
the length of correction vectors will increase. In the case of point cloud ap-
proaches, the sampling density directly influences the structure of voxelized
data. This might not be an issue when the temporal model propagates the
mesh of the previous frame since we expect that all the frames were obtained
in an identical process. However, if we choose to propagate a different (e.g.,
implicit) representation of a surface, such an assumption cannot be made.
While this problem can be solved by simplifying or remeshing the reference
shape, we plan to explore the possibilities of prediction more oblivious to
this issue. Mourycová – Váša [75] have already conducted some experiments
in this area, but their method is only efficient for very low data rates and is
currently limited in terms of the required quality of the reference shape.

Since all the listed geometry coding approaches reorder the vertices, it
will be important to preserve the order during the connectivity coding. As

74

discussed in Section 6.1, this can be done by driving the connectivity coding
using the already reconstructed geometry. Of the existing methods, the most
suitable for our scenario is the one proposed by Marais et al. [72] since it
performs best on the general manifold meshes we expect as input. Neverthe-
less, we believe, that their approach can still be significantly improved. For
example, it traverses the connectivity similarly to Edgebreaker [82], which
strongly limits the order of processed triangles and the edges through which
they will be discovered. This in turn negatively influences the resulting data
rate, since a triangle can be discovered through an edge, where the prediction
obtains a larger number of candidate vertices. We are currently experiment-
ing with a different approach that determines the order from the certainty
of the prediction.

When evaluating the compression performance, one might consider com-
paring the results with those of the method by Doumanoglou et al. [23].
However, since our goal is to be able to efficiently compress more general
data rather than only human TVMs, this comparison is actually irrelevant.
More relevant for such a comparison should be the approach based on the
MPEG V-PCC codec [27], which, however, is outperformed by a static mesh
approach. For this reason, it is thus most preferable to compare with static
mesh compression algorithms, e.g., a weighted parallelogram [98]. The com-
parison should be done on various types of datasets, including, for example,
human performances or liquid simulations. For now, our goal is to achieve
better compression rates with comparable distortion but without consider-
ing the computation times, since even obtaining the temporal model of the
data is already a slow process.

8.2 Distant Goals
In a more distant future, we plan to study how to achieve real-time or near-
real-time performance without sacrificing the versatility to allow the appli-
cation of our method in tele-immersion. Almost certainly, some sacrifices
will have to be made, for example, by discarding a fraction of the frames
and replacing them with the deformed previous frame. This would lead to a
loss of isomorphism between the original and decoded vertices, which would
also make it more difficult to measure the distortion. The temporal model
should also be heavily altered so that it can be obtained as fast as possible.
Additionally, in real-time scenarios, we do not have access to all the frames
of the sequence at any time. Thus, instead of constructing a complete model
at the beginning, it must be updated before encoding each frame, and this
update must be encoded as well. Unfortunately, for now, the tracked centers
temporal model is unusable in such a scenario due to the computational
complexity, and even if it were usable, we would have to consider different
ways of encoding it since the PCA coding expects the center positions in all

75

the frames to already be available.
To date, the performance of all the TVM compression methods has been

evaluated using only the mechanistic error measures. To the best of our
knowledge, there is currently no perceptual metric designed specifically to
work with the geometry of time-varying meshes, and the only option for now
is to render the frames from multiple viewpoints and use perceptual metrics
for videos. For this reason, we believe it is important to turn our future
attention to this research area as well.

76

Chapter 9

Conclusions

We have studied the problem of compression of triangle mesh and point
cloud sequences. Investigation of the current state of the art has shown
high potential for future improvements in the field of time-varying mesh
compression, even simply by experimenting with modern and more effective
alternatives to some of the key parts of current methods. In contrast, there
is currently little to no potential for improvement in the field of compression
of dynamic meshes. It is also very unlikely we will make any breakthrough
in dynamic point cloud compression; however, this field is highly relevant to
TVM compression as it can be incorporated into TVM geometry coding.

Although we have not yet presented any novel TVM compression method,
we have already focused on designing a mathematical model that captures
the temporal coherence of data. The proposed model is not only designed
to be used in geometry prediction, but may also be beneficial in different
general mesh sequence processing tasks (e.g., in temporally coherent texture
mapping).

The main goal of the doctoral thesis is to compile the knowledge we have
collected so far in proposing a novel TVM compression method. It combines
geometry coding based on a carefully selected temporal model and connec-
tivity coding which exploits the already compressed geometry. We have also
set more distant goals that might not be addressed in this Ph.D. study. Those
are: 1) adapting the proposed method for real-time performance to allow its
usage in tele-immersion, and 2) studying the possibility of measuring the
distortion of general mesh sequences correlating with human perception.

77

Bibliography

[1] GROMACS File Formats, 2018. http://manual.gromacs.org/
documentation/2018/user-guide/file-formats.html.

[2] G-PCC Codec Description v9. ISO/IEC JTC1/SC29/WG7 N0011.
October 2020.

[3] Call for proposals for point cloud compresssion V2. ISO/IEC
JTC1/SC29/WG11 N16763. April 2017.

[4] V-PCC Codec Description v8. ISO/IEC JTC1/SC29/WG11 N18892.
November 2019.

