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Abstract
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This work was supported by Grant No. SGS-2019-018 Processing of heterogeneous
data and its specialized applications.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitńı 8
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Chapter 1

Introduction

In recent years, we have seen a growing interest in Natural Language Pro-
cessing (NLP) and its applications, Sentiment Analysis (SA) is no excep-
tion. Sentiment analysis is not a single task; it is rather a set of several
tasks related to discovering opinion, sentiment, emotion, attitude and other
subjective information in a text.

SA is used daily by companies allowing them to understand the opinion
of customers about their products, services or the company itself. Such in-
formation is precious for any company. Another usage is in recommendation
systems1 where the system can customize or recommend any content (ads,
movies, songs, products etc.) to its users. The recommendations are based
on the user’s previous interactions with the system, for example, comments,
reviews or ratings of the content.

SA can be divided into different sub-tasks like aspect-based SA, polarity
or fine-grained SA or emotion detection. SA can also be applied on many
different levels of scope – document-level, sentence or phrase level. A typical
example of an SA task is a text polarity detection, in which the goal is to
assign an overall sentiment of a given text. The first SA research papers at
the beginning of the 21st century (2000-2012) were mostly focused on online
reviews of movies, hotels or e-shop products. With a boom of social networks
like Facebook or Twitter, which became extremely popular among the entire
population, the researchers also moved their interest to social media content.
The initial approaches used traditional machine learning methods such as
Naive Bayes, Logistic Regression or Support Vector Machines (SVM) classi-
fiers along with sentiment lexicons2 or bag-of-words features. In recent years,
the state-of-the-art systems use almost exclusively neural networks and deep
learning techniques.

Despite the years of research, real applications for SA are still challenging
1Such system can be used in any social media network, e-shop or movie/music stream-

ing service.
2Sentiment lexicon is a list of words or phrases with their corresponding sentiment

orientation.
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because of several aspects, such as multilinguality and domain dependence.
Another aspect that makes SA difficult is that most of the available datasets
are annotated for English texts and low-resourced languages suffer from
a lack of annotated datasets on which machine learning models could be
trained. The issue with low-resourced languages, which is common for the
majority of NLP tasks, could be tackled by cross-lingual techniques. A cross-
lingual system is able to learn a model from resource-rich language and apply
it to the low-resourced language or languages.

This thesis aims to overview SA methods and their corresponding tech-
niques and tools. Further, the thesis focuses on multilingual and cross-lingual
approaches.

The thesis is organized as follows: the SA tasks are stated in Chapter
2. Chapter 3 describes conventional machine learning algorithms, including
recent deep learning architectures. The methods for text meaning repre-
sentation are mentioned in Chapter 4. Applicable NLP approaches for SA
(including state-of-the-art methods) are discussed in Chapter 5. Chapter
6 contains approaches and techniques for multilingual SA and cross-lingual
techniques for knowledge transfer between languages. Chapter 8 summarizes
preliminary ideas for future work and goals of the doctoral thesis.



Chapter 2

Sentiment Analysis

The task of sentiment analysis aims at detection, understanding and ex-
traction of subjective information (e.g., opinions, sentiments and emotions)
expressed in a text [Liu et al., 2010]. SA is one of the essential downstream
tasks in NLP. At the beginning of the 21st century1, it has become one of
the fastest-growing research areas in NLP [Mäntylä et al., 2018]. Companies
use it daily to find out whether their customers have a positive, neutral or
negative opinion towards their products or services.

2.1 Tasks Overview
Generally, sentiment analysis or opinion mining can be seen as a collec-
tion of distinct tasks related to subjective information extraction and other
sub-tasks which are relevant and linked to these tasks. In this section, we
summarize, describe and define the most common tasks.

Liu et al. [2010] define and describe several tasks within the field of SA,
i.e., polarity detection at document-level, sentence-level, aspect-based-level
and comparative SA. In [Feldman, 2013], the author distinguishes between
these four tasks and one extra task called sentiment lexicon acquisition,
which can also be called sentiment lexicon generation. From [Liu, 2012], we
can also add subjectivity classification and opinion spam detection. Further,
we briefly describe these tasks and later in this chapter, we define some of
them more precisely.

Similar to [Liu, 2012], we use the term opinion and sentiment inter-
changeably to denote opinion, sentiment, attitude and emotion, but we have
to note that they are not equivalent and we will distinguish them when
needed. In general, the research of SA has been conducted mainly for polar-
ity detection task at three levels of granularity – document-level, sentence-
level and entity and aspect-based level. From now, we will refer to these three

1Nearly 7, 000 papers related to SA has been published since 2004 [Mäntylä et al.,
2018].

3
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types jointly as sentiment analysis or polarity detection tasks. These tasks
can be also considered as a text classification tasks that are usually solved
by the conventional supervised machine learning techniques, see Chapter 3.
Based on [Pang and Lee, 2008, Liu et al., 2010, Liu, 2012, Feldman, 2013,
Medhat et al., 2014], we summarize the tasks as follows:

1. Polarity detection: In most cases, the goal is to detect a sentiment
polarity (positive, negative, neutral) that is expressed towards a given
target. The polarity can also be defined with a different number of la-
bels, i.e., very positive, positive, neutral, negative, very negative, which
is usually referred as fine-grained sentiment analysis. Another possi-
bility is to define only positive, negative labels, which will result in
a binary text classification problem.

∙ Document-level: The task at this level is to assign an over-
all sentiment polarity to a given document. For example, given
a short Twitter text “I love the new Zombieland movie #cinema”
which is a review about a particular movie written by a user, the
task is to decide whether the user likes (positive sentiment) or
dislikes (negative sentiment) the movie. In this task, we assume
that the document contains only one opinion towards one entity.
∙ Sentence-level: This task is almost identical to the document-

level task, but it is performed on sentences instead of documents.
The goal is to classify whether a sentence expresses a positive,
negative or neutral sentiment. Again, we assume that the sentence
contains only a single sentiment (opinion).
∙ Entity and Aspect-Based level: The aspect-based task2 eval-

uates sentiments of individual entities and/or their aspects. Con-
sider the following review of a hotel “The room was very comfort-
able and the breakfast was great.”. There are two aspects of the
hotel – room and breakfast, both of them are positive. This task
allows to evaluate sentiment in a text (document, sentence) with
multiple sentiments and multiple entities and their aspects.

2. Emotion Detection (Analysis): In the emotion detection task, the
system intended for this task must detect a person’s emotion expressed
in a text. Emotions represent subjective feelings and thoughts of human
beings.

3. Subjectivity Classification: The sentence-level SA can be done only
on sentences with the sentiment, opinion or subjective views. This is
the goal of the subjectivity classification task [Wiebe et al., 1999, Wiebe

2In this context, the word aspect can be used interchangeably with word feature, thus
the task is also called feature-based sentiment analysis.
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and Riloff, 2005], i.e., detect objective sentences that express factual
information and subjective sentences that express subjective views and
opinions. However, even a subjective sentence may not express any
sentiment, see Section 2.5.

4. Comparative Sentiment Analysis: Commonly, the sentiment is
not expressed directly, instead the comparison is used, for example,
“Apple iPhone Xs is much more reliable than Samsung Galaxy S9”,
such sentence contains comparative opinion. The goal is to identify
sentences that contain comparative opinions, extract the comparative
opinions expressed in the sentences and select the preferred entities
(Apple iPhone Xs, in our example).

5. Other: Other tasks related to SA like Opinion Spam Detection, Senti-
ment Lexicon Acquisition (Generation), Sarcasm Detection (Analysis),
Opinion Summarization and others. We describe some of them in sec-
tions 2.7.1, 2.7.2, 2.7.3.

For the next part of this thesis, we have to define and explain the opinion
and other related terms.

2.2 Opinion Definition
We define opinion for the SA task according to [Liu, 2012] as a quadruple:

(𝑔, 𝑠, ℎ, 𝑡) (2.1)

where g is an opinion target, s is an opinion polarity (sentiment), h is an
opinion holder and t is a time when the opinion was expressed.

For the explanation of components from the previous definition, we will
use a similar example to the one stated in [Liu, 2012]. The example is:

Author: Nick Newman, 25/10/2019

“(1) I really like my new Samsung TV. (2) I cannot live without
it. (3) The resolution is unbelievable. (4) But the price is not
so good as the resolution. (5) My friends love it too. (6) This
Samsung TV is definitely better than my old Philips TV.”

The opinion target g can be any entity or aspect of the entity about
which the opinion has been expressed. For example, in the sentence (1) the
target of the opinion is Samsung TV with positive sentiment. The example
of a target which is an aspect, is in the sentence (3), the target is resolution.

Secondly, the example contains opinions of two entities. Sentences (1),
(2), (3), (4) are opinions of the author of the review (Nick Newman) and in
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the sentence (5) expressed an opinion of the author’s friends. These entities
are referred as opinion sources or opinion holders [Kim and Hovy, 2004,
Wiebe et al., 2005]. Lastly, the date of the example is 25/10/2019 and the
reason why the opinion definition contains time t (or date) is that the senti-
ment can evolve during a time and it is useful to observe these changes over
time.

2.2.1 Entity Definition
Next, we define the term entity as the target object that has been evaluated.
An entity e can be a product, service, topic, issue, person, organization or
event. Formally it is defined as a pair e:(T,W), where T is a hierarchy of
parts (or components) and sub-parts of the entity and W is a set of attributes
of e. For example, one part of the Samsung TV is a screen which is composed
of other sub-parts like screen glass, LED display, frame etc. The root node is
the entity itself (Samsung TV ) and other nodes contain parts and sub-parts.
Each part or sub-part has its own set of attributes, for example, a resolution
is an attribute of the LED display.

An opinion can be expressed on any node or on any attribute of the node.
In the previous example in the sentence (1) author expressed the opinion on
the Samsung TV itself (root node) and in the sentence (2), he expressed his
opinion on one of its attributes (resolution).

This hierarchical description of an entity with any number of levels and
nested relations is universal but often too complex for some real applications.
The difficulty of applying SA for such a universal hierarchical definition is
though and challenging. Thus, we simplify the hierarchy according to [Liu
et al., 2010] to two levels and use the term aspects to denote both parts
(sub-parts) and attributes, see Figure 2.1.

After the simplification, the root of the node is still the entity3 itself and
the other nodes are aspects of the entity.

2.2.2 Entity and Aspect-Based level
Sentiment Analysis

The previous definition of opinion in Section 2.2 was sufficient for text unit
(document, sentence, paragraph) with one opinion towards one entity. In the
case of aspect-based level SA, the task is to discover all or multiple opinions
towards individual entities and/or their aspects in a given opinion docu-
ment d. Thus, we extend the previous definition of opinion with the entity

3Entity is sometimes also called object and aspects can be also called features, facets,
attributes or topics.
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Resolution
positive

LED display
positive

Price
negative

Samsung TV
positive

Remote control
neutral

Picture quality
positive

Speakers
neutral

Figure 2.1: Simplified example of hierarchical representation of an entity
(Samsung TV entity).

definition from the previous Section according to [Liu, 2012] as quintuple:

(𝑒𝑖, 𝑎𝑖𝑗, 𝑠𝑖𝑗𝑘𝑙, ℎ𝑘, 𝑡𝑙) (2.2)

where 𝑒𝑖 is a name of an entity, 𝑎𝑖𝑗 is a j-th aspect of entity 𝑒𝑖, ℎ𝑘 is an
opinion holder, 𝑡𝑙 is the time when the opinion was expressed and 𝑠𝑖𝑗𝑘𝑙 is
a sentiment on aspect 𝑎𝑖𝑗 of entity 𝑒𝑖 in time 𝑡𝑙 expressed by opinion holder
ℎ𝑘. In the case where the overall opinion is expressed towards the entity
itself special aspect named GENERAL is used to denote it. The 𝑒𝑖 and 𝑎𝑖𝑗

pair substitute the target g from the definition 2.1.
The opinion document d (or other unit of text like paragraph, sentence)

is then composed from a set of opinion quintuples 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚}
expressed on a set of entities 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑟} and their aspects with a set
of opinion holders 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑝} at some certain time point. An entity
𝑒𝑖 is represented by itself and by a set of aspects 𝐴𝑖 = {𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛}.

The aspect of a particular entity can be either implicit or explicit. The
explicit aspects are usually expressed with nouns or noun phrases, for exam-
ple, “The resolution of the Samsung TV is impressive.” is the explicit aspect.
The implicit aspects are usually expressed with adverbs, adjectives or even
verbs. For example, the sentence “This Samsung TV is really expensive.”
implies that there is an aspect price with negative sentiment, although the
price was not explicitly mentioned in the sentence.

Both definitions of opinions (2.1 and 2.2) are not able to handle all pos-
sible options and cases in which opinion can be expressed, but they are
sufficient for most applications. Examples in which these definitions fail are
shown in [Liu, 2012].

