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Abstract
Symmetry occurs very commonly in real world objects as well as in artificially created
geometric models. The knowledge about symmetry of a given object can be very useful in
many applications in computer graphics and geometry processing, such as compression,
object alignment, symmetric editing or completion of partial objects. In order to use
the symmetry of any object in any given application, it first needs to be found. In this
work, we provide some background about symmetry in general and about different types
of symmetry, mainly in 3D objects. Then we focus on the task of automatic symmetry
detection in 3D objects and we also describe the link between symmetry detection and the
problem of registration. Most importantly, we present our own contribution in these fields.
First, we show a new method of evaluating consensus in RANSAC surface registration
together with a thorough analysis of various distance metrics for rigid transformations
that can be used in this new approach. Afterwards, we provide an analysis of different
representations of the space of planes in context of symmetry plane detection. At last, we
propose a new, robust, fast and flexible method for symmetry plane detection based on a
novel differentiable symmetry measure.
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Chapter 1

Introduction

Symmetry is a potentially very useful feature which many real world objects
exhibit. An object has symmetry if there is an operation or transformation
(rotation, reflection, etc.) that maps the object onto itself, i.e. the object is
invariant under the given transformation. The information about symmetry
is instrumental in a variety of applications. It can be used for object align-
ment [77] where an object is properly aligned with the 𝑥, 𝑦, 𝑧 axes using the
symmetry information, or in compression where some parts of the object can
be left out to lower the data size and then filled in during decompression
using their symmetric counterparts [88]. Another application is symmetrical
editing [60] which allows editing a single part of the object while the other
symmetric parts are being edited in the same way automatically. Symmetry
can also be used to reconstruct incomplete objects [97, 91, 61, 85, 89, 90] by
filling the missing parts using the information from the symmetric counter-
parts. However, for any given geometric object, the symmetry information
is not known in advance and needs to be first extracted which means that
the symmetry first needs to be detected, ideally automatically by a com-
puter. This is the task on which we focus in this work - automatic symmetry
detection, i.e. creating algorithms that can be used to automatically find
symmetry in geometric objects or models.

Symmetry detection in general is not an easy task. There is never perfect
symmetry in real world objects. They only exhibit approximate symmetry
and there is no strict way for a computer to decide whether some transforma-
tion captures an approximate symmetry or not. When detecting approximate
symmetries the goal is mostly to find symmetries that appear natural to a
human observer. See, for example, the two human faces in Figure 1.1. The
one on the right was created by simply mirroring the one on the left and we
can see that these two objects are quite similar so there is obviously some
form of symmetry w.r.t. the mirroring operation. But we can also see that
the symmetry is certainly not perfect, as can be expected since it is a 3D
scan of a real human face and human faces never have perfect symmetry.

Although there are quite many methods for symmetry detection in geo-
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Figure 1.1: A 3D scanned human face [15] and its mirrored version.

metric data, there are still some challenges and a lot of room for improvement
in the field of symmetry detection. Several different types of symmetry exist
and geometric objects can have varying shapes and other properties. They
can also be damaged in different ways, e.g. by noise or by having some parts
missing. No method exists that could reliably and efficiently find symmetries
of all the different types in any object. Even the methods that specialize in
detecting symmetries of certain types, or a single type, can fail on certain
types of objects or objects damaged in certain ways. Some methods only
detect strong or perfect symmetries, some only work with specific object
representations and some are simply not very fast. The main goal of this
work is to enrich the field of symmetry detection by designing new more
reliable and efficient methods or improving the existing ones to tackle the
challenges of detecting weak, partial or more general symmetries efficiently
and reliably and to make symmetry detection an easier task to solve in
general. In some parts of this text we will also talk about the problem of
registration which is strongly related to symmetry detection as it can be
simply described as the problem of finding symmetry between two objects.
Therefore, the registration problem also fits quite well into the topic of sym-
metry detection.

The rest of this text is organized as follows. Chapter 2 provides necessary
background including definition of symmetry in geometric data and descrip-
tion of different symmetry types. Chapter 3 describes previous work in the
field of symmetry detection and briefly in registration. In Chapters 4, 5 and
6 we present our own contribution to the fields of surface registration and
relfectional symmetry (symmetry plane) detection in 3D objects including a
whole new symmetry plane detection method. Finally, Chapter 7 provides
conclusion and describes our intended future work in symmetry detection.
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Chapter 2

Background

In this chapter we provide some background by defining symmetry in Eu-
clidean data and describing different symmetry types in the 3D space. Then
we also describe the task of registration which is strongly related to symme-
try detection and we mention different representations of 3D objects.

2.1 Object and Symmetry Definition
We define a general object in an arbitrary Euclidean space 𝐸𝑑, where 𝑑 is a
positive whole number, in the following way.
Definition 1 A set of points 𝑋 is an object in 𝐸𝑑 if 𝑋 ⊂ 𝐸𝑑 and 𝑋 ̸= ∅.
This means that we consider any non-empty set of points in 𝐸𝑑 an object in
𝐸𝑑, regardless of whether the set is discrete or continuous. For example, an
object in 𝐸2 can be a 2D line or curve or any discrete set of 2D points. An
object in 𝐸3 can be a 3D line, 3D curve, a plane, a surface or a discrete set
of 3D points.

It seems unclear whether a unique mathematical definition of symmetry
is possible and whether all types of symmetry can be covered by a single
definition [75]. However, symmetry of a geometric entity can be described as
an invariance under a given geometric transformation. Therefore, for sym-
metry in 𝑑-dimensional Euclidean space we state a definition based on the
one proposed in [75]:
Definition 2 Having a function 𝐹 (x),x ∈ 𝐸𝑑 and a transformation 𝑇 (x) =
y, x,y ∈ 𝐸𝑑 then 𝐹 has symmetry w.r.t. the transformation 𝑇 if 𝐹 (𝑇 (x)) =
𝐹 (x) for all x ∈ 𝐸𝑑.

To make this definition applicable to objects, considering an object 𝑋 ⊂
𝐸𝑑, we can simply set 𝐹 as

𝐹 (x) =

⎧⎨⎩1 x ∈ 𝑋

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (2.1)

3



Then we can alternatively define symmetry of an object in an arbitrary
Euclidean space as follows.

Definition 3 Given an object 𝑋 ⊂ 𝐸𝑑, 𝑋 ̸= ∅ and a transformation
𝑇 (x) = y, x,y ∈ 𝐸𝑑 the object is symmetrical w.r.t. the transformation
𝑇 if 𝑇 (x) ∈ 𝑋 for any x ∈ 𝑋.

In other words, 𝑇 represents symmetry of 𝑋 if, after applying 𝑇 on any
point of 𝑋, the point ends up in any other point of 𝑋 or in itself, meaning
the transformation maps the object onto itself. When 𝐹 is set as in Equation
(2.1) this definition is equivalent to the first and more general one.

This work elaborates on the task of automatic computer symmetry de-
tection. Although the definition of symmetry in the previous section applies
for objects in a Euclidean space of arbitrary dimension, we mostly focus on
detecting symmetries in 3D objects. Therefore, unless stated otherwise, in
the rest of this work we only consider symmetries and objects in 𝐸3.

2.2 Symmetry Types
Symmetries in 3D objects can be classified based on different criteria some
of which are described in this section.

2.2.1 Perfect and Approximate Symmetry
The symmetry definition in Section 2.1 is a definition of perfect symmetry
where each point of the object is mapped exactly onto another point. How-
ever, perfect symmetry never occurs in real world objects and is quite rare
even in artificially created digital models. In practice, objects only exhibit
approximate symmetry where no transformation exists such that it maps
the object onto itself perfectly but there might be transformations that map
some portion of the object points ”considerably close” to other points of the
object. Therefore, when talking about symmetry detection in 3D objects, we
usually mean detection of approximate symmetries, not perfect ones. Obvi-
ously, for approximate symmetries the conditions in the symmetry definition
need to be relaxed in some way but no strict definition of approximate sym-
metry can be formed which in turn means that there is no exact way of
deciding whether a transformation captures some approximate symmetry or
not. This is what generally makes approximate symmetry detection quite
a difficult task because we do not have an objective way for a computer
to decide what is still perceived as approximate symmetry and what is not
symmetry anymore. We will use the term strong symmetry for approximate
symmetry that is close to perfect symmetry, and the term weak symmetry
for symmetry farther from perfect.
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2.2.2 Global and Local Symmetry
If an object has symmetry as a whole, it is called global symmetry. However,
very often there is only symmetry in some parts of the object, i.e. a trans-
formation exists that maps some part(s) of the object onto another part(s),
which is called local symmetry. There is again no strict definition of local
symmetry and both global and local symmetries are usually approximate in
practice.

2.2.3 Symmetry Type According to Transformation
Group

When detecting symmetries in 3D objects we are looking for transformations
that represent these symmetries and these transformations always belong to
a certain transformation group. Depending on the transformation group the
symmetries in 𝐸3 can be classified into several types.

Reflectional Symmetry

Reflectional symmetries (sometimes called mirror symmetries or bilateral
symmetries) are represented by transformations from a group of reflection
transformations, i.e. transformations that perform reflection over an arbi-
trary plane. A reflectional symmetry is usually and most easily described by
a single plane of reflection. A plane that captures reflectional symmetry is
called a symmetry plane. This type of symmetry is probably the most of-
ten occurring symmetry type in both real world and artificial objects which
makes reliable methods for detecting symmetry planes in 3D objects quite
desirable. For examples of reflectional symmetries see Figure 2.1. The ob-
jects are all rotated so that the symmetry plane, which is marked by the red
line, is perpendicular to the image plane. Reflecting these objects over their
symmetry planes would approximately map them onto themselves, there-
fore, these planes represent their approximate reflectional symmetries. The
objects in Figure 1.1 are also examples of reflectional symmetry.

Figure 2.1: Examples of reflectional symmetry (figures taken from [42]).
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Rotational Symmetry

Rotational symmetry is represented by a transformation that performs rota-
tion by a given angle around a given axis. Such symmetry can be described
by a rotation axis and a scalar value which defines the rotation angle. A
special type of rotational symmetry is circular symmetry which can be rep-
resented only by the rotation axis where the symmetry holds for any rotation
angle. A single circular symmetry basically represents infinitely many rota-
tional symmetries. Some examples of approximate rotational and circular
symmetries are in Figure 2.2. The rotation axis is marked by the blue line
for each object.

Figure 2.2: Examples of approximate rotational symmetry (figure taken from
[89]).

Rigid Symmetry

Rigid symmetries are one of the most general symmetries that commonly oc-
cur in geometric models and they are represented by rigid transformations,
i.e combinations of rotations and translations. Rigid symmetry can be de-
scribed by a rotation matrix R and a translation vector t. Often symmetry
is considered rigid even if the transformation contains reflection and in such
a case R can be either a rotation matrix or a product of a rotation matrix
and a reflection matrix. When talking about rigid symmetries in 3D objects
we often, but not always, consider local symmetries. Example of an object
with local rigid symmetries can be seen in Figure 2.3, the symmetric parts
are in the frames of the same color.

Other Symmetry Types

There are also other symmetry types such as point symmetry, which is rep-
resented by a reflection over a single point, or translational symmetry repre-
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Figure 2.3: Example of an object with local approximate rigid symmetries
(figure taken from [54]).

sented only by a translation. We can also consider more general symmetries
represented by rigid transformations with additional uniform scaling or by
general affine transformations. We could even have symmetries described by
elastic transformations that can bend and stretch the object differently in
different places or by transformations that perform reflection over an arbi-
trary surface or curve. If we do not put any constraints on the transformation
type then we can basically for any object construct a transformation that
captures its symmetry. These very general transformations are, however,
very difficult to represent and have many degrees of freedom. Therefore,
detecting such general symmetries is very hard.

Symmetries can be further classified as either extrinsic or intrinsic. Ex-
trinsic symmetries are represented by geometric transformations in the Eu-
clidean space. Until now we were only talking about extrinsic symmetries
and all the symmetry types we have mentioned are types of extrinsic sym-
metry. Intrinsic symmetry is rather specific and does not really satisfy our
definition of symmetry, but, just for completeness, we mention it anyway.
Intrinsic symmetries are specific to surfaces and are described by intrinsic
transformations on the surface rather than extrinsic transformations in the
Euclidean space in which the surface is embedded. Usually intrinsic symme-
tries are defined as transformations that maintain geodetic distances between
all points on the surface. Such symmetries are invariant under deformation of
the surface, such as bending or folding, as long as the deformation does not
change the geodetic distances of any points. There are several methods that
are somewhat capable of detecting intrinsic symmetries, e.g. [99, 69, 100],
however, this area is distinct from the focus of our research and by finding
a good intrinsic symmetry, we do not necessarily get a meaningful extrinsic
symmetry of the desired type. Also, intrinsic symmetries are represented by
point-to-point or part-to-part correspondences which are rather impractical
representations for extrinsic symmetries, which can usually be represented
by simple geometric transformations. Therefore, in the rest of this work we
will not be considering intrinsic symmetries in any way.
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2.3 Registration
Registration is a field strongly related to symmetry detection. Having two
input objects, the task of registration is to find a transformation that maps
one of the two objects onto the other one. So, only instead of mapping an ob-
ject onto itself we are trying to map an object onto another object, therefore,
registration can basically be understood as detecting symmetry between two
objects. Another way of seeing this is that symmetry detection is a special
case of registration where we are registering an object onto itself (the two
input objects are the same), i.e. that registration is a more general extension
of the symmetry detection task. Either way, symmetry detection and reg-
istration have very much in common and many principles and approaches
used in registration methods can be also used in symmetry detection and
vice versa.

Therefore, given the relation between these two areas, we are also going
to consider registration in some parts of this work. Specifically, we will talk
about rigid surface registration which is a task of finding a rigid transforma-
tion that maps a 3D surface onto a different 3D surface in such a way that
some portion of the two surfaces overlaps. This is usually used for complet-
ing objects from partial 3D scans. An example of a correct registration can
be seen in Figure 2.4.

(a) First surface (b) Second surface (c) Correct registration

Figure 2.4: Example of a correct registration - (c) of the two surfaces - (a),
(b) (figure taken from [37]).

2.4 Object And Other Data Representations
When trying to detect symmetries in 3D objects, we first need to define
what representation of an object will be on the input. Throughout this text,
we will work with two different representations of general 3D objects - a
discrete point set (point cloud) and a triangle mesh. Here we describe these
representations and also briefly mention other representations of objects and
of some non-object geometric data.
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2.4.1 Discrete Point Set or Point Cloud
A discrete point set, often called a point cloud, is very commonly used in
geometry processing to represent a sampled 3D surface but it can also rep-
resent a sampled volume. Using the discrete point set representation, any
3D object 𝑋 can be simply defined as

𝑋 = {x1,x2, ...,x𝑛},x𝑖 ∈ 𝐸3, 𝑖 = 1, ..., 𝑛

where 𝑛 is the number of the points in the point set. Discrete point sets are
usually outputted e.g. by 3D scanners.

2.4.2 Triangle Mesh
The triangle mesh representation is very commonly used in computer graph-
ics to describe a surface. A triangle mesh is often understood as an approx-
imation of a continuous surface by a piece-wise planar surface where the
planar pieces are triangles. Having an object 𝑋, to use the triangle mesh for
its representation we need a set of vertices 𝑋𝑣 = {x𝑖 ∈ 𝐸3}, 𝑖 = 1..𝜈𝑋 and a
set of triangles 𝑋𝑡 = {𝑡𝑋𝑖 }, 𝑖 = 1..𝜏𝑋 . For each triangle 𝑡𝑋 ∈ 𝑋𝑡 three indices
𝑘1, 𝑘2, 𝑘3 are stored and the triangle is defined by the three vertices x𝑘1, x𝑘2,
x𝑘3 ∈ 𝑋𝑣. The object is then defined using the triangle mesh representation
as

𝑋 =
𝜏𝑋⋃︁
𝑖=1

𝑡𝑋𝑖

i.e. it is a union of all the triangles. We could, of course, only have the tri-
angles without the vertices while describing the same exact object. This,
however, would not be a triangle mesh but only a triangle set. Unlike the
triangle set, the triangle mesh allows easily extracting adjacency informa-
tion which is required for many operations, such as traversal or estimating
differential quantities (e.g. curvature), which would be much more difficult
to perform without it.

The triangle mesh is a more general representation of an object than
the discrete point set because it contains more information. A discrete point
set can always be easily derived from a triangle mesh simply by taking
its vertices or using some surface sampling technique. But transforming a
discrete set of points into a triangle mesh is not so straightforward and is
considerably more difficult. This also means that methods that are capable of
working with the discrete point set representation are generally more widely
applicable than those that require a triangle mesh on the input.

2.4.3 Plane Representation
In some parts of this text we will also work with planes in 𝐸3, therefore here
we describe how to represent them. Unless stated otherwise, we define an
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arbitrary plane 𝑃 by its implicit equation 𝑃 : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 where
x = [𝑥, 𝑦, 𝑧]𝑇 ∈ 𝐸3 is a general 3D point, 𝑎, 𝑏, 𝑐, 𝑑 are the coefficients that
define the plane and the points x ∈ 𝐸3 that satisfy this equation are also
the points of the plane 𝑃 . The vector [𝑎, 𝑏, 𝑐]𝑇 describes the normal of the
plane and the 𝑑 coefficient encodes the distance of the plane from the origin
of the coordinate system. This representation is probably the simplest one
but it is also ambiguous since for any real number 𝑘 ̸= 0, the coefficients
𝑎, 𝑏, 𝑐, 𝑑 define the same plane as coefficients 𝑘𝑎, 𝑘𝑏, 𝑘𝑐, 𝑘𝑑.

2.4.4 Others
General objects in 𝐸3 can also be represented in other ways, e.g. as para-
metric or implicit surfaces, parametric curves or binary functions which can
represent volumes by having a value of 0 for points outside the object and 1
for points inside the object. Objects can also have values associated with each
of their points. These values can be scalars or vectors and they can represent
various quantities, such as colors or results of some physical measurements
(temperature, pressure, etc.). When considering symmetries of such objects,
sometimes, but not always, it is desired that apart from the positions of the
points these associated values are also taken into account. In such a case
Definition 3 of (perfect) symmetry of objects is no longer applicable and
the more general Definition 2 needs to be used with the function 𝐹 defined
accordingly.

There are also other types of geometric data that do not satisfy our
definition of an object but appear commonly in certain areas of computer
science. We can have a general voulmetric function which associates a value
with each point in 𝐸3 or in some subspace of 𝐸3. Or we can have a discrete
volumetric grid where each cell has a value assigned to it - this is mainly
used to represent medical images outputted by CT or MRI scanners. For
such data we also need to use Definition 2 when talking about symmetries.

However, the representations mentioned in the previous two paragraphs
will be used in this work only rarely.
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Chapter 3

Related Work

In this chapter we provide information about various existing symmetry
detection methods. We mention some only briefly while some, which seem
more important or interesting, will be described in more detail. Since the
methods are quite diverse and based on various approaches it is quite difficult
to find some way to classify them in order to make the chapter easier to read.
Therefore, we divide the methods only according to the type of symmetry
they are designed to detect. At the end of the chapter we also briefly describe
several existing methods for rigid surface registration. Some parts of this
chapter were taken from the author’s master thesis [35].

3.1 Reflectional Symmetry
The most common type of symmetry being solved for 3D objects is reflec-
tional symmetry. Such symmetry is captured by a single plane of reflection
and there are many strategies of computing such a plane.

Some methods detect only planes that pass through some reference point
such as the origin, centroid of the input object or its center of mass. Such
methods are generally not very good at detecting weaker symmetries because
weakly symmetrical objects can have the symmetry plane in an arbitrary
position, not passing through the expected reference point.

Sun and Sherrah [94] proposed symmetry plane detection using ori-
entation histogram and their method detects only planes that pass through
the origin. The method uses the discrete version of the Extended Gaussian
Image [34] called orientation histogram. It is obtained by dividing a unit
sphere into hexagonal bins with values assigned according to the number of
normal vectors of the input object facing in the given bin’s direction. Sev-
eral candidate planes are selected such that they pass through the origin and
their normal vectors are facing approximately in the directions of the prin-
cipal axes of the object. For each candidate the histogram is reflected over
the given plane and a correlation of the reflected histogram with the original
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one is computed. The plane with the highest correlation is then selected as
the strongest symmetry plane. The method can also detect rotational sym-
metries with rotation axes passing through the origin but the algorithm is
slightly different.

Kakarala et al. [45] proposed a method that uses approximation of
the input object with spherical harmonics, creating a star-shaped surface,
and the symmetry plane detection is then performed on this new shape. The
symmetry detection is based on the observation that if a real-valued function
has symmetry across the origin then its Fourier transform is real-valued. The
authors apply this observation on the spherical harmonics to derive an error
function whose optimization leads to the symmetry plane. This method only
detects planes that pass through the origin.

Korman et al. [46] designed a method that uses a distortion mea-
sure representing the amount of mismatched volume between the original
shape and the transformed shape. The method detects only planes that pass
through the origin but it can also detect rotational symmetries (with axes
also passing through the origin). Since the evaluation of the distortion mea-
sure is too complex, the authors propose a randomized sampling procedure
that gives approximately the same results with overwhelmingly high proba-
bility. The symmetry of an input object is than found by clever sampling of
the transformation group based on the observation that the upper bound on
the sampling density can be controlled by the maximum allowed distortion
of the symmetry. The distortion is evaluated in each sample and the one
with the lowest distortion can be selected as the strongest symmetry.

Li et al. [53] proposed a view-based method for symmetry plane detec-
tion on triangle meshes. A set of viewpoints is sampled on a sphere around
the input model and in each viewpoint a camera is set to look at its cen-
ter. Using these cameras the model is rendered from each viewpoint using
orthogonal projection. The authors employ a viewpoint entropy which can
be computed for each rendered view and depends on the areas of the faces
that were rendered in the particular view. This entropy is computed for
each viewpoint which creates a viewpoint entropy distribution sphere. The
symmetry plane detection itself is then based on the observation that the
symmetry planes of the model and of the viewpoint entropy distribution
sphere are the same. Therefore, the symmetry plane detection is performed
on the viewpoint entropy distribution sphere which has the advantage of
being independent on the vertex count of the input mesh. Candidate planes
are created using pairs of viewpoints with matching values of the viewpoint
entropy. For each candidate plane the rest of all pairs of viewpoints with
matching entropy are verified to see whether they are symmetric with re-
spect to the given plane. If the number of symmetric pairs is great enough
the given candidate plane is declared a symmetry plane. This method only
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detects planes passing through or very near the center of the input object’s
bounding sphere. However, it seems to outperform previously designed meth-
ods in terms of accuracy, speed and robustness to noise.

The following methods do not put any constraints on the detected planes
and most of them can be used for detecting weaker symmetries.

Schiebener et al. [85] designed a method which detects the plane of
symmetry of a point cloud and they use it for completion of partial 3D scans.
Apart from the point cloud representing the input object, the method also
needs a point cloud representing the object’s surrounding and the position
from where the object was scanned. It relies on the fact that a 3D object usu-
ally stands on some kind of supporting structure, such as the ground, and the
first step is detecting the supporting plane which represents such a structure.
Candidates for these supporting planes are created using a RANSAC-based
plane fitting algorithm and for each of these candidates, several symmetry
plane candidates are created by sampling the space of planes orthogonal
to the given supporting plane. The authors define rating of the candidate
symmetry planes which uses the supporting plane and the scanner position
to evaluate whether points of the input object, when reflected over a given
candidate symmetry plane, end up in plausible locations. For example, the
reflected points should appear above the supporting plane and mainly in
occluded areas. The plane with the highest rating is declared the object’s
plane of symmetry. This method only detects symmetry planes which are or-
thogonal to the supporting surface and, because it requires the surrounding
and scanner position, it is only usable in specific applications.

Simari et al. [88] presented an algorithm for detecting local reflectional
symmetries of 3D triangle meshes. First, a weighted covariance matrix and a
weighted centroid are computed, with the weights set for each vertex accord-
ing to the areas of its adjacent triangles. Eigenvectors of the matrix are used
to define three orthogonal planes that pass through the centroid. For each
of the planes all vertices are reflected over it and its cost is computed based
on the distances of the reflected vertices from the original mesh (using the
minimum point-to-triangle distance). Only the plane with the lowest cost is
kept and a support region is defined as the region of the mesh which has a
strong enough symmetry w.r.t. to this plane. Next, the weights of all ver-
tices are updated to contain information of how far from the mesh the given
vertex is when reflected over the plane - the farther, the smaller its weight.
Also, weights of all vertices outside of the support region are set to 0. A new
covariance matrix and a new centroid are computed using the new weights,
a new plane is estimated and a new support region is found. These plane es-
timation and region finding steps are iterated until convergence is achieved.
The vertices in the support region of the final plane are removed and the
whole process is repeated for the remaining components of the mesh. This
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way a tree structure can be created called a folding tree which the authors
propose to use for mesh compression.

Podolak et al. [77] proposed a Planar Reflective Symmetry Transform
(PRST) for volumetric functions which associates each plane in the space of
planes with a value determining how symmetrical the function is w.r.t. that
plane. This value is defined as the distance of the function to the closest func-
tion which is perfectly symmetrical w.r.t. to the plane. The transform can be
used to find the plane of symmetry of a discrete volumetric function repre-
sented by a uniform 3D grid. The brute-force computation of the PRST has
time complexity 𝒪(𝑛6) for a grid of 𝑛×𝑛×𝑛 voxels but the authors propose
a way of finding the plane with the highest PRST in 𝒪(𝑛4𝑙𝑜𝑔(𝑛)). To use
this approach for symmetry detection on a sampled surface (triangle mesh,
point cloud) the authors use the Gaussian Euclidean Distance Transform to
convert the surface to a volumetric grid. To lower the computation cost for
the surface data, the authors propose using a randomized Monte-Carlo algo-
rithm to approximate the PRST. The space of planes is divided into discrete
bins based on their normal orientation and distance from the origin. Pairs
of points are randomly being selected, for each pair the symmetry plane
of the two points is constructed and it votes for the plane represented by
the corresponding bin. The planes with the largest vote count represent the
most significant symmetry planes of the input object. Since these results are
not necessarily very precise, the authors propose a final iterative refinement.
Although this approach works with sampled surface data, it still requires
rasterizing the input object, which can be computationally expensive and
seems unnecessary.

Cailliere et al. [13] used Hough transform to detect symmetry planes of
triangle meshes. This method is actually a modification of the more general
clustering approach [67] that will be described in Section 3.3. It is overall
also quite similar to the Monte-Carlo approach used in the previous method
by Podolak et al. [77]. Points are paired based on similar curvature values
and for each pair its symmetry plane is constructed. These planes vote for
the planes represented by the corresponding bins in the space of planes and,
in the end, the plane with the largest point count is selected as the symmetry
plane of the input mesh.

Speciale et al. [93] employ two symmetry plane detection methods
for 3D shape reconstruction. Both the methods take depth information in
voxel grid as input and one of them is essentially the implementation of
the above described method of Podolak et al. [77]. The second method is
a little different. High-gradient and high-curvature voxels are extracted and
referred to as surface voxels. Pairs of surface voxels are randomly sampled
and for each pair a symmetry plane candidate is constructed. Each candidate
is evaluated according to the number of inliers. A surface voxel is considered
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an inlier if, when reflected over the given candidate plane, it ends up in
another surface voxel or in space with unknown voxel information where a
potential occluded part of the symmetric object could be. Planes with the
largest inlier count then represent the strongest symmetries. The authors
claim that this approach, although similar to [77], can potentially be faster
and has lower memory requirements than [77].

The methods of Combès et al. [23] and Ecins et al. [25] both use
iterative ICP-like (see Section 3.4 for ICP) approaches for symmetry plane
detection in point clouds. Such approaches can be roughly summarized as
follows. Initial plane or planes are estimated in some way and for a given
initial plane and iterative process is executed. In each iteration points of
the object are reflected over the plane and those that reflect too far from
other points of the object are usually considered outliers and ignored in that
iteration. For each of the remaining reflected points, the closest point of the
object is found and a correspondence between the two points is created. Next,
the plane is adjusted such that the corresponding pairs of points have the
best possible reflectional symmetry w.r.t. the new plane - least square error
is usually used for this purpose. These steps are iterated until convergence
and the final plane usually represents some significant symmetry of the input
object.