[5] Alexa, M. – Kyprianidis, J. E. Error diffusion on meshes. Computers &
Graphics. 2015, 46, pages 336–344. ISSN 0097-8493. doi:
10.1016/j.cag.2014.09.010. Online: https:
//www.sciencedirect.com/science/article/pii/S0097849314000983.
Shape Modeling International 2014.

[6] Alexa, M. – Cohen-Or, D. – Levin, D. As-Rigid-as-Possible Shape
Interpolation. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’00, pages 157–164,
USA, 2000. ACM Press/Addison-Wesley Publishing Co. doi:
10.1145/344779.344859. Online:
https://doi.org/10.1145/344779.344859. ISBN 1581132085.

[7] Alexiadis, D. S. – Zarpalas, D. – Daras, P. Real-time, full 3-D
reconstruction of moving foreground objects from multiple consumer depth
cameras. IEEE Transactions on Multimedia. 2012, 15, 2, pages 339–358.

[8] Belkin, M. – Sun, J. – Wang, Y. Discrete laplace operator on meshed
surfaces. In Proceedings of the twenty-fourth annual symposium on
Computational geometry, pages 278–287. ACM, 2008.

[9] Besl, P. J. – McKay, N. D. Method for registration of 3-D shapes. In
Sensor fusion IV: control paradigms and data structures, 1611, pages
586–606. International Society for Optics and Photonics, 1992.

[10] Biswas, S. et al. MuSCLE: Multi Sweep Compression of LiDAR using
Deep Entropy Models. arXiv preprint arXiv:2011.07590. 2020.

78

http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html
http://manual.gromacs.org/documentation/2018/user-guide/file-formats.html
https://www.sciencedirect.com/science/article/pii/S0097849314000983
https://www.sciencedirect.com/science/article/pii/S0097849314000983
https://doi.org/10.1145/344779.344859

[11] Bogo, F. et al. Dynamic FAUST: Registering Human Bodies in Motion.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[12] Bojsen-Hansen, M. – Li, H. – Wojtan, C. Tracking Surfaces with
Evolving Topology. ACM Trans. Graph. July 2012, 31, 4. ISSN 0730-0301.
doi: 10.1145/2185520.2185549. Online:
https://doi.org/10.1145/2185520.2185549.

[13] Briceño, H. M. et al. Geometry videos. In Eurographics/SIGGRAPH
symposium on computer animation (SCA). Eurographics Association,
2003.

[14] Cao, C. et al. Skeleton-based motion estimation for Point Cloud
Compression. In 2020 IEEE 22nd International Workshop on Multimedia
Signal Processing (MMSP), pages 1–6, 2020. doi:
10.1109/MMSP48831.2020.9287165.

[15] Cao, C. – Preda, M. – Zaharia, T. What’s new in Point Cloud
Compression? Global Journal of Engineering Sciences. 03 2020, 4. doi:
10.33552/GJES.2020.04.000598.

[16] Chaine, R. – Gandoin, P.-M. – Roudet, C. Reconstruction Algorithms
as a Suitable Basis for Mesh Connectivity Compression. IEEE
Transactions on Automation Science and Engineering. 2009, 6, 3,
pages 443–453. doi: 10.1109/TASE.2009.2021336.

[17] Chen, C. et al. High-Fidelity Compression of Dynamic Meshes with Fine
Details Using Piece-Wise Manifold Harmonic Bases. In Proceedings of
Computer Graphics International 2018, CGI 2018, pages 23–32, New York,
NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3208159.3208163. Online:
https://doi.org/10.1145/3208159.3208163. ISBN 9781450364010.

[18] Corsini, M. et al. Perceptual Metrics for Static and Dynamic Triangle
Meshes. Computer Graphics Forum. 2013, 32, 1, pages 101–125. doi:
10.1111/cgf.12001. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12001.

[19] Daribo, I. et al. Efficient rate-distortion compression of dynamic point
cloud for grid-pattern-based 3D scanning systems. 3D Research. 2012, 3,
1, pages 2.

[20] De Queiroz, R. L. – Chou, P. A. Compression of 3d point clouds using a
region-adaptive hierarchical transform. IEEE Transactions on Image
Processing. 2016, 25, 8, pages 3947–3956.

[21] Queiroz, R. L. – Chou, P. A. Motion-compensated compression of
dynamic voxelized point clouds. IEEE Transactions on Image Processing.
2017, 26, 8, pages 3886–3895.

79

https://doi.org/10.1145/2185520.2185549
https://doi.org/10.1145/3208159.3208163
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12001

[22] Dou, M. et al. 3D scanning deformable objects with a single RGBD
sensor. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 493–501, 2015.

[23] Doumanoglou, A. et al. Toward real-time and efficient compression of
human time-varying meshes. IEEE Transactions on Circuits and Systems
for Video Technology. 2014, 24, 12, pages 2099–2116.

[24] Dvořák, J. – Vaněček, P. – Váša, L. Towards Understanding Time
Varying Triangle Meshes. In Paszynski, M. et al. (Ed.) Computational
Science – ICCS 2021, pages 45–58, Cham, 2021. Springer International
Publishing. doi: 10.1007/978-3-030-77977-1_4. ISBN 978-3-030-77977-1.