The whole task of aspect-based SA, in other words obtaining the entire
set 𝑂 of opinions for certain document d, is composed of several sub-tasks
like entity extraction, aspect extraction and categorization, time extraction
and etc.
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2.2.3 Opinion Types
In the previous sections, we described only one type of opinion, which is
called regular opinion (definition 2.2), but there are two main types of opin-
ions – regular opinion and comparative opinion.

∙ Regular opinion or just opinion can be divided into two categories
[Liu, 2006]:

– Direct opinion is expressed directly towards an entity or its
aspect, for example, “The resolution is unbelievable.”

– Indirect opinion is expressed indirectly on an entity or its as-
pect on some other entities. For example, “Once I finished the
lunch I had a stomachache and I was vomiting the whole day.”
implies that the food was spoiled and the person (the other entity)
vomited, which implies negative opinion towards the food.

∙ Comparative opinion expresses a relation of similarities or differ-
ences between two or more entities and/or a preference of the opinion
holder based on some of the shared aspects of the entities [Liu, 2006,
Jindal and Liu, 2006a,b]. For example, the sentence (6) from the exam-
ple at the beginning of this Section 2.2, contains comparative opinion.
Comparisons can be divided into two main groups gradable compar-
ison and non-gradable comparison which are described in more
detail in [Liu, 2012] and [Liu, 2006], and partly in Section 2.6.

Next, we recognize explicit opinion and implicit opinion which are
defined according to [Liu, 2012] as follows:

∙ Explicit opinion is a subjective statement that gives a regular or
comparative opinion, for example, “I really like my new Samsung TV.”
or “This Samsung TV is definitely better than my old Philips TV.”

∙ Implicit opinion is an objective statement that implies a regu-
lar or comparative opinion. For example, “My new Samsung TV has
stopped working after a few days” or “The resolution of my new Sam-
sung TV is higher than my old Philips TV.” Implicit opinions often
express some desirable or undesirable features, defects, properties, at-
tributes or consequences for target entities or their aspects.

2.2.4 Author and Reader Standing Point
The opinion can be considered from two perspectives, the author of the opin-
ion (opinion holder) or the reader of the opinion. Thanks to this assumption,
one sentence can be negative as well as positive. For example, in a sentence:
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“Our national team lost against Germany which is really bad” the author
expresses the negative opinion about the loss against Germany, but for a
reader which is a fan of Germany team it holds the positive sentiment. Usu-
ally, the opinion holders are assumed to be the consumers unless otherwise
specified [Liu, 2012].

2.3 Polarity Detection
In this section, we summarize the three primary SA tasks (document-level,
sentence-level and aspect-based level) from the overview in Section 2.1.
These task aims to a polarity detection4.

2.3.1 Document-Level
The goal of this task is to assign an overall sentiment polarity s for a given
opinion document d expressed towards a given entity by some opinion holder
at some time. According to [Liu, 2012] the task is to extract an opinion given
by the quintuple defined in 2.2 with aspect GENERAL in the following way:

( , 𝐺𝐸𝑁𝐸𝑅𝐴𝐿, 𝑠, , )

assuming that the entity e, opinion holder h and time of the opinion t are
known or irrelevant. This definition also assumes that the opinion expressed
in document d is aiming only on one entity e (if known) and there is only
one opinion holder h.

Because of this assumption and because the aspect is always GENERAL,
we can use the simpler definition of opinion given by the quadruple defined
in 2.1 and redefine the task as obtaining only the overall sentiment s for
a given document d. Then, the quadruple looks as follows:

( , 𝑠, , )

and again assuming that g, h and t are known or irrelevant.

2.3.2 Sentence-Level
The sentence-level polarity detection aims to a detection of sentiment in
a sentence. In this task, we still assume that the sentence contains only
one opinion towards one entity5. One sentence can be considered as a sin-
gle document, thus similar or identical approaches to document-Level task
can be applied. The sentence-level polarity detection task can be used for
longer documents in which each sentence is evaluated independently as one

4The polarity detection task can be also referred as sentiment analysis task.
5Despite the fact that this assumption is incorrect in many examples.
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document, which results in a set of sentences with assigned sentiment. Alter-
natively, the assigned sentiments can be summarized to represent the overall
sentiment of the document.

Liu [2012] defines the sentence-level polarity detection as follows: given
a sentence x, determine whether x expresses a positive, negative or neutral
opinion. If there is no opinion the sentence is considered as neutral.

He also mentions two possible ways how to solve this problem. The first
one is to represent the task as a classical three-class classification problem.
In the second approach, he first decided whether the sentence expresses an
opinion or not, which is the subjectivity classification task. The second step is
then to classify the subjective sentence into a positive or negative class. The
first step can be problematic for some sentences because, as we mentioned,
even the objective sentence can imply opinions.

For most cases in practice, the sentence-level and document-Level po-
larity detection is suitable for short reviews, Twitter or Facebook posts or
other short text with one or few sentences expressing one opinion towards
one entity.

2.3.3 Entity and Aspect-based Level
The two previously described tasks were focused only on the overall senti-
ment of one entity in the entire document or sentence. Commonly, documents
and sentences often contain more than one opinion (sentiment) expressed
towards an entity (eventually multiple entities) or its aspects. At typical
example where aspect-based level SA fits perfectly is analysis of product
reviews. In the product reviews, people usually express opinions towards as-
pects or attributes of the product and thus detecting individual sentiment
(opinion) towards each aspect is desirable.

The complete definition of the task is introduced in 2.2.2. To recall, the
goal of this task is to obtain all quintuples (𝑒𝑖, 𝑎𝑖𝑗, 𝑠𝑖𝑗𝑘𝑙, ℎ𝑘, 𝑡𝑙) for document
𝑑, where 𝑒𝑖 is a name of an entity, 𝑎𝑖𝑗 is a j-th aspect of entity 𝑒𝑖, ℎ𝑘 is an
opinion holder, 𝑡𝑙 is the time when the opinion was expressed and 𝑠𝑖𝑗𝑘𝑙 is
a sentiment on aspect 𝑎𝑖𝑗 of entity 𝑒𝑖 in time 𝑡𝑙 expressed by opinion holder
ℎ𝑘. In case, where the overall opinion is expressed towards the entity itself,
a special aspect named GENERAL is used to denote it. In practice, some
members of the quintuple 2.2 can be omitted because they are unimportant,
irrelevant or known. Aspect-based level SA is a complex task which consists
of several sub-tasks [Liu, 2006, Liu et al., 2010, Liu, 2012].

1. Entity extraction and categorization: Find and extract all men-
tions and synonyms of entities in a given document 𝑑 and assign
them corresponding category. Each category then represents one entity
𝑒𝑖 from a set of entities 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑟}.
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2. Aspect extraction and categorization: Find and extract all aspect
expressions for all entities obtained in the first task and classify the
aspect expressions. Each entity 𝑒𝑖 has its own set of aspects (categories)
𝐴𝑖 = {𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛} where 𝑎𝑖𝑗 represents one unique aspect of entity
𝑒𝑖.

3. Opinion holder extraction and categorization: Find and extract
opinion holders or their mentions from text or structured data and
assign them corresponding category. The output of this task is a set
of opinion holders 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑝}.

4. Time extraction and standardization: Extract the times when
opinions were expressed and standardize different time formats.

5. Aspect sentiment classification: Classify an opinion on aspect 𝑎𝑖𝑗

as positive, negative or neutral or assign other predefined sentiment
classes.

6. Opinion quintuple generation: For document 𝑑, create all opinion
quintuples (𝑒𝑖, 𝑎𝑖𝑗, 𝑠𝑖𝑗𝑘𝑙, ℎ𝑘, 𝑡𝑙), with results from previous tasks.

2.3.4 Corpora for Sentiment Analysis
Datasets are required not only to train the supervised machine learning
models but also to evaluate the performance of any system or approach.
In this section, we summarize some of the well known and popular English
datasets for the polarity detection task. We also include examples of datasets
for other languages, even though most of the research was focused on English.
The datasets for sentence-level and document-level tasks are listed in Table
2.1 and datasets for aspect-based task are shown in Table 2.2.

Manual annotation of datasets for NLP tasks is usually very expensive
and time-consuming therefore, researchers are trying to find approaches to
get labeled data in another way. In SA, there are two main approaches
to obtain labeled data: (1) manual annotation and (2) distant supervision
[Giachanou and Crestani, 2016].

The manual annotation for simpler tasks like polarity detection can be
done in any spreadsheet (MS Excel, Google Sheets etc.) or software spe-
cialized for data annotating. The manual annotation is usually applied for
more complex tasks like aspect-based SA. Examples of manually annotated
datasets can be found in [Socher et al., 2013, Habernal et al., 2013, Dong
et al., 2014, Saeidi et al., 2016] or [Rosenthal et al., 2017]. The advantage of
the manual annotation is that the labels are more reliable and less erroneous.

The second option is the distant supervision approach. It automatically
allows to label data with a minimal human interaction or completely without
incorporating human into the annotating process. The distant supervision
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techniques use some metadata or some specific property of the data to obtain
the label. There are two main sources for distant supervision datasets. The
first one is review of any type. The textual reviews usually contain also some
additional explicit rating (e.g., number of stars), this explicit rating is used
as a label for the textual review, such approach was used, for example, in
[Pang et al., 2002, Pang and Lee, 2004, Maas et al., 2011] or [Habernal et al.,
2013]. The second source is social media websites (e.g., Twitter, Facebook).
In this case, predefined emoticons, emojis or hashtags are used as a noisy
label. The predefined emoticons or hashtags are tied up with a certain label
(class) and based on their presence in the post, the corresponding class is
used as the label. For example, in Tweet “I’m so happy :) #cool #amazing”
emoticon “:)” the hashtag “#amazing” is assigned to the positive sentiment
and thus the Tweet is labeled as positive. Similar method was used in [Go
et al., 2009] and [Speriosu et al., 2011]. With this approach, a huge amount
of annotated data can be obtained, but the reliability is lower compared to
the manual approach. Another disadvantage of Twitter datasets is that they
cannot be redistributed because of the Twitter license, only IDs of tweets
can be published and everyone has to download the tweets by himself. It
is not unusual that some tweets are deleted or privatized and the original
dataset cannot be reconstructed anymore.

The SST-2 dataset [Socher et al., 2013] is part of the popular General
Language Understanding Evaluation (GLUE) [Wang et al., 2019] benchmark.
The GLUE benchmark is a collection of resources for training, evaluating
and analyzing natural language systems in a diverse set of existing NLP
tasks.
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Paper Name Size Classes Text Domain Source Annotation Language

[Pang et al., 2002] Movie Reviews v1.0 1, 400 P, N review movie reviews IMDb ratings English
[Pang and Lee, 2004] Movie Reviews v2.0 2, 000 P, N review movie reviews IMDb ratings English
[Pang and Lee, 2005] Sentence Polarity 10, 662 P, N sentence movie reviews Rott. Tom. ratings English
[Go et al., 2009] Sentiment140 1, 600, 000 P, N tweet multiple Twitter emoticons English
[Go et al., 2009] Sentiment140 Test 359 P, N tweet multiple Twitter manual English
[Shamma et al., 2009] Obama-McCain Debate 1, 904 P, N tweet Obama McCain Twitter manual English
[Maas et al., 2011] IMDb 50, 000 P, N review movie reviews IMDb ratings English
[Socher et al., 2013] SST-5 11, 855 P+, N+, O sentence movie reviews Rott. Tom. manual English
[Socher et al., 2013] SST-2 9, 613 P, N sentence movie reviews Rott. Tom. manual English
[Zhang et al., 2015b] Yelp-Fine 140, 000 P+, N+, O review multiple Yelp ratings English
[Zhang et al., 2015b] Yelp-Binary 299, 000 P, N review multiple Yelp ratings English
[Rosenthal et al., 2017] SemEval-2017 62, 617 P, N, O tweet multiple Twitter manual English
[Speriosu et al., 2011] Health Care Reform 2, 394 P, N, O tweet health care tweets Twitter emoticons English
[Habernal et al., 2013] Czech Social Media 10, 000 P, N, O FB post multiple Facebook manual Czech
[Habernal et al., 2013] Czech Movie Reviews 91, 381 P, N, O review movie reviews CSFD ratings Czech
[Habernal et al., 2013] Czech Prodcut Reviews 145, 307 P, N, O review product reviews MALL.cz ratings Czech
[Villena-Román, 2013] TASS-2013 68, 017 P+, N+, O, X tweet multiple Twitter mixed Spanish
[Barbieri et al., 2016] Evalita-2016 9, 410 P, N, O, M tweet multiple Twitter mixed Italian
[Rosenthal et al., 2017] SemEval-2017-AR 9, 455 P, N, O tweet multiple Twitter manual Arabic

