
1

Design Approach to Unified Service API Modeling for

Semantic Interoperability of Cross-enterprise Vehicle

Applications

The State of the Art and the Concept of Ph.D. Thesis

Sangita De

Technical Report No. : DCSE/TR-2021-02

April 2021

Distribution:Public

2

Abstract

Heterogeneity among the application component interface data models is an inherent characteristic of open and

distributed environments like the automotive domain that hampers interoperability and thus automotive services

usage. The automotive industry can be regarded as a complex yet connected network or ecosystem of highly

interdependent subsystems. In the recent years with the growth in new era of service requirements for complex

automotive services e.g., autonomous driving, Vehicle to Communication (V2X), IoT in cars, etc., there is a

subsequent increase in the number of collaborating component frameworks in automotive application domain.
With an increase in these vast variety of novel services provided to the passengers; a lot of functionalities are now

actively running in parallel on the vehicle’s on-board systems supported by complex ECU (Electronic Control

Units) software platforms. Data is what all these functions are based on, be it sensor data, user profiles, traffic

broadcasts or car-to-car messages from peer vehicles.

The key to success in making such a complex ecosystem work however, lies in the organized and efficient access

to the heterogeneous vehicle service frameworks’ API (Application Programming Interface) data. In such service

collaboration scenarios, most of the API data must be specified in various manifestations to fulfill the specific

syntactic and semantic requirements of the service collaborating application frameworks, this further hamper

services interoperability and interaction. The collaboration of services between the different frameworks in vehicle

application domain and the promotion of the horizontal integration could generate a better and more complete

functionality in the automotive industry and open new possibilities.

In today’s era, in the absence of a generic, standardized vehicle services API data description template, a source

of discord that emerges is that the service providers must always check, before the service deployment, whether

the clients or service consumers on the other side of the communication link are compatible with a given service’s

API. Moreover, a proper service discovery is crucial to identify appropriate services in the growing plethora of

third-party services in the vehicle domain. Similarly, from a client’s viewpoint, the changes affecting the service

collaboration include the retraction of the original service, its replacement by a newer version, support for IDLs to

understand the service API syntax and semantics are also essential for interoperability between service provider

and service requestor. However, the service oriented automotive software systems still struggle to find means of

efficiently checking such compatibility between service APIs. In fact, in the given scenario on service

collaboration, identifying semantic synergies between the heterogeneous frameworks’ vehicle services API models

to achieve the compatibility between the service provider and consumer APIs, looks promising approach.

Interoperability usually refers to the capability that depends on the understanding of compatibility between
interfaces of various applications. The incompatibility between the heterogeneous platforms specific artifacts that

are part of semantic specification of various vehicle service models causes impediment in semantic interoperability

between the API models of the services. From a modeling perspective, to facilitate a holistic and meaningful data

exchange between several heterogeneous vehicle services’ API models in vehicle domain, one key element to be

considered for efficient cross-enterprise services collaborations is to link the platform-agnostic API data at

semantic level using a unified, shared vocabulary of the domain. Model transformations and semantic mapping as

a part of Model Driven Engineering (MDE) technologies uses new, advanced solutions to address cross-enterprise

software interoperability. However, due to the absence of efficient reasoning using domain concepts and inferred

artifacts technologies, MDE faces the challenge to achieve interoperability between the semantic concepts of

heterogeneous frameworks’ vehicle service API models.

As vehicle services are black boxes to the requesters, which means that their source codes are not publicly

available. Therefore, to make these services accessible and compatible with one another, their APIs must be

specified using standardized, generic semantic specification templates. This research work proposes a design

approach to describe the heterogeneous frameworks’ vehicle services API models in form of a standardized,

platform-independent, generic ontology template. Such a generic API ontology template is expressed in an abstract

syntax tree purely based on semantic traits independent of platform details. This generic API ontology template

ensures transparency in APIs’ semantic data between communication peer partners. To ensure semantic

interoperability between the semantically equivalent but syntactically different concepts of various vehicle services

frameworks’ API ontological models, a platform-agnostic ontology mediator is defined. The proposed ontology

mediator is effectively used to glue the semantic bridge between the various concepts of heterogeneous

frameworks’ service API ontologies, based on identified synergies in semantic traits.

3

This research contribution uses typical vehicle domain case studies to illustrate the design and implementation

approaches towards semantic alignment and integration of heterogeneous vehicle service components’ API

models.

This work was partially supported by Ministry of Education, Youth and Sports of the Czech Republic, university

specific research, project SGS-2019-018 Processing of heterogeneous data and its specialized applications.

University of West Bohemia

Department of Computer Science and Engineering

Univerzitní 8

30614 Plzeň

Czech Republic

Copyright © 2021 University of West Bohemia, Czech Republic

4

Acknowledgements

I would like to express my deepest gratitude to my supervisors Assoc. Prof. Dr. Přemysl Brada, and Prof. Dr.

Juergen Mottok for their continuous support, patience, motivation and sharing of immense knowledge throughout

my on-going research study. I would also like to extend my gratitude to my technical supervisor from Continental

Automotive GmbH, Mr. Michael Niklas for providing me an opportunity to join the automotive team, his insightful

comments and encouragement which made me widen my research from various perspectives. My sincere thanks

also go to other Professors from Pilsen university and colleagues from Continental Automotive for their timely
cooperation all along the way of my studies. I thank my friends and family for their precious support in all the time

of my on-going research study.

5

Contents

 Introduction .. 13

 Research Goals and Contributions ... 15

1.1 Research Questions.. 15

1.2 Overview of Contributions ... 18

1.3 Report Structure .. 20

 Background .. 22

2.1 Role of Interfaces in Interoperability of Vehicle Applications .. 22

2.2 Fundamentals of Interfaces at Vehicle Software Component Level .. 24

2.3 Interface Metamodel -The Conceptual Building Block.. 28

2.4 Event Chain Timing Behavior of Software Components’ Interface Models 33

 Related Works... 39

3.1 Linking of Heterogeneous and Distributed Data at Semantic Level 39

3.2 Metamodel-based Modeling of SWC’s Interface Models ... 39

3.3 Semantic Mapping of Concepts of Interface Metamodels of SWC Frameworks for

Interoperability .. 40

3.4 Unified API Description/Specification Language for Vehicle Domain Application SWC

Frameworks... 41

3.5 MDE Vs Ontology Approach for Domain-Specific Interface Metamodels Semantic

Alignments: Alternative or Complementary .. 42

3.6 Evaluation of Interface Metamodels Semantic Alignment Quality for Vehicle Application SWC

Frameworks... 43

3.7 MDE and Ontology Modeling Approaches to tackle Semantic Interoperability between Vehicle

Component Framework Interfaces ... 44

3.8 Comparison of Author’s Contribution to the State of the Art ... 46

Part II Analysis Level.. 49

 Survey of Vehicle Domain Interface Description Languages (IDLs): Identification
of Semantic Commonalities ... 50

4.1 Semantic mapping of Component Framework IDLs: The Rationale 50

4.2 Semantic Comparison of Vehicle Domain Cross-enterprise Platforms Component Frameworks

IDLs ... 51

4.3 Technology and Platform Agnostic Specification for Service API Models for Vehicle Domain

Heterogeneous SWC Frameworks ... 60

 Semantic Comparison of Vehicle Component Frameworks’ Interface Metamodels
 ... 64

5.1 Application Component Framework Interface Metamodels: Alternatives 66

6

5.2 Summarized Semantic Mapping of Component Frameworks Interface Metamodels 72

 Design & Implementation Level (WIP) ... 73

 Design Approach to Semantic Alignment of Component Frameworks Interface
Meta-Models ... 75

6.1 MDE based Domain Specific Interface Metamodel Semantic Alignment Approach: An

Overview ... 76

6.2 Possible Solution to Challenges of MDE based Semantic Mapping Approach: Extension of

Interface Metamodels to Ontologies for Semantic Alignment .. 80

6.3 Strengths using Ontology based Approach: In contrast to MDE... 80

 Extension of MDE based Modeling Approach to Ontologies for Evolution of
Domain Unified Interface Ontology ... 82

7.2 Implementation of M3 Transformation Bridge ... 84

7.3 Platform-agnostic, Mediator Centric Approach towards Exploration of Semantic Synergies

between Component Framework Interface Ontologies ... 88

7.4 Brief Overview of the Ontology Development Environment (ODE) 92

 Finale .. 95

Chapter 8 Conclusion ... 96

Chapter 9 Future Work ... 98

Chapter 10 Appendix ... 100

References ... 111

7

List of Figures

Figure No. Figure Label

Fig. 1 Overview of heterogeneous modes of communication between outside world and vehicle.

Fig. 2 Conceptual representation of interaction of heterogeneous application frameworks’ APIs for

Vehicle domain usecases.

Fig. 3 Interoperability between vehicle domain heterogeneous software platforms’ applications.

Fig. 4 Overview of semantic overlapping between vehicle ECU software platforms’ interface models.

Fig. 5 Abstract layered system model for Vehicle Domain Unified Interface Meta-metamodel.

Fig. 6 Role of SWC interfaces for Containerized vehicle application Clusters.

Fig. 7 WorkFlow representation of communication between heterogeneous, distributed applications in

vehicle domain.

Fig. 8 Abstract specification of semantics of a generic SWC interface model.

Fig. 9 Overview of heterogeneous modes of communication between outside world and vehicle.

Fig. 10 An Overview model of Timing constraints on ordering of Events in a EventChain.

Fig. 11 An abstract specification of syntax of a generic SWC interface model.

Fig. 12 Abstract view of OMG specified four-layered metamodel architecture.

Fig. 13 Ecore representation of EMOF.

Fig. 14 An ecore metamodel representing AUTOSAR Adaptive Software Component interface level.

Fig. 15 An abstract model representation of OWL2 metamodel.

Fig. 16 Expanded view of an excerpt of OWL2 metamodel.

Fig. 17 OWL2 metamodel specification for AUTOSAR Adaptive Software Component interface model.

Fig. 18 Overview of partial mapping UML profile to ODM and extraction of ODM from OWL DL for

DSL generation.

Fig. 19 Abstract representation of VFB Timing behaviour for AUTOSAR SWC framework

Fig. 20 Representation of Timing Description model describing event chain for a SWC interface.

Fig. 21 ParkA_1.0 and ParkA_2.0 event model.

Fig. 22 State machine model for ParkA_1.0 and ParkA_2.0 event-driven communication pattern.

Fig. 23 Overview of Callback queues and spins used for event chain for ROS2 framework .

Fig. 24 Overview of BPMN model from TwoUse Toolkit using OWLizer for metamodel translations.

Fig. 25 Different levels of Semantics.

Fig. 26 XML to WSML transformation using Adapter.

8

Fig. 27 Comparison of MDE and ontology based approaches for platform-specific model to model

semantic mapping.

Fig. 28 Overview of Analysis level.

Fig. 29 Overview of heterogeneous modes of communication between outside world and vehicle for IoT

software solutions.

Fig. 30 Symbolic representation of SeatHeating SWC.

Fig. 31 Multi-level modeling approach for evolution of abstract Meta IDL model for vehicle domain.

Fig. 32 Illustration of the case study SWC communication interface model using ARXML.

Fig. 33 Illustration of the case study SWC communication interface model using FCDL and FIDL.

Fig. 34 Illustration of the case study SWC communication interface model using MDL and SDL.

Fig. 35 Illustration of the case study SWC communication interface model using AIDL.

Fig. 36 Illustration of the case study SWC communication interface model using ARXML.

Fig. 37 Illustration of the case study SWC communication interface model using Protobuf.

Fig. 38 Illustration of the case study SWC communication interface model using Thrift IDL.

Fig. 39 Illustration of the case study SWC communication interface model using OpenAPI specification

version 3.0.3.

Fig. 40 Overview of semantics for all operations using OpenAPI specification.

Fig. 41 Overview of cross-enterprise application framework communication for vehicle services.

Fig. 42 Work Flow Illustration of vehicle service SWC communication API model using OpenAPI

specification (OAS).

Fig. 43 Representation of RPC communication semantics using OpenAPI specification

(OAS).Representation of RPC communication semantics using OpenAPI specification (OAS).

Fig. 44 Abstraction of interface semantic traits for a SWC composition

Fig. 45 Illustration of abstraction of standardized four-layered modeling architecture for vehicle domain

application SWC .

Fig. 46 Abstract representation of platform-independent, generic Component-Port-Connector (CPC)

model for vehicle domain application SWC interface.

Fig. 47 Graphical model representation (G1) of AUTOSAR Adaptive framework SWC metamodels’

constructs for interface.

Fig. 48 Graphical model representation (G2) of Franca framework SWC metamodels’ constructs for

interface.

Fig. 49 Graphical model representation (G3) of ROS2 framework SWC metamodels’ constructs for

interface.

Fig. 50 Graphical model representation (G4) of ROS2 framework SWC metamodels’ constructs for

interface.

9

Fig. 51 Graphical model representation (G5) of AUTOSAR Classic framework SWC metamodels’

constructs for interface.

Fig. 52 Illustration of Design Approach to semantic alignment of cross-enterprise vehicle SWC

frameworks’ interface metamodels.

Fig. 53 Autonomous Maneurvering case study involving cross-enterprise vehicle application frameworks.

Fig. 54 Representation of the ecore Metametamodel (MOF) with standardized four layered modeling

architecture.

Fig. 55 Overview of an ecore metamodel.

Fig. 56 Illustration of case study’s platform-specific vehicle application SWC frameworks’ interface

ecore metamodels.

Fig. 57 Abstract representation of platform-agnostic, vehicle domain-specific generic SWC interface

ecore metamodel.

Fig. 58 Abstract representation of semantic alignment of interface sources using MDE based ecore to

ecore mapping approach.

Fig. 59 Reference domain-specific interface ecore metamodel (DM) representing polymorphic interface

semantic traits.

Fig. 60 Representation of SWC frameworks’ interface method classes and their derived semantic

associated relationships.

Fig. 61 Overview of methodology concept for semantically ontology mapping and integration approach.

Fig. 62 Generic comparison between ecore and OWL2 conceptual metamodeling specification layers .

Fig. 63 Abstract layered representation of M3 Bridge approach to transform interface metamodel

constructs from ecore to OWL2.

Fig. 64 Overview of exporting ecore model to XML Schema (XSD) using emf tools.

Fig. 65 Equivalent representation of an EPackage with XML schema.

Fig. 66 An example on exporting ecore metamodel constructs to equivalent XML schema using emf

tools.

Fig. 67 Overview of schematic relation between XSD and RDF Schema (RDFS) .

Fig. 68 Illustration of schematic translation of XSD to equivalent RDF Schema using an example.

Fig. 69 Overview of translation of RDF Schema to OWL2 metamodel constructs using ontology

framework supported tools.

Fig. 70 Workflow model for semantic alignment and integration of SWCs’ interface semantic ontologies.

Fig. 71 Illustration of the case study SWC communication interface model using Thrift IDL.

Fig. 72 Semantic mapping of SWC frameworks’ interface ontological metamodels using asserted axioms

.

Fig. 73 Semantic alignment of SWC frameworks’ interface ontologies using inferred axioms and
reasoning.

Fig. 74 Exploration of semantic equivalence relationship between data-passing interface method calls

using inferred axioms.

10

Fig. 75 Illustration of the conceptual global conceptual interface ontology schema for vehicle domain

application SWC Frameworks.

Fig. 76 Overview of Ontology Development Enviornment (ODE) using Protégé.

Fig. 77 Overview of Workflow for Future Work.

11

List of Tables

TABLE I. Contributions vs. Research Questions

TABLE II. Overview of coverage of related works done in direction of current research

TABLE III. Static semantic mapping table based on non-functional traits for vehicle

frameworks’ idls

TABLE IV. Static semantic mapping table based on functional traits for vehicle frameworks’

idls

TABLE V. Static semantic mapping table based on communication protocol used for vehicle

frameworks’ idls

TABLE VII. Semantic Mapping of Metamodel Constructs from Autosar Adaptive SWC CPC

to Generic CPC Model

TABLE VIII. Semantic Mapping of Metamodel Constructs from Franca SWC CPC to Generic

CPC Model

TABLE IX. Semantic Mapping of Metamodel Constructs from ROS2 framework SWC CPC

to Generic CPC Model

TABLE X. Semantic Mapping of Meta-model entities from Android framework SWC

Construct to Generic CPC Model

TABLE XI. Semantic Mapping of Meta-model entities from Autosar Classic framework

SWC Construct to Generic CPC Model

TABLE XII. Summarized Mapping Table for Semantic Mapping of Meta-model Constructs

from Hetreogeneous framework SWC CPC to Generic CPC Model

TABLE XIII. Summarized mapping Table for semantic mapping of meta-model entities from

TABLE XIV. Semantic mapping Between XSD and RDF Schema Constructs

TABLE XV. comparison of semantic alignment quality metrics for mde and ontology based

conceptual metamodeling methods

TABLE XVI. semantic mapping of interface functional traits between cross-domain idls using

swc metamodels Specifications

TABLE XVII. semantic mapping of functional traits between cross-domain idls using api code

specifications

12

List of Abbreviations

SWC Software Component

SOA Service-Oriented Architecture

SW Software

OWL DL The Description Logics dialect of OWL

w.r.t with respect to

13

 Introduction

With the increase in demand of software services in the automotive industry, automotive enterprises prefer to

collaborate with other qualified cross domain knowledge partner enterprises such as Robotics, Telematics,

Infotainment, etc. to provide complex automotive software services, such as autonomous driving, Over-The-Air

Update, V2X (Vehicle-To-Communication), IoT (Internet of Things), etc. as also illustrated in Fig. 1and Fig. 2.

The growth in cross-enterprise collaboration within the vehicle domain are due to the facts for example:

▪ firstly, the increase in requirement for integration with 3rd party and legacy components.

▪ secondly, the conformance to frequent new standards in vehicle domain [16].

▪ thirdly, the non-functional system requirements such as performance footprints, scalability, satisfiability,

etc.

▪ lastly, the requirement of huge number of communicating processors for cross-domain communications

between application components.

To deal with the mutual collaboration of services between vehicle domain cross-enterprise component frameworks,

one possible option is to make each component implement several interfaces, which makes the software interface

unnecessarily big. A second possible option may be to provide different implementations of a single component

for each of the automotive development environments. Such a solution, however, will increase the development

and test effort. There have been multiple frameworks of heterogeneous origin, covering several subdomains of the

vehicle application domain and are often used to potentially collaborate in the design of complex vehicle

applications or services. Possibility of several problems that could emerge due to the usage of these multiple

frameworks’ components in the vehicle domain at an application component level, are:

▪ Composition of framework Control: frameworks are often assumed to be in control of the application.

When multiple such heterogeneous frameworks components coexist within a vehicle ECU, to accomplish

the requirements for a complex vehicle service, synchronizing their functionality would be challenging.

At the same time, it is also not possible for a single vehicle application component framework to cover

the entire spectrum of vehicle services.

▪ Overlap of framework functionality and Reduction in Reusability: The opposite problem may also arise

if different framework components provide overlap in their functionalities causing unnecessary overheads

and hence reduction in reusability, substitutability and overall efficiency.

Fig. 1. Overview of heterogeneous modes of communication between outside world and vehicle.

The increasing demand on interoperable frameworks and solutions in the last five years is invoked by adopting the

advancements of service-oriented architectures (SOA) and web services. It is particularly notable in the areas of

14

business-like automotive enterprises where there is a constant pressure on data and information exchange between

the services, data resources, and applications distributed among a wide community of stakeholders of

heterogeneous knowledge domains, also illustrated in Fig. 1. The key element that can be seen as a major criterion

in reaching a high level of cross-enterprise collaboration between different services provider domains like

Automotive, Telematics, Cloud, Robotics etc. is interoperability especially semantic interoperability between the

applications or services’ APIs. Interoperability in the field of information software systems stands for an ability of

the seamless interoperation of the possibly heterogeneous services which may be provided and consumed by

various independent actors in a networked environment, as conceptually represented in Fig. 2. In today’s world,

usually, any standalone framework in vehicle application domain cannot provide the complete spectrum of vehicle

services, in such cases, to realize complex and novel vehicle services, automotive application software developers

should instead focus on ease of interoperability with the application software developers from other functional

knowledge domains such as telematics, Cloud, Robotics, etc.

Fig. 2. Conceptual representation of interaction of heterogeneous application frameworks’ APIs for Vehicle domain usecases.

Considering for example, a complex and novel usecase from the vehicle domain, such as Keyless Vehicle Entry,

where the owner of a car wants to give the vehicle access to someone just by using his mobile phone, when the

owner of the car is physically located far away from his car. Apart from good network connectivity, this complex

vehicle domain usecase would also require good interoperability between the heterogeneous application

frameworks’ APIs. Therefore, as illustrated conceptually in Fig. 2, it has become necessary for the automotive

members of this new ecosystem, to agree with other collaborating knowledge domain partner members in using a

somewhat common service-based API or interface description format for the applications interoperability and for

the realization of the vehicle domain complex usecase [6]. This will thereby ensure increase in the overall

efficiency within the given new ecosystem scenario [6]. Additionally, for such complex and novel usecase, the

automotive application software developers must also focus on reusability of software API modeling methods and

technologies in a platform agnostic way based on the synergies in semantic interface traits of collaborating cross-

enterprise application component frameworks.

From a modeling perspective, to align with the current research scope on the substantial role of semantic alignment

of application software component frameworks’ API models in achieving semantic interoperability, the Part I of

the research work introduces the existing problem statement on semantic interoperability between software

component frameworks with multiple emerging research questions and proposes possible solutions to the research

questions through list of contributions and research goals. This Part also emphasizes on the usage of different

conceptual metamodeling technologies for semantic mapping of vehicle domain SWC frameworks API models

for interoperability and presents the relevant state-of the-art and the background knowledge on the same. Chapters

in Part I also provides information on the layout of the research report along with the information on publications

done so far to communicate the research work to the outside world.

15

 Research Goals and Contributions
Interoperability usually refers to the capability that depends on the understanding of interfaces. Interoperability is

one of the major challenges to be addressed in achieving efficient software application cooperation, within and

among enterprises. Over the past few years, there has been a wide spectrum of various Interface Description

Languages (IDLs) proposed to describe application software components’ interfaces within vehicle subsystems,

as seen in Fig. 4. IDLs are special languages based on algorithmic notions that define those constituent elements

of the SWC architecture, that specify connection of components with the connectors, and the rules of their correct

composition. However, a source of discord is the level of support, a description of a specific component

frameworks’ interface description model provides, to read and understand the architecture of an application

component for experts from other different sub-domains for mutual collaboration of services. This could be

possibly since most component framework interface description models’ specifications are not abstracted

independent of middleware instead, they have bindings with platform-specific middleware communication

protocols, which increases ambiguity, as seen in Fig. 3.

Semantic interoperability at application level depends on the degree of semantic alignment between application

component frameworks’ communication interfaces. Among the heterogeneous artifacts produced by multiple

interface modelling languages in automotive domain, Model Driven Engineering (MDE) faces challenges for

semantic alignment among multiple artifacts and formal semantic notations of each modeling language [6]. To

ease semantic data heterogeneity caused due to the heterogeneous artifacts produced by various platform specific

IDLs within the vehicle domain, it is essential to have semantic alignments based on domain interface semantic

concepts. Additionally, it is also essential to focus on standardization of semantic interoperability process within

vehicle domain, that means, it is time to focus on standardization of the semantic ways to access the vehicle

services within the domain by using a unified, shared vocabulary to describe the interface traits of vehicle services

among all the collaborating cross-enterprise component frameworks.

From a modeling perspective, semantic alignments between domain component framework interface models is

however possible and can be made much easier, by shifting the focus from modelling language-centric to concept-

centric [5]. That is, focusing on a component frameworks’ interface semantic concepts independent of platform-

specific modelling language implementation [1]. Ontology technology addresses the needs of semantic alignments

between heterogeneous artifact by identifying, abstracting commonalities and checking for inconsistencies by

using shared vocabulary of domain-specific terminologies. Exploring semantic synergies between component

frameworks’ interface models using ontology bridges the semantic gap between the domain component

frameworks by increasing possibilities of correlation and reusing of few of the existing application SWCs’ API

models for further semantic integrations.

1.1 Research Questions

In the past few years, with the migration of most of the automotive software engineering sub-domains architectures

to service-based architecture e.g., SOA (Service-Oriented Architecture), support for automotive complex and

novel services requirements such as autonomous driving, vehicle-to-vehicle communication (V2V), etc. has

increased. To support these service requirements, application component frameworks with heterogeneous API

architectures and interface semantics must be integrated into collaborative systems of the future vehicle ECUs’

(Electronic Control Units) High Performance Computing (HPC) software platforms, as seen in Fig. 4.

From a modeling perspective, it is usually observed that a vehicle application SWC’s interface model has a

commonality in fundamental semantics, despite using different syntactic representation, when modeling the same

vehicle application interface in different frameworks using different IDLs. These further causes a decrease in

efficiency and reusability of vehicle application SWCs. As a result, there can be an overwhelming number of ways

on how to implement even a simple two-way communication using legacy or open-source platform specific

framework tools. However, the logical functionality of a two-way communication like Client-Server, Sender-

Receiver or event-driven communication design patterns might remain the same in much of the frameworks. In

this context, exploring semantic commonalities in interface and interaction paradigms among SWCs of cross-

domain frameworks to achieve interoperability among them, is the prime focus of this research contribution. Even

with the commonality in semantics, the various application SWC frameworks’ API models within the vehicle

domain fail to interoperate with each other for a mutual agreement of services within a vehicle ECU sub-system,

in the lack of a common unified representation template or vocabulary for service interoperability, as illustrated in

Fig. 4.

16

Fig. 3. Interoperability between vehicle domain heterogeneous software platforms’ applications.

Fig. 4. Overview of semantic overlapping between vehicle ECU software platforms’ interface models.

In the context of interoperability between heterogeneous application component frameworks’ API models, the

major research questions that has emerged and gained significant interest among the automotive software

engineering communities is as follows:

What are the building blocks of an optimum design solution to semantic alignment of interface models of vehicle

domain cross-enterprise software component frameworks for semantic interoperability? Could this design

approach be implemented practically for vehicle domain case studies? Could the efficiency of such a design

solution be estimated based on the evaluation of some semantic alignment metrics?

 The above major Research Questions (RQ) could further lead to the following sub-questions:

RQ1: What are the basic functional and non-functional communication interfaces’ semantic traits of vehicle

component frameworks that are to be considered for communication between SWCs using the interfaces? Are

there any possibilities of semantic overlapping between these interface traits of various vehicle component

frameworks from functional perspective?

Why?

a) With the identification of vehicle application domain heterogeneous component frameworks basic

interface semantic traits, possibilities of exploration of synergies among the interface semantic concepts

of various vehicle component frameworks increases, thereby, increasing the possibility for semantic

alignment of interface concepts for semantic interoperability.

Cross-enterprise Applications Interoperability

17

b) Semantic analysis of heterogeneous component frameworks IDLs and generated codes within vehicle

application domain provides a possibility to explore semantic synergies among interface traits used in

various API specifications and represented as IDL generated code. This also provides possibilities to fill

the semantical gap between the framework IDLs despite of syntactic differences.

How?

 Identification of fundamental interface semantic traits as perceived at Vehicle software components level

externally.

 Semantic Analysis of component frameworks’ IDLs within vehicle application domain using relevant case

studies.

 Semantic Analysis of framework specific communication protocols associated with platform-specific

component framework IDLs for middleware communication.

RQ2: What are the commonalities between the metamodel based domain specific conceptual modeling techniques

employed by vehicle SWC frameworks in terms of interface spec? Can the interface metamodels be modeled in a

(semi)formal way so that reasoning can be done about them?

Why?

By tracing the commonalities between MDE and Ontology based conceptual metamodeling methods using

metamodeling languages like Ecore, OWL, etc. towards vehicle frameworks’ interfaces semantic alignment,

ensures further possibilities of amalgamation of these modeling methods in a complementary sense.

How?

 Analysis of existing conceptual metamodeling techniques of MDE and Ontology paradigms towards

vehicle domain SWC frameworks’ interface traits semantic alignments.

 Semantic analysis of constructs of MDE based metamodeling languages used for representation of

interface metamodels.

 Semantic analysis of constructs of ontology-based metamodeling languages or specifications representing

interface metamodels or schemas.

RQ3: Both MDE and ontologies are used to model concepts using different metamodeling methods. Can these

metamodeling methods be amalgamated together to improve the interoperability on semantic level of vehicle

SWCs’ interfaces? Can the design approach to amalgamate MDE and ontology metamodeling methods be

applicable practically to vehicle domain case studies?

Why?

a) Understanding and utilizing the strengths of ontology technologies to compensate the challenges in MDE

like absence of domain conceptualization using shared vocabulary, automated reasoning, inferred axioms,

dynamic classification and consistency checking which are otherwise absolute essential for leveraging

the development of efficient and optimum solutions to semantic interoperability.

b) Applicability or Usability of applying MDE and Ontology metamodeling design approaches for evolution

of vehicle domain Interface solution can be validated using quality metrics. Moreover, knowledge derived

from such analysis of quality metrics are required for future implementations.

How?

 Improvement in design approaches towards evolution of a holistic, vehicle domain global interface solution

can be achieved by mapping or extending of conceptual platform-specific component interface constructs of

model-driven metamodels such as Ecore metamodels to equivalent constructs of ontology metamodels such

as OWL2 metamodels.

 Validation of results of semantic alignments between component framework interfaces and semantic

integration of these interfaces to a domain global interface ontology can be achieved by using evaluation of

semantic alignment metrics for both ecore metamodeling and ontology metamodeling approaches.

Alternatively, for the ontology metamodeling approaches, the validation of concept could also be achieved by

extending reasoner with query engines like SPARQL.

18

1.2 Overview of Contributions

In context of semantic interoperability of component framework interface models, Model Driven Engineering

(MDE) based approaches and ontology-based approaches can offer alternative solutions to address semantic

interoperability within a domain. To confront this crucial requirement for semantic interoperability and to increase

in effect the reuse of existing components through their interfaces, this research work compares MDE, and

ontology paradigms approaches towards conceptual metamodeling and identify the commonalities and variations

in these approaches. With identified commonalities, this work attempts to amalgamate MDE with ontology-based

approaches in a value-added way towards the direction of evolution of a holistic or unified domain interface

solution for automotive domain to tackle challenges due to semantic interoperability. Defining a unified domain

global interface meta-metamodel would be able to standardize the semantic interoperability process model among

the heterogeneous vehicle component frameworks at application level. That means, each service collaborating

vehicle component framework uses a standard, unified domain vocabulary to describe the semantic traits of its

interface model, so that the semantics of the APIs could be easily understandable by the other collaborating

component frameworks, this further ensures increase in possibilities of identifying semantic commonalities among

the collaborating frameworks and increase in co-relations among them much earlier in design phase.

This research work presents contributions of different natures, using a semi-automated approach to extend

automotive domain heterogeneous component framework interface metamodels to ontologies using a

transformation bridge in order to carry over the advantages from ontology technologies such as semantic

interoperability to MDE based software modeling domain. Using the transformation bridge, the basic constructs

of vehicle component frameworks interface metamodels described by ecore metamodeling language are mapped

to corresponding constructs of OWL metamodel.