[25] Dvořák, J. – Maňák, M. – Váša, L. Predictive compression of
molecular dynamics trajectories. Journal of Molecular Graphics and
Modelling. 2020, 96, pages 107531. ISSN 1093-3263. doi:
10.1016/j.jmgm.2020.107531. Online: https:
//www.sciencedirect.com/science/article/pii/S1093326319306564.

[26] Dvořák, J. et al. As-rigid-as-possible volume tracking for time-varying
surfaces. Computers & Graphics. 2022, 102, pages 329–338. ISSN
0097-8493. doi: 10.1016/j.cag.2021.10.015. Online: https:
//www.sciencedirect.com/science/article/pii/S0097849321002284.

[27] Faramarzi, E. – Joshi, R. – Budagavi, M. Mesh Coding Extensions to
MPEG-I V-PCC. In 2020 IEEE 22nd International Workshop on
Multimedia Signal Processing (MMSP), pages 1–5, 2020. doi:
10.1109/MMSP48831.2020.9287057.

[28] Feng, X. et al. A perceptual quality metric for 3D triangle meshes based
on spatial pooling. Frontiers of Computer Science. 2018, 12, 4,
pages 798–812. ISSN 2095-2236. doi: 10.1007/s11704-017-6328-x. Online:
https://doi.org/10.1007/s11704-017-6328-x.

[29] Feng, Y. – Liu, S. – Zhu, Y. Real-Time Spatio-Temporal LiDAR Point
Cloud Compression, 2020.

[30] Furukawa, R. et al. One-shot Entire Shape Acquisition Method Using
Multiple Projectors and Cameras. In 2010 Fourth Pacific-Rim Symposium
on Image and Video Technology, pages 107–114, 2010. doi:
10.1109/PSIVT.2010.25.

[31] Galligan, F. et al. Google/Draco: a library for compressing and
decompressing 3D geometric meshes and point clouds, 2018.

[32] Gao, Z. et al. [G-PCC][New proposal] Predictive Geometry Coding.
ISO/IEC JTC1/SC29/WG11 MPEG2019/m51012. October 2019.

[33] Garcia, D. C. – Queiroz, R. L. Context-based octree coding for
point-cloud video. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 1412–1416. IEEE, 2017.

80

https://www.sciencedirect.com/science/article/pii/S1093326319306564
https://www.sciencedirect.com/science/article/pii/S1093326319306564
https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://doi.org/10.1007/s11704-017-6328-x

[34] Garcia, D. C. et al. Geometry coding for dynamic voxelized point clouds
using octrees and multiple contexts. IEEE Transactions on Image
Processing. 2019, 29, pages 313–322.

[35] Garland, M. – Heckbert, P. S. Surface simplification using quadric
error metrics. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 209–216, 1997.

[36] Graziosi, D. et al. An overview of ongoing point cloud compression
standardization activities: video-based (V-PCC) and geometry-based
(G-PCC). APSIPA Transactions on Signal and Information Processing.
2020, 9, pages e13. doi: 10.1017/ATSIP.2020.12.

[37] Gupta, S. – Sengupta, K. – Kassim, A. Registration and
partitioning-based compression of 3-D dynamic data. IEEE transactions
on circuits and systems for video technology. 2003, 13, 11, pages 1144–1155.

[38] Hammond, D. K. – Vandergheynst, P. – Gribonval, R. Wavelets on
graphs via spectral graph theory. Applied and Computational Harmonic
Analysis. 2011, 30, 2, pages 129–150.

[39] Han, S.-R. – Yamasaki, T. – Aizawa, K. Time-varying mesh compression
using an extended block matching algorithm. IEEE Transactions on
Circuits and Systems for Video Technology. 2007, 17, 11, pages 1506–1518.

[40] Han, S.-R. – Yamasaki, T. – Aizawa, K. Geometry compression for
time-varying meshes using coarse and fine levels of quantization and
run-length encoding. In 2008 15th IEEE International Conference on
Image Processing, pages 1045–1048. IEEE, 2008.

[41] Hanocka, R. et al. MeshCNN: A Network with an Edge. ACM
Transactions on Graphics (TOG). 2019, 38, 4, pages 90.

[42] Hou, J. et al. A novel compression framework for 3D time-varying
meshes. In 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 2161–2164. IEEE, 2014.

[43] Hruda, L. – Dvořák, J. – Váša, L. On evaluating consensus in
RANSAC surface registration. Computer Graphics Forum. 2019, 38, 5,
pages 175–186. doi: 10.1111/cgf.13798. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13798.

[44] Hruda, L. – Dvořák, J. Estimating approximate plane of symmetry of
3D triangle meshes. In Proc. Central European Seminar on Computer
Graphics, 2017.

[45] Hübbe, N. – Kunkel, J. Reducing the hpc-datastorage footprint with
mafisc—multidimensional adaptive filtering improved scientific data
compression. Computer Science-Research and Development. 2013, 28, 2,
pages 231–239.