Table 2.1: Overview of datasets for sentiment polarity classification. Values in column Size denotes the number of examples in
the dataset. Values in column Classes refer to the following classes: [P]: positive, [N]: negative, [P+]: very positive and positive,
[N+]: very negative and negative, [O]: neutral, [M]: mixed, [X]: none. Values in column Text denotes type (granularity) of
textual examples in the dataset (FB post stands for Facebook post). Values in column Domain represent a domain of the
text. Values in column Source refer to the source web pages where the data comes from: (IMDb: www.imdb.com, Rott.
Tom.: www.rottentomatoes.com, Twitter: www.twitter.com, Yelp: www.yelp.com, Facebook: www.facebook.com, CSFD:
www.csfd.cz, MALL.cz: www.mall.cz). Annotation Column denotes the approach used for obtaining labels; ratings and
emoticons values refer to the distant supervision method, mixed values mean that a combination of manual and distant
supervision was used.

www.imdb.com
www.rottentomatoes.com
www.twitter.com
www.yelp.com
www.facebook.com
www.csfd.cz
www.mall.cz
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Paper Name Size Classes Text Domain Source Annotation Language

[Saeidi et al., 2016] SentiHood 5, 215 P, N answers quiestion answering Yahoo manual English
[Pontiki et al., 2014] SemEval-2014 7, 686 P, N, O, C sentence laptops and restaurants reviews - manual English
[Pontiki et al., 2016] SemEval-2016 70, 790 P, N, O sentence multiple - manual Multilingual
[Dong et al., 2014] Target Dependent 6, 940 P, N, O tweet multiple Twitter manual English

Table 2.2: Overview of datasets for aspect-based SA. Values in all columns have the same meaning as in Table 2.1. The letter
C in column Classes refers to the conflict class and the Yahoo string refers to the www.yahoo.com website.

www.yahoo.com
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2.4 Emotion Analysis
In this section, we discuss emotions and tasks related to them. Emotions
are our subjective feelings and thoughts and they can be perceived or ex-
pressed with different levels of intensity6. The intensity denotes the degree
or quantity of the emotion, for example, really excited, very happy or litle bit
angry etc. [Liu, 2012, Liu et al., 2010, Mohammad et al., 2018, Canales and
Mart́ınez-Barco, 2014, Shrivastava et al., 2019, Bostan and Klinger, 2018].
Emotion analysis can have many applications, for example, in e-learning [Ro-
driguez et al., 2012], suicide prevention [Desmet and Hoste, 2013, Vaassen,
2014] or for a prediction of stock market prices [Bollen et al., 2011].

2.4.1 Categorical Model
Emotions have been studied in different research areas, e.g., psychology, phi-
losophy, sociology and also in a field of natural language processing. Humans
are able to perceive many different emotions. According to the basic emotion
model (also called categorical model) [Ekman, 1992, Plutchik, 1980, Parrott,
2001, Frijda, 1988] emotions can be categorized into distinct emotion classes.
For example, emotions like joy, sadness, anger, fear are considered to be
more basic than others, i.e., physiologically, cognitively and in terms of the
mechanisms to express these emotions [Mohammad et al., 2018]. The defi-
nitions in different publications can slightly vary, but the basic idea remains
the same. For example, Parrott [2001] distinguishes six primary emotions,
i.e., love, joy, surprise, anger, sadness and fear, which can be further divided
into other sub-categories. Ekman [1992] also recognizes six (but slightly dif-
ferent) basic emotions, i.e., anger, disgust, fear, joy, surprise and sadness.
Plutchik [1980] claims that there are eight basic emotions (in the Plutchik’s
wheel of emotions, see Figure 2.2), i.e., joy, sadness, anger, fear, trust, dis-
gust, surprise and anticipation (the inner circle), and other more complex
emotions are in the outer circles, outer circles are also composed of emo-
tions with a smaller degree of intensity. Each primary emotion has a polar
opposite, e.g., anticipation is the opposite of surprise. The Plutchik’s wheel
of emotions can be seen as a hybrid model between the categorical and di-
mensional models. However, here we treat it as a categorical model because
the emotions are expressed discretely and not as a continuous number in the
n-dimensional space as it is in the Valence-Arousal-Dominance model, see
Section 2.4.2. We have to note that emotions and opinions are not equivalent
but they are closely related and they have a significant intersection.

6Intensity differs from arousal dimension from valence-arousal-dominance model.
Arousal represents whether an emotion is calming or exciting.
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Figure 2.2: Plutchik’s wheel of emotions (picture taken from [Commons,
2020]).

2.4.2 Dimensional Model
Dimensional emotion model represents emotions in n-dimensional space. In
Valence-Arousal-Dominance (VAD) dimensional model, the emotions are
points in a three-dimensional space. The model says that there are three
largely independent emotional dimensions of word meaning, see Figure 2.3.
The valence dimension (positiveness-negativeness / pleasure-displeasure) ex-
presses the attractiveness or sentiment of an emotion. The arousal dimension
(active-passive) represents an activation level of the emotion. The dominance
dimension (dominant-submissive) represents a level of control over the emo-
tion [Mäntylä et al., 2016, Mohammad, 2018, Osgood et al., 1957, Russell,
1980, 2003]. For example, the word birthday indicates more positiveness than
the word death; nervous indicates more arousal than lazy; and fight indicates
more dominance than fragile.

The approaches (systems/algorithms) for emotion analysis usually use
the categorical models because of its simplicity, the emotions can be catego-
rized in distinct classes or categories. The disadvantage is that the categorical
models contain limited number of emotions and may not adequately cover all
emotions. The advantage is that it can be used for measuring the similarity
between emotions [Canales and Mart́ınez-Barco, 2014].
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Figure 2.3: Joint visualization of the Arousal and Valence dimensions with
examples of emotions.

2.4.3 Emotion Analysis Tasks
The basic task of Emotion Analysis is the Emotion Detection task, where
the goal is to detect various emotions in a given text [Medhat et al., 2014, Liu,
2012, Shrivastava et al., 2019]. Another task is called Emotion Intensity
Detection task. In this task, the intensity of a given text and emotion need
to be detected.

This kind of task was investigated in SemEval-2018 Task 1: Affect in
Tweets shared task [Mohammad et al., 2018]. There were also other shared
tasks related to emotion intensity; SemEval-2007 Task 14 [Strapparava and
Mihalcea, 2007] and WASSA-2017 shared task on Emotion Intensity [Mo-
hammad and Bravo-Marquez, 2017].

In the shared competition called Implicit Emotion Shared Task7 (IEST)
[Klinger et al., 2018] the participants were asked to create a system which
should infer one of six emotions (anger, disgust, fear, joy, sadness and sur-
prise) only from a context of a particular emotion word which was removed
from the text. For example, “It’s [#TARGETWORD#] when you feel like
you are invisible to others.”, the missing word was sad and the system should
detect sadness emotion.

7It was a part of 9th Workshop on Computational Approaches to Subjectivity, Sentiment
& Social Media Analysis (i.e., WASSA 2018 ).
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2.4.4 Approaches for Emotion Analysis
The approaches for emotion analysis tasks can be divided into lexicon-based
approach and machine learning approaches [Canales and Mart́ınez-Barco,
2014, Buechel and Hahn, 2016]. A straight numerical comparison of available
approaches is not possible because different works (papers) usually use dif-
ferent datasets for their evaluations. Tables 2.3 and 2.4 contain an overview
of selected papers for the emotion detection task and emotion intensity de-
tection task, respectively. The purpose of these tables is to give the reader
a basic overview of the current methods and results in emotion analysis
tasks. Datasets from the tables are described in Section 2.4.5, except for
the papers where the dataset is not publicly available. Following papers are
listed in the tables: [Strapparava and Mihalcea, 2008, Balabantaray et al.,
2012, Balahur et al., 2012, Roberts et al., 2012, Buechel and Hahn, 2016,
Abdul-Mageed and Ungar, 2017, Baziotis et al., 2018, Huang et al., 2019,
Polignano et al., 2019, Agrawal and Suri, 2019, Shrivastava et al., 2019,
Köper et al., 2017, Goel et al., 2017] and [Duppada et al., 2018]. Description
of other works related to these tasks can be found in [May et al., 2019, Med-
hat et al., 2014, Canales and Mart́ınez-Barco, 2014, Avetisyan et al., 2016,
Buechel and Hahn, 2016]. Next, we briefly describe some works from Tables
2.3 and 2.4.
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Paper Emotion Model Approach Dataset Result

[Strapparava and Mihalcea, 2008] Categorical LSA Semeval 2007 18% 𝐹1 Score
[Balabantaray et al., 2012] Categorical SVM Their own 73% Accuracy
[Balahur et al., 2012] Categorical SVM ISEAR 45% 𝐹1 Score
[Roberts et al., 2012] Categorical SVM EmpaTweet 67% 𝐹1 Score
[Buechel and Hahn, 2016] VAD/Categorical SVM, kNN Semeval 2007 0.42 Pearson Correlation
[Abdul-Mageed and Ungar, 2017] Categorical GRU Their own 96% 𝐹1 Score
[Baziotis et al., 2018] Categorical LSTM SemEval 2018 53% 𝐹1 Score†

[Huang et al., 2019] Categorical CNN, LSTM SemEval 2018 65% 𝐹1 Score†

[Polignano et al., 2019]‡ Categorical CNN, LSTM SemEval 2018 84% 𝐹1 Micro Score†

[Polignano et al., 2019]‡ Categorical CNN, LSTM SemEval 2019 70% 𝐹1 Micro Score
[Agrawal and Suri, 2019] Categorical LSTM, Gradient boosting SemEval 2019 78% 𝐹1 Micro Score
[Polignano et al., 2019]‡ Categorical CNN, LSTM ISEAR 52-78% 𝐹1 Score
[Shrivastava et al., 2019] Categorical CNN TV-Charmed 72% 𝐹1 Score
†Polignano et al. [2019] and Huang et al. [2019] used each a different set of emotions for classification
than the official participant [Baziotis et al., 2018] of the SemEval 2018 task [Apidianaki et al., 2018]
and thus they are not directly comparable even though they use data from the same dataset.
‡ Is the same paper, but they are listed separately for clarity because Polignano et al. [2019] use multiple datasets for evaluation.

Table 2.3: Overview of papers related to the emotion detection task.
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Paper Approach Dataset Result

[Köper et al., 2017] Random Forrest, CNN, LSTM WASSA 2017 0.72 Pearson Correlation
[Goel et al., 2017] CNN, LSTM WASSA 2017 0.74 Pearson Correlation
[Duppada et al., 2018] XG Boost, Random Forrest SemEval 2018 0.80 Pearson Correlation
[Huang et al., 2019] CNN, LSTM WASSA 2017 0.77 Pearson Correlation

Table 2.4: Overview of papers related to the emotion intensity detection task.
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The lexicon-based approaches use predefined emotion lexicons (see Sec-
tion 2.7.1). The initial work was done in Strapparava and Mihalcea [2008],
they experimented with a dataset from SemEval 2007 [Strapparava and Mi-
halcea, 2007]. They use an algorithm that checks a presence of emotion words
in headlines and computes a score based on the frequency of those words in
the text.

Balahur et al. [2012] combine machine learning and lexicon-based ap-
proach. They proposed a method based on a commonsense knowledge base
EmotiNet [Balahur et al., 2011]. For evaluation, they used emotion corpus
International Survey of Emotional Antecedents and Reactions [Scherer and
Wallbott, 1994] (ISEAR) which contains descriptions of real-life situations
and one of seven major emotion they usually trigger. [Roberts et al., 2012]
downloaded and manually annotated posts from Twitter with one of seven
emotions using 14 topics. They tackle emotion detection as a multi-label
classification problem. They used seven independent binary Support Vec-
tor Machines (SVM) classifiers with similar features to [Balabantaray et al.,
2012].

In recent years deep learning methods have become very popular in the
NLP field and emotion analysis is no exception. The deep learning methods
are now used in most cases, for example, 21 out of 26 participating teams in
WASSA 2018 IEST task [Klinger et al., 2018] used deep neural network and
in SemEval-2019 Task 3: EmoContext [Chatterjee et al., 2019] almost all
teams from the top fifteen best performing teams used deep neural network
as well.

Huang et al. [2019] used a combination of convolutional neural networks
(CNN) and recurrent neural network (RNN) Bidirectional Long-Short-Term
memory neural networks [Graves and Schmidhuber, 2005] (BiLSTM) for
emotion detection and predicting emotion intensity. Abdul-Mageed and Un-
gar [2017] applied Gated Recurrent Neural Network [Cho et al., 2014c,
Chung et al., 2015].