Sipiran et al. [91] proposed a method specifically designed for global
symmetry plane detection on incomplete objects represented by triangle
meshes. First step is to detect local features of the given 3D shape which is
done using the theory of heat diffusion on manifolds. A function is defined
which associates the accumulation of heat up to a given time to each point
on the surface. This function is computed using the eigenvalues and eigen-
vectors of the Laplace-Beltrami operator and is called a Heat Kernel. As the
feature points, local maxima of the heat accumulation function are taken.
Pairs of the feature points then generate the candidate symmetry planes
but only pairs of points which have a similar value of the heat accumulation
function are considered. The last stage of this algorithm is a voting pro-
cess where other pairs of points are tested against the candidate planes. The
more pairs of points are considered to be symmetrical with respect to a given
plane the more votes the plane gets. There are several criteria designed by
the authors, which are used to decide whether or not a plane is considered
a plane of symmetry of a given pair of points. Also only points in which the
mean curvature is larger than some threshold are used in the voting process.
In the end the plane with the highest vote count can be declared the re-
sulting plane of symmetry. This method seems to provide very good results
even when used on objects with very high level of missing parts. However, it
only works on manifold triangle meshes and it does not work on featureless
objects, which is quite constraining.
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Cicconet et al. [19] solve the symmetry plane detection problem as a
registration problem. They propose reflecting the input object over a fixed
plane and then using some rigid registration algorithm to map the reflected
object onto the original one. This approach results in a transformation that
represents a reflection over some plane followed by some rigid transformation.
Such a transformation does not generally represent reflection over a plane, so
it needs to be extracted approximately from it, which seems unnecessarily
more complex than finding the reflection plane directly. Furthermore, as
elaborated in [80], the registration algorithms sometimes do not work well
on symmetrical objects.

Most recently, Nagar and Raman [70] proposed using linear pairing
and optimization on manifold to find the symmetry plane of a point cloud.
This method works in a space of arbitrary number of dimensions, but due
to time complexity 𝒪(𝑛3.5) for 𝑛 points, it is considerably slow. The same
authors then proposed a closed form solution to the symmetry plane detec-
tion problem with randomized initialization [71]. However, at some stages
this method expects the symmetry plane to pass through the center of mass
which, as mentioned above, could possibly be problematic for some weakly
symmetrical objects.

There are also methods that approach symmetry plane detection by em-
ploying machine learning techniques, usually using neural networks. One of
the newer representatives of this approach is e.g. the method of Ji and Liu
[44]. Such methods naturally require a set of training data and a training
process to be executed before any symmetry detection can be performed
which considerably limits their applicability.

3.2 Rotational Symmetry
Some of the methods mentioned above can also be used to detect the axes
of rotational symmetries, e.g. [94, 46], but they exhibit the same problems
and limitations for this purpose as for the symmetry plane detection.

Martinet et al. [60] designed a method for detection of rotational sym-
metries with possible reflections in triangle meshes using generalized moment
functions. It is based on the observation that the generalized moments of a
shape have at least the same symmetries as the shape itself and the symme-
tries of the moments can be computed efficiently. This method only detects
symmetries with rotation axes passing through the input object’s center of
mass but it can also find pure reflectional symmetries (symmetry planes).

Sipiran recently proposed two methods [89, 90] for rotational symmetry
detection based on finding circular structures in the data. However, they only
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seem to detect symmetries of rotational shapes and do not detect discrete
symmetries where the symmetry only holds for certain angles of rotation,
i.e. they can only detect circular symmetries.

3.3 More General Symmetry
There are also methods for detecting more general symmetries.

Thrun and Wegbreit [97] designed a method for detecting reflectional
symmetries, point symmetries, some types of rotational symmetry and sev-
eral composites of these symmetry types. The method is designed specifically
for the purpose of object reconstruction in computer vision and requires the
knowledge of the position from which the input object was scanned because
it needs to know which areas of the space are occluded.

Bokeloh et al. [9] proposed a method for finding rigid symmetries in
point sets with normal vectors available for each point. First, the method
finds feature line segments in the input object using so called slippage anal-
ysis [29] together with the normal vectors and mean curvature estimates.
Line segments that are spatially close are then connected to build a feature
graph. Lines that lie on the same circular arc are grouped together and form
a line cluster - a longer piece of a line feature with constant curvature. Pairs
of line clusters that are connected by an edge in the feature graph are called
bases, each basis defines a local coordinate system. Candidate symmetries
are constructed by matching bases using curvature information of the line
clusters and the underlying geometry, the symmetries are scored and only
the best ones are kept. A geometric validation is performed in the end to
verify the symmetries and establish correspondences of the symmetric parts.
This method naturally requires significant features to be present in the input
data in order the find any symmetries.

Lipman et al. [57] detect rigid symmetries in a point set using a sym-
metry correspondence matrix. The value at the position 𝑖, 𝑗 in the corre-
spondence matrix quantifies how much the 𝑖-th and 𝑗-th points of the input
point set belong to the same orbit. Two points are in the same orbit if a
symmetry transformation exits that takes one of the two points to the other
one. The symmetry correspondence matrix is approximated by random sam-
pling where each sample consists of two pairs of points that satisfy certain
criteria (e.g. that the two points have similar distance in both pairs or that
the pairs are not too close to each other). A local coordinate frame is con-
structed for each of the two pairs using both points in the pair together
with an approximated normal in the first point and a transformation is con-
structed that aligns the two coordinate frames. This transformation is then
applied on the entire point set and the deviation from the original point

17



set is measured. The deviation is then cast into the values in the matrix
that correspond to pairs of points which the transformation brings close to
each other. The authors state several observations about the eigenvalues and
eigenvectors of the symmetry correspondence matrix (e.g. that the number
of non-zero eigenvalues i equal to the number of orbits) which are used to
extract the symmetry information about the input point set. This method is
overall quite generic but it can run minutes on objects with only hundreds
of points and its parameters need to be set manually.

Mavridis et al. [61] proposed a method for detecting rigid symmetries
on objects with missing parts and they use the symmetries for object re-
construction. They solve the symmetry detection problem by maximizing
the overlap of the object and its transformed version with an additional con-
straint that some portion of the two objects does not overlap. This constraint
is added because this method explicitly expects an object with some missing
parts on the input. To achieve this goal, the authors use the Super4PCS [63]
rigid registration method (see also Section 3.4) with the additional modifi-
cation that at least 𝑘 percent of the points of the two objects should not
be overlapping. With 𝑘 = 0 the task becomes an ordinary registration of
the object onto itself which would probably always output the identity as
the resulting symmetry. This method obviously stands on the quality and
properties of the selected registration method.

Li et al. [54] use co-occurrence analysis to find rigid symmetries. They
use a curvature-based descriptor to compute features for points of the input
object but they state that the overall method is independent of the specific
descriptor design. Next, clustering in the feature space is used to find points
with similar features, creating clusters of feature values. For each pair of
these feature clusters a transformation is estimated that best matches the
set of points that correspond to the first feature with the points that cor-
respond to the second feature. A probability that the two features co-occur
is computed based on the number of points that are transformed close to
points from the other set. The co-occurrence information is embedded into
a low-dimensional space where co-occurring features are close to each other
and clustering is used to find modes in this space. These modes then rep-
resent building blocks of the input object - repetitive patterns of which the
input object consists. Instances of these blocks are naturally linked by sym-
metries. As the authors state, this method does not work well for objects
with noise, irregular sampling or objects without significant features where
the descriptor fails.

Probably the best known and most popular method for symmetry detec-
tion was designed by Mitra et al. [67] who used clustering in the transfor-
mation space for detecting very general symmetries. The symmetry trans-
formations can contain rotation, with or without reflection, translation and
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even uniform scaling. The method can also be restricted to only detect sub-
groups of these general symmetries. The input object is sampled and in each
sampled point, the principal curvatures and principle directions are com-
puted creating a local coordinate frame together with the normal vector.
Candidate transformations are created by pairing the sampled points and
aligning their local frames, but, since points where both principal curvatures
are the same do not define unique transformations, such points are excluded
beforehand. The scale component of each transformation is estimated from
the ratio of the principle curvatures in the two points. If the two generating
points of the candidate transformation have too distinct signatures (repre-
sented by the curvature values), the transformation is discarded to ensure
that only candidates that approximately match the local patches of the two
points are kept. Since the candidate transformations map local patches onto
each other, each of the transformations provides evidence of symmetry. The
core idea of the method is that now the transformations that represent signif-
icant symmetries will appear most frequently forming modes in the candidate
set, so the symmetry detection problem is approached by mode-seeking in
the transformation space. Of course, the transformations in the modes are
generally not exactly the same, only similar, therefore, the mode-seeking is
solved by clustering. Specifically the mean shift clustering algorithm [22].
The detected clusters then represent the symmetries of the input shape.

Much later, Shi et al. [86] improved this method by designing and em-
ploying a more appropriate metric in the transformation space during the
clustering stage. They also use a slightly different criterion for deciding what
candidate transformations to discard. Apart from this, the method [86] is
almost identical to [67].

Although these clustering-based methods are very general, they are not
very robust to noise and our experiments also suggest that they are rather
sensitive to parameter setting.

There are a few more methods that we do not describe in detail but
are worth mentioning. A method for solving a symmetry-related problem of
finding regularities in 3D data was proposed by Pauly et al. [74]. Some
of the steps in this method are similar to certain steps of the previously
mentioned method by Mitra et al. [67]. Tevs et al. [96] used a method for
detecting rigid symmetries that is inspired by Pauly et al. [74] and Bokeloh et
al. [9]. Xue et al. [102] constructed a method for finding affine symmetries
but it is designed particularly for architectural data which are very specific.
Alcázar et al. [3] proposed a method for detecting quite general symmetries
in rational space curves and Hauer et al. [31] find affine and projective
symmetries but only for rational and polynomial surfaces and their method
only seems to detect very strong or perfect symmetries.
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3.4 Rigid Surface Registration
In this section we very briefly mention some methods that attempt to solve
the problem of rigid surface registration where the goal is to map one surface
onto another using a rigid transformation. The text in this section was mostly
taken from our paper [37].

The registration process can be classified as either local registration or
global registration, but in this case the terms local and global have a slightly
different meaning than in context of symmetry. While a local registration
only improves some initial alignment and makes it more precise, a true global
registration finds an alignment without any assumptions on the initial po-
sition of the inputs. Typical registration pipeline consists of first using a
global registration method to find a rough alignment and then employing
some local registration method to improve its accuracy.

Perhaps the best known approach to local rigid surface registration is the
Iterative Closest Point (ICP) algorithm [17, 8], and its derivatives [83, 78,
10] and generalizations [66]. The algorithm improves a given alignment by
searching for point correspondences, usually based on local proximity, color
similarity or other point properties. Based on the set of correspondences, an
optimal rigid transformation is found that maps the points from the first
object to their corresponding counterparts in the second object. These steps
are iterated until convergence. Given a good initialization, the algorithm
converges quite quickly, making it a good choice for local registration.

Algorithms for global registration are usually designed to be fully in-
dependent of the initial position of the inputs. Some algorithms decouple
the rotation from translation, searching for the optimal rotation first. One
possibility is using the Hough transform [5, 14]. Spherical maps of the in-
put surfaces are created, where each point represents a direction, in which
a certain property of the input data is computed. A rotation is then sought
which maps the two spherical maps one onto another. Having the rotation,
translation is found by projecting the rotated inputs onto coordinate axes
and aligning the projections in each axis separately.

Another possibility of decoupling the rotation is to use the Extended
Gaussian Image [34], approximated by a spherical histogram of normal ori-
entations. Two such histograms can again be aligned first in the space of
rotations [59], while the translation is found afterwards.

Another group of methods attempts to extend the notion of Phase Corre-
lation [24], which has been successfully used for image alignment, to 3D point
clouds. Usually, the input objects are resampled onto a regular grid, which
is then transformed into frequency domain, where the aligning rotation can
be found [12]. Unfortunately, the extension only works in a certain range of
angles, and thus it cannot be applied for a general global registration.
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Concepts of evolutionary algorithms were also applied to searching for
the best aligning transformation [11, 18]. An initial population of possible
alignments is created, and a complex evaluation function is used to deter-
mine the fitness of each phenotype. The most successful phenotypes are
recombined and mutated to create the next generation of alignments. The
method usually delivers a good match, however, its computational complex-
ity is high.

Another global registration method has been proposed based on search-
ing for pairs of congruent planar quadrilaterals in both input datasets [2],
known as 4PCS (4-point congruent set). The method builds on a smart
tree data structure which allows finding the congruent quadrilaterals based
on their midpoint, called invariant, efficiently. An improved version of the
method, the Super4PCS [63], eliminates some of the quadratic steps, such
as finding all pairs of vertices at given distance, by using another spatial
structure built in a preprocessing step.

The Fast Global Registration [106] stands on the border between local
and global approaches, despite its name. It uses Fast Point Feature His-
togram (FPFH, [84]) features that are matched and a subset of valid match-
ing pairs is iteratively refined, while each iteration also improves the aligning
transformation.

Naturally, some of the concepts and approaches used in the methods
for symmetry detection that were described above could also be utilized in
surface registration. On the other hand, some of the registration methods
mentioned in this section could quite likely be modified to perform some
form of symmetry detection as done e.g. in [61] or [19].
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Chapter 4

Consensus Evaluation in
RANSAC Surface Registration

In this chapter we describe our contribution to the field of rigid surface reg-
istration. The task of rigid surface registration is, having two surfaces on the
input, find a rigid transformation (i.e. combination of rotation and trans-
lation) that best aligns the first surface with the second one. As already
mentioned in Section 2.3, rigid surface registration is a field strongly related
to symmetry detection since it can be understood as detecting rigid sym-
metry between two objects. The contribution and results presented in this
chapter can therefore very easily find its application in the area of symmetry
detection as well. The content of this chapter was previously published in
[37].

Several registration algorithms mentioned in Section 3.4 (among oth-
ers [59, 2, 14, 63]) can be interpreted as a particular implementation of
the general RANSAC (Random Sample Consensus) approach, which is very
commonly used in surface registration and other areas including symmetry
detection. The overall scheme of a general RANSAC registration algorithm
is following. By estimating the correspondences of points of the first sur-
face with points of the second surface, a set of candidate transformations is
constructed, each of which succeeds in aligning at least a part of the input
surfaces. Then, the consensus of the candidate transformations is evaluated
to pick the best one. Some algorithms, including the current state of the art
Super4PCS [63], seek consensus of points of the two input surfaces w.r.t. the
candidate transformations. The candidate transformations are being applied
on the first input surface and the consensus is determined for each candidate
as the portion of the transformed surface that overlaps with the second sur-
face. Generally, the candidate with the largest overlap is selected as the best
one. However, we argue that this might not be the best possible approach.

The key problem of finding the consensus this way stems from the dif-
ficulty of evaluating the result. Usually, the user is expected to define a
certain distance 𝛿, and the quality of the alignment is defined as the size of
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the overlap, i.e. the portion of the input meshes that get mapped closer to
each other than 𝛿. Choosing a large 𝛿 leads to false matches, which align
incorrect parts of the two objects. On the other hand, choosing a small 𝛿
leads to a narrow global optimum, which can be missed even with a rather
dense sampling of the solution space, and a large number of local optima
which complicate iterative refinement. For practical registration, 𝛿 cannot
be determined universally, not even as a proportion of the input scale, as
we demonstrate in our experiments. Moreover, since the solution involves an
estimate of a rotation, it is possible that remote parts of the surface become
severely misaligned, even when the rotation estimate is only off by a few
degrees.

As a remedy to this problem, we propose using information from all the
candidates to better analyze the space of rigid transformations. The key
observation is that the optimal alignment forms a density peak in the space
of rigid transformations. The problem can therefore be solved using some
clustering algorithm (k-means, mean shift), interpreted as a facility location
problem, or solved by efficiently estimating the density at each candidate
location. In our experiments, the last choice is both the fastest and the
most reliable. Similar idea was previously used by Mitra et al. for symmetry
detection [67] and here we show how a related approach can be employed in
surface registration.

In order to perform a clustering or a density estimation, a crucial ingre-
dient is a metric that relates the elements of the given space, i.e. determines
the amount of (dis)similarity of rigid transformations. This turns out to be
a non-trivial problem, because the metric has to relate the different degrees
of freedom of a rigid transformation (rotation, translation) to obtain a single
distance value. This relation depends on the units used for translation and
rotation, as well as on the scale of the object: for large objects, a unit rota-
tion (for example one degree) has a bigger impact than a unit translation,
and vice versa.

There are several well defined metrics for rotations [43], and the distance
of two translations can be simply defined as the Euclidean distance of the
two translation vectors. However, the problem of computing distances of
combined transformations seems insufficiently addressed. In the related con-
text of symmetry detection Mitra et al. [67] used the mean shift clustering
algorithm with a metric which uses a weighting scheme that imperatively
relates a rotation by 𝜋 radians to a translation by one half of the body di-
agonal. In [92] the authors attempt to address the problem of measuring
distances of 2D transformations by searching for geodesics on the manifold
of rigid transformations and similar idea is used by [86] for transformations
in 3D, however, the problem of proper scale is not addressed. A metric in
𝑆𝐸(3) is used by [6] to generate smooth transformations. The problem of
relating rotations and translations is bypassed by inheriting a metric from a
higher-dimensional manifold 𝐺𝐿(3).
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A common approach to constructing a metric for rigid transformations is
to compute it as a weighed sum of some rotation metric and the Euclidean
translation metric [50]. In this chapter, we analyze this approach and show
that, although it is well applicable, it needs to be used with caution, because
of several problems inherent to such metrics that may not be obvious. We
also show how these problems can be mitigated or even eliminated using
a different, data-induced transformation metric which embraces a different
interpretation of the problem, and we demonstrate that in order to properly
relate the rotation and translation component, the difference between two
rigid transformations necessarily must depend on the input data, and should
be evaluated as such. A metric in 𝑆𝐸(3) that fulfills this criterion has been
defined in [79] to evaluate registration results, however, it has not been used
in the registration (nor symmetry detection) process itself.

As a model case, we study a generic global RANSAC-based rigid surface
registration scheme. We compare several metrics in the context of this al-
gorithm, as well as different consensus evaluation strategies, and we report
the results on multiple non-trivial registration datasets.

Our contribution is threefold:

∙ we analyze a global registration algorithm that is based on creating a
set of candidate alignments, followed by finding a density peak in the
space of rigid transformations using an efficient data structure - the
Vantage Point Tree,

∙ in the context of the algorithm, we test a variety of distance metrics,
examining their properties theoretically and experimentally,

∙ we propose certain modifications to the compound metrics that im-
prove their performance in the task at hand and potentially in other
applications as well.

4.1 Model Registration Algorithm Descrip-
tion

As input, we have two triangle meshes 𝑃 and 𝑄 with vertices p𝑖, 𝑖 = 1..𝜈𝑃
and q𝑖, 𝑖 = 1..𝜈𝑄, and triangles 𝑡𝑃𝑖 , 𝑖 = 1..𝜏𝑃 and 𝑡𝑄𝑖 , 𝑖 = 1..𝜏𝑄. The result
is a rigid transformation (an orientation-preserving isometry) that aligns 𝑄
to 𝑃 . Since neither 𝑃 nor 𝑄 represent the entire object, the overlap is only
partial.

The model algorithm consists of the following steps:

1. A subset of the vertices of 𝑃 is selected, so that their distribution is
roughly uniform. For each sample, the principal curvatures 𝜅1, 𝜅2, as
well as the first principal direction e1, are estimated and stored.
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2. The mesh 𝑄 is also uniformly sampled, and for each sample, the best
matching sample in 𝑃 is identified based on the similarity of principal
curvature estimations. A rigid transformation is constructed, which
maps the corresponding points, and its quality is evaluated. High scor-
ing transformations are stored for further processing.

3. The set of candidate transformations is interpreted as a point set in the
SE(3) space, and a density peak that can be interpreted as a candidate
consensus is sought.

In the following, we describe each step in more detail.

4.1.1 Curvature Sampling
First, we need a feature vector that describes the local shape of the objects.
It is possible to use various descriptors proposed in the literature [33]. For the
purposes of our model scenario, we need a descriptor that is fast to evaluate,
yet considers larger local neighbourhood than just a 1-ring in order to be
resilient to noise. We choose to use a very simple custom local feature vector,
only consisting of the two principal curvatures estimated from points in a
local neighborhood, which is found using a breadth-first search (BFS) of the
mesh connectivity. We stop the BFS at a certain Euclidean distance from
the sample point.

Having a set of 𝑁 neighbors v𝑗, 𝑗 = 1..𝑁 of a vertex p𝑖, we estimate the
shape operator in a way similar to [82]. In contrast to Rusinkiewicz’s method,
we do not attempt to obtain exact curvature, and thus we can omit some
steps in order to simplify the computation. We parameterize the tangent
plane, defined by the normal n𝑖 of the vertex p𝑖, with a local othonormal
basis (l𝑥, l𝑦) (see Fig. 4.1). We then use the property of the shape operator
that for a tangential position difference vector it yields the corresponding
change in normal, i.e. for each neighbor v𝑗 the following relationship repre-
sents two linear equations:[︃

𝑎 𝑏
𝑏 𝑐

]︃ [︃
(v𝑗 − p𝑖) · l𝑥
(v𝑗 − p𝑖) · l𝑦

]︃
=
[︃
(n𝑗 − n𝑖) · l𝑥
(n𝑗 − n𝑖) · l𝑦

]︃
.

Since n𝑖 · l𝑥 = 0 and n𝑖 · l𝑦 = 0 we get[︃
𝑎 𝑏
𝑏 𝑐

]︃ [︃
(v𝑗 − p𝑖) · l𝑥
(v𝑗 − p𝑖) · l𝑦

]︃
=
[︃
n𝑗 · l𝑥
n𝑗 · l𝑦

]︃
. (4.1)

We obtain an overdetermined system of linear equations. Using the least
squares we find the values 𝑎, 𝑏 and 𝑐, which form an estimate of the shape
operator. Its eigenvalues are used as estimates of the principal curvatures
and stored. We also compute the eigenvector corresponding to the larger
eigenvalue and project it back to the tangent plane, yielding one principal
direction e1, which is also stored with the sample.
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Figure 4.1: Neighborhood for curvature computation. Black lines represent
original edges, while blue lines show their projection to the tangential plane,
which is parameterized by (l𝑥, l𝑦), represented by red arrows. Black arrows
are 3D normals, while blue arrows are the normals projected to the tangential
plane, i.e. (n𝑗 · l𝑥,n𝑗 · l𝑦).

4.1.2 Candidate Rigid Transformations
We sample the vertices from 𝑃 randomly, using a regular 3D grid over the
distribution of points and ensuring that from each cell at most one ver-
tex is selected. This way the sampling is close to uniform, even when the
distribution of points in 𝑃 is not.

Next, we build a set of candidate transformations. We construct a 2D
KD tree on the samples from 𝑃 , using the curvature estimates as coordi-
nates. Next, we sample the vertices of 𝑄 using the same strategy as with
𝑃 , i.e. ensuring a roughly uniform sampling. For each sample point in 𝑄,
the principal curvatures are estimated using Eq. (4.1). Having the curvature
estimates of a sample from 𝑄, we use the KD-tree to locate the most similar
sample from 𝑃 .

Finally, having a potentially corresponding pair of vertices, we build a
pair of rigid transformations 𝑇+ and 𝑇− that map the sample from 𝑄 to the
sample from 𝑃 , together with the normal, 𝑇+ maps the principal direction
e𝑄 of the sample in 𝑄 to the principal direction e𝑃 of the sample in 𝑃 , while
𝑇− maps e𝑄 to −e𝑃 .

For each generated transformation, we quickly verify that it aligns a sub-
stantial part of 𝑄. In preprocessing, we build a uniform 3D binary grid over
the bounding box of 𝑃 , in which each cell value determines whether there
is a point in 𝑃 closer to the cell center than 𝛿. We use point sample of 𝑄
reduced to about 400 vertices. Each sample vertex v𝑞 is transformed using
the candidate transformation 𝑇 , and the binary grid is used to determine
whether or not there is a point v𝑝 in 𝑃 such that ‖𝑇 (v𝑞) − v𝑝‖ < 𝛿. The
percentage of points that meets this criterion is also known as Largest Com-
mon Pointset (LCP). If LCP is at least 3%, then the candidate is retained for
further processing. We keep sampling 𝑄 until a certain number of candidate
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transformations is found, which pass the verification.
One possibility to choose the aligning transformation is to pick the can-

didate with the highest resulting overlap, i.e. the highest portion of samples
fulfilling the verification condition. As discussed at the beginning of this
chapter, this approach is sensitive to the choice of the 𝛿 parameter, and
therefore we also use a different approach, exploiting the distribution of the
candidate transformations.

4.1.3 Analyzing the Space of Rigid Transformations
In the set of candidate transformations, there are probably many transfor-
mations quite close to the optimum, but possibly not close enough to obtain
a high score. Even in such a situation, however, it is possible to analyze
the space of rigid transformations and find a good approximation of the
optimum by looking for a density peak in the distribution of the candidate
transformations.

The key ingredient needed for evaluating the density is a proper way of
evaluating proximity. This problem is challenging, because of the non-trivial
topology of the space, which makes its parameterization difficult. Common
parameterizations, such as using 4 × 4 matrices in homogeneous coordinates
or dual quaternions, are redundant in the number of parameters used to
describe the transformation. The redundancy can be avoided for example by
using Euler angles to describe the rotation, however, even then, similarity
of two rigid transformations does not imply the similarity of the parameters
that describe them. Choosing a proper metric in SE(3) is a crucial task, and
therefore we analyze different possibilities in the next section. At this point,
we assume that the distances can be consistently measured and finish the
overview of our model registration algorithm.

There are different ways of finding a density peak of vertices (rigid trans-
formations in our case) in a vector space. A clustering algorithm can be used
that groups similar vectors, and cluster centroids or modes often correspond
to density peaks. There are various approaches to clustering, ranging from
simple parametric algorithms, such as k-means, up to more complex proce-
dures, such as mean shift clustering [22] or facility location [16]. In each case,
the questions remain how to select the cluster which corresponds to the best
alignment, how to select the best alignment within the cluster, and whether
the clusters correspond to good alignments in the first place. Although some
intuitive answers can be found for some of the clustering algorithms, we use
a more direct way of finding the density peak, which turns out to be both
more efficient computationally, as well as more robust/precise.

A sampling density estimation function can be defined using some kernel
function 𝐾 as

𝜌(𝑥) =
∑︁
𝑖

𝐾(𝑑(𝑇𝑖, 𝑥)), (4.2)
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where 𝑑(𝑥, 𝑦) measures the distance of two samples. Various kernel functions
can be used for 𝐾, for efficiency reasons we use a simple Gaussian 𝐾(𝑟) =
𝑒−(𝐷𝑟)2 , where 𝐷 is a spread parameter.

Instead of looking for the general location of the true global maximum of
𝜌, we only search for a candidate 𝑇 *, for which 𝜌(𝑇 *) ≥ 𝜌(𝑇𝑖) for all candidate
transformations 𝑇𝑖. Given the spread parameter 𝐷 and some small threshold
𝑡, only samples within a radius 𝑟 =

√︁
−𝑙𝑛(𝑡)/𝐷 contribute significantly (> 𝑡)

to the density.
Therefore, the task is to find for each candidate a set of candidates up

to a distance 𝑟. Such goal is usually achieved using a KD-tree, however,
such structure cannot be used in this setting, since the space we are working
in is not Euclidean. Having a metric, however, allows using a more general
acceleration structure - the Vantage Point Tree [103]. It is constructed as a
binary tree, where each node represents a certain candidate 𝑐. Inner nodes
have two child nodes: the near node contains all other candidates that are
closer to 𝑐 than a certain threshold, while the far node contains candidates
that are farther from 𝑐 than the threshold. The threshold is selected as the
median of distances, so that the tree is balanced, and at a certain level
the branching is terminated by a leaf node, which contains no more than a
certain number of candidates.

Building such structure is of 𝒪(𝑛 log(𝑛)) complexity. With the structure
built, proximity queries can be resolved quickly with 𝒪(log(𝑛)) complexity
in the average case by only investigating the branches which can contribute
to the answer. Evaluating the density estimation function at each candidate
location has therefore an overall complexity of 𝒪(𝑛 log(𝑛)) and it is easily
feasible even with the 104 candidates used as default setting.

In principle, our approach is similar to what [67] proposed for symmetry
detection, however, we use a substantially different execution with differ-
ent metrics in a slightly different application. Our density peak location
approach could be also applied in an arbitrary Mode-based method (see
Chapter 5) for global symmetry detection. As an alternative, we have tested
the k-means algorithm and the local search algorithm which solves the prob-
lem in the facility location interpretation. Both algorithms require a higher
minimum number of candidates in order to robustly identify the correct
alignment than the proposed exhaustive density evaluation. Moreover, k-
means is more than 5× slower and the local search for facility location is
more than 48× slower. Therefore, we argue that using an advanced clustering
algorithm is not an efficient solution for finding the density peak representing
the optimal alignment.
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4.2 Transformation Distance Metrics
In order to find the density peak in the space of rigid transformations we
need to define a metric 𝑑(𝑇1, 𝑇2) which measures the distance of transforma-
tion 𝑇1 from transformation 𝑇2. The metric must somehow relate the two
parts of the transformation: the rotation and the translation. In this section
we therefore discuss other transformation distance metrics that can be used
for this purpose. Apart from surface registration, the presented knowledge
about rigid transformations can be useful in different areas including sym-
metry detection, especially in the case of using the Mode-based methods (see
Section 5) such as [67] to detect rigid symmetries.

