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Chapter 1

Introduction

Computational systems use natural language for communication with humans more often in the
last years. With growing computational capabilities and promising results, extensive research of
neural network area has been possible. Researchers had explored various approaches to text gen-
eration, and neural generators show great success in many disciplines. Abstractive text summar-
ization, machine translation, and image caption generation have shown great improvement during
the last years.

We should not also omit natural language description generation from structured data like weather
forecasts, short stock news or automatic systems providing information about departures or traffic.

In all of these tasks, natural language generation is a crucial step.

With the fastly growing amount of raw data in the world and the possibility of simulating whole
problem space, unconventional attitudes to semi-supervised learning are getting more common.
Approaches like reinforcement or adversarial learning open a wide area for applications in diverse
domains and improve final results in many domains.

First, basic principles are introduced in this thesis. On this fundamental principles, more complex
models are established.

Current trend in natural language processing is to use neural networks in various areas, and
neural networks hold the state of the art in majority of tasks. The topic of this work is a research
of applicable methods for text generation using the neural networks.
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Chapter 2

Neural Networks

2.1 Artificial Neural Networks – The Historical Context

The first artificial neuron was introduced in 1943 by Warren McCulloch and Walter Pitts. The
mathematical model called Linear Threshold Unit (LTU) was designed to model the process that
takes place between neurons in the brain. This mathematical model has multiple boolean inputs
and a single boolean value as an output. It was presented without any algorithms for training.

Figure 2.1: Biological neuron. (Image from
Mankinds2020)

Figure 2.2: Mathematical model of the arti-
ficial neuron. 𝑤 is the weight, 𝑏 is the bias,
𝑥 is the input and 𝑓 is a nonlinear function.
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It took 15 years for LTU to be adapted for a new, intentionally developed learning algorithm and
used by Frank Rosenblatt in 1958 in his first model used in practise – the perceptron. It is also
called single-layered perceptron, was designed for image classification.

Nonetheless, this simple model was not able to model even slightly more complex functions like
non-equivalence; this ability was achieved by creating the so-called multi-layered perceptron in the
next years with continuous activations instead of binary ones.

One layer of this multi-layered perceptron became an elemental block for building bigger models
and this mechanism still remains in modern architectures. However, it is usually used for modelling
vector transformation (with more than one neuron in the output layer) (Figure 2.3) unlike the
original idea – binary classification.

In the matrix calculus, one layer of such a network can be written as:

A = 𝜎(Wx + b), (2.1)

where 𝑊 is a weight matrix, 𝑏 a bias vector, 𝑥 an input vector, and 𝜎 is a nonlinear activation
function.

Figure 2.3: One layer composed of by perceptron cells

Nowadays, scientific works often use these layer as elementary blocks to build up from. These
blocks are called dense or fully-connected layers and in diagrams they are usually depicted as
simple boxes with a number of dimensions – number of single neurons.
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2.2 Text Representation in Artificial Neural Networks

In machine learning, various ways of text representation have been used in the past.The Following
chapter summarises mainstream approaches in natural language processing.

2.2.1 Atomic Text Units

Firstly, we have to realise that a written text could be split at different levels. We can use single
characters; larger groups of characters split equidistantly such as n-grams; use some subword-based
approach like prefixes, suffixes, etymons; or build own dictionary based on frequentistic analysis
of a big amount of texts [Luong et al., 2013].

These atomic units can be represented in many ways. Probably the easiest way is to use the one-
hot1 representation. However, this representation is not convenient for capturing any relations
among words. Synonyms can not be captured in this model in any other way than as enumeration
on a higher level.

Due to this, projects like WordNet [Miller, 1998] have started. WordNet is a database of words
created predominantly by humans. It contains mostly the information about super-subordinate
relations. However, a wide scale of other relations is included too. Nonetheless, this approach falls
behind the distributional approach.

The distributional approach is based on the idea that words are similar if they appear in a similar
context [Harris, 1954].

[Mikolov et al., 2013] introduced a new, more straightforward way to train neural network language
model. Thanks to the more efficient model, they were able to process huge amount of text which
led to an interesting finding – the vectors (embeddings2) which arose from this model weree able
to capture a wide scale of semantics. After this success, semantic spaces built up in this way or a
similar one have been widely used in majority of systems. [Faruqui and Dyer, 2014] improved these
models using multilingual correlations. Late approaches like fastText use the same mechanisms at
the character level [Bojanowski et al., 2017]. Word embeddings trained on more specific tasks will
capture task-specific features as well as relations between them – in a semantic space created by
this method, contribution to the sentiment of each word will be captured in tasks like sentiment
classification [Tang et al., 2014]. We also know models producing contextual dependent embeddings
for words (see Sec. 2.5.2 on pg. 15).

2.2.2 Representation of Word Sequences

One of the biggest problems in text processing performed by neural networks, is the different
length of input sequences. There are a few known practices for addressing this issue. We can use
basic approaches like bag-of-words or bag-of-ngrams that hold every sequence in a vector of the
same length. However, we would lose valuable information about relations among words which is
hidden in their order. Because of this, it is not the usual way to process text in present-day systems.
Using recurrent neural networks (RNNs) is more common because they do not suffer from different
lengths of inputs. Nonetheless, they have other disadvantages caused by longer texts. RNNs are
more deeply discussed in the following chapter. For approaches based on convolutional neural
networks, some kind of alignment3 is usually used. For short sequences, we can also use a simple
addition of particular word vectors4. A very new way of representing sentences was introduced

1One-hot representation is a vector with one on the index of a specific word from a vocabulary and zeros
elsewhere.

2Embedding can be explained as mapping discrete/categorical variables to a vector of real numbers.
3Adding some zero values at the end of short sequences to make them of the same length.
4With longer sequences, the sum will be closer to average and will not catch important information.
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Figure 2.4: An illustration of basic principles – convolution and max-pooling. Convolution is not
the standard matrix multiplication despite being often similarly denoted (Eq. 2.2).

recently. The basic idea is to train models on generic tasks and benefit from the unsupervised
setup (language modelling, next sentence prediction) or to use a combination of a wide scale of
different tasks. In the next sections (2.4.1, 2.5.1, 2.5.2, 2.5.2, 2.5.2), the most significant models
are introduced.

2.3 Deep Convolutional Neural Network – DCNN

Convolutional neural networks, historically also called time-delayed networks (1D convolution),
are often used in NLP nowadays. The main advantage of the convolutional approach lies in the
possibility of computational parallelism – operations in one convolutional layer are independent.
[Lang et al., 1990].

CNN architectures consist of convolutional layers that compute discrete convolution between a
part of an input and a filter (often also called kernel) for each possible position of the filter in
a sample (Eq. 2.2). A feature map is the result of this process and it captures all values of the
convolution for all possible positions of the filter.

(𝑓 * ℎ)(𝑥, 𝑦) =
𝑘∑︁

𝑖=−𝑘

𝑘∑︁
𝑗=−𝑘

𝑓(𝑥 − 𝑖, 𝑦 − 𝑗) · ℎ(𝑖, 𝑗) (2.2)

For a better generalisation capability and a higher level of abstraction on higher layers, the con-
volutional layer is followed by a pooling layer which reduces the high dimensionality to preserve
the main features (Figure 2.4). We know lots of different pooling types and each of them has a
specific use (Table. 2.1). However, in the current deep approaches, max pooling is the first-choice
instrument. Max-over-time pooling is a particular case of max-pooling over sequences where the
maximum of the whole sequence is taken which is widely used in sequence classification tasks.
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Pooling type Meaning
Max pooling Is this feature present anywhere in the range?
Max over time pooling Does the sample contain this feature?
Average pooling How prevalent is this feature over the entire range?
k-Max pooling Is this feature present up to k times?
Dynamic pooling Is this feature at the beginning or at the end?

Table 2.1: This table shows some examples of different pooling types. Each of them has a specific
usage and the proper choice is often task-dependent.

ANN Layer +ANN Layer ANN Layer

Figure 2.5: Residual connection

Note 1: Vanishing Gradient
Vanishing gradient is a problem which became serious issue in bigger and deeper models. Because
of the deep architecture, the gradient propagated through the model becomes smallera with
increasing depth. There are good practises that more or less suppress this issues in different
models and setups – the so-called residual/highway connection (Figure 2.5), scalled dot-product
(see Sec. 2.5.1 on pg. 14) in attention mechanism or Glorot uniform initialisation [Glorot and
Bengio, 2010].

aIt can sometimes be even bigger which leads to similar problem called exploding gradient.

With the increasing computational capabilities, deeper architectures are often used which brings
the issue of vanishing gradient (See Note 1 on page 5) [Bengio et al., 1994]. There are lots of
methods dealing with this problem across a wide scale of architectures. However, using residual
connections is probably the most common one(Figure 2.5). The main idea of the residual network
(ResNet) is to make shortcuts for gradient propagation [Tai et al., 2017].

[Dauphin et al., 2017] add an attention mechanism (see Sec. 2.5) to a CNN architecture in the
language modelling task.

In deeper architectures and GAN5 architectures, larger residual blocks consisting of convolution,
batch normalisation, and activation are often used for better training stability [Jin et al., 2017].

Siamese Network [Bromley et al., 1993] have introduced a new model for sample similarity
(Figure 2.6). It uses two time-delayed neural networks for transforming basic features of two
hand-written signatures into feature vectors and measures the distance between them. [Mueller
and Thyagarajan, 2016] use the same principle for the sentence similarity task. [Yin et al., 2016]

5Generative adversarial network – see 3.3.1
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Figure 2.6: Schematic visualisation of the Siamese architecture

add an attention mechanism to these siamese networks.

Nowadays, siamese networks are widely used in similarity tasks in image processing [Varior et al.,
2016, Baraldi et al., 2015] and text processing [Neculoiu et al., 2016, Baziotis et al., 2017].

CNN for sentence representation There is one main approach to create any sentence rep-
resentation with convolutional architectures – in the text domain, a simple model with only one
layer with filters of different sizes with max-over-time pooling can be used to reach exciting results
(Figure 2.7) [Sido et al., 2019b]. With this setup, we get an unordered n-gram-based sentence
representation. This straightforward approach would not work well on simple one-hot represent-
ations. However, we can get more interesting results with the same model if we use a semantic
vector space. In such case, we bring the possibility of modelling the similarity of words. Then, the
filters model ordered sequences of semantically specific tokens. This sentence representation can
be used for text classification tasks or as an encoder part of any other application. Besides, we can
build up a deeper model with residual connections to make the model capable of capturing more
complex patterns.

In image processing, [Dai et al., 2015] use DCNNs for semantic segmentation, object detection or
image classification.

2.4 Recurrent Neural Networks – RNN

The basic idea of RNNs is to use the output as the input into the next step. The next step could
mean next time step in a time series or logically succeeding data in some other meaning; e.g. the
next image in a video sequence, a next column of pixels in an image processing going from left to
right, or a next word in a text.

Recurrent neural networks are often used for sequences of unknown lengths. They are often aligned
on the same length for optimisation and better parallelisation; in principle, however, RNNs do not
need the input to be of the same length.

For a better picture, we can imagine a recurrent unit as more stacked units using outputs from
previous time steps as own inputs while sharing parameters (Figure 2.8).

Vanishing Gradient Problem The vanishing gradient is a big issue in standard RNNs. An
error propagation across all weights through the whole sequence is problematic because of the long
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transformation chain from the input into the output.