2.4.5 Emotion Analysis Datasets
In this section, we briefly describe and summarize some datasets for emotion
analysis, i.e., for the emotion detection task and the emotion intensity detec-
tion task. Overviews of datasets for both tasks are organized in Tables 2.5
and 2.6. Regarding the related work, Bostan and Klinger [2018] summarize
and describe other existing and available datasets for emotion detection and
map them to a common format in a way that can be used for future research.
They also performed cross-domain experiments for emotion detection.

SemEval 2007 dataset [Strapparava and Mihalcea, 2007] was used for
the SemEval-2007 Task 14: Affective Text shared task at SemEval 2007
[Agirre et al., 2007]. The dataset is composed of 1, 250 annotated news head-
lines. Each headline annotated with a score from 0 to 100 for each emotion
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(it is a multi-label annotation). They used six Ekman’s [Ekman, 1992] ba-
sic emotions. Along with the emotions, the valence of the headline was also
annotated with a value from −100 to 100.

Paper Dataset Text Size Topic Emotions Multi

[Strapparava and Mihalcea, 2007] SemEval 2007 Headlines 1, 250 News E*, R yes
[Scherer and Wallbott, 1994] ISEAR Descriptions 7, 667 Events E*, G, M no
[Roberts et al., 2012] EmpaTweet Tweets 7, 000 General E*, R, L+N no
[Mohammad et al., 2018] SemEval 2018 Tweets 10, 983 General E*, P*, R+O, N yes
[Chatterjee et al., 2019] SemEval 2019 Dialogues 3, 8424 General A, H, S+O no
[Shrivastava et al., 2019] TV-Charmed Utterances 13, 354 TV show E*, R+O no
[Schuff et al., 2017] SSEC Tweets 4, 868 General E*, R, T, U yes
[Buechel and Hahn, 2017] EmoBank Sentences 10, 548 General - -

Table 2.5: Overview of datasets for the emotion intensity detection task.
Values in column Multi denote whether the dataset contains multi-label
annotations. Values in column Emotions refer to the following emotions
and classes: [E*]: anger, disgust, fear, joy, sadness, [P*]: trust, anticipation,
love, optimism, pessimism, [R]: surprise, [G]: guilt, [M]: shame, [L]: love,
[H]: happy, [S]: sadness, [T]: trust, [U]: anticipation, [A]: anger, [O]: other or
neutral class, [N]: no emotion.

To the best of our knowledge, ISEAR the International Survey of Emo-
tional Antecedents and Reactions [Scherer and Wallbott, 1994] corpus is the
oldest dataset used for emotion detection in NLP. It contains descriptions of
real-life situations. It was built by collecting questionnaires about the real-
life situation answered by respondents. The dataset contains 7, 667 examples
labeled with one of seven emotions.

EmpaTweet dataset8 [Roberts et al., 2012] is created from Twitter posts
that were manually labeled with one of seven emotions (six Ekman’s emo-
tions plus love emotion) or with no emotion. Each post (Tweet) belongs to
one of 14 topics. They obtained and annotated 7, 000 Tweets.

Paper Dataset Text Size Topic Emotions

[Mohammad et al., 2018] SemEval 2018 Tweets 12, 634 General anger, fear, joy, sad.
[Mohammad and Bravo-Marquez, 2017] WASSA 2017 Tweets 7, 097 General anger, fear, joy, sad.

Table 2.6: Overview of datasets for the emotion detection task.

The other datasets stated in the tables are described in [Mohammad
et al., 2018, Chatterjee et al., 2019, Mohammad and Bravo-Marquez, 2017,
Shrivastava et al., 2019, Buechel and Hahn, 2017, Schuff et al., 2017].

8Even though they claim that the dataset is publicly available they do not provide any
source in their paper.
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2.5 Subjectivity Classification
The subjectivity is closely related to SA and opinion mining. According to
[Liu, 2012] subjective sentence expresses personal feelings, views or beliefs
and objective sentence holds some factual information about the world. The
subjective sentence can be expressed in many ways, e.g., opinions, emotions,
stances, allegations, desires, belief, suspicions or speculations [Wiebe et al.,
1999, Wiebe, 2000, Riloff et al., 2006]. For example, “There is one police
station in our town.” is an example of objective sentence and “Our police
are really bad at their job.” is an example of subjective sentence.

The goal of subjectivity classification task is to determine whether
a sentence is subjective or objective [Wiebe et al., 1999, Wiebe and Riloff,
2005, Liu, 2012, Feldman, 2013, Pang and Lee, 2008, Riloff and Wiebe,
2003]. Nowadays, the subjectivity classification task is considered by some
researchers [Medhat et al., 2014] as the first step in sentiment classification
to filter out objective sentences that are assumed (incorrectly) to express or
imply no opinion.

It is important to note that subjective text and opinionated text are not
equal, although both concepts have a wide intersection. The opinionated text
expresses or implies positive or negative sentiment. For example, a subjective
sentence does not have to necessarily contain any sentiment, as shown in the
following sentence “I think he should visit his doctor”. Similarly, an objective
sentence can imply opinion or sentiment thanks to desirable or undesirable
facts [Liu, 2012, Feldman, 2013]. For example, “I did not have to repair my
Ford for ten years.” implies positive sentiment towards the car because of
the desirable fact that the car is reliable, the same applied for the following
objective sentence “In XY store I bought a new computer and they gave
me five PC games for free.” also implies positive sentiment. The opinions
in the previous objective sentences were implicit opinions. Of course it is
much easier to detect sentiment in subjective text because it is much more
often expressed directly unlike in the case of sentiment in objective text
and researchers often do not distinguish between subjective and opinionated
sentences and treat them as equal.

Next, we describe a common dataset for this task and then briefly intro-
duce some approaches from the earliest (which are mentioned in [Liu, 2012])
to the current state-of-the-art solutions. The traditional supervised machine
learning is most often applied to the problem of subjectivity classification.
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2.5.1 Cornell Movie Review Datasets
Here, we describe one well known and commonly used9 Cornell Movie Review
Dataset10 [Pang et al., 2002, Pang and Lee, 2004, 2005]. The corpora consist
of two datasets for SA and one dataset for the task of sentence subjectivity
classification. The dataset for subjectivity classification consists of 5, 000
subjective and 5, 000 objective sentences. To gather subjective sentences,
they downloaded movie reviews sentences or phrases. To obtain objective
data, they took sentences from plot summaries of movies from the Internet
Movie Database11.

Similar approach was applied in [Ng et al., 2006] and the analogical ap-
proach was also implemented in [Wiebe and Wilson, 2002] and in [Palshikar
et al., 2016].

2.5.2 Sentence Subjectivity Classification Approaches
In the very early work, Wiebe et al. [1999] used the Naive Bayes classifier
with binary features expressing a presence of a pronoun, an adjective, a car-
dinal number, a modal other than will and an adverb other than not. The
co-occurrence of words and punctuation marks with subjective and objective
sentences.

The semi-unsupervised approach is proposed in [Wiebe, 2000] and it is
based on a presence of subjective expressions in a sentence to determine its
subjectivity. An initial seed of subjective expression was expanded by search-
ing similar words, which were also likely to be subjective. Riloff et al. [2006]
created a rule-based method for subjectivity classification using learned pat-
terns of subjective expressions. In [Barbosa and Feng, 2010], the authors
focused on the subjectivity of Tweets. They used traditional features such
as word n-grams and part-of-speech tags.

The Cornell Movie Review Dataset is usually used for an evaluation of
the latest state-of-the-art approaches. To the best of our knowledge, the
best results on this dataset were achieved by AdaSent model [Zhao et al.,
2015] with 95.5% of accuracy. AdaSent stands for a self-adaptive hierarchical
sentence model, which is a model for a representation of a sentence meaning.
AdaSent is inspired by the gated recursive convolutional neural network [Cho
et al., 2014b] and forms the representation of the sentence from a traditional
word embeddings (e.g., word2vec, GloVe or fastText) but can incorporate
the order of words in the sentence and thus improve results on downstream
tasks like subjectivity classification.

9According to authors, more than 100 papers used their dataset until year 2012. The
paper describing the dataset has almost 3, 500 citations according to https://scholar.
google.com (April 2020).

10Available at http://www.cs.cornell.edu/people/pabo/movie-review-data/
11https://www.imdb.com

https://scholar.google.com
https://scholar.google.com
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.imdb.com
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Cer et al. [2018] recently achieved 93.9% of accuracy with another model
for sentence semantic representation, called Universal Sentence Encoder. The
model produces a fixed length vector (sentence embeddings) for an input
sentence.

2.6 Comparative Sentiment Analysis
Sentiment or opinion in a text does not necessarily have to be expressed
directly, but a comparison can be used instead. For example, “Apple iPhone
Xs is super reliable” is a typical regular opinion and “Apple iPhone Xs is
much more reliable than Samsung Galaxy S9” is a typical comparative opin-
ion as we defined in Section 2.2.3. Such sentence contains the comparative
opinion. The goal of this task is to identify sentences that contain compar-
ative opinions, extract the comparative opinions expressed in the sentences
and select the preferred entities (Apple iPhone Xs, in our example) [Liu,
2012, 2006, Feldman, 2013].

A comparative opinion expresses a relation of similarities or differences
between two or more entities and/or preference of the opinion holder based
on some of the shared aspects of the entities. The superlative or comparative
form of an adjective or adverb (e.g., better, more, less, best, cheapest) are
usually used to express the opinion but not always (e.g., prefer, win) [Jindal
and Liu, 2006a,b, Liu, 2006].

2.6.1 Types of Comparisons
Comparative opinions are created by using several types of comparisons.
There are two main types: gradable comparison and non-gradable comparison
[Jindal and Liu, 2006a, Kennedy, 2004, Liu, 2012, 2006].

Gradable comparison expresses relationships where compared entities
have some order or rank. This group can be further divided into three sub-
groups:

1. Non-equal gradable comparison: In this group, a set of entities is
ranked with a relation of the type greater or less than a different set
of entities. The ranking is based on some of their shared aspects or
features. For example, “Apple iPhone Xs has much more memory than
Samsung Galaxy S9”. Also, preferences belong to this group, e.g., “I
prefer Nokia rather than iPhone”.

2. Equative comparison: A relation of the type equal to is here used for
entities. These entities are equal, based on some of their shared aspects
of features. For example, “Apple iPhone Xs and Samsung Galaxy S9
have the same screen size”.



26

3. Superlative comparison: A relation of the type greater or less than
all others is used to rank one entity over all other entities. For example,
“iPhone Xs is the best iPhone model compared with previous models”.

Non-gradable comparison: It represents comparing the relation be-
tween two or more entities but does not rank them or assign them any order.
This group can also be divided into three sub-groups:

1. Similarity: Two or more entities have one aspect or feature which is
similar or different. For example, “Apple iPhone Xs has a different
amount of memory than Samsung Galaxy S9”.

2. Substitutability: Two or more entities have different aspects or fea-
tures, but these aspects are substitutable. For example, “My iPhone
Xs uses a Wi-fi for internet connection, but his Samsung Galaxy S9
can also be connected to internet using 5G network”.

3. Uniqueness: Entity has a particular aspect that another entity does
not have. For example, “My iPhone Xs has a front camera, but Sam-
sung Galaxy S9 does not have it”.

In [Liu, 2012, 2006] are the types of comparisons discussed and described
much more deeply.

2.6.2 Task Objective
The objective of the comparative sentiment analysis [Liu, 2012, Liu et al.,
2010, Jindal and Liu, 2006b] is for a given opinion document d, discover in
d all comparative opinion sextuples of the form:

(𝐸1, 𝐸2, 𝐴, 𝑃𝐸, ℎ, 𝑡)

where 𝐸1 and 𝐸2 are the entity sets that are compared based on their
shared aspects A. 𝑃𝐸 ∈ {𝐸1, 𝐸2} is the preferred entity set of the opinion
holder h and t is a time when the opinion is expressed. In the case of su-
perlative comparison, where one entity set is implicit (it is not present in the
text) special set U is used to denote it. For equative comparison, a special
symbol EQUAL is used as a value of the PE member. For example, using
the following sentence:

Author: Nick, 25/10/2019

“iPhone has much more memory than Samsung S9 and Honor
20 Pro.”

the desired output should look like this:
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(𝐸1, 𝐸2, 𝐴, 𝑃𝐸, ℎ, 𝑡) =

(iPhone, {Samsung S9, Honor 20 Pro}, memory, iPhone, Nick,
25/10/2019)

The entity set 𝐸1 contains only iPhone, the entity set 𝐸2 consists of
Samsung S9 and Honor 20 Pro. The shared aspect set 𝐴, which is compared,
contains memory. The set of proffered entities 𝑃𝐸 contains iPhone. The
opinion holder h is Nick and time t is 25/10/2019.