4.2.1 Composed Metrics
Since a rigid transformation can be decomposed into a rotation and a trans-
lation, a metric can be defined as 𝑑(𝑇1, 𝑇2) = 𝑐𝑅𝑑𝑅(R1,R2) + 𝑐𝑡‖t1 − t2‖
where 𝑑𝑅(R1,R2) is a metric for rotations, R1 and R2 are the rotations
of 𝑇1 and 𝑇2 respectively, t1 and t2 are translation vectors of 𝑇1 and 𝑇2
respectively and 𝑐𝑅 and 𝑐𝑡 are customizable coefficients (a constant spread
parameter 𝐷 of the kernel will be used). This way of defining the metric was
used e.g. in [50] or [4], a very similar approach was also used by Mitra et al.
in [67] with the only difference that the terms are squared and there is an
additional term for scaling.

An extensive analysis of several distance metrics for rotations where ba-
sically any of these metrics could be used as 𝑑𝑅(R1,R2) can be found in
[43]. Composed transformation distance metrics, as described above, exhibit
certain impractical properties, some of which are independent of the choice
of 𝑑𝑅(R1,R2), as discussed next.

Order of Operations

A rigid transformation can be equivalently defined as either a rotation fol-
lowed by a translation, i.e. 𝑇 (x) = Rx + t, or as a translation followed by a
rotation, i.e. 𝑇 ′(x) = R′(x + t′). If 𝑇 and 𝑇 ′ describe the same transforma-
tion, following must hold:

Rx + t = R′(x + t′). (4.3)

This equation holds when R = R′ and t′ = R𝑇 t, because then R′(x + t′) =
R(x + R𝑇 t) = Rx + t. Applying transformation 𝑇 to an object corresponds
to first changing its orientation to the target orientation by rotation and then
translating the object to the target location. Applying 𝑇 ′ corresponds to first
translating the object to such a position that the subsequent rotation, which
enforces the target orientation, also moves the object to the target location.
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The change of orientation is the same in both cases. Therefore, Equation 4.3
can be rewritten as follows:

Rx + t = R(x + t′) (4.4)
Rx + t = Rx + Rt′ (4.5)
t = Rt′ ⇒ R𝑇 t = t′ (4.6)

Suppose there are two arbitrary rigid transformations 𝑇1 and 𝑇2 ex-
pressed in the rotation-first form, i.e. R1x + t1, R2x + t2, and translation-
first form, i.e. R′

1(x + t′
1), R′

2(x + t′
2). Since R1 = R′

1 and R2 = R′
2,

𝑑𝑅(R1,R2) = 𝑑𝑅(R′
1,R′

2) for any rotation metric 𝑑𝑅. The translation met-
rics ‖t1 − t2‖ and ‖t′

1 − t′
2‖ are, however, different. The first metric can be

expanded as shown in Equation 4.7.

‖t1 − t2‖ =
√︁

(t1 − t2)𝑇 (t1 − t2) =
√︁

t𝑇1 t1 − 2t𝑇1 t2 + t𝑇2 t. (4.7)

From Equation 4.6 it follows that ‖t′
1 −t′

2‖ = ‖R𝑇
1 t1 −R𝑇

2 t2‖ and the second
metric can, therefore, be expanded as follows:

‖t′
1 − t′

2‖ = ‖R𝑇
1 t1 − R𝑇

2 t2‖ =
√︁

(R𝑇
1 t1 − R𝑇

2 t2)𝑇 (R𝑇
1 t1 − R𝑇

2 t2) =

=
√︁

t𝑇1 R1R𝑇
1 t1 − 2t𝑇1 R1R𝑇

2 t2 + t𝑇2 R2R𝑇
2 t2 =

=
√︁

t𝑇1 t1 − 2t𝑇1 R1R𝑇
2 t2 + t𝑇2 t2.

(4.8)

The only case when ‖t1 −t2‖ = ‖t′
1 −t′

2‖ is when R1 = R2. The result of the
translation metric and, therefore, of the composed transformation distance
metric, depends on the order of rotation and translation, which we choose for
describing the transformations. Furthermore, the difference between ‖t1−t2‖
and ‖t′

1 − t′
2‖ grows with the increasing difference between R1 and R2.

In principle there is no reason to prefer either representation and its
choice seems rather arbitrary. However, for objects located near the origin,
the rotation-first form may seem more appropriate, since regardless of the
rotation, the direction of the translation vector approximately corresponds
to the difference between the output and the starting position of the object.
Also, the rotation-first form corresponds to the way rigid transformations
are evaluated when using matrix multiplication in homogeneous coordinates
for transformation evaluation. For these reasons, in the rest of this text, we
only consider rigid transformations in the rotation-first form. Nevertheless,
the statements made in the rest of this section can be similarly made about
the translation-first form using analogous analysis and derivations.

Dependence on Position

Consider an input object 𝑄𝑖𝑛 and an arbitrary rigid transformation 𝑇 that
transforms 𝑄𝑖𝑛 into an output object 𝑄𝑜𝑢𝑡 = 𝑇 (𝑄𝑖𝑛). Translating both 𝑄𝑖𝑛
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and 𝑄𝑜𝑢𝑡 by the same arbitrary vector t0 results in two objects 𝑄′
𝑖𝑛 and 𝑄′

𝑜𝑢𝑡

respectively, with different absolute position but the same mutual position
as 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡. To transform 𝑄′

𝑖𝑛 into 𝑄′
𝑜𝑢𝑡 a new transform 𝑇 ′ must be

defined such that 𝑇 ′(𝑄′
𝑖𝑛) = 𝑄′

𝑜𝑢𝑡. Since translating 𝑄′
𝑜𝑢𝑡 by −t0 results in

𝑄𝑜𝑢𝑡, 𝑇 (x) = 𝑇 ′(x + t0) − t0 must hold, which can be expanded as

Rx + t = R′(x + t0) + t′ − t0. (4.9)

The change of orientation is equal for 𝑇 and 𝑇 ′, and therefore R = R′, which
implies

Rx + t = R(x + t0) + t′ − t0

t′ = t − Rt0 + t0 (4.10)

Consider two different rigid transformations 𝑇1 and 𝑇2 and two cor-
responding transformations 𝑇 ′

1 and 𝑇 ′
2, where t′

1 = t1 − R1t0 + t0 and
t′

2 = t2 − R2t0 + t0, according to Equation 4.10, and some arbitrary vector
t0. Since R1 = R′

1 and R2 = R′
2, it follows that 𝑑𝑅(R1,R2) = 𝑑𝑅(R′

1,R′
2),

but the translation metrics ‖t1 − t2‖ and ‖t′
1 − t′

2‖ are generally different.
The first one expands as shown in Equation 4.7, while the second metric
expands as

‖t′
1 − t′

2‖ = ‖t1 − R1t0 + t0 − t2 + R2t0 − t0‖ (4.11)
= ‖t1 − R1t0 − t2 + R2t0‖, (4.12)

and thus ‖t1 − t2‖ = ‖t′
1 − t′

2‖ only when R1 = R2 or when t0 = 0.
Suppose a different scenario, where only the input object𝑄𝑖𝑛 is translated

by t0, creating 𝑄′
𝑖𝑛, and 𝑄𝑜𝑢𝑡 stays the same, i.e. 𝑇 (𝑄𝑖𝑛) = 𝑇 ′(𝑄′

𝑖𝑛) = 𝑄𝑜𝑢𝑡.
Now 𝑇 (x) = 𝑇 ′(x + t0) must hold, and it holds when R = R′ and t′ =
t − Rt0, the derivation is analogical to Eq. 4.10. If we now again consider
two transformations 𝑇1, 𝑇2 and corresponding 𝑇 ′

1, 𝑇 ′
2 it is easy to see that

‖t′
1 − t′

2‖ = ‖t1 − R1t0 − t2 + R2t0‖, which is the same expression as Eq.
4.12.

In a scenario where only 𝑄𝑜𝑢𝑡 is translated by t0, yielding 𝑄′
𝑜𝑢𝑡, and 𝑄𝑖𝑛

stays the same (𝑇 (𝑄𝑖𝑛) = 𝑄𝑜𝑢𝑡, 𝑇 ′(𝑄𝑖𝑛) = 𝑄′
𝑜𝑢𝑡). Now 𝑇 (x) = 𝑇 ′(x) − t0

must hold and it is easily proven that it holds when R = R′ and t′ = t + t0
because then R′x+t′−t0 = Rx+t+t0−t0 = Rx+t. For two transformations
𝑇1, 𝑇2 and corresponding 𝑇 ′

1, 𝑇 ′
2 we get

‖t′
1 − t′

2‖ = ‖t1 + t0 − t2 − t0‖ = ‖t1 − t2‖. (4.13)

This has profound consequences in context of rigid surface registration
and possibly in other applications as well including symmetry detection.
When the space of rigid transformations is being sampled and transforma-
tions are created by fitting points of 𝑄 onto points of 𝑃 , the value of the Eu-
clidean metric applied on the translation components of the transformations
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depends on the position of 𝑄 (Eq. 4.12), but does not depend on the position
of 𝑃 (Eq. 4.13). Having a general rigid transformation 𝑇1(x) = R1x+t1 and
x = 0, then t1 exactly represents the change of position of the point caused
by the transformation and if another transformation 𝑇2(x) = R2x + t2 is
defined then ‖t1 − t2‖ exactly represents the difference between the position
change of 𝑇1 and the position change of 𝑇2. However, if x changes by a non-
zero vector t0, then the value ‖t1 − t2‖ starts to deviate from the difference
of the position changes of 𝑇1 and 𝑇2 and, according to Eq. 4.12, the deviation
grows infinitely with the distance of x from the origin (the length of t0) and
with the difference between the two rotations R1 and R2 (the angle between
R1t0 and R2t0). This implies that generally the farther a point is from the
origin, the worse the translation component t of a rigid transformation de-
scribes the change of the point’s position after applying the transformation,
and the worse the Euclidean metric of the translation components describes
the difference of these changes between the translation components of two
arbitrary rigid transformations.

Using the composed transformation metric, which uses the Euclidean
metric on the translation components, is therefore only meaningful when the
transformed object is approximately centered at the origin. Otherwise the
composed metric can behave unpredictably, having a great negative impact
on the registration results.

Dependence on Orientation

Consider an input object 𝑄𝑖𝑛 and an arbitrary rigid transformation 𝑇 that
transforms 𝑄𝑖𝑛 into an output object 𝑄𝑜𝑢𝑡 = 𝑇 (𝑄𝑖𝑛). Now imagine rotating
both 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 using the same arbitrary rotation matrix R0 resulting
in two objects 𝑄′

𝑖𝑛 and 𝑄′
𝑜𝑢𝑡 respectively, with different absolute orientation

but the same mutual orientation as 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡. A transform 𝑇 ′ transforms
𝑄′
𝑖𝑛 into 𝑄′

𝑜𝑢𝑡, i.e. 𝑇 ′(𝑄′
𝑖𝑛) = 𝑄′

𝑜𝑢𝑡. Since rotating 𝑄′
𝑜𝑢𝑡 by R𝑇

0 results in 𝑄𝑜𝑢𝑡,
𝑇 (x) = R𝑇

0 𝑇
′(R0x) must hold, which can be expanded as follows:

Rx + t = R𝑇
0 (R′R0x + t′) (4.14)

Rx + t = R𝑇
0 R′R0x + R𝑇

0 t′. (4.15)

This equation holds when R′ = R0RR𝑇
0 and t′ = R0t.

Suppose we have two different rigid transformations 𝑇1 and 𝑇2 and two
corresponding transformations 𝑇 ′

1 and 𝑇 ′
2, where t′

1 = R0t1, t′
2 = R0t2,

R′
1 = R0R1R𝑇

0 and R′
2 = R0R2R𝑇

0 , and R0 is some arbitrary rotation
matrix. Obviously, ‖t1 − t2‖ = ‖t′

1 − t′
2‖ because ‖t1 − t2‖ = ‖R0t1 −R0t2‖.

In order to satisfy 𝑑𝑅(R1,R2) = 𝑑𝑅(R′
1,R′

2) it must be that 𝑑𝑅(R1,R2) =
𝑑𝑅(R0R1R𝑇

0 ,R0R2R𝑇
0 ) which holds if the rotation metric 𝑑𝑅 is bi-invariant.

Suppose a different scenario, where only the input object 𝑄𝑖𝑛 is rotated
by R0, creating 𝑄′

𝑖𝑛, and 𝑄𝑜𝑢𝑡 stays the same, i.e. 𝑇 (𝑄𝑖𝑛) = 𝑇 ′(𝑄′
𝑖𝑛) = 𝑄𝑜𝑢𝑡.
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Now 𝑇 (x) = 𝑇 ′(R0x) must hold, which expands as Rx + t = R′R0x +
t′. This holds for R′ = RR𝑇

0 and t′ = t. If we now again consider two
transformations 𝑇1, 𝑇2 and corresponding 𝑇 ′

1, 𝑇 ′
2, obviously ‖t1 − t2‖ =

‖t′
1 − t′

2‖. For 𝑑𝑅(R1,R2) = 𝑑𝑅(R′
1,R′

2) it must now be that 𝑑𝑅(R1,R2) =
𝑑𝑅(R1R𝑇

0 ,R2R𝑇
0 ) which holds when the rotation metric 𝑑𝑅 is right-invariant.

Finally, when only 𝑄𝑜𝑢𝑡 is rotated by R0, creating 𝑄′
𝑜𝑢𝑡, and 𝑄𝑖𝑛 stays

the same (𝑇 (𝑄𝑖𝑛) = 𝑄𝑜𝑢𝑡, 𝑇 ′(𝑄𝑖𝑛) = 𝑄′
𝑜𝑢𝑡), 𝑇 (x) = R𝑇

0 𝑇
′(x) must hold,

which expands as Rx + t = R𝑇
0 (R′x + t′). This implies R′ = R0R and

t′ = R0t because then R𝑇
0 (R′x + t′) = R𝑇

0 (R0Rx + R0t) = Rx + t. For
two transformations 𝑇1, 𝑇2 and corresponding 𝑇 ′

1, 𝑇 ′
2, for the translation

metric we now again get ‖t1 − t2‖ = ‖R0t1 − R0t2‖, which holds. For
𝑑𝑅(R1,R2) = 𝑑𝑅(R′

1,R′
2) we need 𝑑𝑅(R1,R2) = 𝑑𝑅(R0R1,R0R2), which

holds when the rotation metric 𝑑𝑅 is left-invariant.
In context of rigid surface registration, when fitting points of object 𝑄

onto points of object 𝑃 and a composed metric is used to measure distances
between the created transformations, the value of the composed metric is
independent of the initial orientation of 𝑄 only if the rotation metric is right-
invariant (i.e. it must hold that 𝑑𝑅(R1,R2) = 𝑑𝑅(R1R0,R2R0) for any R0,
R1, R2) and independent of the initial orientation of 𝑃 only if the rotation
metric is left-invariant (i.e. 𝑑𝑅(R1,R2) = 𝑑𝑅(R0R1,R0R2)). For a composed
metric to be independent of the initial orientation of both 𝑄 and 𝑃 , the
rotation metric must be bi-invariant (i.e. 𝑑𝑅(R1,R2) = 𝑑𝑅(R1R0,R2R0) =
𝑑𝑅(R0R1,R0R2)), even when the mutual orientation of 𝑄 and 𝑃 remains
unchanged. Therefore we recommend only using rotation metrics that are
bi-invariant, otherwise the composed metric might behave unpredictably,
negatively impacting the registration results.

Rotation Metrics

We consider 6 rotation metrics that are described and analyzed in [43],
denoted Φ𝑖, 𝑖 = 1, ..., 6, but since Φ6 = 2Φ3, we exclude Φ6 and only discuss
Φ𝑖, 𝑖 = 1, ..., 5. For two rotations, described by rotation matrices R1, R2, we
denote q1, q2 the 4-dimensional vectors representing unit quaternions that
correspond to the same rotations, and (𝛼1, 𝛽1, 𝛾1), (𝛼2, 𝛽2, 𝛾2) the triplets of
corresponding Euler angles.

Distance between Euler angles

𝑑𝐷𝐸𝐴𝑅 (R1,R2) = Φ1((𝛼1, 𝛽1, 𝛾1), (𝛼2, 𝛽2, 𝛾2)) =

=
√︁
𝑑(𝛼1, 𝛼2)2 + 𝑑(𝛽1, 𝛽2)2 + 𝑑(𝛾1, 𝛾2)2

where 𝑑(𝑎, 𝑏) = 𝑚𝑖𝑛{|𝑎−𝑏|, 2𝜋−|𝑎−𝑏|} and 𝛼, 𝛾 ∈ [−𝜋, 𝜋), 𝛽 ∈ [−𝜋/2, 𝜋/2).
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Distance between unit quaternions

𝑑𝐷𝑄𝑅 (R1,R2) = Φ2(q1,q2) = 𝑚𝑖𝑛{‖q1 − q2‖, ‖q1 + q2‖}

where q1 and q2 are treated as 4-dimensional vectors and ‖.‖ denotes the
Euclidean norm.

Dot product of unit quaternions

𝑑𝐴𝐷𝑃𝑄𝑅 (R1,R2) = Φ3(q1,q2) = 𝑎𝑟𝑐𝑐𝑜𝑠(|q𝑇1 q2|)

and
𝑑𝐷𝑃𝑄𝑅 (R1,R2) = Φ4(q1,q2) = 1 − |q𝑇1 q2|

where q1 and q2 are treated as 4-dimensional vectors in both cases.

Deviation from identity matrix

𝑑𝐷𝐼𝑀𝑅 (R1,R2) = Φ5(R1,R2) = ‖I − R1R𝑇
2 ‖𝐹 = ‖R1 − R2‖𝐹

where ‖.‖𝐹 denotes the Frobenius norm and I is the identity matrix.

All these metrics, except for 𝑑𝐷𝐸𝐴𝑅 , are bi-invariant [43] and therefore well
applicable in the context of rigid registration. For more detailed description
and further analysis of these rotation metrics see [43]. The proof that 𝑑𝐷𝐸𝐴𝑅

is not bi-invariant follows.
Consider general rotation matrices R1, R2 and R0 and the corresponding

Euler angles (𝛼1, 𝛽1, 𝛾1), (𝛼2, 𝛽2, 𝛾2) and (𝛼0, 𝛽0, 𝛾0) respectively. If 𝑑𝐷𝐸𝐴𝑅 is
a bi-invariant rotation metric, then 𝑑𝐷𝐸𝐴𝑅 (R1,R2) = 𝑑𝐷𝐸𝐴𝑅 (R1R0,R2R0) =
𝑑𝐷𝐸𝐴𝑅 (R0R1,R0R2) must hold for any R1, R2, R0. Now consider that the
rotations are such that 𝛼1 = 0, 𝛽1 = 0, 𝛾1 = 90∘, 𝛼2 = 0, 𝛽2 = −90∘,
𝛾2 = 0, 𝛼0 = 0, 𝛽0 = 30∘, 𝛾0 = 60∘. It can be easily shown that the
Euler angles of the rotation defined by a matrix R1R0 are 𝛼10 = −30∘,
𝛽10 = 0, 𝛾10 = 150∘ and those of R2R0 are 𝛼20 = 0, 𝛽20 = −60∘, 𝛾20 = 60∘.
Similarly, for R0R1 we get 𝛼01 = 0, 𝛽01 = 30∘, 𝛾01 = 150∘ and for R0R2
we get 𝛼02 = 73.896∘, 𝛽02 = −25.658∘, 𝛾02 = 56.309∘. It is not hard to
show now that 𝑑𝐷𝐸𝐴𝑅 (R1,R2) = 127.279, 𝑑𝐷𝐸𝐴𝑅 (R1R0,R2R0) = 112.249 and
𝑑𝐷𝐸𝐴𝑅 (R0R1,R0R2) = 119.404. This implies that in general 𝑑𝐷𝐸𝐴𝑅 (R1,R2) ̸=
𝑑𝐷𝐸𝐴𝑅 (R1R0,R2R0) and 𝑑𝐷𝐸𝐴𝑅 (R1,R2) ̸= 𝑑𝐷𝐸𝐴𝑅 (R0R1,R0R2) thus proving
that the rotation metric 𝑑𝐷𝐸𝐴𝑅 is neither left nor right-invariant, and therefore
not bi-invariant.
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Normalization

Since the values of all the rotation metrics described above are bounded
on finite intervals, we normalize them so that their values are mapped to
[0, 1]. We also normalize the translation metric by dividing it by the esti-
mated size of 𝑄 which is computed as the average distance of its vertices
from its centroid. The composed metric we use can therefore be expressed
as 𝑑(𝑇1, 𝑇2) = 𝑐𝑅

𝑑𝑅(R1,R2)
𝑘𝑅

+ 𝑐𝑡
‖t1−t2‖

𝑘𝑡
where 𝑘𝑅, 𝑘𝑡 are the corresponding

normalization constants.

Properties of Composed Metrics

In order to use a composed metric in the context of rigid registration, it
is advisable to choose a bi-invariant rotation metric and only investigate
transformations of a centered object. The centering can also be interpreted
as integral part of the metric by evaluating each transformation composed
with a centering translation 𝑑(𝑇1 ∘𝑇𝑐, 𝑇2 ∘𝑇𝑐), where 𝑇𝑐 moves the centroid of
the input object to the origin. In this sense, all composed metrics are data-
dependent, since the position of the centroid of the input object is necessary
for their proper evaluation. All composed metrics have two free parameters,
𝑐𝑅 and 𝑐𝑡. They influence the scale of the metric and, more importantly, they
set the balance of the rotation and translation part.

4.2.2 Compound Metrics
Some of the problems of composed metrics can be eliminated by accepting
and exploiting the fact that the metric inevitably must depend on the input
data to which the transformations are applied, i.e. evaluating the similarity
of rigid transformations by evaluating the difference of their effect on the
input data.

Vertex Sum of Squares

A compound data-induced metric provides a single value which quantifies
the difference between the effects of the two transformations to the input
object. Such a metric was previously discussed in [79], however, it has only
been used in order to evaluate the result of a registration, yet not within the
registration process itself. For two rigid transformations 𝑇1, 𝑇2 it is defined
as follows:

𝑑(𝑇1, 𝑇2)2 =
𝜈𝑞∑︁
𝑖=1

‖𝑇1(q𝑖) − 𝑇2(q𝑖)‖2 (4.16)

where q𝑖 are the vertices of the input object 𝑄. This is in fact a special case of
the Procrustes distance [47] used to measure distances between point clouds
with known point-to-point correspondences. In the following, we show that
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𝑑(𝑇1, 𝑇2)2 =
𝜈𝑄∑︁
𝑖=1

‖R1q𝑖 + t1 − R2q𝑖 − t2‖2 =

𝜈𝑄∑︁
𝑖=1

(R1q𝑖 + t1 − R2q𝑖 − t2)𝑇 (R1q𝑖 + t1 − R2q𝑖 − t2) =

𝜈𝑄∑︁
𝑖=1

(q𝑇
𝑖 R𝑇

1 R1q𝑖+q𝑇
𝑖 R𝑇

1 t1−q𝑇
𝑖 R𝑇

1 R2q𝑖−q𝑇
𝑖 R𝑇

1 t2 + t𝑇
1 R1q𝑖 + t𝑇

1 t1

−t𝑇
1 R2q𝑖 − t𝑇

1 t2−q𝑇
𝑖 R𝑇

2 R1q𝑖−q𝑇
𝑖 R𝑇

2 t1+q𝑇
𝑖 R𝑇

2 R2q𝑖+q𝑇
𝑖 R2t2

−t𝑇
2 R1q𝑖 − t𝑇

2 t1+t𝑇
2 R2q𝑖 + t𝑇

2 t2) (4.17)

𝑑(𝑇1, 𝑇2)2 =2
𝜈𝑄∑︁
𝑖=1

q𝑇
𝑖 q𝑖+2(t1 − t2)𝑇 R1

𝜈𝑄∑︁
𝑖=1

q𝑖+2(t2 − t1)𝑇 R2

𝜈𝑄∑︁
𝑖=1

q𝑖

+ 𝜈𝑄t𝑇
1 t1 − 2𝜈𝑄t𝑇

1 t2 + 𝜈𝑄t𝑇
2 t2−2R𝑇

1 R2 :
𝜈𝑄∑︁
𝑖=1

q𝑖q𝑇
𝑖 (4.18)

𝑑(𝑇1, 𝑇2)2 =2
𝜈𝑄∑︁
𝑖=1

q𝑇
𝑖 q𝑖 + 𝜈𝑄t𝑇

1 t1 − 2𝜈𝑄t𝑇
1 t2 + 𝜈𝑄t𝑇

2 t2−2R𝑇
1 R2 :

𝜈𝑄∑︁
𝑖=1

q𝑖q𝑇
𝑖 (4.19)

𝑑(𝑇1, 𝑇2)2 =2
𝜈𝑄∑︁
𝑖=1

q𝑇
𝑖 q𝑖 + 𝜈𝑄t𝑇

1 t1 − 2𝜈𝑄t𝑇
1 t2 + 𝜈𝑄t𝑇

2 t2

−2𝑑𝑖𝑎𝑔(R𝑇
1 R2) · 𝑑𝑖𝑎𝑔(

𝜈𝑄∑︁
𝑖=1

q𝑖q𝑇
𝑖 ) (4.20)

for measuring distances between rigid transformations, it can be evaluated
with 𝒪(1) time complexity rather than 𝒪(𝑛).

Expressing 𝑇1 as a rotation R1 and a translation t1, and 𝑇2 as a rotation
R2 and a translation t2, we can derive Eq. (4.17). For any vector v and any
matrix A, it applies that

v𝑇Av = A : vv𝑇 ,

where A : B denotes the Frobenius matrix product. Also

v𝑇Av = A : vv𝑇 = A𝑇 : vv𝑇 = v𝑇A𝑇v,

and thus the expression in Eq. (4.18) can be derived. Without loss of gener-
ality, we can shift 𝑄 so that ∑︀𝜈𝑄

𝑖=1 q𝑖 = 0, producing the simplified expression
in Eq. (4.19).

This approach can be taken one step further: rotate 𝑄 so that the matrix∑︀𝜈𝑄

𝑖=1 q𝑖q𝑇𝑖 becomes diagonal using EVD. Assuming 𝑄 has been rotated this
way, we reach the final expression in Eq. (4.20), where 𝑑𝑖𝑎𝑔(M) stands for a
vector of diagonal elements of a matrix M. Neither the full matrix R𝑇

1 R2 nor∑︀𝜈𝑄

𝑖=1 q𝑖q𝑇𝑖 must be computed, only their diagonal elements that contribute
to the result.
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The final formulation only depends on a scalar value ∑︀𝜈𝑄

𝑖=1 q𝑇𝑖 q𝑖, and a
vector 𝑑𝑖𝑎𝑔(∑︀𝜈𝑄

𝑖=1 q𝑖q𝑇𝑖 ), as has been noted but not exploited in [79]. These
quantities can be precomputed for 𝑄, which makes the distance evaluation
independent of the size of 𝑄, while still obtaining exactly the same result as
when evaluating Eq. (4.16). This dissimilarity measure is fully independent
of both rotation and translation and fulfills all properties of a metric.

Triangle Sum of Squares

One disadvantage of the vertex sum of squares is that its value depends
on the sampling density of 𝑄, which may be quite irregular. We propose
addressing this issue by integrating the squared distance over all triangles
rather than summing over vertices. Following the steps of Eq. (4.17-4.20),
we derive the value of the integral over a triangle 𝑡:

𝑑𝑡(𝑇1, 𝑇2)2 =
∫︁
𝑡
‖R1x + t1 − R2x − t2‖2𝑑𝑎 (4.21)

= 2
∫︁
𝑡
x𝑇x𝑑𝑎+ 𝑎(𝑡)(t𝑇1 t1 − 2t𝑇1 t2 + t𝑇2 t2) (4.22)

− 2𝑑𝑖𝑎𝑔(R𝑇
1 R2) · 𝑑𝑖𝑎𝑔(

∫︁
𝑡
xx𝑇𝑑𝑎), (4.23)

where 𝑎(𝑡) is the area of triangle 𝑡. A full rigid transformation metric is
obtained by summing over all mesh triangles:

𝑑(𝑇1, 𝑇2)2 =
𝜏𝑄∑︁
𝑖=1

𝑑𝑡𝑄𝑖
(𝑇1, 𝑇2)2. (4.24)

Note that computationally, the vertex sum and the triangle sum error met-
rics are equivalent, the only difference is the means of precomputing the
constants needed for the evaluation. For a triangle 𝑡 = (𝐴,𝐵,𝐶), it is not
difficult to show that∫︁

𝑡
x𝑇x𝑑𝑎 =

∫︁
𝑡
𝑥2𝑑𝑎+

∫︁
𝑡
𝑦2𝑑𝑎+

∫︁
𝑡
𝑧2𝑑𝑎, (4.25)

𝑑𝑖𝑎𝑔(
∫︁
𝑡
xx𝑇𝑑𝑎𝑡) = (

∫︁
𝑡
𝑥2𝑑𝑎,

∫︁
𝑡
𝑦2𝑑𝑎,

∫︁
𝑡
𝑧2𝑑𝑎), (4.26)∫︁

𝑡
𝑥2𝑑𝑎 = 𝐽𝑡

(𝐴𝑥 +𝐵𝑥 + 𝐶𝑥)𝐶𝑥 + 𝐴2
𝑥 +𝐵2

𝑥 + 𝐴𝑥𝐵𝑥

12 , (4.27)

𝐽𝑡 = ‖(𝐵 − 𝐴) × (𝐶 − 𝐴)‖, (4.28)

while the remaining integrals of 𝑦2 and 𝑧2 are expressed analogously. Note
that these simplified expressions can only be used for properly centered and
pre-rotated mesh, the rotation is equivalent to the vertex sum, only again
using integrals over triangles rather than sums. This does not, however, com-
promise the generality of the approach, since it can be equivalently expressed
for general position, only resulting in a more expensive computation by a
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constant. Both vertex and triangle sum of squared distances depend on the
input data, but only a few values suffice to evaluate the metrics in 𝒪(1)
time.