A gating mechanism is often integrated into recurrent units for better performance. It allows better
gradient propagation back through the time [Chung et al., 2014]. Currently, the most used gated
recurrent units are LSTM – Long Short Term Memory or GRU – Gated Recurrent Unit. Both are
used in many variations.

Long-short-term-memory – LSTM [Hochreiter and Schmidhuber, 1997] This unit is based on
several neural gates (input, forget, output) that change the inner states of the cells. The following
equations describe projection of the input 𝑥𝑡 onto the output ℎ𝑡. The same transformation is
schematically depicted on Figure 2.9.

𝑓𝑡 = 𝜎𝑔(𝑊𝑓 𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓 ) (2.3)
𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2.4)
𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (2.5)
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (2.6)
ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡) (2.7)

� � �

tanh

✕
✕

��

��−1

��

ℎ�−1

��

✕

FORGET INPUT

OUTPUT

ℎ�

��

tanh

✕

ℎ�

��−1

Figure 2.9: Scheme of the LSTM unit

Initial values for cell state 𝑐0 and hidden state ℎ0 are zero vectors. The symbol ∘ denotes the
Hadamard product (element-wise product). The subscript 𝑡 indexes the time steps. Lower index
𝑓 is for the forget gate, 𝑖 for the input gate, 𝑜 for the output gate. 𝑊 and 𝑈 are weight matrices.

Gated Recurrent Unit – GRU GRU is another new architecture of the recurrent unit [Cho
et al., 2014]. In contrast to the LSTM, the cell state is not used here; the different gating system
leads to similar results. Some studies show a different performance of GRU and LSTM on some
tasks, none of them proves superiority of any of them in performance (regarding the model ac-
curacy) – the results are task-dependent. Also, a non-negligible improvement of time efficiency is

9



observable in several tasks [Cho et al., 2014]. So far, we can not do any general conclusion about
their propriety.

The following equations describe the projection of the input 𝑥𝑡 onto the output ℎ𝑡. The same
transformation is schematically depicted on Figure 2.10. The initial value for the hidden state ℎ0
is zero vector.

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2.8)
𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (2.9)
ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ 𝜎ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) + 𝑏ℎ) (2.10)

𝑊 and 𝑈 are weight matrices. Lower index 𝑧 is for the update gate and 𝑟 for the reset gate.

� 1 − �✕

✕
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�
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ℎ�

ℎ�

��−1

Figure 2.10: Scheme of the GRU unit.

Char-based RNN Different levels of atomicity were mentioned before. A lot of recent ap-
proaches use characters not only for language modelling [Kim et al., 2016] but even for semantic
analysis [Chiu and Nichols, 2016]. Instead of using embeddings for words, we can train character-
embeddings and search groups of characters and their dependencies [Ling et al., 2015].

Bidirectional RNN In order to get both, the left and the right context of some word in a
sentence, we can use the bidirectional RNN [Schuster and Paliwal, 1997]. This technique is widely
used for tasks where we need to classify each time step and both contexts are related, like e.g.
in speech recognition [Graves et al., 2013], relation classification [Zhou et al., 2016], or sequence
tagging [Huang et al., 2015].

Stacked RNN As the deeper CNN can take into account a larger context and more abstract
primitives in the input, we can profit from the deeper architecture of RNN layers as well. However,
intuition about what is happening is not so clear like in the case of the deep CNN. The CNNs
preserve the relative position of the primitives detected at lower levels, dimensions are reduced,
and in higher layers, we observe high-level features; also the surrounding context starts on a small
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neighbourhood and higher layers take into account larger areas. There are lots of visualisation of
this [fea, 2017]. In the RNN architectures, dimensionality reduction is not usual. Modern models
use stacked layers of the same size [Prakash et al., 2016] with significant improvement of accuracy.
Also, the whole context is processed on the first layer in the RNN architectures (right and left –
unconditioned by each other) and on the second layer, the left context can be conditioned even on
the right context and vice versa. Despite all of that, many papers have shown profit from deeper
RNN architectures.

2.4.1 ELMo – Embeddings from Language Models

[Peters et al., 2018] introduced a more universal way of creating embeddings for cross-task us-
age. ELMo word representations are functions of the entire input sentence. They use two-layer
bidirectional language models6 with character level convolution for word representation and use
weighted task-specific addition of each layer. They profit from stacked recurrent architecture and
their representation catches different features on different levels (syntactic, semantic) fine-tuned
for a specific task. The best published model has two bidirectional LSTM layers with 4096 units
and dimension of 512 in the projection layer. The context insensitive representation type uses
2048 character n-gram convolutional filters, linearly projected down to 512; in total 93.6 million
parameters. The model is public 7.

2.5 Attention Mechanism

Attention mechanism for RNN was introduced by [Mnih et al., 2014] on an image classification task.
The next researchers use the same mechanism in the neural machine translation task [Bahdanau
et al., 2014]. It is a first application of attention in natural language processing. The main idea
is to make a shortcut in the standard encoder-decoder approach (see Sec. 3.5.1 on pg. 35) and
bring text processing closer to humans. When people read a text, they do not act according to the
standard encoder-decoder scheme. We are turning back for some pieces of information into the
source sentence during the translation [att, 2016].

We do it this way when using attention. When generating word in the decode phase, we use every
single word in the source sentence instead of using only the hidden state of the decoder.

The hidden state of the decoder is computed as follows:

𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡), (2.11)
where 𝑠𝑡−1 is the previous hidden state, 𝑦𝑡−1 is the previous output of the decoder, and 𝑐𝑡 is the
context vector which is computed as follows:

𝑐𝑡 =
𝑛∑︁

𝑖=1
�̂�𝑡,𝑖ℎ𝑖. (2.12)

ℎ𝑖 is the hidden state of the encoder and 𝑎𝑡,𝑖 is the weight of this specific shortcut from the encoder
to the decoder which is conditioned by the state of the decoder in time 𝑠𝑡−1 and every single word
ℎ𝑖 in the source sentence. In [Bahdanau et al., 2014], the scoring function 𝑎(𝑠𝑡−1, ℎ𝑖) is realised as
a feed-forward neural network.

�̂�𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎(𝑠𝑡−1, ℎ𝑖))) (2.13)
6This approach can be referred to as a bidirectional language model; however, they used a mechanism which

does not allow cheating with using an inappropriate context.
7https://allennlp.org/elmo
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Content-base attention 𝑎(𝑠𝑡, ℎ𝑖) = 𝑐𝑜𝑠(𝑠𝑡, ℎ𝑖) [Graves et al., 2014]
Additive 𝑎(𝑠𝑡, ℎ𝑖) = 𝑣𝑇

𝑎 𝑡𝑎𝑛(𝑊𝑎[𝑠𝑡; ℎ𝑖]) [Bahdanau et al., 2014]
Location base 𝑎(𝑠𝑡, ℎ𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎𝑠𝑡) [Luong et al., 2015]
General 𝑎(𝑠𝑡, ℎ𝑖) = 𝑠𝑇

𝑡 𝑊𝑎ℎ𝑖 [Luong et al., 2015]
Dot-Product 𝑎(𝑠𝑡, ℎ𝑖) = 𝑠𝑇

𝑡 ℎ𝑖 [Luong et al., 2015]
Scaled Dot-Product 𝑎(𝑠𝑡, ℎ𝑖) = 𝑠𝑇

𝑡 ℎ𝑖√
𝑛

[Vaswani et al., 2017]

Table 2.2: Overview of various a() functions used in recent works.

In the original paper, the function 𝑎 was realised as the so-called additive attention:

𝑎(𝑠𝑡−1, ℎ𝑖) = 𝑣𝑇
𝑎 𝑡𝑎𝑛(𝑊𝑎[𝑠𝑡−1; ℎ𝑖]). (2.14)

After that, however, researchers started to explore plethora of other ways how to score a specific
combination of 𝑠𝑡 and ℎ𝑖. An overview can be found in the Table 2.2.

In the query-key-value notation, the key is the state ℎ𝑖 of the encoder, the query is the state of the
decoder 𝑠𝑡 in time 𝑡 and the value is the original hidden state of the encoder ℎ𝑖. Fig. 2.11 depicts
the standard encoder-decoder scheme with added attention.

h1

Weighted hidden state

a(h1 st)

+

·

h2

Weighted hidden state

a(h2 st)

·

h3

Weighted hidden state

a(h3 st)

·

st

X1 X2 X3

Yt-1 Yt

Decoder

Attention
Mechanism

Encoder

KEY

QUERY

VALUE VALUE VALUE

KEY KEY

Figure 2.11: Visualisation of the attention mechanism. The query, key, and value correspond to
Q K V notation from [Vaswani et al., 2017] with the Transformer model where the function a is
realised as the dot product.
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Figure 2.12: Visualisation of different attention mechanisms from Table 2.2. Figure was taken
from [att, 2019].

2.5.1 Transformer

After some few papers presenting the high performance of the attention mechanism in different
problems, the paper “Attention is all you need” was introduced by [Vaswani et al., 2017] in which
a new model – the Transformer – was introduced.

The encoder of the transformer contains stacked self-attention layers. Self-attention (sometimes
also called intra-attention) is the same mechanism as the standard attention introduced earlier,
the only difference is that the conditioning vectors are not taken from the encoder to the decoder
but they are used during the whole encoding process in each layer. In other words, the Transformer
model is made up of multi-layered self-attention.

This relatively simple architecture brings many advantages. In text domain, robustness in the
processing of the different lengths of its inputs is possibly the biggest one. However, the possibility
of parallel calculations, no assumptions about the relationships across the data, or power to catch
long-range dependencies are really remarkable.

Positional Encoding Nonetheless, if the input has some local or temporal relationship such as
time series or text, some positional encoding must be added. Otherwise, the model will see a bag
of words.

If the positional encoding is added, the information about the relative position of words in a
sentence can be taken into account. The positional encoding vector is created from sines and
cosines from the position in the sequence [Vaswani et al., 2017].

Another possibility is to use positional embedding where the precisely designed mechanism for
position encoding is replaced by special positional embedding learned end-to-end with the rest of
the model [Gehring et al., 2017].
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Scaled Dot-Product Attention Because of the stacking of more attention layers, change of
variance would be a problem. To avoid this problem, the dot-product attention is scaled by the
factor

√
𝑑𝑘 where 𝑑𝑘 is a hidden dimension8.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (2.15)

For example, consider that Q and K have a mean of 0 and variance of 1. Their matrix multiplication
will have a mean of 0 and variance of 𝑑𝑘. Hence, the square root of 𝑑𝑘 is used for scaling because
the matrix multiplication of Q and K should have a mean of 0 and variance of 1, and we get better
gradients for learning.

Why the variance of the dot products grows, is evident from the following equation of dot product
if we consider q and k random variables with mean 0 and variance 1:

𝑞 · 𝑘 =
𝑑𝑘∑︁

𝑖=1
𝑞𝑖𝑘𝑖 (2.16)
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Masked
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Input Embedding Output Embedding

+ +
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Positional
Encoding

Positional
Encoding

Decoder

Encoder

Multi-Head
Attention

⋅
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Figure 2.13: Transformer model scheme

The whole stack of the Transformer is depicted on Fig. 2.13.
8The dim(Q) and dim(K) are the same
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2.5.2 Transformer in Action

After the Transformer introduction, lots of models were based on the same principle and brought
significant improvements in lots of different domains.