Proven from literature [1][3] seamless explicit reasoning and inference engines are the vital features of the

ontology technology which provides benefits of semantic alignment and semantic integration. Taking this fact into

account, as a next step, the semantic synergies between various automotive component framework interface

metamodels represented as OWL ontologies are explored and validated using reasoner and evaluation of semantic

alignment metrics. The approach to interfaces semantic synergies exploration is demonstrated using vehicle

domain case studies and inferred interface semantic mapping axioms are verified using SPARQL queries [3]. The

semi-automated approach is an approach towards evolution of unified domain interface software solution for

automotive domain. This approach basically captures engineering information on vehicle software components

interface semantic features, interface dynamic behaviors and communication or interaction. The approach to

evolution of automotive unified domain interface software solution can be further broken-down into four abstract

system levels, as illustrated in the Fig. 5.

Fig. 5. Abstract layered system model for Vehicle Domain Unified Interface Meta-metamodel.

The four abstraction levels including the brief overview of contributions covered by the approach at each of these

abstraction levels to evolve unified vehicle domain API model or solution includes basically:

Contribution at Level 1 (C1): This contribution identifies vehicle domain application SWC frameworks specific

interface semantic traits that can be further considered as common knowledge base for semantic analysis and

comparison of these frameworks’ API specification models, architectural design patterns, IDLs, etc. This level

also explains about the conceptual building blocks of an interface metamodel specified using MDE based ecore

19

and Ontology based OWL2 (Web Ontology Language) metamodeling languages. Brief overview of role of

Ontology definition Model (ODM) to bridge the semantic gap between the ecore and OWL2 specified vehicle

SWCs’ interface metamodels is also covered in this level.

Contribution at Level 2 (C2): This contribution makes a survey of heterogeneous cross-enterprise SWC

frameworks that are existing in the vehicle application domain and compares the semantic traits of these

frameworks’ API specification metamodels and IDLs. This comparison also explores semantic synergies among

the interface semantic traits of the frameworks from a function point of view. Hence, with the exploration of

semantic synergies among interface traits, this level ensures that cross-enterprise SWC frameworks can be

correlated and the SWCs of these frameworks can be reused through their interfaces. This level also explores

semantic synergies among the interface run-time behavior interface traits.

Contribution at Level 3 (C3): This contribution describes and compares the metamodeling techniques or

approaches employed by ontology and MDE paradigms for alignment of semantically equivalent traits of interface

metamodels of heterogeneous vehicle application component frameworks. Despite of few differences, focusing

more on the similarities between the metamodeling approaches, the design approach proposes to amalgamate the

MDE and ontology-based metamodeling techniques to utilize benefits of both the metamodeling techniques for

semantic alignment and interoperability of various vehicle component frameworks’ interface metamodel traits.

This design approach considers the MDE and ontology-based metamodeling approaches as complementary and

not as an alternative to each other, that means, challenges in MDE based metamodeling approach can be overcome

with the strengths of ontology-based metamodeling approach and vice-versa. However, at the time of writing,

implementation of the proposed design approach is still work-in-progress.

Contribution at Level 3 (C4): This contribution verifies qualitatively the success of metamodeling approaches

or techniques used by MDE and ontology paradigms by evaluation of few quality metrics. In context of current

scope and semantic interoperability between vehicle SWC frameworks’ interface models, each of these quality

metrics are defined to measure the richness of semantic similarity relations that could be explicitly expressed with

the interface metamodels using MDE and ontology-based metamodeling techniques. These metrics are validated

using relevant vehicle domain case studies. The quality metrics also provides quantitative information overview

for selection of the suitable metamodeling approach or technique for semantic alignment and semantic

interoperability between vehicle application component frameworks’ interface models.

Each contribution at each abstraction level stated above can be related to research questions as seen in the TABLE

I. below.

TABLE I. CONTRIBUTIONS VS. RESEARCH QUESTIONS

 Q1 Q2 Q3 Q4 Q5 C1 C2 C3 C4

1
2 ✔ ✔

3 ✔ ✔

4 ✔ ✔

5 ✔ ✔

6 ✔ ✔

7 ✔ ✔ ✔

8 ✔ ✔ ✔

9 ✔ ✔

10 ✔ ✔ ✔

11 ✔ ✔

C
ha

pt
er

s

Research Questions Contributions

20

Each of the abstraction levels as described above has a specific role to play in evolution of vehicle domain unified

API model or software solution. From the vehicle level stating what the vehicle software components interface

models should do through semantic analysis level, design and implementation levels using MDE and ontology

paradigms that define, at various level of abstraction, how this is done [21]. The proposed abstraction levels and

the contained elements provide a separation of concerns and an implicit style for using the modeling elements. The

extensions include run-time interface behaviors such as timing constraints, pre-conditions, post-conditions, which

are also part of interface semantics. The realization of extension pillars in Fig.4 refers to the core elements in all

abstraction levels. The timing constraints extension pillar has been included within the current scope, as apart of

contribution C2. Work on the other extension pillars are still under progress.

1.3 Report Structure

This section lay out the structure of this research report with a brief overview of each chapter. Information

related to publications done w.r.t to the research work are included also as a part of this chapter.

Part-I: Introduction (including Vehicle Component Level)

Chapter 1: This chapter introduces the problem statement on semantic interoperability between vehicle

component frameworks with multiple research questions with brief overview of contributions to find possible

solutions to answer the research questions. This chapter also provides information on the layout of the research

report in the context of the given research scope.

Chapter 2: The background knowledge which stands as a perquisite to understand the given research scope on

semantic interoperability between heterogeneous application SWC frameworks API models in vehicle domain, is

presented in this chapter. The fundamental concepts of SWC’s interface metamodel, analysis of the run-time

behavior associated with event-chain SWCs’ API models and analysis of the concepts and technologies

surrounding the modeling approaches for semantic mapping of SWC interface metamodels, based on MDE and

ontology paradigms are presented in this chapter.

Chapter 3: This chapter presents the state-of-art towards semantic mapping and alignment of heterogeneous

application SWC frameworks interface models. The state-of-art presents the brief overview of the relevant

contributions from literature done so far in the direction of the current research scope along with the information

on publications done to communicate the research work to the outside world.

Part-II: At Analysis Level

Chapter 4: This chapter focusses on the survey and comparison of the semantics of various SOA based vehicle

applications frameworks SWCs’ interface models using mappings and to explore the synergies in semantic

mappings. This is to ensure domain experts understand the semantic synergies in API specifications at code

generation level and decide which semantic synergies to be considered for designing a domain specific Meta

Interface description language or Meta-IDL or Unified IDL at code level for automotive application domain.

Chapter 5: This chapter focuses on the metamodeling perspective of SWC interface metamodels and hence

presents the semantic survey of interface metamodels of various cross-enterprise SWC frameworks within vehicle

application domains represented as Component-Port-Connector (CPC) models. Each presented CPC model is

designed considering the hierarchically classified three distinct levels: Semantic, Behavior and Composition.

Part-III: At Design Level & Implementation Level (Work-in-Progress)

Chapter 6 : This chapter focusses on finding semantic correspondences between Ecore as M2 level metamodel

and Ontology Definition Metamodel (ODM) such as OWL2 (OWL version 2) metamodel, as both formalisms are

fit for conceptual modeling. Therefore, towards semantic alignment of heterogeneous platform-specific vehicle

application domain conceptual SWC frameworks’ API models, this chapter presents an MDE based design

approach towards semantic mapping of different frameworks’ SWC interface Ecore metamodels using MDE based

tooling support for EMFs.

Chapter 7: For domain-specific semantic alignments and integration methods without ontology, the solutions

always have several drawbacks. Based on this fact, this chapter presents a semi-automated design approach to

extend automotive domain heterogeneous component frameworks’ interface ecore metamodels represented as

schematic data models such as XSDs (XML Schemas) to ontologies schemas such as Resource Description

21

Framework Schema (RDFS) used for representing OWL metamodels. The design approach uses a transformation

bridge by which the the basic constructs of component frameworks interface metamodels described by Ecore are

mapped to corresponding constructs of OWL metamodels. The approach is illustrated using vehicle domain

commonly used case studies. This chapter focusses on semantic alignment of vehicle component frameworks’

interface metamodels when represented as OWL 2 ontologies and presents the design approach to semantically

integrate the given frameworks’ interface ontologies within the vehicle application domain for the evolution of a

domain global interface ontology prototype as a meta-standard.

Part-IV: Finale

Chapter 8: Based on the comparative analysis of complementary interface metamodel semantic mapping

approaches driven by MDE and ontology paradigms, this chapter draws conclusions based on results achieved

with the proposed methodology and validation achieved at PoC level.

Chapter 9: As the work presented in this research report is still under progress, in that perspective this chapter

presents an outlook of the on-going research work towards illustration of semantic interoperability between vehicle

services of heterogeneous origin and profiles using a domain global interface ontology prototype.

Chapter 10: This chapter is about Appendix related to the research work presented in this contribution and it

includes mapping tables between various vehicle SWC frameworks.

22

 Background
Vehicle domain businesses required their heterogeneous systems and applications to communicate in a

transactional manner. The Extensible Markup Language was one of most successful solutions developed to provide

business-to-business integration. XML became a means of transmitting unstructured, semi-structured, and even

structured data between systems, enhancing the integration of applications and businesses. Unfortunately, XML-

based solutions for applications and systems integration were not enough, since the data exchanged lacked an

explicit description of its meaning. The integration of applications must also include a semantic integration.

Semantic integration and interoperability are concerned with the use of explicit semantic descriptions to facilitate

integration [82]. The word Semantics is the study of relations between the system of signs (such as words, phrases,

and sentences) and their meanings. As can be seen by this definition, the objective of semantics is totally different

from the objective of syntax [82]. Following the same definition, a SWC API’s semantic expresses a software

component in terms of its operations, inputs, outputs, and underlying types, defining functionalities that are

independent of their respective implementations, which allows definitions and implementations to vary without

compromising the interface. A good API makes it easier to develop a program by providing all the building blocks,

which are then put together by the programmer.

2.1 Role of Interfaces in Interoperability of Vehicle Applications

Cars continue to turn into real cyber physical systems, just connecting to the internet and exchanging data with

smartphones is the state of the art. Future cars will be connected to almost everything: Smart homes, roadside

infrastructure, etc. Apparently, the architectures of todays’ cars can be clustered into different domains for

infotainment and connectivity, chassis, powertrain, etc. [6]. Collaboration between these domains is highly

demanded to satisfy the novel automotive requirements [15][16] . However, for these collaborative environments

to perform efficiently, interoperability stands as a major challenge. Nevertheless, to achieve a holistic data

exchange between heterogeneous component framework interfaces, the semantics must be considered [6]. In

addition, the notation used within the different semantics, understanding the notations without a general agreement,

which makes the understanding between systems more complex. The purpose of any domain analysis is to select

and define the domain of focus and to collect relevant domain information and integrate it into a coherent domain

model. It is time to shift focus from the implementation of a certain modeling language towards the explicit

semantic concepts covered by this language [1].

In the vehicle domain, perception of the role of interfaces in interoperability between future containerized vehicle

application components, component frameworks with heterogeneous API architectures and semantics must be

integrated into collaborative systems of the future ECU HPC software platforms to support automotive complex

services, each application or application cluster running parallelly in containers. With the new era of automotive

complex services requirements, multiple vehicle software services run parallel to one another on the same ECU

HPC software platform. These services are broken down to microservices and packaged within containers based

on application clusters. The application clusters in containers are expected to run parallel to one another.

Fig. 6. Role of SWC interfaces for Containerized vehicle application Clusters.

23

Containers are an abstraction at the application layer that packages code and dependencies together. Multiple

containers can run on the HPC software platform in parallel with one another, each running as isolated processes

in user space. Each collaborating application cluster deploy their services to other collaborating partners co-

existing in the same ECU HPC software platform using containerized microservices. For communication between

containerized microservices, it is crucial to specify communicating port interfaces of application component

instances. However, interoperability between containerized application clusters for services collaborations remains

a challenge. In such scenarios, the interoperability majorly depends on the semantic commonalities between

communicating port interfaces of application component instances or compositions, as also depicted by Fig. 6.

Interfaces define contracts between components, as well as between the container and the components it hosts.

Since, an interface can be used by various components, hence, lifecycle callback interface of a component is used

by the container to control the lifecycle of application component instances. This includes instantiating

components, configuring instances, activating and passivating them over time, checking their state (running,

standby, overload, error, …) or restarting one in case of severe problems. The propagation of events between

application instances, synchronously or asynchronously can be supported by the container. For interoperability

and communication between application instances or microservices in containers, time-based events can be

triggered and notification interface in case interrupts occur can also be provided by the container. Timing

constraints or pre/post conditions related to realization of interfaces can be checked by the container and errors

can be reported.

Today, in the automotive industry the integration costs for enterprise apps co-operation are still extremely high,

because of different business processes, data organization, application SWCs’ interfaces that need to be reconciled,

typically with great manual intervention. This problem has been addressed independently by MDA and ontology-

based approaches. Applications in vehicle domain are implemented as multiple distributed components, and those

components call each other's APIs for the complete application to function, as seen in . When developers design

APIs for such applications, the solution characteristics they will typically prioritize are ease of programming for

both the client and the server and efficiency of execution. Moreover, description of services in a language neutral

manner is also vital for the widespread use of vehicle domain services. The containerized service providers must
describe their containerized services and advertise them through their APIs in a standardized way like for example,

using a universal service registry like commonly used in semantic Web domain, the Universal Description

Discovery and Integration (UDDI) , an XML-based registry for business internet services, as seen in Fig. 7.

Fig. 7. WorkFlow representation of communication between heterogeneous, distributed applications in vehicle domain.

Legacy SWC frameworks like AUTOSAR Classic and Adaptive software exists (implemented with Remote

Procedure Calls) that no longer fits its current needs or directions. This software is too valuable to abandon for

vehicle application domain, and too difficult to change. One of the primary reasons that software is difficult to

change is that basic assumptions are propagated through code from procedure to procedure.

24

In this scenario, One difficulty is the sheer variability of the interfaces and technologies that have to be integrated.

Inspired by WSDL (Web Service Description Language) in Web Semantic domain, of using a common interface

description language for describing the functionalities of Web services ‘APIs, for widely distributed vehicle

domain services, it can also be argued based on technical artifacts and emerging researches [84] to use a

technology and platform agnostic, language neutral unified interface description template for describing vehicle

domain containerized services’API specifications such as OpenAPI Specification (OAS).

The OAS defines a standard, language-agnostic interface to RESTful APIs which allows both humans and

computers to discover and understand the capabilities of the service without access to source code, documentation,

or through network traffic inspection. With other words, OpenAPI is a set of rules on how to describe with a human

readable format the RESTful APIs. Once defined, a standardized OpenAPI method ought to have the same

semantics when applied to any SWC frameworks’ API specifications, though each API specifications determines

for itself whether those semantics are implemented or allowed.

2.2 Fundamentals of Interfaces at Vehicle Software Component Level

From architectural abstraction perspective, a component can be considered as an opaque implementation of

functionality which is a subject to third party composition. A component is conformant with a component model

that is component models should prescribe how components interact with each other, and express architectural

design. The ability to integrate components into assemblies, to reason about these assemblies, and to develop a

market of components depends fundamentally on the notion of component interfaces constraints [40].

Technically, an interface of a component includes a set of named operations that can be invoked by clients. These

set of named operations can be defined in a single or multiple service access points (or interfaces) of a component.

However, it is important to note that other than definition, an interface offers no implementation of any of its

operation [40]. Each operation’s semantics is specified, and this specification plays a dual role as it serves both

providers implementing the interface and consumer using the interface.

Most techniques for describing interfaces such as IDL are only concerned with the signature part, in which the

operations provided by a component are defined, and thus fail to address the overall behavior of the component

[44]. A more accurate specification of a component’s behavior can be achieved through contract specification. In

a group of software components, interface as contracts can also be used to specify the interactions between the

components. Today most of the automotive and various other cross-enterprises’ SOA based framework interfaces

are specified as Service Contracts, allowing heterogeneous systems to communicate and interchange their services.

2.2.1 Overview of SWC Interfaces as Contracts

Like in any other engineering disciplines, from architectural abstraction perspective, an automotive domain

software component model can be considered as an opaque implementation of functionality which is a subject to

third party composition. Interface represented as a contract or service contract is a metaphor with connotations

that are useful to CBSE (Component Based Software Engineering). For example, [40]:

▪ Contracts are between two or more parties.

▪ Parties (e.g. Service Consumer and Service Provider) often negotiate the details of a contract before

becoming signatories.

▪ Contracts prescribe normative and measurable behaviors on all signatories.

▪ Contracts cannot be changed unless the changes are agreed to by all signatories. For example, changes

due to versioning of service interface as service contracts must be freeze unless agreed to by all

signatories.

The interface contract specification implicitly defines the component’s behavior, the type of interaction between

components to comply with architectural styles of a component framework for e.g., interface contract specification

for Event Subscription, Request Reply, Broadcast, etc.

Interface semantics is defined as the actual meaning of interfaces of a component beyond their outer form,

signature or appearance. Although syntactic specification of interfaces using contractual languages such as IDLs

is in widespread use, but still it is widely acknowledged that semantic information about a component interfaces’

operations is necessary to use the interface effectively and to reuse the component. Examples of such an interface

semantic information may include the combination of parameter values an operation accepts, an operations’

possible error codes, and constraints on the order in which operations are invoked. On the semantic level of an

individual operation of an interface, there is particularly popular contractual specification method.

25

Semantically, the two sides of the interface as a contract can be captured by specifying pre- and postconditions for

an operation [45]. The client or service consumer must establish the precondition before calling the operation, and

the service provider can rely on the precondition being met whenever the operation is called. The provider must

establish the postcondition before returning to the client and the client can rely on the postcondition being met

whenever the call to the operation returns. An operation’s precondition and postconditions will often depend on

the state maintained by a software component [38], as depicted in the Fig. 8. For a given interface’s state model

an invariant also known as a predicate must always hold true for the correct realization of the interface, as also

illustrated in Fig. 8.

When an interface’s operation succeeds under specific conditions, these conditions are included in the contract’s

precondition, and then the contract’s postcondition merely need to specify the outcome in those well- defined

situations, this type of interface contract may be called as a strong contract. Whereas, if the contract’s precondition

for an interface operation is not able to filter out the invalid usecases, then the postcondition for such an interface

operation will then specify the outcome of also invalid usecases, which needs to be filtered out as well, such

contracts may be called as weak contracts. Nevertheless, pre- and postconditions functional aspects are not only

the way to form contracts or specify all aspects of interface specification. In addition to pre- and postcondition, a

contractual specification also includes extra-functional requirements like a so-called service level. The service

levels cover guarantees regarding availability, mean time between failures, mean time to repair, throughput,

latency, data safety for persistent state, capacity and so on. Failure to fulfill service level is treated as breaking of

a contract. It is expected that this practice of including extra-functional specifications into a contract and

monitoring them would become more widely used in the future [39].

Fig. 8. Abstract specification of semantics of a generic SWC interface model.

Changes to a contract can take two forms. Either the interface or the specification is changed. If the interface is

changed, this is referred to as syntactic change. If the specification is changed, this is called a semantic change.

The problems caused due to contract changes are generally referred to as the fragile base class problem [39]. One

possible approach to tackle the semantic changes is to insist on immutable interface specifications.

2.2.2 Vehicle Application SWC Interfaces Specifications at different Levels

Based on the state of the art [38][45][46] and common observations of a SWCM interface description , functionally

interface specifications as contracts can be classified into four levels, they are namely Semantic, Syntactic,

Behavioral and Interaction Level [45]:

2.2.2.1 Semantic Level

This level reinforces the syntactic level and concerns with the meaning of interface concepts or features often

specified by the expectations or requirements. This level functionally includes precondition, postcondition and

invariants that are required for implementation or realization of components’ interfaces, however, in a group of

26

software components, the interface contract specification implicitly defines the component’s behavior, the type of

interaction between components to comply with specific architectural styles of a component framework. In

general, the semantics for automotive service-based interface specification at the application software component

level fundamentally includes [1][22][45].

▪ Separation of Interface Roles: The distinction between the consumer and service provider of a service

interface.

▪ Distinction of interface types: operation-based (e.g. methods invocations), event-based (e.g. Publish-

Subscribe()) , Broadcast(), data-passing (e.g. SenderReceiver()), etc.

▪ Method invocation: Method calls with valid argument (or parameter) prototypes, e.g.

ClientServerOperation(), RequestReplyOperation(), etc. including if any possible applicable post and

pre-conditions and invariants.

▪ Event driven: This type of asynchronous interface specification includes Callbacks (), Notifications, etc.

▪ Data passing: One-way or unidirectional (Fire-And-Forget ()), Two-way or bidirectional

(SenderReceiver()) function call semantics.

▪ Data Types: parameters’ specifications like primitive, complex and user-defined data type specifications

like int, float, string, Boolean, enum, array, vector, union, etc.

▪ The existence of some distinctive features appearing only for specific framework component models

(such as special type of ports, optional operations)[45].

The overall interface specifications as a contract at semantic level also includes interface run-time behavioral

constraints like timing constraints, etc. and interfaces interactions specifications.

2.2.2.2 Semantics of Component Interface Behavioral Constraints: Timing Constraints

Timing constraints are concerned with a SWC interface run-time behavior, hence, defined separately from the

basic structural modeling elements of a platform specific IDL or SWC interface model. The fundamental concepts

for describing timing constraints are that of Events and Event Chains. On the analysis level of system model

abstraction, observable events can be identified, e.g., events that cause a reaction, i.e. a stimulus, and resulting

observable event like a response, as illustrated in Fig. 9.

Fig. 9. Overview of heterogeneous modes of communication between outside world and vehicle.

Timing constraints represents dynamic behavior of interfaces as events or event chains based on timing analysis

parameters. For example, timing constraints on the temporal ordering of events, etc.) [21].

The timing requirements can be imposed on Event Chains, for example, specifying that the time gap between the

occurrence of a stimulus event and the occurrence of the expected response event, shall not exceed a specific

amount of time, for example, an end-to-end delay from a sensor to an actuator. In addition, requirements regarding

the synchrony of events can be expressed, stating that several events shall occur „simultaneously“in order to cause

a reaction, or be considered as valid response of a system function. For example, in case of a passenger vehicle,

its brake system shall apply the brakes simultaneously; or the exterior light system shall simultaneously turn on

and off the rear and front turn signal indicators [37].

27

The timing constraints could be roughly grouped into restrictions such as the recurring delays between a pair of

events, restrictions on the repetitions of a single event, and restrictions on the synchronicity of a set of events.

Examples of timing constraints on the temporal ordering of events such as restrictions on the recurring delays

between a pair of events like AgeConstraint and ReactionConstraint, restrictions on the repetitions of a single

event, and restrictions on the synchronicity of a set of events like Input and Output Synchronization Constraint.

All these timing constraints for automotive application software component interface models has been explicitly

provided by TADL2 (of EAST-ADL) and are defined using UML class diagrams [37], as shown in Fig. 10.

Fig. 10. An Overview model of Timing constraints on ordering of Events in a EventChain.

2.2.2.3 Semantics of Component Interface at Interaction Level/Composition Level

This level represents interactions between interface functionalities and behavior between multiple components as

far as accessible through SWC ports [45][43] e.g. Synchronous, Asynchronous, etc. This level fundamentally

includes following characteristics:

▪ Interaction Style using Software Connectors: Specification of software connections or connectors used

for connection between SWC models. SW connectors can be realized in various types or forms of sw

connections between SWCs depending on the used sw platform. For example, for interaction between

SWCs interfaces, application framework for AUTOSAR Classic platform, uses sw connectors in two

forms, namely Assembly sw connectors for interaction between atomic SWCs’ interfaces and Delegate

sw connectors for interaction between composite SWCs’ interfaces [43].

▪ Type of Communication: which details mainly if the communication is synchronous (blocking) and/or

asynchronous (non-blocking) between the components interface method calls.

▪ Method Mapping: Mapping of methods during service-based interface interactions, for e.g., Client

methods can be mapped to one or more server methods and similarly server broadcast could be mapped

to one or more client broadcasts.

▪ Parameter Mapping: parameters of server calls, client responses, client broadcasts) can be defined in a

parameter mapping. A parameter mapping could consist of a mandatory default value and an optional

arithmetic expression of input parameters. Parameter mapping could be considered as a part of interface

method to method mapping at interaction level.

▪ Binding Type: describes the way SWCs may be linked together through the interfaces using

communication protocols, for example, the Remote Procedure Calls (RPC) between SWCs’ interfaces

using communication protocol SOME/IP (Scalable service-oriented MiddlewarE over IP). Binding Type

is an optional information for SWCs’ interface specifications at interaction level.

▪ Interaction of component interfaces using sw connectors for example, for inter- or intra-ECU

communications can be further realized in two subtypes:

➢ The exogenous/endogenous sub-category describing whether the component model

includes sw connectors as architectural elements.

28

➢ The hierarchical sub-category expressing the possibility of having a hierarchical

composition of components (such as horizontal composition is an intrinsic part of all

component models and thus it is implicitly assumed).

2.2.2.4 Syntactic Level

The basic syntax of interface model of a software component can be represented as seen in Fig. 11. This level

describes the syntactic aspect and describes the signature of an framework interface generally using a specific

language like IDL. This level relies mainly on an either static or dynamic, type checking technique.

Fig. 11. An abstract specification of syntax of a generic SWC interface model.

This level fundamentally includes [45]:

▪ Interface Modelling Language Supported: The platform specific software modelling languages used to

specify the interface for software component frameworks. Also known as IDLs.

▪ Method Signatures: As a part API specification, method invocation or operation structural elements or

signatures such as names of methods, parameters specifications, etc. based on specific programming

languages supported by different frameworks, are specified using syntactic level.

2.3 Interface Metamodel -The Conceptual Building Block

In the direction of semantic alignment of automotive component interface metamodels, it is essential to understand

the fundamental constructs of MDE based metamodels and ontology based metamodels and then identify possible

commonalities and variations between the metamodeling constructs of both the paradigms. To accomplish this

goal, this subsection focusses on the basic literature of MDE and ontology technology paradigms in context of

conceptual modelling especially metamodels. Metamodeling is the act of describing the model of a modelling

language using another language, namely metamodeling language [3].

What are Metamodels?

Metamodeling is the act of describing the model of a modeling language using another language, namely

metamodeling language [2]. If each metamodel is expressed using a modeling language, this could lead to an

infinite hierarchy of meta-meta models. A common solution to this problem is to let a modeling language define

itself at a certain level in the hierarchy as per OMG standardization, depicted by Fig. 12 [2]. MDA by OMG

addresses four layered metamodel architecture namely, M0, M1, M2 and M3. M0-layer represents real world

objects. M1- layer defines models based on simplification and abstraction of M0 layer. Models at M1 layer are

defined using concepts which are described by metamodels of M2 layer. Metamodels of M2 layer are further

described by concepts defined by meta-metamodels or Meta-Object Facility (MOF) of M3 layer [47]. The MOF

is OMGs’ standard specification for defining metamodels.

class Domain Model

Component

Name
Interface

Operation

In-interfaces:

Receiv e

Out-interfaces:

Prov ide

*

*

ParameterType

OutParameter
InParameter

InOutParameter

1
1...*

1...*

1...*

0...*
0...*

1...*

29

Fig. 12. Abstract view of OMG specified four-layered metamodel architecture.

2.3.1 MDE based Ecore Metamodel

The MOF provides a language to define abstract syntax for modelling language [24]. In general, the version 2.0

of MOF provides two types of metamodel definition, namely, Essential MOF (EMOF) and Complete MOF

(CMOF). EMOF prefers simplicity of implementation before expressiveness. On the other hand, CMOF is

comparatively more expressive but more complex to implement [3]. According to EMF literature, OMG (Object

Management Group) addresses meta-metamodeling in Ecore as implementation of EMOF in M3 layer of four-

layered modelling architecture [3][2]. Fig. 14 illustrates a simplified version of Ecore meta-metamodel [3]. A

metamodel described by Ecore consists of mainly Packages which can be nested and contains set of Typed

Elements. Packages, Typed Elements and Types are Named Elements. Types has two subclasses: Class and

Datatype. A Class can be abstract or concrete. A Class can have Property. A Property is a Multiplicity Element

and Typed Element.

Ecore is in its own metamodel and provides four basic metamodeling constructs when used with Eclipse Modeling

Framework: (1) EClass is used for representing a modeled class. (2) EAttribute is used for representing a modeled

attribute. Each Attribute have a name and a type. (3) EReference is used association relationship between classes.

(4) EDataType is used for representing the attributes types. There are few meta-classes described by Ecore such

as EFactory, EOperation and EParameter which do not represent concepts of modelling language, hence, is not

considered in the current scope [3][4][5].

Fig. 13. Ecore representation of EMOF.

30

Fig. 14. An ecore metamodel representing AUTOSAR Adaptive Software Component interface level.

Fehler! Verweisquelle konnte nicht gefunden werden. illustrates a typical example of ecore metamodel (M2 l

evel) describing an automotive domain platform-specific component framework namely, AUTOSAR (AR)

Adaptive component framework communication interface model.

2.3.2 Ontology based OWL2 Metamodel

The OWL2 metamodel which is also part of the Ontology Definition Metamodel (ODM) specification defined in

the OMG standard, is implemented by extending the RDFS (Resource Description Framework Schema)

metamodel. Fig. 15 illustrates the class hierarchy present in OWL. An OWLClass is a kind of RDFS Class, like an

OWL Property is kind of or inherited from RDFProperty. OWLProperty can be distinguished based on functional,

data and object resources. With it we can define cardinalities on properties, define classes with set operators like

union, intersection, complement, enumerated and OWL restriction [24].

OMG specifies RDF concepts and RDFS metamodels complies to MOF 2.0 version and are comparable to meta-

metamodels of M3 layer of four-layered modelling architecture [3][2]. RDFS serves as a meta-language that

defines itself and OWL. RDF classes are equivalent to MOF classes. RDF properties are represented either by

MOF classes or associations, as appropriate [11] [7]. RDF properties are first-class entities with unique identifiers.

An RDF property can be a sub-property of another RDF property, as can be seen in Fig. 15. MOF associations, on

the other hand, are not first-class entities.

Although ecore and OWL metamodel have multiple semantic correspondence, however, when defining a common

superclass for two subclasses to denote that all instances of the subclasses are also instances of the superclass. This

specific intention would be equally satisfied in both ecore and OWL metamodel [5]. However, in ecore this also

means that instances of either subclass can be instance of one of the subclasses only, whereas individuals in OWL

could actually belong to both subclasses [1][5].

31

Fig. 15. An abstract model representation of OWL2 metamodel.

In contrast to EMOF, in RDFS, a MOF can be a sub-association of another MOF association [3][2][24]. The RDF

concepts describes the concept of an RDF property as a relation between subject resources and object resources.

All things described by RDF are called RDFResource [23]. All the other classes are subclasses of this class. Every

RDF property is associated with a set of instances, called the property extension. Instances of RDF properties are

pairs of RDF resources [24][47].