𝐿1 Data Dependent Metrics

A typical problem of a squared distance error metric is its sensitivity to
outliers: much more emphasis is given to larger distances than to small ones.
This issue can be alleviated by using a different distance metric [10], such
as 𝐿1, leading to:

𝑑(𝑇1, 𝑇2) =
𝜈𝑄∑︁
𝑖=1

‖𝑇1(q𝑖) − 𝑇2(q𝑖)‖, (4.29)

or if a metric insensitive to irregular sampling is required,

𝑑(𝑇1, 𝑇2) =
𝜏𝑄∑︁
𝑖=1

∫︁
𝑡𝑄𝑖

‖𝑇1(x) − 𝑇2(x)‖𝑑𝑎. (4.30)

Notably, a very similar expression has been recently used in order to evalu-
ate the smoothness (similarity) of local transformations needed for non-rigid
alignment [55]. With the 𝐿1 norm, it is substantially more difficult to evalu-
ate such metric than when the 𝐿2 norm was used. The vertex sum leads to
linear computational complexity, while the triangle sum even leads to inte-
grals that are difficult to evaluate in general. Therefore, instead of the full
triangle sum 𝐿1 metric, we propose using an approximation

𝑑(𝑇1, 𝑇2) =
𝜏𝑄∑︁
𝑖=1

𝑎(𝑡𝑄𝑖 )‖𝑇1(c(𝑡𝑄𝑖 )) − 𝑇2(c(𝑡𝑄𝑖 ))‖, (4.31)

where c(𝑡) is the centroid of the triangle 𝑡. Even with this approximation,
it is impractical to use either of the 𝐿1 metrics in registration, because
of their computational complexity. Nevertheless, 𝐿1 metrics can be applied
for evaluating the quality of the final alignment obtained by registration
algorithms when a correct aligning transformation is known.

Alternatively, one could use the well known Hausdorff distance [32] com-
puted between two versions of a mesh transformed by the two input trans-
formations. Such approach, however, ignores the known point-to-point cor-
respondences, and it also cannot be used in registration, because of the
computational complexity of the Hausdorff distance evaluation [21].

Normalization

Normalized metrics based on the sum of squares can be written as

1
𝑟(𝑄)

√︃
1

𝐴(𝑄)𝑑(𝑇1, 𝑇2)2,
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i.e. the normalization constant is 𝑟(𝑄)
√︁
𝐴(𝑄). The 𝐿1 based metrics are

normalized as
1

𝑟(𝑄)𝐴(𝑄)𝑑(𝑇1, 𝑇2),

where for the vertex-based metrics 𝐴(𝑄) = 𝜈𝑞 and for the triangle-based
metrics 𝐴(𝑄) is the surface area of 𝑄, and 𝑟(𝑄) is the estimated radius of
𝑄. For the vertex-based metrics, 𝑟(𝑄) is computed as the average distance
of the vertices of 𝑄 from its centroid. For the triangle-based metrics, the
average distance is computed for the centroids of all triangles weighted by
their areas and the same approach is used for computation of the centroid
itself.

If the spread parameter 𝐷 in the Gaussian kernel for the density peak
location is constant, then the compound metrics have a single parameter 𝑐,
which sets the global scale of the metric. The compound metrics are therefore
generally evaluated as 𝑐

𝑘
𝑑(𝑇1, 𝑇2) where 𝑑 is a compound metric and 𝑘 is the

corresponding normalization constant.

4.3 Results
Certain parameters influence the model algorithm, in our experiments, how-
ever, we found that the results are not very sensitive to the precise value of
any of them. The parameters are:

∙ Geometric ring of radius 8 times the average edge length has been used
as local neighborhood for the curvature estimation.

∙ 104 sample vertices of 𝑃 were analyzed and their curvatures and prin-
cipal directions were estimated.

∙ 104 candidate transformations were obtained by sampling 𝑄.

∙ The distance 𝛿 used to determine the LCP of each candidate has been
set to 2% of the mesh radius 𝑟(𝑄).

∙ The minimum value of LCP for a candidate to be accepted has been
set to 3%.

The registration algorithm was tested on 14 different realistic registra-
tion datasets. Datasets of varying character were chosen, with a range of
properties that may cause problems with registration, such as small overlap,
noise or potential to registration ambiguity. The reference implementation
(current at the time of this research) of the state of the art algorithm Su-
per4PCS was only able to register 7 out of the 14 datasets, and even that
was only achieved when the algorithm parameters were adjusted for different
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inputs. A detailed report on the performance of Super4PCS on the test data
will be presented in Section 4.3.4.

We have tested our model algorithm with the composed metric with all
the rotation metrics described in Section 4.2.1 and the two metrics based on
sum of squares described in Section 4.2.2. We denote the composed metrics
𝑑𝑁𝐴𝑀𝐸(𝑇1, 𝑇2) = 𝑐𝑅

𝑑𝑁𝐴𝑀𝐸
𝑅 (R1,R2)

𝑘𝑅
+ 𝑐𝑡

‖t1−t2‖
𝑘𝑡

where 𝑁𝐴𝑀𝐸 is the abbrevi-
ation for the corresponding rotation metric. Normalized metrics based on
vertex and triangle sum of squares are denoted 𝑑𝑉 𝑆𝑆 and 𝑑𝑇𝑆𝑆 respectively.
In all cases the object 𝑄 is centered at the origin.

For each of the 14 registration datasets the correct transformation is
known and the error of the registration can therefore be measured as the
difference between the resulting transformation and the correct one. To com-
pute this error, we use the metric defined by Eq. (4.31), normalized as de-
scribed in Section 4.2.2, with 𝑐 = 1. We set a threshold 𝜓, below which
we consider a registration successful. In our experiments, correct alignments
have had error < 0.1, in order to provide a certain tolerance we set 𝜓 = 0.15.
We also observed that in case of wrong alignment, the error is usually con-
siderably larger, generally greater than 0.3. Therefore, choosing 𝜓 between
0.1 and 0.3 does not make a big difference.

Before using the metrics, their parameters need to be set. In order to do
that an experiment was performed, where the spread parameter 𝐷 in the
Gaussian kernel was set to 𝐷 = 1 and 900 different configurations of the 𝑐𝑅,
𝑐𝑡 coefficients were created in the following way:

𝑐𝑅 = 1.5 · 2𝑖/3, 𝑐𝑡 = 1.5 · 2𝑗/3

where 𝑖, 𝑗 = 0, 1, 2, ..., 29. The exponential progression was used because
a good metric should not be very sensitive to the coefficient setting and,
therefore, halving or doubling one of the coefficients should not impact the
results very much. Since the metrics 𝑑𝑉 𝑆𝑆, 𝑑𝑇𝑆𝑆 only depend on a single
parameter, we set it as 𝑐 = 𝑐𝑅 while the value of 𝑐𝑡 remains unused. With
these metrics, the performance does not depend on 𝑗.

For each metric, we ran the registration on all the 14 datasets, 5 times
at every combination of 𝑖 and 𝑗, which gives 70 tests for every configuration
in total. To visualize the results, we created a bitmap of 30 × 30 pixels,
where the index of each pixel corresponds to a single configuration of 𝑖 and
𝑗 (𝑖 horizontal, 𝑗 vertical from top to bottom). A pixel is white when the
corresponding configuration was successful in all 70 registration cases, i.e.
error < 𝜓, otherwise it is black.

For each metric, we computed the centroid of all the white pixels in the
bitmap and we used the 𝑖, 𝑗 indices of the centroid pixel to acquire the
optimal values of 𝑐𝑅, 𝑐𝑡, which are shown in Table 4.1. The bitmaps are
shown in Figure 4.2, the centroid pixels are colored red. Since the algorithm
is non-deterministic, even for a good configuration of the coefficients, there
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(a) DEA (b) DQ (c) ADPQ (d) DPQ

(e) DIM (f) VSS (g) TSS

Figure 4.2: Bitmaps of the 𝑖, 𝑗 configurations of the coefficient settings for
all the metrics. White pixel indicates a successful registration in all 70 test
cases, black pixel indicates at least one failure, red pixel shows the centroid
of the white pixels and indicates the optimal configuration.

Table 4.1: Optimal coefficients of the transformation distance metrics.
DEA DQ ADPQ DPQ DIM VSS TSS

𝑐𝑅 4.76 9.52 9.52 96 7.55 7.55 9.52
𝑐𝑡 12 7.55 7.55 9.52 6 - -

is always a certain chance of failure. Therefore, a black pixel does not nec-
essarily mean that the corresponding configuration is bad, especially when
it is surrounded mostly by white pixels. On the other hand, if a black pixel
lies in a neighbourhood of black pixels, it suggests a configuration far from
optimal.

Figure 4.3a shows the registration result of the model algorithm using the
𝑑𝑇𝑆𝑆 metric with 𝑐 = 9.52 for the Kac dataset. The error of this registration
was 0.007. For comparison, Figures 4.3b, 4.3c show two artificially created
alignments with errors of 0.077 and 0.153 respectively, which are close to 𝜓

2
and 𝜓.

To perform a comparison of all the metrics, we ran the registration on
each of the 14 datasets 1000 times, using the optimal parameters found
previously. Table 4.2 shows the average error for each metric on every dataset
and the fail count (FC), i.e. how many times of the 1000 tests the registration
resulted in error > 𝜓. The error cells are colored according to the order of
the error values for the given dataset, i.e. the cell with the largest error is red
and the color transits through orange and yellow to green which indicates the
cell with the lowest error. The colors do not correspond to the absolute error
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(a) 𝑒𝑟𝑟𝑜𝑟 = 0.007 (b) 𝑒𝑟𝑟𝑜𝑟 = 0.077 (c) 𝑒𝑟𝑟𝑜𝑟 = 0.153

Figure 4.3: Registration result of the model algorithm using the 𝑑𝑇𝑆𝑆 metric
with 𝑐 = 9.52 (a) and its qualitative comparison to two artificial alignments
with different errors (b), (c).

Table 4.2: Comparison of the transformation distance metrics. The Error col-
umn shows the average errors for corresponding datasets, the FC (fail count)
column shows how many times the registration produced an alignment with
error > 𝜓.

Error FC Error FC Error FC Error FC Error FC Error FC Error FC
Armadillo 0.0683 23 0.0479 0 0.0485 0 0.0486 0 0.0463 0 0.0455 0 0.0480 0
Bird 0.0673 0 0.0672 0 0.0672 0 0.0669 0 0.0672 0 0.0673 0 0.0672 0
Bubba 0.0032 0 0.0035 0 0.0039 0 0.0059 0 0.0039 0 0.0034 0 0.0023 0
Buddha 0.0363 0 0.0255 0 0.0252 0 0.0246 0 0.0241 0 0.0242 0 0.0242 0
Coa 0.0283 0 0.0211 0 0.0208 0 0.0212 0 0.0202 0 0.0199 0 0.0200 0
Dragon 0.0258 0 0.0222 0 0.0221 0 0.0233 0 0.0221 0 0.0211 0 0.0209 0
Eggs 0.0758 98 0.0852 120 0.0868 123 0.0967 142 0.1003 143 0.1202 179 0.0915 140
Head 0.0079 0 0.0081 0 0.0082 0 0.0089 0 0.0083 0 0.0081 0 0.0075 0
Hippo 0.0760 32 0.0560 0 0.0558 0 0.0566 0 0.0556 0 0.0528 0 0.0538 0
Kachel 0.0187 0 0.0152 0 0.0156 0 0.0168 0 0.0153 0 0.0156 0 0.0155 0
Oscar 0.0044 0 0.0039 0 0.0040 0 0.0048 0 0.0039 0 0.0036 0 0.0034 0
Suzanne 0.0139 0 0.0133 0 0.0139 0 0.0144 0 0.0130 0 0.0132 0 0.0130 0
Teeth 0.0160 0 0.0137 0 0.0135 0 0.0148 0 0.0131 0 0.0129 0 0.0127 0
Testbody 0.0189 0 0.0175 0 0.0172 0 0.0197 0 0.0181 0 0.0186 0 0.0171 0
Total 0.0329 153 0.0286 120 0.0288 123 0.0302 142 0.0294 143 0.0305 179 0.0284 140

VSS TSS
Dataset

DEA DQ ADPQ DPQ DIM
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(a) 𝑃 (b) 𝑄 (c) correct alignment

Figure 4.4: The Egg dataset.

values, they only indicate their order for the given dataset. In the rest of this
section, we refer to the datasets using a three letter abbreviation. The Egg
dataset stands out from the others, because it is the only one with non-zero
fail count for every metric, suggesting that this model is problematic in some
way. The 𝑃 and 𝑄 objects of Egg together with their correct alignment are
depicted in Figure 4.4. The most likely cause of the failure is the presence of
large planar/spherical areas that lead to many incorrect matches, because
of the simple curvature based descriptor. Surprisingly, the 𝑑𝐷𝐸𝐴 metric has
the lowest fail count as well as the lowest average error for Egg, however,
it seems that under the circumstances of a failing descriptor, this result is
caused by random influences. Otherwise, 𝑑𝐷𝐸𝐴 has the largest average error
and it is also the only metric with non-zero fail count for two additional
datasets: Arm and Hip. The lowest total average error was achieved with
the 𝑑𝑇𝑆𝑆 metric with 𝑑𝐷𝑄 and 𝑑𝐴𝐷𝑃𝑄 having slightly larger, but very similar
errors. Also, without the problematic Egg dataset, the total average errors
of the metrics are 𝑑𝐷𝐸𝐴: 0.0296, 𝑑𝐷𝑄: 0.0242, 𝑑𝐴𝐷𝑃𝑄: 0.0243, 𝑑𝐷𝑃𝑄: 0.0251,
𝑑𝐷𝐼𝑀 : 0.0239, 𝑑𝑉 𝑆𝑆: 0.0236, 𝑑𝑇𝑆𝑆: 0.0235, with both the compound metrics
𝑑𝑉 𝑆𝑆 and 𝑑𝑇𝑆𝑆 having lower error than all the other metrics.

Figure 4.5 shows the ratio of the average error of 𝑑𝑇𝑆𝑆 (chosen as reference
because of its lowest average error) and the average errors of the remaining
metrics for all 14 datasets. The figure, together with Table 4.2, shows that
there are quite many cases where the 𝑑𝐷𝐸𝐴 metric shows noticeably larger
error than all the remaining metrics (Arm, Bud, Coa, Dra, Hip, Kac, Tee).
This demonstrates how unreliable a composed metric can be when it uses
the non-bi-invariant rotation metric based on distance of Euler angles and,
therefore, application of such a metric is not advisable. On several datasets,
the 𝑑𝐷𝑃𝑄 metric also shows slightly, but noticeably larger error than the
other metrics (Tee, Hea, Kac, Osc), except for the Bub dataset, where the
error of 𝑑𝐷𝑃𝑄 is much larger in terms of relative comparison.

For the Bub dataset, the 𝑑𝑇𝑆𝑆 metric has the lowest average error and, in
relative comparison, even substantially lower than 𝑑𝑉 𝑆𝑆, even though 𝑑𝑉 𝑆𝑆

and 𝑑𝑇𝑆𝑆 are based on the same concept. The explanation might be that the
Bub dataset has quite non-uniformly distributed vertices as shown in Figure
4.6. In such a case, the 𝑑𝑇𝑆𝑆 metric is expected to work more precisely than
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Figure 4.6: The 𝑄 object of the Bub dataset. The non-uniform distribution
of the vertices is quite clear in the detailed view.

𝑑𝑉 𝑆𝑆, because it accounts for the triangle size distribution, having more
exact information about the object’s shape. Similar reason might be behind
the lower error of 𝑑𝑇𝑆𝑆 for other datasets, although there the non-uniform
distribution is not so pronounced as with the Bub dataset.

4.3.1 Comparing to LCP
We also show results of the registration algorithm where LCP was used in-
stead of the density in the transformation space for evaluating the consensus.
The candidate transformation for which the LCP value was the largest was
selected as the result of the registration. Such an approach is quite common
and was used e.g. by the state of the art registration algorithm Super4PCS
[63].

We experimented with the 𝛿 parameter of LCP chosen as 𝛿 = 𝛿′𝑟(𝑄)
where 𝑟(𝑄) is the radius of 𝑄, and we tested several values of 𝛿′. Table 4.3
shows the fail counts of the registration with LCP used for the consensus
evaluation with different values of 𝛿′ (run 1000 times on each dataset). There
is no universal value of 𝛿′ and the total fail count is non-negligible for all
of the tested values. Although increasing or decreasing 𝛿′ leads to decrease
of fail count for some datasets, at the same time it causes increase of fail
counts for other datasets. This demonstrates that the results of registration
algorithms using LCP to select the best candidate transformation depend
quite strongly on the choice of 𝛿. On the other hand, when using the density
peak location in the space of transformations, although there are some pa-
rameters to set (either one or two, depending on the metric), the registration
is not very sensitive to their setting, as shown in Figure 4.2 (note that the
coefficient growth is exponential in both directions).

4.3.2 Non-Centered Object and Density Visualization
To verify the dependence of the metrics on position as discussed in Section
4.2.1, the registration was executed 1000 times on the Arm dataset with the
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Table 4.3: Fail counts of the registration with LCP used for evaluation of
the consensus with 𝛿 = 𝛿′𝑟(𝑄) for different values of 𝛿′.

Dataset 𝛿′

0.0025 0.005 0.01 0.02 0.04
Arm 619 8 0 0 0
Bir 887 757 633 983 1000
Bub 0 0 0 16 1000
Bud 112 0 0 0 0
Coa 59 0 0 0 0
Dra 330 1 0 0 0
Egg 215 4 0 0 0
Hea 0 0 0 0 645
Hip 708 324 219 76 3
Kac 368 0 0 0 327
Osc 0 0 0 0 0
Suz 90 8 6 438 1000
Tee 0 0 0 0 0
Tes 375 55 1 0 0
Total 3763 1157 859 1513 3975

composed metric 𝑑𝐷𝐼𝑀 , but after centering 𝑄, it was further translated by
a vector 𝜉 · 𝑟(𝑄) · [1, 1, 1]𝑇 where 𝜉 determines the final distance of 𝑄 from
the origin. For 𝜉 = 0, the fail count is 0 as in Table 4.2. For 𝜉 = 2, 5, 15
and 100, the fail counts were 24, 205, 648 and 865 respectively. Centering 𝑄
is therefore truly crucial for reliable results when using a composed met-
ric and the farther the object is from the origin, the worse results can be
expected. In order to visualize the sampling in 𝑆𝐸(3) we use a standard
multidimensional scaling. First, we compute 3D coordinates that match the
candidate distances provided by a metric as closely as possible, obtaining a
3D point cloud. The point cloud is converted to volume data representing
the density as defined in Eq. (4.2) and visualized by standard direct volume
rendering, choosing an informative viewpoint manually. The visualizations
of the decentered dataset registrations are shown in Figure 4.7.

Fig. 4.8 shows another such visualization. It demonstrates that a wrong
alignment may produce the highest LCP. On the other hand, a cluster of
candidates of rather mediocre LCP is obtained in the vicinity of the correct
alignment. More visualizations are also in the accompanying video, showing
similar results.
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(a) TSS (b) DIM, 𝜉 = 0 (c) DIM, 𝜉 = 2

(d) DIM, 𝜉 = 5 (e) DIM, 𝜉 = 15

Figure 4.7: Projection of the candidates into 𝐸3 using MDS for the 𝐴𝑟𝑚
dataset with 𝑇𝑆𝑆 and 𝐷𝐼𝑀 with different values of 𝜉.

Figure 4.8: 2D visualization of the space of rigid transformation candidates.
The hue reflects the score of each candidate, while the brightness reflects the
estimated density. The alignments on the left, even though they have the
highest score, represent a wrong alignment. A much better alignment on the
right can be identified by looking for a density peak.
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4.3.3 Noisy Data
The plot in Figure 4.9 shows how the model registration algorithm (using
𝑑𝑇𝑆𝑆, 𝑐 = 9.52) behaves on the Arm dataset in presence of Gaussian noise
with varying standard deviation. The standard deviation is relative to 𝑟(𝑄)
and the figure also shows the resulting alignment for deviation of 0.016. The
error grows quite slowly up to deviation of 0.018, while for higher values the
noise prevents correct registration. Similar results were obtained for other
datasets.
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Figure 4.9: Dependence of registration error on Gaussian noise with vary-
ing standard deviation relative to 𝑟(𝑄) for the Arm dataset. The depicted
alignment was achieved with deviation of 0.016.

4.3.4 Comparing to Super4PCS
Table 4.4 shows the errors of the Super4PCS registration method, i.e. of
its implementation that was the latest at the time of the research (April
8, 2019). We ran Super4PCS with different values of the 𝛿 parameter of its
LCP evaluation for all the datasets. The value of delta is set relative to the
radius of 𝑄 as 𝛿 = 𝛿′𝑟(𝑄). The cells with error ≤ 𝜓 are marked bold, in all
other cases the registration was considered a failure. Names of the datasets
for which the registration was succesful for at least one value of 𝛿′ are also
marked bold, for all the other datasets the registration failed for all the
values.

The largest number of successful registrations (7) was achieved using
𝛿′ = 0.106, 0.121 and 0.184. Since there is quite a large gap between 0.121
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Table 4.4: Errors of Super4PCS with different values of 𝛿 = 𝛿′𝑟(𝑄) for all
the datasets.

𝛿′ Arm Bir Bub Bud Coa Dra Egg Tee Hea Hip Kac Osc Tes Suz
0.010 1.257 1.941 1.306 1.594 1.387 1.581 1.361 1.416 1.704 1.366 1.801 1.075 1.816 1.366
0.011 0.220 1.941 1.303 1.588 1.383 1.456 1.348 1.396 1.712 1.382 1.834 0.543 1.822 1.376
0.013 1.214 1.941 1.318 1.598 1.387 1.457 1.363 1.380 1.705 1.353 1.826 1.073 1.402 1.341
0.015 1.242 1.941 1.622 1.776 1.245 1.974 1.346 1.383 1.703 1.417 1.841 1.073 1.814 1.596
0.017 0.099 1.855 1.296 1.590 1.385 0.418 1.380 1.411 1.710 1.357 1.828 2.016 1.824 1.550
0.020 0.334 0.890 1.464 1.592 1.389 0.066 0.166 1.405 1.696 1.048 1.761 1.073 0.391 2.103
0.023 0.134 1.319 2.262 0.373 0.225 0.587 1.363 1.398 1.718 1.340 1.852 0.151 1.327 2.099
0.026 0.232 1.577 1.464 0.800 1.380 0.197 1.151 1.397 1.926 1.357 1.844 0.081 1.413 1.562
0.030 0.131 1.026 1.432 0.273 1.380 2.068 1.295 1.399 1.915 1.096 1.783 0.067 0.207 2.039
0.035 0.080 1.742 1.454 1.589 1.380 0.090 1.568 1.422 1.780 0.443 1.779 0.146 0.162 1.752
0.040 0.285 1.277 1.495 0.280 1.378 0.039 1.909 1.442 1.671 0.106 1.825 0.135 0.122 1.825
0.046 0.121 1.318 1.397 0.209 0.258 0.060 0.769 1.443 1.915 0.094 1.930 0.161 1.974 1.822
0.053 0.047 1.729 1.485 0.091 0.484 0.136 0.557 1.431 1.964 0.350 1.848 0.037 1.275 1.876
0.061 0.070 1.411 1.307 0.064 0.120 0.065 1.606 1.414 1.997 0.153 1.721 0.035 0.143 1.888
0.070 0.047 1.421 1.482 0.178 0.065 0.035 0.207 1.410 1.755 0.083 1.593 0.044 0.237 1.877
0.080 0.079 1.570 1.360 0.071 0.134 0.102 0.383 1.420 1.554 1.685 1.858 0.079 0.105 1.771
0.092 0.045 1.028 1.525 0.087 0.051 0.059 0.519 1.471 1.638 0.168 1.452 0.105 1.163 2.003
0.106 0.071 1.481 1.548 0.052 0.122 0.086 0.490 1.472 1.946 0.055 1.474 0.074 0.040 2.030
0.121 0.067 0.531 1.345 0.134 0.104 0.084 0.121 0.467 1.623 0.117 1.758 0.165 0.076 1.979
0.139 0.082 1.558 1.467 0.075 0.164 0.126 0.157 1.558 1.994 0.227 1.237 0.094 0.086 1.837
0.160 0.103 1.473 1.472 0.062 0.048 0.069 0.528 1.503 1.666 0.332 1.639 0.109 0.072 1.781
0.184 0.102 1.410 1.521 0.073 0.071 0.128 0.548 1.585 1.957 0.140 1.857 0.149 0.117 1.723
0.211 0.119 1.475 1.505 0.161 0.141 0.136 0.314 1.500 1.612 0.251 1.639 0.171 0.148 1.779
0.243 0.065 1.352 1.521 0.118 0.038 0.178 0.383 0.468 1.947 0.174 1.621 0.260 0.148 1.769
0.279 0.162 1.358 1.536 0.152 0.178 0.160 0.401 1.797 1.750 0.201 1.764 0.147 0.076 1.909
0.320 0.090 1.430 1.518 0.117 0.120 1.228 0.386 1.731 1.907 0.309 1.843 0.127 2.002 1.835
0.368 0.256 1.250 1.533 0.183 0.117 0.202 0.442 1.936 1.920 0.223 1.898 0.382 0.342 1.767
0.422 1.149 1.431 1.620 1.938 0.099 1.412 0.502 2.003 1.895 0.130 1.509 0.603 1.349 1.836
0.485 0.354 1.222 1.622 1.964 0.371 1.610 0.462 2.028 1.785 0.427 1.382 0.244 1.387 1.826
0.557 1.676 1.464 1.628 0.372 0.185 0.115 0.676 2.358 2.043 0.391 1.800 0.611 1.385 1.789
0.640 2.128 1.365 1.533 0.446 0.115 0.313 0.746 2.422 1.837 0.328 1.405 0.652 1.360 1.621
0.735 2.017 1.497 1.334 0.557 0.259 0.333 1.901 0.329 1.690 0.283 1.463 0.491 1.529 1.748
0.844 1.462 1.278 1.552 1.187 0.426 2.011 1.941 2.626 2.069 1.747 1.428 0.643 1.365 2.560
0.970 1.161 1.284 0.834 0.869 0.303 0.819 1.929 3.507 1.779 1.680 2.208 0.720 1.800 1.514
1.114 2.713 2.683 1.575 1.917 0.554 2.168 0.927 4.015 1.934 1.435 1.944 0.602 1.675 1.688

and 0.184, we select 𝛿′ = 0.11 as approximately optimal because it is close
to both 0.121 and 0.106. Table 4.5 shows comparison of Super4PCS with
𝛿′ = 0.11 to the model RANSAC algorithm where 𝑑𝑇𝑆𝑆 was used as the
metric with 𝑐 = 9.52. For each dataset, ICP alignment was used after the
global registration with the same 𝛿 setting as Super4PCS (𝛿′ = 0.11). We
only show binary evaluation of whether the final registration was successful
instead of showing the error, since in the case of successful alignment the
final error is dictated by the ICP rather than by the global registration, and
in the case of incorrect result the error value is irrelevant. The running times
do not include ICP and the measurements were done on a computer with
CPU Intel Core i7-4770 (clock rate 3.4 GHz, 4 cores, L1 cache 256 kB, L2
cache 1 MB, L3 cache 8 MB) and 16 GB of memory with clock rate of 1.6
GHz with Windows 10 64-bit operating system.