81

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13798

[46] J., H. et al. Compressing molecular dynamics trajectories: Breaking the
one-bit-per-sample barrier. Journal of Computational Chemistry. 2016,
pages 1897 – 1906. doi: 10.1002/jcc.24405.

[47] Jain, J. – Jain, A. Displacement measurement and its application in
interframe image coding. IEEE Transactions on communications. 1981,
29, 12, pages 1799–1808.

[48] Kammerl, J. et al. Real-time compression of point cloud streams. In
2012 IEEE International Conference on Robotics and Automation, pages
778–785. IEEE, 2012.

[49] Karni, Z. – Gotsman, C. Spectral compression of mesh geometry. In
Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 279–286, 2000.

[50] Karni, Z. – Gotsman, C. Compression of soft-body animation sequences.
Computers & Graphics. 2004, 28, 1, pages 25–34. ISSN 0097-8493. doi:
10.1016/j.cag.2003.10.002. Online: https:
//www.sciencedirect.com/science/article/pii/S0097849303002267.

[51] Katajainen, J. – Mäkinen, E. Tree compression and optimization with
applications. International Journal of Foundations of Computer Science.
1990, 1, 04, pages 425–447.

[52] Kathariya, B. et al. Embedded binary tree for dynamic point cloud
geometry compression with graph signal resampling and prediction. In
2017 IEEE Visual Communications and Image Processing (VCIP), pages
1–4, 2017. doi: 10.1109/VCIP.2017.8305130.

[53] Kawasaki, H. et al. Dynamic scene shape reconstruction using a single
structured light pattern. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8, 2008. doi:
10.1109/CVPR.2008.4587702.

[54] Kim, J. et al. 3D Motion Estimation and Compensation Method for
Video-Based Point Cloud Compression. IEEE Access. 2020, 8,
pages 83538–83547. doi: 10.1109/ACCESS.2020.2991478.

[55] Kuhn, H. W. The Hungarian method for the assignment problem. Naval
research logistics quarterly. 1955, 2, 1-2, pages 83–97.

[56] Lasserre, S. – Flynn, D. Point Cloud Compression in MPEG and
beyond, May 2019. Online:
http://clim.inria.fr/workshop/LasserrePCC.pdf.

[57] Lavoué, G. A Multiscale Metric for 3D Mesh Visual Quality Assessment.
Computer Graphics Forum. 2011, 30, 5, pages 1427–1437. doi:
10.1111/j.1467-8659.2011.02017.x. Online: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2011.02017.x.

82

https://www.sciencedirect.com/science/article/pii/S0097849303002267
https://www.sciencedirect.com/science/article/pii/S0097849303002267
http://clim.inria.fr/workshop/LasserrePCC.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02017.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02017.x

[58] Lengyel, J. E. Compression of Time-Dependent Geometry. In
Proceedings of the 1999 Symposium on Interactive 3D Graphics, I3D ’99,
pages 89–95, New York, NY, USA, 1999. Association for Computing
Machinery. doi: 10.1145/300523.300533. Online:
https://doi.org/10.1145/300523.300533. ISBN 1581130821.

[59] Lewiner, T. et al. GEncode: Geometry-driven compression for General
Meshes. Computer Graphics Forum. 2006, 25, 4, pages 685–695. doi:
10.1111/j.1467-8659.2006.00990.x. Online: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2006.00990.x.

[60] Li, H. et al. Robust Single-View Geometry and Motion Reconstruction.
ACM Trans. Graph. December 2009, 28, 5, pages 1–10. ISSN 0730-0301.
doi: 10.1145/1618452.1618521. Online:
https://doi.org/10.1145/1618452.1618521.

[61] Li, L. et al. Advanced 3D Motion Prediction for Video-Based Dynamic
Point Cloud Compression. IEEE Transactions on Image Processing. 2020,
29, pages 289–302. doi: 10.1109/TIP.2019.2931621.

[62] Lien, J.-M. – Kurillo, G. – Bajcsy, R. Multi-camera tele-immersion
system with real-time model driven data compression. The Visual
Computer. 2010, 26, 1, pages 3.

[63] Lloyd, S. Least squares quantization in PCM. IEEE Transactions on
Information Theory. 1982, 28, 2, pages 129–137. doi:
10.1109/TIT.1982.1056489.

[64] Lobaz, P. – Váša, L. Hierarchical Laplacian-based compression of
triangle meshes. Graphical Models. 2014, 76, 6, pages 682–690. ISSN
1524-0703. doi: 10.1016/j.gmod.2014.09.003. Online: https:
//www.sciencedirect.com/science/article/pii/S1524070314000502.

[65] Luo, G. et al. 3D Mesh Animation Compression Based on Adaptive
Spatio-Temporal Segmentation. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, I3D ’19, New York,
NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3306131.3317017. Online:
https://doi.org/10.1145/3306131.3317017. ISBN 9781450363105.

[66] Luo, G. et al. Spatio-Temporal Segmentation Based Adaptive
Compression of Dynamic Mesh Sequences. ACM Trans. Multimedia
Comput. Commun. Appl. March 2020, 16, 1. ISSN 1551-6857. doi:
10.1145/3377475. Online: https://doi.org/10.1145/3377475.