Fig. 16 depicts the essential features of OWL2 metamodel [9]. Each OWL2 ontology consists of a set of axioms.

Class axioms for example are the Equivalent-Classes axioms or the SubClassOf axioms. The EquivalentClasses

axiom is used to describe two or more class expressions as equivalent, whereas the SubClassOf axiom defines

exactly one class expression to be the subclass of another. A possible class expression for example is the

ObjectSomeValuesFrom expression which describes those individuals which are connected via a given object

property to at least an individual of the given class expression. Beside class descriptions, individuals are part of an

ontology [9]. Class assertions are axioms that are used to assert individuals having as type the given class

expression.

.

Fig. 16. Expanded view of an excerpt of OWL2 metamodel.

32

Fig. 17 illustrates a typical example of the class hierarchy present in OWL2 meta-model (M2) specification or

ontology for describing an automotive domain platform-specific component. framework, namely, AUTOSAR

(AR) Adaptive component framework communication interface model.

Fig. 17. OWL2 metamodel specification for AUTOSAR Adaptive Software Component interface model.

2.3.3 Ontology Definition Metamodel (ODM)

The ODM is applicable to knowledge representation, conceptual modeling, formal taxonomy development and

ontology definition, and enables the use of a variety of enterprise models as starting points for ontology

development through mappings to UML and MOF [24]. ODM-based ontologies can be used to support [23]:

▪ interchange of knowledge among heterogeneous computer systems.

▪ representation of knowledge in ontologies and knowledge bases.

▪ specification of expressions that are the input to or output from inference engines.

The ODM specification offers several benefits including knowledge basis for conceptual mapping of metamodels

from ecore to OWL2. The need for a dedicated ontology modeling language stems from the observation that an

ontology cannot be sufficiently represented in UML [24]. Both representations share a set of core functionalities

such as the ability to define classes, class relationships, and relationship cardinalities. Despite this overlap, there

are many features which can only be expressed in an ontology language. Examples for this disjoints are transitive

and symmetric properties in OWL or methods in UML. As per the OMG standard the key requirement for ODM

is [23][24]:

▪ An ODM must be grounded in the Meta Object Facility2(MOF2).

▪ Bidirectional partial mappings between an ODM and EMF profile such as ecore , UML ,etc. defining

visual notation for the same ontologies should be possible to be established as illustrated in Fig. 18.

▪ From the ODM, one must be able to generate an ontology representation in a language such as OWL DL,

also seen in Fig. 18.

▪ An XMI serialization and exchange syntax for ODM must be provided. This XMI format allows

exchanging an ODM metamodel between tools.

In the current scope of research contribution, the focus is more towards accomplishment of second and third

requirements for ODM as the other two requirements directly follow from a good ODM. An ODM can also be

extracted from an OWL DL. Ontology-Driven Software Development provides a quick and simplified description

of a DSL (Domain-Specific Language), abstracting languages’ technically details, while highlighting key

terminology and specifics. Once an ontology is built, it is a simple process to generate the languages’ metamodel

and establish relationships among the related concepts. This languages’ metamodel that could be generated from

OWL DL using language mappings is an ODM [23]. The ODM specification offers several benefits to potential

users [23], including:

Example of Axioms

representing Class assertions

33

Fig. 18. Overview of partial mapping UML profile to ODM and extraction of ODM from OWL DL for DSL generation.

▪ Options in the level of expressivity, complexity, and form available for designing and implementing

conceptual models, ranging from familiar EMF profiles like UML, ecore, etc. to formal ontologies

represented in description logics or first order logic.

▪ Grounding in formal logic, through standards-based, model-theoretic semantics for the knowledge

representation languages supported, enough to enable reasoning engines to understand, validate, and

apply ontologies developed using the ODM.

▪ Profiles and mappings enough to support not only the exchange of models developed independently in

various formalisms but to enable consistency checking and validation in ways that have not been feasible

to date.

▪ The basis for a family of specifications that marry MDA and Semantic Web technologies to support

semantic web services, ontology and policy-based communications and interoperability, and declarative,

policy-based applications in general.

ODM specifications is applicable to knowledge representation, conceptual modeling, formal taxonomy

development and ontology definition, and enables the use of a variety of enterprise models as starting points for

ontology development through mappings to UML and MOF [24][23].

2.4 Event Chain Timing Behavior of Software Components’ Interface Models

As observed from Fig. 1, in today’s era for the realization of most of the complex and novel vehicle functionalities

or services we prefer event driven communication pattern when communicating with distributed, heterogeneous

origin application component frameworks’ interfaces for service collaborations and exchange of data. Therefore,

within this given context, among all other existing run-time behavioral constraints for SWC frameworks’

interfaces, it is most important to analyze the timing models associated with each of the service collaborating SWC

frameworks that supports the event-driven API communication pattern.

The end-to-end timing model of SWC frameworks consists of the information containing timing properties,

requirements, dependencies, control and data flows concerning all events, messages and event chains in the system.

Conceptually, timing information can be divided into timing requirements of SWC frameworks and timing

properties, where the actual timing properties of solution must satisfy the specified timing requirements [37][22].

Based on this information, the timing analysis can predict the execution behavior of the system with respect to

end-to-end timing. Most existing approaches for component-based vehicular distributed embedded systems

support the representation of such timing models at an abstraction level that is close to their implementation.

Representation of the timing model at the higher abstraction levels is challenging mainly because not all timing

information is available at the higher levels. Hence, the analysis results may not represent accurate timing behavior

of an overall vehicle sub-system. The TADL2 (Timing Augmented Description Language version 2.0) developed

by the TIMMO project, provides the only viable formal method for modeling of timing information using timing

constraints at various abstraction levels in the vehicle domain. This is evident from the fact that TADL2 has

recently provided the timing model to the EAST-ADL language and AUTOSAR [7]. EAST-ADL is an architecture

description language in the automotive domain [22][37].

Most of the vehicular functions are developed as distributed embedded systems with real-time requirements

specified on them. This means that the providers of the systems are required to ensure that logically correct actions

34

are taken by the systems at times that are appropriate to their environment (i.e., the timing requirements are

satisfied). In the context of current scope, the timing behavior of the interface data-passing method calls, or events

can be determined by calculating its response time. The response time of a task or a message is defined as the

amount of time elapsed between its activation and completion or reception respectively. Often, vehicular

embedded systems are modeled with task chains.

A task chain consists of several tasks that are in a sequence and have one common ancestor. At vehicle software

component interface level, a task chain can be considered as Event Chains, where each Event Chain consists of

number of Events. Each task may receive an activation trigger, a data or both from its predecessor. Any two

neighboring tasks in a chain may reside on two different nodes, while the nodes communicate with each other via

network work messages. In this case, the messages are part of the task chain. The timing behavior of the task chain

is determined by calculating its end-to-end response time and/or delays. The end-to-end response time of a task

chain is defined as the amount of time elapsed between the arrival of an event at the first task and the production

of the response by the last task in the chain. If the tasks within a chain are activated by independent sources (e.g.,

clocks), then different types of end-to-end delays are also calculated to determine the timing behavior of the chain.

Event chains specify a causal relationship between events and their temporal occurrences. The notion of event

chain enables one to specify the relationship between two events, for example when an event A occurs then the

event B occurs, or in other words, the event B occurs if and only if the event A occurred before. In the context of

an event chain the event A plays the role of the stimulus and the event B the role of the response. Event chains can

be composed of further existing event chains and therefore can be decomposed into event chain segments.

Like event triggering constraints impose timing constraints on events and their occurrences; the latency and

synchronization timing constraints impose constraints on event chains. In the former case, a constraint is used to

specify a reaction and age, for example if a stimulus event occurs then the corresponding response event shall

occur not later than a given amount of time. And in the latter case, the constraint is used to specify that stimuli or

response events must occur within a given time interval. The next subsection illustrates more artifacts on the run-

time behaviors of commonly used vehicle application SWC frameworks interfaces w.r.t. to event chains.

2.4.1 AUTOSAR SWC Framework Event Chain Timing Analysis: VFB Timing View

AUTOSAR timing models consist of timing descriptions, expressed by events and event chains, and timing

constraints that are imposed on these events and event chains. The AUTOSAR Specification of Timing Extensions

defines a set of predefined event types related to one of the AUTOSAR views: Virtual Function Bus VFB View

(VFB Timing), Software Component View (SWC Timing), System View (System Timing), Basic Software Module

View (BSWM Timing), and ECU View (ECU Timing) [43]. In particular, one uses these events to specify the

reading and writing of data from and to specific ports of software components, calling of services and receiving

their responses (VFB Timing); sending and receiving data via networks and through communication stacks (System

Timing); activating, starting an terminating executable entities (SWC Timing); and last but not least calling basic

software services and receiving their responses (ECU Timing and Basic SW Module Timing).

As an example of VFB Timing , consider the timing behavior illustrated in Fig. 19. From the point in time, where

the value in is received by the software component named as SWC in Fig. 19 [43], until the point in time, where

the newly calculated value out is sent, there would be maximum latency of 2 ms. This would be attached to the

timing description that refers to an AtomicSwComponentType SWC.

Fig. 19. Abstract representation of VFB Timing behaviour for AUTOSAR SWC framework

35

In view of current scope, we consider the TADL2 definition of Timing Description model for VFB Timing view

for an AUTOSAR Classic frameworks’ SWC’s communication interface, as also depicted by Fig. 20[37][22].

Fig. 20. Representation of Timing Description model describing event chain for a SWC interface.

An ExecutionTimeConstraint is used to specify the execution time of the referenced ExecutableEntity in the

referenced component. A minimum and maximum limit for execution time can be defined. RepetitionConstraint

means repetition of the event pattern for example, burst, concrete, and arbitrary pattern.

2.4.2 Franca SWC Framework Event Chain Timing Analysis

The syntactical interfaces are defined using the Franca interface description language (IDL) [FRA] which is the

current standard for specifying GENIVI compliant infotainment interfaces. The syntax model includes information

about the interface name, the interface version, methods, broadcasts, parameters and type definitions.

The event model extends the syntax model with the definition of signal events. A signal event is used in order to

describe an occurrence of a method call, method response, or broadcast with a concrete parameter constraint. The

signal event can be specified with the constraint attribute which defines a logical expression using the parameters

of the referenced method. The call event can be constrained using the input parameters of the method and the

response- and broadcast events can be constrained using the output parameters of the method or broadcast.

For the Event Chain timing analysis in Franca Framework, let us consider a scenario, say, a sensor vehicle SWC

ParkA exists in two versions, ParkA_1.0 and ParkA_2.0. Both the component versions call methods for SWC

startup and shutdown. Also, ParkA_1.0 defines a broadcast (started) for signaling the ready state, and one

broadcast (sensorValues) for sending sensor values. ParkA_2.0 defines three methods. Two for startup and

shutdown and one for receiving of sensor values from ParkA_1.0, as illustrated in Fig. 21 [68].

36

Fig. 21. ParkA_1.0 and ParkA_2.0 event model.

For mapping of client-server interface method calls and parameters between ParkA_1.0 client interface to

ParkA_2.0 server interface, timing description must be specified by setting timeout parameter for connection

establishment to a specific value. Such a timing analysis or behavioral analysis of interface can be better explained

using state machine diagrams, as illustrated in Fig. 22[68]. The dynamic adapter in Fig., maps a ParkA_1.0 client

interface to a ParkA_2.0 server interface. The active flag is only shown if it is set to true. The Max-argument is

only visualized if the timeout is set for a specific state. The Max attribute can be used to define the maximum

active time of a state. If the Max-attribute of a state is set to some value, the state machine will start a timer while

entering the state. Once the timer elapses a timeout signal will be generated which may be used as event trigger.
The first region sends a broadcast every 20 milliseconds to the client with sensor values. The second region

receives the current sensor values from the server every 10 milliseconds with the method call [68].

Fig. 22. State machine model for ParkA_1.0 and ParkA_2.0 event-driven communication pattern.

37

2.4.3 Android SWC Framework Event Chain Timing Analysis

Event dispatching in Android is orchestrated by the Looper class[77]. While Looper objects may be created by the

developer, their common use is in the main thread of every Android application. As the application starts, the

frameworks launch the main thread and runs a Looper that continuously dispatches events. Events that are

dispatched by the Looper are called messages and each message defines a routine to be executed. Once a message

routine is started, no other message routines can start until the first one completes. Additionally, the Looper class

allows for a message to be enqueued both by the application and by the framework and supports removal of

messages that may become obsolete before they are dispatched[77].

Timing analysis of Looper class can also be explained using state machine diagrams. The timing and order of

message dispatching is controlled by the message type and parameters as follows:

• Delayed(delay) denotes a message to be dispatched after a specified time elapse. If the time is set to 0 it

denotes that the message should be dispatched directly after the current event finishes (assuming there are

no other messages already scheduled before).

• At time(when) denotes a message to be dispatched at a specific time in the event chain.

• Front denotes a message to be dispatched next. For messages of type Front even if the message queue

already contains other messages scheduled for execution, the message will be scheduled before them.

• Idle denotes a message to be dispatched when the Looper has no other messages to dispatch.

2.4.4 ROS2 SWC Framework Event Chain Timing Analysis

From a logical perspective, ROS applications are composed of nodes, the smallest self-contained units of behavior.

Nodes in ROS2 framework are mostly analogous in functionality to SWCs used in AUTOSAR, Franca and

Android frameworks. In general, the nodes communicate using the publish-subscribe interface communication

design pattern: nodes publish messages on topics, which broadcast the message to all nodes that are subscribed to

the topic. Nodes react to incoming messages by activating callbacks to process each message.

For the analysis of the ROS application framework timing behavior, the focus is exclusively towards the simpler

and more predictable single-threaded executor. The executor distinguishes four categories of callbacks: timers,

which are triggered by system-level timers, subscribers, which are triggered by new messages on a subscribed

topic, services, which are triggered by service requests, and clients, which are triggered by responses to service

requests. The executor is responsible for taking messages from the input queues of the DDS (Data Distributed

Service) layer (ROS middleware interacting with the client library) and executing the corresponding callback. All

the event chains comprised solely of ROS callbacks are initially triggered by a timer [78].

Fig. 23. Overview of Callback queues and spins used for event chain for ROS2 framework .

38

Callback queues/spinning will influence the subscription queue, since how fast the callbacks are processed and

how quickly messages are arriving determines whether messages will be dropped. The CallbackQueue class has

two ways of invoking the callbacks inside it: callAvailable() and callOne() [78]. As illustrated in the Fig. 23[78][,

callAvailable() will take everything currently in the event queue and invoke all of them and callOne() will simply

invoke the oldest callback on the event queue. Both callAvailable() and callOne() can take in an optional timeout,

which is the amount of time they will wait for a callback to become available before returning. If this optional

timeout value is set to zero, then there are no callbacks in the event queue and the method will return immediately.

39

 Related Works

The Internet of Things, formerly known as IoT in vehicle domain is composed of a large and heterogeneous set of

devices, software systems, and networks in the quest of intelligent environments. During the last decades, a myriad

of heterogeneous protocols and standards have been used to address the requirements of this new technological

approach. The number of protocols and standards are growing as the number of new applications increase.

Consequently, one of the major challenges today in the Industrial IoT (IIoT) is the interoperability between systems

with heterogeneous characteristics [6]. Great efforts have been made in recent decades to improve interoperability

at semantic and syntactic levels. Streams of data were successfully transmitted between various vehicle services,

however there was no meaning associated with the data [5].

To facilitate a holistic and meaningful data exchange between several heterogeneous service-based application

components’ interfaces in the vehicle domain, it is essential to link the data at semantic level using a shared

vocabulary of the domain independent of platform specifications [8]. Most semantic alignment approaches in

vehicle domain address this problem by semantically mapping the vocabularies of platform-specific interface

concepts based on synergies in concepts at interface metamodel representation level.

3.1 Linking of Heterogeneous and Distributed Data at Semantic Level

In the automotive domain, there is a growing consensus that automotive domain services alone will not be enough

to develop valuable and complex vehicle services or solutions due to the degree of heterogeneity, autonomy, and

distribution of the services. Due to interaction of multiple heterogeneous knowledge domain enterprise

applications to render services, several researchers agree that it is essential for automotive services to be machine

understandable in order to allow the full deployment of efficient solutions supporting all the phases of the lifecycle

of the services. It is always a good idea to is to encapsulate an application framework or an organization’s

functionalities within an appropriate standard interface and advertise them as automotive services [82].

Additionally, it is equally important that these interfaces are machine understandable and have proper meaning or

semantics associated with them. The existing dominant standard for linking data of interfaces of automotive
applications developed by different vendors are XML schemas. However, XML is for syntax with no semantics.

Due to the widespread importance of integration and interoperability for intra- and inter-business processes, the

research community in semantic web domain has tackled this problem and developed semantic standards such as

the Resource Description Framework (RDF) and the OWL. RDF is a standard for creating descriptions of

information. Therefore, RDF is a standard for semantics. OWL provides a language for defining structured Web-

based ontologies which allows a richer integration and interoperability of data among communities and

domains[82].

Authors et.al [63] propose XS2OWL transformation model that allows to transform the XML Schema constructs

in OWL, so that applications using XML Schema based standards will be able to interoperate, exchange data by

semantically linking them. The proposed XS2OWL transformation uses XSLT Stylesheet tools for transformation

of the constructs from XML schemas to constructs of OWL-DL (OWL-Definition Language). Incorporating the

XML and RDF paradigms approach was also proposed by Yin-Yang Web [60], however, the authors did not
consider any heterogeneous sources with different syntax or data models in their proposed approach. They

developed an integrated model for XML and RDF by integrating the semantics and inferencing rules of RDF into

XML, so that XML querying can benefit from their RDF reasoner.

Although several tools have been implemented to generate semantically Linked Data from raw data, users still

need to be aware of the underlying technologies and Linked Data principles to use them. Mapping languages

enable to detach the mapping definitions from the implementation that executes them [67]. The rmleditor

suggested by authors et. al [67], a visual graph-based user interface, which allows users to easily define the

mappings that deliver the rdf (Resource Description Framework) representation of the corresponding raw data.

Neither knowledge of the underlying mapping language nor the used technologies are required. The rmleditor aims

to facilitate the editing of mappings, and thereby lowers the barriers to create semantically Linked Data.

3.2 Metamodel-based Modeling of SWC’s Interface Models

In general, a metamodel defines the structure and semantics of the metadata. In conceptual modeling like

metamodeling, most of the semantics is encoded with the attributes of classes and relation classes. It is thus

interesting to analyze, for example how many and which kind of attributes have been introduced as an indicator

for the complexity of the domain to be addressed by the modeling methodology [51]. The semantics of modeling

languages is often not defined explicitly but hidden in modelling tools. To fix a specific formal semantics for

languages, it should be defined precisely either in the metamodel specification or by transformations which

transform software models into logic representations.

40

Metamodel-based modeling approaches are based on a staged architecture of models and metamodels, where the

structure of lower-level models is defined by higher level metamodels. This staged architecture defines a layered

structure, which is applied to define any domain-specific languages and general-purpose languages, e.g., UML,

ecore, etc.

Also, for ontology technologies, the definition of metamodel enables the specification of model transformations

of software engineering artifacts into OWL-related languages. For example, the transformation of ecore class

diagrams into OWL uses transformation rules based on the metamodel of both languages. In context of enabling

linked data capabilities to MOF (Meta Object facility) models, authors et. al [2] propose a TwoUse Toolkit.
Software engineers are expected to use the TwoUse toolkit to extend UML or Ecore models with OWL

annotations, to transform either of these metamodels into OWL and subsequently to query them, as seen in form

of snippets of a Business Process Model Notation (BPMN) model in Fig. 24.

Fig. 24. Overview of BPMN model from TwoUse Toolkit using OWLizer for metamodel translations.

3.3 Semantic Mapping of Concepts of Interface Metamodels of SWC Frameworks for

Interoperability

Semantics is the study of the meaning of signs, such as terms or words. Depending on the approaches, models, or

methods used to add semantics to terms, different degrees of semantics can be achieved. In general, there are four

major representations that can be used to model and organize concepts to semantically describe terms, namely:

controlled vocabularies, taxonomies, thesaurus, and ontologies[82], as illustrated in Fig. 25.

Fig. 25. Different levels of Semantics.

The aspects of interoperability as a general concept or approach covers technical, syntactic, semantic, and

organizational issues, usually referenced as interoperability layers [83]. These layers, which are related and

mutually interconnected, deal with the following objects:

▪ Technical interoperability level: signals, low-level services and data transfer protocols.

▪ Syntactic interoperability level: data in standardized exchange formats, mostly based on XML or similar

formalisms.

41

▪ Semantic interoperability level: information in various shared knowledge representation structures such

as taxonomies, ontologies, or topic maps.

▪ Organizational interoperability level: processes, defined as workflow sequences of tasks, integrated in a

service-oriented environment.

The focus of this research report is on semantic interoperability; however, syntactic interoperability level is
addressed as well. One of the most promising approaches to interoperability is the employment of semantic

technologies [18], [1]. Semantics provides a capability to model and represent knowledge within a domain by

means of explicit formalization of key domain concepts, their attributes and relations, as well as workflow

sequences and structures. Considering the heterogeneous and distributed nature of the automotive domain,

semantics can be very effectively used as a common background platform for describing the processes and services

provided by automotive enterprises on various levels. The common platform then allows for integrating the

services, making them interoperable and transparent for the end users, citizens and businesses. Additionally, a

common representation language or vocabulary to describe the exchange of services using API models will allow

to describe the services within the vehicle domain in a more standardized way.

3.4 Unified API Description/Specification Language for Vehicle Domain Application SWC

Frameworks

Applications in vehicle domain are implemented as multiple distributed components, and those components call

each other's APIs for the complete application to function. When developers design APIs for such applications,

the solution characteristics they will typically prioritize are ease of programming for both the client and the server

and efficiency of execution. Moreover, description of services in a language neutral manner is also vital for the

widespread use of vehicle domain services. Service providers must describe their services and advertise them in a

standardized way using a universal registry like commonly used in semantic Web domain, the Universal

Description Discovery and Integration (UDDI), an XML-based registry for business internet services. The ability
to access a correct description of service APIs is a known substantial need of both developers and automated tools

[84].

WSDL is a unified web service description language used to describe concepts, related to Semantic Web services

(SWS). Based on the analysis of WSDL descriptions, three types of web service elements can have their semantics

increased by annotating them with ontological concepts using tools like WSDL-S are: operations, messages,

preconditions and effects. All the elements are explicitly declared in a WSDL description [82]. From a modeling

perspective, the Web Services Modeling Ontology (WSMO), provides ontological unified specifications for the

description of semantic Web services. One of the main objectives of WSMO is to give a solution to application

integration problems for Web services by providing a conceptual framework and a formal language for

semantically describing all relevant aspects of Web services [83][82]. WSML (Web Service Modeling Language)
is the language used to describe Web Service Modeling Ontology (WSMO) concepts, related to Semantic Web

services (SWS). Authors et. al [87] proposes adapter-based approach to convert raw data like XML to WSML so

as to use WSMO for modeling SWS for services interoperability, as seen in Fig. 26. This transformation method

performs the conversion from the XML file into the WSML file with the help of a WSML template file.

Fig. 26. XML to WSML transformation using Adapter.

42

In today’s era, complex software systems are being built using the SOA and microservices paradigms. This also

holds true for automotive software systems. The services, accessed by client applications through their APIs,

mostly follow the remote operation call (RPC) oriented style or the representational state transfer (REST) style

[84]. In the field of RPC-based web services, the WSDL of the SOAP technology provides a dominating, officially

standardized, machine readable API specification with an underlying model. In theory, clean REST APIs would

avoid the need for “APIs compatibility checks” by using the full Hypermedia as the Engine of Application State

(HATEOAS) principle, enabling the client to explore the (evolving) API. This is one of the major reasons for the

growing acceptance of OpenAPI specifications for API description in business domains like automotive. However,
in practice, such checks are still needed either due to clients not traversing the hyperlinks or the APIs not following

the principle sufficiently well [84]. In context of web service APIs compatibility, representation of service APIs

in a unified manner independent of technology, authors et. al [84] adapted a model for service API representation,

to facilitate subsequent processing in a unified manner.

_______ __ __ _____ _ _(__ __ _0 __ _____________ __ _ __ __, __

3.5 MDE Vs Ontology Approach for Domain-Specific Interface Metamodels Semantic

Alignments: Alternative or Complementary

Among artifacts produced by multiple modeling languages, MDE faces the following challenges towards semantic

interoperability [5]: support for developers; interoperability among multiple artifacts and formal semantics of

modeling languages. Addressing these challenges is crucial for the success of MDE. The authors of [27] present

an automated approach to model-to-model mapping and transformation methodology, which applies semantic and

syntactic checking measurements to detect the meanings and relations between different models automatically.

The authors of [28] propose component model-to-model transformations to establish translation of semantics by

manual mapping of programming languages of heterogeneous platforms [28].

In 2016, EAST-ADL was evolved as a DSM (Domain Specific Modelling) tool for automotive electronic systems.

EAST-ADL is an ADL[37][22] (Architecture Description Language) aligned with AUTOSAR. EAST-ADL and

provides a comprehensive approach for defining automotive electronic systems through an information model that

captures engineering information in a standardized form [13]. Franca framework provides special support to those

automotive domain IDLs which can be implemented using EMF (Eclipse Modelling framework) [6]. Based on the

Franca core model, service interface specifications defined in other vehicle IDLs can be transformed to or from

Franca framework. This feature of Franca framework could make it more suitable to support a generic automotive

domain Meta IDL for future vehicle application software. AUTOSAR (Automotive Open System Architecture)

standard for automotive has two platforms namely AUTOSAR Classic and AUTOSAR Adaptive. Both the

platforms use a common exchange format or an IDL that is ARXML [8].

The intention to use a common IDL is to increase reuse of application software components and to ease cross-

communication between the two automotive platforms. The authors of [11] advocate that language engineering

technologies can be used for the interface definition and code generation to glue artifacts and to support the work

within automotive heterogeneous development environments. The authors of [3] propose model-to-model

transformations to be employed to establish translation of semantics of a DSL (Domain Specific language) by

mapping it to those of low-level programming languages and platforms. There are already existing proposals to

establish a bridge between message component interface models from ROS (Robot Operating System) and Google

Protobuf (Protocol buffers) to overcome their cons and to obtain merged support from both ROS and Protobuf

IDLs [5]. Such kind of bridges uses static semantic analysis of framework specific interface models as a knowledge

base.

In contrast, issues like interoperability and formal semantics motivate the development of ontology web languages.

Indeed, the World Wide Web Consortium (W3C) standard Web Ontology Language (OWL) [11][2], together with

automated reasoning services, provides a powerful solution for formally describing domain concepts in an

extensible way, thus allowing for precise specification of the semantics of concepts as well as for interoperability

between ontology specifications. Ontologies consist of definitional aspects such as high-level schemas and
assertional aspects such as entities, attributes, interrelationships between entities, domain vocabulary and factual

knowledge, all connected in a semantic manner. Ontologies provide a common understanding of a domain. They

allow the domain to be communicated between people, organizations, and application systems. Ontologies provide

the specific tools to organize and provide a useful description of heterogeneous content [82].

In the perspective of service interoperability, in the semantic Web domain, OWL-S is an ontology within the OWL-

based framework, which is used in conjunction with domain ontologies specified in OWL, provides standard

means of specifying declaratively APIs for Web services that enable automated Web service interoperability [36].
The Web Service Modeling Ontology (WSMO) is a conceptual model that provides an ontology-based framework

43

which supports deployment and interoperability of services for semantic Web domain. However, applying WSMO

perspective in automotive domain environment for services interoperability remains challenging and unanswered

[35].

UML class-based modeling and OWL comprise some constituents that are similar in many respects like classes,

associations, properties, packages, types, generalization, and instances [1][2]. Despite of the similarities, both

approaches present restrictions that may be overcome by an integration. Since both MDE modelling based

approaches and ontology-based approaches provide complementary benefits, contemporary software development

should make use of both. The question remains is how model driven software development and ontology driven

software development can be amalgamated so that the model driven developers can use a familiar environment

and advantages of the ontology driven development are also additionally available? [2]. The possible benefits by

amalgamation of MDE and ontology paradigms are: Firstly, it provides software developers with more modeling

power. Secondly, it enables semantic software developers to use object-oriented concepts like inheritance,

operation and polymorphism together with ontologies in a platform independent way.

Authors of [2] specifies a coherent framework for integrated usage of both concepts and formal semantics of

modelling language, comprising the benefits of both UML-based modelling and OWL [3]. Although the authors

provide the theoretical foundations of such transformation, but the practical use of such transformations cannot be

implemented with current versions of Eclipse Modelling Frameworks (EMFs). The authors of [12] proposes

alignment of ontologies of source UML models with semantic heterogeneity into a single ontology or merged

coherent model by using a process of detection and resolution of semantic conflicts that may exist among the

different UML models.

The OWLizer project [26] in 2016, attempts to translate Ecore metamodels to OWL ontologies, the handcrafted

approach to transform Ecore metamodels to ontologies, using ABox (Instance level) and TBox (Schema Level)

reasoning [3], is however, overly complex and is not supported any more with the current versions of EMFs. The

EMF4SW eclipse plug-ins provide OWL to Ecore and Ecore to OWL transformations capabilities [7] [9].

However, no contribution has been made to the project since 2012. The authors of [24] propose to invent a UML

profile, which allows to visually model OWL ontologies in a notation that is close to the UML notation. This

contribution is not supported with proper case studies for practical implementation. Rahmani et al. [25] describe

an adjustable transformation from OWL to Ecore and identified that it is possible to represent most OWL

constructs with Ecore and OCL invariants. However, such a transformation has the purpose of aligning OWL

constraints with Object Constraint language (OCL) invariants and does not cover OWL reasoning services like

realization and instance checking.

Both MDE and ontology technology paradigms uses conceptual metamodels to identify semantically related

modeled entities or concepts. Understanding the role of ontology technologies in MDE like domain

conceptualization using shared vocabulary, automated reasoning, inferred axioms, dynamic classification and

consistency checking is essential for leveraging the development of promising and complete solutions to semantic

interoperability for practical implementation. When trying to extend MDE based metamodels to ontological

metamodels, the gap between the implementation-oriented focus of MDE based metamodels and the knowledge

representation focus of ontological metamodels must be closed.

3.6 Evaluation of Interface Metamodels Semantic Alignment Quality for Vehicle Application

SWC Frameworks

The measure of success of both MDE and ontology paradigms’ metamodeling approaches or methodologies

towards tackling semantic interoperability issue could be however estimated by evaluation of metrics such as

qualitative, quantitative, etc. Related work in the context of quality metrics for meta models can be categorized

into two groups: Firstly, work that deals with quality on the meta level, i.e., on meta models. Secondly, approaches

that address quality on the instance level, i.e., on models [48]. Metamodels which plays a pivotal role in conceptual

modeling as they manifest the abstraction level applied when creating conceptual models. Consequently, design

decisions made by the metamodel developer determines utility, capabilities, and expressiveness of the conceptual

modeling languages (for example ecore, OWL2), modeling methodologies and eventually the created models.