If the global registration resulted in a good alignment, then the subse-
quent ICP further strongly increased its precision for most datasets. The
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Table 4.5: Comparison of the model RANSAC registration algorithm using
𝑑𝑇𝑆𝑆 with 𝑐 = 9.52 to Super4PCS with 𝛿′ = 0.11, after the global registration
ICP was performed also with 𝛿′ = 0.11, the running times do not include
ICP.

Dataset Success Time [ms]
Model S4PCS Model S4PCS

Arm yes yes 2406 9807
Bir no no 820 298
Bub yes no 1337 596
Bud yes yes 2987 7203
Coa yes yes 1958 701
Dra yes yes 3071 9084
Egg yes no 20654 19592
Hea yes no 1369 9693
Hip yes yes 1495 1372
Kac yes no 1496 635
Osc yes yes 5018 4182
Suz yes no 6641 5525
Tee yes no 2361 1432
Tes yes yes 10926 10382

only exception was the Bir dataset, where the model registration algorithm
actually found a very good alignment, but the ICP made it much worse, re-
sulting in an unsuccessful registration. Super4PCS for this dataset resulted
in a bad alignment even without ICP. In total, including ICP did not lead
to an improvement of the registration using Super4PCS, which was again
successful with 7 datasets. The running times of Super4PCS are comparable
to those of our model registration algorithm.

4.3.5 Limitations
Since the model RANSAC algorithm is feature-based, it naturally tends to
fail if very strong noise is present in 𝑃 and 𝑄 because in such a case the
curvature based features lose reliability. For similar reason, the algorithm
does not behave well in case of objects with repetitive patterns or planar
areas (e.g. the Egg dataset) because there are multiple different spots with
similar curvatures, which creates a large potential for registration ambiguity.

The results of the algorithm depend on the size of the overlap of the
inputs, both when using the composite and the compound metrics. Either the
centering step for composite metrics or the pre-computations for compound
metrics may lead to skewed results when the overlap is small, which in
turn may negatively influence the registration reliability. This may occur in
practice, when for example 𝑄 is a result of merging several partial scans,
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and has therefore only a small overlap with 𝑃 . In general, it is therefore
advisable to choose as 𝑄 the smaller of the two input models, since it has a
larger relative portion of overlap.

4.4 Summary
A method of identifying consensus in RANSAC surface registration has been
discussed. Instead of searching for a consensus of data points, we look for a
consensus of candidate solutions. The consensus is identified with a density
peak in the SE(3) space, which is found using the vantage point tree data
structure.

In order to locate the density peak, a proper metric is needed in the so-
lution space. We have discussed multiple choices known in the literature and
proposed their modified versions. While composed metrics can be applied for
this purpose, they suffer from fundamental drawbacks, such as the necessity
of setting two free parameters and the lack of translation independence that
is merely mitigated by centering the input object. Using the distance of
Euler angles as a rotation metric is particularly discouraged, because of its
unreliable behaviour.

On the other hand, the equally fast compound metrics 𝑑𝑉 𝑆𝑆 and 𝑑𝑇𝑆𝑆

behave well, regardless of the position of 𝑄, and they exhibit the lowest
total average error except for the Eggs dataset, where the failure is likely
caused by the used feature vector rather than by the metric. Additionally,
the proposed 𝑑𝑇𝑆𝑆 metric is also independent of the sampling density, which
makes it the method of choice not only in this, but also in other applications.

Our model registration algorithm turns out to work on par or better than
the state of the art algorithm Super4PCS both in terms of speed and relia-
bility. The algorithm is able to identify the best alignment even in situations
when the LCP score of a wrong transformation is better than that of the
near-optimal alignments. The registration is truly global, fully independent
of the initial location of the inputs.

The reliability could be further improved by incorporating more advanced
building blocks, such as better local feature vectors or more accurate candi-
date filtering, since we have chosen rather simple solutions in order to test
the consensus evaluation step. As with all global registration methods, a
refinement using a variant of ICP is expected to improve the result. The
reference implementation of our algorithm is available for download at [36].

The proposed consensus identification strategy could be applied in other
registration or symmetry detection algorithms as well, particularly easily
in those that can be interpreted in the RANSAC framework, such as Su-
per4PCS. Moreover, it could also be used in other applications, such as
dynamic surface segmentation based on motion similarity and others.

We have shown that even the composed metrics are data dependent in
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certain sense, relying on the knowledge of the input data centroid. Com-
pound metrics based on the sum of squares retain more information about
the input objects in the form of precomputed constants, however, the in-
formation is still quite limited. An interesting research direction could be
investigating the possibility of formulating metrics that take even more in-
formation about the inputs into account, however, without compromising
the computational complexity as in the case of 𝐿1 metrics.
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Chapter 5

Plane Space Representation in
Mode-based Symmetry Plane
Detection

Some of the symmetry detection methods described in Chapter 3 can be
interpreted as an implementation of one specific and very popular approach
It is to create a number of candidate transformations by matching different
points or parts of the input object and then find those transformations that
occur most often in the transformation space. This can also be described as
seeking modes (places of the highest density) in the transformation space so
we call this approach Mode-based symmetry detection and it can be classified
as a kind of the more general RANSAC approach. For reference, see e.g. the
method of Mitra et al. [67], which is most likely the first method that used
this approach and one of the most commonly known methods for symmetry
detection in general. This approach can be applied in algorithms detecting
symmetries of various types, however, in this chapter we only focus on its
application for detecting the planes of symmetry (reflectional symmetries)
of 3D objects. The content of this chapter was previously published in [40].

The method [67] together with its newer and improved variant [86] are
the two more general representatives of the Mode-based approach that can
be used to find symmetries of quite a general type. In their case the symmetry
transformations can contain rotation, with or without reflection, translation
and uniform scaling. The transformation type, however, can be restricted
to any subgroup of these general transformations, so these methods can be
used to detect reflectional symmetries (symmetry planes) as well. To find
the modes both these methods use clustering. Some form of the clustering
method [67] was used to detect symmetry planes e.g. in [56], on models
of damaged skulls, or in [62] and [48], suggesting its popularity for sym-
metry plane detection. In Chapter 4 we presented a Mode-based approach
used in rigid surface registration. In this case the candidate space contained
rigid transformations and to find a single mode, a density peak estimation
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algorithm was used. This approach could also possibly be used to find the
global plane of symmetry of an object, only with planes as candidates instead
of rigid transformations. The Hough transform-based method [13] and the
Monte Carlo algorithm used in [77] for 3D surfaces can also be interpreted
as Mode-based approaches, only designed to detect specifically symmetry
planes. However, instead of finding the mode in a continuous environment,
they divide the space of planes into discrete bins to count plane occurrences.

Regardless of the specific algorithm, any Mode-based method for sym-
metry plane detection requires defining some representation of the space
of planes and the result of the method will always somewhat depend on
the representation selected. The important aspect of the plane space repre-
sentation is how well distances between points in the space correspond to
the actual similarity/disimilarity of the planes in 𝐸3. In context of symme-
try detection, planes can also be understood as transformations reflecting
points over the given plane. A useful observation is that the mode(s) can
be found in an arbitrary non-Euclidean space only using distances between
the points in the space, e.g. as described in [98] or in Section 4.1.3 where
we also described how proximity queries in non-Euclidean spaces can be
accelerated using the Vantage Point Tree data structure [103]. In Section
4.2 we thoroughly analyzed the problem of computing distances between
rigid transformations, however, for reflection transformations or planes the
same problem does not seem to be sufficiently addressed in the literature
despite the fact that the Mode-based approach is quite popular in the field
of symmetry plane detection.

In this chapter we describe and analyze several different representations
of the space of planes and for each representation we discuss possible ways
of defining a reasonable distance function that could be used in Mode-based
symmetry plane detection. We compare these distance functions to a single
distance function that we consider the ground truth but which cannot be
used in practice because of its large computation cost.

Some of the representations we describe could also be more appropriate
for different applications, such as visualization. In general, the information
about the plane space representations described below can be useful in any
other application, outside the scope of symmetry detection, where some form
of plane representation is needed, although the presented distance functions
might require some adjustments according to the specific application. We
therefore believe that researchers from various fields, not restricted to sym-
metry plane detection, could benefit from the results of our research.

5.1 Background
Here we provide some necessary background for the rest of this chapter. A
general plane 𝑃 can be defined by the four 𝑎, 𝑏, 𝑐, 𝑑 coefficients as described
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in Section 2.4.3. Here we denote n = [𝑎, 𝑏, 𝑐]𝑇 the normal vector of the plane
and for the purpose of this chapter we always consider the coefficients to be
normalized such that ‖n‖ = 1 in which case 𝑑 is the signed distance of the
plane from the origin. A function r𝑃 (x) ∈ 𝐸3 that reflects an arbitrary point
x ∈ 𝐸3 over the plane 𝑃 can be defined as shown in Eq. (5.1).

r𝑃 (x) = x − 2(n𝑇x + 𝑑)n (5.1)

5.1.1 Candidate Creation Algorithm
In order to demonstrate and compare the plane space representations on
realistic data we use the following model algorithm for creating planes as
candidates for symmetry planes of an arbitrary set of points (point cloud).
We use the point set representation because it is more general than a tri-
angle mesh and, therefore, makes the information in this section useful in
wider range of applications. Suppose a set of points 𝑋 = {x1,x2, ...,x𝑁},
x𝑖 ∈ 𝐸3, 𝑖 = 1, 2, ..., 𝑁 . We first create a 3D uniform grid with cell size
𝑙𝑎𝑣𝑟𝑔

𝛿
× 𝑙𝑎𝑣𝑟𝑔

𝛿
× 𝑙𝑎𝑣𝑟𝑔

𝛿
where 𝑙𝑎𝑣𝑟𝑔 is the estimated size of the object represented

by 𝑋 computed as the average distance of the points of 𝑋 from their cen-
troid. We mark each cell as either occupied if any point from 𝑋 falls into
it or unoccupied if no point from 𝑋 falls into it. Then we start randomly
selecting pairs of points from 𝑋 and for each of these randomly selected
pairs x𝑖,x𝑗 we create a plane 𝑃 such that r𝑃 (x𝑖) = x𝑗. To avoid clutter in
the candidate space we perform a quick check to determine whether 𝑃 is a
plausible candidate. This is done by randomly selecting another five points
from 𝑋, reflecting them over 𝑃 and checking whether all of them end up in
an occupied cell of the previously created grid. If they do 𝑃 is accepted as
a candidate. If at least one of the five points reflects into an unoccupied cell
then 𝑃 is rejected. We keep iterating this process until we have 𝑘 accepted
candidates and if not stated otherwise we set 𝛿 = 5 and 𝑘 = 2000. The key
idea behind the Mode-based approach is that now there should be signifi-
cant modes in the candidate space of planes corresponding to the strongest
symmetries of the input point set 𝑋.

5.1.2 Dependence on Scale and Position
Unlike the 𝑎, 𝑏, 𝑐 coefficients, which are bounded on finite interval ⟨−1; 1⟩,
the value of the 𝑑 coefficient of any candidate plane depends on the overall
scale and position of the input object represented by the point set 𝑋. The
dependence on scale is obvious because 𝑑 represents the distance of the
given candidate plane from the origin and if the size of the input object
changes, the span of the 𝑑 coefficient will change as well. However, the 𝑎, 𝑏, 𝑐
coefficients will stay the same.

The dependence on position is less obvious. Imagine we translate the in-
put object (all points in 𝑋) by some arbitrary vector t, then for an arbitrary

55



candidate plane 𝑃 its 𝑑 coefficient will change by t𝑇n against the value it
would have if it was created at the original position. Since the change of 𝑑
does not depend only on t but also on the orientation of the given plane,
the change of 𝑑 is inconsistent throughout the candidate planes and this
inconsistency is the more significant the farther the input object gets from
the origin. For example, suppose a trivial case where an object consists of a
single point x which lies at the origin and suppose a set of all planes passing
through x. The 𝑑 coefficient of all these planes is 0. If we translate x by
t, the 𝑑 coefficients of the planes that pass through x will now span from
−‖t‖ to ‖t‖. Therefore, the position of the input object, i.e. its distance
from the origin, again influences the span of 𝑑 but does not influence the
span of 𝑎, 𝑏, 𝑐.

Many of the distance functions for planes, presented later in this text,
are negatively influenced by the significantly different span of 𝑑 and 𝑎, 𝑏, 𝑐.
To mitigate this problem, before creating the candidate planes, we always
translate the input object so that its centroid is at the origin and, where
necessary, we also normalize 𝑑 by 𝑙𝑎𝑣𝑟𝑔 to make the span of 𝑑 similar to the
span of 𝑎, 𝑏, 𝑐. For those distance functions where the translation to origin
is not necessary, this fact will be pointed out explicitly.

5.1.3 Ground Truth
It was already mentioned that in symmetry detection, any candidate plane
can be described as reflection transformation as defined by Eq. (5.1). As
was pointed out in Chapter 4, distance between transformations cannot be
well defined without the context (the object on which the transformations
are applied), which is consistent with what was described in Section 5.1.2.
Therefore, the distance function for planes that we consider the most mean-
ingful is the point-based version of the metric used for error evaluation of
registration results in Chapter 4 (see Eq. (4.29)), only with reflection trans-
formations instead of rigid ones. Given two arbitrary planes 𝑃1 and 𝑃2 the
distance function measures the exact difference between the effects of the
reflections defined by 𝑃1 and 𝑃2 on the input object. Since such a function
gives us the exact evaluation of how differently the input object is effected
by the two reflections, we consider it the ground truth distance function,
we denote it 𝐷𝐺𝑇 (𝑃1, 𝑃2) and it is defined as shown in Eq. (5.2) where
x𝑖 ∈ 𝑋, 𝑖 = 1, ..., 𝑁 .

𝐷𝐺𝑇 (𝑃1, 𝑃2) =
𝑁∑︁
𝑖=1

‖r𝑃1(x𝑖) − r𝑃2(x𝑖)‖ (5.2)

The 𝐷𝐺𝑇 distance function is not effected by the position of the input object,
so it does not require the translation to origin, and the object size only
effects its overall scale. Unfortunately, the time complexity of computing
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𝐷𝐺𝑇 is 𝒪(𝑁) where 𝑁 is the point count of the input object, which makes
it too computationally expensive and, therefore, virtually unusable in any
Mode-based symmetry detection algorithm. However, we can compare it to
the other distance functions described below and measure how close they
get to it.

5.2 Plane Space Representations
In this section we describe various different ways of representing the space
of planes in 𝐸3 and for each we also describe possible distance functions
that can be used in an arbitrary Mode-based symmetry plane detection al-
gorithm. Furthermore, we use the algorithm described in Section 5.1.1 to
create a set of candidate symmetry planes of the armadillo object shown
in Figure 5.1 and we visualize them in various representations of the plane
space. The black line in the figure represents the symmetry plane that we
consider the correct one and the object is rotated in such a way that this
plane is perpendicular to the plane in which the figure is rendered. We pur-
posely selected an object that is not perfectly symmetrical but still exhibits
noticeable reflectional symmetry. Although the object is represented by a
triangle mesh, which makes it easier to visualize, only its vertices are used
as the points for the candidate creation.

Figure 5.1: Model object with its correct symmetry plane.

5.2.1 Dual Representation in 𝐸3

Although the implicit equation of a plane has four coefficients, there are
actually only three degrees of freedom when defining a plane because the
space of planes is a 3-dimensional manifold embedded in 4-dimensional space.
Therefore, we can use a dual representation of an arbitrary plane as a point
in 𝐸3. We denote 𝜌(𝑃 ) ∈ 𝐸3 a dual representation of a plane 𝑃 . Euclidean
metric could then be used to compute the distance between two planes 𝑃1,
𝑃2 as 𝐷𝜌(𝑃1, 𝑃2) = ‖𝜌(𝑃1) − 𝜌(𝑃2)‖.
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(a) 𝜌1 (b) 𝜌2 (c) 𝜌3

Figure 5.2: Dual representations of the candidate symmetry planes. The
colors represent density (the darker, the larger density), the red spot corre-
sponds to the correct symmetry plane.

One possibility to represent a plane in 𝐸3 is to encode its orientation
into a vector in 𝐸3 with the same direction as the plane normal vector,
and the plane distance from origin into the length of this vector. Such dual
representation can be defined as 𝜌1(𝑃 ) = 𝑑n. Obviously, for 𝑑 → 0 such
representation gets ambiguous because all planes with 𝑑 = 0 are shrunk
into a single point. To solve this problem the value of 𝑑 can be shifted by a
constant 𝜇 so that these planes get spread on the surface of a sphere with
radius 𝜇 instead of being all at the origin. We set 𝜇 = 1

2 𝑙𝑎𝑣𝑟𝑔 so that rotating
the normal by 𝜋 and changing 𝑑 by 𝑙𝑎𝑣𝑟𝑔 make approximately similar change
in position of the point in the dual space. The dual representation is therefore
finally defined as

𝜌1(𝑃 ) =

⎧⎨⎩(𝑑+ 1
2 𝑙𝑎𝑣𝑟𝑔)n 𝑑 ≥ 0

(𝑑− 1
2 𝑙𝑎𝑣𝑟𝑔)n 𝑑 < 0

.

Distances in such dual space still do not very well correspond to similari-
ties/disimilarities of the actual planes. Mainly, two planes with 𝑑 close to
0 and similar normal vectors can be on the other sides of the sphere, and
therefore more than 2𝜇 apart, although they are actually very similar. How-
ever, such representation can be very good for visualization because each
point in the dual space represents the plane quite intuitively.

Figure 5.2a shows the generated candidates on the armadillo model in the
dual 𝐸3 space transformed with 𝜌1. The darker spots correspond to larger
density of the points in the space, the red spot corresponds to the correct
plane from Figure 5.1. The viewpoint was selected manually to maximize
the information in the image. It can be seen that the correct plane is in
a noticeable mode (dense spot) but this mode is split on the surface of
the sphere that corresponds to 𝑑 = 0 and its non-negligible part is on the
other side. This is quite undesirable because it makes the mode much less
significant than it would be if the two parts were together in the space.

58



Another duality, also called polar duality (described e.g. in [28]), uses
normalization of the plane coefficients such that 𝑑 = 1 and then only using
the 𝑎, 𝑏, 𝑐 coefficients as coordinates in 𝐸3. So instead of multiplying the
normal vector by 𝑑, this time we divide it by 𝑑. This again poses a problem
for 𝑑 → 0 which makes the dual points approach infinity and planes with
𝑑 = 0 cannot be represented at all by this duality. We solve this issue in
the same way as with 𝜌1 by shifting the 𝑑 coefficient and we define this dual
representation as

𝜌2(𝑃 ) =

⎧⎪⎨⎪⎩
1

(𝑑+ 1
2 𝑙𝑎𝑣𝑟𝑔)n 𝑑 ≥ 0
1

(𝑑− 1
2 𝑙𝑎𝑣𝑟𝑔)n 𝑑 < 0

.

Figure 5.2b shows the candidates transformed by 𝜌2 into the dual 𝐸3 space.
The correct plane is located in a noticeable mode which is again split into
two separate parts that are very far from each other. In this case there are
also other significant modes that correspond to very different planes.

Another duality commonly used in computational geometry expresses
a plane using its coefficients in explicit representation [7]. There are three
possible explicit representations of a plane in 𝐸3:

𝑥 = − 𝑏

𝑎
𝑦 − 𝑐

𝑎
𝑧 − 𝑑

𝑎
,

𝑦 = −𝑎

𝑏
𝑥− 𝑐

𝑏
𝑧 − 𝑑

𝑏
,

𝑧 = −𝑎

𝑐
𝑥− 𝑏

𝑐
𝑦 − 𝑑

𝑐
.

For demonstration, we select the first one, the dual representation is then
defined as 𝜌3(𝑃 ) = [ 𝑏

𝑎
, 𝑐
𝑎
, 𝑑
𝑙𝑎𝑣𝑟𝑔 ·𝑎 ]. The division of 𝑑 by 𝑙𝑎𝑣𝑟𝑔 is necessary for

normalizing the span of 𝑑. Such duality obviously cannot represent planes
parallel to the 𝑥-axis and planes with 𝑎 → 0 approach infinity in the dual
space. We could possibly solve this by shifting 𝑎 but this time, we do not
include 𝑙𝑎𝑣𝑟𝑔 into the shift because the span of 𝑎 does not depend on the size
of the input object, so we get

𝜌3(𝑃 ) =

⎧⎪⎨⎪⎩
[ 𝑏
𝑎+ 1

2
, 𝑐
𝑎+ 1

2
, 𝑑
𝑙𝑎𝑣𝑟𝑔(𝑎+ 1

2 ) ] 𝑎 ≥ 0
[ 𝑏
𝑎− 1

2
, 𝑐
𝑎− 1

2
, 𝑑
𝑙𝑎𝑣𝑟𝑔(𝑎− 1

2 ) ] 𝑎 < 0
.

Figure 5.2c shows the candidates in the dual space transformed by 𝜌3 and
in this case there do not seem to be any significant modes.

In general, the dual representations appear not to be very appropriate
for representing planes in any Mode-based symmetry detection algorithm
because they all contain singularities. Although this problem can always be
solved by shifting the value of some coefficient by a constant, the choice of
this constant is rather arbitrary and even then the distances between points
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(a) 𝐷𝐸𝐷 (b) 𝐷𝐴𝐷 (c) 𝐷𝐴𝐶𝐷

Figure 5.3: The candidates represented by 4D vectors projected into 𝐸3 with
MDS using different distance functions.

in the dual space might not well correspond to similarities of the planes.
However, the dual representations can quite easily be used for visualizing
the candidates because the dual points are 3-dimensional.

5.2.2 4D Vector Representation
Probably the most intuitive way of representing a plane is by a 4D vector
of the plane coefficients. Given a plane 𝑃 we represent it by a vector p =
[𝑎, 𝑏, 𝑐, 𝑑

𝑙𝑎𝑣𝑟𝑔
]𝑇 . In such a space we can easily define a distance function as the

Euclidean distance of the two 4D vectors. However, p and −p represent the
same plane so we need to take this into account. The Euclidean distance
function is therefore defined as

𝐷𝐸𝐷(𝑃1, 𝑃2) =

⎧⎨⎩‖p1 − p2‖ p𝑇1 p2 ≥ 0
‖p1 + p2‖ p𝑇1 p2 < 0

.

In this case the points cannot be visualized directly, so we use the multidi-
mensional scaling (MDS) technique to transform the points into 𝐸3 so that
they maintain their distances, w.r.t. the given distance function, as well as
possible. However, the projection into 𝐸3 might cause some imprecision in
the visualization. Figure 5.3a shows the candidate planes projected into 𝐸3

with MDS using the 𝐷𝐸𝐷 distance function and there is a very significant
mode visible around the correct symmetry plane.

The distances in 4D vector space of planes can also be measured as angles
between the vectors because the length of the vector p does not influence
the plane 𝑃 it represents. The angle distance function can be defined as

𝐷𝐴𝐷(𝑃1, 𝑃2) = 𝑎𝑟𝑐𝑐𝑜𝑠

(︃
|p𝑇1 p2|

‖p1‖‖p2‖

)︃
.

Figure 5.3b shows the candidates after using MDS with the 𝐷𝐴𝐷 distance
function and the correct plane is again placed inside a noticeable mode.
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We can also use only the cosine of the angle and measure its deviation
from 1. The angle cosine distance function can be defined as

𝐷𝐴𝐶𝐷(𝑃1, 𝑃2) = 1 − |p𝑇1 p2|
‖p1‖‖p2‖

and its visualization using MDS is shown in Figure 5.3c. There is again a
noticeable mode around the correct plane.

Obviously, the 4D representation of the plane space is much more ap-
propriate for any Mode-based symmetry detection algorithm than the dual
representations in 𝐸3. However, they are not as convenient for visualization
because in order to show the points they first need to be projected into a
lower dimensional Euclidean space which causes a loss of information.

5.2.3 Transformation Representation
As already mentioned, the space of planes can be understood as the space of
reflection transformations and, therefore, the distance between arbitrary two
planes 𝑃1 and 𝑃2 can be defined as the distance between the two reflection
transformations r𝑃1 and r𝑃2 defined according to Eq (5.1). One way of doing
this is using the compound metric that was evaluated as the most suitable for
rigid transformations in Chapter 4. Since in this context we expect a point
cloud on the input, not a triangle mesh, we use its point-based version (see
eq. (4.16)). It is based on sum of squared distances between the transformed
points and for reflection transformations is defined as

𝐷𝑆𝑆𝐷(𝑃1, 𝑃2) =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

‖r𝑃1(x𝑖) − r𝑃2(x𝑖)‖2

where x𝑖 ∈ 𝑋, 𝑖 = 1, ..., 𝑁 . There is a notable similarity between 𝐷𝑆𝑆𝐷 and
the ground truth distance function 𝐷𝐺𝑇 (see Eq. (5.2)). However, as already
described in Section 4.2.2 for rigid transformations, there are two major dif-
ferences. First, 𝐷𝑆𝑆𝐷 uses squared distances instead of absolute ones, favour-
ing smaller displacements over larger ones, which leads to different distances.
Second, unlike 𝐷𝐺𝑇 , 𝐷𝑆𝑆𝐷 can be computed in 𝒪(1), given an 𝒪(𝑁) prepro-
cessing is performed beforehand. To achieve this, the transformations must
be expressed as Mx + t where M is an orthogonal transformation matrix,
t is an arbitrary translation vector and x is the transformed point. For the
details of deriving the 𝒪(1) computation we refer to Section 4.2.2. Directly
from Eq. (5.1) we get

r𝑃 (x) = x − 2nn𝑇x − 2𝑑n = (I − 2nn𝑇 )x − 2𝑑n

where I is the identity matrix. If we now denote M = (I − 2nn𝑇 ) and
t = −2𝑑n, then the reflection transformation can be expressed as

r𝑃 (x) = Mx + t.
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(a) 𝐷𝑆𝑆𝐷 (b) 𝐷𝐷𝑄

Figure 5.4: The candidates represented as transformations projected into 𝐸3

with MDS using different distance functions.

Since the matrix M is orthogonal (and also symmetric), we can use the
same derivation as in Section 4.2.2 to compute 𝐷𝑆𝑆𝐷 in 𝒪(1) with 𝒪(𝑁)
preprocessing. The 𝐷𝑆𝑆𝐷 distance function, as well as 𝐷𝐺𝑇 , is not effected
by the position of the input object, so the initial translation to the origin is
not required, and the object size only effects the overall scale of the distance
function.

Figure 5.4a shows the candidates projected into 𝐸3 using MDS with the
𝐷𝑆𝑆𝐷 distance function and the correct plane is again in a significant mode.
There is another smaller significant mode visible in the figure, however, this
can very likely be caused by the distortion of the MDS projection.

Dual Quaternions

Dual quaternions combine the concepts of quaternions and dual numbers and
are commonly used, mainly in robotics, to represent rigid transformations.
However, in the following text we show how they can also be used to represent
a transformation of reflection over an arbitrary plane. A general quaternion
is defined as 𝑄 = 𝑞0 +𝑞1𝑖+𝑞2𝑗+𝑞3𝑘 where the 𝑖, 𝑗, 𝑘 units multiply according
to the following rules

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1, 𝑖𝑗 = 𝑘 = −𝑗𝑖, 𝑗𝑘 = 𝑖 = −𝑘𝑗, 𝑘𝑖 = 𝑗 = −𝑖𝑘.

Quaternion multiplication is not commutative in general. A conjugate 𝑄* of
a quaternion 𝑄 is defined as 𝑄* = 𝑞0 − 𝑞1𝑖− 𝑞2𝑗− 𝑞3𝑘. If 𝑞0 = 0 then 𝑄 is so
called pure quaternion in which case it is that 𝑄* = −𝑄. For two arbitrary
quaternions 𝑄1 and 𝑄2 it is that (𝑄1+𝑄2)* = 𝑄*

1+𝑄*
2 and (𝑄1𝑄2)* = 𝑄*

2𝑄
*
1.

A size or norm of a general quaternion 𝑄 is defined as ‖𝑄‖ =
√
𝑄𝑄* which

is always a non-negative real number. We denote 𝑣(x) = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 a
quaternion that represents an arbitrary point x = [𝑥, 𝑦, 𝑧]𝑇 ∈ 𝐸3. If u is
an arbitrary unit vector and we set 𝑄 = 𝑐𝑜𝑠𝛼 + 𝑣(u)𝑠𝑖𝑛𝛼, then 𝑄𝑣(x)𝑄*

represents the point x rotated by angle 2𝛼 around the axis that passes
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through the origin and has the direction of u. Also, for any unit vector u
and any 𝛼, 𝑄 is a unit quaternion, i.e. 𝑄𝑄* = 𝑄*𝑄 = 1. Similarly, if we set
𝑄 = 𝑣(u) (as a special case of 𝛼 = 𝜋

2 ) then 𝑄𝑣(x)𝑄 represents the point
x reflected over the plane with normal u that passes through the origin.
Notice, that this time 𝑄 at the right side is not conjugated. For details
about quaternions we refer to [30].