USE – Universal Sentence Encoder Universal sentence encoder was introduced in [Cer
et al., 2018]. The main idea is to create an universal sentence encoder on two different tasks,
including language modelling task and SNLI9 dataset (entailment, contradiction, and neutral).
They explored two different models for sentences encoding: One based on the Transformer (sec.
2.5.1) and second based on Deep averaging networks10; they use a combination of both approaches
for fine-tuning on final tasks.

Their final Transformer-encoder model makes a 512-dimensional vector from a lower-cased token-
ised string as the sentence embedding. It uses the element-wise sum of word representations made
up by the Transformer-encoder and divided by the square root of the length of the sentence – the
short sentences are not dominated by the longer ones. The model is publicly accessible on tf.hub11

The encoder based on Deep averaging network [Iyyer et al., 2015] has the same input and output.
The primary advantage of DAN is short computational time.

GPT – Generative Pre-Trained Transformer One of the most powerful architecture for
training a sentence encoder is probably GPT [Radford et al., 2018]. The main advantage of this
techinque pre-training of a high capacity language model on massive textual data in the first
phase. Because of practically unlimited amount of this type of data, modern architectures can
reach high capacity. In the second phase, this pre-trained language model is used for encoding text
for fine-tuning on supervised tasks with labelled data. In this paper, they fine-tuned their models
and measured performance on these tasks:

∙ natural language inference,

∙ question answering,

∙ sentence similarity,

∙ classification.

They use concatenation and use delimiter for tasks that have two sequences on the input. In
their model, they used 12-layered decoder-only transformer with masked self-attention heads (768-
dimensional states and 12 attention heads). For the position-wise feed-forward networks, they used
3072-dimensional inner state. Overall, it is 117 million parameters. The state-of-the-art model they
used, two-phased training and multi-task fine-tuning with propagating errors into encoder make
a robust model for many tasks using sentence encoding in any phase.

BERT – Bidirectional Encoder Representations from Transformers BERT was intro-
duced in [Devlin et al., 2018], it is a model for making a word-in-context representation as well
as representations of whole sequences of words. They were inspired by the creators of GPT in the
representation of two sequences and the used delimiters; however, they added an embedded token
type to support the information about the order of both sentences.

They introduced two models with different hyper-parameter settings. Their small model used
L=12 Transformer blocks with H=768 dimensional states and A=12 self-attention heads, and
feed-forward/filter size as 4H=3072. In total, 110 million parameters.

9The Stanford Natural Language Inference
10Word embeddings are summed up firstly and processed by multi-layered perceptron right after.
11https://tfhub.dev/google/universal-sentence-encoder/4
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The large model used L=24 Transformer blocks with H=1024 dimensional states and A=16 self-
attention heads, and feed-forward/filter size as 4H =4096. In total, 340 million parameters.

Both models are publicly available12.

GPT-2 A year later, the same team introduced a similar model but based only on the first phase
– language modelling [Radford et al., 2019]. Nonetheless, the dataset was massively extended up
to 40GB of texts. The goal of experiments in this work was to measure how much it is possible to
reach good performance in a wide range of tasks with the zero-shot setting (See Note 2 on page
16).

They present models in two different sizes:

∙ The smaller has 762 million parameters, and it is publicly accessible.

∙ The larger one has 1542 million parameters and its authors decided not to share it.

Note 2: Zero-Shot and Few-Shot Learning
The goal of zero-shot and few-shot learning is to solve standard complex NLP tasks like machine
translation, question answering, Winograd schemas, common sense reasoning, reading compre-
hension with only language model training. There is no fine-tuning on end-tasks – the task is
introduced in the form of natural language as a human would do.

In some tasks, they reached exciting results. Even if the product did not surpass the state-of-the-
art unsupervised approaches, it brings a new idea of how to solve tasks with the zero-shot setting
and shows a promising way.

GPT-3 The following model GPT-3 [Brown et al., 2020] showed impressive results with using
high capacity language model in zero-shot and few-shot settings on various tasks.

However, the ratio of memorising and generalising remains still in question. A leak of test data
into the training data set of such size13 is hard to avoid.

In the paper, the authors also mentioned that such leak was confirmed in some setups. Despite the
disclosure, the experiments were not repeated due to the size of the model (175 billions of paramet-
ers) and limited financial resources (approx. $4.6M). Nonetheless, these experiments showed an
impressive capacity of the suchlike neural model. Even if all tasks were solved just by memorising
and querying database built up this way, it is a phenomenal outcome.

Both the GPT-2 and GPT-3 used the language model in the zero-shot or few-shot setup, and there
was no fine-tuning on end-tasks – the task was introduced in the form of natural language as a
human would do.

12https://github.com/google-research/bert
1345TB of compressed plain text before filtering and 570GB after filtering, roughly equivalent to 400 billion

byte-pair-encoded tokens.
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Chapter 3

Generative Models

In this chapter, we will get some fundamental knowledge about the differences among mainstream
approaches and their similarities. Figure 3.1 depicts the taxonomy of generative models.

Generative Models

Explicit
Density

Markov ChainTractable Density Approximate Density

Implicit Density

Direct

FVBN Pixel RNN / CNN

Variational Autoencoder

GSN GAN

Variational Markov Chain

Boltzmann Machine

Figure 3.1: Generative models taxonomy, inspired by [Goodfellow, 2016]

It was shown that Deep Boltzmann Machine significantly outperforms SVMs and LDA on some
discriminative tasks [Srivastava and Salakhutdinov, 2012]. However, they are not usually used
nowadays, probably due to the Markov chain which prevents the model from scaling well. There-
fore, this approach will not be discussed in details in this work.

GANs were designed to address big issues in the known models – Markov chains often fail to scale
to high dimensional spaces and computational costs are higher. That leads to unpopularity of the
generative model (GSN) use. Variational approximation of density often leads to blurry samples
due to modelling the variation of samples; generators created from VAE (variational autoenoder)
tent to generate average samples. However, it was shown that VAE architecture is used in some
applications; approaches combining VAE and GAN are also known.

In the group of models with tractable density, there dominate Fully visible belief networks – FVBN
(see Sec. 3.1.1 on pg. 18).

FVBN, VAE, and GAN can be presented as today’s most used approaches in generative tasks –
they will be discussed on the following pages.

Before we dive into models using deep learning, we should mention that although deep learning
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approaches are dominant in some tasks, and we know modern approaches like adversarial train-
ing, there are still problems that are much more straightforward to solve in a canonical way. A
typical example of such a problem can be the Electra model in which MLE (maximum likelihood
estimation) dominates over the adversarial approach (see Sec. 3.5.4 on pg. 36).

3.1 Explicit Models with Tractable Density

The main feature of this type of models is that they return explicit probability densities unlike
their alternatives such as generative adversarial networks (see Sec. 3.3.1 on pg. 22). It can be
useful in some applications that need probabilistic planning and exploration of their environment
[Bellemare et al., 2016].

There are two main approaches to make such models: Fully Visible Belief Networks and
Nonlinear Independent Components Analysis.

3.1.1 Fully Visible Belief Networks – FVBN

This type of model uses the chain rule of probability to decompose the generative process of n-
dimensional vector into a product of one-dimensional probability distributions [Frey et al., 1996].

𝑃 (𝑥) =
𝑛∏︁

𝑖=0
𝑃 (𝑥𝑖|𝑥0, ..., 𝑥𝑖−1) (3.1)

The straightforward way to generate samples similar to those from some data set is modelling
them by conditional probability of elementary entities defining a specific sample.

This method is quite often used in contemporary applications. In image generation, it could be
prior pixels in some sequence defined by some order[Oord et al., 2016b]. In the text generation,
previously generated characters, sub-words or words can be used for conditioning the probability
distribution over the vocabulary, and by sampling, we can emit the next words.

The main disadvantage is non-parallelizability – each sample needs to be generated sequentially, i.e.
atom by atom. This approach is one of the most popular nowadays and models like PixelRNN and
PixelCNN [Oord et al., 2016b], WaveNet [Oord et al., 2016a] produce exciting results. However,
they are often slow and using them in a real application is not possible at this moment – WaveNet
needs about two minutes of computations to generate one second of audio stream. Nonetheless,
there are experiments that modified models which scale better [Paine et al., 2016, Oord et al.,
2017].

Conditioning Adding new conditions on a higher level is straightforward. However, having
labelled training data is a hard-to-meet condition. With this approach, we can add any type
of additional labels to the process which prepares conditional probabilities in any suitable form
(e.g. one-hot, embedding). The capacity of such a system depends on complexity of the added
information, the capability of the used model and size of the data set. The one-hot encoding that
specifies a class is equivalent to adding a class-dependent bias at every time step. We can also
use this approach to force the generator to generate high-level features at a specific time of the
generation. For example, we could specify that a animal object should appear in the generated
image but may do so in different positions and poses and with different backgrounds.
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3.1.2 Nonlinear Independent Components Analysis

Nonlinear ICA (Independent Components Analysis) is also one of the methods with explicit density
functions [Hyvärinen and Pajunen, 1999]. The goal is to find nonlinear transformation 𝑔(𝑧) which
maps variable 𝑧 from a latent space onto a real data space. The idea is trivial; however, there are
lots of restrictions for such function 𝑔(𝑧). This transformation must be continuos, differentiable and
invertible. It means that the latent space and the real data space must have the same dimensionality
what is inconvenient and impractical. This is probably the main reason why this approach is not
usually used in recent works [Dinh et al., 2016]. The first model of this kind was introduced in
1995 by Deco and Bauer [Deco and Brauer, 1995].

3.2 Explicit Models with Approximate Density

To extend the models and the possibility of adding some uncertainty, methods modelling some
kind of approximation were invented. There are two main categories:

∙ deterministic approximations – variational methods,

∙ stochastic approximations – Markov chain Monte Carlo methods.

3.2.1 Variational Autoencoder – VAE

This approach models intractable density function but uses a tractable density approximation.
Intractable density is here because of the need of marginalising out over the random variable 𝑧
(Eq. 3.2).

We are forced to use a variational approximation instead – distribution 𝑄(𝑧) which lower-bounds
the true density. These models are often good at obtaining a high likelihood but they tend to
produce "blurry" samples.

Variational Autoencoder is recently the most popular deep model inspired by the standard au-
toencoder scheme [Hinton and Salakhutdinov, 2006]. The first part of the autoencoder model –
the encoder – tries to reduce the dimensionality of the data into a single vector 𝑧 preserving as
much information as possible. The second part of the model – the decoder – tries to reconstruct
the original data from this vector (Figure 3.2). A trained model may be used possible to use for
data dimensionality reduction.

Note 3: Latent Variable Model
Latent variable model is a statistical model that describes relationship between a set of latent
variables and a set of observable variables (sometimes called manifest variables). This model is
based on dependence of each observable variable on a combination of the latent variables. In this
sense, we can interpret the observed sample as a projection of a less-dimensional latent variable
with ideally independent components onto a high-dimensional manifest variable with dependent
components. Some of the currently most used models are based on this principle; the variational
autoencoder is directly derived from this scheme (see Sec. 3.2.1 on pg. 19).
The following equation describes the mathematical model.

𝑃 (𝑋) =
∫︁

𝑃 (𝑋|𝑧; 𝜃)𝑃 (𝑧)𝑑𝑧, (3.2)

where 𝜃 represents the parameters of the model and 𝑧 is a random variable.