However, very few researches define and applies proper metrics for analyzing the structure and capabilities of

metamodels, and eventually support the development of new metamodels. This not only concerns general-purpose
modeling languages, but also domain-specific ones, which usually undergo shorter update cycles [51].

Based on literature artifacts, it can be argued that most existing ontology metrics in automotive domain are based

on structural notions without considering the semantics which leads to incomparable measurement results in

44

practical implementations. In principal, evaluation of depth of semantic alignment for the interface ontologies

using quality metrics is substantial to guarantee that it meets the vehicle application communication requirements

for semantic interoperability.

Despite the great effort, the alignment and merging systems ontologies are still semi-automatic, which reduces the

burden of creating and maintaining manual applications. These systems require human intervention to validate the

alignment and merge ontologies. In addition, they use various aids, such as the common vocabulary, reference

ontology, etc. [25] to detect mapping candidates. The validation process after the detection of initial mappings

helps to find inconsistent mappings; which is usually done by domain experts and performed manually in most

cases. During the validation phase, the domain expert is responsible for classifying mappings results from

alignment based on a similarity measure in equivalence mapping and is-a mapping [UMLintegration].

Aligning semantic ontologies based on semantic synergies to support interoperability represents a great interest in

automotive application domain that manipulate heterogeneous overlapping knowledge frameworks. The alignment

produces a set of mappings that can be used in the merging phase, but before that, a process of validating must be

conducted in order to find incoherent and inconsistent mappings and keep only valid ones. This validation step is

highly required to produce the correctness and consistency of final integrated model.

3.7 MDE and Ontology Modeling Approaches to tackle Semantic Interoperability between

Vehicle Component Framework Interfaces

The applications of todays’ cars can be generally clustered into different sub-domains like infotainment, advanced

Adaptive Cruise Control, connectivity, Dynamic Short-Range Communication (DSRC), etc. Collaboration

between apps of these heterogeneous vehicle architectural domains is highly demanded to accomplish the novel

automotive services, such as autonomous driving, V2V (Vehicle-to-Vehicle communication), etc. Nevertheless,

semantic interoperability between the vehicle apps stands as a major challenge. MDE (Model Driven Engineering)

and ontology technology can be viewed as two software paradigms for addressing semantic alignment solutions

to tackle semantic interoperability. A traditional model-driven approach mostly aims at finding the semantic

mapping directly starting from the two models, say Platform Independent Model (PIM) A and PIM B, deriving

then the PIM2PIM mapping. Whereas, the ontology-based approach does it indirectly, by means of a reference

Ontology. Therefore, in the later case, the semantic mapping is obtained by the composition of two partial

PIM2ONT and ONT2PIM mappings, as illustrated in Fig. 24.

3.7.1.1 Model Driven Engineering (MDE): The Rationale

The Model-Driven Architecture (MDA) has been proposed by the Object Management Group (OMG), which

describes their vision of MDD (Model Driven Development). They describe Model-Driven Engineering (MDE)

as a superset of MDD, because it goes beyond development activities and includes other modeling tasks in the

complete software engineering process [3]. In MDE, models are described by modelling languages, where

modelling languages themselves are described by so called metamodeling languages [2]. Besides models and

metamodels, MDA describes another key element of MDE that is model transformations, which define mappings

between different source and target models.

Fig. 27. Comparison of MDE and ontology based approaches for platform-specific model to model semantic mapping.

MDE based Approach

Ontology based Approach

45

Each source and target models could further confirm to source and target metamodels respectively. Model

transformations work by specifying transformation rules. An example of source metamodel to target metamodel

transformation is illustrated in Fig. 27 [3].

In general, MDE consists of the following two major artifacts: firstly, modelling languages, which are used to

describe a set of models and lastly, model transformations, which are used to translate models represented in one

language into models represented in another language of at least one concrete syntax and semantics.

Software technology is constantly changing, for instance, due to new middleware platforms. As a result of the

intertwining of the computing and the problem solution, software engineers often spend considerable amounts of

time to port applications to different target platforms, or newer versions of platforms. Moreover, if only the

computing solution exists, knowledge about the problem solution might get lost when the developer of a system

leaves the organization [2]. To tackle this, MDE aims to solve software integration, interoperability and

maintenance problems, by separating functionality, or behavior, from specific platforms and technologies. MDE

separates platform independent models (PIM) and platform-specific models (PSM) [18]. PIMs are formal

specifications of the structure and behavior of a system. MDE claims that by using PIMs that abstract away

platform-specific details, integration and interoperability across various platforms should become easier to

produce.

The shift from code-centric to transformation-centric software development places models as first-class entities in

model-driven development processes [5]. However, due to a lack of interoperability, it is often difficult for MDE

tools to combine the artifacts produced by heterogeneous modelling languages when integrating different software

models, thus the potential of model driven software development cannot be fully exploited. Moreover, a direct

integration of different modeling languages by their metamodels is not a trivial task, and often leads to handcrafted

solutions created in an error-prone process usually inducing high maintenance overheads [2]. Metamodels prove

to be more implementation oriented as they often bear design decisions that allow producing sound, object-oriented

implementations. Due to this, language concepts can be hidden in a metamodel [5] [4].

3.7.1.2 Ontology Technology: The Rationale

The meaning of a model must be well-defined such that multiple developers can understand and work with it. If

the meaning or semantic is not clear there would be no possibility to define automated transformations from one

abstract model to a more specific model. Formal semantics and constraints are the basis for interoperability and

formal domain analysis. Modeling issues like formal semantics or interoperability motivated the development of

ontology languages [4]. Formal semantics constrain the meaning of models, such that their interpretations are the

same for different persons (or machines).

Ontologies provide shared domain conceptualizations representing knowledge by a vocabulary and, typically,

logical [9]. Among ontology languages, build on the W3C standard, Web Ontology Language (OWL) stands for

a family of languages with increasing expressiveness. OWL2, the emerging new version of OWL is a highly

expressive language with practically efficient definitions. OWL2 features many types of axioms and thus provides

different constructs to restrict classes or properties. OWL provides class definition language for ontologies and

implied logical constraints on the properties of their members. OWL allows for deriving concept hierarchies from

logically defined class axioms stating necessary and enough conditions of class membership [2][1]. The logics of

class definitions may be validated by using corresponding automated reasoning technology.

In general, ontologies are used to define sets of concepts that describe domain knowledge and allow for specifying

classes by rich, precise logical definitions. The difference between OWL and modeling languages such as Unified

Modelling Language (UML) class diagrams is the capability to describe classes in many ways and to handle

incomplete knowledge. These OWL features increase the expressiveness of the metamodeling language, making

OWL a suitable language to formally define classes of modeling languages [4].

UML class-based modeling using MDE and OWL class-based modelling comprise many constituents that are

similar in many respects like classes, associations, properties, packages, types, generalization and instances,

however, despite of commonalities, both modeling languages presents restrictions such as UML class-based

modelling allows only static specification of specialization and generalization of classes and relationships, whereas

OWL provides mechanisms to define these as dynamic specifications [1][24].

Ontology engineering uses multiple languages for defining services. For example, modelers of ontology matching

services need to manage different languages: (1) an ontology translation language to specify translation rules and

(2) a programming language to specify built-ins, when the ontology translation language does not provide

46

constructs to completely specify a given translation rule. This intricate and disintegrated manner draws their

attention away from the alignment task proper down into diverging technical details of the translation model.

Addressing this issue allows developers to concentrate on constructs related to the problem domain, raising the

abstraction level [9]. Moreover, by defining domain concepts as first-class citizens, developers may reuse these

domain concepts on different target platforms. It helps to improve productivity, since modelers will not have to be

aware of platform-specific details and will be able to exchange translation models even when they use different

ontology platforms.

3.8 Comparison of Author’s Contribution to the State of the Art

The research work presented in this contribution has been communicated to outside world through conference

papers, a journal paper and conference workshops. The following list represents the published papers along with

a brief description.

▪ S. De, M. Niklas, J. Mottok and P. Brada, “Semantic Synergy Exploration in Interface Description Models of

Heterogenous Vehicle Frameworks: Towards Automotive Meta Interface Description Model”, ARCS

Workshop 2019; 32nd IEEE International Conference on Architecture of Computing Systems, Copenhagen,

Denmark, 2019, pp. 1-8.

In the direction of semantic interoperability, vehicle component frameworks can be compared and correlated across

different vehicle programs, thus establishing the foundation for overall value creation efficiency, interoperability,

increased reusability and ultimately increased innovation. This can be done by comparing the semantics traits of

IDLs of various SOA based vehicle application frameworks, using semantic mappings and to explore possible

synergies or commonalities among their semantics traits. The interface semantic synergy traits could be further

abstracted and generalized to define the generic domain SWCs’ interface traits that could be considered by Domain

Specific Language (DSL) designers for evolution unified domain solutions like automotive domain Meta IDL in

the future [13].

▪ S. De, M. Niklas, J. Mottok, and P. Brada,” A Semantic Analysis of Interface Description Models of

Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy Exploration”. DOI:

10.5220/0007472503940401, In Proceedings of the 7th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD 2019), pages 394-401, ISBN: 978-989-758-358-2.

Despite of syntactic differences between platform-specific IDLs’ syntax, the approach to correlate these IDLs

based on semantic synergies among their traits could provide the knowledge base for the increase in the

interoperability at application interface code generation level, increase in overall efficiency and development of

an automotive domain generic interface software solutions, by facilitating coexistence of components of

heterogeneous frameworks in the same ECU HPC software platforms future vehicle software [14].

▪ S. De, M. Niklas, J. Mottok and P. Brada, “Model Transformation of Application Software Component from

Classic to Adaptive AUTOSAR: An Approach to Migrate Software Components”, 44th EUROMICRO

Conference on Software Engineering and Advanced Applications (SEAA) Workshop, Prague, Czech Republic,

August 29th - 31st, 2018.

Based on semantic commonalities between API specifications of heterogeneous vehicle application frameworks’

IDLs, the SWC models of different automotive platforms such as software platforms of AUTOSAR (Automotive

Open System Architecture) standard, namely AUTOSAR Classic and AUTOSAR Adaptive can be model

transformed from one platform to another in a bidirectional way at application SWC level [15].

▪ S. De, M. Niklas, B. Rooney, J. Mottok and P. Brada, “Towards Translation of Semantics of Automotive

Interface Description Models from Franca to AUTOSAR Frameworks: An Approach using Semantic

Synergies”, 2019 International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 2019, pp.

1-6, doi: 10.23919/AE.2019.8867018.

The software architecture of future vehicle sub-systems’ complex and high-performance ECUs intends to evolve

multifarious high-level domains such as Telematics, Infotainment, Robotics, etc. to support complex vehicle

services. Such domains are not covered by the de-facto standard of automotive system architecture, AUTOSAR.

Therefore, the semantic gap between component frameworks of AUTOSAR and such other standards in vehicle

application domain could be bridged using semantic analysis and mapping between their IDLs to improvise the

service interoperability between them, when co-existing in the same vehicle ECU. The above-mentioned technical

47

paper proposes to bridge the semantic gap between AUTOSAR Adaptive framework interface metamodel and

infotainment Franca framework interface metamodel by using one-to-one semantic mapping of the framework

specific IDL constructs, based on semantic overlapping of interface functional concepts [17].

▪ S. De, M. Niklas, B. Rooney, J. Mottok, P. Brada, “Towards Semantic model-to-model Mapping of Cross-

Domain Component Interfaces for Interoperability of Vehicle Applications An Approach towards Synergy

Exploration”, In: CEUR Workshop proceedings, ModComp, Vol. 2442, Munich Germany, 2019.

Manual semantic checking measurements for semantic analysis at an application component communication

interface level to understand the meanings and semantic relations between the different metamodel specifications

of cross-domain component frameworks’ interface models within vehicle domain based on explorations of

semantic commonalities, to ensure that interface description models of software components from heterogeneous

framework can be compared, correlated and re-used for automotive services based on semantic synergies. This

was the major contribution of paper mentioned above [8].

▪ S. De, M. Niklas, B. Rooney, J. Mottok, P. Brada, “Semantic Mapping of Component Framework Interface

Ontologies for Interoperability of Vehicle Applications”, Elsevier Procedia Computer Science. 170. 813-818.

10.1016/j.procs.2020.03.151, 2020.

Considering the components’ interface models as data models, in the automotive domain, XML schemas are the

preferred standard for interface description exchange between various enterprise application component

framework templates, e.g. AUTOSAR Classic, AUTOSAR Adaptive, Franca, ROS, etc. To confront the issue of

interoperability by exploring the possibilities of semantic alignments between heterogeneous interface data models

with heterogeneous semantic traits, the paper at [7] Fehler! Verweisquelle konnte nicht gefunden werden.

proposes a solution to tackle semantic data heterogeneity by schematically translate the XML schemas representing

the various component interface data models to RDFS. RDFS are ontology-based schemas that can be represented

as an object model or a kind of constrained relational model.

The overview of what is covered by the related works mentioned in this subsection is summarized in TABLE II.

TABLE II. OVERVIEW OF COVERAGE OF RELATED WORKS DONE IN DIRECTION OF CURRENT RESEARCH

References

of related

work used

in this

section

Static Interface

Semantic

Analysis Type

(including IDLs,

model-to-model

mapping for
semantic

translation)

Challenges of

MDE based

Metamodeling

approach and

Strengths of

Ontology towards
semantic

interoperability

Integration of

MDE and

ontology-

based

Metamodeling

methodologies

Solutions

towards DSM,

DSL or

equivalent

solutions for

semantic
interoperability

Metrics Evaluation

to measure quality

of MDE and/or

Ontology

metamodeling

methodologies
/approaches

[5] ✔

[27] ✔

[28] ✔

[37] ✔

[1] ✔ ✔

[2] ✔ ✔

[3] ✔

[11] ✔

[12] ✔

[9] ✔

[7] ✔

[36] ✔

[35] ✔

[48] ✔

[51] ✔

[24] ✔

[25] ✔

48

[26] ✔

Authors’ Contribution to the State of the Art

[14] ✔

[15] ✔

[8] ✔

[13] ✔

[18] ✔

[17] ✔

49

Part II Analysis Level

The analysis level represents study of the semantics of API architecture styles of heterogeneous vehicle component

frameworks. This level includes semantic analysis on various interface semantic traits of SWCs of vehicle

application domain frameworks, as illustrated in Fig.26. This level also includes information on semantics of API

design styles or patterns employed by vehicle application frameworks for data exchange between components’

interfaces for communication at application SWC model level.

The analysis level also includes semantic analysis of interface run-time behavior model, explicitly describing the

timing constraints applicable to SWCs’ interfaces represented by Events or Event Chains. The Event Chains are

triggered based on time or data arrival on ports.

The semantic analysis of component frameworks’ API architectures uses communication interface semantic traits

analysis at M1 and M2 layers of OMG (Object management Group) standards’ four-layered modelling

architecture. That means, both at model and code generation level (associated with the IDLs), the APIs of SWCs

(or equivalent representations) in vehicle application frameworks are semantically analyzed at model and

metamodel levels.

At the modeling architecture layer M1, API architecture blueprints of real-world vehicle domain case study has

been used for illustration purpose. Semantic analysis and comparisons of generated codes associated with vehicle

frameworks’ IDLs uses the M1 layered vehicle domain case study to explore semantic synergies in their interface

concepts despite of the syntactic differences in the interface specification languages.

The intention to explore semantic synergies among vehicle application component frameworks’ IDLs, interface

description models and metamodels is to correlate the heterogeneous application frameworks’ components and to

ensure reuse of these SWCs through their interfaces for example, when semantic integrated to evolve future holistic

software solutions.

The analysis level as seen in Fig. 28, attempts one step forward to tackle semantic interoperability by presenting a

hypothesis on abstract functional layered architecture towards the evolution of a unified interface description

software solution for vehicle application frameworks from a functional point of view based on analysis of existing

artifacts.

Fig. 28. Overview of Analysis level.

S

50

 Survey of Vehicle Domain Interface Description
Languages (IDLs): Identification of Semantic Commonalities
As in many other engineering disciplines, automotive software engineering is well suited to collaboration. Having

different perspectives and diverse experiences strengthens engineering projects. Automotive application software

component modelling is a fundamental aspect of the automotive industry and is becoming increasingly

collaborative. Since automotive application software component modelling become more and more complex, in

order to increase productivity, modeling is necessary to bridge the gap between business and technology. In this

sense, models allow the domain problems to be described by using the terms that are familiar to domain experts

rather than terms that are only familiar to specific technical experts.

The automatic semantic integration of UML class diagrams derived from different automotive platform component

framework interface models involves detecting the semantic, syntactic, and structural relationships. Semantic

similarity measures play an important role for detecting different relationships in order to ensure alignment and

merging of class diagrams. Most components interfaces alignment approaches address this problem by calculating

the similarities between entities of interface models (such as concepts, roles, etc.) and produce candidate

alignments based on the similarities obtained by comparing the entities one by one.

4.1 Semantic mapping of Component Framework IDLs: The Rationale

Over the past few years, several IDLs from domain specific and domain agnostic frameworks in vehicle application

domain are being used for specifications of various SWCs for complex vehicle apps, e.g., autonomous driving,

etc. Usually, it is observed that a given vehicle application SWC model has a commonality in fundamental

semantics, despite using different syntactic representation, when modeling the same vehicle application interface

in different frameworks using different IDLs. Streams of interface data are successfully transmitted between

frameworks of cross-enterprise vehicle domain subsystems, however there is no meaning associated with the data.

These further causes a decrease in efficiency and reusability of vehicle application SWCs. In vehicle domain there

can be an overwhelming number of ways on how to implement even a simple two-way communication using

legacy or open-source platform specific framework tools.

To ease the semantic data heterogeneity caused due to heterogeneous artifacts and different vocabularies for

terminologies used by various platform specific IDLs in vehicle domain by application SWCs, it is essential to

trace and identify semantic synergies between the SWCs’ interface concepts. That is, to enable semantic

interoperability between heterogeneous vehicle components’ interfaces as seen in the Fig. 29. for an IoT usecase

Vehicle Position Finder, it is time to focus on exploration of semantic synergies among the communication

interface traits of the vehicle apps’ heterogeneous SWCs frameworks IDLs from modeling perspective. This

further helps in filling the semantic gaps between the component interface models for cross-enterprise

collaboration in vehicle domain as seen in Fig. 29.

Fig. 29. Overview of heterogeneous modes of communication between outside world and vehicle for IoT software solutions.

Publish-Subscribe API

Communication

Client-Server API

Communication

CLOUD

AUTOMOTIVE

TELEMATICS

51

The classification using semantic survey of framework IDLs does not show the success of a specific framework

IDL or any specific business model within the automotive application domain, but it is based purely on the statical

analysis of technical traits of the IDLs supported by various vehicle application platforms. Additionally, from

interoperability viewpoint such a classification and comparison of IDLs can help future domain experts to

understand better the areas of conceptual semantic synergies among the cross-enterprise application SWC

frameworks interface traits and decide which all interface semantic traits of these SWCs frameworks can be

generalized when semantically integrating to a vehicle domain specific global interface software solution in future.

In the current state of automotive Industry, in the case of an ECU with multiple CPU core partitions, there is a

high probability that one platform-specific framework specific IDL model and one communication protocol used

for deployment of APIs, will not be optimum for all the ECU core partitions and for all kinds of peer

communication. Consequently, it has become necessary to combine the software components and subsystems as

well as message formats from different platforms of the automotive domain, to provide cross-platform

functionalities. For a vehicle application software component of a frameworks running in one partition of a high

performance vehicle ECU to communicate with the an application component of a different framework in another

partition of ECU, requires a generic domain-specific interface model representation template for interaction which

would remain transparent in its representation format among all the communication peer partners and could be

employed for the deployment of the API models to all the partitions independent of platform specific deployment

description.

Proven from the past innovative contributions on DSM (Domain-specific modelling), the semantic alignment and

integration of metamodels of component interface models can be made easier, when shifting the focus from

interface modelling language-centric to concept-centric by raising the level of abstraction beyond platform-specific

interface modelling language implementation and specifying the solution directly using domain concepts [1][3].

4.2 Semantic Comparison of Vehicle Domain Cross-enterprise Platforms

Component Frameworks IDLs

The semantics of a modeling language allows for determining the truth value of elements in the model with respect

to the system being defined. In other words, the semantics of a modeling language provides the meaning to its

syntactical elements by mapping them to a meaningful representation. For example, the UML specification defines

the semantics of the UML language by explaining each UML modeling concept using natural language. In other

words, in model-driven engineering, metamodels serve as abstract syntax, whereas models serve as snapshots of

languages.

Current System Engineering models in an automotive domain such as SysML (System Modelling Language),

UML, etc. allows graphical modelling of component interfaces independent of software. Typically, an IDL defines

the software interface agreements between the application component interfaces. IDLs are typically bound to one

or more programming language generators. Over the time, in the automotive application domain the level of

abstraction at which functionality is specified, published and or consumed has gradually become higher and higher

[16]. Eventually progress has been made from modules, to objects, to components, and now to services [16]. A

service is the major construct for publishing and should be used at the point of each significant interface.

Today most of the software component interfaces are based on Service Contracts, thereby allowing heterogeneous

systems to communicate and interchange their services. The SOA (Service-Oriented Architecture) pattern allows

us to manage the usage (delivery, acquisition, consumption, etc.) in terms of, related services [16]. To bridge the

semantic gap between the vehicle application SWC frameworks and to achieve interoperability among them by

reusing of artifacts and correlating the frameworks’ SWCs requires better understanding of the semantic mapping

at application SWC interface level [1][9].

The Approach to Semantic Mapping of Vehicle Domain IDLs

To semantically analyze the IDLs of different platform SWC frameworks’ IDLs based on interface traits or

fundamental characteristics, it is necessary to consider some platform-independent vehicle domain-specific generic

SWC interface semantic traits which could be considered as the knowledge base for the frameworks’ IDLs

semantic comparison from a modeling perspective. These generic, abstract interface semantic functional traits

basically include:

▪ Interface type: The distinction of the basic interface type: operation-based (e.g. methods invocations) and

data-based service interface (e.g. data passing), etc.

52

▪ Separation of Interface Roles: The distinction between the provider and the consumers-part of a service

interface.

▪ Interface interaction points: Service interface interaction points (e.g. ports, topics, etc.) at software

components interaction level.

▪ Data exchange Method Calls: Method signatures containing information with valid parameter types, e.g.

ClientServer, Sender-Receiver, Publish-Subscribe, Broadcast etc.

▪ Method Calls Behavior: Synchronous, Asynchronous, etc.

▪ Attributes: Specification of attributes or fields e.g. getters, setters, Notifiers, etc.

▪ Data Types: Different ranges of various datatypes e.g. int, float, string, array ,etc.

▪ Interface Communication Design Pattern: RPC(Remote Procedure Call), gRPC, REST, etc.

▪ Optional Interface Binding and Middleware Protocol: The binding type describes the way a vehicle

application SWC interfaces binds to a middleware communication protocol for intra- or inter-ECU

communication.

The vehicle domain-specific generic, abstract interface semantic traits in a way describes or represents the semantic

traits of the concrete cross-enterprise platforms application frameworks’ IDLs existing in the vehicle domain.

These interface semantic traits provide no details bound to the specifics of functionalities of the concrete

frameworks’ SWC models and only provide a shallow understanding of the SWC from interface perspective.

Exploration of interface semantic traits synergies between the frameworks’ IDLs is useful for the holistic service

information exchange.

In Fig. 12, M0, M1, M2 and M3 represent different model abstraction levels based on OMG standards (for more

details refer Chapter 2). Fig. 31 illustrates a hypothesis for evolution of an abstract Meta IDL model for vehicle

domain using Multi-level modeling Approach. To begin with the model abstraction levels, that is layer M0 includes

a real-world typical vehicle domain case study is considered for the comparative analysis of interface traits at

semantic level at layer M1. The Generic API Repository that is illustrated as layers below M0 abstracts the raw

vehicle application interface models from the framework bound specific communication protocol syntax. As a

result, the vehicle application would reach any services independent from its deployment. Layer M1 includes the

semantic analysis of legacy and open-source vehicle platforms frameworks SWC interface models to identify the

synergies in semantic communication interface traits between these heterogeneous platform specific SWCs

interfaces’ descriptions or IDLs both at model and code level. A typical vehicle domain case study from layer M0

can be considered for such semantic analysis. Layer M2 defines a Generic Traits Repository which includes all

the platform-independent, vehicle domain-specific generic SWC communication interface semantic traits

described above in this subsection. Layer M2 forms the knowledge base for the semantic analysis of heterogeneous

platform specific SWCs frameworks’ communication interfaces at layer M1. From a future work perspective, a

hypothetical language model of Meta-Interface Description Language (Meta-IDL) is defined both at code and

model level at layer M3, based on the abstraction of vehicle domain-specific Generic Traits Repository of SWCs’

communication interface traits at layer M2.

The interface semantic analysis approach at layer M1 is based on functional and non-functional communication

interface traits of vehicle domain application component frameworks. The approach is illustrated using a simple

vehicle domain case study, named SeatHeating SWC. For demonstration of the approach, a realization of the

abstract communication interface model of the considered case study is considered for each of the vehicle domain

platform specific SWC frameworks by using concrete IDL alternatives (in detail subsection 5.2.2). The

SeatHeating software component is a sensor actuator component model used in vehicle power management

functional cluster to monitor seat heat. The symbolic figure for SeatHeating software component is depicted by

Fig. 30.

Fig. 30. Symbolic representation of SeatHeating SWC.

53

Fig. 31. Multi-level modeling approach for evolution of abstract Meta IDL model for vehicle domain.

Traits for an IDL can also represent non-functional elements. The specifications of non-functional traits for

component interface model are provided below:

▪ Versioning: Interface compatibility.

▪ Software License supported.

▪ Language Bindings supported.

4.2.1 Demonstration of the Approach using Vehicle Domain IDL Alternatives

In consideration to Fig. 31, this section provides an overview of the existing automotive IDL alternatives of SWC

frameworks and additionally includes discussion on middleware communication protocols used by these

automotive domain frameworks for deployment of the APIs. The heterogeneous vehicle platforms and knowledge

domains component framework specific abstract IDL models discussed in this section are based on SeatHeating

software component model case study, as described in the earlier subsection.

4.2.1.1 Automotive Domain: AUTOSAR Adaptive Framework IDL: ARXML

The ARXML (AUTOSAR eXtensible Markup Language) or AUTOSAR XML is the standard description format

used to model all AUTOSAR software component models related to the AUTOSAR Classic platform and the

AUTOSAR Adaptive platform. The AUTOSAR application SWC template metamodel is represented using

ARXML and is validated using an XML Schema [41].

Fig. 32. Illustration of the case study SWC communication interface model using ARXML.

54

One of the major benefits of using ARXML as IDL is to simplify the comparison of AUTOSAR SWC descriptions

from different AUTOSAR based automotive platforms. This enables interoperability among different AUTOSAR

platforms such as AUTOSAR Adaptive and AUTOSAR Classic. Fig. 30 illustrates a SeatHeating SWC model

using ARXML. An AUTOSAR Adaptive SWC provider port (PPortPrototype) and receiver port (RPortPrototype)

interfaces are illustrated in the Fig. 32[13].

The service based SWCs interface model of AUTOSAR Adaptive automotive platform uses RPC communication

design pattern. In specific, the services based SWC interfaces of AUTOSAR Adaptive platform uses SOME/IP

(Scalable service-Oriented Middleware Over IP) protocol stack as a middleware solution.

Infotainment Domain: Franca (and Franca+) Framework IDL: FIDL

Franca IDL (FIDL) is developed as a part of the GENIVI standard Franca (version 0.13.0) framework and supports

IVI (In-Vehicle infotainment) systems’ interfaces. Franca IDL (FIDL) is language binding neutral IDL and

independent of concrete bindings. APIs defined with Franca IDL consist of collections of attributes, methods and

broadcasts [16][13]. Franca+ IDL (FCDL) provides an extension to the native Franca framework IDL that adds

support to the modeling of components, composition of components, typed ports (provides and required), Port

interfaces (optional major and minor versions) and connectors between ports. Franca framework uses FIDL to

define application interfaces and FCDL to define application SWCs and their configurations.

Using Franca IDL, a vehicle application client calls the backend server using a vehicle ID and a struct (Structure)

defining service details such as a unique Service ID. Fig. 33 illustrates the case study on SeatHeating vehicle

application using Franca IDL. In the context of versioning, Franca IDL has backward compatibility. The APIs of

Franca framework is usually compatible with RPC (Remote Procedure Call) communication design patterns using

various middleware protocols such as SOME/IP (Scalable service Oriented Middleware over IP) .

Fig. 33. Illustration of the case study SWC communication interface model using FCDL and FIDL.

4.2.1.2 Robotics Domain: ROS Framework IDL: MDL and SDL

ROS (Robot Operating System) provides the required tools to easily access the sensors’ data, to process that data,

and to generate an appropriate response for the motors and other actuators of the robot. Due to these characteristics,

ROS is a perfect framework for self-driving cars and an autonomous vehicle can be considered just as another type

of robot [69][13]. ROS offers a message passing interface or IDL model that provides IPC and is commonly

referred to as a middleware solution. The benefit of using a message passing system is that it forces to implement

clear interfaces between the nodes in a system, thereby improving encapsulation and promoting code reuse.

The asynchronous nature of publish and subscribe messaging works for most of the Data Distribution Services

(DDS) requirements in robotics, however, for specific synchronous request and response interactions, RPC is also

used between processes required for higher levels of robot operations. In case of the exchanged information having

data semantics (using DDS: Data Distribution Services) and being communicated mostly asynchronously (non-

blocking mode) between invoker and invoke, this functionality is achieved through introduction of the messages
and the concept of topics to which the messages are published for subscription. In ROS in case of the exchanged

information having command semantics and being communicated mostly synchronously (blocking mode) between

invoker and invoke, this functionality is achieved through introduction of a service concept. In ROS component

models or nodes are described using Message Description language (MDL) or Service Description Language

55

(SDL) based on data or command semantics requirements. The nodes can only receive messages with a matching

topic type. An example to create a ROS2 framework service and a corresponding client node for case study on

SeatHeating SWC using a node handler for invocation of RPC communication, are illustrated Fig. 34.

Fig. 34. Illustration of the case study SWC communication interface model using MDL and SDL.

Telematics Domain: Android Application Framework: AIDL

An Android application runs in its own process and cannot access the data of another application running in a

different process. To allow one application to communicate with another running in a different process, Android

provides an implementation of IPC (Inter Process Communication) through the Android Interface Definition

Language (AIDL). It allows to define the programming interface that both the client and service agree upon in

order to communicate with each other using IPC. Unlike AUTOSAR Adaptive applications, for most of the

Android apps, the service does not need to perform multi-threading, so using a Messenger allows the service to

handle one call at a time. If its’ important that the service to be multi-threaded, use of AIDL is preferred as a

precondition to define the interface[70].

There are a few basic rules one should be aware of when implementing your AIDL interface:

▪ Incoming calls are not guaranteed to be executed on the main thread, so one needs to think about

multithreading from the start and properly build the service to be thread safe.