A dual quaternion is defined as

𝑄𝑑 = 𝑄+ 𝜖𝑄𝜖 = 𝑞0 + 𝑞1𝑖+ 𝑞2𝑗 + 𝑞3𝑘 + 𝜖(𝑞𝜖0 + 𝑞𝜖1𝑖+ 𝑞𝜖2𝑗 + 𝑞𝜖3𝑘)

where 𝑄 and 𝑄𝜖 are quaternions and 𝜖 is the dual unit which commutes with
the quaternion units 𝑖, 𝑗, 𝑘 and it is that 𝜖2 = 0. A quaternion conjugate
of 𝑄𝑑 is defined as 𝑄*

𝑑 = 𝑄* + 𝜖𝑄*
𝜖 , a dual conjugate of 𝑄𝑑 is defined as

𝑄𝑑 = 𝑄− 𝜖𝑄𝜖. These conjugations can be combined into 𝑄*
𝑑 = 𝑄* − 𝜖𝑄*

𝜖 .
We denote 𝑣𝑑(x) = 1 + 𝜖𝑣(x) = 1 + 𝜖(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) a dual quaternion

that represents an arbitrary point x = [𝑥, 𝑦, 𝑧]𝑇 ∈ 𝐸3. If 𝑄 is a quaternion
that represents rotation and 𝑄𝜖 = 𝑣(t)𝑄

2 where t = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]𝑇 is an arbitrary
translation vector then for 𝑄𝑑 = 𝑄+𝜖𝑄𝜖, it can be shown that the expression
𝑄𝑑𝑣𝑑(x)𝑄*

𝑑 represents a rigid transformation in the following way. Since𝑄*
𝑑 =

𝑄* − 𝜖 (𝑣(t)𝑄)*

2 and (𝑣(t)𝑄)* = 𝑄*𝑣(t)* the expression can be expanded as

𝑄𝑑𝑣𝑑(x)𝑄*
𝑑 = (𝑄+ 𝜖

𝑣(t)𝑄
2 )(1 + 𝜖𝑣(x))(𝑄* − 𝜖

𝑄*𝑣(t)*

2 ).

By multiplying the brackets while respecting that 𝜖2 = 0 we get

𝑄𝑑𝑣𝑑(x)𝑄*
𝑑 = 𝑄𝑄* − 𝜖

𝑄𝑄*𝑣(t)*

2 + 𝜖𝑄𝑣(x)𝑄* + 𝜖
𝑣(t)𝑄𝑄*

2
and since 𝑄𝑄* = 1 we further get

𝑄𝑑𝑣𝑑(x)𝑄*
𝑑 = 1 − 𝜖

𝑣(t)*

2 + 𝜖𝑄𝑣(x)𝑄* + 𝜖
𝑣(t)

2 .

Because 𝑣(t) is a pure quaternion and therefore 𝑣(t)* = −𝑣(t), the expression
finally yields the form

𝑄𝑑𝑣𝑑(x)𝑄*
𝑑 = 1 + 𝜖𝑄𝑣(x)𝑄* + 𝜖𝑣(t) = 1 + 𝜖(𝑄𝑣(x)𝑄* + 𝑣(t))

which represents the point x rotated using the quaternion 𝑄 and then trans-
lated by t. This shows how dual quaternions can be used for representing and
computing rigid transformations. Note that 𝑄𝑑 represents the same transfor-
mation as −𝑄𝑑 with the identity being represented by either 1 or −1. Also,
the transformations can be concatenated by multiplying the corresponding
dual quaternions and if 𝑄𝑑 represents a rigid transformation then 𝑄*

𝑑 repre-
sents its inverse. This in turn means that given two dual quaternions 𝑄𝑑1, 𝑄𝑑2
representing rigid transformations, these transformations are the same only
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if 𝑄𝑑1𝑄
*
𝑑2 = 1 or 𝑄𝑑1𝑄

*
𝑑2 = −1. For details about dual quaternions we refer

to [81] or [76].
Consider now a plane 𝑃 and a dual quaternion 𝑄𝑑 = 𝑄 + 𝜖𝑄𝜖 defined

such that 𝑄 = 𝑣(n) and 𝑄𝜖 = 𝑣(t)𝑄
2 where t = −2𝑑n. Now 𝑄𝑑 represents a

transformation that first rotates by 𝜋 around the axis that passes through
the origin and has the direction of n, and then translates by −2𝑑n. However,
if we apply the transformation on −x instead of x, it can be easily shown
that the transformation expression expands as

𝑄𝑑𝑣𝑑(−x)𝑄*
𝑑 = 1 − 𝜖𝑄𝑣(x)𝑄* + 𝜖𝑣(t).

Because 𝑄 = 𝑣(n) is a pure quaternion, hence 𝑄* = −𝑄, we can adjust the
expression as

𝑄𝑑𝑣𝑑(−x)𝑄*
𝑑 = 1 + 𝜖𝑄𝑣(x)𝑄+ 𝜖𝑣(t) = 1 + 𝜖(𝑄𝑣(x)𝑄+ 𝑣(t)) =

= 1 + 𝜖(𝑣(n)𝑣(x)𝑣(n) − 𝑣(2𝑑n)) = 𝑣𝑑(r𝑃 (x))
which exactly represents r𝑃 (x). This shows that a dual quaternion can also
represent a reflection transformation by representing a rigid transformation
that transforms −x to r𝑃 (x). Therefore, to measure distances between re-
flection transformations we can use a distance function for dual quaternions.

We denote 𝑣𝑒𝑐(𝑄𝑑) = [𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞𝜖0, 𝑞𝜖1, 𝑞𝜖2, 𝑞𝜖3]𝑇 ∈ 𝐸8 an 8-dimensional
vector that is equivalent to 𝑄𝑑. Given a plane 𝑃 , we create the corre-
sponding dual quaternion 𝑄𝑑 such that 𝑄 = 𝑣(n) and 𝑄𝜖 = 𝑣(−2𝑑n)𝑄

2𝑙𝑎𝑣𝑟𝑔
,

i.e. 𝑄𝑑 = 𝑣(n) + 𝜖𝑣(−2𝑑n)𝑣(n)
2𝑙𝑎𝑣𝑟𝑔

. The division by 𝑙𝑎𝑣𝑟𝑔 is again to normalize
the 𝑑 coefficient (which of course cannot be done if the dual quaternion
is intended to be used for computing the reflection transformation). Since
𝑣(−2𝑑n) = −2𝑑 𝑣(n) and because 𝑣(n) is a pure unit quaternion we can get
that

𝑄𝜖 = −2𝑑 𝑣(n)𝑣(n)
2𝑙𝑎𝑣𝑟𝑔

= 𝑑 𝑣(n)*𝑣(n)
𝑙𝑎𝑣𝑟𝑔

= 𝑑

𝑙𝑎𝑣𝑟𝑔

so 𝑄𝑑 can be finally expressed as shown in Eq. (5.3).

𝑄𝑑 = 𝑣(n) + 𝜖
𝑑

𝑙𝑎𝑣𝑟𝑔
= 𝑎𝑖+ 𝑏𝑗 + 𝑐𝑘 + 𝜖

𝑑

𝑙𝑎𝑣𝑟𝑔
(5.3)

Notice that the transition from the implicit equation of a plane to the cor-
responding dual quaternion is very straightforward because the 𝑎, 𝑏, 𝑐, 𝑑
coefficients of the plane exactly correspond to four of the eight values of the
dual quaternion and the remaining four values are 0.

There are two common distance functions for dual quaternions. The first
one uses differences between the equivalent 8-dimensional vectors [76]. Sup-
pose two arbitrary planes 𝑃1 and 𝑃2 represented by dual quaternions 𝑄𝑑1
and 𝑄𝑑2 respectively. Such distance function can be defined as

𝑚𝑖𝑛{‖𝑣𝑒𝑐(𝑄𝑑1) − 𝑣𝑒𝑐(𝑄𝑑2)‖, ‖𝑣𝑒𝑐(𝑄𝑑1) + 𝑣𝑒𝑐(𝑄𝑑2)‖}
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(a)
Armadillo

10026

(b)
Bunny
9831

(c)
Lion
2213

(d)
Ant
3495

(e)
Formula
10969

(f)
Space ship

3099

Figure 5.5: The test objects used to generate the candidate sets for comparing
the distance functions. The number under the name of each object expresses
its point count.

but given Eq. (5.3) this is exactly the same as 𝐷𝐸𝐷. The second distance
function [27] uses a difference transformation 𝑄𝑑1𝑄

*
𝑑2 and computes its dis-

tance from the identity, i.e. from 1 or −1. It is defined as

𝐷𝐷𝑄(𝑃1, 𝑃2) = 𝑚𝑖𝑛{‖𝑣𝑒𝑐(1 −𝑄𝑑1𝑄
*
𝑑2)‖, ‖𝑣𝑒𝑐(1 +𝑄𝑑1𝑄

*
𝑑2)‖}.

Figure 5.4b shows the candidates projected into 𝐸3 using MDS with 𝐷𝐷𝑄

and the correct plane is in an obvious mode.

5.3 Results
We compared the distance functions by generating the candidate symmetry
planes of a given object (using the model algorithm described in Section
5.1.1), computing distances between them using the given distance function
and comparing them to distances computed using the ground truth distance
function. We did this for the six different test objects shown in Figure 5.5,
taken from datasets [51] [26]. The objects are represented by triangle meshes
for easier visualization, but we again only used their vertices as the input
points for the candidate creation process. The Armadillo and Bunny objects
are simplified because the computation of 𝐷𝐺𝑇 on their original version
would be too timely for the experiments we performed.

Let 𝐶 = {𝑃1, 𝑃2, ..., 𝑃𝑘}, 𝑘 = 2000 be the set of candidate planes created
for a given input object. The error of a given distance function 𝐷 against
the ground truth is defined as

𝐸𝑟𝑟(𝐷) = 1
𝐶𝑜𝑢𝑛𝑡(𝑘)

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

⃒⃒⃒⃒
⃒𝐷𝐺𝑇 (𝑃𝑖, 𝑃𝑗)
𝐴𝑣𝑟𝑔(𝐷𝐺𝑇 ) − 𝐷(𝑃𝑖, 𝑃𝑗)

𝐴𝑣𝑟𝑔(𝐷)

⃒⃒⃒⃒
⃒

where
𝐴𝑣𝑟𝑔(𝐷) = 1

𝐶𝑜𝑢𝑛𝑡(𝑘)

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝐷(𝑃𝑖, 𝑃𝑗)
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Table 5.1: Errors of the distance functions for the candidate sets for different
objects.

Arm Bun Ant For Lio Shi Average
𝐷𝐸𝐷 0.120 0.277 0.163 0.093 0.130 0.234 0.169
𝐷𝐴𝐷 0.133 0.281 0.157 0.098 0.144 0.236 0.174
𝐷𝐴𝐶𝐷 0.299 0.388 0.264 0.250 0.306 0.352 0.309
𝐷𝑆𝑆𝐷 0.012 0.023 0.009 0.014 0.011 0.012 0.013
𝐷𝐷𝑄 0.118 0.277 0.162 0.093 0.129 0.232 0.168
𝐷𝜌1 0.382 0.399 0.503 0.596 0.326 0.425 0.438
𝐷𝜌2 0.401 0.408 0.488 0.563 0.360 0.489 0.451
𝐷𝜌3 0.280 0.446 0.269 0.730 0.362 0.447 0.422

is the average distance between candidates in 𝐶 and 𝐶𝑜𝑢𝑛𝑡(𝑘) = 1
2(𝑘2 −

𝑘) is the total number of candidate pairs used for the computation. The
normalization by 𝐴𝑣𝑟𝑔 is used because the overall scales of the distance
functions do not matter so the differences are computed after both 𝐷𝐺𝑇 and
𝐷 are divided by their mean values.

Table 5.1 shows the errors of all the distance functions described above
for all the test objects. For completeness, we include the dual representations
in the comparison.

The smallest error is obviously achieved using 𝐷𝑆𝑆𝐷 which is probably
due to 𝐷𝑆𝑆𝐷 and 𝐷𝐺𝑇 being based on the same principal. However, it is
still rather surprising that the 𝐷𝑆𝑆𝐷 function which uses squared distances
is so similar to 𝐷𝐺𝑇 that uses absolute distances. The 𝐷𝐸𝐷, 𝐷𝐴𝐷 and 𝐷𝑄𝐷

all exhibit very similar errors (with 𝐷𝑄𝐷 usually having the lowest of these
three) which are overall lower than those of 𝐷𝐴𝐶𝐷 and the distances in the
dual spaces, but in case of 𝐷𝐴𝐶𝐷 this can be explained by its resemblance
to the cosine function (𝐷𝐴𝐶𝐷 = 1 − 𝑐𝑜𝑠(𝐷𝐴𝐷)). The function 𝐷𝜌3 exhibits
similar or lower error than 𝐷𝐴𝐶𝐷 on some objects (Arm, Ant) but also
considerably larger error on different ones (For, Shi) which suggests that
𝐷𝜌3 is quite unpredictable.

The graphs in Figures 5.6, 5.7, 5.8 show the relation between 𝐷𝐺𝑇 and
the other distance functions. We generated 50 candidates on the Armadillo
object and for each pair of the candidates we put its distance computed using
𝐷𝐺𝑇 on the horizontal axis and the distance computed using a given different
distance function on the vertical axis. We divide each value by the mean of
the given distance function computed by 𝐴𝑣𝑟𝑔. If some distance function 𝐷
was exactly the same as 𝐷𝐺𝑇 (apart from overall scale) then there would be
a perfect linear dependency and the points for 𝐷 would lie on a perfect line
in the graph. Figure 5.6 shows the relations of 𝐷𝑆𝑆𝐷, 𝐷𝐸𝐷 and 𝐷𝐴𝐶𝐷 to
𝐷𝐺𝑇 . The functions 𝐷𝐴𝐷 and 𝐷𝐷𝑄 are not included in this figure because
they are too similar to 𝐷𝐸𝐷, this similarity is shown separately in Figure
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Figure 5.6: Relations between 𝐷𝑆𝑆𝐷/𝐷𝐸𝐷/𝐷𝐴𝐶𝐷 and 𝐷𝐺𝑇 for the Armadillo
object.

Figure 5.7: Relations between 𝐷𝐷𝑄/𝐷𝐸𝐷/𝐷𝐴𝐷 and 𝐷𝐺𝑇 for the Armadillo
object.

5.7. The dual representations are also shown separately in Figure 5.8. For
different objects the graphs are slightly different but overall very similar.
There is an obvious almost linear dependency between 𝐷𝐺𝑇 and 𝐷𝑆𝑆𝐷 (see
Fig. 5.6), however, 𝐷𝐸𝐷, 𝐷𝐴𝐷 and 𝐷𝑄𝐷 exhibit relation to 𝐷𝐺𝑇 that is also
quite near linear dependency (see Fig. 5.7). For 𝐷𝐴𝐶𝐷 the resemblance to
cosine is visible in the graph. On the other hand, the dual representations
show rather unstable behavior (see Fig. 5.8). This is mostly caused by the
shift in some of the coordinates in the dual space but without this shift all
the dual representations would suffer from singularities which is even worse
and makes them virtually unusable. It is possible that shifting by a different
constant could lead to better results, at least for some objects, however, the
choice of the shifting constant is arbitrary and there does not seem to be
any reasonable way to set it appropriately.

Table 5.2 shows the Pearson correlations [68] between all pairs of the
distance functions (including 𝐷𝐺𝑇 ) for the data shown in Figures 5.6, 5.7,
5.8. Value of 1 indicates perfect linear dependency and the closer the value is
to 0 the weaker the linear dependency is. Expectedly, 𝐷𝑆𝑆𝐷 shows the best
linear correlation with 𝐷𝐺𝑇 . However, the correlations of 𝐷𝐸𝐷, 𝐷𝐴𝐷, 𝐷𝐷𝑄
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Figure 5.8: Relations between 𝐷𝜌1/𝐷𝜌2/𝐷𝜌3 and 𝐷𝐺𝑇 for the Armadillo ob-
ject.

Table 5.2: Pearson correlations of the distance functions for the Armadillo
object.

GT ED AD ACD SSD DQ 𝜌1 𝜌2 𝜌3
GT 1.0000 0.9723 0.9644 0.9120 0.9998 0.9738 0.5361 0.3265 0.7238
ED 0.9723 1.0000 0.9989 0.9679 0.9713 0.9998 0.5537 0.3460 0.7621
AD 0.9644 0.9989 1.0000 0.9767 0.9635 0.9983 0.5499 0.3474 0.7548

ACD 0.9120 0.9679 0.9767 1.0000 0.9105 0.9664 0.5196 0.3111 0.7262
SSD 0.9998 0.9713 0.9635 0.9105 1.0000 0.9728 0.5351 0.3286 0.7214
DQ 0.9738 0.9998 0.9983 0.9664 0.9728 1.0000 0.5516 0.3423 0.7637
𝜌1 0.5361 0.5537 0.5499 0.5196 0.5351 0.5516 1.0000 0.9248 0.4217
𝜌2 0.3265 0.3460 0.3474 0.3111 0.3286 0.3423 0.9248 1.0000 0.1934
𝜌3 0.7238 0.7621 0.7548 0.7262 0.7214 0.7637 0.4217 0.1934 1.0000

and even 𝐷𝐴𝐶𝐷 with 𝐷𝐺𝑇 are all rather high, all above 0.9. On the other
hand, the distances in the dual spaces exhibit mostly low correlation with
𝐷𝐺𝑇 . Notably, the correlations among 𝐷𝐸𝐷, 𝐷𝐴𝐷 and 𝐷𝐷𝑄 are all very high,
confirming that these three distance functions are indeed all very similar.

5.3.1 Theoretical Comparison
Based on the results, the most appropriate representation of the space of
planes in any Mode-based symmetry detection method is the transforma-
tion representation with the 𝐷𝑆𝑆𝐷 distance function. But the results also
suggest that, except for the dual representations, all the distance functions
are rather similar and none of them deviates significantly from 𝐷𝐺𝑇 which
makes all of them well applicable. One only has to keep in mind that all
the distance functions except 𝐷𝑆𝑆𝐷 require translating the input object to
the origin, otherwise the normalization of the 𝑑 coefficient would have to be
done differently. But if the practical results are put aside, there are yet some
theoretical differences between the various representations.

Since the dual and the 4D vector representations are basically Euclidean,
using these representations the candidates can easily be stored in some Eu-
clidean data structure, such as a KD-tree or a grid, that can be used for
fast proximity queries if needed. In case of the 𝐷𝐴𝐷 and 𝐷𝐴𝐶𝐷 distance
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functions some structure can possibly be built using the polar coordinates
in 4D. Also, there are quite many possible algorithms for mode-seeking in
Euclidean data. The transformation representations and the 𝐷𝑆𝑆𝐷 and 𝐷𝐷𝑄

distance functions are non-Euclidean and therefore slightly more restrictive
in terms of the accelerating data structures and possible mode seeking algo-
rithms that can be used. However, as already pointed out, such possibilities
exist [98][103] (see also Section 4.1.3). Also, the implementation of the 𝐷𝑆𝑆𝐷

and 𝐷𝐷𝑄 is more complex since 𝐷𝑆𝑆𝐷 requires some matrix representation
and basic operations of matrix algebra and 𝐷𝐷𝑄 requires implementing the
operations of dual quaternion algebra. On the other hand, the dual and 4D
vector representations only require the ordinary algebraic operations with
real numbers and vectors.

We also note that, although the 𝐷𝐷𝑄 distance function does not seem to
bring any considerable improvement over the other simpler distance func-
tions, the idea of representing reflections by dual quaternions seems novel
and can possibly find its use in different applications or if some better dis-
tance functions for dual quaternions occur in the future. It could also be used
when creating new symmetry detection algorithms to represent the planes,
possibly taking advantage of the dual quaternion algebra.

5.4 Summary
We have described several representations of the space of planes that can
be used in any Mode-based algorithm for symmetry plane detection and we
have also described how distances can be computed in the various space
representations. We have shown that the 3-dimensional dual space repre-
sentations are not very appropriate for this purpose but they can easily be
used for visualization purposes. In order to represent the space of planes
appropriately in the Mode-based symmetry detection, spaces of higher di-
mensionality need to be used and the transformation representation, which
appears to be the most appropriate one, is even non-Euclidean. However,
the results suggest that apart from the 3D dual spaces all the plane space
representations are well applicable in this context, although there are some
theoretical differences between them.
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Chapter 6

Symmetry Plane Detection
Using Differentiable Symmetry
Measure

In the previous chapter we analyzed different ways of representing planes in
methods for symmetry plane detection that are based on the popular Mode-
based approach. In this chapter, we describe a new method for detecting
the global symmetry plane of a 3D object which is based on a completely
different approach. The content of this chapter was previously published in
[42].

Since reflectional symmetry is probably the most often occurring symme-
try in real world objects, having a reliable and robust method for symmetry
plane detection in 3D data can be very useful for many applications. In gen-
eral, it is desirable for the method to be capable of detecting symmetries in
objects that are only approximately symmetrical (see e.g. Fig. 6.1a) or sym-
metries in objects damaged by noise (see Fig. 6.1b). Some applications, such
as object reconstruction [97, 91, 85], even require the symmetry detection to
work on objects where some parts are missing, which strongly disrupts the
symmetry and makes it much more difficult to detect. See, for example, the
objects in Figures 6.1c and 6.1d. Although the global reflectional symmetry
in them is quite weak, a human observer is still able to see it and a good
symmetry detection method should be able to find it.

In the following, we propose a surprisingly simple, differentiable symme-
try measure, usable for evaluating symmetry of a 3D object, and we use it
to design a robust and flexible global symmetry plane detection method.
The proposed method can be used on perfectly as well as approximately
symmetrical objects and we show that it is also capable of detecting the
plane of symmetry for objects with extensive missing parts, as well as for
noisy objects. Furthermore, the proposed method takes a general discrete
set of points on the input and therefore puts virtually no constraints on
the input data, which can be very useful because a more advanced object
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(a)
Real human face

(b)
Noisy Lion

(c)
Partial

Armadillo

(d)
Embrasure

Figure 6.1: An approximately symmetrical object [15] - (a) a noisy object -
(b) and two objects with missing parts - (c), (d).

representation, such as a manifold mesh, is not always available. Many pre-
vious approaches use some form of descriptors (e.g. [67, 13, 86, 91]), mostly
cuvature-based, i.e. the quality of their results depends on the quality of
the descriptor, which in turn depends on the properties of the input object.
The proposed method works very well without descriptors, yet it is also very
flexible, so that if more information about the input object is available, the
method can be easily extended to use this information in its favor. Therefore,
any descriptor can be used as the additional information for the method, as
will be shown, but in general, this is not necessary. This altogether makes
the proposed method very robust, flexible and widely applicable. We will
also show that the method is mostly superior to other existing methods in
terms of robustness, accuracy and speed. Although we only consider a 3D
case, the proposed symmetry measure and the method built on it can easily
be extended into more dimensions (or fewer, if needed) and the symmetry
measure can also be generalized for different types of symmetry.

6.1 Symmetry Measure
We again represent a general plane 𝑃 as described in Section 2.4.3 and we
denote p = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 a 4D vector of the plane coefficients. In this chapter
we do not implicitly consider the plane coefficients to be normalized in any
way. A vector function r(p,x) ∈ 𝐸3 that reflects a point x = [𝑥, 𝑦, 𝑧]𝑇 ∈ 𝐸3

over a plane 𝑃 represented by p is defined as

r(p,x) = x − 2
n𝑇px + 𝑑

n𝑇pnp
np

where np = [𝑎, 𝑏, 𝑐]𝑇 is the normal vector of the plane 𝑃 . The components
of the function r(p,x) are continuous and differentiable w.r.t. p except for
p = [0, 0, 0, 𝑑]𝑇 , which does not represent a valid plane. Consider a set of
points 𝑋 = {x1,x2, ...,x𝑛},x𝑖 ∈ 𝐸3, 𝑖 = 1, ..., 𝑛 which represents a sampled
3D object. In theory, 𝑋 can contain samples acquired from arbitrary 3D
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object representations, including volumetric ones, and all that follows is
applicable regardless of the original representation from which the point
set was extracted. However, we only experimented with surface data so in
this work we consider 𝑋 to represent a sampled 3D surface, e.g. vertices of a
polygonal mesh, samples of a parametric surface, points of a raw point cloud,
etc. We propose a symmetry measure that gives an evaluation of how much
the point set 𝑋 is symmetrical with respect to a given plane 𝑃 , represented
by p. The measure is defined as

𝑠𝑋(p) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜙(||r(p,x𝑖) − x𝑗||). (6.1)

The function 𝜙(𝑙) is some radial function such that 𝜙(0) = 1 and its value
decreases and approaches 0 as 𝑙 increases, 𝑤𝑖𝑗 are weights of point pairs and
will be discussed bellow. By default, the weights are not used, i.e. 𝑤𝑖𝑗 = 1
for all 𝑖, 𝑗. The function 𝜙 is called a similarity function because it trans-
forms distance of two points into their similarity. The symmetry measure 𝑠𝑋
considers all possible pairs of points in 𝑋. For each pair x𝑖,x𝑗 ∈ 𝑋 the point
x𝑖 is reflected over the plane 𝑃 , represented by p, and its distance from x𝑗
is computed and transformed into similarity using 𝜙. These similarities are
summed together for all pairs, giving the symmetry measure value. The idea
behind the symmetry detection method proposed below is that maximizing
the symmetry measure 𝑠𝑋(p) for p should force as many points as possible
to reflect over 𝑃 as close as possible to other points. This idea well fits in
the nature of the task of global approximate symmetry detection, which is
mainly to balance the size of the matching parts of the object (how many
points reflect close to other points) and the precision of the match (how close
to other points they reflect).

The idea of using some form of symmetry measure to find symmetries in
shapes is not new (see e.g. [104, 77, 46]). However, the symmetry measure
we propose provides several significant advantages that allow for designing a
very fast, robust and flexible symmetry plane detection method. First of all,
if a proper 𝜙 function is used, the measure is differentiable. This is a very use-
ful property since it allows analytically computing its gradient and provides
a natural way of quickly finding its maximum using some fast gradient-based
optimization method. It can also be computed efficiently, while remaining
differentiable, as described bellow. Furthermore, the measure maintains the
relations between every two points, which allows using the weights 𝑤𝑖𝑗 to ad-
just the importance of given point pairs based on additional information, if
some is available, as will be demonstrated later. Although using the weights
is certainly not necessary in majority of cases, in some specific situations it
can be useful and this option makes the symmetry measure very flexible.
The measure is well suitable for approximate or weak symmetries and it can
be computed for any set of points, not requiring a closed or manifold surface
or any other specific object representation. It can also be easily extended
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into higher dimensions by just adding more coordinates to the vector p and
easily generalized for different symmetry types by replacing the r function
with a different transformation.

6.1.1 Similarity Function
The symmetry measure 𝑠𝑋(p) is differentiable w.r.t. p (except for p =
[0, 0, 0, 𝑑]𝑇 ) when 𝜙(𝑙) is differentiable for 𝑙 ∈ ⟨0; ∞) and 𝑑

𝑑𝑙
𝜙(0) = 0. This

holds for the Gaussian function and also for most of the Wendland’s func-
tions [101]. Although the Gaussian function is simple and easy to implement,
we used the following modified Wendland’s function instead

𝜙(𝑙) =

⎧⎨⎩(1 − 1
2.6𝛼𝑙)

5(8( 1
2.6𝛼𝑙)

2 + 5 1
2.6𝛼𝑙 + 1) 𝛼𝑙 ≤ 2.6

0 𝛼𝑙 > 2.6
.

The value 𝛼 is the shape parameter of the function. The multiplier 1
2.6 is

our modification which ensures that the function has a similar shape and
spread to the Gaussian (𝑒−(𝛼𝑙)2) for the same value of 𝛼. The main difference
between the Gaussian and our Wendland’s function is that the Wendland’s
function equals 0 for 𝛼𝑙 > 2.6. This means that the contribution of any point
x𝑖 ∈ 𝑋 to the value of 𝑠𝑋(p) is fully determined by the points of 𝑋 that are
not farther than 2.6

𝛼
from r(p,x𝑖).

If no two points of 𝑋 are closer than 22.6
𝛼

then the contribution is de-
termined by at most one point of 𝑋 which is the closest to r(p,x𝑖) and the
maximum value of this contribution is 1. Therefore, the maximum possible
value of 𝑠𝑋(p) is 𝑛 and it can only occur in the case when each point of 𝑋
reflects over 𝑃 precisely to another point of 𝑋, which can only happen in
the case of perfect symmetry. This implies that if we set 𝛼 ≥ 2 2.6

𝑙𝑚𝑖𝑛
, where

𝑙𝑚𝑖𝑛 is the smallest distance between two points of 𝑋, and 𝑋 is perfectly
symmetrical, then the global maximum of 𝑠𝑋(p) will be always in the plane
of perfect symmetry.