[67] Luo, G. et al. Dynamic data reshaping for 3D mesh animation
compression. Multimedia Tools and Applications. 2021, pages 1–18.

83

https://doi.org/10.1145/300523.300533
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2006.00990.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2006.00990.x
https://doi.org/10.1145/1618452.1618521
https://www.sciencedirect.com/science/article/pii/S1524070314000502
https://www.sciencedirect.com/science/article/pii/S1524070314000502
https://doi.org/10.1145/3306131.3317017
https://doi.org/10.1145/3377475

[68] Maeda, T. – Yamasaki, T. – Aizawa, K. Model-Based Analysis and
Synthesis of Time-Varying Mesh. In Perales, F. J. – Fisher, R. B. (Ed.)
Articulated Motion and Deformable Objects, pages 112–121, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-70517-8.

[69] Maglo, A. et al. 3D Mesh Compression: Survey, Comparisons, and
Emerging Trends. ACM Comput. Surv. February 2015, 47, 3. ISSN
0360-0300. doi: 10.1145/2693443. Online:
https://doi.org/10.1145/2693443.

[70] Malvar, H. S. Adaptive run-length/Golomb-Rice encoding of quantized
generalized Gaussian sources with unknown statistics. In Data
Compression Conference (DCC’06), pages 23–32. IEEE, 2006.

[71] Mammou, K. – Zaharia, T. – Prêteux, F. TFAN: A low complexity 3D
mesh compression algorithm. Computer Animation and Virtual Worlds.
2009, 20, 2-3, pages 343–354.

[72] Marais, P. – Gain, J. – Shreiner, D. Distance-Ranked Connectivity
Compression of Triangle Meshes. Computer Graphics Forum. 2007, 26, 4,
pages 813–823. doi: 10.1111/j.1467-8659.2007.01026.x. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.
2007.01026.x.

[73] Mekuria, R. – Blom, K. – Cesar, P. Design, implementation, and
evaluation of a point cloud codec for tele-immersive video. IEEE
Transactions on Circuits and Systems for Video Technology. 2016, 27, 4,
pages 828–842.

[74] Milani, S. – Polo, E. – Limuti, S. A Transform Coding Strategy for
Dynamic Point Clouds. IEEE Transactions on Image Processing. 2020, 29,
pages 8213–8225. doi: 10.1109/TIP.2020.3011811.

[75] Mourycová, E. – Váša, L. Geometry Compression of Triangle Meshes
using a Reference Shape. In Proceedings of the 17th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - GRAPP,, 2022.

[76] Nakagawa, S. – Yamasaki, T. – Aizawa, K. Deformation-based data
reduction of Time-Varying Meshes for displaying on mobile terminals. In
2010 3DTV-Conference: The True Vision - Capture, Transmission and
Display of 3D Video, pages 1–4, 2010. doi: 10.1109/3DTV.2010.5506509.

[77] Niemeyer, M. et al. Occupancy Flow: 4D Reconstruction by Learning
Particle Dynamics. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[78] Orts-Escolano, S. et al. Holoportation: Virtual 3D Teleportation in
Real-Time. UIST ’16, pages 741–754, New York, NY, USA, 2016.

84

https://doi.org/10.1145/2693443
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01026.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01026.x

Association for Computing Machinery. doi: 10.1145/2984511.2984517.
Online: https://doi.org/10.1145/2984511.2984517. ISBN
9781450341899.

[79] Peixoto, E. Intra-Frame Compression of Point Cloud Geometry Using
Dyadic Decomposition. IEEE Signal Processing Letters. 2020, 27,
pages 246–250. doi: 10.1109/LSP.2020.2965322.

[80] Peixoto, E. – Medeiros, E. – Ramalho, E. Silhouette 4d: An
Inter-Frame Lossless Geometry Coder Of Dynamic Voxelized Point
Clouds. In 2020 IEEE International Conference on Image Processing
(ICIP), pages 2691–2695, 2020. doi: 10.1109/ICIP40778.2020.9190648.

[81] Pinkall, U. – Polthier, K. Computing Discrete Minimal Surfaces and
Their Conjugates. Experimental Mathematics. 1993, 2, 1, pages 15–36.
doi: 10.1080/10586458.1993.10504266. Online:
https://doi.org/10.1080/10586458.1993.10504266.

[82] Rossignac, J. Edgebreaker: connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics. 1999, 5, 1,
pages 47–61. doi: 10.1109/2945.764870.

[83] Rubner, Y. – Tomasi, C. – Guibas, L. A metric for distributions with
applications to image databases. In Sixth International Conference on
Computer Vision (IEEE Cat. No.98CH36271), pages 59–66, 1998. doi:
10.1109/ICCV.1998.710701.

[84] Said, A. – Pearlman, W. A new, fast, and efficient image codec based
on set partitioning in hierarchical trees. IEEE Transactions on Circuits
and Systems for Video Technology. 1996, 6, 3, pages 243–250. doi:
10.1109/76.499834.

[85] Schwarz, S. et al. Video coding of dynamic 3D point cloud data.
APSIPA Transactions on Signal and Information Processing. 2019, 8,
pages e31. doi: 10.1017/ATSIP.2019.24.