▪ By default, RPC calls are synchronous.

▪ The client binds to service using IBinder stub, as illustrated for the SeatHeating SWC casestudy in Fig. 35.

▪ No exceptions that services thrown are sent back to the caller or client.

Fig. 35. Illustration of the case study SWC communication interface model using AIDL.

4.2.1.3 Automotive Domain: AUTOSAR Classic IDL: ARXML

Like AUTOSAR Adaptive AUTOSAR Classic platform (AR CP) also uses ARXML (AUTOSAR XML) as the

standard data exchange format. There are three different port prototypes used by the SWCs for interface using AR

CP framework. There are several types of port interfaces bound to the port prototypes used in AR CP. For

simplicity and to focus more on semantic mapping between IDLs, only Client-Server Interface and Data Interface

are considered in current scope. The ClientServer interface in AR CP framework is an operation-based interface.

There are three types of data passing interfaces used by application SWCs in AR CP framework. These are namely,

SenderReceiverInterface, ParameterInterface and NvDataInterface. Fig. 36illustrates SeatHeating vehicle

application using AR CP platform specific framework ARXML[43][13].

private val binder = object: ISeatHeatingService.Stub() {override fun getPid(): Int =

Process.myPid()}

class SeatHeatingService : Service() {override fun onCreate() {super.onCreate() }

override fun onBind(intent: Intent): IBinder { return binder}

private val binder = object: ISeatHeatingService.Stub() {

 override fun getPid(): Int {

return Process.myPid()

 }val mConnection = object: ServiceConnection { override fun onServiceConnected(className:

ComponentName, service: IBinder) { iSeatHeatingService = ISeatHeating.Stub.asInterface(service) }

56

Fig. 36. Illustration of the case study SWC communication interface model using ARXML.

4.2.1.4 Infotainment Domain: Google Protocol Buffers (Protobuf) IDL

Google Protobuf (Protocol buffers) are a flexible, efficient, automated mechanism for serializing structured data,

used in IVI systems e.g., vehicle telematics data exchange, etc. A strong aspect of Protobuf data descriptions is the

ability to update, in a backward compatible and forward compatible way, without affecting the already deployed

systems such as upgrading of Protobuf from version 2 to 3. Versioning is done by using unique field numbers. The

base of defining interfaces within Protobuf is through the definition of messages. However, Protobuf as an IDL is

also used by an RPC communication framework known as gRPC (Google RPC) for deployment or interchange of

service messages from servers to clients using request and response calls. When using with gRPC, Protobufs are

a flexible, efficient, automated mechanism for serializing structured data. The Search Request for SeatHeating

(case study) service or Search Response messages as per proto 3 syntax is illustrated in Fig. 37. Protobuf messages

are identified by a name and contain fields, each with a unique field number. For the transport or deployment of

messages as services from skeleton to stub, the Protobuf uses UDP transport protocol for inter host communication

and synchronized shared memory for inter process communication [13][31].

Fig. 37. Illustration of the case study SWC communication interface model using Protobuf.

Protocol Buffers is a simple language-neutral and platform-neutral IDL for defining data structure and schemas

and programming interfaces. It supports both binary and text wire formats and works with many different wire

protocols on different platforms. Hadoop Framework uses Protobuf as one alternative in its Serialization Layer.

57

4.2.1.5 Infotainment Domain: Apache Thrift IDL

Thrift was developed at Facebook as a Framework for implementing cross-language Interfaces to services. Thrift

uses an IDL to define the Interfaces and uses an IDL file to generate the stub-code to be used in implementing

RPC Clients and Servers. The stub-code can be used across different languages to access different underlying

systems. Thrift has few drawbacks for e.g., it does not support internal compression of data and cannot be splittable.

Thrift generates all the necessary code to build RPC clients and servers that communicate seamlessly across

various programming languages and is frequently used in the vehicle apps e.g., monitoring of driver behavior apps

using sensors [73]. Apache Thrift IDL has forward & backward compatibility. Thrift is robust to version changes.

Thrift IDL is a superset of Protobufs, with additional features such as constants, rich container types e.g. list, maps,

sets, etc. The RPC invocation in thrift is done by sending a method name on the wire as a string. Thrift defines

service interfaces using Structures. Thrift is typically used on top of the TCP/IP (Transmission Control

Protocol/Internet Protocol) stack with streaming sockets as the base layer of the communication stack. Fig. 38

illustrates SeatHeating (case study) using Apache Thrift IDL [73][13].

Fig. 38. Illustration of the case study SWC communication interface model using Thrift IDL.

4.2.1.6 Cloud Domain: Open API Specification

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs which allows

both humans and computers to discover and understand the capabilities of the service without access to source

code, documentation, or through network traffic inspection.

Fig. 39. Illustration of the case study SWC communication interface model using OpenAPI specification version 3.0.3.

58

When properly defined, a consumer can understand and interact with the remote service with a minimal amount

of implementation logic. The OpenAPI specification is supported by open-source tool named, SwaggerHub . This

API specification is used to define the cloud-based services for vehicles such as IoT in vehicle, etc. and supports

API formats like YAML and JSON. An OpenAPI document that conforms to the OpenAPI Specification is itself

a JSON object, which may be represented either in JSON or YAML format. The API versions supported by the

SwaggerHub tool for API design and documentation are 2.0 and 3.0.0. Fig. 39 illustrates the case study using

OpenAPI specification version 3.0.3[74]. Fig. 40 illustrates the basic method calls used for OpenAPI specification

for RESTful communication.

Fig. 40. Overview of semantics for all operations using OpenAPI specification.

Each new minor version of the OpenAPI Specification allows any OpenAPI document that is valid against any

previous minor version of the Specification, within the same major version, to be updated to the new Specification

version with equivalent semantics. Such an update only requires changing the openapi property to the new minor

version. Therefore, OpenAPI specifications supports backward compatibility.

4.2.2 Summarized Semantic Comparison of Vehicle Domain IDLs

TABLE III. illustrates the semantical comparison of the various IDL models based on mapping of non-functional

traits like Versioning i.e., forward or backward compatibility of a components’ interface model, software License

supported, and Language bindings supported i.e. programming languages that can be used to describe an interface

model [3]. The framework specific language bindings used to code for components’ interface model describes the

framework specific interface syntax mapped to a semantic domain[13].

TABLE III. STATIC SEMANTIC MAPPING TABLE BASED ON NON-FUNCTIONAL TRAITS FOR VEHICLE FRAMEWORKS’ IDLS

Framework Version Support Software
License

Programming
language
support

Binding Comm.
Protocol

Interface
Description
Language

AUTOSAR
Adaptive

Backward
Compatibility

AUTOSAR C++ RPC (SOME/IP),
REST

ARXML

Franca+ Backward
Compatibility

Genivi
Alliance

C, C++, java RPC (SOME/IP) FIDL, FCDL

Android Forward and
Backward
Compatibility

BSD C, C++, Java RPC (SOME/IP),
REST

AIDL

ROS Absence of
forward &
backward
compatibility

BSD C, C++, Python RPC (SOME/IP),
DDS

SDL, MDL

AUTOSAR

Classic

Backward

Compatibility

AUTOSAR C RPC (SOME/IP) ARXML

Apache Thrift Forward and
Backward
compatibility

Apache C, C++, Java,
Python, GO,
C#

RPC . can also be
customized for REST

Thrift

59

TABLE IV. illustrates the semantic mapping of vehicle application IDL alternatives based on functional traits such

as interface end points specification or representation, interfaces Communication Design Pattern used for data

exchange, and the middleware communication paradigm that is used for deployment of APIs of heterogeneous

vehicle frameworks. Functional traits represent the basic structural and behavioral features of a vehicle framework

component s’ service interface Metamodel[13].

TABLE IV. STATIC SEMANTIC MAPPING TABLE BASED ON FUNCTIONAL TRAITS FOR VEHICLE FRAMEWORKS’ IDLS

IDL Interface end points Communication

Design pattern Used

Communication

paradigm

FIDL and FCDL Ports Publish-Subscribe,

Client-Server

RPC

Protobuf MessageHandler Client-Server RPC

Thrift MessageHandlers Client-Server RPC

ARXML Ports Client-Server,

Publish-Subscribe

RPC, REST, DDS

MDL and SDL MessageHandlers Client-Server,

Publish-Subscribe

RPC, DDS

Open API Messages Client-Server REST

AIDL Messages Client-Server REST

TABLE V. . illustrates synergies in semantic traits of communication or middleware protocol stacks that are used

as a part of a middleware solution for the deployment of vehicle service-based API models of heterogeneous

vehicle frameworks to different targets in order to achieve service-oriented communication. The semantic traits

synergies that were also successfully explored to find the commonalities in the communication protocol stacks or

middleware solutions, explores the possible scope of reusable functionality of middleware solutions used by

heterogeneous vehicle frameworks. These commonalities observed in semantic traits of framework specific

communication protocol stacks are considered for the abstraction of framework specific APIs from middleware’s

solutions for the Generic API repository as illustrated in Fig. 29[13].

TABLE V. STATIC SEMANTIC MAPPING TABLE BASED ON COMMUNICATION PROTOCOL USED FOR VEHICLE FRAMEWORKS’ IDLS

Google
Protocol

Buffers

Forward and
Backward

compatibility

BSD C, C++, Java,
Python, C#

RPC Protobuf

OpenAPI
Specification

Backward
Compatibility

Apache Java, python,
C++, Kotlin,
Groovy, etc.

REST, AMQP,
Apache Kafka

YAML, JSON

60

In future, these commonalities explored in middleware communication protocols can also assist more in the

direction of cross-platform vehicle application communications, when using a meta-standard domain specific

generic interface solution, for deployment of generic APIs to different target frameworks for service-oriented

communication, using translation of semantics. With the growing demands for services in future, the functional

and non-functional semantic traits along with the IDL alternatives considered in the current scope for vehicle

framework IDLs could be further extended, for the semantic analysis in future.

4.3 Technology and Platform Agnostic Specification for Service API Models for

Vehicle Domain Heterogeneous SWC Frameworks

Based on the survey of the different service API models of various vehicle domain platforms, it can be inferred

that the semantic commonalities and compatibilities between the heterogeneous vehicle platforms SWC

frameworks service API models can be effectively simpler to explore and evaluate when the given heterogeneous

SWCs’ API models can be represented using a unified, standard, programming language-agnostic interface

description, such as the OpenAPI Specification (OAS), as seen in Fig. 41[84][85]. When properly defined via

OpenAPI, a client API can understand and interact with the service providing SWC API with a minimal amount

of implementation logic. Similar to what interface descriptions have done for lower-level programming, OpenAPI

documents describe an APIs services and are represented in either in YAML or JSON formats. It does, however,

require the capabilities of the service be described in the structure of the OpenAPI Specification.

Fig. 41. Overview of cross-enterprise application framework communication for vehicle services.

The OpenAPI Specification (OAS) does not require rewriting the existing API models of heterogeneous vehicle

domain platforms. It does, however, require the capabilities of the service be described in the structure of the OAS

format. Independent of platforms and technologies, application SWC’s API code can be generated in different

programming language templates using OpenAPI Codegen tool based on the API specifications that is given in

YAML or JSON format [85]. Not all services can be described by OpenAPI – this specification is not intended to

cover every possible style of HTTP APIs but does include support for APIs with REST endpoints, as illustrated in

Fig. 42. OpenAPIs can be generated using an OpenAPI generator. The framework commonly used for the

generation of OAS is Swagger. The framework also supports Codegen tool to generate code in various

programming languages like C, C++, Java, Python, Go, etc. from the OAS [85]. This feature of Swagger

framework makes OpenAPI as a most suitable candidate for unified API description in context of TABLE III. As

observed from TABLE IV. , most of SWC frameworks’ IDLs support exchange of messages or information

between SWCs’ APIs using Message Handlers. Within this given context, OAS stands again above other given

61

IDLs as a suitable candidate for component API specifications. This is due to the fact that OAS uses methods like

GET, POST, PUT, DELETE for exchange of messages of various formats.

Fig. 42. Work Flow Illustration of vehicle service SWC communication API model using OpenAPI specification (OAS).

4.3.1 Limitations and Solution Proposal

As observed from TABLE IV. SWC frameworks of heterogeneous vehicle platforms relies on RPC-based API

communication. This is due to the fact that application software developers have an application that is implemented

as multiple distributed components, and those components call each other's APIs for the complete application to

function. Therefore, when developers design APIs to solve these kinds of problems, the solution characteristics

they will typically prioritize are ease of programming for both the client and the server, and efficiency of execution.

RPC is a good match for these priorities. Nevertheless, in order to use the standard OAS for specification of service

API models using a unified template, it would be beneficial to expand the scope of the OAS to include the RPC

semantics. As suggested, RPC messages could be added in OAS, by adding a few new fields to provide protocol

buffer semantics. Since protocol buffers supports RPC communication, properties of a message correspond to

fields in a protocol buffer message. In Fig. 39, x-field-number (or fieldNumber) is a required integer property that

associates a unique field number with each property. For illustration on OAS including protocol buffer semantics,

let us consider an example on a “Bookstore” API described using RPC based protocol buffer messages, also seen

in Fig. 43[86].

Fig. 43. Representation of RPC communication semantics using OpenAPI specification (OAS).

62

The OpenAPI specifies "schema objects" which contain information to be used by the underlying libraries to create

the HTTP messages, for example "object servers" which defines a part of the URL through which an endpoint is

identified. To illustrate more on semantic mapping between RPC architectural semantics and REST architectural

semantics, let us consider the semantic mapping between RPC based Franca API specification and REST based

OAS in the following table.

TABLE VI. STATIC SEMANTIC MAPPING TABLE BASED ON COMMUNICATION PROTOCOL USED FOR VEHICLE FRAMEWORKS’ IDLS

OpenAPI Specification (using HTTP) Franca API Specification/FIDL (using RPC)

GET method Method_Name{
in{

<String> Resource_indentifier
}
out{

<ByteBuffer> Returned_representation
}
error{

HTTP_error_code_1 = 1
}

}
Description:

▪ the server publishes the method.

▪ clients call the method, passing in the "in"
argument the resource identifier.

▪ the server responds with the representation

of the target resource and an HTTP error
code.

HEAD method Method_Name{

in{
<String> Resource_indentifier
}

out{
<ByteBuffer> Returned_headers
}

error{
HTTP_error_code_1 = 1

}
}
Description:

▪ the server publishes the method.
▪ clients call the method, passing in the "in"

argument the resource identifier.

▪ the server responds with the headers
containing the requested meta data and an

HTTP error code.
POST method Method_Name{

in{

<String> Resource_indentifier
<ByteBuffer> Representation_to_be_posted
}

out{
<ByteBuffer> HTTP_specific_info

}
error{

63

HTTP_error_code_1 = 1

}
}
Description:

▪ the server publishes the method.
▪ clients call the method, passing in the "in"

arguments the resource identifier and the
representation to be posted.

▪ the server responds with an HTTP error

code and possible other HTTP specific
information.

PUT method Method_Name{
in{
<String> Resource_indentifier

<ByteBuffer> Representation_to_be_updated
}
out{

<ByteBuffer> HTTP_specific_info
}

error{
HTTP_error_code_1 = 1
}

}
Description:

▪ the server publishes the method.

▪ clients call the method, passing in the "in"
arguments the resource identifier and the

representation to be updated /replaced by
the server.

the server responds with an HTTP error code and

possible other HTTP specific information.
DELETE method Method_Name{

in{

<String> Resource_indentifier
}

error{
HTTP_error_code_1 = 1
}

}
Description:

▪ the server publishes the method.

▪ clients call the method, passing in the "in"
argument the resource identifier of the

resource for which the association to its
current functionality should be removed by
the server.

▪ the server responds with an HTTP error
code and possible other HTTP specific
information.

However, in context of specification of SWC API models in a human readable format using OAS, one of the

daunting impediments is specification of legacy application frameworks like AUTOSAR Classic, AUTOSAR

Adaptive, etc. SWC API models using open-source OAS. The on-going work in progress of this research study

also focuses on this work direction and try to find resolution to this impediment soon.

64

 Semantic Comparison of Vehicle Component
Frameworks’ Interface Metamodels
In MDE models are described by modelling languages, where modelling languages themselves are described by

so called meta-modeling languages. A modelling language consists of an abstract syntax, at least one concrete

syntax and semantics. Guided by the literature artifacts in Chapter 2, for the illustration of static semantics analysis

of vehicle SWC frameworks’ interfaces using MDE based approaches, some of the automotive domain

heterogeneous platforms based SWC frameworks’ communication interface metamodels as Component-Port-

Connector (CPC) model representation were considered to extract and focus only on the components interface

semantic description. Towards simplifying the approach to semantic comparisons of interface fundamental traits

and exploring semantic synergies between vehicle domain SWC frameworks’ interface metamodels, an abstract,

generic, platform-independent, domain-specific SWC interface template was considered as generic domain

interface reference CPC model.

In general, abstraction of a CPC model emphasizes on the common interface semantic properties and hide the

computational platform specific details that are not needed in the interface description. In the vehicle domain, from

a modeling perspective there are overwhelming number of communication design patterns on how to implement

even a simple bidirectional communication using legacy or open source platforms’ SWC frameworks’ interfaces.

Due to the presence of several enterprise platform-specific frameworks’ interfaces and their vocabularies of

concepts represented by IDLs, results in a source of discord in understanding of the meaning of these concepts by

experts from other knowledge domain platforms. Exploration of interface semantic synergies is essential for

effective collaboration of services through semantic interoperability between various application SWC

frameworks within the umbrella of automotive domain to support complex and novel service requirements of the

new automotive era. The vehicle domain interface reference CPC model includes general and platform-

independent interface traits.

To understand the abstraction of interface semantic traits for the generic domain interference reference CPC

model, let us consider for e.g. an assembly or a composition of software components A consisting of two different

components C1 and C2. P1 and P2 denotes specific interface semantic traits of the components C1 and C2 as seen

in Fig. 44. The abstract interface semantic traits of software composition A that is represented as PA, can be

predicted based on P1 and P2. From the Fig. 44, PA can be considered to symbolize the fundamental semantic

interface traits of the given generic domain interface reference CPC model, that are abstract and can be predicted

based on semantic traits of various heterogeneous vehicle application framework components’ interfaces.

Fig. 44. Abstraction of interface semantic traits for a SWC composition

The structure of an abstract generic domain reference CPC model basically illustrates the abstract view of the

components’ interface types, their typed input and output ports, and the connectors between them. An abstract,

generic domain-specific CPC model can further provide knowledge base for future implementation of automotive

domain specific meta-standards software solution such as coherent, meta-meta-model or a Meta-IDL model, as

seen in Fig. 31[75][71].

Considering the abstract, domain-specific CPC model as a reference, some of the most used vehicle domain

platform-specific application frameworks’ SWC communication interfaces were represented as CPC models[71].

With the semantic analysis of different framework components CPC models, the areas of synergies between

service-based interfaces and areas of conflicts were revealed from a functional perspective. In the Fig. 31, a M2

layered based SWC meta-model, namely, SeatHeating SWC is considered as a typical example to illustrate

abstraction of a SWCs’ CPC model from a real system model at layer M0.

65

Fig. 45. Illustration of abstraction of standardized four-layered modeling architecture for vehicle domain application SWC .

Fig. 46 illustrates the platform-independent, abstract, domain-specific generic interface reference CPC model

architecture which is a generic representation of M2 layer based SWC interface metamodel for vehicle domain[75].

Fig. 46. Abstract representation of platform-independent, generic Component-Port-Connector (CPC) model for vehicle domain

application SWC interface.

G: Domain Generic

Interface Notation CPC
Model

66

5.1 Application Component Framework Interface Metamodels: Alternatives

Considering todays’ car complex architecture being clustered into different knowledge domains such as

infotainment, automotive, robotics, connectivity (telematics), etc. exploring possible semantic synergies in

interface concepts between the SWC frameworks of these different knowledge domains can enhance semantic

interoperability and chances of service collaborations among them. Following the principles of MDE, the generic

CPC model (in Fig. 40) is considered as a reference model for representation of the heterogeneous vehicle

application frameworks’ SWC metamodels from communication interface perspective.

In reference to the interface semantic traits of the domain-specific, reference generic CPC model, this Chapter

conducts an analysis of semantics traits for each of the cross-enterprise vehicle application SWC frameworks’

interfaces’ metamodels and identifies the possible areas of interface semantic concepts synergies in order to weave

the semantic interoperability between the component models for any future domain specific software solutions or

evolution of software meta-standards for SWC frameworks’ interfaces. CPC metamodel representation for various

SWC frameworks abstracts away those platform-specific details that are not required for the component’s

communication interface description, so that the application developers can focus more on the interface concepts

to identify semantic synergies in functionalities[75].

5.1.1 Automotive Knowledge Domain: AUTOSAR Adaptive SWC Framework

Autosar is widely accepted as the de-facto standard of automotive system software architecture for developing

automotive application of various automotive platforms during the different phases of a vehicle life cycle. The

Autosar Adaptive software component has a service provider port (PPortPrototype) and a receiver port

(RPortPrototype). Each PortPrototype is typed using service interfaces. An example of Autosar Adaptive (release

version 18-10) framework specific UML profile representation of SWC interface metamodel (at M2 modeling

layer) can be seen in the Fig. 47. The service based SWC’s interface model employed for interface description is

specified using various elements, this includes [41][8]:

▪ Aggregation of variable data prototypes in the role of Events (VariableDataPrototype);

▪ Aggregation of Getter, Setter and Notifiers in the role of Fields. A Field is a combination of a Remote

Procedure Call (RPC) and an event.

▪ Aggregation of ClientServerOperations in the role of Methods. Arguments data required for Client-

Server Operation is represented in the role of ArgumentDataPrototype in the meta-model as seen in Fig.

[5] . Method invocation in Autosar Adaptive can be synchronous or asynchronous.

Fig. 47. Graphical model representation (G1) of AUTOSAR Adaptive framework SWC metamodels’ constructs for interface.

67

TABLE VII. illustrates semantic mapping between metamodel constructs of AUTOSAR Adaptive SWC CPC

model (also represented by abbreviation “C”) and the metamodel constructs of abstract generic CPC model. The

Methods, Events, Service Interface and PortPrototypes of AUTOSAR Adaptive framework can be semantically

mapped to method_invocation,Data_Prototype,Interface_spec and Port_based of the generic CPC model[41].

TABLE VII. SEMANTIC MAPPING OF METAMODEL CONSTRUCTS FROM AUTOSAR ADAPTIVE SWC CPC TO GENERIC CPC MODEL

Domain Generic Notation CPC Model AUTOSAR Adaptive Application Framework CPC Model

method_Invokation ARAP:ClientServerOperation (C6)

interface_spec ARAP:ServiceInterface (C5)

Port_based ARAP:PortPrototype (C4)

Data_prototype ARAP:VariableDataPrototype (C7)

5.1.2 Infotainment Knowledge Domain: Franca (including Franca+) SWC Framework

Franca application framework is developed as a part of the GENIVI standard Franca (version 0.13.0) framework

and supports IVI (In-Vehicle infotainment) systems’ interfaces. Franca+ provides an extension to the native Franca

framework that adds support to the modeling of components, composition of components, typed ports (provides

and required), Port interfaces (optional major and minor versions) and connectors between ports as seen in the

meta-model represented by UML profile in the Fig. 42 [42]. Like AUTOSAR Adaptive, Franca+ framework also

supports the CompositionComponentPrototype (named as Component). A component contained in a composition

is called ComponentPrototype. The service attribute marks a component as service running on the target platform.

For Interface specification at application software component level, Franca uses Methods, Broadcasts and

Attributes, as illustrated in the Fig. 42 [8]

Fig. 48. Graphical model representation (G2) of Franca framework SWC metamodels’ constructs for interface.

TABLE VIII. also illustrates semantic mapping between metamodel constructs of Franca+ SWC CPC model (also

represented by abbreviation “C”) and the metamodel constructs of abstract generic CPC model. The

FPortinterface, FNormalMethod, FFirenForegetMethod and VariableDataPrototype, of Franca (also Franca+)

68

can be semantically mapped to interface_spec, request_response_spec,publish_subscribe and Data_Prototype of

the generic CPC model.

TABLE VIII. SEMANTIC MAPPING OF METAMODEL CONSTRUCTS FROM FRANCA SWC CPC TO GENERIC CPC MODEL

5.1.3 Robotics Knowledge Domain: ROS2 Application Framework

The Robot Operating System (ROS) developed by WillowGarage aims to provide a software development

environment for robotics. ROS is a perfect framework for autonomous driving cars and provides high-level

functions such as route planning, connectivity, etc. Literally, ROS (version 2.0) is not a component-oriented

software. However, like in many programming paradigms (objects in object-orientation, etc.), ROS also strives to

build apps from modular units. In the ROS programming model, the modular programming unit is a node. Nodes

are semantically similar to SwComponentPrototype in AUTOSAR Adaptive, and ComponentPrototype in Franca

as can be seen in Fig. 49. A Topic can be considered as a named communication channel which is used to send

and receive messages between nodes and can be semantically compared to PortInterface of Autosar Adaptive and

Franca application frameworks [71][30]. There are no software connectors used between the Nodes in ROS

framework.

Fig. 49. Graphical model representation (G3) of ROS2 framework SWC metamodels’ constructs for interface.

In ROS all the necessary information exchange among nodes is performed through messages. ROS has two basic

types of interaction endpoints attached to a node, namely data and command (or service) interface. In case of the

exchanged information having data semantics using DDS (Data Distribution Services) and being communicated

mostly asynchronously (non-blocking mode) between invoker and invoke like PublicSubscribeInterface

Domain Generic Notation CPC Model Franca(also Franca+) Application Framework CPC Model

Interface_spec FR:FPortinterface (C14)

request_response_spec FR:FNormalMethod (C19)

publish_subscribe FR:FireForgetMethod (C21)

Data_prototype FR:VariableDataPrototype (C20)

method_Invokation FR:FMethod (C18)

69

communication pattern, this functionality is achieved through introduction of the messages and the concept of

topics to which the messages are published for subscription. The Data Semantics are semantically similar to the

asynchronous fireAndForget method invocation of Autosar Adaptive and FFireForgetMethod of Franca

framework. In ROS in case of the exchanged information having command semantics and being communicated

mostly synchronously (blocking mode) between invoker and invoke, this functionality is achieved through

introduction of a service concept [[8][71]].

TABLE IX. also illustrates semantic mapping between metamodel constructs of ROS2 node CPC model (also

represented by abbreviation “C”) and the metamodel constructs of abstract generic CPC model. The Topics,

RequestReplyOperation, ClientServerInterface and PublishSubscribeInterface of ROS2 can be semantically

mapped to Data_Passing, request_response_spec, interface_spec and publish_subscribe of the generic CPC

model.

TABLE IX. SEMANTIC MAPPING OF METAMODEL CONSTRUCTS FROM ROS2 FRAMEWORK SWC CPC TO GENERIC CPC MODEL

5.1.4 Connectivity -Telematics Knowledge Domain: Android SWC Framework

Android application frameworks by Google are standard frameworks in Telematics domain, which are widely used

to support vehicle services on connectivity. Four different types of application SWCs are used as essential building

blocks of an Android application namely, Activities, Services, Broadcast receivers and Content providers. Three

of the four component types activities, services, and broadcast receivers are activated by an asynchronous message

called an Intent as seen in Fig. 50. Fig. 50 which represents the SWC CPC metamodel from interface perspective,

illustrates startService() service method call invoked by a client result in a corresponding call to the server or

services’ Service.onStartCommand () method. On successful service connection binding with the stub or server,

the client or ClientbindingClass receives an instance of IBinder interface using onServiceConnected() callback

method [13][31]. TABLE X. also illustrates semantic mapping between metamodel constructs of Android SWC

CPC model (also represented by abbreviation “C”) and the metamodel constructs of generic CPC model. The

IBinder, ExampleContentProvider, Service and ClientBindingClass of Android can be semantically mapped to

interface_spec,Data_Passing,In-interface:Client and Out-Interface:Server of the generic CPC model.

TABLE X. SEMANTIC MAPPING OF META-MODEL ENTITIES FROM ANDROID FRAMEWORK SWC CONSTRUCT TO GENERIC CPC MODEL

Domain Generic Notation CPC Model Android Application Framework CPC Model

interface_spec ANDR:IBinder (C34)

Data_Passing ANDR:ContentResolver (C33)

Out-Interface:Server ANDR:Service (C31)

In-Interface:Client ANDR:ClientBindingClass (C37)

method_Invokation ANDR:OnBind (C31)

Data_Prototype ANDR:ContentProvider (C33)

Domain Generic Notation CPC Model
ROS2 Application Framework CPC Model

Data_Passing
ROS2:Topic (C26)

request_response_spec
ROS2:ClientServerInterface (C27)

publish_subscribe
ROS2:PublishSubscribeInterface (C28)

method_Invokation
ROS2:RequestReplyOperation (C29)

interface_spec
ROS2:Topic (C26), ROS2:ClientServerInterface (C27)

70

Fig. 50. Graphical model representation (G4) of ROS2 framework SWC metamodels’ constructs for interface.

5.1.5 Automotive Domain: AUTOSAR Classic Framework

Autosar Classic application framework is part of AUTOSAR de-facto automotive standard and is used to support

deep embedded vehicle features throughout the vehicle life cycle. Due to commonly used ARXML (Autosar XML)

as modelling language, possible mappings between metamodels of different AUTOSAR standards can be easily

achieved. There are three different port prototypes namely, Provided, Required and

ProvidedRequiredPortPrototypes represented as seen in the SWC CPC metamodel in Fig. Each port prototype is

typed by a port interface. The Port interface describes the static structure of information exchange as seen in Fig.

51. The ClientServer interface in AUTOSAR Classic is an operation-based interface [43].

The ClientServerOperation logical functionality can be semantically mapped to Methods used by ServiceInterface

in AUTOSAR Adaptive, FNormalMethod in Franca and RequestReplyOperation in ROS2. The

ArgumenentDataPrototype that are used as arguments for ClientServerOperation in Autosar Classic can be

semantically mapped to ArgumentDataPrototype contained within a Method as a part of ServiceInterface in

AUTOSAR Adaptive as seen in Fig. 51. There are also three types data passing interfaces used by application

SWCs in Autosar Classic. These are namely, SenderReceiverInterface, ParameterInterface and NvDataInterface.

The SenderReceiver interfaces passes data of VariableDataProtype from Sender to the Receiver. The

DataElements of SenderReceiverInterface in AUTOSAR Classic can be semantically mapped to Events (also of

type VariableDataPrototype) that are contained within a ServiceInterface in Autosar Adaptive, Broadcast in

Franca and Topics in ROS application frameworks[43][8].

71

Fig. 51. Graphical model representation (G5) of AUTOSAR Classic framework SWC metamodels’ constructs for interface.

TABLE XI. also illustrates semantic mapping between metamodel constructs of AUTOSAR Classic SWC CPC

model (also represented by abbreviation “C”) and the metamodel constructs of generic CPC model. The

PortInterface, ClientServerOperation, DataInterface, VariableDataPrototype and InvalidationPolicy of AR CP

can be semantically mapped to interface_spec, method_invokation, Data_Passing, Data_Prototype and

PreCondition the generic CPC model.