VAE is a generative model based on the latent variable model (See Note 3 on page 19). After the
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Figure 3.2: Visualisation of the autoencoder scheme

training, it is possible to sample the random latent variable 𝑧 from 𝒩 (𝜇, 𝜎2) and use the decoder
to generate a new sample.

The latent space is sampled for generating similar samples to the real data and it is typically
less-dimensional; therefore, it should catch latent information in a form which is more abstract.
This space can be non-intuitive for humans though; however, there are methods to deal with it
for a specific application (See pg. 21 – Disentangled VAE).

Before we can say that our model is representative for our data, we need to make sure that for
each data point 𝑋 we can find one or more settings of the latent variable 𝑧 which causes the model
to generate a sample very similar to 𝑋

Objective Variational autoencoder uses a specific way to compute Equation 3.2. There is a
shortcut we can take1. For a lot of 𝑧s the 𝑃 (𝑋|𝑧) will be nearly zero. The main idea is to take
only 𝑧s that led to producing a good 𝑋 and compute 𝑃 (𝑋) just from those. Thus, we need a new
function 𝑄(𝑧|𝑋) which can give us from 𝑋 a distribution over 𝑧s that are likely to produce 𝑋.
The space of 𝑧 values that are likely under 𝑄 will be much smaller than the space of all 𝑧s that
are likely under the 𝑃 (𝑧). This enables us to compute E𝑧∼𝑄𝑃 (𝑋|𝑧) relatively easily.

The relation between E𝑧∼𝑄𝑃 (𝑋|𝑧) and 𝑃 (𝑋) is one of the cornerstones of variational Bayesian
methods. At first, we define Kullback-Leiber divergence (signed as 𝐾𝐿 or 𝒟) between 𝑄(𝑧) and
𝑃 (𝑧|𝑋).

𝒟[𝑃 (𝑧|𝑋)||𝑄(𝑧)] = E𝑧∼𝑄[log 𝑄(𝑧) − log 𝑃 (𝑧|𝑋)] (3.3)

By applying Bayes rule to 𝑃 (𝑧|𝑋), we get both 𝑃 (𝑋) and 𝑃 (𝑋|𝑧) into the equation:

𝒟[𝑃 (𝑧|𝑋)||𝑄(𝑧)] = E𝑧∼𝑄[log 𝑄(𝑧) − log(𝑋|𝑧) − log 𝑃 (𝑧)] + log 𝑃 (𝑋). (3.4)

Here, log 𝑃 (𝑋) can be separated from the expectation because it does not depend on 𝑧. Negating
both sides, rearranging and contracting par of E𝑧∼𝑄 into KL-divergence terms yields:

log 𝑃 (𝑋) − 𝒟[𝑄(𝑧)||𝑃 (𝑧|𝑋)] = E𝑧∼𝑄[log 𝑃 (𝑋|𝑧)] − 𝒟[𝑄(𝑧|𝑋)||𝑃 (𝑧)] (3.5)
1This part was inspired by [Doersch, 2016]
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This equation is the core of variational autoencoder. In short, left-hand side expresses the quantity
we want to maximise: log 𝑃 (𝑋) plus an error term makes Q produce 𝑧s that can reproduce a given
𝑋 – this term becomes small if 𝑄 has a high capacity. The right-hand side is something we can
optimise via stochastic gradient descent. Note that the right-hand side looks like an autoencoder
in which Q is encoding 𝑋 into latent 𝑧s and P is decoding 𝑧s to reconstruct 𝑋.

If we want to perform gradient descent on the right-hand side of Equation 3.8, we have to specify
a form of 𝑄(𝑧|𝑋). The usual choice is set 𝑄(𝑧|𝑋) = 𝒩 (𝑧|𝜇(𝑋; 𝜃), Σ(𝑋; 𝜃)), where 𝜇 and Σ are
deterministic functions with parameters 𝜃 that can be learned from data. In practice, 𝜇 and Σ are
again implemented as neural networks.

The last term of Equation 3.8 – 𝒟[𝑄(𝑧|𝑋)||𝑃 (𝑧)] – is the KL-divergence between two multivariate
Gaussian distributions which can be computed in closed form as:

𝒟[𝒩 (𝜇0, Σ0)||𝒩 (𝜇1, Σ1)] = 1
2

(︂
𝑡𝑟

(︀
Σ−1

1 Σ0
)︀

+ (𝜇1 − 𝜇0)𝑇 Σ−
1 1 (𝜇1 − 𝜇0) − 𝑘 + log

(︂
det Σ1

det Σ0

)︂)︂
(3.6)

where 𝑘 is the dimensionality of the distribution. It can be simplified in our case to:

𝒟[𝒩 (𝜇(𝑋), Σ(𝑋))||𝒩 (0, 𝐼)] = 1
2

(︀
𝑡𝑟(Σ1(𝑋)) + (𝜇(𝑋))𝑇 (𝜇(𝑋) − 𝑘 + log (det Σ (𝑋))

)︀
(3.7)

In the first term on the right-hand side of Equation 3.8, we could use sampling of 𝑧 as well as
sampling of 𝑋 from our data to estimate 𝐸𝑧∼𝑄[log 𝑃 (𝑋|𝑧)].

The full equation is:

E𝑋∼𝐷 [log 𝑃 (𝑋) − 𝒟 [𝑄(𝑧)||𝑃 (𝑧|𝑋)]] = E𝑋∼𝐷[E𝑧∼𝑄[log 𝑃 (𝑋|𝑧)] − 𝒟[𝑄(𝑧|𝑋)||𝑃 (𝑧)]] (3.8)

For gradient descent optimisation, we can sample a single value of X and a single value of 𝑧 from
the distribution 𝑄(𝑧|𝑋) and compute the gradient of:

log 𝑃 (𝑋|𝑧) − 𝒟[𝑄(𝑧|𝑋)||𝑃 (𝑧)] (3.9)

Reparametrisation In order to get the whole system learnt by gradient descent, it is impossible
to have the sampling operation in the process. A reparametrisation trick solves this issue by pulling
parameters of the distribution from the stack. Those parameters are set as constant values and
the variable is scaled with respect to mean and variance after the sampling operation (Figure 3.3).

Disentangled VAE Several research teams are investigating the possibility of disentanglement
of the VAE latent space. Disentanglement in this context means forcing the model to use human-
understandable bases of the latent space which leads to a possibility to apply predictable changes
in the output of VAE thus making changes in the latent variable 𝑧. It can mean forcing a generator
to use a specific style in hand-writing; changing sex, age, hair colour or even position of the camera
in a generated face picture [Bouchacourt et al., 2018]. However, it is not necessary to disentangle
latent space in many cases. It can be useful for expanding data sets in semi-supervised learning
[Li et al., 2019, Hsieh et al., 2018].

3.2.2 Deep Boltzmann Machine

Deep Boltzmann Machine [Salakhutdinov and Hinton, 2009] is based upon Restricted Boltzmann
Machine (RBM) [Hinton and Salakhutdinov, 2006] belonging to the group of autoencoders and
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Figure 3.3: Reparametrisation trick

can be used for extracting essential features as well as a generator. It is based upon the Boltzmann
Machine; the restriction is here in the assumption of independence of units on the same level.

This simple idea is used in modern models for building larger models called Deep Boltzmann
Machines (DBM) or sometimes also called Deep Belief Networks (DBN). They help to deal with
some significant issues in deep learning like the vanishing gradient or the lack of labelled data (see
Sec. 4 on pg. 45) [Zhou et al., 2010]. As any autoencoder, the Boltzman machine or some special
deeper variant can be used as a generator by sampling from the latent space. However, there is
still a problem with the underlying Markov chain which do not scale well for larger problems.

3.3 Implicit Density Models

3.3.1 GAN – Generative Adversarial Networks

Generative adversarial approach is based on the Generator-Discriminator model (Figure 3.4).

The goal of the generator is to generate samples that are indistinguishable from training data
for the discriminator. In game theory, this kind of conflict of interests is known as the so-called
zero-sum game.

𝑙𝐺(𝜃𝐷, 𝜃𝐺) = −𝑙𝐷(𝜃𝐷, 𝜃𝐺) (3.10)

Training of an adversarial model consists of finding Nash equilibrium of a two-player non-cooperative
game.

Generator The goal of the generator is to generate samples of some latent variable 𝑧 and to
provide samples that are similar to real data. Variable 𝑧 is randomly taken from a latent variable
space and can be seen as some seed into the generation process. Along with the change of the 𝑧
value, different samples similar to the real data should be generated. The variability of samples
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coming from the generator is a serious topic and it is one of the most investigated behaviour of
the generator (see Mode Collapse on page 30).

When we speak about GAN (Generative adversarial network), we mean the specific adversarial
model which consists of two neural networks: One is in the role of the generator and the second
one in the position of the discriminator.

The generator tries to generate samples from random noise that are as close as possible to the
real data distribution, and in the vanilla GAN, the generator has no access to any real data – it
is trained only on gradients propagated through the discriminator.

However, the generator can be implemented as naïve bayes, mixtures of multinomials, mixtures of
gaussians, HMM etc; although it is not usual nowadays.

Discriminator The goal of the discriminator is to distinguish between real and fake examples.
Its role is important because gradients to the generator are provided only from the discrimin-
ator. Therefore, if the discriminator acts randomly, there is no usable information to update the
generator.

Discriminator can be implemented as any kind of classifier, e.g. Logistic Regression, Support Vector
Machine, Neural Network, Nearest Neighbour, Conditional Random Field...

[Goodfellow et al., 2014] showed that, with respect to an optimal discriminator, the minimax
formulation2 can be shown to minimise the Jensen Shannon Divergence between the generator
output distribution and the real data distribution.

Generator

Discriminator

Sample
latent

variables
Z

Real data 

Xreal

Xfake

sample

Figure 3.4: Model Generator-Discriminator

In simple terms, the first part of the network generates random samples from some distribution
and the second part tries to recognise whether the samples are from real data or were produced
by the generator. The loss function can be formalised as follows:

𝑙𝐷(𝜃𝐷, 𝜃𝐺) = −1
2E𝑥∼𝑃𝑑𝑎𝑡𝑎

𝑙𝑜𝑔𝐷(𝑥) − 1
2E𝑧𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)) (3.11)

2The discriminator maximises the error of distinguishing between real and fake data, while discriminator min-
imises the same.
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Figure 3.5: Typical paradigm of reinforcement learning. (image from ht-
tps://commons.wikimedia.org/)

𝐷 indicates the discriminator and 𝐺 the generator. The term 𝐷(𝐺(𝑧)) is the answer of the dis-
criminator to the sample generated by the generator from the sampled latent variable 𝑧. The 𝐷(𝑥)
is the answer of the discriminator to the real data sample 𝑥.

3.3.2 GANs on Text

Because of the need for propagating errors between the generator and the discriminator, a hard
discrete stochastic decision like word-sampling is an issue. A text is usually generated by a hard
decision made after the softmax layer over the token space.

There are few principal approaches to deal with the problematic discrete stochastic unit in this
setup:

1. Approaches using reinforcement learning methods (SeqGan [Yu et al., 2017]).

2. Reparametrization using Gumbel-Softmax (also known as the Concrete distribution) ([Kus-
ner and Hernández-Lobato, 2016, Jang et al., 2016]).