[86] Sorkine, O. – Cohen-Or, D. – Toledo, S. High-pass quantization for
mesh encoding. In Symposium on Geometry Processing, 42, 2003.

[87] Sorkine-Hornung, O. – Rabinovich, M. Least-Squares Rigid Motion
Using SVD, 2016. Technical note.

[88] Spångberg, D. – Larsson, D. S. D. – Spoel, D. Trajectory NG:
portable, compressed, general molecular dynamics trajectories. Journal of
Molecular Modeling. 2011, 17, 10, pages 2669–2685. doi:
10.1007/s00894-010-0948-5.

[89] Sullivan, G. J. et al. Overview of the High Efficiency Video Coding
(HEVC) Standard. IEEE Transactions on Circuits and Systems for Video
Technology. 2012, 22, 12, pages 1649–1668. doi:
10.1109/TCSVT.2012.2221191.

85

https://doi.org/10.1145/2984511.2984517
https://doi.org/10.1080/10586458.1993.10504266

[90] Sumner, R. W. – Schmid, J. – Pauly, M. Embedded Deformation for
Shape Manipulation. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,
pages 80–es, New York, NY, USA, 2007. Association for Computing
Machinery. doi: 10.1145/1275808.1276478. Online:
https://doi.org/10.1145/1275808.1276478. ISBN 9781450378369.

[91] Tevs, A. et al. Animation Cartography—Intrinsic Reconstruction of
Shape and Motion. ACM Trans. Graph. apr 2012, 31, 2. ISSN 0730-0301.
doi: 10.1145/2159516.2159517. Online:
https://doi.org/10.1145/2159516.2159517.

[92] Thanou, D. – Chou, P. A. – Frossard, P. Graph-based motion
estimation and compensation for dynamic 3D point cloud compression. In
2015 IEEE International Conference on Image Processing (ICIP), pages
3235–3239. IEEE, 2015.

[93] Thanou, D. – Chou, P. A. – Frossard, P. Graph-based compression of
dynamic 3D point cloud sequences. IEEE Transactions on Image
Processing. 2016, 25, 4, pages 1765–1778.

[94] Torkhani, F. – Wang, K. – Chassery, J.-M. A Curvature-Tensor-Based
Perceptual Quality Metric for 3D Triangular Meshes. Machine
GRAPHICS & VISION. 2014, 23, 1/2, pages 59–82.

[95] Touma, C. – Gotsman, C. Triangle Mesh Compression. In Proceedings
of the Graphics Interface 1998 Conference, June 18-20, 1998, Vancouver,
BC, Canada, pages 26–34, June 1998. Online:
http://graphicsinterface.org/wp-content/uploads/gi1998-4.pdf.

[96] Vallet, B. – Lévy, B. Spectral Geometry Processing with Manifold
Harmonics. Computer Graphics Forum. 2008, 27, 2, pages 251–260. doi:
https://doi.org/10.1111/j.1467-8659.2008.01122.x. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.
2008.01122.x.

[97] Váša, L. – Dvořák, J. Error propagation control in Laplacian mesh
compression. Computer Graphics Forum. 2018, 37, 5, pages 61–70. doi:
10.1111/cgf.13491. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13491.

[98] Váša, L. – Brunnett, G. Exploiting Connectivity to Improve the
Tangential Part of Geometry Prediction. IEEE Transactions on
Visualization & Computer Graphics. sep 2013, 19, 09, pages 1467–1475.
ISSN 1941-0506. doi: 10.1109/TVCG.2013.22.

[99] Váša, L. – Petřík, O. Optimising Perceived Distortion in Lossy
Encoding of Dynamic Meshes. Computer Graphics Forum. 2011, 30, 5,
pages 1439–1449. doi: 10.1111/j.1467-8659.2011.02018.x. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.
2011.02018.x.

86

https://doi.org/10.1145/1275808.1276478
https://doi.org/10.1145/2159516.2159517
http://graphicsinterface.org/wp-content/uploads/gi1998-4.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01122.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01122.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13491
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02018.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02018.x

[100] Váša, L. – Petřík, O. Optimising Perceived Distortion in Lossy
Encoding of Dynamic Meshes. Computer Graphics Forum. 2011, 30, 5,
pages 1439–1449. doi: 10.1111/j.1467-8659.2011.02018.x. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.
2011.02018.x.

[101] Váša, L. et al. Compressing dynamic meshes with geometric laplacians.
Computer Graphics Forum. 2014, 33, 2, pages 145–154. doi:
10.1111/cgf.12304. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12304.

[102] Váša, L. – Rus, J. Dihedral Angle Mesh Error: a fast perception
correlated distortion measure for fixed connectivity triangle meshes.
Computer Graphics Forum. 2012, 31, 5, pages 1715–1724. doi:
10.1111/j.1467-8659.2012.03176.x. Online: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2012.03176.x.

[103] Váša, L. – Skala, V. CODDYAC: Connectivity Driven Dynamic Mesh
Compression. In 2007 3DTV Conference, pages 1–4, 2007. doi:
10.1109/3DTV.2007.4379408.