TABLE XI. SEMANTIC MAPPING OF META-MODEL ENTITIES FROM AUTOSAR CLASSIC FRAMEWORK SWC CONSTRUCT TO GENERIC

CPC MODEL

Domain Generic Notation CPC Model AUTOSAR Classic application Framework CPC Model

interface_spec ARCP: PortInterface (C31)

method_Invokation ARCP: ClientServerOperation (C36)

Data_passing ARCP: DataInterface (C35)

Data_Prototype ARCP: VariableDataPrototype (C41)

PreCondition ARCP: InvalidationPolicy (C43)

request_responese_spec ARCP: ClientServerInterface (C33)

class DOC_Operation

ArgumentDataPrototype

+ direction: ArgumentDirectionEnum

+ serverArgumentImplPolicy: ServerArgumentImplPolicyEnum [0..1]

ClientServ erInterface

ARElement

AtpBlueprint

AtpBlueprintable

AtpType

PortInterface

+ isService: Boolean

+ serviceKind: ServiceProviderEnum [0..1]

AtpStructureElement

Identifiable

ClientServ erOperation DataPrototype

AutosarDataPrototype

ARElement

AtpType

AutosarDataType

SenderReceiv erInterfaceNv DataInterfaceParameterInterface

DataInterface

VariableDataPrototype

Inv alidationPolicy

+ handleInvalid: HandleInvalidEnum [0..1]

C31

ARElement

AtpBlueprint

AtpBlueprintable

AtpType

«model view»

SwComponentType

+ port: PortPrototype*

ARElement

AtpBlueprint

AtpBlueprintable

AtpType

«model view»

SwComponentType

+ port: PortPrototype*

AtpBlueprintable

AtpPrototype

PortPrototype

+ clientServerAnnotation: ClientServerAnnotation*

+ modePortAnnotation: ModePortAnnotation*

+ nvDataPortAnnotation: NvDataPortAnnotation*

+ parameterPortAnnotation: ParameterPortAnnotation*

+ senderReceiverAnnotation: SenderReceiverAnnotation*

C32

C33

C34

C35

C36

C37 C38 C39

C40

C41

C42

C43

C44

+port

0..*«atpVariation,atpSplitable»

+dataElement 1

«atpVariation»

+typeBlueprint0..1

+dataElement 1..*

+operation 1..*

«atpVariation»

«isOfType»

+type

1

{redefines atpType}

+invalidationPolicy 0..*

+argument * {ordered}

«atpVariation»

+nvData 1..*

+interface

P5: Represents

Semantic Ontology

for Client-Server
Interface

G5 P5

P5 ⊂ G5

72

5.2 Summarized Semantic Mapping of Component Frameworks Interface

Metamodels

The summary of semantic mapping between the interface concepts of the SWCs’ CPC metamodels of

heterogeneous vehicle application frameworks into the generic platform independent vehicle domain CPC

metamodel (in the Fig.) can be seen in TABLE XII. The objective of the summary table is to identify interface

conceptual synergies between the given vehicle application SWC frameworks CPC metamodels when using the

same domain-specific, generic CPC metamodel as a common reference for representation. For the semantic

mapping of vehicle application SWC frameworks, the proposed mapping approach attempts to identify the

synergies in interface concepts of heterogeneous SWC metamodels, highlighting (represented by letter “P” in

figures representing SWC metamodels) a common SWC communication interface semantic relation, namely,

Client-Server, used in all the given application SWC frameworks. TABLE XII. also illustrates information in this

regard. The goal for framing the following table is also towards finding a solution for semantically correlating the

heterogeneous cross-enterprise platform-specific SWC frameworks and exploring more possibilities towards

design of a concrete future automotive domain specific interface meta-metamodel or a MOF[8].

TABLE XII. SUMMARIZED MAPPING TABLE FOR SEMANTIC MAPPING OF META-MODEL CONSTRUCTS FROM HETREOGENEOUS

FRAMEWORK SWC CPC TO GENERIC CPC MODEL

Generic CPC Model Autosar

Adaptive CPC

Model

Franca (and

Franca+)

CPC Model

ROS2 CPC Model Autosar Classic CPC

Model

Android

CPC

Model

Interface_spec
ARAP:

ServiceInterfa

ce

FR: FPort

interface

ROS2: Topic,

ROS2:

ClientServer

Interface

ARCP: PortInterface ANDR:

IBinder

method_invokation
ARAP:

ClientServer

Operation

FR: FMethod ROS2:

RequestReply

Operation

ARCP: ClientServer

Operation

ANDR:

OnBind

Data_Prototype ARAP:

VariableData

Pr-ototype

FR:

VariableData

P-rototype

Not Available ARCP:

VariableDataPrototy

pe

ANDR:

ContentPro

vider

Data_passing Not Available Not

Available
ROS2: Topic ARCP: DataInterface ANDR:

ContentRes

olver

request_responese_

spec

ARAP:

ServiceInterfa

ce

FR:

FNormalMet

h-od

ROS2:

ClientServerInter

-face

ARCP:

ClientServerIn-

terface

ANDR:

Service,

ANDR:

Client

Binding

Class

Publish_subscribe_

spec

Not Available Not

Available

ROS2:

PublishSubscribe

Interface

Not Available Not

Available

73

 Design & Implementation Level (WIP)

Fig. 52. Illustration of Design Approach to semantic alignment of cross-enterprise vehicle SWC frameworks’ interface

metamodels.

Stage 1: Exploring Challenges with MDE based Metamodel

Semantic Mapping Approach for Semantic Interoperability

Stage 2: Ontology to

Ontology Semantic

alignment based on

synergies using OWL

Reasoner. Semantic

Merging or integration

of ontologies

Extending MDE based Metamodels to Ontologies to overcome Challenges

Stage 3: Validation of

Semantic alignments between

interface ontologies at schema

and instance level based on

evaluation of semantic

alignment metrics

Current Scope of

Design Approach:

Towards Semantic

Alignment and

integration of

vehicle domain

platform specific

component

interface concepts

for evolution of

Domain specific

interface software

solutions

Design Approach to Semantic alignment using SWC Metamodels

74

The design level describes the analysis level design by taking the software component framework interface

resources into consideration. This level emphasizes on improvement of design approaches for interface semantic

concepts alignment between platform-specific component frameworks within the vehicle domain. Design level

constitutes component interface models described using conceptual metamodeling mechanism. In this level, in

context of domain analysis of interface models and evolution of an abstract domain-specific global interface

solution using semantic mapping and integration, different approaches based on MDE paradigm like ecore

metamodeling and ontology paradigm based OWL2 metamodeling are presented. Towards component interface

semantic interoperability, these approaches stand to be complementary to one another and not alternative, hence,

the proposed methodologies at design level proposes the optimal way to amalgamate both the paradigm approaches

in a value-added way.

The extension of the proposed design approach towards implementation is not yet complete and is under progress.

However, in context of implementation of a unified vehicle domain interface solution using semantic integration

of platform-specific interface ontology sources, the following question arises:

What must be the building blocks of the solution for the semantic integration of interface ontology sources

towards evolution of such Domain-specific interface solution?

The OWL2 metamodel classes that implements platform-specific vehicle SWCs’ communication interface model

concepts must be semantically aligned for the semantic integration by using a shared vocabulary of domain

conceptualizations. More important for the interface concepts semantic alignment, a domain-specific, platform-

independent, interface metamodel containing only domain-specific generic interface concepts must be used as an

intermediate agent to ease the semantic alignment between the platform-specific interface models.

75

 Design Approach to Semantic Alignment of
Component Frameworks Interface Meta-Models
There are numerous ways to tackle semantic interoperability between application SWC frameworks’ API models

within the vehicle domain. However, due to the wide usage of MDE based modeling tools like Eclipse in

automotive domain, for API model design and development, MDE paradigm-based modeling approach was

selected as a default modeling approach to tackle semantic interoperability. Therefore, this chapter includes

analysis of MDE based modeling approaches, abstractions, and techniques for semantic interoperability of

heterogeneous frameworks SWCs’ API models. MDE claims that by using PIMs (Platform Independent Models)

that abstract away platform-specific details, integration and interoperability across various platforms should

become easier to produce [4]. Moreover, it is proven by literature artifacts in semantic web domain, that the

semantic alignment and interoperability between heterogeneous platform-specific component frameworks

interface models within a domain can be made effectively easier by using an abstract domain specific mediator or

reference model as a common, shared agent between the semantically compared model resources [12].

A Mediator for Semantic Interoperability between Interface Metamodel Resources

Mediators connect possibly heterogeneous entities of an interface or API description model which have structural,

semantic, or conceptual incompatibilities. They aim at automatically handling interoperability problems between

elements of different SWC frameworks’ interface models. Considering the syntactic or structural heterogeneity

between semantically equivalent API architectures of heterogeneous application frameworks, both MDE and

ontology paradigms based semantic alignment conceptual modeling approaches propose to use a common, domain

specific reference metamodel, namely DM that contains a set of domain-specific, platform-agnostic generic

interface semantic traits that are common to most of the semantically compared interface resources within the

domain. DM mediator or reference metamodel can be considered as a shared, intermediate agent to enable semantic

mapping between the interface metamodel resources [12][8]. The generic, platform-agnostic, interface semantic

traits that are included in the DM mediator metamodel are basically the most common domain specific interface

semantic traits observed from the analysis of TABLE III. ,TABLE IV. ,TABLE V. and TABLE XII.

A Vehicle Domain Case Study for Analysis of Semantic Mapping Approaches

To simplify the demonstration of interface metamodel semantic alignment approaches, a common vehicle domain

case study was proposed. The case study considered is Autonomous Maneuvering from ADAS (Advance Driver

Assistance System) functional domain. Autonomous Maneuvering controls the decision of an autonomous car

whether the collision is avoidable because it determines the type of action the vehicle should automatically take

[17]. This case study demands collaborations between various heterogeneous, cross-enterprise vehicle applications

from different knowledge domains like automotive, robotics, infotainment, etc. to accomplish its services

requirements, as seen in Fig. 53. The case study considers interface models of three most used vehicle domain

application component frameworks from heterogeneous knowledge domains such as powertrain, infotainment and

autonomous driving for semantic mapping. The three selected vehicle domain application component frameworks

are namely, AUTOSAR Adaptive, Franca (from Genivi) and ROS2. The interface models of these three

frameworks are accordingly named as Source 1, Source 2 and Source 3 for semantic mapping.

Fig. 53. Autonomous Maneurvering case study involving cross-enterprise vehicle application frameworks.

76

6.1 MDE based Domain Specific Interface Metamodel Semantic Alignment

Approach: An Overview

While models describe a specific abstraction of reality, metamodels are models of languages used to define models

and can also be considered as object-oriented data structure in which models are stored [3][4]. The core of an

MDE based EMF is an ecore. Since metamodels are also models metamodeling languages are needed, to describe

modelling languages. Here the abstract syntax is described by a meta-metamodel. The EMF uses its own meta-

metamodel to describe metamodels. As already mentioned in the earlier subsections, models, metamodels and

meta-metamodels are arranged in a hierarchy of four layers (M0, M1, M2 and M3). Fig. 54 depicts a typical four-

layered model hierarchy based on OMG standard.

Fig. 54. Representation of the ecore Metametamodel (MOF) with standardized four layered modeling architecture.

6.1.1 Ecore: The Rationale

As described in earlier subsections (2.2.1), Ecore is an implementation of EMOF defined in the Eclipse Modeling

Framework [22]. For example, while EMOF defines one class for defining properties, Ecore defines two types of

structural features: attributes and references. The practical aspects inherent in Ecore make it more suitable for

adoption. Fig. 55 illustrates the fundamental classes of a basic Ecore model.

Fig. 55. Overview of an ecore metamodel.

77

The class EModelElement allows to tag model elements with names. In EPackage is an EModelElement that

contains classifiers and sub-packages. Properties are defined by references and attributes as structural features. An

EReference is a type of structural feature that has as type an EClass. An EAttribute is a type of structural reference

that has as type an EDataType.

In EMF, Ecore can exist on both the M3 and M2 level of the metamodel hierarchy, as it allows for the definition

of metamodels, but may also be used to define models at the M1 level. This is different from MOF, which may

only be used to define metamodels. EMF comes with capabilities to serialize and deserialize models defined in

Ecore to and from XMI [5]. Besides Ecore, there are several tools and frameworks developed on top of EMF that

enable model-to-model and model-to-text transformations.

6.1.2 Semantic Mapping of Component Framework Interface Ecore Metamodels

It is relatively easy to find semantic correspondences between ecore as M2 level metamodel and Ontology

Definition Metamodel (ODM) such as OWL2 (OWL version 2) metamodel, as both formalisms are fit for

conceptual modeling [5]. Both ecore and OWL addresses conceptual metamodels where semantically related

concepts are to be identified between models of a domain. Despite of possible similarities in semantic interface

traits between the heterogeneous automotive domains component framework source metamodels, MDE

approaches such as EcoretoEcoreMapping cannot semantically map or explore the semantic interface traits

similarities between the platform-specific source ecore metamodels due to their structural heterogeneities.

Demonstration of Ecore to Ecore Metamodel Semantic Mapping using a Case

Study

In context of semantic mapping of platform-specific software component interface metamodels for interoperability

using MDE based approach, three most common automotive heterogeneous knowledge domain component

framework interface Ecore metamodels are considered as three sources for the illustration of the case study. Mostly

used vehicle application component frameworks for the given case study are namely, AUTOSAR Adaptive from

automotive knowledge domain, Franca from infotainment knowledge domain and ROS2 from robotics knowledge

domain. Hence, for efficient collaborations between these application SWC frameworks, we selected the SWCs’

interface models of these three platform-specific frameworks for semantic mapping and named them as Source 1,

Source 2 and Source 3. AUTOSAR Adaptive application framework software component interface Ecore

metamodel has been considered as a PSM-Source1, Franca (including Franca+) infotainment application

framework software component interface ecore metamodel has been considered as a PSM-Source2 Ecore

metamodel and Robotics application framework ROS2.0 software component interface Ecore metamodel has been

considered as a PSM-Source3. Fig. 56 depicts the Ecore interface metamodels of the three considered sources.

Fig. 56. Illustration of case study’s platform-specific vehicle application SWC frameworks’ interface ecore metamodels.

Despite of semantic equivalence between the platform-specific interface models, however, due to the heterogeneity

in interface PSM API structural architectures and in semantic notations, a direct semantic mapping, say, PSM A

to PSM B is not possible. Using a domain specific, intermediate platform-agnostic interface metamodel DM as a

shared PIM between the semantically compared interface PSMs is essential for ecore to ecore metamodel mappings

of PSMs. As seen in Fig. 57, DM contains generic domain interface semantic traits that are common to the

semantically compared interface PSMs resources considered for case study [8].

78

Fig. 57. Abstract representation of platform-agnostic, vehicle domain-specific generic SWC interface ecore metamodel.

However, in context of current scope of SWCs semantic interoperability, the uniqueness of each PSM SWCs’

interface is essential to be considered, therefore, direct model to model transformation, say, from PSM A to PSM

B using MDE based model transformation tools is not considered in the current scope.

The platform-specific heterogeneous knowledge domains source metamodels, that is, Source 1, Source 2 and

Source 3 are initially manually mapped to the intermediate Platform-independent Model (PIM) domain reference

interface metamodel agent, DM, as seen in Fig. 58.

Fig. 58. Abstract representation of semantic alignment of interface sources using MDE based ecore to ecore mapping approach.

The intermediate reference model represents directly semantic data that are common to the source metamodels

and is used to handle the semantic heterogeneities between them. The DM interface PIM contains generic domain

interface traits that are semantically common to interface traits of PSM-Source1, PSM-Source2 and PSM-Source

3. Due to this semantic commonality, the platform-specific interface traits classes of metamodels of Source 1,

Source 2 and Source 3 are declared as child class members of the polymorphic interface traits classes of DS

metamodel by using the ecore metamodel property ESuperTypes, for example, ARMethod of PSM-Source1,

FMethod of PSM-Source 2 and isService of PSM-Source 3 are class members of DM polymorphic class

DMmethod_invokation due to semantic commonality, also can be seen in Fig. 59 [11].

Platform-agnostic Domain-

Specific Interface Ecore

Model

79

Fig. 59. Reference domain-specific interface ecore metamodel (DM) representing polymorphic interface semantic traits.

However, due to the fact that implicit knowledge cannot be explored owing to the lack of reasoning or query

mechanism, the semantic synergies between the interface traits of PSM-Source1, PSM-Source2 and PSM-Source3

cannot be exploited completely.

That is, for example PSM-Source1 ARServiceinterfacespec can be semantically mapped to DMInterface_spec,

similarly, PSM-Source2 FPortInterface can be semantically mapped to DMInterface_spec and PSM-Source3

ServiceClientServerInterface and DataInterface can be semantically mapped to DMmethod_invokation and

DMPublish_Subscribe of DMInterface_spec manually. However, apart from inheritance or derived relation, no

inferred semantic relations between the instances of semantically similar or equivalent interface metamodels

method classes of PSM-Source1, PSM-Source2 and PSM-Source3 are possible to be explicitly expressed, despite

of semantic similarity as also depicted by Fig. 60.

Fig. 60. Representation of SWC frameworks’ interface method classes and their derived semantic associated relationships.

6.1.3 Challenges of MDE based Semantic Mapping Approach for Interface Ecore

Metamodels

Domain analysis addresses the analysis and modeling of variability and commonalities of systems or concepts

within a domain. Taking this into account, in perspective of improvement of reusability and interoperability

between vehicle domain component frameworks interface models, it is absolute essential to focus on the domain

components interface models independent of platform-specific API modelling languages and focus on checking

the consistency among the terminologies or concepts of domain of interest [4][2].

Although MDE (Model Driven Engineering) claims that by using Platform Independent Models (PIMs) that

abstract away the platform-specific details, the integration and interoperability across various platforms should

become easier to produce in a platform-agnostic way, nevertheless, the equivalence mappings between the domain

platform specific components interface models still cannot be explicitly expressed using semantic relations like

generalization, polymorphism, etc. between the defined model classes [2][1].

In the past few years, in computer science, most MDE based modeling methods that are designed for model-driven

systems using the Eclipse Modeling Framework (EMF) often lack proper visualization and focus instead on the

80

capabilities of model transformations and code generations. Ecore allows for relating classes by specialization

relationships using metamodel properties like relational attributes or EReferences. However, when two classes of

two ecore interface metamodels, say, CA and CB are semantically similar from functional perspective and are child

class members of the same generic, polymorphic interface, metamodel third class, say, CC in this situation, there

is no inferred semantic relation possible to be expressed between the instances of the semantically related classes

CA and CB. As an additional finding, ecore does not provide constructs to relate the sets of links described by a

reference.

The strictness and consequence of inflexibility of metamodels using MDE based modelling tools makes it

challenging to explicitly exploit polymorphism mechanism between the semantically equivalent interface traits

of platform-specific interface metamodels. Due to the absence of derived concept hierarchies from logically

defined metamodel class axioms, semantic relations like generalization or equivalence cannot be explicitly

expressed between the semantically compared interface PSMs, as illustrated in Fig. Moreover, using a model

driven approach to tackle domain specific semantic interoperability, MDE has no means (or no modeling tools) to

formally describe domain concepts in a extensible way so that reasoning can be done about them and no means of

checking the consistence and discovering conflicts among terminologies of domains of interest.

Nonetheless, ontologies can help to deal with the semantic alignment task on a solely conceptual level. Moreover,

by defining domain concepts as first-class citizens, ontology allows developers to reuse the domain concepts on

different situations independent of platform-specific details, thereby providing improvement in productivity and

interoperability [10]. Understanding the strengths of ontology technologies in comparison to MDE like domain

conceptualization using shared vocabulary, automated reasoning, inferred axioms, dynamic classification and

consistency checking are essential for leveraging the development of promising solutions to semantic

interoperability [1][3].

6.2 Possible Solution to Challenges of MDE based Semantic Mapping Approach:

Extension of Interface Metamodels to Ontologies for Semantic Alignment

In general, MDE consists of the following two main artifacts: Modelling languages, which are used to describe a

set of models and model transformations, which are used to translate models represented in one language into

models represented in another language. In 2006, Berners-Lee et al. [32] observed an increased need for data

integration, shared semantics and a web of data. They discussed how multiple heterogeneous datasets from various

heterogeneous sources must be integrated. Ontologies are commonly used to integrate datasets. For instance, OWL

is extensively used in the life sciences community for ontology development and data interchange.

Domain conceptualization using domain vocabulary and logical definitions is a key aspect of ontology technology.

It is insufficient, just to have a robust physical infrastructure for transmitting data between vehicle applications, as

the very same data can mean quite different things in different application frameworks depending on the platform.

Hence, there is a necessity to use domain vocabulary to semantically map component interface models with one

another. Like MDE technology, ontology uses OWL conceptual metamodels to exploit the semantic relations

between the models of a domain. The OWL metamodel which is also part of the ODM specification as defined in

the OMG standard, is implemented by extending the RDF (Resource Description Framework) and RDF (RDF

Schema) metamodel. RDFS serves as a meta-language that defines itself and OWL metamodels at M2 level of

four-layered modelling architecture [1][12]. Semantic Web languages, such as RDF and OWL facilitate

interoperability in significant ways and provide formal mechanisms to express logical equivalences between

classes and properties of the metamodel represented as ontology.

6.3 Strengths using Ontology based Approach: In contrast to MDE

Modeling issues like formal semantics or interoperability motivated the development of ontology languages.

Formal semantics constrain the meaning of models, such that their interpretations are the same for different persons

(or machines). Description Logics underpin the W3C standard Web Ontology Language (OWL) and provide the

foundations for ontology languages. OWL together with automated reasoning technologies provides a powerful

solution for formally describing domain concepts [66] .

In contrast to MDE, ontologies are developed to be manipulated by inference engines. OWL is capable of explicitly

inferring dynamic generalization and specialization between interface traits classes as well as class membership

of object based on the constraints imposed on the properties of class definitions [2][3]. The inference (or inferred

axioms) and seamless automated reasoning are capable to explore semantic mappings among multiple ontologies.

81

Most of the OWL reasoning such as asserted or inferred axioms, etc. can be verified using W3C standard SPARQL

query engine [66].

Role of reasoning for software modeling

Since in the context of MDE ontology technologies are used in software modelling it has become evident that there

is a significant demand for software modelling environments which provide more sophisticated explanation

services. In particular, the generation of explanations, or justifications, for inferences computed by a reasoner is

now recognized as highly desirable functionality for both ontology development and software modelling. A

language user designer developing (meta-) model recognizes an entailment and wants to get an explanation for the

entailment in order to get the reason why the entailment holds (understanding entailments). If the entailment leads

to some inconsistency or unsatisfiable classes, the user wants to get some debugging relevant facts to some

inconsistency or unsatisfiable classes, the user wants to get some debugging relevant facts and the information

how to repair the ontology. Hence, reasoning is vital for the formal description off the models.

Summary

Comparing the Ecore language and the OWL2 language, (1) An Ecore metamodel allows for specifying classes,

datatypes and relations like references or attributes same as OWL2 metamodel specification language. 2) Classes

in Ecore correspond to classes in OWL.With respect to the intensional semantics both class concepts represent a

set of instances. (3) The references in Ecore correspond to object properties in OWL. They both represent sets of

relations between instances of given types. (4) The attributes in Ecore correspond to data properties in OWL since
they both describe relations between instances and values of a predefined datatype. (5) The datatypes of attributes

in Ecore semantically comprise atomic values like the datatypes in OWL. OWL 2 ontologies additionally allow

for modeling of individuals and assertions. (6) With respect to the intentional semantics instance in a domain

model correspond to individuals in an OWL2 ontology. Both are classified by classes. (7) In Ecore model links

are instances of references and represent connections between two instances. In OWL 2 object property assertions

are used to define connections between two individuals with respect to an object property. (8) In domain models

attribute assignments define the relation between an instance and a value. In OWL 2 data property assertions are

used to define the relation between an individual and a value with respect to a data property.

However, to simplify the design approach using the proposed methodology, for the ontology language OWL2,

only those constructs, which are replaceable by respective counterparts in Ecore-based metamodels are considered.

In the case of the Ecore metamodeling language only those constructs, which are directly representable in an

ontology are mentioned.

82

 Extension of MDE based Modeling Approach to
Ontologies for Evolution of Domain Unified Interface Ontology

For the implementation of the possible solution design approach in Chapter 6, in this chapter, an semi-automated

approach is proposed to extend vehicle application domain heterogeneous SWC framework interface metamodels

to ontologies using a transformation bridge in order to carry over the advantages from ontology technologies such

as explicit semantic relations to MDE based software modeling domain. Using a transformation bridge, the basic

constructs of component frameworks interface metamodels described by Ecore are mapped to corresponding

constructs of OWL metamodels.

7.1.1 Overview of Methodology for Metamodel Transformations between Ecore and OWL

The proposed methodology bridges the gap between pure modelling language metamodels [1] and OWL

metamodels in order to reuse the knowledge from both MDE and ontology technology-based paradigms. For the

semantic alignment of automotive domain component framework interface models for interoperability, the

proposed methodology follows different steps, as illustrated in Fig. 61.

Fig. 61. Overview of methodology concept for semantically ontology mapping and integration approach.

The proposed methodology bridges the gap between pure modelling language metamodels [1] and OWL

metamodels in order to reuse the knowledge from both MDE and ontology technology-based paradigms. For the

semantic alignment of automotive domain component framework interface models for interoperability, the

proposed methodology follows different steps, as illustrated in Fig. 61. In the first step, an approach to mapping

of constructs of interface metamodels described by Ecore to OWL ontologies was proposed [2][11]. As a second

step, the given approach was extended to explore the possible semantic alignments between the resultant OWL

interface ontologies using OWL reasoning and inference engines. In the last step of the proposed methodology,

and further we propose to verify and validate the possible inferred semantic synergies between the OWL interface

ontologies using the same case study from Chapter 6 and SPARQL queries. Fig. 62 illustrates a generic comparison

between ecore and OWL2 metamodels specifications based on OMG standard four-layered modeling architecture.

83

Fig. 62. Generic comparison between ecore and OWL2 conceptual metamodeling specification layers .

7.1.2 M3 Transformation Bridge: Mapping Component Framework Interface Metamodels

constructs from Ecore to OWL

The migration of metamodeling languages constructs or abstract syntax like classes and properties described by

ecore to corresponding OWL constructs can be achieved by implementing a M3 layer transformation bridge

[11][10][7] between the software languages as can be seen in Fig. 63 [62]. The knowledge base for the

implementation of a M3 transformation bridge [3] for automotive component framework interface metamodels

can be summarized by the TABLE XIII.

Fig. 63. Abstract layered representation of M3 Bridge approach to transform interface metamodel constructs from ecore to

OWL2.

At the application component level, data interoperability relies on the semantic alignment or mapping between the

various component framework interfaces data models represented as XML schemas (XSD). With the XML

schemas being the preferred standard for the interface description exchange between most of the automotive

application domain components, however, the data interoperability between the semantically equivalent but

structurally different data constructs of multiple heterogeneous XSDs stands as a challenge in the absence of an

ontology-based approach. An XSD (XML Schema) can be seen as a metamodel for XML documents, considering

this, the EMF is cable of generating XSDs based on Ecore metamodel specifications . To simplify the one-to-one

mapping of metamodel constructs from Ecore to OWL2 and to prevent loss of information, schematic translation

of, constructs from XSD to ontology based RDFS is considered in the scope of the proposed approach as illustrated

in TABLE XIII. .

84

TABLE XIII. SUMMARIZED MAPPING TABLE FOR SEMANTIC MAPPING OF META-MODEL ENTITIES FROM ECORE TO OWL2

7.2 Implementation of M3 Transformation Bridge
The implementation of an M3 transformation bridge consists mainly of identifying concepts in the vehicle SWC

frameworks’ interface ecore metamodel and the OWL metamodel which can be mapped to each other.

7.2.1 Step1: Translation of Ecore to XML Schema (XSD)

With the XML schema or XSD being the preferred standard for the interface information exchange between most

of the vehicle applications’ domains software components, it is meaningful to translate the interface ecore

metamodels to XML schemas respectively using the ecore EMF generator modeling tools associated with MDE

based Eclipse IDE platform, as shown in Fig. 64. Also from a logical perspective, in the scope of metamodel

transformation from ecore to OWL2, schematic translations such as ecore to XSD and XSD to RDFS must be

considered to prevent enormous loss of information as the existing XML Schema datatypes may be used in OWL

ontologies if they have been already declared in them.

Fig. 64. Overview of exporting ecore model to XML Schema (XSD) using emf tools.

Despite of representation of same information, XSD represents abstract meta data compared to ecore elements.

This is because XML Schema naming conventions are less restrictive then Javas’ (and consequently ecores’),

names sometimes need to be converted to conform to the naming conventions outlined in the XML standard

specification. Fig. 65 illustrates an example showing mapping between an ecore package to XML schema using

emf tooling support.

Fig. 65. Equivalent representation of an EPackage with XML schema.

85

A typical example of exporting and mapping a vehicle application SWC framework’s interface ecore metamodel

constructs to equivalent XSD constructs can be seen in Fig. 66.

Fig. 66. An example on exporting ecore metamodel constructs to equivalent XML schema using emf tools.

Since the XSDs are automatically generated from the interface ecore metamodels, therefore, the data

interoperability between the semantically equivalent but structurally different data constructs of multiple

heterogeneous XSDs still stands as a challenge in the absence of advanced semantic support like domain ontologies

and logic-based reasoners.

7.2.2 Step2: Schematic Translation from XSD to RDFS

To confront the issue of data interoperability by exploring the possibilities of semantic alignments between the

interface descriptions of various component framework templates, schematic translation of the XML schemas

representing the various component interface ecore metamodels to RDFS (Resource Description Framework

Schema) was considered to achieve advanced semantic support from domain conceptualizations and logic-based

Franca Framework Interface

Ecore Metamodel

<xsd:complexType name="FCompositionComponentPrototype">
 <xsd:sequence>
 <xsd:element name="Component" type="Franca:FComponentPrototype"
minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FComponentPrototype">
 <xsd:sequence>
 <xsd:element name="Port" type="Franca:FPortPrototype" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FPortInterface" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="Franca:FAttribute">
 <xsd:attribute name="Fversion_major"
xml:base="VariableDataPrototype" use="required"/>
 <xsd:attribute name="Fversion_minor"
xml:base="VariableDataPrototype" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="FPortPrototype">
 <xsd:attribute name="Interface" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="FServiceComponentPrototype" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="Franca:FComponentPrototype"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:simpleType name="VariableDataPrototype" xml:base="Int" final="list">
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 <xsd:complexType name="FProvidedPort" xml:base="PPort" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="Franca:FPortPrototype">
 <xsd:attribute name="Portinterfacespec"
xml:base="FPortPrototype" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

86

reasoners [63]. Schematic translation of XSDs to RDFS bridge the gap between XSDs and OWL interface

metamodel specifications by lifting the syntactic level of XML documents to the semantic level of OWL ontologies

using ontology framework supported tools [65], as seen in Fig. 67. RDFS are ontology-based schemas that can be

represented as an object model or a kind of constrained relational model and can provide semantic enrichment to

XML schema data constructs, as seen in Fig. 68 [59][62].