3. Staying in continuous space [Makhzani et al., 2015, Donahue and Rumshisky, 2018].

Another completely different option is not to have a discrete stochastic unit at all on the output of
the generator (e.g. generating tokens deterministically). That would eliminate the original problem
of backpropagating gradient from the discriminator to the generator.

3.3.3 Reinforcement Learning – RL

Markov Decision Process Reinforcement learning is based on agent-like approach. The agent
can interact with an environment to reach its goal.

In the special case – the text generation task – in which the agent is the generator, the emitted
word is the taken action that may bring some reward due to the fact that the discriminator can
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not distinguish between the real and fake sample. Every word we have already written defines the
sequence states we went through. In every natural language, this leads to combinatoric explosion
because of the number of words in the vocabulary. Because of this, choosing the right word from
tens of thousands of all possible choices in every time step is a really hard problem. Moreover, no
reward will come until the generative process ends up.

We also have one big problem in RL. The reward could potentially come much later after taking
the action. Between choosing the action and the final state in which we get a reward, there could
be lots of other decisions which potentially do not contribute at all. To learn which decision to
make now – which word to write – when we do not have any reward until the discriminator gets
the whole sentence, is a specific and not an easy problem.

RL algorithms can be compartmentalised upon several attributes.

Reinforcement
Learning Algorithms

Model Free Model Based

Policy Optimization Q-Learning Model is given

Policy Gradient DQN AlphaZero

C51A2C / A3C

PPO

SAC

DDPG

MBVE

World Models

Model is learned

Figure 3.6: Reinforcement learning taxonomy [Achiam, 2018]

Access to the model If the agent has access to the model of the environment, we speak about
Model-Based RL. The main advantage is that it allows the agent to plan by considering the future
via going through possible choices (See 3.3.6). However, we usually do not have a ground-truth
model of the environment. Therefore some approximation is often used. Other methods can be
referred to as Model-Free RL.

Optimisation If the policy of the agent is directly optimised, the term Policy Optimisation is
used. Asynchronous Methods (A2C/A3C) [Mnih et al., 2016] and Proximal Policy Optimisation
[Schulman et al., 2017] belong to this group. Q-Learning [Watkins, 1989] uses a little different
approach. The goal is to learn an approximator 𝑄𝜃(𝑠, 𝑎) which should estimate maximal possible
reward of the state-action pair. Because the Q-learning is an off-policy method, we can use the
data collected at any point during the training and it is independent of how the agent was acting
to get this data. The main representatives of this group are DQN [Mnih et al., 2013] and C51
[Bellemare et al., 2017].

Several works are dealing with combining Policy Optimisation and Q-Learning and trying to find
some trade-off to benefit from positive aspects of each one.
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On-policy vs. Off-policy The methods can be also split into two groups according to order
whether they use policy-dependent (on-policy) or policy-independent (off-policy) data.

3.3.4 Value Function

In order to train an agent for using an optimal policy, it is crucial to have some way to derive the
value of a state or an action-state pair. The basic On-Policy Value Function gives the expected
reward returned in the state 𝑠 according to the fixed policy used in every future step. It can be
formalised as:

𝑉 𝜋(𝑠) = E
𝜏∼𝜋𝜃

[𝑅(𝜏)|𝑠0 = 𝑠]. (3.12)

The 𝑅(𝜏) is the reward for the trajectory 𝜏 , 𝜋 is the policy with parameters 𝜃 and the 𝑠0 is the
initial state.
The version extended with the action – On-Policy Action-Value Function– the so-called Q
function which gives the expected reward in the state 𝑠 taking action 𝑎:

𝑄𝜋(𝑠, 𝑎) = E
𝜏∼𝜋𝜃

[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎]. (3.13)

The optimal value function 𝑉 * and the optimal action-value function 𝑄 use the assumption that
at any time we choose the best action in order to maximise the reward. In other words, if we used
optimal policy, the on-policy value function should be the same as the optimal one.

𝑉 *(𝑠) = max
𝜋

E
𝜏∼𝜋𝜃

[𝑅(𝜏)|𝑠0 = 𝑠] (3.14)

𝑄*(𝑠, 𝑎) = max
𝜋

E
𝜏∼𝜋𝜃

[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎] (3.15)

The optimal action 𝑎* selected by the optimal policy is the action which maximises optimal action-
value function 𝑄*(𝑠, 𝑎),

𝑎*(𝑠) = arg max
𝑎

𝑄*(𝑠, 𝑎). (3.16)

We can use Bellman’s principle of optimality, which is customary and useful for the process of
learning, and form all four equations as follows:

𝑉 𝜋(𝑠) = E
𝑎∼𝜋
𝑠′∼𝑃

[︀
𝑅(𝑠, 𝑎) + 𝛾𝑉 𝜋(𝑠′)

]︀
, (3.17)

𝑄𝜋(𝑠, 𝑎) = E
𝑠′∼𝑃

[︀
𝑅(𝑠, 𝑎) + 𝛾 E

𝑎′∼𝜋
[𝑄𝜋(𝑠′, 𝑎′)]

]︀
, (3.18)

𝑉 *(𝑠) = max
𝑎

E
𝑠′∼𝑃

[︀
𝑅(𝑠, 𝑎) + 𝛾𝑉 *(𝑠′)

]︀
, (3.19)

𝑄*(𝑠, 𝑎) = E
𝑠′∼𝑃

[︀
𝑅(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄𝜋(𝑠′, 𝑎′)

]︀
. (3.20)

𝑠′ indicates that the next state is sampled from the environment transition rules using action 𝑎 in
state 𝑠. 𝛾 ∈ (0, 1) is a discount factor which prioritise earlier rewards instead of later ones.
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3.3.5 Policy Gradient Method

Policy gradient method, sometimes also called Monte Carlo Policy Gradients (in combination with
MCTS – see 3.3.6), is a method for handling large space of possible actions. The policy specifies
what action should the agent take in every specific state of the process – which word to use in text
generation. Policy gradient methods learn the policy as a classification problem on top of some
features extracted from the actual state of the environment.

The objective is to maximise a cumulative reward to be received in any state of the system using
available actions. If we consider generating words as taking actions, we have a discrete and finite
action space.

In the reinforcement learning, the term trajectory is commonly used for sequence of states of the
environment.

Probability of a trajectory from a starting state to a final state using policy 𝜋𝜃 is:

𝑃 (𝜏 |𝜃) = 𝑝(𝑠0)
𝑇∏︁

𝑡=0
𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋𝜃(𝑎𝑡|𝑠𝑡). (3.21)

The objective can be formalised as

∇𝜃𝐽(𝜋𝜃) = ∇𝜃E[𝑅(𝜏)] (3.22)

= ∇𝜃

∫︁
𝜏

𝑃 (𝜏 |𝜃)𝑅(𝜏) (3.23)

=
∫︁

𝜏

∇𝜃𝑃 (𝜏 |𝜃)𝑅(𝜏) (3.24)

=
∫︁

𝜏

𝑃 (𝜏 |𝜃)∇𝜃 log 𝑃 (𝜏 |𝜃)𝑅(𝜏) (3.25)

= E
𝜏∼𝜋𝜃

[∇𝜃 log 𝑃 (𝜏 |𝜃)𝑅(𝜏)] (3.26)

= E
𝜏∼𝜋𝜃

[
𝑇∑︁

𝑡=0
∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑅(𝜏)] (3.27)

We can estimate gradients by sampling trajectories by letting the agent act in the environment
using the policy.

∇𝜃𝐽(𝜃) ∼ 1
𝐷

∑︁
𝜏∈𝒟

𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑅(𝜏) (3.28)

𝑟𝑡+1 is the reward received by taking the action 𝑎𝑡 at the state 𝑠𝑡. This is a basic form of policy
gradient and if we are able to use policy 𝜋𝜃 in the environment, we can collect some trajectories
and update our policy to optimise getting a reward.

The function 𝑅 (see Sec. 3.3.9 on pg. 29) models the reward received by the agent and the
appropriate setup of such function is the key to a stable training process.

3.3.6 Monte Carlo Tree Search – MCTS

Using the Monte Carlo search when expanding a state tree is a straightforward process. Instead of
expanding the whole sub-tree, which is inefficient or even impossible in some cases, we can sample
from actions used for expansions according to some heuristic.
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For guiding Monte Carlo search to expand a tree better and avoid poorly rewarded states, [Kocsis
and Szepesvári, 2006] developed a method which prioritise better sub-tree to be expanded – UCT
(upper confidence bounds applied to trees).

After having used it in the MoGo program, [Gelly et al., 2006] reached impressive results in playing
9x9 Go with human players.

However, the UCT faces criticism for its over-optimistic assumptions [Coquelin and Munos, 2007].

In the text domain, Monte Carlo is used for rolling out the rest of the sequence – taking ten best
possible solutions and using the mean of them [Yu et al., 2017].

The solution with the MCTS showed its qualities on different tasks. However, searching the ap-
propriate heuristic for choosing the right action to take is not an easy task.

3.3.7 Deep Q-Learning – DQL

The first try of using an approximation function for the expected reward (the so-called Q-function)
by tree search while using neural network was introduced on the game of backgammon [Tesauro,
1994]. While playing with itself (the so-called self-play), the agent achieved super-human perform-
ance. It was model-free reinforcement learning similar to the one which laid the foundation for
today well-known Q-learning. For the approximation of the Q value, the multi-layer perceptron
with one hidden layer was used.

3.3.8 Experience Buffer for Off-policy Methods

In order to avoid oscillations, local extreme sticking and to increase data efficiency, the experience
buffer was developed to smooth experiences over a longer time period [Mnih et al., 2013]. Instead
of updating policy in every step, we just execute an action in the environment, observe the reward
and store 𝑠𝑡; 𝑎𝑡; 𝑅𝑡+1; 𝑠𝑡+1 for later reuse.

Because of nonexistence of true data for minimising the error of our estimator,∑︁
(𝑄(𝑠, 𝑎 − 𝑄*(𝑠, 𝑎))2, (3.29)

the true value is considered as:

𝑄(𝑠, 𝑎) = 𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑄*(𝑠′, 𝑎′)), (3.30)

where 𝛾 is discount factor.

Instead of directly using a reward from the environment, we use a Q-function which approximate
the expected reward. It brings better data efficiency and avert divergence of the model.

Q-learning methods can reuse data more effectively than policy optimisation methods. However,
they are also prone to failure and are less stable [Tsitsiklis and Van Roy, 1997].

3.3.9 Actor-Critic Notation

In modern methods, the Actor-Critic notation it is often used where the objective equation is
composed of two terms.

∙ The Actor part updates the policy distribution in the direction suggested by the Critic (as
with policy gradients).
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∙ The Critic part estimates the value function. This could be the action-value function (the
Q value) or the state-value (the V value).

We can derive the Actor-Critic formula from standard policy gradient as follows:

∇𝜃𝐽(𝜋𝜃) = E
𝜏∼𝜋𝜃

[
𝑇∑︁

𝑡=0
∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑅(𝜏)] (3.31)

By the definition of the Q-function (action-value function), the reward expected to be achieved
for trajectory 𝜏 ,

E
𝜏∼𝜋𝜃

[𝑅(𝜏)] = 𝑄(𝑠𝑡, 𝑎𝑡), (3.32)

can be modified by replacing the term 𝑅(𝜏) by 𝑄(𝑠𝑡, 𝑎𝑡).