[104] Váša, L. – Skala, V. A Perception Correlated Comparison Method for
Dynamic Meshes. IEEE Transactions on Visualization and Computer
Graphics. 2011, 17, 2, pages 220–230. doi: 10.1109/TVCG.2010.38.

[105] Vlasic, D. et al. Articulated Mesh Animation from Multi-View
Silhouettes. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, New
York, NY, USA, 2008. Association for Computing Machinery. doi:
10.1145/1399504.1360696. Online:
https://doi.org/10.1145/1399504.1360696. ISBN 9781450301121.

[106] Wall, J. et al. REVERIE: Natural human interaction in virtual
immersive environments. In 2014 IEEE International Conference on
Image Processing (ICIP), pages 2165–2167. IEEE, 2014.

[107] Wang, K. – Torkhani, F. – Montanvert, A. A fast roughness-based
approach to the assessment of 3D mesh visual quality. Computers &
Graphics. 2012, 36, 7, pages 808–818. ISSN 0097-8493. doi:
10.1016/j.cag.2012.06.004. Online: https:
//www.sciencedirect.com/science/article/pii/S0097849312001203.
Augmented Reality Computer Graphics in China.

[108] Wang, S. et al. Deep Parametric Continuous Convolutional Neural
Networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[109] Yamasaki, T. – Aizawa, K. Patch-based compression for time-varying
meshes. In 2010 IEEE International Conference on Image Processing,
pages 3433–3436. IEEE, 2010.

87

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02018.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02018.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12304
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03176.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03176.x
https://doi.org/10.1145/1399504.1360696
https://www.sciencedirect.com/science/article/pii/S0097849312001203
https://www.sciencedirect.com/science/article/pii/S0097849312001203

[110] Yang, B. et al. Motion-Aware Compression and Transmission of Mesh
Animation Sequences. ACM Trans. Intell. Syst. Technol. April 2019, 10, 3.
ISSN 2157-6904. doi: 10.1145/3300198. Online:
https://doi.org/10.1145/3300198.

[111] Yang, J.-H. – Kim, C.-S. – Lee, S.-U. Semi-regular representation and
progressive compression of 3-D dynamic mesh sequences. IEEE
Transactions on Image Processing. 2006, 15, 9, pages 2531–2544.

[112] Zollhöfer, M. et al. State of the Art on 3D Reconstruction with RGB-D
Cameras. Computer Graphics Forum. 2018, 37, 2, pages 625–652. doi:
https://doi.org/10.1111/cgf.13386. Online:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13386.

88

https://doi.org/10.1145/3300198
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13386

Appendix A

Activities

A.1 Publications in International Conferences
∙ Dvořák, J. Vaněček, P. Váša, L. Towards Understanding Time-

Varying Triangle Meshes. In Paszynski, M. et al. (Ed.) Computa-
tional Science – ICCS 2021, pages 45–58, Cham, 2021. Springer In-
ternational Publishing. doi: 10.1007/978-3-030-77977-1_4. ISBN 978-
3-030-77977-1. [24] (40%)

A.2 Publications in Impacted Journals
∙ Váša, L. Dvořák, J. Error propagation control in Laplacian mesh

compression. Computer Graphics Forum. 2018, 37, 5, pages 61–70. doi:
10.1111/cgf.13491. [97] (50%)

∙ Dvořák, J. Maňák, M. Váša, L. Predictive compression of molec-
ular dynamics trajectories. Journal of Molecular Graphics and Mod-
elling. 2020, 96. ISSN 1093-3263. doi: 10.1016/j.jmgm.2020.107531. [25]
(60%)

∙ Dvořák, J. Káčereková, Z. Vaněček, P. Hruda, L. Váša, L.
As-rigid-as-possible volume tracking for time-varying surfaces. Com-
puters & Graphics. 2022, 102, pages 329–338. ISSN 0097-8493. doi:
10.1016/j.cag.2021.10.015 [26] (50%)

A.3 Participation in Scientific Projects
∙ SGS-2019-016, Synthesis and Analysis of Geometric and Computing

Models, Ministry of Education, Youth and Sports

∙ 17-07690S, Methods of Identification and Visualization of Tunnels for
Flexible Ligands in Dynamic Proteins, Czech Science Foundation

89

∙ 20-02154S, Representation and processing methods for three dimen-
sional dynamic shapes, Czech Science Foundation

A.4 Teaching Activities
2018/2019

∙ Polygon Mesh Processing (KIV/ZPOS), Czech, tutor

∙ Computers and Programming 2 (KIV/PPA2), Czech, tutor of 2 stu-
dent groups

2019/2020
∙ Polygon Mesh Processing (KIV/ZPOS), Czech, tutor

2020/2021
∙ Polygon Mesh Processing (KIV/ZPOS), Czech, tutor

∙ Polygon Mesh Processing (KIV/ZPOSE), English, for Erasmus stu-
dents, tutor

A.5 Non-related Publications
∙ Hruda, L. Dvořák, J. Estimating approximate plane of symmetry

of 3D triangle meshes. In Proc. Central European Seminar on Com-
puter Graphics, 2017. [44] (50%)

∙ Hruda, L. Dvořák, J. Váša, L. On evaluating consensus in RANSAC
surface registration. Computer Graphics Forum. 2019, 38, 5, pages
175–186. doi: 10.1111/cgf.13798. [43] (5%)

A.6 Stays Abroad
∙ Research stay at TU Munich, Computer Vision Group, Feb. 2020 -

May 2020, first month in person, continued online due to the COVID-
19 pandemic.