Comparative Sentence Identification

The problem of comparative sentence identification may seem trivial because
almost all comparative sentences contain comparative or superlative adjec-
tive or adverbs keywords (e.g., better, bigger, best) as is shown in [Jindal
and Liu, 2006a] but there two types of sentences which make the detection
based only on keywords difficult. The first one is that there are many sen-
tences which contain comparative keywords, but they are not comparative
sentences, e.g., “The words less and fewer both mean the same thing” and the
second one is that some comparative sentences do not contain any compar-
ative keyword, e.g., “In KFC I have to buy french fries, but in McDonald’s
restaurant they are included in every menu”.

Jindal and Liu [2006a] were able to detect comparative sentences on
their dataset using only a list of keywords with high recall but with low
precision. Further, in [Jindal and Liu, 2006b] they classify the comparative
sentences into four classes, i.e., non-equal gradable, equative, superlative and
non-gradable, see Section 2.6.1. They achieved an 80% of 𝐹1 score.

Other related work to this problem can be found in [Li et al., 2010b,
Yang and Ko, 2011, Gupta et al., 2017].

Preferred Entities Identification

Since the comparative sentences in most cases compare sets of entities, it
is not much meaningful to assign one sentiment label to the whole sentence
because they usually do not express a direct positive or negative opinion.
So the goal in the preferred entities identification task is to rank the sets
according to their shared aspects, which are compared. In most comparative
sentences, there are two entity sets and the ranking means to find the pre-
ferred entity set. For some real life application the positive sentiment label
may be assigned to aspects of the preferred entity set and negative to not
preferred aspects [Liu, 2012, 2006].

Liu [2012, 2006] describes an approach from [Ding et al., 2009, Ganap-
athibhotla and Liu, 2008] for identification of the preferred entity set, which
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is an extension of lexicon-based approach for aspect-based sentiment analy-
sis of regular opinions. The described approach is modified to be used with
comparative sentences.

2.7 Other Tasks
In this section, we briefly describe some other tasks related to SA.

2.7.1 Lexicon Generation
Words that carry information about sentiment are crucial for SA and the
other related tasks. These words are called sentiment words or opinion words.
For example, excellent, nice, beautiful and cool are positive sentiment words
and awful, bad and nasty are negative sentiment words. Along with sentiment
words, there are some specific phrases and idioms which also hold sentiment,
for example, “He was on cloud nine” means that someone is happy, which
implies positive sentiment. A list of such words, along with their sentiment
orientation, is called sentiment lexicon. Sentiment lexicon can be directly
used for solving one of the SA tasks (see Chapter 5) or as a source for
feature extraction for supervised learning algorithms.

Sentiment lexicon consists of a set of tuples of a lexical unit (word, phrase
or idiom) and its sentiment score [Liu, 2012, Singh et al., 2018, Medhat et al.,
2014]. The sentiment score can be represented in the following ways:

1. A binary indication to positive or negative sentiment polarity, for ex-
ample: excellent = 1, nice = 1, bad = 0.

2. A set of predefined values, like very negative, negative, neutral, positive
and very positive, for example: excellent = very positive, nice = posi-
tive, bad = negative.

3. A real number from a predefined interval, for example, [−1, 1] where
negative values refer to negative sentiment and positive values refers
to positive sentiment, for example: excellent = 0.78, bad = −0.35.

There are generally three main approaches for generating or obtaining
sentiment lexicon [Liu, 2012, Medhat et al., 2014]. The manual approach is
very time-consuming and expensive, thus it is often used as a verification
for the other two automatic approaches, i.e., dictionary-based approach and
corpus-based approach.

Dictionary-Based Approach

The dictionary-based approach uses a small set of manually selected sen-
timent words with their sentiment orientation or score. This set is called
a seed.
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A typical algorithm which uses this approach expands the initial set by
searching for synonyms and antonyms from some dictionary, e.g., WordNet
[Miller et al., 1990, Miller, 1995] or another prepared source [Mohammad
et al., 2009]. The newly found words are then added to the initial set. This
process is iteratively repeated with the newly expanded sentiment lexicon.
The process is stopped when the required amount of words is obtained or
when no new words are found. Some manual control is usually performed to
check the generated lexicon and correct errors.

The main advantage of this approach is that a large list of sentiment
words can be easily obtained. The disadvantage, on the other hand, is that
such a list contains errors that have to be manually fixed. The major disad-
vantage is that the list obtained with this approach contains only domain
and context-independent sentiment words, which can be problematic for
some applications [Liu, 2012]. For example, in the sentence “The apartment
is quite small”, the word small can imply negative sentiment and in the sen-
tence “The USB flash drive is really small” the word small means positive
feature.

Examples of this approach and its modification can be found in [Hu and
Liu, 2004, Valitutti et al., 2004, Kim and Hovy, 2004, Mohammad et al.,
2009, Blair-Goldensohn et al., 2008, Rao and Ravichandran, 2009] the sum-
mary of these papers is in [Liu, 2012].

Corpus-Based Approach

The corpus-based approaches are trying to solve or help with the problem of
the domain and context specific sentiment words. The idea of this approach
is to find some syntactic patterns or other patterns that occur together
along with already known sentiment words in a given large corpus. There
are usually two main scenarios in which the corpus-based approach is used
[Liu, 2012, Medhat et al., 2014]:

1. Given a seed list of known (often domain and context independent)
sentiment words and a domain corpus. The other domain and context
dependent sentiment words should be discovered from the domain cor-
pus.

2. Given a sentiment lexicon (with domain and context independent)
sentiment words and a domain corpus. The task is to adapt the given
sentiment lexicon to a new one using the given domain corpus.

The corpus-based approach is more suitable for creating domain specific
sentiment lexicons or utilizing existing context and domain independent lex-
icons in order to find domain specific sentiment words. The reason for this
claim is that is quite difficult to prepare very large and diverse corpus which
covers all English words but in a such a case corpus-based approach can be
used [Liu, 2012, Medhat et al., 2014].
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Available Lexicons

Thanks to the previous research, there is several of sentiment and emo-
tion lexicon and most of them are publicly available. In this section, we
provide a brief overview of these lexicons. Sentiment lexicons for English
are the most common, for example: General Inquirer lexicon [Stone et al.,
1966], MPQA [Wilson et al., 2005], Bing Liu [Hu and Liu, 2004], AFINN
[Nielsen, 2011], Sentiment140 [Kiritchenko et al., 2014], NRC Hashtag Sen-
timent [Kiritchenko et al., 2014], SentiWordNet [Baccianella et al., 2010] or
SentiStrength [Thelwall et al., 2012]. For other languages some lexicons exist
as well, for example, for Spanish: ML-SentiCon [Cruz et al., 2014] or iSOL
[Molina-González et al., 2013].

Another type of lexicon is a lexicon with valence arousal and domi-
nance values, which is based on Valence-Arousal-Dominance (VAD) emotion
model, see Section 2.4.2. There are English VAD lexicons [Mohammad, 2018,
Bradley and Lang, 1999, Warriner et al., 2013] but also Spanish [Redondo
et al., 2007, Guasch et al., 2016], Dutch [Moors et al., 2013, Brysbaert et al.,
2014], German [Vo et al., 2009, Schmidtke et al., 2014], French [Gilet et al.,
2012, Monnier and Syssau, 2014], Finnish [Söderholm et al., 2013], Polish
[Riegel et al., 2015], Chinese [Yu et al., 2016] and Portuguese [Soares et al.,
2012].

Lastly the emotion lexicons exist as well for English; NRC Word-Emotion
Association Lexicon [Mohammad and Turney, 2013], NRC-10 Expanded
[Bravo-Marquez et al., 2016], NRC Hashtag Emotion Association Lexicon
[Mohammad and Kiritchenko, 2015] or Emotion lexicon [Mohammad and
Turney, 2010]. These lexicons contain score for each of predefined emotions.

2.7.2 Opinion Spam Detection
Along with the rise of social networks and the internet itself, harmful activ-
ities also appeared. Opinions, reviews and comments can affect real life in
a good or even in a bad way. Positive reviews about a certain product can
boost its sales and negative reviews can stop its sales. Due to the anonymity
of the internet, artificial opinions and comments can be abused, to promote
or discredit some target products, services organizations and individuals.
Such behavior can be dangerous for individuals, companies or even coun-
tries. People posting fake opinions or reviews are called opinion spammers
and their activities are called opinion spamming [Jindal and Liu, 2007, 2008,
Liu, 2012]. The goal of this task is to detect such spam opinions. Another
related work and detail description of this task can be found in [Liu, 2012,
Rayana and Akoglu, 2015, Ren and Ji, 2017, Crawford et al., 2015].
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2.7.3 Sarcasm Detection
Recognize the real meaning of some expressions in a natural language like
irony, sarcasm or satire is a challenging task not only for computers but some-
times even for humans. These terms are closely related and (sometimes are
considered as interchangeable) we do not distinguish between them [Reyes
et al., 2012]. The goal of Sarcasm Detection is to identify sarcastic sentences
or other pieces of text [Davidov et al., 2010, Reyes et al., 2012, Liu et al.,
2010]. In the context of SA, the meaning of a positive expression is usually
intended to be negative and vice versa [Liu, 2012] this is the main reason
why the task is so challenging and difficult.

Other related work can be found in [Zhang et al., 2018, Van Hee et al.,
2018] and for Czech in [Ptáček et al., 2014].

2.7.4 Opinion Summarization
The next step after one of the polarity detection tasks is a summarization
of obtained opinions. In most cases, in practice, the company or user will
also want to know the overall opinion, i.e., what is the distribution of senti-
ments towards a specific entity and its aspects. Such summarization can be
composed of two components – qualitative component which covers expressed
sentiments towards a structured group of entities or aspects and quantitative
component which gives information in numbers about expressed sentiments
[Liu, 2012].

For example, a summary for some camera reviews could be that 1563
reviews expressed a positive sentiment, 132 expressed negative sentiment
and 15 expressed neutral sentiment towards GENERAL aspect of entity
Sony Camera x5. Other aspects of the camera can be summarized, as is
shown in Table 2.7. For a detailed description of opinion summarization see
Section 2.2 and Chapter 7 in [Liu, 2012].

Aspect General Weight Memory Size
Sentiment pos neg neu pos neg neu pos neg neu
Count 1563 132 15 642 967 351 1348 692 118

Table 2.7: Summary for Sony Camera X5.



Chapter 3

Machine Learning for
Classification

Machine learning is an essential part of NLP, including all SA tasks. In this
chapter, we will describe some algorithms and methods of machine learning
used in SA and text classification. We focus on supervised machine learning
since it dominates in SA.

3.1 Naive Bayes Classifier
Naive Bayes (NB) classifier is a simple supervised machine learning algo-
rithm based on Bayes’ theorem that allows to estimate conditional proba-
bility of some event, it can be written as:

𝑝(𝐴 | 𝐵) = 𝑝(𝐵 | 𝐴)𝑝(𝐴)
𝑝(𝐵) (3.1)

where 𝐴 and 𝐵 are events, 𝑝(𝐴) (prior probability) and 𝑝(𝐵) (evidence)
are marginal probabilities, 𝑝(𝐴 | 𝐵) is a conditional probability of 𝐴 given
𝐵 also called the posterior probability and 𝑝(𝐵 | 𝐴) is a probability of 𝐵
given 𝐴 also called likelihood.

The NB classifier assumes that features are independent of each other,
which is often an invalid assumption in many applications where NB classifier
is used, especially in the NLP field. Despite this often incorrect assumption,
NB classifier can achieve quite good results and in the early research, it was
quite a popular choice for SA. For NLP, we can rewrite the Bayes’ theorem
given by equation 3.1 as:

𝑝(𝑐 | 𝑑) = 𝑝(𝑑 | 𝑐)𝑝(𝑐)
𝑝(𝑑) (3.2)

where 𝑐 ∈ C is a class label and 𝑑 is a document. C is a finite set of possible
class labels. The Naive Bayes classifier assigns a given document 𝑑 into class
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𝑐 that fulfills the following expression:

𝑐 = arg max
𝑐∈C

𝑝(𝑐 | 𝑑) = arg max
𝑐∈C

𝑝(𝑑 | 𝑐)𝑝(𝑐)
𝑝(𝑑)

= arg max
𝑐∈C

𝑝(𝑑 | 𝑐)𝑝(𝑐)

= arg max
𝑐∈C

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛 | 𝑐)𝑝(𝑐)

(3.3)

where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are features representing the document 𝑑. Because the
𝑝(𝑑) is a constant, we can drop the denominator. We assume that the fea-
tures are independent of each other and thus we can apply the conditional
independence rule and rewrite the probability 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛 | 𝑐) as follows:

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛 | 𝑐) = 𝑝(𝑥1 | 𝑐)× 𝑝(𝑥2 | 𝑐)× · · · × 𝑝(𝑥𝑛 | 𝑐) (3.4)

The Naive Bayes classifier then can classify document 𝑑 into class 𝑐 as
follows:

𝑐 = arg max
𝑐∈C

𝑝(𝑐)
|X|∏︁
𝑖=1

𝑝(𝑥𝑖 | 𝑐) (3.5)

where 𝑝(𝑐) is the prior probability of class 𝑐, 𝑥𝑖 ∈ X and X is a set of features
for the document 𝑑.