Incorporating the XML and RDF paradigms approach was also proposed by authors et.al [60] but this approach

did not consider any heterogeneous sources with different syntax or data models. The author developed an

integrated model for XML and RDF by integrating the semantics and inferencing rules of RDF into XML, so that

XML querying can benefit from their RDF reasoner. In context of domain specific global ontology, the author of

[61] has proposed an ontology for automobile industry named as VCO (Vehicle Corporate Ontology) that would

address the problems of platform and syntactic heterogeneity by mapping between individual schemas and XSLT

transformations. The authors of [62] proposes an ontology-based framework for interoperating of two XML

documents at semantic level and proposes integration of local RDF ontologies to a hypothetical global ontology.

A fully automated mapping of ontology into a relational Database schema with a complete mapping approach was

also proposed by authors of [64]. The intention to map and translate the XSD nested structure into the relation-

based structure such as RDFS expressed by ontologies is to enable semantic enrichment and semantic alignment

between the semantically equivalent data constructs conforming to different XSDs by hiding their structural

heterogeneity in the native nested structure and exploring areas of possible semantic synergies [60].

Fig. 67. Overview of schematic relation between XSD and RDF Schema (RDFS) .

Fig. 68. Illustration of schematic translation of XSD to equivalent RDF Schema using an example.

<rdf:Description rdf:about="#r-14-0-0">
 <composite:index
rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">0</composite:index>
 <sxsd:base>Franca:FComponentPrototype</sxsd:base>
 <rdf:type rdf:resource="http://topbraid.org/sxsd#Extension"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://www.topbraid.org/2007/05/composite.owl#index">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:comment>The index of the subject among its siblings. Note that this could in
principle take arbitrary numbers (including floats). We recommend using xsd:ints starting
at 0.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
 </rdf:Description>
 <rdf:Description rdf:about="#r-17-0-0">
 <composite:index
rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">0</composite:index>
 <sxsd:base>Franca:FPortPrototype</sxsd:base>
 <rdf:type rdf:resource="http://topbraid.org/sxsd#Extension"/>
 </rdf:Description>
 <rdf:Description rdf:about="#r-4">
 <composite:index
rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">4</composite:index>
 <sxsd:type>Franca:FServiceComponentPrototype</sxsd:type>
 <sxsd:name>FServiceComponentPrototype</sxsd:name>
 <abstract-xsdelement>true</abstract-xsdelement>
 <rdf:type rdf:resource="http://topbraid.org/sxsd#Element"/>
 </rdf:Description>

87

As an extension to the Step1, the various existing platform-specific component framework XML schemas

representing the interface ecore metamodels with the basic information required for peer-to-peer interoperability

are then schematically translated to RDF-based local ontologies using an ontology-based tool, as seen in Fig. 62

[7].[7]

The tool [65] uses an automated internally mapping technology to map each entity or construct in the RDFS to the

corresponding construct in the XSDs representing interface ecore metamodel, as also seen in TABLE XIV. The

schematic translation from nested (XSDs) to relational databases (RDFS) considers the constraints and structure

of the target schema [64] [59][7]. Some of the mappings between XSD and RDF Schema constructs are

summarized in the TABLE XIV.

TABLE XIV. SEMANTIC MAPPING BETWEEN XSD AND RDF SCHEMA CONSTRUCTS

After the process of translating XML Schemas into generated OWL ontologies, ontology engineers must

collaborate with domain experts in order to add supplementary semantic information, not expressed in the

underlying XML Schemas, to domain ontologies. According to OMG’s four-layered modeling architecture, a MOF

class at the M3 layer, is used to define M2 layer classes, similarly, the RDFS (M3) constructs at the schema layer

in Fig. 69 are further extended manually to define OWL2 metamodel (M2) constructs at the logical layer using the

ontology tool.

Fig. 69. Overview of translation of RDF Schema to OWL2 metamodel constructs using ontology framework supported tools.

Input Schema: XSD Construct Target Schema: RDF Schema Construct

Attribute Property

Simple type Property

Complex type Class

Element

Cardinality Qualifier

Extension

Sequence

Class

Cardinality qualifiers

subClass Of axiom

Unnamed Class

<!-- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FComponentPrototype -->
 <owl:Class
rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FComponentPrototype">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FCompositionComponentPrototype"/>
 </owl:Class>
<!-- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FCompositionComponentPrototype -->
 <owl:Class
rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FCompositionComponentPrototype">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#Fsystem_Template"/>
 </owl:Class>
<!-- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FMethod -->
 <owl:Class
rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FMethod">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-
49#FPortInterface"/>
 </owl:Class>

88

7.3 Platform-agnostic, Mediator Centric Approach towards Exploration of

Semantic Synergies between Component Framework Interface Ontologies

In contrast to MDE, explicit reasoning and inference engines are the known vital features of the ontology

technology that provides benefits of semantic alignment and semantic integration [3][5] [12]. Taking this fact into

account, as a next step to M3 Transformation Bridge (in detail in Sub-section 9.1), it is time to explore the semantic

synergies between the various vehicle component frameworks’ interface metamodels specified as OWL ontologies

using an automated reasoner tool of an ontology IDE framework and semantically integrated the aligned interface

ontologies. Also, validate the reasoning using the SPARQL query engine. The semantic mapping and alignment

of interface OWL ontologies proposed approach is demonstrated using the same vehicle domain case study from

Chapter 6. Semantic Web languages, such as RDF and OWL facilitate interoperability in significant ways and

provide formal mechanisms to express logical equivalences between classes and properties of the metamodel

represented as ontology. In consideration to ontological metamodel layers and metamodel language layers, there

are two different approaches. One is the use of modeling language across all ontological layers. The other is on

usage of different modelling languages at different ontological layers. In context of current scope, the former

approach is considered for semantic alignment of vehicle component interface metamodels.

7.3.1 Ontology-based Interface Semantic Alignment and Integration using a Platform-

independent Reference Ontology: An Algorithmic Representation of Fundamental Steps

Semantic data integration is the process of using a conceptual representation of the data and of their relationships

to eliminate possible heterogeneities. In this subsection, some fundamental definitions are introduced before the

illustration of the methodology using case study in the next subsections. In this direction, the following definition

in the current research scope were adopted and illustrated in Fig. 70[81].

 Definition 1: Each interface ontology is defined as a 4-tuple IO=<C, S, I, A>, where C is a finite set of

Interface concepts; S is a finite set of semantic relations; I is a set of instances (or individuals); A is a

set of axioms, which is expressed in an appropriate logical language such as SWRL, etc. [81]

 Definition 2: Interface semantic data integration system is a 5-tuple ISI=<OGI, OSI, D, MGS, MSD>, where

▪ OGI represents the platform-agonistic, vehicle application domain-specific, global

conceptual interface ontology schema, expressed in an ontology language LG such as

OWL2. GI provides the global view for vehicle domain application users.

▪ OPI represents the local platform-specific framework interface conceptual ontology

schemas, expressed in same ontology language LG as OGI. PI defines the local platform-

specific semantics of interface data resources.

▪ RO represents a platform-independent mediator or reference ontology to ease semantic

interoperability or semantic alignment between platform-specific interface ontology

schemas. RO defines the vehicle domain specific, generic application SWC’s

communication interface semantics.

 Building Mappings MPR: define mappings between OPI and RO, that is OPI RO, where is a

set of mapping axioms between RO and OPI. For example, mapping of interface concepts like

MethodCalls() types between the intermediate agent and the platform-specific interface conceptual

schemas, as seen in Fig. 70 [81].

 Building Mappings MGS: define mappings between OGI and OPI, that is OGI ¥ OPI, where ¥

set of mapping axioms between each OSI and global schema OGI, as seen in Fig. 70 [81].

 Building Queries QGI: queries can be processed in two directions: the data-integration direction, the

query on the global ontology is rewritten into subqueries over multiple sources, and the peer-to-peer

direction, the query on some local interface conceptual schema is propagated to other local interface

conceptual schema sources connected through the global ontology [63][62]. Both QGI and its

subqueries(at local platform-specific interface conceptual schema level are expressed in SPARQL at

schema level (also known as TBox Reasoning) and at individual or instance level (also known as TBox

Reasoning).

In this context of semantic interoperability, ontology plays important roles which can be concluded as follows:

Firstly, it provides formal description for specific domain. Domain concepts and knowledge structure are formally

defined by schema OGI . Secondly, it provides semantic interoperability. Ontology mapping MPR domain-specific,

reference interface semantic and local platform-specific interface semantic. Lastly, it provides reasoning and

deducing ability. According to the relationships among concepts defined in interface ontologies, implicit

89

knowledge can be inferred from ontologies to satisfy the users with incremental information. Towards semantic

integration of semantically aligned interface concepts of local conceptual schemas, the global schema OGI must

essentially include[62]:

• Merging of classes: where multiple conceptually equivalent classes are combined into one class.

• Merging of properties: where multiple conceptually equivalent properties of a class are combined into

one property.

• Merging relationships between classes: where conceptually equivalent relationships from one class c1 to

another class c2 are combined into one relationship.

• Generalizing related classes into a more general superclass: The superclass can be obtained by searching

an existing knowledge domain using reasoning.

7.3.1.1 Domain Interface Ontology Building: Methodology for Semantic Integration

For domain-specific semantic integration methods without ontology, the solutions always have the following

drawbacks. Firstly, it has no means of checking the consistence and discovering conflicts among domain

terminologies. Secondly, although the equivalence mappings can be realized, inheritance mechanism can't be

implemented. Finally, implicit knowledge cannot be discovered owing to lacking reasoning mechanism. Therefore,

ontology is often viewed as a key component to realize semantic integration of data [9].

The proposed methodology uses OWL ontology to represent the global semantics of domain interface model and

the local semantics of heterogeneous platform-specific framework component interface data sources respectively

based on the algorithm explained in the earlier subsection. The architecture and key components for implementing

the methodology are presented.

To further illustrate the proposed methodology, this research report uses the same case study from subsection 6.1.2

to show how to integrate vehicle application component heterogeneous data sources (represented as local platform-

specific interface ontology resources) semantically into global domain-specific interface ontology conceptual

schema.

Fig. 70. Workflow model for semantic alignment and integration of SWCs’ interface semantic ontologies.

To demonstrate the ontology-based interface metamodel semantic alignment approach, we use the same case study

from subsection 6.1.2. The three semantically compared platform-specific interface models are represented as

OWL2 metamodels or ontologies and named as ONT-Source 1, ONT-Source 2 and ONT-Source 3, as can be also

seen in Fig. 71.

MPR MPR

OGI

OPI

90

Fig. 71. Illustration of the case study SWC communication interface model using Thrift IDL.

As specified in the earlier subsection the fundamental definition of RO, hence, to ease semantic interoperability, a

shared, domain specific, platform-independent interface ontology, DM, is considered as an intermediate agent or

reference ontology between semantically compared platform-specific interface ontology sources, as depicted in

Fig. 72. The DM OWL2 ontology contains generic domain interface concepts that are semantically common to

the interface ontology sources 1, 2 and 3[9].

Fig. 72. Semantic mapping of SWC frameworks’ interface ontological metamodels using asserted axioms .

DM: Platform-Agnostic Vehicle Domain

Specific Abstract SWC Interface Ontology

91

Due to this semantic commonality, the entities representing interface concepts of local platform-specific

conceptual schemas, namely ONT-Source1, ONT-Source 2 and ONT-Source 3 ontologies are asserted to be

equivalent to the polymorphic interface traits entities of DM ontology, for example ARMethod type AR:

ClientServerOperation of ONT-Source1, FMethod of ONT-Source 2 and ROS:Service of ONT-Source 3 are

asserted manually to be semantically equivalent to DM:method_invokation [8] type DM:ClientServerInterface, as

seen in Fig. 73 [42][43][9].

Merging of equivalent Classes, properties and Relationships using Semantic Integration of

Platform-specific Interface Ontologies using Inferred axioms and Reasoning

Apart from the asserted object property axioms, the automatically generated inferred property axioms by the

reasoner of an ontology framework semantically relates the various classes (also known as TBox Reasoning) and

their instances (also known as ABox Reasoning) of ONT-Source 1, ONT-Source 2 and ONT-Source 3 using

equivalence axiom, represented by the green arrows in the as seen in the Fig. 73.

Fig. 73. Semantic alignment of SWC frameworks’ interface ontologies using inferred axioms and reasoning .

That is, the inferred axioms automatically generated by the reasoner semantically aligns the Source 1 ARMethod,

namely ClientServerOperation to Source 2 FMethod and to ROS:Service of Source 3, using equivalence (is-a)

axiom feature of ontology-based modelling tools.

Fig. 74. Exploration of semantic equivalence relationship between data-passing interface method calls using inferred axioms.

92

An example of merging equivalent Classes, properties and Relationships using Semantic Integration of Platform-

specific Interface Ontologies can be illustrated for Data_Passing interface MethodCalls() by the Fig. 74[9].

Fig. 75. Illustration of the conceptual global conceptual interface ontology schema for vehicle domain application SWC

Frameworks.

In reference to Fig. 70 and the stated algorithm on semantic mapping and integration of ontology resources, the

Fig. 75 illustrates the Global Conceptual Interface Ontology Schema, OGI for the considered case study. All the

local interface ontology schema resources, OPI, are semantically mapped to each other using a platform and

technology agnostic interface ontology mediator, RO. After semantically mapped using semantic synergies in

interface concepts, the local interface ontology schema resources are finally merged to the Global Conceptual

Interface Ontology Schema.

7.4 Brief Overview of the Ontology Development Environment (ODE)

No matter what ontology representation metamodeling language is used, there is usually a graphical ontology

editor to help the developer organize the overall conceptual structure and schema of the ontology such as adding

concepts, properties, relations, and constraints; and, possibly, reconcile syntactic, logical, and semantic

inconsistencies among the elements of the ontology. In addition to ontology editors, there are additionally other

ontology tools as software plugins and number of reasoners available with the ODE in the ontology framework

that help to manage different versions of ontologies, convert them into other formats and languages, map and link

between ontologies from heterogeneous sources, compare them, reconcile and validate them, and merge them.

Protégé currently being the leading open source ontology development editor and environment and hence,

considered in the current scope of research [19]. It facilitates the defining of concepts (classes) in an ontology,

OGI: platform-agonistic, vehicle

application domain-specific, global

merged interface ontology schema

OPI :local platform-specific framework

interface conceptual schemas

RO : platform-independent reference

ontology or an intermediate mediator

ontology to ease semantic interoperability

93

properties, taxonomies, and various restrictions, as well as class instances, as illustrated in Fig. Furthermore, its

uniform GUI (Graphical User Interface) has a tab for the creation of a knowledge acquisition tool for collecting

knowledge into a knowledge base conforming to the ontology. Customizable forms determine how instance

information is presented and entered. The knowledge base can then be used with a problem-solving method to

perform various inference tasks.

Protégé supports several ontology representation languages, including OWL and RDF(S). Some forms of

reasoning over ontologies developed with Protégé are also facilitated; for example, since OWL is based on

description logics, inferences such as satisfiability and subsumption tests are automatically enabled [19]. Protégés’

plug-in-based extensible architecture allows integration with a number of other tools, applications, knowledge

bases, and storage formats such as storage back ends for UML (for storing Protégé knowledge bases in UML),

XML Metadata Interchange (XMI) (for storing Protégé knowledge bases as XMI files), etc. as depicted in Fig. 76.

Fig. 76. Overview of Ontology Development Enviornment (ODE) using Protégé.

Summary

As illustrated in TABLE XV. , in contrast to OWL2 metamodels specifications, implied or inferred semantic

axioms cannot be explicitly expressed with the ecore metamodeling method elements like classes, instances,

attributes, etc. despite of the artifacts being hidden in the abstract metamodel and modeling languages [9].

94

TABLE XV. COMPARISON OF SEMANTIC ALIGNMENT QUALITY METRICS FOR MDE AND ONTOLOGY BASED CONCEPTUAL METAMODELING

METHODS

The above summarized table indicates that the ecore-based metamodeling method are mostly designed for narrow

purposes which fits to the model-driven development domain but may not be suitable metamodeling method to

tackle semantic interoperability when compared with ontology metamodeling methods. On the other hand, the

usage of reference attributes is way more common in ecore-based metamodels. This fact could be explained by

the purpose of ecore metamodels to act as structured data model. Hence, considering the above analysis on quality

metrics, it can be concluded that both the metamodeling methods are complementary to one another.

Quality Metric Approach Semantic

Alignment

Measurem

ent

Ecore

Metamode

l

OWL2

Metamodel

specificatio

n/Ontology

Performance Description

Semantic

Association

Navigability Metric

(SAN)

Manual Possible

 √
 Possible to identify the

derived semantic relations

between the classes.

Semantic

Association

Instance Metric

(SAI)

Manual Not

Possible

 √

 Not Possible to identify

the implied semantic

relations between

instances of classes.

Semantic Similarity

Metric (SSM)

Manual Possible

 √

Implied/Inferred Semantic

alignment relation between

the classes at schema level
possible to be measured.

Class Connectivity

Richness Metric

(CCRi)

Manual Possible

 √

Implied/Inferred Semantic

alignment relation between
the instances of classes at

Knowledgebase level

possible to be measured.

Semantic

Relationship

Richness Metric

(SRRI)

Manual Possible

 √

Semantic relationship

between instances of

semantically equivalent

classes.

95

 Finale

For the semantic interoperability between service-based components’ communication interfaces in vehicle domain,

it is time to shift the focus from the implementation of a certain modeling language towards the explicit reification

of the concepts covered by the languages [1]. From the viewpoint of cross-enterprise collaboration of services

within the vehicle domain, it is also time to focus on the standardization of semantics ways of accessing services

with various service models or profiles bounded with different platform-specific interface description languages,

that means, the focus is towards standardization of the cross-enterprise services interoperability process in vehicle

domain. To achieve standardization of vehicle services interoperability process, the significant research question

that emerges is: What is the standard way to describe the interfaces of heterogeneous vehicle service components

with varied service profiles? A possible solution to this research question is to evolve a domain ontology for

representing a unified interface conceptual description for vehicle domain services from heterogeneous component

frameworks. This helps to achieve better results in terms of semantic alignments and integrations as possible

solutions to tackle interoperability issues.

Geared towards services semantic interoperability, in the semantic Web domain, OWL-S is an ontology within the

OWL-based framework, which is used in conjunction with domain ontologies specified in OWL, provides standard

means of specifying declaratively APIs (Application Program Interfaces) for Web services that enable automated

Web service interoperability[35]. Also, in the Web domain, the Web Service Modeling Ontology (WSMO) is a

conceptual model that provides an ontology-based framework which supports deployment and interoperability of

services for semantic[35]. Due to the conceptual differences between typical Web service models (which are

generally loosely coupled software applications) and vehicle service component models (which are generally

tightly coupled software applications), implementing OWL-S process models or WSMO conceptual model

perspectives, for service interoperability in vehicle domain, however, remains challenging and unanswered. The

future extension of the work presented in this contribution would focus on finding solutions to address such

challenges.

96

Chapter 8 Conclusion

Current automotive industry standards for describing vehicle Services focus on ensuring interoperability across

diverse platforms, but do not provide a good foundation for standardization of service APIs definitions or

descriptions. Over the last decade, in automotive domain, cross-enterprise interoperability is becoming a daunting

impediment in context of providing efficient software IoT solutions at application level due to semantic data

heterogeneity observed at application interface level. From a modeling perspective, the interoperability between

heterogeneous service components’ interface models within the same vehicle information system or ECU software

platform would rely on semantic synergies between the components’ interface models and resolution of possible

semantic conflicts. MDE and ontology technology offers complementary solution to tackle semantic

interoperability issues. Lack of semantic interoperability between vehicle service SWCs’ interfaces causes major

hurdles for precise service discovery, service invocation, service profile understanding, composing services,

negotiating contracts and communications, etc. In the direction to ease semantic interoperability between vehicle

service SWCs’ interfaces, this work comprises of contributions of multiple facets towards generic, platform-

agnostic, standardized semantic specification of vehicle service API models and also outlines the relevant state-

of-the-art research so far conducted in this context of the current research scope.

Despite of few commonalities between ecore and OWL2 metamodel based semantic mapping approaches for

vehicle domain service SWCs’ interfaces, this contribution intends to highlight the comparison by depicting the

differences between their semantic mapping approaches. It was revealed from the comparative static semantic

analysis of MDE versus ontology based metamodel semantic mapping approaches that both the approaches are

similar in the global process deployed to solve the semantic alignment and interoperability issues within a domain,

however, the conceptual metamodeling styles of both approaches are quite different. This contribution focused on

those aspects of the OWL2 based ontology metamodels which are not replaceable by respective counterparts in

ecore based metamodels, for example, for a given SWC’s interface metamodel, OWL2 allows for stating that two

object properties are equivalent or disjoint. If two object properties are equivalent or disjoint, the sets of relations

between their individuals they describe are also equivalent or disjoint. On the contrary, ecore based interface

metamodels are not able to explicitly express such equivalence and disjoint semantic relations neither at class nor

instance level using references or relational attributes. This is due to the fact, in comparison to ontology

technology, the missing support of infinite reasoning capability and exploring inferred artifacts capability in MDE

based semantic mapping approaches.

It can also be inferred from the comparative analysis and evaluation that the challenges using MDE based interface

semantic alignment approach can be compensated by using the strengths of ontology-based interface semantic

alignment approach. That is, to confront the crucial requirement for semantic interoperability and to leverage the

development of an efficient solution, it is necessary to combine both MDE and ontology paradigms semantic

alignment approaches in a value-added way by extending the MDE based components interface metamodels to

ontologies. This means, the implicit concepts in MDE based vehicle service component API metamodels could be

made explicit in ontologies, by utilizing automated reasoning, inference, and query engines of ontology

technology.

With the above-mentioned perspective, this contribution proposes a semi-automated Transformation Bridge

approach to extend the basic constructs of ecore based vehicle service components’ API metamodels to

corresponding constructs in OWL metamodels (M2 layered). Moreover, as vehicle domain complex and novel use

cases involves manipulate heterogeneous overlapping domain knowledge frameworks like automotive, telematics,

infotainment, robotics, cloud services, therefore, semantic alignment of cross-enterprise SOA frameworks’

interface ontologies for interoperability using an ontology mediator centric approach represents a great interest in

vehicle domain. The proposed design and implementation approaches are illustrated using appropriate vehicle

domain case studies.

As a proof of concept to validate the results of interface semantic alignments and inferred axioms identified

between the various vehicle service component frameworks’ API ontology resources, the OWL reasoning

capability was extended by using SPARQL query engine. It is understood that due to ever evolving heterogeneous

descriptions of automotive SWCs artifacts that are frequently inconsistent, and tolerating this inconsistency is

important if flexible collaborative working is to be supported for novel vehicle service requirements. Therefore, it

is proposed to resolve any inconsistencies that are encountered with the change in vehicle service components’

97

artifacts during the semantic alignment implementation approach, at the time of detection. Nevertheless, still more

work is required in directions to automate the proposed design and implementation approach in the future.

Exploration of semantic synergies between APIs of various vehicle applications SOA frameworks increases

possibilities to reuse efficiently these various vehicle service components frameworks through their API semantic

data in various types of semantic integrations within the vehicle domain in future. Although this research work is

focused on vehicle domain, the method can give a good reference for heterogeneous data interoperability and

semantic data integration in other science domains in the near future in perspective of design of novel complex

IoT solutions.

98

Chapter 9 Future Work

In the recent years in automotive industry a plethora of wide variety of metamodeling techniques such as ecore,

OWL2, etc. are being used. Perceiving this fact, it becomes significant to not only evaluate the quality of each of

the metamodeling approaches but to also ensure validity of such approaches to increase the applicability or usage

of these approaches in vehicle application domain. In principle, evaluation of semantic alignment quality for the

SWC frameworks’ interface metamodels (represented using Ecore and OWL2 metamodeling languages)) using

metrics is substantial to guarantee that it meets the vehicle application domain requirements for cross-enterprise

semantic interoperability. The evaluation of semantic alignment quality metrics ensures end-user to better

understand whether a given ontology is suitable for his application domain. Therefore, as a part of the future work,

the presented contribution would focus on the empirical study on the semantic alignment quality achieved using

different metamodeling approaches to model SWC interfaces. This empirical study will be evaluated using

semantic aware metrics. Based on the measured values of the metrics, several practical implications can be

revealed that must be considered in perspective of future interface semantic integrations.

As it was presented in this research work, the ontologies are an especially useful formalism to specify vehicle

domain SWC interface metamodels. Moreover, a direct translation to a grammar avoids manual and informal

methodologies in the design phase of a new language. Getting inspired by WSDL and geared towards finding a

unified representation for service-based APIs of vehicle application SWCs for interoperability, the work presented

in this contribution will be extended in future in this direction. Therefore, the future work of the presented

contribution will focus on the set of transformation rules to convert the ontological information into an AntLR

grammar using Protégé and eclipse IDE or EMF supported tools, as seen in Fig. 77. Although, this perspective is

not completely in line with the objectives of the current research work, however, in future, the work would be

possibly extended to accomplish following objectives from applicability and usability enhancement perspective.

The workflow for mapping of interface ontology to grammar and subsequent code will include:

▪ Attribute Grammar (AG) extraction from ontologies w.r.t ontologies’ Concepts, Hierarchies, Relations

and Links [80].

Fig. 77. Overview of Workflow for Future Work.

▪ Implementation of an OWLAPI module for parsing the given interface ontologies, so that it can process

various ontology formats. The result that is expected from this module is an Ontology Object (OO), that

would contain all the information about the concepts (classes) and relations (hierarchies and properties)

extracted from the ontology description contained in the input ontology file.

▪ Use of an existing Code Generator module is a recursive function that traverses the interface OO internal

structure and visits all the Concepts and Relations (both hierarchical and non-hierarchical) to generate

code in languages like YAML, etc.

ontology

Concepts [Attributes,Name,Description,…]

Hierarchies[subclassof, superclassof]

Relations[is_a, sameAs, differentFrom…]

Links [min, max]

WorkFlow for Translation of Domain Ontology to Grammar

99

Based on the presented workflow for translation of API ontologies to corresponding AntLR grammar (in Fig. 77)

and literature guidance on WSDL and OWL-S standards in semantic Web domain [90], the current research scope

on semantic interoperability of SWCs’ API metamodels would be extended towards design of a more concrete,

generalized, standardized vehicle domain service API modeling template (including semantic and syntactic

specification) for supporting future vehicle domain complex and novel usecases on IoT solutions [79]. With this

perspective, the future progress of the presented contribution would also focus on:

▪ To widen the spectrum for semantic analysis to explore synergies in vehicle service APIs’ concepts for

semantic interoperability, coverage of more vehicle domain cross-enterprise SOA frameworks’ APIs

ontological models.

▪ To ease the accessing of vehicle services APIs semantic data in OWL2 ontology based knowledge graphs

for precise service discovery, mapping of the API ontologies (using OWL2) entities in future to widely

used OpenAPI standard template (using YAML/JSON schema language definition) in perspective of

vehicle domain IoT solutions for future complex automotive usecases [21][88][90].

100

Chapter 10 Appendix

TABLE XVI. SEMANTIC MAPPING OF INTERFACE FUNCTIONAL TRAITS BETWEEN CROSS-DOMAIN IDLS USING SWC METAMODELS

SPECIFICATIONS

TABLE XVII. SEMANTIC MAPPING OF FUNCTIONAL TRAITS BETWEEN CROSS-DOMAIN IDLS USING API CODE SPECIFICATIONS

Framework AUTOSAR
Adaptive

Franca
(including

Franca+)

Android ROS AUTOSAR Classic

Abstraction of

Software

Component

(SWC) Type

AdaptiveApplicati

onSwComponent

Component Service Node SwComponent type,

CompositionSwCompo

-nentType

Provider and

Required

Interface_

connection_

point

PPortPrototype

and

RPortPrototype

AnswerMePort,

AskMePort

Absent

Ports. Input

and output

messages

Absent

Ports.

Input and

output

messages

PPortPrototype ,

RPortPrototype and

PRPortPrototype

Operation

based Interface

ServiceInterface interface IBinder Service

(command

semantics)

PortInterface(ClientSer

ver Interface)

Software

Connectors

Absent delegate,

optional

Absent Absent.

Presence
of Master

node

AssemblySwConnector

,
DelegationSwConnecto

-r

Method

Invocation

methods (Client-

Server Operation,

fireAndForget)

Method call

(normal,

FireAndForget)

Method call

(OnServiceC

onnected)

Method

call

(Publish-

Subscribe,

Client

Server)

Client-Server

Operation

Data passing

Interface

ServiceInterface Broadcast ContentProv

id-

erInterface

using URI

Data (Data

semantics)

SenderReceiver,

NvData, Parameter

Interface

VariableData

Prototype

Events NotificationData

-element

JobSchedula

r

Absent DataElements

Framework Data Types
(Primitive and

Complex)

Interaction
types/Method_
behaviour

Types of Method
calls

Connection
/association of
interfaces

In/Out Argument
Types

AUTOSAR

Adaptive
Int,float,double,

String,Boolean,

Associate

Map,enum,Vector

Synchronous,

Asynchronous

Method (Client-

Server Operation:
normal,
FirenForget)

Event

Subscription

InArgumentDataPro

t-otype,
OutArgumentDataP
rotoype,
InOutArgumentDat
aP-rototype

Franca+ Int, float, double,

String, Array,

Bytebuffer,

enumeration,

Boolean, struct,

union, Map,constants

Synchronous,
Asynchronous

Publish-Subscribe
(firenForget),
Client-

Server(normal)

delegate provide,
delegate require,
optional provide,

optional require

in, out

101

SPARQL Queries for Semantic Mapping of Interface Ontologies (using

Protegé 5.5.0 ODE):

}

--

------OR Data-Passing:Sender Receiver

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foaf:<http://xmlns.org/foaf/0.1>

PREFIX f: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#>

PREFIX t: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-23#>

PREFIX k: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-49#>

SELECT ?subclass ?superclass

 WHERE { ?subclass (owl:equivalentClass|^owl:equivalentClass)* ?superclass .

filter (?subclass=<http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-

35#AR:SenderReceiverInterface>)

}

ROS Topic:Pub sub

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Android Int, long, float, char,

boolean,

double,String, List,

Charsequence

Synchronous,
Asynchronous

Client-Server binder
(ServiceConn-

ection)

in, out and inout

ROS Int, float, string,

constant, Arrays,

Boolean, time,

duration

Synchronous,
Asynchronous

Client-Server,
Publish-Subscribe

Topics
Subscription

rosparam set,
rosparam get

AUTOSAR
Classic

Int, float, String,

Byte Array, enum,

Boolean

Synchronous,
Asynchronous
(mostly)

Client-Server
Operation

PortInterface
Mapping,
DataType
mappings

InArgumentDataPro
t-otype,
OutArgumentDataP
rotoype,

InOutArgumentDat
aP-rototype

102

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foaf:<http://xmlns.org/foaf/0.1>

PREFIX f: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#>

PREFIX t: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-23#>

PREFIX k: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-49#>

PREFIX m: <http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#>

PREFIX p: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#>

SELECT ?subclass ?superclass

 WHERE { ?subclass (owl:equivalentClass|^owl:equivalentClass)* ?superclass .

filter (?subclass=<http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-

57#ROS:Topic>)

}

Instance Level Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foaf:<http://xmlns.org/foaf/0.1>

PREFIX f: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#>

PREFIX t: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-23#>

PREFIX k: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-49#>

PREFIX m: <http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#>

PREFIX p: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#>

SELECT DISTINCT ?individual ?subclass ?superclass

103

WHERE {

 ?individual (owl:sameAs|^owl:sameAs)

<http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#DM:FIRE-And-

FORGET> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

--

-------------UNION (Correct)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foaf:<http://xmlns.org/foaf/0.1>

PREFIX f: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#>

PREFIX t: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-23#>

PREFIX k: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-49#>

PREFIX m: <http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#>

PREFIX p: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#>

SELECT *

WHERE {

{

 ?individual (owl:sameAs|^owl:sameAs)

<http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#ROS:Pub_Sub> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

104

UNION

{

 ?individual (owl:sameAs|^owl:sameAs)

<http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-

35#FNORMAL_METHOD> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX foaf:<http://xmlns.org/foaf/0.1>

PREFIX f: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-35#>

PREFIX t: <http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-23#>

PREFIX k: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-49#>

PREFIX m: <http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#>

PREFIX p: <http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#>

SELECT *

WHERE {

{

 ?individual (owl:sameAs|^owl:sameAs)*

<http://www.semanticweb.org/uids2837/ontologies/2020/4/untitled-ontology-57#ROS:Pub_Sub> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

UNION

{

105

 ?individual (owl:sameAs|^owl:sameAs)*

<http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-

35#FNORMAL_METHOD> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

UNION

{

?individual (owl:sameAs|^owl:sameAs)*

<http://www.semanticweb.org/uids2837/ontologies/2020/2/untitled-ontology-

35#AR:Request_Response> .