A.7 Oral Presentations
∙ Towards Understanding Time-Varying Triangle Meshes, 18. 6. 2021,

English, ICCS 2021, online

∙ As-rigid-as-possible volume tracking for time-varying surfaces, 15. 11. 2021,
English, SMI 2021, online

90

Appendix B

Links to Full Versions of
Related Published Work

Error Propagation Control in Laplacian Mesh Compression

∙ https://doi.org/10.1111/cgf.13491

Predictive compression of molecular dynamics trajectories

∙ https://doi.org/10.1016/j.jmgm.2020.107531

Towards Understanding Time-Varying Triangle Meshes

∙ https://doi.org/10.1007/978-3-030-77977-1_4

As-rigid-as-possible volume tracking for time-varying surfaces

∙ https://doi.org/10.1016/j.cag.2021.10.015

91

https://doi.org/10.1111/cgf.13491
https://doi.org/10.1016/j.jmgm.2020.107531
https://doi.org/10.1007/978-3-030-77977-1_4
https://doi.org/10.1016/j.cag.2021.10.015

	Introduction
	Problem Definition
	Data Reduction Techniques
	Performance Evaluation

	Mesh and Point Cloud Representations of Dynamic Surfaces
	Triangle Mesh Sequences
	Dynamic Mesh
	Time-Varying Mesh

	Dynamic Point Cloud
	Voxelization

	Dynamic Mesh Compression
	High-Fidelity Compression of Dynamic Meshes with Fine Details Using Piece-wise Manifold Harmonic Bases
	Motion-Aware Compression and Transmission of Mesh Animation Sequences
	3D Mesh Animation Compression Based on Adaptive Spatio-temporal Segmentation
	Summary of Dynamic Mesh Compression

	Time-Varying Mesh Compression
	Registration and Partitioning-Based Compression of 3-D Dynamic Data
	Semi-Regular Representation and Progressive Compression of 3-D Dynamic Mesh Sequences
	Time-Varying Mesh Compression Using an Extended Block Matching Algorithm
	Geometry Compression for Time-Varying Meshes Using Coarse and Fine Levels of Quantization and Run-Length Encoding
	Patch-Based Compression for Time-Varying Meshes
	Deformation-Based Data Reduction of Time-Varying Meshes for Displaying on Mobile Terminals
	Toward Real-Time and Efficient Compression of Human Time-Varying Meshes
	A Novel Compression Framework for 3D Time-Varying Meshes
	Mesh Coding Extensions to MPEG-I V-PCC
	Summary of Time-Varying Mesh Compression

	Dynamic Point Cloud Compression
	Multi-camera Tele-Immersion System with Real-Time Model Driven Data Compression
	Efficient Rate-Distortion Compression of Dynamic Point Cloud for Grid-Pattern-Based 3D Scanning Systems
	Real-Time Compression of Point Cloud Streams
	Graph-Based Compression of Dynamic 3D Point Cloud Sequences
	Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video
	Embedded Binary Tree for Dynamic Point Cloud Geometry Compression with Graph Signal Resampling and Prediction
	Motion-Compensated Compression of Dynamic Voxelized Point Clouds
	Context-Based Octree Coding for Point-Cloud Video
	MPEG Standards for Point Cloud Compression
	MPEG V-PCC
	MPEG G-PCC
	Inter-based Methods Directly Inspired by MPEG Point Cloud Compression Standardization Efforts

	Geometry Coding for Dynamic Voxelized Point Clouds Using Octrees and Multiple Contexts
	MuSCLE: Multi Sweep Compression of LiDAR Using Deep Entropy Models
	A Transform Coding Strategy for Dynamic Point Clouds
	Real-Time Spatio-temporal LiDAR Point Cloud Compression
	Silhouette 4D: An Inter-Frame Lossless Geometry Coder of Dynamic Voxelized Point Clouds
	Summary of Dynamic Point Cloud Compression

	Potentially Related Methods in Different Research Areas
	Geometry-Based Connectivity Coding
	Versatile Temporal Coherence Estimation

	Our Contribution
	Error Propagation Control in Laplacian Mesh Compression
	Predictive Compression of Molecular Dynamics Trajectories
	Towards Understanding Time-Varying Triangle Meshes
	As-Rigid-As-Possible Volume Tracking For Time-Varying Surfaces

	Future Work
	Time-Varying Mesh Compression with a Versatile Temporal Model
	Distant Goals

	Conclusions
	Bibliography
	Activities
	Publications in International Conferences
	Publications in Impacted Journals
	Participation in Scientific Projects
	Teaching Activities
	Non-related Publications
	Stays Abroad
	Oral Presentations

	Links to Full Versions of Related Published Work