3.2 Support Vector Machines
Support Vector Machines (SVM) [Cortes and Vapnik, 1995] is another super-
vised machine learning algorithm. The original paper was introduced only
for binary classification, but it can be easily extended for any number of
classes using the one-vs-all technique. When the one-vs-all technique is used,
𝑘 (number of classes) binary classifiers are trained, i.e., one for each class.
Here we describe only Linear SVM that assumes that the data are linearly
separable, but the non-linear version exists too, see [Cortes and Vapnik,
1995].

The basic idea of training SVM is to find an optimal hyperplane, rep-
resented by a normal vector w, that separates documents (training data
represented as vectors) in one class from documents in the other class. The
important aspect of the separating vector w is that SVM tries to find it
in a way that the separation margin between the vectors of documents in
different classes is as large as possible, as shown in Figure 3.1, hence SVM
is also known as maximum margin classifier.
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Figure 3.1: Support Vector Machines optimal hyperplane principle illustra-
tion. The optimal hyperplane is given by the normal vector x0 and scalar
𝑏0.

Any hyperplane can be defined as a set of vectors x (points) that satisfy
the following expression:

w · x + 𝑏 = 0 (3.6)

where w is the normal vector to the hyperplane and the 𝑏
||w|| determines the

offset of the hyperplane from the origin along the normal vector w.
First, let us introduce a notation we follow for a training dataset that con-

sists of the following training examples {(x(1), 𝑦(1)), . . . , (x(𝑚), 𝑦(𝑚))} where
𝑦(𝑖) ∈ {−1, 1} (binary classification), 𝑚 is a size of the training dataset
and x(𝑗) is a vector of features [𝑥1, 𝑥2, . . . , 𝑥𝑛], thus a particular feature 𝑖 of
training example x(𝑗) is referred1 as x(𝑗)

𝑖 . Given a linearly separable train-
ing dataset {(x(1), 𝑦(1)), . . . , (x(𝑚), 𝑦(𝑚))} then there must exist the normal
vector w and scalar 𝑏 that satisfy the following inequalities:

w · x(𝑖) + 𝑏 ≥ 1 if 𝑦(𝑖) = 1
w · x(𝑖) + 𝑏 ≤ −1 if 𝑦(𝑖) = −1 (3.7)

where w · x(𝑖) + 𝑏 = 1 is a boundary, i.e., support vector and all training
examples x(𝑖), for which 𝑦(𝑖) = 1, lies either on or above the boundary,

1We use this notation also in the next sections.
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w ·x(𝑖) + 𝑏 = −1 is a boundary, i.e., support vector and all training examples
x(𝑖), for which 𝑦(𝑖) = −1, lies either on or below the boundary. The equation
3.7 can be rewritten as follows:

𝑦(𝑖)(w · x(𝑖) + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑛 (3.8)

And finally, the desired optimal hyperplane (defined by a vector w0 and
scalar 𝑏0) is the unique one hyperplane in the way that it separates the
training data with a maximal margin and it is given by:

w0 · x + 𝑏0 = 0 (3.9)

The distance 𝜌(w, 𝑏) between the projections of the training vectors of
two different classes is given by:

𝜌(w, 𝑏) = min
𝑥;𝑦=1

x ·w
||w||

− max
𝑥;𝑦=−1

x ·w
||w||

(3.10)

The parameters that are being searched are the w0 and 𝑏0. The distance
between the two support vectors from equation 3.7 for the optimal hyper
plane is given by:

𝜌(w0, 𝑏0) = 2
||w0||

(3.11)

In order to maximize the distance 𝜌(w, 𝑏) (obtain w0 and 𝑏0) we want to
minimize ||w||. After getting the optimal hyperplane defined by w0 and 𝑏0
classification of example x(𝑘) into class 𝑦 ∈ {1,−1} is defined by the following
function:

𝑓(x(𝑘)) = sgn(w0 · x(𝑘) + 𝑏0) (3.12)

3.3 Logistic Regression
Logistic regression is a well known supervised classification algorithm (de-
spite the word regression in its name). The basic logistic regression can be
used for a binary classification, the multinomial logistic regression allows
classification into more than two classes. Here, we describe the basic ver-
sion for two classes. We describe this method in relative detail because most
of its basic principles and components are applied in more complex algo-
rithms, concretely in neural networks, see Section 3.4. Along with logistic
regression, we also explain general terms and concepts like cost function,
gradient descent and regularization that are common in machine learning in
general.
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3.3.1 Generative and Discriminative Classifiers
Logistic regression is a type of classifier referred to as a discriminative clas-
sifier, the classifiers of the second type are called generative classifiers2.
The generative classifiers model (“generate”) the distribution of individ-
ual classes. On the other hand, discriminative algorithms learn a decision
boundary between the classes, i.e., it only learns how to distinguish between
the classes based on their features.

More formally, both classifiers predict the conditional probability 𝑝(𝑐 | 𝑑)
of class 𝑐 given the input document 𝑑 (technically by features representing
the document), but both of them computes the probability differently. Gen-
erative models learn to model the joint probability distribution 𝑝(𝑑, 𝑐) and
compute the conditional probability 𝑝(𝑐 | 𝑑) to predict the class 𝑐. Such ex-
ample is the Naive Bayes classifier given by equation 3.5. The discriminative
classifiers directly model the conditional probability 𝑝(𝑐 | 𝑑) [Ng and Jordan,
2002, Jurafsky and Martin, 2009].

3.3.2 Logistic Regression Model
Generally, logistic regression predicts (estimates) the most likely class for in-
put vector of features x(𝑖) representing the input document 𝑑𝑖 by computing
the probability 𝑝(𝑦 | x(𝑖)). To recall, we use the same3 notation for train-
ing examples as in Section 3.2 with the description of SVM classifier, i.e.,
{(x(1), 𝑦(1)), . . . , (x(𝑚), 𝑦(𝑚))} denotes the training examples, 𝑦(𝑖) ∈ {0, 1},
𝑚 is a size of the training dataset and x(𝑗) ∈ R𝑛 is a vector of features
[𝑥1, 𝑥2, . . . , 𝑥𝑛] thus a particular feature 𝑖 of training example x(𝑗) is referred
to as x(𝑗)

𝑖 . All vectors of training examples can also be written as the matrix
X ∈ R𝑛×𝑚 and all labels as a vector y ∈ R𝑚.

The logistic regression model optimizes weights w and a bias parameter 𝑏.
The model is learning by minimizing an error on training examples. The error
is computed by the objective function, e.g., cross-entropy loss function. The
algorithm that optimizes the parameters according to the objective function
is, for example, stochastic gradient descent or gradient descent [Jurafsky and
Martin, 2009].

For input vector x we want to compute the probability 𝑝(𝑦 = 1 | x),
i.e., the input x belongs to class 𝑦 = 1 which can represent, for example,
that the input document is spam and for 𝑦 = 0 that the input document is
non-spam. To be exact, the model estimates the probability 𝑝(𝑦 = 1 | x) of
the true probability 𝑝(𝑦 = 1 | x). The prediction of the classifier on a test
example is computed in two steps. First, the 𝑧 ∈ R scalar term is computed

2Here, for the explanation, we will consider document classification, i.e., the input for
any classifiers is a document 𝑑 and output is its class 𝑐.

3The only difference is that 𝑦(𝑖) ∈ {0, 1} instead of 𝑦(𝑖) ∈ {−1, 1}.
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from the input x and model’s parameters w and 𝑏 in the following way:

𝑧 = wTx + 𝑏 (3.13)
Since the 𝑧 is a real number, we need to convert it into a probability

output 𝑦. The 𝑦 represents the estimation of the true 𝑦. The estimation is
achieved by applying the sigmoid function as follows:

𝑝(𝑦 = 1 | x) = 𝑦 = 𝜎(𝑧) = 1
1 + 𝑒−𝑧

(3.14)

The sigmoid function maps the input real number to the range [0, 1], see
Figure 3.2. The sigmoid function is also called the logistic function, hence
the name logistic regression.
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Figure 3.2: Sigmoid function illustration.

As we mentioned, the output of the model is the estimated probability
𝑝(𝑦 = 1 | x) of the input x being assigned to the class 𝑦 = 1 thus for the
binary classification the probability 𝑝(𝑦 = 0 | x) can be computed as follows

𝑝(𝑦 = 0 | x) = 1− 𝑝(𝑦 = 1 | x) (3.15)
and 𝑝(𝑦 = 1 | x) plus 𝑝(𝑦 = 0 | x) sum up to one:

𝑝(𝑦 = 1 | x) + 𝑝(𝑦 = 0 | x) = 1 (3.16)
Finally, the predicted class 𝑦 is 1 if the estimated probability 𝑝(𝑦 = 1 |
x) is greater than threshold 0.5 (which is called the decision boundary),
0 otherwise, see Figure 3.3, it can also be written as follows:

prediction =

⎧⎨⎩1 if 𝑝(𝑦 = 1 | x) > 0.5
0 otherwise

(3.17)
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Figure 3.3: Logistic regression model.

3.3.3 Cost Function
In the previous section, we assumed that the parameters w and 𝑏 are already
optimized. Logistic regression is a supervised machine learning algorithm, so
in order to learn its parameters, two components are needed, i.e., the cost
function and the optimization algorithm. The cost or loss function is a metric
that tells us how different the outputs are for the model’s training data
compared to the true (gold) labels. Logistic regression uses cross-entropy
cost function. The second component is the optimization algorithm that
updates the model’s parameters to minimize the cost function. Usually, the
gradient descent or stochastic gradient descent is used as the optimization
algorithm [Jurafsky and Martin, 2009].

Given one training example x, the gold label 𝑦 and the prediction of the
model 𝑦 (i.e., the 𝑝(𝑦 = 1 | x) probability), the cross-entropy loss function
ℒ𝐶(𝑦, 𝑦) is defined as follows:

ℒ𝐶(𝑦, 𝑦) = −(1− 𝑦) log(1− 𝑦)− 𝑦 log 𝑦 (3.18)

Using equations 3.14 and 3.13 we can rewrite the cross-entropy loss func-
tion as follows:

ℒ𝐶(𝑦, x; w, 𝑏) = −(1− 𝑦) log(1− 𝜎(wTx + 𝑏))− 𝑦 log 𝜎(wTx + 𝑏) (3.19)

The goal of the optimization algorithm, e.g., gradient descent, is to op-
timize the parameters w and 𝑏. The previous definition of cross-entropy
loss (equations 3.18 and 3.19) is focused only on one training example. The
overall cost function 𝐽(Θ), for the entire training dataset, that we want to
minimize (and thus find the optimal parameters) is defined as the average
cross-entropy over all training examples:

𝐽(Θ) = 1
𝑚

𝑚∑︁
𝑖=1
ℒ𝐶(𝑦(𝑖), x(𝑖); Θ) (3.20)
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where Θ = (𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝜃𝑛+1) is a vector that represents the model param-
eters w and the bias term 𝑏 that are being optimized. The dimension of w
is 𝑛.

3.3.4 Learning and Gradient Descent
The learning (optimization of the parameters) is then done by the gradient
descent algorithm. Gradient descent computes the gradient of the cost func-
tion by computing partial derivative 𝜕𝐽(Θ)

𝜕𝜃𝑖
with respect to each parameter

𝜃𝑖. Each parameter 𝜃𝑖 is updated in the following way:

𝜃𝑡+1
𝑖 = 𝜃𝑡

𝑖 − 𝛼
𝜕𝐽(Θ)

𝜕𝜃𝑖

(3.21)

where 𝜃𝑡
𝑖 is the current parameter value (i.e., before the update), 𝜃𝑡+1

𝑖 is the
new parameter value after the update, 𝛼 is a learning rate and 𝜕𝐽(Θ)

𝜕𝜃𝑖
is the

partial derivative of the cost function with respect to the parameter 𝜃𝑖.
The computed gradient is represented by a vector ∇Θ𝐽(Θ) where each

element corresponds to the element in the vector of parameters Θ and con-
tains the partial derivative with respect to that parameter. Using the cost
function from equation 3.20, the gradient vector ∇Θ𝐽(Θ) is computed as the
average of partial derivatives for each training example:

∇Θ𝐽(Θ) = 1
𝑚

𝑚∑︁
𝑖=1
∇Θℒ𝐶(𝑦(𝑖), x(𝑖); Θ) (3.22)

Then, one step (update) of the entire model can be rewritten as follows:

Θ𝑡+1 = Θ𝑡 − 𝛼∇Θ𝐽(Θ) (3.23)

Gradient descent is the iterative algorithm that can be stopped when the
gradients are less than some predefined value 𝜖 or when the cost function
does not change by a predefined value over the iterations or when the cost
function starts to grow on some held-out data [Jurafsky and Martin, 2009].