However, with such a value of 𝛼, the function 𝑠𝑋(p) would have many lo-
cal maxima, especially if 𝑙𝑚𝑖𝑛 was small, making it difficult to optimize. Also,
in practice, objects are never perfectly symmetrical and we therefore aim to
detect approximate symmetries rather than perfect ones, so we instead set
𝛼 according to the size of the input object as 𝛼 = 15

𝑙𝑎𝑣𝑟𝑔
, which in most cases

makes the span of 𝜙 considerably larger and 𝑠𝑋(p) smoother and easier to
optimize. The value 𝑙𝑎𝑣𝑟𝑔 is the average distance of the points in 𝑋 from
their centroid and the value 15 was chosen as approximately optimal based
on vast experiments. We also note that the proposed symmetry detection
method is not very sensitive to this value, as will be shown in Section 6.4.
Nevertheless, in case of finding perfect symmetry, setting 𝛼 = 2 2.6

𝑙𝑚𝑖𝑛
could

still be used for some final refinement but we do not include this into our
symmetry detection method.
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6.1.2 Efficient Computation
A brute force computation of 𝑠𝑋(p) has time complexity of 𝒪(𝑛2) but for
many pairs x𝑖,x𝑗 ∈ 𝑋 the similarity 𝜙(||r(p,x𝑖)−x𝑗||) is 0, so it only needs to
be computed for pairs where ||r(p,x𝑖)−x𝑗|| ≤ 2.6

𝛼
. We use a uniform grid with

the cell size 2.6
𝛼

× 2.6
𝛼

× 2.6
𝛼

. During the computation of 𝑠𝑋(p), after a point x𝑖
is reflected over the given plane and ends up in a cell 𝐶, only points in 𝐶 and
cells adjacent to 𝐶 are used for the symmetry measure computation. This
way, due to the locality of the Wendland’s function, 𝑠𝑋(p) can be computed
efficiently and remain first-order differentiable. Higher-order diffierentiability
can easily be achieved using some higher-order differentiable Wendland’s
function, but in our application we only need the first-order differentiability
and the function we use is less computationally expensive than the higher-
order differentiable ones.

6.1.3 Simplification
Using the above described computation, the symmetry measure can well be
used to quantify symmetry for a given plane even when the input object has
quite a large number of points. But for the purpose of symmetry detection,
where the symmetry measure must be evaluated repeatedly, it can still be too
computationally expensive. However, in extensive experiments we observed
that the symmetry measure well represents the symmetry of a point set
even after the set gets simplified to a rather low number of points, given a
proper simplification method is used. One way to simplify a set of points is
to downsample it randomly but this approach is insufficient, since it results
in a point set that does not represent the shape of the original object very
well. Instead, we use the following simplification algorithm, which is quite
simple and very fast. A 3D grid is created for the input point set with the
cell size 𝑙𝑎𝑣𝑟𝑔

𝑘
× 𝑙𝑎𝑣𝑟𝑔

𝑘
× 𝑙𝑎𝑣𝑟𝑔

𝑘
and each occupied cell gives one point of the

simplified point set by averaging all points contained in the cell. It is desired
to simplify the point set to approximately 𝑚 points, so the simplification
of the original point set is repeated several times with increasing value of
𝑘 until the resulting point count reaches at least 𝑚, usually it gets slightly
above 𝑚.

The left column of Figure 6.2 visualizes the symmetry measure for three
objects simplified to approximately 1000 points using the above described
algorithm. Each point q ∈ ⟨−1; 1⟩ × ⟨−1; 1⟩ × ⟨−1; 1⟩ in the 3D space
corresponds to a single plane with normal vector np = 1

||q||q and 𝑑 =
𝑙𝑎𝑣𝑟𝑔 · (||q|| − 1

2). The symmetry measure increases as the color goes from
purple to light blue. The 1

2 shift in the 𝑑 coefficient causes the empty sphere
in the middle, we only consider 𝑑 ≥ 0. For each object, the viewpoint was
chosen to maximize the perceived information. For visualization simplicity,
the objects are represented by triangle meshes but only their vertices were
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(a) Lion
2213 points

Lion convergence

(b) Armadillo
172974 points

Armadillo convergence

(c) Partial Armadillo
64647 points

Partial Armadillo convergence

Figure 6.2: The symmetry measure visualized for Lion - (a), Armadillo [51]
- (b) and its partial version - (c), simplified to approximately 1000 points
(original point counts are in the captions), the symmetry measure increases
as the color goes from purple to light blue, the objects are shown with the
plane in the global maximum of the measure, the right column shows the
convergence regions for the given objects.
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used as the original point sets and input for the simplification. In Figures
6.2a and 6.2b it appears as if there are two significant maxima but this is
caused by planes with normal np being the same as planes with normal −np
for 𝑑 = 0 and, in these two cases, the plane corresponding to the global
maximum passes very near the origin, so 𝑑 is close to 0. This causes the
light spot of the global maximum to be split into two spots on the opposite
sides of the empty sphere whose surface corresponds to 𝑑 = 0. In Figure
6.2c, there is only one spot of the global maximum because the plane it rep-
resents does not pass so near the origin. Next to each visualization, there is
the corresponding object together with the plane that represents the global
maximum of the symmetry measure. In all three cases the global maximum
corresponds to a very good symmetry plane of the given object, even though
it is simplified to only approximately 1000 points. The original point counts
are in the captions.

6.1.4 Locating Maxima
To find a local maximum of the symmetry measure, we employ a quasi-
Newton optimization method L-BFGS [58], which uses the gradient of the
symmetry measure, exploiting its differentiability, and it usually converges,
to a sufficient precision, in only several iterations. Computation of the gradi-
ent can be accelerated in the same way as the computation of the symmetry
measure itself (see Section 6.1.2). This is because the first-order derivative
of 𝜙(𝑙) also equals 0 for 𝛼𝑙 > 2.6. We also tried using the Nelder-Mead op-
timization method [72], which does not use the gradient. It also worked but
needed a much larger number of iterations making the optimization multiple
times slower. This suggests the true usefulness of the analytically computed
gradient. Furthermore, differentiability can be useful even in case of non-
gradient methods, because it makes the symmetry measure free of sudden
changes, providing more stability to the optimization.

Before starting the L-BFGS optimization, the point set should be trans-
lated together with the initial plane somewhere near the origin because in
a large distance from the origin (large 𝑑) even a slight change of the plane
normal vector direction can cause a significant change of the plane position,
which can negatively influence the convergence of the optimization method.
In order to find the global maximum of some function, generally the initial
point needs to be somewhat close to it. The right column of Figure 6.2 shows
a visualization of the plane space, for the same three objects using the same
parameterization as in the top row, where the red spots correspond to a re-
gion of planes from which the L-BFGS optimization converged to the global
maximum - the convergence region. The objects were again simplified to ap-
proximately 1000 points. For Lion and Armadillo, the convergence regions
are very large. For partial Armadillo, due to its much weaker symmetry, the
region is smaller but still considerably big, with the angle between normal
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vectors of any two planes on the opposite sides of the region exceeding 45∘.
This indicates that in order to find the global maximum, the starting plane
of the optimization does not need to be particularly close to it, even in the
case of quite weakly symmetrical objects. This property of the symmetry
measure will be exploited in the proposed symmetry detection method.

6.2 Proposed Symmetry Detection Method
The proposed global symmetry plane detection method roughly follows the
common RANSAC scheme, which is very often used in symmetry detection
and related areas. The key idea of RANSAC is generating a large number of
candidate solutions based on the input data, which creates a good enough
probability of a sufficiently good solution being among them. Each of the
candidates is evaluated for its fitness, so creating unnecessarily large number
of candidates can easily lead to a time consuming computation. But in our
case, since the numerical optimization converges to the global maximum of
the symmetry measure from quite a large distance, we do not need to find a
solution that close to the best one. We only need to find one in the consid-
erably big convergence region, suggesting that a rather sparse sampling of
the candidate space will be sufficient. Determining with certainty if a can-
didate lies in the convergence region is impossible, but a good indication is
the symmetry measure itself. It can be expected that planes near the global
maximum have a higher symmetry measure than those far from it.

The overview of the proposed method follows. Several candidate symme-
try planes are created and only a small number of them, with the largest
symmetry measure, are selected as having the largest potential of being in
the convergence region. Then the optimization is started from these few
planes and the resulting plane with the largest final symmetry measure is
selected. The other planes to which the optimizations converge can be used
as secondary planes in case of objects with multiple significant symmetries,
as will be described later. For reasons described in Section 6.1.4, before the
symmetry detection itself, the input set of points is translated so that its
centroid is at the origin and in the end the inverse translation is applied to
the resulting symmetry plane(s).

6.2.1 Creating the Candidate Planes
Meaningful candidate planes could be created by taking each pair of points
x𝑖,x𝑗 ∈ 𝑋, 𝑖 ̸= 𝑗 and creating the plane of symmetry of these two points.
But using this approach directly on 𝑋 results in an overwhelming number
of planes, at least when 𝑋 consists of more than a few tens of points. There-
fore, we first simplify 𝑋 using the algorithm described in Section 6.1.3 with
𝑚 = 100, creating a new set of points 𝑋𝑐𝑎𝑛𝑑 with approximately 100 to 110
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points. The candidate plane creation is then performed on 𝑋𝑐𝑎𝑛𝑑, creating
approximately 5000 to 6000 candidate planes, which is still unnecessarily
many. However, we observe that many of the candidates are very similar,
which means there is no need to evaluate all of them.

Candidate Pruning

We use the following distance function to measure the distance between two
planes represented by p𝑢, p𝑣

𝐷(p𝑢,p𝑣) =

⎧⎨⎩||̂︀p𝑢 − ̂︀p𝑣|| n𝑇p𝑢np𝑣 ≥ 0
||̂︀p𝑢 + ̂︀p𝑣|| n𝑇p𝑢np𝑣 < 0

where ̂︀p = 1
||np|| [𝑎, 𝑏, 𝑐,

𝑑
𝑙𝑎𝑣𝑟𝑔

]𝑇 and np𝑢, np𝑣 are the normal vectors of the
planes. This is basically the 𝐷𝐸𝐷 distance function from Chapter 5 only
modified for non-normalized planes. A theoretically more appropriate dis-
tance function can be derived when representing the candidates as reflection
transformations as described in Chapter 5 (see also Chapter 4 and [79]).
However, as also shown in Chapter 5, the distance function we use here
shows very similar behavior in practice (given the object is centered, which
we did at the beginning), is simpler, easier to implement and does not require
conversion to matrix represented transformations. When creating the can-
didates, if a newly created candidate p𝑣 is closer than 𝛿 = 0.1 to the closest
previously created candidate p𝑢, the new one is not added to the candidate
set. Instead, p𝑢 is replaced with 𝑎𝑣𝑟𝑔( 1

||np𝑢||p𝑢,
1

||np𝑣 ||p𝑣), computed as

𝑎𝑣𝑟𝑔(p𝑢,p𝑣) =

⎧⎨⎩p𝑢 + p𝑣 n𝑇p𝑢np𝑣 ≥ 0
p𝑢 − p𝑣 n𝑇p𝑢np𝑣 < 0

.

If p𝑢 is already an average of 𝜓 candidates, 𝜓 > 1, then p𝑣 is only added
to the average which is computed as 𝑎𝑣𝑟𝑔( 1

||np𝑢||p𝑢,
1

𝜓||np𝑣 ||p𝑣). To accelerate
locating the closest candidate, we use a 4D grid with cell size 𝛿 × 𝛿 × 𝛿 × 𝛿
where for each candidate p, the vector ̂︀p is stored. This is plausible because
𝐷 is a Euclidean distance. The grid query is similar to the one described
in Section 6.1.2 for the 3D grid, only differing in that when locating the
closest candidate to p, the query is executed for both ̂︀p and −̂︀p because they
represent the same plane. We observe that candidates created by averaging a
very low number of planes can quite safely be considered outliers. Therefore,
we further remove all candidates created by averaging less than 𝜓𝑚𝑖𝑛 = 4
planes, which basically means that there are at most 3 pairs of points in𝑋𝑐𝑎𝑛𝑑

that are roughly symmetric w.r.t. the given candidate plane, which is too few
to generate a meaningful candidate. The remaining candidates represent the
final candidate set, which usually consists of only a few hundreds of planes,
so the candidate space is sampled rather sparsely but still sufficiently.
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6.2.2 Selecting the Best Candidates
Once the candidates are created, we use the algorithm from Section 6.1.3
with 𝑚 = 1000 to create another simplified version of 𝑋 with approximately
1000 points, denoted 𝑋𝑠𝑖𝑚𝑝. Then we compute the symmetry measure 𝑠𝑋𝑠𝑖𝑚𝑝

for all the candidate planes. In case of objects with weaker or multiple less
significant symmetries, it is not safe to only select the best candidate to
initialize the optimization because its relatively large symmetry measure can
be caused by its proximity to some significant local maximum rather than the
global one. So we select 𝑆 candidates with the largest symmetry measure and
start the optimization from all of them. As the candidate pruning ensures
that the candidates are not too similar, it is unlikely that the optimization
converges to the same plane from all of them. In the end, we get 𝑆 local
maxima of the symmetry measure, among which we select the one with the
largest symmetry measure and declare it the resulting plane of symmetry.
We use 𝑆 = 5.

6.2.3 Detecting Multiple Planes
Since the above described approach provides 𝑆 local maxima of the symme-
try measure the method can be easily adjusted to find multiple symmetry
planes of the input object. It is very likely that two or more planes among the
𝑆 local maxima will be very similar, therefore, to avoid detecting the same
plane multiple times, we do the following. We sort the 𝑆 planes represent-
ing the local maxima according to their symmetry measure in a descending
order and we iterate through the sorted list from the first to the last plane.
The first plane is always accepted as one of the resulting symmetry planes
and any other plane is only accepted if its distance 𝐷 from the closest al-
ready accepted plane is larger than 0.25. The method can find at most 𝑆
significant symmetries this way. Therefore, when used to detect multiple
planes, it is advisable to increase the value of 𝑆 for the price of slightly
larger time consumption. We use 𝑆 = 20 instead of the original 5, which
is sufficient in most applications. Because the local maxima can represent
symmetry planes of varying significance, we further recommend accepting
only planes with symmetry measure above some predefined threshold. The
value of the threshold depends on the intended application but for a general
purpose we recommend a value about 70% of the symmetry measure of the
best detected plane.

6.2.4 Using the Weights
Until now we have been ignoring the weights 𝑤𝑖𝑗 in the symmetry measure
𝑠𝑋 (see Equation 6.1) and considered all of them equal to 1. But when using
the weights the method can be much more flexible. The weight 𝑤𝑖𝑗 can be
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expressed as 𝑤𝑖𝑗 = 𝑤𝑠𝑖𝑗𝑤
𝑑
𝑖𝑗(p) where 𝑤𝑠𝑖𝑗 is a static weight and 𝑤𝑑𝑖𝑗(p) is a

dynamic weight which depends on the plane 𝑃 represented by p. Now the
symmetry measure 𝑠𝑋 can be expressed as

𝑠𝑋(p) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑠𝑖𝑗𝑤
𝑑
𝑖𝑗(p)𝜙(||r(p,x𝑖) − x𝑗||).

The dynamic weights can, for example, represent the symmetry of normal
vectors or directions of principle curvatures in corresponding pairs of points
with respect to a given plane. The static weights can be set to represent the
importance of given pairs of points. In other words, the more it is desired for
the point x𝑖 to end up in or near the point x𝑗 after reflecting it over the plane
of symmetry the higher the static weight 𝑤𝑠𝑖𝑗 should be. The importance
can be set manually by the user or as a similarity of some kind of feature
function values in the given two points. As this feature function, for example,
some type of curvature can be used, since it can be expected that in two
symmetrical points there are similar curvature values.

In the rest of this section we show two modifications of the proposed
method that use the weights in a beneficial manner. The first modification
uses similarity of Gaussian curvature values to set the static weights and
the symmetry of normal vectors for the dynamic weights. The Gaussian
curvature as the feature function was chosen because it has previously shown
itself useful for quantifying point similarity on 3D shapes [38] in context of
symmetry detection. This modification will be described in Section 6.2.5.
How this weighting can be used will also be shown in Section 6.3.4. The
second modification only uses the static weights, which are set according to
point-to-point distance, to force the method to detect a plane perpendicular
to the largest dimension of the object. It will be described in Section 6.2.6.
The results and possible purpose of both these modifications will be shown
in Section 6.3.4.

6.2.5 Using Gaussian Curvature and Normal
Symmetry

Here we describe the first modification which uses the Gaussian curvature
values and normal vectors. The curvature values can help to identify simi-
larity of features in the input object, which can be useful in case of objects
with severe partiality where the whole object is completely asymmetrical
but some features still exhibit symmetry. The normal vectors can further
help to make the resulting symmetry more accurate. Let us now suppose
that the input object is not represented by a general set of points but by a
manifold triangle mesh on which the Gaussian curvature and a unit normal
vector can be computed for each vertex. The normal vectors of all vertices
are computed by summing the normal vectors of triangles adjacent to the
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given vertex and normalizing the resulting vector. The values of Gaussian
curvature are computed as described in [65].

Apart from the set of points𝑋 = {x1,x2, ...,x𝑛} that represent vertices of
the mesh we now also have a set of unit normal vectors 𝑁 = {n1,n2, ...,n𝑛}
and a set of Gaussian curvatures 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑛} where n𝑖 is the unit
normal vector in the point x𝑖 and 𝑔𝑖 is the Gaussian curvature in the point
x𝑖. It also needs to be defined how the normal vectors and the values of
Gaussian curvature will be determined when the simplification algorithm is
applied. When a new point of the simplified point set is created by averaging
the points in a given cell of the simplification grid, its normal vector is
determined by averaging the normal vectors in all points in the cell and
normalizing the resulting vector. Its Gaussian curvature is taken from the
point in the cell for which the absolute value of its Gaussian curvature is the
largest.

Symmetry of Normal Vectors

The dynamic weights are set using the symmetry of normal vectors in ver-
tices. In order to measure the reflectional symmetry of two unit normal vec-
tors in two points, we first have to define a function rn(p,n) which reflects
a unit normal vector n over the plane 𝑃 represented by p. This function is
defined as

rn(p,n) = n − 2
n𝑇pn
n𝑇pnp

np.

The symmetry of two normals n𝑖 and n𝑗 is defined as the similarity of
rn(p,n𝑖) and n𝑗. To quantify such similarity we apply the similarity function
𝜙(𝑙) on the angle between rn(p,n𝑖) and n𝑗. As 𝜙 our Wendland’s function is
used with the shape parameter 𝛼 set as 𝛼 = 4. This value of 𝛼 was chosen so
that for angle 𝜋

16 (that is 11.25∘) the similarity is approximately 0.5 because
it is reasonable that only for low angles the similarity is significant (close to
1), otherwise the value could be quite close to 1 even for rather asymmetrical
pairs of points. The dynamic weights 𝑤𝑑𝑖𝑗(p) are therefore defined as

𝑤𝑑𝑖𝑗(p) = 𝜙(𝑎𝑟𝑐𝑐𝑜𝑠(rn(p,n𝑖)𝑇n𝑗)), 𝑤𝑖𝑡ℎ 𝛼 = 4.

Similarity of Gaussian Curvature Values

The static weights are set using the Gaussian curvature values as follows

𝑤𝑠𝑖𝑗 =

⎧⎨⎩
𝑚𝑖𝑛(|𝑔𝑖|,|𝑔𝑗 |)
𝑚𝑎𝑥(|𝑔𝑖|,|𝑔𝑗 |) |𝑔𝑖| ≥ 𝑔𝑎𝑣𝑟𝑔

ℎ
∧ |𝑔𝑗| ≥ 𝑔𝑎𝑣𝑟𝑔

ℎ
∧ 𝑔𝑖𝑔𝑗 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

The weight is non-zero only when both curvatures 𝑔𝑖 and 𝑔𝑗 have the same
sign and their absolute values are both greater than the threshold 𝑔𝑎𝑣𝑟𝑔

ℎ
where
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𝑔𝑎𝑣𝑟𝑔 is the average of absolute values of Gaussian curvatures in all points
and ℎ is a constant which we set as ℎ = 100. This ensures that Gaussian
curvatures with very small absolute values are not considered because they
are usually present in points without significant features.

Additional Changes

When such weighting is used, we do not use the default candidate pruning,
because it does not reflect the importance of given point pairs defined by the
weights. Instead, we use the weights to prune the set of candidate planes in
a smarter way. When creating a candidate plane 𝑃 , represented by p, as a
symmetry plane of x𝑖 ∈ 𝑋𝑐𝑎𝑛𝑑 and x𝑗 ∈ 𝑋𝑐𝑎𝑛𝑑, we test whether the weights
𝑤𝑠𝑖𝑗 and 𝑤𝑑𝑖𝑗(p), computed using 𝑁𝑐𝑎𝑛𝑑 and 𝐺𝑐𝑎𝑛𝑑, are above certain thresh-
olds and if not, the given plane is not considered a candidate anymore. The
sets 𝑁𝑐𝑎𝑛𝑑 and 𝐺𝑐𝑎𝑛𝑑 are the sets 𝑁 and 𝐺 (respectively) corresponding to
the simplified point set 𝑋𝑐𝑎𝑛𝑑. The normal vector information and Gaussian
curvature information are quite damaged by the simplification process and
therefore the thresholds for the weights should not be set very large. Specif-
ically we consider the plane 𝑃 , created as a symmetry plane of x𝑖 ∈ 𝑋𝑐𝑎𝑛𝑑

and x𝑗 ∈ 𝑋𝑐𝑎𝑛𝑑, a candidate plane if 𝑤𝑠𝑖𝑗 > 0 and 𝑤𝑑𝑖𝑗(p) > 0.25. Also, since
with this weighting the symmetry measure gets more complex (less smooth)
and more difficult to optimize, we use 𝑚 = 200 instead of 𝑚 = 100, when
simplifying 𝑋 to create 𝑋𝑐𝑎𝑛𝑑, to sample the space of candidate planes more
densely.

6.2.6 Using Point-to-Point Distance
Here we describe the second modification that uses the point-to-point dis-
tances to set the weights. There are many objects which are symmetrical with
respect to more than one plane and in some cases only some of these planes
are desired to be detected. For example, imagine an object with considerably
different sizes in different dimensions (width, height, depth). In such cases,
the user might want to always detect the plane along the smaller dimen-
sions and perpendicular to the largest dimension to maximize the object’s
span across the detected symmetry plane. In order to achieve such behav-
ior a very simple weighting can be applied by setting the static weights to
reflect the distance between the corresponding points. Specifically, we set
them as 𝑤𝑠𝑖𝑗 = ||x𝑖−x𝑗 ||

𝑙𝑎𝑣𝑟𝑔
. The dynamic weighs remain unused, i.e. 𝑤𝑑𝑖𝑗(p) = 1.

When such weights are plugged into the symmetry measure, pairs of points
with larger mutual distance will be treated as more important. Therefore,
the method will try to find such a symmetry plane for which there is the
best symmetry between the pairs with the largest distance. The rest of the
method remains unmodified in this case. Similar weighting could also be
used to achieve the opposite effect and force the method to detect planes
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along the largest dimension and perpendicular to the smaller ones, but we
did not perform any experiments in this way.

6.3 Results
The proposed method was implemented in C# and its results were acquired
on a computer with CPU Intel R○ CoreTM i7-4770 and 16 GB of memory
running a Windows 10 operating system. Until stated otherwise, we present
results of detecting the single most significant symmetry plane, because this
is what our method is primarily designed for, using the basic version of the
proposed method where the weights in the symmetry measure are not used
(𝑤𝑖𝑗 = 1). Later we will also show some results of multiple plane detection
and of the two modifications mentioned above. We always use the proposed
method with its default parameter values introduced throughout the previ-
ous text.

We compare our method to the View-based method [53]. Although it is
not very appropriate for weakly symmetrical objects, it shows good accuracy
for objects with stronger symmetry, is fast and robust to noise and works on
an arbitrary triangle mesh, not requiring any further property such as man-
ifoldness. Therefore, we consider it one of the state-of-the-art methods for
symmetry plane detection. Moreover, its implementation is publicly avail-
able [52]. We always use the View-based method with its default parameter
setting proposed in [53].

We further compare our method to the Clustering-based method by Shi
et al. [86], which is an improved version of one of the most commonly known
symmetry detection methods by Mitra et al. [67]. Apart from using a more
appropriate metric in the transformation space, [86] is very similar to [67],
so comparison to [86] can, in a sense, be considered a comparison to [67] as
well. The Clustering-based method is designed to detect symmetries of much
more general types, not just reflectional ones. We used the implementation
of [86] that was adjusted by its authors themselves to specifically detect
reflectional symmetries (symmetry planes). If the method found multiple
symmetries, the most significant one was selected as the result according to
the authors’ instructions. The default parameter values were also provided
to us by the authors. The Clustering-based method was run on Linux Mint
18.3.

There are other relevant methods for symmetry plane detection but
mainly because their implementation is not available (as also mentioned
by [53]), we compare to [53] and [86]. For fair comparison to the View-based
and Clustering-based methods (which require a triangle mesh) and because
triangle meshes are the most common way of representing 3D objects in
computer graphics, the test objects we used are all triangle meshes. The ba-
sic version (with 𝑤𝑖𝑗 = 1) of our method only uses the vertices of each mesh
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as the input set of points. However, unlike [53] and [86], the basic version
of our method could as well be used for different representations includ-
ing raw point clouds, since it only works with points and does not require
connectivity information.

Figure 6.3 shows 26 objects of varying shapes and properties, together
with their symmetry planes detected by the proposed method. The objects
are always rotated so that the detected plane (marked by the line) is per-
pendicular to the plane of the figure. They were taken from various datasets
[87, 26, 1, 51, 95] and the four faces were provided to us by the authors of
the Fidentis project [15]. The Figures 6.3a - 6.3i contain artificial and mostly
strongly symmetrical objects, 6.3j - 6.3u show realistic 3D-scanned objects
and 6.3v - 6.3z objects with missing parts, usually damaged artificially by
clipping, except for the Embrasure, which was damaged naturally before it
was scanned. The proposed method detected correct symmetry planes for
all the objects, including the incomplete ones, where detecting a naturally
appearing symmetry plane is generally quite challenging.

Under each object its point count is shown and there are also the V
and C letters, which stand for the View-based and Clustering-based method
respectively, followed by either a check mark - 3, in case the corresponding
method provided a correct symmetry plane, mostly visually similar to the
one our method detected, or a cross mark - 7, in case the result of the method
was wrong or considerably imprecise. With the Clustering-based method we
further use the check mark in brackets - (3), which means that it did not
work with its default parameter configuration but we were able to find such a
configuration which made it provide a plausible symmetry plane for the given
object. The View-based method was only tested with its default parameter
values since changing them did not lead to noticeable improvement in its
results, only to larger computation time. The implementation of the View-
based method crashed, for unknown reason, when used on any object with
more than approximately 35000 vertices and the one of the Clustering-based
method also crashed for several objects, probably due to non-manifoldness.
These cases are indicated by a dash.

The View-based method detected correct symmetry planes on 11 out of
18 of the objects which its implementation was able to process. It seems
to work flawlessly on the strongly symmetrical objects (9 out of 9 correct)
but expectedly the objects with weaker symmetries (2 out of 5 correct)
and missing parts (0 out of 4 correct) are problematic for this method.
The Clustering-based method was able to correctly detect planes on 14 out
of 22 of the objects its implementation processed but only on 9 of them
it worked well with its default parameter configuration, on the other 5 it
only worked after tuning the parameters for the specific objects. It suggests
that this method is rather sensitive to its parameter setting but it shows
a larger potential on weakly symmetrical and incomplete objects than the
View-based method.
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Figure 6.3: Several objects with their symmetry planes detected by the pro-
posed method, the symbols after the V/C letter state wheter the View-
based/Clustering-based method detected a plausible plane for the given ob-
ject.
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(a)
Face 1
View-
based
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View-
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(d)
Clipped Face 4

Clustering-
based

Figure 6.4: Two examples of imprecisely - (a), (c) and two of completely
incorrectly - (b), (d) detected planes of the View-based - (a), (b) and the
Clustering-based - (c), (d) methods.

Figure 6.4 shows two selected fail cases of the View-based and two of
the Clustering-based method - one of a noticeably imprecise detection and
one of a completely wrong detection. These results were obtained using the
default parameter settings. On the Ant object the Clustering-based method
found no symmetry.

The results imply that the proposed method is considerably more robust
than both the View-based and Clustering-based methods, mainly when used
on objects with weaker symmetry and missing parts.