?individual rdf:type ?subclass .

?subclass rdfs:subClassOf ?superclass .

}

}

///

Ontology Mediator: Mediator.owl ontology (RO) (using Protegé 5.5.0

ODE):

<!--

 ///

 //

 // Annotation properties

 //

 ///

 -->

 <! -- http://purl.org/dc/elements/1.1/creator -->

 <owl:AnnotationProperty rdf:about="http://purl.org/dc/elements/1.1/creator"/>

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#has_Relation -->

 <owl:AnnotationProperty rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#has_Relation">

 <dc:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">uids2837</dc:creator>

106

 <untitled-ontology-321: has_Relation

rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#ClientServerOperation"/>

 </owl:AnnotationProperty>

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#part_of -->

 <owl:AnnotationProperty rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#part_of">

 <dc:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">uids2837</dc:creator>

 <rdfs:comment rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#Composition_SwComponentType"/>

 </owl:AnnotationProperty>

<!--

 ///

 //

 // Classes

 //

 ///

 -->

 </owl:Class>

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:CommunicationConnectorsSubTypesEnum -->

 <owl:Class rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:CommunicationConnectorsSubTypesEnum">

 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#DM:Composition_SwComponentType"/>

 </owl:Class>

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:ComponentPortGroup -->

 <owl:Class rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:ComponentPortGroup">

 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#DM:PortPrototype"/>

 <dc:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">uids2837</dc:creator>

 </owl:Class>

107

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:Composition_SwComponentType -->

 <owl:Class rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:Composition_SwComponentType">

 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#DM:SWComponentType_spec"/>

 </owl:Class>

 <! -- http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-32#DM:DataProtottype

-->

 <owl:Class rdf:about="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-ontology-

32#DM:DataProtottype">

 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/uids2837/ontologies/2020/0/untitled-

ontology-32#DM:PortInterface"/>

 </owl:Class>

Ontology Mediator, DM

108

DM ontology: Port Interface

DM, Ontology used as Mediator

for semantic mapping of

heterogeneous frameworks’ API

concepts

109

DM, Ontology used as Mediator for

semantic mapping of

heterogeneous frameworks’ API

concepts (RPC based method

invocation Communication

Patterns)

DM, Ontology used as

Mediator for semantic

mapping of heterogeneous

frameworks’ service

component concepts

110

DM, Ontology used as Mediator for

semantic mapping of heterogeneous

frameworks’ API concepts (Event-

Driven/Publish-Subscribe

Communication Patterns)

111

References

[1] F.S. Parreiras, S. Staab, “Using Ontologies with UML class-based modeling: The TwoUse Approach”, Elsevier Journal
on Data and Knowledge Engineering 69(11), 1194-1207, 2010.

[2] F.S. Parreiras, “Marrying Model-Driven Engineering and Ontology Technologies: The TwoUse Approach”, in Wiley
Online Library on the Semantic Web and Model-Driven Engineering, pp. 44-59, 2012.

[3] S. Staab, T. Walter, G. Gröner, F.S. Parreiras, “Model Driven Engineering with Ontology Technologies”, In: Aßmann U.,
Bartho A., Wende C. (eds) Reasoning Web. Semantic Technologies for Software Engineering. Reasoning Web. Lecture
Notes in Computer Science, vol 6325. Springer, Berlin, Heidelberg, 2010.

[4] K. Arnarsdóttir, A.-J. Berre, A. Hahn,M. Missikoff, F. Taglino, “Semantic mapping: ontology-based vs. model-based
approach RoAlternative or complementary approaches? In: Proceedings of the Open Interop Workshop on Enterprise
Modelling and Ontologies for Interoperability, Luxembourg, 2006.

[5] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, W. Schwinger, M. Wimmer, “Lifting
Metamodels to Ontologies: A Step to the Semantic Integration of Modeling Languages,” In: Nierstrasz O., Whittle J.,
Harel D., Reggio G. (eds) MODELS, Springer Lecture Notes in Computer Science, vol 4199. pp. 528-542, 2006.

[6] C. Paniagua, J.Delsing and J.Eliasson, “Interoperability Mismatch Challenges in Heterogeneous SOA-based Systems”,
IEEE International Conference on Industrial Technology (ICIT), DOI:10.1109/ICIT.2019.8754991, 2019.

[7] S. De, M. Niklas, B. Rooney, J. Mottok, P. Brada, “Semantic Mapping of Component Framework Interface Ontologies
for Interoperability of Vehicle Applications”, Elsevier Procedia Computer Science. 170. 813-818.
10.1016/j.procs.2020.03.151, 2020.

[8] S. De, M. Niklas, B. Rooney, J. Mottok, P. Brada, “Towards Semantic model-to-model Mapping of Cross-Domain
Component Interfaces for Interoperability of Vehicle Applications An Approach towards Synergy Exploration”, In: CEUR
Workshop proceedings, ModComp, Vol. 2442, Munich Germany, 2019.

[9] S. Staab, T. Walter, F.S. Parreiras, “An ontology-based framework for domain-specific modeling”. Softw Syst Model 13,
83–108 https://doi.org/10.1007/s10270-012-0249-9, 2014.

[10] T. Pramsohler, S. Schenk, A. Barthels und U Baumgarten. “A layered interface-adaptation architecture for distributed
component-based systems”. In: Future Generation Computer Systems,Elsevier,Vol 47,June 2015,pp 113-126.

[11] B. Motik, P.F. Patel-Schneider, I. Horrocks, “ OWL 2 Web Ontology Language: Structural Specification and Functional-
Style Syntax.http://www.w3.org/TR/owl2-syntax/ Accessed Oct 2009.

[12] H. Elasri,,E.Elabbassi,S.Abderrahim and Muhammad, “Semantic integration of UML Class diagram with Semantic
Validation on Segments of Mapping”,ArXiv 2018.

[13] S. De, M. Niklas, J. Mottok and P. Brada, “Semantic Synergy Exploration in Interface Description Models of
Heterogeneus Vehicle Frameworks: Towards Automotive Meta Interface Description Model”, ARCS Workshop 2019;
32nd IEEE International Conference on Architecture of Computing Systems, Copenhagen, Denmark, 2019, pp. 1-8.

[14] S. De, M. Niklas, J. Mottok, and P. Brada, :”A Semantic Analysis of Interface Description Models of Heterogeneous
Vehicle Application Frameworks: An Approach Towards Synergy Exploration”. DOI: 10.5220/0007472503940401,In
Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2019), pages 394-401,ISBN: 978-989-758-358-2.

[15] S. De, M. Niklas, J. Mottok and P. Brada, “Model Transformation of Application Software Component from Classic to
Adaptive AUTOSAR: An Approach to Migrate Software Components”, 44th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA) Workshop, Prague, Czech Republic, August 29th - 31st, 2018.

[16] Birken, K., http://www.bmw.com “Franca User Guide”, “Franca Component Definition language Franca+ User guide”
“.Release 0.12.0.1, Eclipse Foundation, itemis AG, 2013. Release 0.13.0, BMW Group,2018.

[17] F. Jiménez, J. E. Naranjo, J. J. Anaya, F. García, A. Ponz, J. M. Armingol, Advanced Driver Assistance System for Road
Environments to Improve Safety and Efficiency, Transportation Research Procedia, vol. 14, pp.2245-2254, 2016.

[18] S. De, M. Niklas, B. Rooney, J. Mottok and P. Brada, “Towards Translation of Semantics of Automotive Interface
Description Models from Franca to AUTOSAR Frameworks : An Approach using Semantic Synergies”, 2019
International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 2019, pp. 1-6, doi:
10.23919/AE.2019.8867018.

[19] A free, open-source ontology editor and framework for building intelligent systems, https://protege.stanford.edu/ .

[20] R. Weinreich, and J. Sametinger, “Component models and component services: Concepts and principles”, G.T. Heineman
and W.T. Councill (eds.), Reading, MA: Addison-Wesley, 2001 pp. 33–48.

[21] Shearer, Rob. “Structured Ontology Format”, 2007.

[22] A. Goknil, J. Suryadevara, MA. Peraldi-Frati, F. Mallet: “Analysis Support for TADL2 Timing Constraints on EAST-
ADL Models. In: Drira K. (eds) Software Architecture”. ECSA 2013. Lecture Notes in Computer Science, vol 7957.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39031-9_8, 2013.

[23] Object Management Group (OMG): Ontology Definition Metamodel. Version 1.1, http://www.omg.org/spec/ODM/1.1
(2014).

[24] S. Brockmans, R. Volz, A. Eberhart, P. Löffler,”Visual Modeling of OWL DL Ontologies Using UML”, In: McIlraith
S.A., Plexousakis D., van Harmelen F. (eds) The Semantic Web – ISWC. Lecture Notes in Computer Science, vol 3298.
Springer, Berlin, Heidelberg, 2004.

[25] T. Rahmani, D. Oberle, M. Dahms : “An Adjustable Transformation from OWL to Ecore”. In: Model Driven Engineering
Languages and Systems - 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings,
Part II. Volume 6395 of Lecture Notes in Computer Science., Springer.243-257, 2010.

[26] OWLizer. http://st.inf.tu-dresden.de/owlizer/ (2016).

[27] T.Wang, S.Truptil and F.Benaben, “An automatic model-to-model mapping and transformation methodology to serve
model-based systems engineering”, Information Systems and EBusiness Management, Springer Verlag, 2017, 15 (2, SI),
pp.323-376.

https://protege.stanford.edu/
https://doi.org/10.1007/978-3-642-39031-9_8
http://st.inf.tu-dresden.de/owlizer/

112

[28] D.Di. Ruscio, D. Wagelaar, L. Iovino and A.Pierantonio “Translational Semantics of a co-evolution Specific language
with the EMF Transformation Virtual Machine”, ICMT 2012, pp 71-89.

[29] D. Bálek, F. Plášil: “Software Connectors and Their Role in Component Deployment”. (eds) New Developments in
Distributed Applications and Interoperable Systems.DAIS 2001. IFIP International Federation for Information Processing, vol

70. Springer, Boston, MA, 2001.

[30] H. Bruyninckx, N. Hochgeschwender, L. Gherardi, M. Klotzbücher, G.Kraetzschmar, D. Brugali, "The BRICS
Component Model: a Modelbased Development Paradigm for Complex Robotics Software Systems", Annual ACM
Symposium on Applied Computing (SAC).

[31] A. G. Parada and L. Brisolara, “A Model Driven Approach for Android Application Development”, Brazilian Symposium
on Computing System Engineering, 2012.

[32] S. Chris, T. Martin and V. Markus: “Model-based Middleware for Embedded Systems”. INFORMATIK 2004 - Informatik
verbindet, Band 2, Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Ulm, 20.-24. September 2004.

[33] S. Jafar, B. Chhaya, U. Durak: “OWL Ontology to Ecore Metamodel Transformation for Designing a Domain Specific
Language to Develop Aviation Scenarios”, Mod4Sim '17, pp.1-11, VA, USA (2017).

[34] G.Hillairet: Eclipse Modeling for Semantic Web. https://github.com/ghillairet/emf4sw,
https://www.eclipse.org/atl/usecases/ODMImplementation/. (2007).

[35] Domingue J., Fensel D., & Roman, D.: Semantic Web Services with the Web Service Modeling Ontology (WSMO), pp.7-
9, (2005).

[36] N., Lê & Y. Feng, R. Seungmin and K. Rajaraman: “Enabling Interoperability across Heterogeneous Semantic Web
Services with OWL-S Based Mediation”. Proceedings - 2011 IEEE Asia-Pacific Services Computing Conference, APSCC
2011. 471-476. 10.1109/APSCC.2011.78. (2011).

[37] H. Blom, D. Chen,H. Kaijser, H. Lönn,Y. Papadopoulos,M.O. Reiser, R.T. Kolagiri, and S.Tucci: “EAST-ADL:An
Architecture Description Language for Automotive Software-intensive Systems in the Light of Recent use and
Research”,IJSDA,vol.5,no. 3, pp-1-20, 2016.

[38] I. Crnkovic, M. Larsson, “Building Reliable Component-Based Software Systems”, First Edition, ARTEC HOUSE,
INC.,2002.

[39] C. Szyperski, D. Gruntz and S. Murer, “ Component Software Beyond Object-Oriented Programming”, Second Edition,
ACM press, 2002.

[40] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and K.Wallnau: “Technical
concepts of component-based software engineering”, In:Technical Report CMU/SEI-2000-TR-008, Carnegie Mellon
Software Engineering Institute, Volume II, (pp. 26-29), 2000.

[41] AUTOSAR, “Specification of Manifest”, AUTOSAR AP Release 18-10, 2017.http://www.autosar.org.

[42] AUTOSAR, http://www.autosar.org, “Integration of Franca IDL SWC Descriptions”, AUTOSAR Release 16-
11,November 2016.

[43] AUTOSAR, http://www.autosar.org, “SWC Template”, “Virtual Function Bus”,AUTOSAR CP Release 4.3.0. May, 2016.

[44] N. Medvidovic and R.N. Taylor: “A Classification and Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering”, 2000, 26, 70-93.

[45] I.Crnkovic, S.Sentilles, A.Vulgarakis and M.Chaudron, “A Classification Framework for Component Models”, IEEE
Transactions on Software Engineering 37 (5), 593-615.

[46] C. Szyperski, D. Gruntz and S. Murer, “ Component Software Beyond Object-Oriented Programming”, Second Edition,
ACM press,2002.

[47] S. Brockmans, P. Haase and R. Studer: “A MOF-based Metamodel and UML Syntax for Networked Ontologies”, 2006.

[48] N. Nassar, T. Arendt and G. Taentzer: “Deriving Model Metrics from Meta Models”, Conference:
http://dblp.org/rec/conf/modellierung/NassarAT16 ,Volume: Vol P-254 (2016).

[49] J.R Williams, A. Zolotas, N.D. Matragkas, L.M. Rose, D.S. Kolovos, R.F. Paige, F.A. Polack: “What do metamodels
really look like” Eessmod@ Models 1078, 55-60 (2013).

[50] J. Di Rocco, D. Di Ruscio, L. Iovino, A. Pierantonio: “Mining Metrics for Understanding Metamodel Characteristics”, In:
Proceedings of the 6th International Workshop on Modeling in Software Engineering. pp. 55{60. MiSE 2014, ACM, New
York, NY, USA (2014).

[51] D. Bork: “Metamodel-Based Analysis of Domain-Specific Conceptual Modeling Methods. In: Buchmann R., Karagiannis
D., Kirikova M. (eds) The Practice of Enterprise Modeling. PoEM 2018. Lecture Notes in Business Information
Processing, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-02302-7_11, (2018).

[52] J. Mylopoulos: “Conceptual modelling and Telos”,In: Loucopoulos, P., Zicari, R. (eds.) Conceptual Modelling, Databases,
and CASE: an Integrated View of Information System Development, New York: John Wiley & Sons. pp. 49-68 (1992).

[53] S. Tartir, I. Arpinar and A. Sheth: “Ontological Evaluation and Validation. 10.1007/978-90-481-8847-5_5,(2010).

[54] H. Alani, C. Brewster and N. Shadbolt: “Ranking Ontologies with AKTiveRank”, In: 5th International Semantic Web
Conference. November, 5-9, 2006.

[55] A. Lozano-Tello and A. Gomez-Perez: “ONTOMETRIC: a method to choose the appropriate ontology”, Journal of
Database Management 2004, 15, 1-18.

[56] N. Guarino, and C. Welty: “An Overview of OntoClean”, Staab, S. and Studer, R. eds. Handbook on Ontologies, Springer
Verlag, 2004, 151-159.

[57] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann: “Modelling Ontology Evaluation and Validation”, In proceedings
of the 2006 European Semantic Web Conference, 2006.

[58] E. Paslaru, B. Simperl, C. Tempich, Y. Sure: “ONTOCOM: A Cost Estimation Model for Ontology Engineering”, In:
Proceedings of fifth International Semantic Web Conference (ISWC 2006), Athens, GA, USA, 2006.

[59] T. Bosch and B. Mathiak, "XSLT transformation generating OWL ontologies automatically based on XML Schemas,"
2011 International Conference for Internet Technology and Secured Transactions, Abu Dhabi, 2011, pp. 660-667.

[60] P.F. Patel-Schneider, and J. Simeon , “The Yin/Yang web: XML syntax and RDF semantics”. in 11th International World
Wide Web Conference (WWW2002),pp.443–453, 2002.

http://dblp.org/rec/conf/modellierung/NassarAT16
https://doi.org/10.1007/978-3-030-02302-7_11

113

[61] J. Ferreira, “VCO-vehicle corporate ontology”, in 2nd Conferencia Ibérica de Sistemas e Tecnologias de
Informacia,pp.21-23, Porto, Potugal, 2007.

[62] F.Cruz Isabel, H. Xiao, and F. Hsu,“An Ontology-based Framework for XML Semantic Integration”, in Database
Engineering and Applications Symposium. IDEAS'04. Proceedings. International. IEEE, pp. 217—226, 2004.

[63] C. Tsinaraki and S. Christodoulaki, “XS2OWL: A Formal Model and a System for enabling XML Schema Applications
to interoperate with OWLDL Domain Knowledge and Semantic Web Tools”, in International DELOS Conference,pp.
124- 136, Pisa, Italy, 2007.

[64] H. Afzal, M. Waqas, and T. Naz, “OWLMap: Fully Automatic Mapping of Ontology into Relational Database Schema”,
International Journal of Advanced Computer Science and Applications , Vol. 7(11), 2016.

[65] Top Braid composer, https://www.topquadrant.com/ .

[66] N. Noy, D. McGuinness and P.Hayes, “Semantic Integration and Interoperability Using RDF and OWL”, 2005.
www.w3.org.

[67] P. Heyvaert, A. Dimou and A. Herregodts and Verborgh, R. Verborgh, D. Schuurman, E. Mannens and R. V. d. Walle1 ,

“RMLEditor: A Graph-based Mapping Editor for Linked Data Mappings”,pp. 709-723. DOI:10.1007/978-3-319-34129-3_43, 2016.

[68] T. Pramsohler and U. Baumgarten, “Adaptation of automotive infotainment interfaces using static and dynamic adapters”, In: Horbach,
M. (Hrsg.), INFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt. Bonn: Gesellschaft für Informatik e.V..

(S. 2488-2501), 2013.

[69] C. Berger and M. Dukaczewski, “Comparison of Architectural Design Decisions for Resource-Constrained Self-Driving Cars-A Multiple

Case-Study”, in Gesellschaft for Informatik 2014.

[70] H. Benouda, R. Essbai, M. Azizi and M. Moussaoui, “ Modeling and Code Generation of Android Application Using Acelo”, International

Journal of Software Engineering and Its Applications vol. 10 (3), pp. 83-94, 2016.

[71] A.Shakhimardanov, N.Hochgeschwender, and G. K. Kraetzschmar, “Component Models in Robotics Software”. In Proceedings of the

Performance Metrics for Intelligent Systems Workshop (PerMIS 2010). Baltimore, US.A., 2010.

[72] Dhama, “Interface Definition Languages”, EB white paper, May 2017, http://www.elektrobit.com.

[73] M. Slee, A. Agarwal and M. Kwiatkowski, “Thrift: Scalable Cross-language Services Implementation”, Facebook white paper 5, 156

university ave, CA, April 2007.

[74] Documenting Your Existing APIs: API Documentation Made Easy with OpenAPI & Swagger,

https://swagger.io/resources/articles/documenting-apis-with-swagger/ .

[75] RobMoSys,“Block-Port.Connector”, RobMoSys Wiki, http://www.robmosys.eu. June 2017.

[76] D. Vrandecic, and Y. Sure, “How to design better ontolo-gy metrics. In Proceedings of the 4th European Semantic Web Conference”

(ESWC’07) 4519: 311–325, Springer, 2007.

[77] Y. Hu and I. Neamtiu, "Static detection of event-based races in android apps", Proceedings of the Twenty- Third International Conference

on Architectural Support for Programming Languages and Operating Systems ser. ASPLOS ’18, pp. 257-270, 2018.

[78] Callbacks and Spinning, www.ros.org .

[79] A. Ojamaa, HM. Haav and J. Penjam, “Semi-automated Generation of DSL Meta Models from Formal Domain Ontologies”, In:

Bellatreche L., Manolopoulos Y. (eds) Model and Data Engineering. Lecture Notes in Computer Science, vol 9344. Springer, Cham.

https://doi.org/10.1007/978-3-319-23781-7_1 , 2015.

[80] Fonseca, J.M.S. & Pereira, Maria & Rangel Henriques, Pedro, “Converting ontologies into DSLs”, In: OpenAccess Series in Informatics,

pp. 85-92. DOI: 10.4230/OASIcs.SLATE.2014.85, 2014.

[81] C. Hu, X. Zhang, Q. Zhao and C. Zhao, "Ontology-Based Semantic Integration Method for Domain-Specific Scientific Data," Eighth
ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD

2007), Qingdao, pp. 772-777, doi: 10.1109/SNPD.2007.431, 2007.

[82] J. Cardoso, “Approaches to Developing Semantic Web Services”. World Academy of Science, Engineering and Technology, Open

Science Index 14, International Journal of Computer and Information Engineering, 2(2), 611 – 624, 2006.

[83] K. Furdík, M. Tomášek and J. Hreno, “A WSMO-based Framework Enabling Semantic Interoperability in e-Government Solutions”,

Acta Polytechnica Hungarica,vol.8, No.2, 2011.

[84] Z. Vales and P. Brada, "Service API Modeling and Comparison: A Technology-Independent Approach," 46th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 2020, pp. 158-161, doi:

10.1109/SEAA51224.2020.00034, 2020.

[85] SWAGGER,”OpenAPI Specification”, Version 3.0.3, https://swagger.io/specification/ .

[86] Proposal: Expand OpenAPI to include RPC APIs,”OpenAPI Specification”, https://github.com/OAI/OpenAPI-Specification/issues/801,

2016.

[87] E. Kilgarriff, B. Sapkota, L. Vasiliu and D. Aiken, "XML to WSML adapter Implementation", Proceedings of the 2nd WSMO

Implementation Workshop, 2005.

[88] P. Espinoza-Arias, Garijo D. and O. Corcho , “Mapping the Web Ontology Language to the OpenAPI Specification”, In: Advances in

Conceptual Modeling. ER 2020, vol 12584. Springer, Cham, 2020.

[89] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A tool for semi-automatically annotating semantic web services,”in Proceedings of

the Third International Semantic Web Conference (ISWC), 2004, pp. 320–334.

[90] S. Schwichtenberg, C. Gerth and G. Engels, "From Open API to Semantic Specifications and Code Adapters," 2017 IEEE International

Conference on Web Services (ICWS), USA, 2017, pp. 484-491.

https://www.topquadrant.com/
http://www.w3.org/
http://www.elektrobit.com/
https://swagger.io/resources/articles/documenting-apis-with-swagger/
http://www.robmosys.eu/
http://www.ros.org/
https://doi.org/10.1007/978-3-319-23781-7_1
https://swagger.io/specification/
https://github.com/OAI/OpenAPI-Specification/issues/801

	Part I Introduction
	Chapter 1 Research Goals and Contributions
	1.1 Research Questions
	1.2 Overview of Contributions
	1.3 Report Structure

	Chapter 2 Background
	2.1 Role of Interfaces in Interoperability of Vehicle Applications
	2.2 Fundamentals of Interfaces at Vehicle Software Component Level
	2.2.1 Overview of SWC Interfaces as Contracts
	2.2.2 Vehicle Application SWC Interfaces Specifications at different Levels
	2.2.2.1 Semantic Level
	2.2.2.2 Semantics of Component Interface Behavioral Constraints: Timing Constraints
	2.2.2.3 Semantics of Component Interface at Interaction Level/Composition Level
	2.2.2.4 Syntactic Level

	2.3 Interface Metamodel -The Conceptual Building Block
	2.3.1 MDE based Ecore Metamodel
	2.3.2 Ontology based OWL2 Metamodel
	2.3.3 Ontology Definition Metamodel (ODM)

	2.4 Event Chain Timing Behavior of Software Components’ Interface Models
	2.4.1 AUTOSAR SWC Framework Event Chain Timing Analysis: VFB Timing View
	2.4.2 Franca SWC Framework Event Chain Timing Analysis
	2.4.3 Android SWC Framework Event Chain Timing Analysis
	2.4.4 ROS2 SWC Framework Event Chain Timing Analysis

	Chapter 3 Related Works
	3.1 Linking of Heterogeneous and Distributed Data at Semantic Level
	3.2 Metamodel-based Modeling of SWC’s Interface Models
	3.3 Semantic Mapping of Concepts of Interface Metamodels of SWC Frameworks for Interoperability
	3.4 Unified API Description/Specification Language for Vehicle Domain Application SWC Frameworks
	3.5 MDE Vs Ontology Approach for Domain-Specific Interface Metamodels Semantic Alignments: Alternative or Complementary
	3.6 Evaluation of Interface Metamodels Semantic Alignment Quality for Vehicle Application SWC Frameworks
	3.7 MDE and Ontology Modeling Approaches to tackle Semantic Interoperability between Vehicle Component Framework Interfaces
	3.7.1.1 Model Driven Engineering (MDE): The Rationale
	3.7.1.2 Ontology Technology: The Rationale

	3.8 Comparison of Author’s Contribution to the State of the Art

	Part II Analysis Level
	Chapter 4 Survey of Vehicle Domain Interface Description Languages (IDLs): Identification of Semantic Commonalities
	4.1 Semantic mapping of Component Framework IDLs: The Rationale
	4.2 Semantic Comparison of Vehicle Domain Cross-enterprise Platforms Component Frameworks IDLs
	The Approach to Semantic Mapping of Vehicle Domain IDLs
	4.2.1 Demonstration of the Approach using Vehicle Domain IDL Alternatives
	4.2.1.1 Automotive Domain: AUTOSAR Adaptive Framework IDL: ARXML
	Infotainment Domain: Franca (and Franca+) Framework IDL: FIDL
	4.2.1.2 Robotics Domain: ROS Framework IDL: MDL and SDL
	Telematics Domain: Android Application Framework: AIDL
	4.2.1.3 Automotive Domain: AUTOSAR Classic IDL: ARXML
	4.2.1.4 Infotainment Domain: Google Protocol Buffers (Protobuf) IDL
	4.2.1.5 Infotainment Domain: Apache Thrift IDL
	4.2.1.6 Cloud Domain: Open API Specification

	4.2.2 Summarized Semantic Comparison of Vehicle Domain IDLs

	4.3 Technology and Platform Agnostic Specification for Service API Models for Vehicle Domain Heterogeneous SWC Frameworks
	4.3.1 Limitations and Solution Proposal

	Chapter 5 Semantic Comparison of Vehicle Component Frameworks’ Interface Metamodels
	5.1 Application Component Framework Interface Metamodels: Alternatives
	5.1.1 Automotive Knowledge Domain: AUTOSAR Adaptive SWC Framework
	5.1.2 Infotainment Knowledge Domain: Franca (including Franca+) SWC Framework
	5.1.3 Robotics Knowledge Domain: ROS2 Application Framework
	5.1.4 Connectivity -Telematics Knowledge Domain: Android SWC Framework
	5.1.5 Automotive Domain: AUTOSAR Classic Framework

	5.2 Summarized Semantic Mapping of Component Frameworks Interface Metamodels

	Part III Design & Implementation Level (WIP)
	Chapter 6 Design Approach to Semantic Alignment of Component Frameworks Interface Meta-Models
	6.1 MDE based Domain Specific Interface Metamodel Semantic Alignment Approach: An Overview
	6.1.1 Ecore: The Rationale
	6.1.2 Semantic Mapping of Component Framework Interface Ecore Metamodels
	6.1.3 Challenges of MDE based Semantic Mapping Approach for Interface Ecore Metamodels

	6.2 Possible Solution to Challenges of MDE based Semantic Mapping Approach: Extension of Interface Metamodels to Ontologies for Semantic Alignment
	6.3 Strengths using Ontology based Approach: In contrast to MDE

	Chapter 7 Extension of MDE based Modeling Approach to Ontologies for Evolution of Domain Unified Interface Ontology
	7.1.1 Overview of Methodology for Metamodel Transformations between Ecore and OWL
	7.1.2 M3 Transformation Bridge: Mapping Component Framework Interface Metamodels constructs from Ecore to OWL
	7.2 Implementation of M3 Transformation Bridge
	7.2.1 Step1: Translation of Ecore to XML Schema (XSD)
	7.2.2 Step2: Schematic Translation from XSD to RDFS

	7.3 Platform-agnostic, Mediator Centric Approach towards Exploration of Semantic Synergies between Component Framework Interface Ontologies
	7.3.1 Ontology-based Interface Semantic Alignment and Integration using a Platform-independent Reference Ontology: An Algorithmic Representation of Fundamental Steps
	7.3.1.1 Domain Interface Ontology Building: Methodology for Semantic Integration

	7.4 Brief Overview of the Ontology Development Environment (ODE)

	Part IV Finale
	Chapter 8 Conclusion
	Chapter 9 Future Work
	Chapter 10 Appendix

	References