∇𝜃𝐽(𝜋𝜃) = E
𝜏∼𝜋𝜃

[
𝑇∑︁

𝑡=0
∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)⏟  ⏞  

Actor

𝑄(𝑠𝑡, 𝑎𝑡)⏟  ⏞  
Critic

] (3.33)

With this form, we can assign specific parts roles of the actor and the critic.

The Actor-Critic scheme is used in revolutionary AlphaGoZero [Silver et al., 2017]. The actor and
the critic share a part of the neural network according to the fact that the raw playing field input
should be extracted into some more abstract game state upon which the output of the actor and
the critic could be made.

Reward shaping

Designing the reward function by a human can be tricky. There are well-documented cases, when
the agent learned to hack the reward and reached very high reward score while never solved the
basic problem at all. Because of the absence of knowledge about the real world, the reward can
be designed in a inconvenient way and may be misinterpreted by the agent who is not biased by
conventional practices.

3.3.10 Gumbel-Softmax Reparametrization

Another way of dealing with the discrete choice according to the need of differentiable operation in
generative models is to use some approximating distribution. [Kusner and Hernández-Lobato, 2016]
used Gumbel-Softmax (Eq. 3.34) function to deal with this problem. The Gumbel distribution is
used to model a probability that some sample is maximum of the samples taken from the same
distribution. Instead of using argmax for creating a sharp decision to choose one word to be
generated, we can estimate directly the probability of being maximal. It helps us to solve the
problem of indifferentiable decision between the generator and the discriminator.

𝑦𝑖 = exp((log(𝜋𝑖) + 𝑔𝑖)/𝜏)∑︀𝑘
𝑗=1 exp((log(𝜋𝑗) + 𝑔𝑗)/𝜏)

(3.34)

The reparametrisation trick (see Sec. 3.2.1 on pg. 21) is used here and 𝑔𝑖 is sampled from Gumbel
distribution. 𝜋 is the class probability, 𝜏 is the temperature added as a parameter changing during
the training phase from a certain value to zero at the end. This causes relaxation at the start
of the training (it is uniform as 𝜏 approaches ∞). As the softmax temperature 𝜏 approaches 0,
samples from the Gumbel-Softmax distribution become one-hot, and the distribution are becoming
identical to the original categorical distribution.
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Figure 3.7: Gumbel-Softmax interpolates between discrete one-hot-encoded categorical distribu-
tions and continuous, categorical densities. Image was taken from [Kusner and Hernández-Lobato,
2016].

3.3.11 Problems with Adversarial Training

In generative adversarial networks, specific problems can show up during training due to the
adversarial training mechanism in addition to those that are common for neural networks generally.
A list of the most discussed ones follows with a study of possible solutions.

Mode Collapse The Mode Collapse problem leads to a poor output of the generator. It learns
always to emit the same or a very small set of examples, and a wide scale of diverse latent vectors
are projected onto the same output [Salimans et al., 2016].

This problem is one of the most common in the GAN architectures. How much this scenario
influences the final application depends on the task. In some cases, we can be satisfied if the
output is encapsulates the right information (in image from caption generation task) [Reed et al.,
2016], or the variability of the output samples is important (random face generation, storytelling,
etc.).

Of course, we also have to mention the role of conditioning in the mode collapse problem. It is
intuitive that with every new condition, we force the generator to produce more bounded samples;
this possibly leads to a space too narrow to allow for a reasonable diversity of the samples. If a
training set is biased at the class level, we can also expect low diversity of generated samples;
however, this emergent behaviour can be hidden much deeper in the data set and may arise only
with complicated conditioning.

Lack of Gradient In a specific case, the generator can suffer from a lack of gradient. This
situation will occur when the discriminator dominates and is successful in predicting the right class
for each sample. There are some approaches for avoiding this symptom of pathological behaviour
such as one-side label smoothing or non-saturating game (see Sec. 3.3.12 on pg. 31).

Stable Orbit As there are two players, we have two different objective functions. The conver-
gence process can get stuck if we minimise the cost of each player simultaneously; a modification
of 𝜃(𝐷) that reduces 𝐽 (𝐷) can increase 𝐽 (𝐺) and vice versa and gradient descent enters an orbit,
see Figure 3.11a [Salimans et al., 2016].
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Adversarial Examples Due to the principle of the adversarial training, theoretically, the game
of two players may drift away from the real world. The generator could learn to generate examples
to fool the discriminator; however, that does not mean they are an acceptable result for humans.
Some studies were conducted to research this topic. [Liu et al., 2016] showed on a black-box
commercial classification system it is possible to design a sample precisely, so that it is 100%
classified as a panda bear but a human would say with high confidence it is a banana. The term
Adversarial Example has been established and attacking the neural network this way have become
a serious topic. Theoretically, it is possible that the generator learns to fool the discriminator
with adversarial examples. This would mean positively looking metrics during the training but
incomprehensible results for humans. More about adversarial examples is written in sec. 3.5.8.

3.3.12 Methods for Learning Improvement

Discriminator and Generator Pretraining [Yang et al., 2017] show that pre-training of both
the discriminator and the generator has a significant impact on the stability of the training. They
tried to pre-train both to various values of accuracy. Initial accuracy of the discriminator needs to
be set carefully and once it is too high (0.9 or 0.95) or too low (0.6 or 0.7), the model performs
poorly. This suggests it is important for the generator and the discriminator to keep a balanced
relationship at the beginning of the adversarial training. If the discriminator is too strong, the
generator is always penalised for its wrong predictions and gets no idea about the right predictions.
Hence, the generator is discouraged all the time and the performance can not be improved by giving
poor information about the right gradient. On the other hand, if the discriminator is too weak, it
is unable to give right guidance to the generator, i.e. the gradient direction used for updating the
generator is random, too.

WGAN Another approach is to use a different metric to compute the distance between the
distribution of the real data and the generated ones. Standard distribution similarity metrics
equal zero if distributions are absolutely different which is a problem for gradient descent methods.
[Arjovsky et al., 2017] suggest to use Earth-Mover distance (EMD) to improve model convergence.
EMD is informally defined as the minimum cost of transporting mass in order to transform the
distribution 𝒬 into the distribution 𝒫 (where the cost equals to the mass times the transport
distance). We assume distributions 𝒬 and 𝒫 to be split into 𝑚 and 𝑛 clusters,

min
𝐹

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖,𝑗𝑑𝑖,𝑗 , (3.35)

𝐸𝑀𝐷(𝒫, 𝒬) =
∑︀𝑚

𝑖=1
∑︀𝑛

𝑗=1 𝑓𝑖,𝑗𝑑𝑖,𝑗∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 𝑓𝑖,𝑗

, (3.36)

where 𝑓𝑖,𝑗 is the flow from 𝑖 to 𝑗, and 𝑑𝑖,𝑗 is the distance.

EMD can be formulated and solved as a transportation problem using any algorithm for minimum
cost flow problem, e.g. network simplex algorithm.

Non-saturating Game Due to the zero-sum game and the gradient descent optimization of
arguments of the generator and the discriminator, the system is prone to non-convergent behaviour,
e.g. to the stable orbit scenario.

To avoid this problem, the non-saturating game was introduced. Instead of using the negative loss
of the discriminator for the generator (flipping the sign),
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𝐽𝐷 = −1
2E𝑥∼𝑃𝑑𝑎𝑡𝑎

𝑙𝑜𝑔𝐷(𝑥) − 1
2E𝑧𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)), (3.37)

𝐽𝐺 = −𝐽𝐷, (3.38)

the cross-entropy minimization is suggested for the generator.

𝐽𝐺 = −1
2𝐸𝑧 log 𝐷(𝐺(𝑧)) (3.39)

Both are monotonically decreasing in the same direction. However, experiments have proof better
convergence of non-saturating game [Goodfellow, 2016].

One-Sided Label Smoothing [Salimans et al., 2016] suggested one-sided label smoothing as
a form of regularisation of the discriminative part of the process. This method avoids extremely
confident classification which may lead to extremely extrapolating behaviour and the authors
showed that one-sided label smoothing helps to reduce the propensity of the discriminator to be
fooled by adversarial examples possibly prepared by the generator. This smoothing is done only
on the real data samples in which the 0.9 probability is used instead of the correct probability of
1.

Minibatch Discrimination Researchers showed that training often leads to a poor diversity of
the generated samples and the discriminator has only limited options to deal with this. The main
idea of minibatch discrimination is to encourage the discriminator to focus also on the variance
among samples.

Batch Normalisation Researchers showed insufficient convergence without some kind of batch
normalisation [Salimans et al., 2016]. However, a simple batch normalisation can bring intra-batch
correlations in the generated samples [Goodfellow, 2016].

At the same time, due to this, a new way to do the batch normalisation was introduced taking
into account some disadvantages of the standard batch normalisation. The so-called virtual batch
normalisation [Salimans et al., 2016] uses statistics collected on a reference batch of examples –
these are chosen once and fixed at the beginning of training – and on just normalised batch itself.

Capacity Balancing There is clear intuition about the synergy between the generator and the
discriminator. Let us suppose that the discriminator has a high capacity and each sample from
the generator is classified as a fake one. In this particular scenario, the generator would be left
without any gradient – the discriminator is saturated and the generator has no gradient as a source
of information. It could happen if the discriminator can distinguish very well between real and fake
before the generator can approximate the data distribution. However, we can deal with this using
some tricks. The straightforward idea of lowering the discriminator capacity is one way. However,
this may lead to worse performance at the end. Instead, [Goodfellow, 2016] suggests using the
non-saturating game or one-sided label smoothing should be the better choice.

There are also known experiments with asymmetrical updates in the training of the discriminator
and the generator. Empirically, it was shown that the discriminator supposed to have a higher
capacity than the generator [Mescheder et al., 2018].

Gradient Penalty The recently proposed Wasserstein GAN (WGAN) makes progress towards
stable training of GANs but sometimes can still generate only poor samples or fail to converge.
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Figure 3.8: The WGAN and WGAN-GP trained to optimality on toy datasets. These setups
demonstrate benefits of gradient penalty. top: standard WGAN; bottom: WGAN-GP. Image taken
from [Gulrajani et al., 2017].

[Gulrajani et al., 2017] observed that under a weight-clipping constraint, the neural network ar-
chitectures that try to attain their maximum gradient norm end up learning elementary functions.
They also demonstrated this on toy distributions designed for this experiment and trained the
WGAN critics with weight clipping to optimality, holding the generator distribution fixed on the
real distribution with Gaussian noise added (Figure 3.8).

At the same time, they introduced a new method – gradient penalty. This approach adds a new
term into standard WGAN objective and penalises unwanted gradient values. This provides better
gradients with more information during the training and it is stable during the whole procedure
(Figure 3.9). This approach was named as WGAN-GP.

𝜆E𝑥∼P𝑥

[︀
(||∇𝑥𝐷(𝑥)||2 − 1)2]︀

(3.40)
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Figure 3.11: The image depicts different convergence processes of various GAN training algorithms.
We see that whereas unregularised training of GANs and Wasserstein-GANs is not always conver-
gent, training with instance noise or zero-centred gradient penalties leads to convergence. Image
is taken from [Mescheder et al., 2018].

Figure 3.9: Gradient norms of deep
WGAN critics during training on
the Swiss Roll dataset either ex-
plode or vanish when using weight
clipping but do not when using a
gradient penalty [Gulrajani et al.,
2017].