For objects with missing parts, comparison to [91] would be suitable
because it is a state-of-the-art method for symmetry plane detection for
objects with missing parts. Unfortunately, despite our effort, we were unable
to acquire its implementation and there are no numerical results in [91], so
no fair comparison to this method is possible. But our method performs
very well on the same challenging objects on which [91] was also tested -
the objects in Figures 6.3r, 6.3s, 6.3t, 6.3u and 6.3v. However, [91] requires
a manifold triangle mesh and, due to the use of the Heat Kernel descriptor,
does not work on featureless objects. These are quite constraining properties
that make the method [91] much less general and less applicable than our
method.

To measure the error of a detected symmetry plane, we apply the Metro
[21] distance measure to evaluate the distance between the original object
and the object created by reflecting the original one over the detected plane.
The same error measurement was used by the authors of the View-based
method in [53]. The Metro distance provides two values, the mean and the
max error. The max error is the Hausdorff distance, which is very sensitive
to outliers and often shows larger error for correct symmetry planes than for
obviously incorrect ones. For this reason, we consider the max error inappro-
priate for measuring symmetry detection accuracy and we only use the mean
error. Table 6.1 shows the error values of the symmetry planes detected by
the View-based and Clustering-based methods and by the proposed method
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Table 6.1: Comparison of the proposed, View-based [53] and Clustering-
based [86] methods in terms of Metro [21] mean error, the lowest error for
each object is marked bold, the second lowest is in italic, ∞ indicates no
symmetry was found, the average error excludes Ant and Starship.

Object Metro mean error

View-
based

method

Clustering-
based

method

Proposed
method
(aligned
objects)

Proposed
method
(rotated
objects)

Beetle 0.00619 0.00586 0.00055 0.00055
Cow 0.00730 (0.00116) 0.00047 0.00072
Elephant 0.00030 (0.00357) 0.00035 0.00046
Homer 0.00125 0.00627 0.00090 0.00097
Mannequin 0.00960 (0.00838) 0.00905 0.00838
Lion 0.00717 0.00368 0.00107 0.00101
Ant 0.00138 ∞ 0.00042 0.00055
Formula 0.00124 0.00523 0.00035 0.00044
Starship 0.00424 N/A 0.00154 0.00157
Face 1 0.03086 (0.01778) 0.00815 0.00812
Face 2 0.05604 0.02569 0.01156 0.01191
Face 3 0.01704 0.01922 0.00955 0.00943
Face 4 0.01716 0.02245 0.00571 0.00567
Average 0.01401 0.01084 0.00434 0.00433

on several objects from Figure 6.3. Since the proposed method is not fully
rotation invariant, we present two error values for each object - one for an
axis-aligned object and another for a randomly rotated version of the same
object. These two values are always very similar, implying that the accuracy
of the proposed method does not depend much on the orientation of the
object. The errors in brackets were obtained after parameter tuning consis-
tently with what is stated in Figure 6.3. The proposed method shows mostly
the lowest error (usually several times lower than the other two methods),
except for the Elephant, where the View-based method is slightly more pre-
cise, and the Mannequin, where the Clustering-based method shows slightly
smaller error than the proposed method on the aligned version, but it was
achieved after parameter tuning, without which it did not find a plausible
plane. The average error in the bottom row does not include Ant and Star-
ship and it is considerably smaller for the proposed method than for the
other two methods.

Table 6.2 shows the running times of the proposed method and the
View-based and Clustering-based (with default parameters) methods for sev-
eral objects. Since some parts of our method can easily be parallelized, we
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Table 6.2: Running times (in seconds) of the proposed, View-based [53] and
Clustering-based [86] methods, the shortest time in each row is marked bold,
the second shortest is in italic.

Object Point
count

Time [s]

View-
based

method

Clustering-
based

method

Proposed
method
single-
thread

Proposed
method
multi-
thread

Beetle 988 0.45 16.9 0.54 0.25
Lion 2213 0.51 18.0 0.51 0.23
Face 1 2500 0.50 18.9 0.45 0.21
Face 2 2500 0.53 20.6 0.46 0.22
Face 3 2500 0.50 19.3 0.48 0.23
Face 4 2500 0.40 18.1 0.51 0.27
Cow 2903 0.50 21.7 0.63 0.31
Starship 3099 0.53 N/A 0.50 0.23
Ant 3495 0.55 17.6 0.65 0.29
Homer 5103 0.63 19.1 0.47 0.23
Manneq. 6737 0.70 30.1 0.42 0.22
Formula 10969 0.78 23.7 0.66 0.30
Elephant 19753 1.11 32.7 0.46 0.25
Bunny 34834 2.06 145.6 0.58 0.25
Armadillo 172974 N/A 1190.0 0.64 0.38
Buddha 543103 N/A N/A 0.78 0.55
Lucy 750001 N/A N/A 0.90 0.68

show times of both single-thread and multi-thread implementations. The
Clustering-based method is incomparably slower than the other two meth-
ods, so we further exclude it from the timing comparison. The graph in Fig-
ure 6.5 shows timing comparison of the proposed method to the View-based
method with respect to the point count. The multi-threaded implementation
of our method is faster than the View-based method. The single-threaded
version is comparable to the View-based method for objects with point count
up to approximately 10000 but after this point the running time of our
method grows much less, which is due to the fast simplification (see Section
6.1.3). Unfortunately, the running times of the View-based method for the
last three objects are not available, however, [53] states that the method
processed an object with 467252 points in 48.2𝑠 on a computer with CPU
Intel R○ Xeon R○ X5675 (clock rate 3.07 GHz) which is roughly comparable
to our machine. Since our method processed an object with 750001 points
in 0.9𝑠, this suggests that for objects with larger point count our method is
significantly faster than the View-based method.

88



Figure 6.5: Comparison of the running times of the proposed method and
the View-based method [53].

6.3.1 Noisy Objects
We created noisy versions of four different objects by adding a random vec-
tor [𝑟𝑎𝑛𝑑𝑥, 𝑟𝑎𝑛𝑑𝑦, 𝑟𝑎𝑛𝑑𝑧]𝑇 · 𝑙𝑎𝑣𝑟𝑔 · 𝑚𝑎𝑔 to each point of the object, where
𝑟𝑎𝑛𝑑𝑥, 𝑟𝑎𝑛𝑑𝑦 and 𝑟𝑎𝑛𝑑𝑧 are uniform random values from ⟨−1; 1⟩ and 𝑚𝑎𝑔 is
a constant which determines the noise magnitude. Figure 6.6 shows the sym-
metry planes detected by the proposed method on these objects, where the
noise was created with 𝑚𝑎𝑔 = 0.05 for the objects in the top row, and with
𝑚𝑎𝑔 = 0.1 for those in the bottom row. Although the noise is very strong,
the detected symmetry planes are still visually correct. The Clustering-based
method found a plausible plane only for the Beetle with 𝑚𝑎𝑔 = 0.05 but
only after parameter tuning, suggesting that this method is not suitable for
objects with significant noise, which is also admitted in [86]. The View-based
method only failed on the Lion with 𝑚𝑎𝑔 = 0.05, which can be considered
an exception, implying that this method is comparable to our method in
robustness to noise. The failure of the View-based and two selected failures
of the Clustering-based method are depicted in Figure 6.7.

In the above mentioned cases the noise was uniformly distributed across
the whole surface, so the random deviations of all points approximately
cancel out throughout the object and its symmetry actually does not suffer
that much. Figure 6.8 depicts the same four objects with added noise with
𝑚𝑎𝑔 = 0.05 but the noise is only added to one half of each object. The
top row shows the planes detected by the proposed method, which are all
visually correct, and the bottom row shows the planes detected by the View-
based method, which are noticeably inaccurate. These results imply that the
proposed method is more robust to non-uniformly distributed noise than the
View-based method and, therefore, more robust to noise in general.
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Figure 6.6: The symmetry planes detected by the proposed method on four
objects with added noise with 𝑚𝑎𝑔 = 0.05 - top row, and with 𝑚𝑎𝑔 = 0.1 -
bottom row.

(a) Lion
𝑚𝑎𝑔 = 0.05
View-based

(b) Mannequin
𝑚𝑎𝑔 = 0.05
Clust.-based

(c) Lion
𝑚𝑎𝑔 = 0.05
Clust.-based

Figure 6.7: Two imprecisely - (a), (b) and one incorrectly - (c) detected planes
on the noisy objects by the View-based - (a) and the Clustering-based - (b),
(c) methods.

Figure 6.8: The symmetry planes detected by the proposed method - top
row, and by the View-based method - bottom row, on four objects with
non-uniformly distributed noise.
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6.3.2 Tests on a Larger Dataset
We tested our method on the Thingi10K [105] dataset, which consists of
10000 3D objects represented by triangle meshes. Results of our method for
all objects in the dataset can be found here [41]. From the dataset we ex-
tracted all objects that could be processed by the implementations of both
the View-based and Clustering-based methods (manifold with up to 30000
vertices). We randomly selected 100 objects from this set and replaced ob-
jects without any significant reflectional symmetry with new random ones,
which we repeated until there were no objects to replace. We ran the pro-
posed, View-based and Clustering-based (with default parameters) methods
for all the resulting 100 objects and for each method we manually observed
the results and counted correct detections. The results are in Table 6.3.
Cases where the detected plane captured a significant symmetry are marked
as Correct. Those that were quite close to some correct symmetry plane,
but with a noticeable imprecision, are marked as Imprecise, and those that
were completely wrong as Incorrect. The incorrect detections also include
cases where the Clustering-based method found no symmetry (12 cases).
The proposed method shows the highest number of correct detections with
3 incorrect and 2 imprecise detections. This is caused by some objects in the
dataset being heavily undersampled in some areas and oversampled in oth-
ers, e.g. typical CAD models that often contain densely sampled details but
their planar or otherwise monolithic areas are only covered by large triangles
with no or very few vertices. Since for our method we only used the vertices
and not the triangles, this property sometimes forced the method to detect
a symmetry of some small oversampled detail, which was globally incorrect.
However, this can easily and quickly be resolved by uniformly sampling the
surface instead of only taking the vertices as the input point set. We used
the MeshLab’s [20] stratified triangle sampling to extract a better quality
point set for each of the 100 objects, after which our method achieved 99
correct detections (see the last column of Table 6.3).

Table 6.3: Number of Correct/Imprecise/Incorrect detections for the 100
random objects from Thingi10k [105].

View-based Clustering-based Proposed Proposed
(sampled)

Incorrect 10 30 3 0
Imprecise 6 13 2 1
Correct 84 57 95 99
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6.3.3 Detecting Multiple Planes
The method can also be used to detect multiple symmetries, as described in
Section 6.2.3. We used it on three different objects and only accepted planes
with symmetry measure larger than 70% of the best plane’s symmetry mea-
sure. The objects with the detected planes are shown in Figure 6.9. The
number under each figure denotes the symmetry measure of the plane rela-
tive to the measure of the best plane for the given object. The computation
times in the caption are of the single-/multi-thread implementation.

(a) 1.00 (b) 0.84 (c) 0.78 (d) 1.00 (e) 0.72 (f) 1.00 (g) 0.90

Figure 6.9: All the planes detected by the proposed method on the Embra-
sure - (a), (b), (c) (time: 0.89/0.40 s), Formula - (d), (e) (time: 1.66/0.58 s)
and Starship - (f), (g) (time: 0.84/0.32 s).

6.3.4 Results of the Modified Versions
We mentioned two modifications of our method in Section 6.2.4 which both
employ the weights in the symmetry measure in some way. Their results
follow.

Gaussian Curvature and Normal Symmetry Weighting

Curvatures in general are very good for detecting local features of 3D mod-
els, especially those representing human faces or human heads [49]. In the
following text, we will show that the first modified version of our method,
which uses the Gaussian curvature similarity and the normal vector sym-
metry to set the weights 𝑤𝑖𝑗, can be used to detect the symmetry plane of
very small parts of human faces, as long as at least some local features are
preserved. Figure 6.10 shows the symmetry planes detected using this mod-
ification on heavily damaged versions of two of the scanned human faces.
The figure also contains the original non-damaged faces for comparison. In
all three cases the symmetry planes are detected correctly, despite the fact
that the objects contain very little symmetry information, because there
are still some symmetrical local features preserved. Also, the normal vector
symmetry weighting makes the symmetry detection more accurate. When
the non-weighted version was used on these objects, it found a completely
incorrect plane in all cases.
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(a) (b) (c) (d) (e)

Figure 6.10: Faces 2 and 3 with symmetry planes - (a), (c) and small parts
of Face 2 - (b) (980 points, time: 1.84/0.62 s) and Face 3 - (d) (1026 points,
time: 1.72/0.72 s), (e) (803 points, time: 1.52/0.52 s) with symmetry planes
detected by the proposed method with the Gaussian curvature and normal
symmetry weighting.

Distance Weighting

The second modification, which uses point-to-point distances as weights, can
be used to force the method to detect a plane along the smaller and per-
pendicular to the larger dimension of the input object. For example, see the
cylindrical object depicted in Figure 6.11a together with the plane detected
on it by the non-weighted version of the proposed method. In some cases,
the user might prefer to find the plane shown in Figure 6.11b instead, al-
though the object is slightly less symmetrical with respect to this plane. This
plane is exactly the one detected by the proposed method with the distance
weighting. Figures 6.11c and 6.11d depict additional two objects with the
symmetry planes detected using the distance weighted modification of our
method. In both cases the plane captures some non-negligible symmetry in
the object (the wheels in the Formula and the fenders in the Beetle) and
is also perpendicular to its largest dimension. This is despite the fact that
in both cases there is one considerably stronger symmetry along the largest
dimension, which the distance weighting suppresses.

(a) (b) (c) (d)

Figure 6.11: A cylindrical object and its symmetry plane detected by the
non-weighted version of the proposed method - (a) and symmetry plane
detected by the proposed method with the distance weighting for this and
two other objects- (b), (c), (d).
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6.4 Parameters
The basic version of the proposed method (with 𝑤𝑖𝑗 = 1, detecting a single
plane) has several parameters whose default values were presented through-
out this chapter at the first mention of each one. The default values were
set based on extensive testing and the method does not require any param-
eter tuning in vast majority of cases. Nevertheless, there could be situations
where the knowledge of the parameters’ meaning could be useful. Most of
the parameters represent the typical trade-off between reliability or accuracy
and computational efficiency.

∙ The target point count of 𝑋𝑠𝑖𝑚𝑝 influences the precision of the detec-
tion. The larger the point count, the more accurately the symmetry
measure represents the symmetry of the object and the more precise
the detection is. At the same time increasing this value makes the
method slower. Default is 1000.

∙ The target point count of 𝑋𝑐𝑎𝑛𝑑 determines the number of created
symmetry candidates which grows quadratically with it. With more
candidates, there is larger chance of finding one sufficiently close to
the global maximum of the symmetry measure but it also takes more
time to prune and evaluate them. Default is 100.

∙ The 𝛿 parameter determines the roughness of the candidate pruning
step. With lower 𝛿 more candidates are kept, increasing chance of good
candidates being among them but also making the evaluation step
more timely. Lower 𝛿 also requires selecting larger value of 𝑆 (see
below). Default is 0.1.

∙ Candidates that were created by averaging less than 𝜓𝑚𝑖𝑛 planes during
the pruning step are further removed. With larger 𝜓𝑚𝑖𝑛 less candidates
are kept and the evaluation step is less timely but there is also larger
chance of removing good candidates, decreasing reliability. Default is
4.

∙ In the end, 𝑆 best candidates are selected to start the optimization
from. Increasing 𝑆 makes the last step more timely but also increases
chance of locating the global maximum of the symmetry measure. De-
fault is 5.

The only parameter which is not part of the efficiency-to-quality trade-off
is the 𝛼 spread parameter of the similarity function 𝜙 in the symmetry
measure. Although its value also influences the time consumption, it is not
true that changing it to make the method slower also makes it provide better
results and vice versa. We set it as 𝛼 = 15

𝑙𝑎𝑣𝑟𝑔
by default and below we will

show that the result of our method is not very sensitive to its value.
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Above we showed that for several objects the Clustering-based method
[86] requires parameter tuning. We observed that the results of the method
are the most sensitive to the value of the parameter which sets the threshold
for candidate pruning, let us denote it 𝜖. The method creates a number of
candidates by matching pairs of points and for each candidate it performs
a quick relevance test and only keeps candidates that pass the test. In [86]
this is done by using the candidate to transform the local neighborhood
of one of the two generating points and computing its average distance to
the local neighborhood of the second point. If the distance is lower than 𝜖
the candidate is kept, otherwise removed. In the original Clustering-based
method by Mitra et al. [67] the test is done using distances in signature space
represented by curvature values where the distance between the signatures
of the two generating points must be lower than some threshold in order to
accept the candidate. This approach, according to [86], is less robust to noise
than the one they use. However, the curvature values are also computed using
local neighborhoods of the points so the two approaches are essentially very
similar. Nevertheless, the sensitivity to the setting of the threshold parameter
implies that the result of the clustering step is very sensitive to the quality
of the candidates on its input.

Figures 6.12 and 6.13 show the sensitivity of the proposed method (top
row) to the value of 𝛼 and of the Clustering-based method [86] (bottom row)
to the value of 𝜖. For both methods we used different multiples of the de-
fault parameter values. We selected two objects where the Clustering-based
method works with its default parameter setting but for different objects
the optimal value of 𝜖 can be different from the default one. For the two
lowest values of 𝜖 the Clustering-based method does not find any symmetry
for either of the two objects. Increasing 𝜖 makes it provide incorrect results.
The proposed method detects good symmetries for all the values of 𝛼 except
for the lowest one where it start being imprecise because the spread of 𝜙
starts getting too large and 𝜙 ceases to well represent point similarity.

6.5 Another Application of the Symmetry
Measure

In many applications (e.g. designing fields on symmetric surfaces [73]) it is
desirable not only to find the symmetry plane but also to know which points
are actually symmetrical with respect to the detected plane and, eventually,
how much symmetry there is between them. Many of the existing methods,
including the View-based and Clustering-based methods, do not implicitly
provide such information. On the other hand, the symmetry measure used
in the proposed method is essentially a sum of many terms where each
represents the amount of symmetry between given two points, which can
be used if needed. In some cases, for a given point x𝑖 ∈ 𝑋, we might want
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Figure 6.12: Results of the proposed method after changing the value of 𝛼
- top row, and of the Clustering-based method [86] after changing the value
of 𝜖 - bottom row, for the Beetle object.
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Figure 6.13: Results of the proposed method after changing the value of 𝛼
- top row, and of the Clustering-based method [86] after changing the value
of 𝜖 - bottom row, for the Clipped Face 3.

to find such a point x𝑗 ∈ 𝑋 for which there is the strongest symmetry
between x𝑖 and x𝑗 w.r.t. a given plane 𝑃 represented by p. This only means
finding such a point x𝑗, for which the value 𝑤𝑖𝑗𝜙(||r(p,x𝑖) − x𝑗||) is the
largest. Furthermore, if each point x𝑖 is colored according to this value, the
symmetry of the object can be visualized as shown in Figure 6.14. The lighter
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the color, the larger the symmetry value. Figures 6.14a, 6.14b, 6.14c, 6.14d
show the coloring for 𝑤𝑖𝑗 = 1. Figure 6.14e shows it for the case when the
weights 𝑤𝑖𝑗 are set according to the distance weighting, resulting in almost
no symmetry near the plane and the most symmetry in the wheels. Unlike
some other methods, the concept of the proposed method also gives us a
straightforward way to derive the symmetry information, with respect to
any plane, for arbitrary points of the input object.

(a) (b) (c) (d) (e)

Figure 6.14: Four objects with their points colored according to the amount
of symmetry with respect to their symmetry plane with no weights used - (a),
(b), (c), (d) and using the distance weighting - (e) (darker - less symmetry,
lighter - more symmetry).

6.6 Limitations
Although the proposed method was shown to be fast and robust in several
ways, it still has some limitations and drawbacks. First, as mentioned in Sec-
tion 6.3.2, the method does not handle well objects with very non-uniform
point sampling. For triangle meshes this can be easily resolved using some
uniform sampling technique but for raw point clouds it could be problematic
and we plan to address it in the future, possibly using the weights in the
symmetry measure. Second, when using the method for detecting multiple
symmetries, a threshold needs to be set on the symmetry measure to only
accept symmetries that are strong enough to be meaningful. There is, how-
ever, not yet a general way of determining this threshold for arbitrary input
data. Finding it will be also a matter of our future efforts. Last, we showed
that our method handles well objects with missing parts and objects with
noise. However, our preliminary experiments show that if a single object has
both significant missing parts and strong noise, the method often tends to
fail which we also plan to improve later.
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6.7 Summary
We proposed a new method for symmetry plane detection, based on a novel
differentiable symmetry measure, and we have shown that it works very
accurately for both strongly and weakly symmetrical objects and also for
objects with significant noise or missing parts. We further demonstrated
that in terms of robustness, accuracy and speed the proposed method out-
performs the View-based [53] method and the Clustering-based [86] method
which represents an improved version of the well known method of Mitra
et al. [67]. Tests on a larger dataset showed that the proposed method ex-
hibits good reliability on random objects of varying properties but they also
revealed that it is not good at handling objects with significantly irregu-
lar sampling. We also showed how our method can be modified to detect
multiple symmetries of a single object. The reference implementation of the
proposed method is available for download at [41].

There are many possible ways of how the method can be modified,
extended or generalized. The weights in the symmetry measure make the
method very flexible and there are situations when using them can be very
beneficial. We showed two specific ways of setting the weights and we also
showed their results to prove their usefulness. In the future, we would like
to further examine the possibilities of these weights and find more beneficial
uses for them. We further plan to find a more efficient way of choosing a
good initial plane for the local optimization. A promising possibility could
be using the density peak location, described in Chapter 4 in context of
surface registration, together with the knowledge about measuring distances
between planes from Chapter 5. Furthermore, since the overall scheme of the
method is very generic and because the symmetry measure can be used with
any transformation, the method could be modified for detecting symmetries
of more general types. This would also require generalizing the candidate
creation process, which will be a matter of our future research. The method
could also be easily modified for detecting the symmetry hyperplane in the
space of arbitrary dimension, since this only requires adding more coordi-
nates into the parameter vector of the symmetry measure.
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Chapter 7

Conclusion and Future Work

In this work we focused on automatic detection of symmetries in geometric
objects, mainly in the 3D space. We first provided some necessary theoretical
background to understand the meaning of symmetries and described the
link between symmetry detection and the problem of registration. Next, we
described various existing methods and approaches for detecting symmetries
of different types and briefly also for rigid surface registration. The largest
part of the text then presented our own contributions to the field of rigid
surface registration and symmetry plane detection.

First, we proposed a new approach to consensus evaluation for RANSAC-
based registration methods using density peak location in the transformation
space which was inspired by previous work in symmetry detection. We tested
this approach in a model RANSAC registration algorithm and we compared
it to the conventional evaluation strategy based on overlap measurement.
Since the density peak location algorithm requires defining a distance metric
in the space of rigid transformations, we tested and analyzed several different
metrics, both practically and theoretically, and presented the results. We also
proposed an improvement of the most suitable of the existing metrics and
the results suggested that this new improved metric performs best.

In the context of symmetry plane detection we first focused on what we
call the Mode-based approach which can actually also include the density
peak evaluation algorithm we proposed previously for surface registration.
We analyzed and tested various ways of representing planes in methods that
implement the Mode-based approach for symmetry plane detection because
the choice of the plane representation can impact the results considerably.
We mainly focused on possible distance functions that can be defined for the
various representations to measure similarities/dissimilarities between the
planes and we reported the results. As part of this we also proposed a way
of representing planes using dual quaternions and using the dual quaternion
algebra to compute reflections over planes.

At last, we proposed a new method for symmetry plane detection in
discrete point sets (point clouds) based on a novel differentiable symmetry
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measure and a gradient-based numerical optimization. The method showed
itself to be very fast, robust and also quite general. It handles well noisy
objects and even objects where significant parts are missing and is mostly
superior to other existing methods.

The symmetry measure used in this method contains weights of point
pairs which are not used by default but we showed some of their potentially
useful applications. In the future, we plan to further investigate the possi-
bilities of these weights and use them perhaps for mitigating the influence
of non-uniform distribution of points which is problematic for the method
in its current state. The weights could also be used for detecting symmetries
in volumetric data, rather than point clouds, by assigning static weights to
pairs of voxels based on the similarity of their values.

Furthermore, although the method is very fast, the candidate evaluation
step is a significant bottleneck because in this step the symmetry measure
needs to be computed for each one of the several hundreds of candidate
symmetry planes in order select only a few best candidates. We plan at-
tempting to remove this bottleneck by selecting the best candidate(s) using
the density peak location algorithm proposed in Chapter 4 instead, since it
has already proven to work very well in the related context of registration.
In order to execute this algorithm, we will need a proper representation of
the space of candidate planes and a distance function in this space, for which
we plan to use the knowledge from Chapter 5. This way, we will combine the
material from all three major chapters in this text to design an even faster
and possibly more robust method for symmetry plane detection in 3D point
sets. These changes might also make the method more suitable for detection
of multiple symmetries and could help to modify the method for detecting
local symmetries.

Other possible future work includes generalizing the method from Chap-
ter 6 for different types of symmetry. The symmetry measure used in the
method is very generic and the reflection transformation in it can be easily
replaced by any other transformation that can be parameterized differen-
tiably. Therefore, we might be able to modify the method for detecting rigid
symmetries, where the transformations could be differentiably parameterized
by dual quaternions, or even general affine symmetries. This will require re-
designing the process of creating candidate symmetries since neither rigid
nor affine transformations are uniquely defined by a single pair of points.
For this purpose, some form of a local shape descriptor could be used but a
more convenient approach could be using the 4-point congruent sets [2, 64]
and their affine invariant properties.

The generalizations for rigid and affine symmetries could prove rather
difficult to realize. A simpler generalization could be done for detecting cer-
tain types of rotational symmetry where we could use an observation that
a pair of candidate symmetry planes makes a candidate for a rotational
symmetry. The idea of combining reflection planes to create candidates for
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more complex symmetries might also be utilized for detecting symmetries of
different types.

We would also like to study the possibility of detecting symmetries in
continuous data, such as parametric curves or surfaces, by using more so-
phisticated approaches than simply sampling the data and using discrete
methods.

Nevertheless, probably not all the future work listed above will be realized
during the Ph.D. study, since some of it might prove noticeably more difficult
than it seems from the current point of view. Therefore, some parts of the
intended future work, such as symmetry detection on continuous data or
detection of very general symmetries, could be left for future research even
after the Ph.D. study.
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Appendix A

Activities

A.1 Publications on International Conferences
∙ Hruda, L., Kolingerová, I., and Lávička, M. Plane space representa-

tion in context of mode-based symmetry plane detection. In Compu-
tational Science – ICCS 2020 (Cham, 2020), V. V. Krzhizhanovskaya,
G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos,
and J. Teixeira, Eds., Springer International Publishing, pp. 509–523.
[40] (80%)

A.2 Publications in Impacted Journals
∙ Hruda, L., Dvořák, J., and Váša, L. On evaluating consensus in ransac

surface registration. In Computer Graphics Forum (2019), vol. 38, Wi-
ley Online Library, pp. 175–186. [37] (50%)

∙ Hruda, L., Kolingerová, I., and Váša, L. Robust, fast and flexible sym-
metry plane detection based on differentiable symmetry measure. The
Visual Computer (Jan 2021). [42] (80%)

A.3 Other Topic-Related Publications
∙ Hruda, L., and Dvořák, J. Estimating approximate plane of symmetry

of 3d triangle meshes. In Proc. Central European Seminar on Computer
Graphics (Smolenice, Slovakia, 2017). [38] (50%)

A.4 Non-Related Publications
∙ Hruda, L., and Kohout, J. Generic caching library and its use for vtk-

based real-time simulation and visualization systems. In VISIGRAPP
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(1: GRAPP) (2018), pp. 154–164. [39] (90%)

A.5 Participation in Scientific Projects
∙ SGS-2019-016, Synthesis and Analysis of Geometric and Computing

Models, Ministry of Education, Youth and Sports

A.6 Oral Presentations
∙ Hledání symetrie v geometrických modelech (Language: Czech), 13. 11.

2018, seminar of the graphics group at the University of West Bohemia,
Faculty of Applied Sciences, Pilsen

∙ Hledání symetrie v geometrických modelech (Language: Czech), 6. 12.
2018, finale of the Czechoslovakian IT SPY 2018 master thesis compe-
tition, Prague

∙ On evaluating consensus in RANSAC surface registration (Language:
English), 2. 7. 2019, training presentation for the SGP 2019 conference
and a seminar of the graphics group at the University of West Bohemia,
Faculty of Applied Sciences, Pilsen

∙ On evaluating consensus in RANSAC surface registration (Language:
English), 10. 7. 2019, Symposium on Geometry Processing 2019, Milan,
Italy

A.7 Other
∙ 2𝑛𝑑 place in the Czechoslovakian IT SPY 2018 master thesis competi-

tion
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