The cross-entropy loss function for logistic regression is convex. Thanks
to this property, it is guaranteed that the gradient descent algorithm finds
the (global) minimum.

The described basic version of gradient descent is computationally expen-
sive since to make one iteration (update), the gradient needs to be computed
for all training examples. Stochastic gradient descent is another version of
gradient descent that performs the update of the parameters for each train-
ing example x(𝑖). The gradient ∇Θ𝐽(Θ) for one training example x(𝑖) is then
computed (technically estimated) as follows:

∇Θ𝐽(Θ) = ∇Θℒ𝐶(𝑦(𝑖), x(𝑖); Θ) (3.24)
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Another property of stochastic gradient descent is that, to a certain ex-
tent, it can be used even for non-convex loss functions (e.g., neural networks)
since it can get out of some local optima of the function.

Alternatively, mini-batch gradient descent can be applied as well. Instead
of computing gradient for only one training example or all training exam-
ples, mini-batch gradient descent computes gradient for a batch of 𝑙 training
examples and updates the model’s parameters after each batch.

∇Θ𝐽(Θ) = 1
𝑙

𝑙∑︁
𝑖=1
∇Θℒ𝐶(𝑦(𝑖), x(𝑖); Θ) (3.25)

3.3.5 Regularization
In order to prevent the model from overfitting, a regularization technique is
often used. It allows the model to generalize on unseen test data [Jurafsky
and Martin, 2009]. The typical way of implementing the regularization is
by adding a new regularization term Σ(Θ) to the cost function. The cost
function is then given by:

𝐽(Θ) = 1
𝑚

𝑚∑︁
𝑖=1

(ℒ𝐶(𝑦(𝑖), x(𝑖); Θ) + 𝜆Σ(Θ)) (3.26)

where 𝜆 is a hyper-parameter that controls the strength of the regularization.
If 𝜆 = 0 we get the original cost function without any regularization. There
are two standard methods for computing the regularization term Σ(Θ). (1)
ℓ1 regularization is the sum of absolute values of the parameters and it is
given by:

Σ(Θ) = ||Θ||1 =
𝑛+1∑︁
𝑖=1
|𝜃𝑖| (3.27)

(2) The ℓ2 reguralization is computed as follows:

Σ(Θ) = ||Θ||22 =
𝑛+1∑︁
𝑖=1

𝜃2
𝑖 (3.28)

3.3.6 Multinomial Logistic Regression
Until now, we described logistic regression for binary classification. For
multi-class classification, the multinomial logistic regression learns a sep-
arate set of parameters 𝜃𝑘 ∈ Θ for each class 𝑐𝑘 ∈ 𝐶, the number of classes
is 𝑙, i.e., |𝐶| = 𝑙. Again, the goal is to estimate probability 𝑝(𝑦 = 𝑐 | x) of the
true probability 𝑝(𝑦 = 𝑐 | x) that the input x belongs to the class 𝑐. First,
vector z = [𝑧1, 𝑧2, . . . 𝑧𝑙] is computed, where each component of the vector
is computed4 from a set of parameters 𝜃𝑘 for a class 𝑐𝑘 and input x using

4In practice, all these operations are vectorized and parameters are in matrices.
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the equation 3.13. Next, the vector z is passed through the softmax function
that produces the estimated probabilities 𝑦 = 𝑝(𝑦 = 𝑐 | x; Θ) for each class.
The estimated probability 𝑝(𝑦 = 𝑐 | x; Θ) for a specific class 𝑐𝑘 is computed
as follows:

softmax(𝑧𝑘) = 𝑝(𝑦 = 𝑐𝑘 | x; Θ) = 𝑒𝑧𝑘∑︀𝑙
𝑗=1 𝑒𝑧𝑗

= 𝑒ΘT
𝑘x+𝑏𝑘∑︀𝑙

𝑗=1 𝑒ΘT
𝑗 x+𝑏𝑗

(3.29)

After applying the softmax function on the vector z, the output is a vector
of probabilities for the input x assigned to the corresponding classes. The
cross-entropy loss function ℒ𝐶𝑅𝐸(𝑦, 𝑦, x) for one training example x is given
by:

ℒ𝐶𝑅𝐸(𝑦, 𝑦, x) = −
𝑙∑︁

𝑘=1
1{𝑦 = 𝑘} log 𝑝(𝑦 = 𝑘 | x; Θ) (3.30)

where 1{𝑦 = 𝑘} is equal to 1 if 𝑦 = 𝑘, zero otherwise. In other words it is
equal to 1 if the input x is labeled with the gold class 𝑐𝑘.

3.4 Neural Networks
In this section, we describe neural networks and their underlying concepts
since, nowadays, neural networks became the fundamental machine learning
tool for natural language processing. The neural in the name originates
from the first proposal of an artificial neuron, called McCulloch-Pitts neuron
[McCulloch and Pitts, 1943]. The McCulloch-Pitts neuron was based on
a simplification of the biological neuron.

Generally, neural networks are built from individual units (called neu-
rons) and stacked into layers, together the layers form the entire neural
network. Logistic regression and neural network are closely related since
a neural network can be seen as a composition of multiple logistic regression
models (or other functions) stacked on top of each other, where the units are
the individual logistic regression classifiers (taking only the sigmoid output,
not 0 or 1 output after applying the threshold). From the other point of
view, logistic regression can be considered as a simple neural network [Ju-
rafsky and Martin, 2009]. In the following sections, we discuss different types
of neural network architectures, i.e., feed-forward neural network in Section
3.4.2, recurrent neural network in Section 3.5 and transformer architecture
in Section 3.7.

3.4.1 Deep Learning
In recent years, a very popular term deep learning has emerged in the con-
text of AI and neural networks. It refers to neural networks with many layers
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(regardless of the type of layer) in neural network architectures, hence deep
learning. The important idea behind deep learning is that the model is able
to learn representations of data, i.e., features are extracted by the network
itself (automatically) without any explicit or manual feature engineering.
For example, neural networks for image recognition or computer vision con-
tain dozens of layers, where the lower layers can identify simpler features
(e.g., edges) and the higher layers can identify more complex features (e.g.,
parts or even entire objects like digits, letters or faces) from outputs of the
lower layers. The deep neural networks are built by composing individual
layers that are usually implemented by the feed-forward neural network, re-
current neural network or convolutional neural network, but any type of
neural network can be incorporated in general. Deep leaning turned out to
be a powerful machine learning technique capable of producing state-of-the-
art results in NLP and also in other applications (e.g., computer vision or
speech recognition) [Jurafsky and Martin, 2009, Goodfellow et al., 2016].

In the case of NLP, word embeddings are also features that are extracted
automatically (usually by a neural network). Similarly to the image pro-
cessing, different layers in a neural network for NLP can capture different
language information. For example, lower layers in the ELMo model (see
Section 4.2.1) are better at capturing syntax information and the higher
layer is better at capturing context and semantic information.

3.4.2 Feed-Forward Neural Network
Next, we describe an architecture called feed-forward neural network, also
known as multilayer perceptron (MLP). It is composed from individual layers
and each layer is built of individual units (neurons). Feed-forward network
consists of one input layer, one output layer and one or more hidden layers,
see Figure 3.4. Each neuron from one layer is connected with all neurons in
the consecutive layer, hence, this network architecture is sometimes called
fully-connected. These connections are called weights and they are parame-
ters of the entire network. As with logistic regression, the goal is to optimize
these weights so that the model will produce the desired output.

The MLP with one hidden layer (see Figure 3.4) takes as input vector
x of 𝑛 features and it is passed through the entire network, i.e., through each
neuron. It can be written as follows:

h = 𝜎(W1x + b1)
ŷ = softmax(W2h + b2)

(3.31)

where W1 and W2 are weight matrices, b1 and b2 are bias vectors, h is
an output vector of the hidden layer, 𝜎(·) is an activation function and ŷ is
a vector of a probability distribution over possible output classes.

First, for each neuron, the weighted sum (scalar) is computed, then the
weighted sum is passed through a non-linear function 𝜎(·) that is called the
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Figure 3.4: Example of feed-forward neural network.

activation function. The example of the activation function is the sigmoid
function (used in logistic regression) but other functions like ReLU (Recti-
fied Linear Unit), see equation 3.33, or hyperbolic tangent, see equation 3.32,
can be used as well. Next, the output vector h of the hidden layer is passed
through5 the softmax function that produces the output vector of proba-
bilities ŷ. The sequence of these operations is called forward propagation.

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3.32)

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (3.33)

Since the MLP can generally contain more than one layer, we can rewrite
the expression 3.31 representing the network in Figure 3.4 using the common
notation [Jurafsky and Martin, 2009]:

z(1) = W(1)a(0) + b(1)

a(1) = 𝑔(1)(z(1))
z(2) = W(2)a(1) + b(2)

a(2) = 𝑔(2)(z(2))
ŷ = a(2)

(3.34)

where the number in superscript refers to the 𝑛-th hidden layer starting from
1 and specifically the layer 0 means input, so a(0) is the input vector x, 𝑔(𝑖)(·)
is the activation function in the 𝑖-ith layer, a(𝑖) is an output of the 𝑖-ith layer,
z(1) is the weighted sum in the 𝑖-ith layer and ŷ is the predicted output
probability distribution. The activation function 𝑔(2) in the last (second)
layer represents the softmax function in equation 3.31.

5In case of more than one layer, the output is passed into next hidden layer instead.
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3.4.3 Learning of Neural Networks
As in the case of logistic regression, the goal is to optimize the parameters
W(𝑖) and b(𝑖) in a way that the outputs ŷ for training data produced by the
model are similar as much as possible to the true labels y. The learning is
done by the same gradient descent algorithm that was described in Section
3.3.4 and by the back-propagation algorithm [Rumelhart et al., 1986]. The
same cross-entropy loss function (as for logistic regression, see equation 3.30),
can be rewritten more comprehensively as follows:

ℒ𝐶𝑅𝐸(ŷ, y) = −
𝑙∑︁

𝑖=1
𝑦𝑖 log 𝑦𝑖 (3.35)

where 𝑙 is number of classes, 𝑦𝑖 is the gold label for the class 𝑖 and 𝑦𝑖 is the
prediction of the model for the class 𝑖.

With the growing number of layers and parameters, the computation of
the gradient becomes a complex and non-trivial task. The back-propagation
algorithm [Rumelhart et al., 1986] allows computing the gradient. The back-
propagation relies on the chain rule, given a composite function 𝑓(𝑥) =
𝑔(𝑢(𝑤(𝑥)))) the derivative 𝑑𝑓

𝑑𝑥
of the function 𝑓(𝑥) with respect to 𝑥 is com-

puted in a following way:

𝑑𝑓

𝑑𝑥
= 𝑑𝑔

𝑑𝑢
· 𝑑𝑢

𝑑𝑤
· 𝑑𝑤

𝑑𝑥
(3.36)

Using the chain rule, the back-propagation algorithm computes the gra-
dient composed of the partial derivative of the cost function with respect to
each parameter of the model. The computed gradient is used by the gradient
descent to update the parameters of the model as described in 3.3.4.

3.5 Recurrent Neural Network
The Recurrent Neural Network (RNN) [Elman, 1990] is intended for process-
ing of sequential data. Text is sequential in nature. RNN allows processing
sequences of different lengths, unlike the feed-forward neural network, where
the input is always fixed-size. RNN also allows “remember” or “persist” in-
formation from the previous steps of the processed sequence because RNN
takes as input not only the current input but also a hidden state of the
network from the previous step, as shown in Figure 3.5.

More formally, RNN processes the input sequence X = [x1, x2 . . . x𝑇 ] and
for each element x𝑡 at time step 𝑡 it computes new hidden state h𝑡 from the
input x𝑡 and the previous hidden state h𝑡−1. The new hidden state h𝑡 is
computed by hidden layer function ℋ:

h𝑡 = ℋ(x𝑡, h𝑡−1) (3.37)
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In the simplest case, the hidden layer function ℋ is defined as:

h𝑡 = 𝜎 (W𝑥ℎx𝑡 + Wℎℎh𝑡−1 + bℎ) (3.38)
where the W terms correspond to weight matrices (e.g., W𝑥ℎ is the input-
hidden weight matrix) and bℎ term is hidden bias vector. The concrete
implementation of the ℋ function depends on the type of the used RNN
unit [Graves et al., 2013], for example, Long Short-Term Memory (LSTM)
unit [Hochreiter and Schmidhuber, 1997] or Gated Recurrent Unit (GRU)
[Cho et al., 2014c]. Each RNN unit shares the parameters (weights) across
all time steps. To propagate gradient in the gradient descent algorithm, the
RNNs use the back-propagation through time [Werbos, 1988].