Figure 3.10: The image depicts the difference between dis-
tributions of weights in standard WGAN and WGAN-GP.
The clipping pushes weights towards two values (the ex-
tremes of the clipping range). The gradient penalty does
not suffer from this problem and provides better informa-
tion to learn the model. Image was taken from [Gulrajani
et al., 2017].

Instance noise The idea of adding noise into samples (both real and fake) reduces problem with
orbit in two player game. This noise should bring a somewhat stochastic behaviour and corrupt
the rotary motion [Sønderby et al., 2016, Mescheder et al., 2018].

3.4 GAN Architecture – Specific Extensions

Researchers experimented with a wide scale of modifications of generative adversarial architectures.
The LAPGAN [Denton et al., 2015] uses hierarchical discrimination – it adds more interactions
between G and D at different levels of abstraction.

Authors of InfoGAN add mutual information term into the mini-max game to disentangle the
latent space [Chen et al., 2016]. They were able to train this unsupervised setup on different tasks
in the image domain. VGAN [Wang et al., 2018a] adds variational methods into the standard
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LSTM generator and via the GAN framework it trains the generator which dominates SeqGAN
[Yu et al., 2017] on Amazon Food Reviews. TAC-GAN [Dash et al., 2017] shows a sentence-
conditioned picture generation using the adversarial architecture.

The authors of Adversarial Variational Bayes [Mescheder et al., 2017] made deep analysis of
combination of the VAE and the GAN architecture and suggest best practices for this setup.

Adversarial Autoencoder [Makhzani et al., 2015] is an interesting way which allows us to place dis-
crete stochastic unit alongside with the discriminator; therefore, we can generate discrete samples
like words without breking the gradient flow.

3.5 Importance of Generative Models in Various Tasks

The text generation task is related to various other tasks. There are lots of systems that need
to generate text as their own output – image caption generation, machine translation, dialogue
systems, question answering, etc.

In other cases, the generators doing a good job can affect the accuracy of other models in the same
domain as artificial data for the data set extension. The problem is that creating the proper gen-
erator may be even a harder problem than creating a good classifier. The generator-discriminator
scheme is the best example of the connection between these two tasks. If we had a generator with
poor results to fool the discriminator, it is not challenging to distinguish between the real and the
fake samples. In the other hand, we can create generators as good as the data set allows. In the
case of the GAN architecture, we try to train the generator and the discriminator simultaneously
which can be convenient for both tasks – generation and classification. The following paragraphs
summarise the state-of-the-art in various tasks with highlighting the role of the generator.

3.5.1 Machine Translation

Machine translation is a process of transformation of a text from a source language into a target
language. One possibility is to create a semantic representation of a sentence and generate the
target sentence from this internal representation. This architecture is called Encoder-Decoder [Cho
et al., 2014]. The main disadvantage is in a limited length of the translated text. The limited size
of the internal representation can catch only limited semantics.

A significant benefit is brought by the attention mechanism which tries to use the original words
in combination with the output from the encoder. The transformer model [Vaswani et al., 2017]
shows that we actually do not need to build a representation of the whole sentence because the
attention mechanism is sufficient.

[Wu et al., 2017] explored the potential of GAN in neural machine translation. [Yang et al.,
2017] applied a CNN-based discriminator to the machine translation task with the novel BLEU-
reinforced GAN.

3.5.2 Image Caption Generation

When we consider how the neural machine translation models work in general, the image label
generation is a strongly related task. After we extracted semantics of the image into some kind of
representation, we could generate a text in a natural language. From some point of view, we can
see this as a transformation from an image representation of the scene into a description of the
same scene in a natural language.

In order to create the scene representation and to capture the information, convolutional neural
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network architectures are predominately used. After that, mechanisms very similar to the standard
decoder known from the translation task are used [Vinyals et al., 2015]. [Xu et al., 2015] added
the attention mechanism.

3.5.3 Text Summarization

The model by [Rush et al., 2015] was developed for sentence summarization. This is a simpler
problem than full document summarization. The approach follows the general approach used in
NMT – encoder and decoder. They tried out bag-of-words encoder, convolutional encoder, and
attention-based encoder.

3.5.4 Language Modelling

Language modelling (LM) is one of the basic disciplines in natural language processing and it is
a crucial component for generating a syntactically and semantically correct sequence of words.
The ability to predict correct words conditioned by a sequence of previous ones is an integral part
of various tasks. Modern deep models based on neural networks contain language modelling in
their long stacks and often are not explicitly forced to perform it on a specific layer. However, we
can have some basic intuition about where the LM is performed. In the standard encoder-decoder
scheme (without attention) (see Sec. 3.5.1 on pg. 35) and regarding the fact that the complete
information must be compressed and captured in the only one hidden state (assuming the correct
output of our model), we can be pretty sure that language modelling must be done in the decoder.

In the very recent years, few papers on using the generator-discriminator scheme were published
– MASKGAN [Fedus et al., 2018] and very similar Electra [Clark et al., 2020]. The goal is to
use the generator to replace words instead of masking them3. In the Electra paper, different
ways of training were used. Although the generator-discriminator scheme encourages to use of the
GAN scheme, they were not able to overcome the maximum likelihood approach. The experiments
showed a poor variability of the generated samples in comparison to maximum likelihood approach
in the sense of accuracy of language modelling.

Few-Shot Learning with Language Models GPT-2 and GPT-3 came with a really unusual
approach to various – usually supervised – tasks. Although it was not trained on different tasks,
unexpectedly, it can solve some of them at elementary level using just conditioning a well-trained
language model. This setup can solve a wide range of tasks like e.g. question answering (contextual
and non-contextual), machine translation, common sense reasoning, text completion, even basic
mathematical operations and more. The quality of the output fluctuates; however, it is far from
random guessing. For more information see GPT-2 and GPT-3 on pg. 16 or the related papers
[Radford et al., 2019, Brown et al., 2020].

3.5.5 Data Augmentation

Extending a small dataset by adding noise into existing examples or even generating new ones is
desired ability in low resource tasks. A simple method for data augmentation is replacing random
words in samples by randomly generated new ones from a dictionary with uniform probability
[Wang et al., 2018b]. A more sophisticated way is to focus on those that have small TF-IDF
assuming that such words are not crucial as features and noise can be added there [Xie et al.,
2019]. [Wei and Zou, 2019] use synonym replacement, random swap, random deletion, or inser-
tion. Generative models are promising when it comes to more sophisticated augmentation and a

3See the contrast with the BERT (see Sec. 2.5.2 on pg. 15)), RoBERTa [Liu et al., 2019], and other BERT-like
approaches.
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high-capacity generator can extend a training dataset in a much better way than the previously
mentioned methods [Frid-Adar et al., 2018, Malandrakis et al., 2019].

3.5.6 Text Semantic Similarity

From the above described and discussed facts, it is evident that the generators play a significant role
in many common tasks and improving them is worth the effort. Besides, as Electra showed[Clark
et al., 2020], with the generator-discriminator scheme, we can overcome the state-of-the-art tech-
niques on the language modelling task; despite this fact, there is still room for an improvement of
adversarial training.

3.5.7 Image Domain Applications

Generative probabilistic models have the ability not only to create a new content; especially in
the image domain, they also have a wide range of reconstruction-related applications including
inpainting [Yeh et al., 2017, Yu et al., 2018], denoising [Yang et al., 2018], colourization [Nazeri
et al., 2018], and super-resolution [Ledig et al., 2017].

3.5.8 Feature Visualization

Because of the complexity of the modern neural network models, it is not easy to understand how
the models do what they do. There were several experiments that tried to force usual classifiers to
generate some samples that should help our better understanding of how a neural network acts in
such a model. The smart way – optimisation inputs w.r.t. specific neurons – enables us to see an
image which would activate a specific neuron to maximum. [Olah et al., 2017] deal with different
setups and show results of this applications of this method at different levels. They were successful
in visualisation of the contribution of single neurons to the whole model behaviour.

Figure 3.12: Feature visualisation by optimisation [Olah et al., 2017]

If we decide to optimise the input of the whole network with respect to the neurons indicating the
resulting classes, we get an adversarial example which we have already mentioned before in sec.
3.3.11. This sample can be classified with high confidence as something completely different from
what a human would decide to assign as a label.

37



Figure 3.13: Examples presented at https://deepdreamgenerator.com/ [Olah et al., 2017]

Researchers are still exploring possible setups to get better understanding of models of neural
networks [Wang et al., 2020, Carter et al., 2019].

Forcing high activation values in inner layers of deep networks yields also impressive outputs.
On the top of this type of optimisation, Deep Minds project - The Deep Dream Generator was
created4. It shows that in image domain, we can affect images in different ways – from style
changes to something that can be seen as hallucinations. Also, open-source tools for doing similar
experiments are publicly available5.

3.6 Generation with Dependencies and Conditioning

So far, we have dealt with elementary mechanisms used in neural networks and more complex
models built on these principles afterwards. We discussed just a little conditioning of those models
to force them to generate text with some specific information. It is a more or less challenging
task and it depends on the length and diversity of the wanted output, complexity and amount of
the information we want to capture. In models with tractable density function, we can force the
system to generate specific words by increasing probabilities to generate such words. With these
changes, we definitely can force the system to generate some words more probably than the others.

We can also look at standard machine translation models and speak about conditioning. We have
a text generator for a language we are translating into which receives some input information
encoded by an encoder. The encoder reads a source sentence and encodes the information hidden
in this text into some other representation of the information which the decoder can understand
and can generate a text in another language. This information vector of numbers 𝑉𝑖 should contain
everything we want to translate into the other language. In fact, we can use this vector 𝑉𝑖 (created
for the task of translating 𝐿𝐴− > (𝑉𝑖)− > 𝐿𝐵) for training of a system translating 𝐿𝐴− >
(𝑉𝑖)− > 𝐿𝐶 without recomputing the vector 𝑉𝑖. It is already a language-independent information
representation. The problem is that it is not easy to connect vectors in this space with the real
world without using an encoder. This vector space is somehow able to capture the information
from the real world; however, finding human-understandable base vectors is not a straightforward
mission.

Nonetheless, in some cases, we do not need to change the latent vector directly in a specific way. In
4https://deepdreamgenerator.com/
5https://github.com/openai/lucid
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the case of image caption generation, it does not make any sense to generate captions from messed
up inner representations without any connection to the original images. Alternatively, machine
translation mentioned before is a similar example.

There, nevertheless, may be use cases when we need just some artificial sample. In image domain,
it is well-known in the task of random face generation which can be handy for e.g. for generating
random and non-existing faces in some pictures or videos taken on streets to preserve peoples’ pri-
vacy; in the text domain, the generation of artificial textual data for training generative adversarial
models and increasing the accuracy of classifiers on real-data tasks.
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Chapter 4

Previous Work

The following chapter summarises my work during the course of previous three years. A link to
my aims in a doctoral thesis is added at the end of each part as AIM 1,2,3

English Dataset For Automatic Forum Extraction At the beginning of my Ph.D. study,
I focused on the processing of tree structures using deep learning methods.

We described the process of collecting, maintaining, and exploiting an English dataset of web
discussions[Sido et al., 2019a]. The dataset consists of many web discussions with hand-annotated
posts in the context of the web page tree structure. Each post consists of a username, date,
text, and quotations used by its author. The dataset contains 79 different websites with at least
500 pages from each. Each web page include a tree structure of HTML tags with texts taken
from selected web pages. We also describe algorithms trained on the dataset, in the paper. The
algorithms employ basic architectures (such as a bag of words with SVM classifier and LSTM
network) to set a dataset baseline.

We were also working on modifications of the standard LSTM unit for tree structure processing.
The task was intended as information retrieval from tree structures. However, with the rise of
approaches dealing with flattened tree structures and their performance, we have decided not to
follow this way anymore. The work in this field helped me to understand text processing using
neural networks and gave me a better notion of dataset building. AIM1

On Injecting Entropy-like Features Into Deep Neural Networks for Content Relevance
Assessment Before the Transformer-like and Bert-like models were popularised, we pursued an
approach based upon adding large-scale quality measure into deep neural models. We injected
a global (or generally large-scale) quality measure into a deep neural network (DNN) in order
to compensate for the tendency of DNNs to found the resulting classification virtually from a
superposition of local neighborhood transformations and projections. We used a state probability-
like feature as the global quality measure and injected it into a DNN-based classifier deployed in a
specific task of determining which parts of a web page are of certain interest for further processing
by NLP techniques. Our goal was to decompose web sites of various internet discussion fora to
useful content, i.e. the posts of users, and useless content, i.e. forum graphics, menus, banners,
advertisements, etc. This work has not been published yet.

I stopped my work on this topic, because my supervisor transferred me to a newly approved grant
(no. TL02000288). Nevertheless, this work enabled me to get acquainted myself with deep learning
methods used for processing textual data. Since all my aims of the doctoral thesis lay in the text
domain, this work correlates with all of them but mostly with the first two. AIM1,2

40



Curriculum Learning We also investigate the phenomenon called curriculum learning for deep
neural network models. Our research is focused on models for the sentiment analysis task. We
designed a new curriculum learning method for textual data. It reorders the training dataset to
first introduce more straightforward examples into the training process. We estimate the difficulty
of the samples by measuring lengths of the sentences. Simple examples are supposed to be shorter.
We also experimented with measuring frequencies of words, which is a technique designed by
previous researchers. We attempted to evaluate changes in the overall accuracy of the models
using both curriculum learning techniques. Our experiments did not show an increase of accuracy
for any of the methods. Nevertheless, we reached a new state of the art in sentiment analysis for
the Czech language as a by-product of our effort.

We achieved the best results with the RNN model. It is able to reach 80.5% ± 0.155 on 95%
confidence interval what is a new state of the art on this data set. The CNN model achieved
78.7% ± 0.245 . These results were obtained on the test part of the original dataset by running a
fixed number of epochs and averaging scores over 10 runs. This work was published in the research
paper [Sido and Konopík, 2019].

Even though we could not profit from the curriculum strategy with a neural network model, we
were able to outperform the previous approaches. However, curriculum learning can help to make
GANs more stable – splitting training process into more epochs with different levels of richness
of language. And likewise, employ generative models for data augmentation is more sophisticated
than simple reordering data samples in general curriculum learning schema. Consequently, it could
possibly lead to more robust and more accurate models. AIM1,2.

Deep Learning for Textual Data on Mobile Devices As with many other powerful tools,
AI brings many advantages but many risks as well. Predictions and automation can significantly
help in our everyday lives. However, sending our data to servers for processing can severely affect
our privacy. We described experiments designed to find out whether we can enjoy the benefits
of AI in the privacy of our offline mobile devices. We focused on textual data since these are
easily stored in large quantities for mining by third parties. We measured the performance of
deep learning methods in terms of accuracy (compared to fully-fledged server models) and speed
(number of text documents processed in a second). We concluded our paper with findings that with
few relatively small modifications, mobile devices can process hundreds to thousands of documents.
This work was published in the research paper [?].

This work uses a neural network classifier, since one of my aims in the doctoral thesis is improving
the performance of conventional models. It is work which brought me a better basic knowledge of
the respective area.AIM1

SEMEVAL 2020 In 2020, we participated in the SEMEVAL 2020 competition working on the
semantic-change task. We examined semantic differences between specific words in two corpora,
chosen from different time periods, for English, German, Latin, and Swedish. Our method was
created for the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. We
were ranked 1st in Sub-task 1: binary change detection, and 4th in Sub-task 2: ranked change
detection. Our method is fully unsupervised and language-independent. It consists of preparing a
semantic vector space for each corpus, earlier and later; computing a linear transformation between
earlier and later spaces, using Canonical Correlation Analysis and Orthogonal Transformation; and
measuring the cosines between the transformed vector for the target word from the earlier corpus
and the vector for the target word in the later corpus.

Our participation in the SEMEVAL 2020 competition was a highly collaborative work. My re-
sponsibility was to explore the possibility of using the LDA model for this task. Furthermore, I
was also participating in creating a development dataset. AIM1
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News Generation The use of automated journalism became an established practice in English-
speaking countries less than ten years ago. Narrative Science and Automated Insights developed
creative software that automatically generates reports. Several media outlets, including The Asso-
ciated Press (AP), have started to publish the reports generated this way. Media landscape barriers
based upon Slavic languages, such as Czech, have caused some delays in introducing automated
journalism.

We created a case study of the application of algorithms that transform large data files into news
texts in The Czech News Agency (ČTK). Our team prepared algorithms that generate reports on
trading results at the Prague Stock Exchange without human intervention for The Czech News
Agency in 2019.

The study deals with the production of algorithms and compares the speed of generation of
messages generated by humans against the algorithms and examines their quality. Our research
also used observations and questionnaire surveys of selected journalists and editors who work with
reports from the Prague Stock Exchange. The article also provides the opinions of journalists of
The Czech News Agency on the application of automated journalism and artificial intelligence
journalism in their newsrooms.

This software runs on our servers to provide the automatic news service. The only purpose is
to bring an automated, unbiased, fast, and in-depth analysis of the Prague Stock Exchange in a
textual form ready to be published right away. However, rigid rules and demands on the resulting
text forced us to use a rule-based approach. For more details, see the published paper [Moravec
et al., 2020]. AIM2,3

During the same project, we are supposed to generate summaries of Czech news. We have already
tried several approaches to this task. However, news–summary pairs from the Czech News Agency
showed up to be rather complicated. They contain general knowledge and strong dependency
in time. An end-to-end approach turned out to be impossible for this purpose. We decided to
use a way of clustering sentences to group similar pieces of information. The next step will be
presenting these clusters in their short forms while preserving time dependencies as consistent
news. Journalists are supposed to interact with this representation to produce a final report ready
for publication. AIM1,2,3

Czech Dataset for Semantic Textual Similarity For the purpose of grouping semantic
clusters, we need a model for creating the representations of sentences. Besides, the domain of
news is narrow and there are not many datasets that could support this task. As a consequence,
we decided to create a new Czech dataset for semantic textual similarity. For this, we use our
collaboration with the Charles University and its students of journalism. We prepared a web
application which enables students to annotate 123 813 pairs of sentences. This study is in the
second phase of validation by another group of students. As of now, we are preparing a paper
about the collection of this dataset, and about the basic experiments. We suppose the dataset to
be published in 2021. AIM1,2,3

Czech Model for Semantic Representation We also noticed that English and multilingual
models, in general, are limited in tasks in one specific language and can be outperformed by
monolingual ones. For this reason, we decided to train the Czech model based upon the BERT
architecture. The paper describes a process of training of a Czech semantic model based upon a
BERT-like approach. In the first part, the data preparation and the pretraining of such a model
are mentioned. Due to high computational requirements, the process is computed on the Czech
GPU cluster. The second part is dedicated to the evaluation of this model on various tasks. The
results of our work will be publicly accessible on GitHub and in the Hugging face repository for
non-commercial experiments and applications.

We showed that our Czech model outperformed other multilingual models in the majority of our
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experiments. This work is ready to be published.

The work on the described Czech model was a highly collaborative effort. My responsibility was to
prepare the dataset, handle the pretraining process, and evaluate this model on the downstream
task of semantic textual similarity. AIM1,2,3
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Conclusion and Aims of Doctoral
Thesis

An extensive research of generative models was done on continuous space and we have seen various
applications on image tasks. Text generation task is more challenging because of the problem with
the differentiation of the sampling step for outputting discrete tokens. Also, even a small error in
the generated sample is glaring for humans.

In the last years, generative models came in useful in many domains. It was shown that they can
improve the performance of standard models, and we can look at them as at zero-shot learning
applications in some cases (GPT-2,GPT-3).

In this work, the basic principles of the state-of-the-art neural networks were introduced. Upon
these fundamental principles, more complex models were established. In the scope of the project
TL02000288, these models will be used for generating news.

Note 4: Transformation of Journalism Ethics in the Advent of Artificial Intelligence
Transformation of Journalism Ethics in the Advent of Artificial Intelligence – TL02000288 – is
a project funded by TAČR –Technology Agency of the Czech Republic. The goal of this project
is to apply methods of artificial intelligence in the journalistic domain. Our role in this project
is to help with analysing standard journalists’ work and provide some automatic assistance in
everyday labour. Simple examples of such an assistance are an automatic generator of short news
from narrow domains e.g. the stock exchange and analysis of a large amount of news and helping
with their summarisation.

In the text generation domain, scientific research has shown remarkable results in the last years,
though, we are sitll far from sufficiently useful samples. We also introduced models that could
potentially profit from high-capacity generators.

The majority of models is developed for less flectional languages and is thus unsatisfactorily evalu-
ated on more complex natural languages. Previous research has shown that there is an issue coming
up from the combination of more complex conditioning and low resources in not so widespread
languages.

Application of Generative Models in Journalistic Domain At the beginning of our col-
laboration with Czech journalists, I have already met some limitations during our effort to apply
NLP methods in real operation conditions. Right now, we host first real application which arose
from the project TL02000288 and the only purpose is to bring automatic, unbiased, fast and deep
analysis of the Prague Stock Exchange in textual form ready to be published right away. This
application is being actively exploited by several news agencies and the Prague stock exchange
publishes reports about stock trading every day on their website1. A basic study of the whole

1www.e15.cz;www.ctk.cz;www.pse.cz
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process of defining, implementing and deploying this automatic system for generating news from
the Prague stock exchange was published [Moravec et al., 2020]. After the cooperation on project
TL02000288, I have already acquired better understanding of journalists’ requirements. A use of
more complex and advanced models as a replacement of humans in journalistic work is limited
to narrow domains and remains still challenging due to high demand on strict fact reasoning.
However, there is a space for automatising of reasonably simple processes in the news production
from domains like the stock exchange, weather forecast, traffic, etc.

Semi-Supervised Learning Modern algorithms require many labelled examples to be able to
generalise them. If we consider a real-world scenario – we have many data samples from a given
domain but labels for many or even most of the training examples are missing – data augmentation
and semi-supervised learning are one of the possible strategies, and they are a hot topic.

Aims of Doctoral Thesis Based on my previous research, the doctoral thesis will be focused
on the following goals:

1. Adapt the current generative or generator-discriminator methods and try to improve the
performance of conventional models used for building representations of semantics in the
textual domain.

2. Design a new method for adding constraints into the generative model architecture for the
text domain.

3. Experiment with generative or generative-adversarial models in the journalistic domain on
the Czech language with a focus on including specific entities, facts, etc.
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