A

xt

 = A

x1

A A A

x2 x3

ht

xt

ht h1 h2 h3

Figure 3.5: Basic RNN architecture6.

The common practice is also to use bidirectional RNN (BiRNN) [Schus-
ter and Paliwal, 1997]. BiRNN processes the sequence in both directions,
which has shown to be beneficial because the output at time 𝑡 can depend
on the previous and also on future elements of the sequence. It is usually
implemented with two RNN units, where one processes the sequence in the
original order and the second RNN processes the sequence in reverse order.
The outputs

−→
h𝑡 (for the original sequence direction, i.e., left to right) and

←−
h𝑡 (for the reversed direction) of these two RNN units are usually concate-
nated and producing one output h𝑡 as follows:

h𝑡 = [
−→
h𝑡;
←−
h𝑡] (3.39)

The disadvantage of BiRNN is that the entire input sequence must
present when it is being preprocessed and it can be problematic for some
specific tasks. An example of BiRNN is a bidirectional LSTM (BiLSTM)
[Graves and Schmidhuber, 2005].

There is one common issue with the simplest RNN implementation (de-
scribed above) called vanishing or exploding gradients. When RNN processes
longer sequences during the training, the weights inside the RNN are mul-
tiplied in each time step. In the back-propagation step, there is also a large
amount of multiplication and thanks to that, the gradients either “explodes”
(become very large) or “vanishes” (become very small) and thus the model
is not able to learn, i.e., instead of converging it diverges.

6Image based is on:
http://colah.github.io/posts/2015-08-Understanding-LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs


46

3.5.1 Long Short-Term Memory
Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is an
implementation of the RNN capable and intentionally designed to “remem-
ber” or “store” some long-term dependency information from the previous
time steps. The architecture of LSTM is shown in Figure 3.6.

Figure 3.6: LSTM architecture visualisation7.

The LSTM unit (or cell) is composed of structures called gates that can
decide which information should be stored and which information should
be deleted. The gates take the input x𝑡 and previous hidden state h𝑡−1 and
produce output that is a part of the hidden state. In addition, the LSTM
also takes the cell state C𝑡−1 from the previous time step. More concretely,
each LSTM unit contains input, forget and output gates. Using the gates,
the input x𝑡, previous hidden state h𝑡−1 and previous cell state C𝑡−1, the
LSTM produces new hidden state h𝑡 and new cell state C𝑡. The entire model
of LSTM can be written as follows:

f𝑡 = 𝜎 (W𝑥𝑓x𝑡 + Wℎ𝑓h𝑡−1 + b𝑓 )
i𝑡 = 𝜎 (W𝑥𝑖x𝑡 + Wℎ𝑖h𝑡−1 + b𝑖)
o𝑡 = 𝜎 (W𝑥𝑜x𝑡 + Wℎ𝑜h𝑡−1 + b𝑜)
C̃𝑡 = tanh (W𝑥𝑐x𝑡 + Wℎ𝑐h𝑡−1 + b𝑐)
C𝑡 = f𝑡 ⊙C𝑡−1 + i𝑡 ⊙ C̃𝑡

h𝑡 = o𝑡 ⊙ tanh (C𝑡)

(3.40)

where ⊙ is element-wise multiplication, x𝑡 is the current input vector,
W terms correspond to weight matrices and b terms are bias vectors, i𝑡, f𝑡,
o𝑡 are the outputs of the input, forget and output gates, respectively, C̃𝑡 is

7Image based is on:
https://colah.github.io/posts/2015-08-Understanding-LSTMs.

https://colah.github.io/posts/2015-08-Understanding-LSTMs
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the vector of new candidate information that can be added and 𝜎 is sigmoid
function.

The forget gate f𝑡 decides what information will be removed from the cell
state. It produces values between 0 and 1 that are multiplied with the values
from C𝑡−1. The amount of information that will be deleted is controlled by
the output where 0 means forgot (drop, delete) the entire information from
the previous cell state C𝑡−1 and 1 do not delete anything.

Next, the input gate i𝑡 decides which values will be updated and C̃𝑡 com-
putes the new candidates’ values (information) that could be potentially
added. These two vectors are then point-wise multiplied together and the
result is summed with f𝑡⊙C𝑡−1 that gives the new cell state C𝑡. Finally, the
new hidden state h𝑡 is computed from the output gate o𝑡 and the new cell
state C𝑡.

Another slightly simplified variant of LSTM is called Gated Recurrent
Unit [Cho et al., 2014c].

3.6 Sequence to Sequence
Specific neural network architectures can also be used to model and solve
sequence problems [Sutskever et al., 2014]. Sequence problems can be divided
into four categories: One-to-One, One-to-Many, Many-to-One and Many-to-
Many, as shown in Figure 3.7. The many-to-many sequence problem is also
called sequence to sequence or seq2seq.

One-to-One One-to-Many Many-to-One Many-to-Many

Figure 3.7: Sequence problems visualization8.

We summarize the four categories as follows:

1. One-to-One: The one-to-one problem can be seen as a special case
of sequence problem, where there is only one input and one output9

with a fixed size. The example is image classification, where the input
is always an image with a fixed size and the output is one category.
Since text is in nature sequential, there are not many typical examples
of one-to-one problems in NLP. A common text classification problem

8Image is based on http://karpathy.github.io/2015/05/21/rnn-effectiveness.
9By one input we mean one vector of features.

http://karpathy.github.io/2015/05/21/rnn-effectiveness
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could be potentially considered as one-to-one because the problem used
to be treated as one-to-one problem. The reason is that the input doc-
ument (sequence) was transformed into one feature vector with fixed
size regardless of the length of the document and then the document
was classified with one category.

2. One-to-Many: There is only one input and the output is a sequence.
For example, the input can be one word representing some topic and
the output a sequence of words (sentences) about the topic. Another
example is generating a description (sequence of words) for an image.

3. Many-to-One: In many-to-one problems, there is only a single output
for the input sequence. Nowadays, a typical example is text classifica-
tion, for example, sentiment polarity detection, where the input is a
sequence of words and the output is a single polarity label.

4. Many-to-Many: Many-to-many or sequence to sequence problems
consist of sequence input and sequence output, the lengths of the input
and output sequences may differ. The most typical example is machine
translation, where the input can be a sentence in Czech and the output
is its translation in English. Another example is question answering.

3.6.1 Encoder-Decoder
The many-to-one and many-to-many problems are the most common in
NLP. The common practice for modeling the many-to-many sequence prob-
lems in NLP is to use the encoder-decoder architecture [Cho et al., 2014c,
Sutskever et al., 2014], see Figure 3.8 for basic visualization and Figure 3.9
for machine translation example implemented by RNN.

Input Encoder Context
Vector Decoder Output

Figure 3.8: Basic visualisation of the encoder-decoder architecture.

The encoder encodes the variable-length input sequence into the fixed-
length vector representation C (the inner state representing the input, also
called context vector) and the decoder decodes the fixed-length vector rep-
resentation C and generates the output, see [Cho et al., 2014c] for more
detailed mathematical description. The outputs of the encoder are discarded.

The encoder-decoder architecture is usually implemented by RNN (see
Section 3.5) or by the transformer model (see Section 3.7). Typically, the
encoder and decoder are implemented by the same type of neural network.
Both the encoder and decoder can be composed of multiple stacked layers
of neural networks.
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RNN

Context Vector

RNN RNN RNN

How are you ?

Encoder RNN

Come

<START>

RNN

stai

RNN

?

RNN

<STOP>

Decoder

Figure 3.9: The example of encoder-decoder architecture for machine trans-
lation. The input sentence is encoded into context vector C. The output
sentence is generated until the end of sentence tag <STOP> is generated.

The simplest solution for obtaining the context vector C is to use the
last hidden state h𝑒

𝑛 of the encoder and the context vector C is then used as
the initial hidden state h𝑑

0 of the decoder [Jurafsky and Martin, 2009], that
can be written as follows:

C = h𝑒
𝑛

h𝑑
0 = C (3.41)

During the generation of the output sequence, the hidden state h𝑑
𝑡 and

the output probability distribution y𝑡 at time step 𝑡 is given by:

h𝑑
𝑡 = ℋ(y𝑡−1, h𝑑

𝑡−1)
y𝑡 = softmax(h𝑑

𝑡 ) (3.42)

where the function ℋ represents the RNN cell. Eventually, the generation
at each time step 𝑡 can be conditioned by the context vector C and the
previous output y𝑡−1 as follows:

h𝑑
𝑡 = ℋ(y𝑡−1, h𝑑

𝑡−1, C)
y𝑡 = softmax(h𝑑

𝑡 , y𝑡−1, C) (3.43)

3.6.2 Attention Mechanism
The vanilla approach of the encoder-decoder architecture uses the hidden
state of the last unit (the last RNN cell in encoder in Figure 3.9) as the
context vector C. This solution is not optimal since the context vector is
the last hidden state h𝑛 of the encoder and the decoder is forced to pro-
duce the output using only the last state. Thus, the last state (a static and
fixed length vector) must contain all necessary information about the entire
source sequence. It is problematic in case of long dependencies where the
information from the beginning of the sequence can fade away but can be
important to produce the output at the end of the sequence.
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The attention mechanism [Bahdanau et al., 2015] allows to model the
long dependencies without regard to their distance in the input or output
sequences [Vaswani et al., 2017]. The attention mechanism allows to the
decoder use all hidden states of the encoder and also learn their importance
(i.e., “pay attention”) in order to produce the output at the current time
step. More formally, let us define the hidden state h𝑑

𝑡 of decoder at time step
𝑡 as follows:

h𝑑
𝑡 = ℋ(y𝑡−1, h𝑑

𝑡−1, C𝑡) (3.44)

The only difference is that we replaced the static context vector C with
a new vector C𝑡 that is dynamically generated at each time step 𝑡. The
architecture of encoder-decoder architecture with the attention mechanism
is shown in Figure 3.10.

RNN

Context Vector

RNN RNN RNN

Encoder

RNN RNNDecoder

Figure 3.10: The example of encoder-decoder architecture with the attention
mechanism.

The context vector C𝑡 is computed from the previous hidden state h𝑑
𝑡−1

of the decoder and from an encoder hidden state h𝑒
𝑖 for each 𝑖, (∀𝑖 ∈ 𝑒 , 𝑒 is

a set of hidden states of the encoder). Firstly, set of scalars 𝑠𝑐𝑜𝑟𝑒(h𝑑
𝑡−1, h𝑒

𝑖 )
is computed for the previous hidden state and all states h𝑒

𝑖 of the encoder
using the following expression:

𝑠𝑐𝑜𝑟𝑒(h𝑑
𝑡−1, h𝑒

𝑖 ) = h𝑑
𝑡−1W𝑠h𝑒

𝑖 (3.45)

where W𝑠 is a set of weights that is learned along with other parameters
of the entire model. The resulting number (score) for each pair denotes the
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similarity between the two vectors. All scores are put into a vector s that
is normalized with a softmax function and produces vector 𝛼𝑡 containing
weights 𝛼𝑡𝑖:

𝛼𝑡 = softmax(s) (3.46)
Each element 𝛼𝑡𝑖 of the vector gives us the relative importance of each en-

coder hidden state h𝑒
𝑖 to the current decoder state h𝑑

𝑡 [Jurafsky and Martin,
2009].

The context vector C𝑡 for the decoder hidden state at time step 𝑡 is given
by weighting each encoder hidden state h𝑒

𝑖 by its corresponding weight 𝛼𝑡𝑖

as follows:

C𝑡 =
|𝑒|∑︁

𝑖=1
𝛼𝑡𝑖h𝑒

𝑖 (3.47)

3.7 Transformer
Another very recent type of neural network architecture is called trans-
former, originally introduced in [Vaswani et al., 2017]. Most of the recent
generalized language models like BERT or GPT 2 (see Chapter 4) use trans-
former as a basic building block. These models can achieve state-of-the-art
results in a variety of NLP tasks proving transformer architecture to be very
useful and promising. The transformer architecture is shown in Figure 3.11.
Transformer is able to handle long dependencies in sequences using attention
mechanism without any RNN. The advantage of transformer architecture is
that unlike LSTM, the transformer can be easily parallelized.

3.7.1 Transformer Model
The transformer follows the encoder-decoder principle. For a given input
sequence (x1, x2, . . . , x𝑛), the encoder produces a continuous representa-
tion Z = (z1, z2, . . . , z𝑛). Then, the decoder generates an output sequence
(y1, y2, . . . , y𝑚).

The encoder (left part of Figure 3.11) of the transformer consists of
𝑁 identical layers10 that are stacked on each other (𝑁 can be seen as a hyper-
parameter of the model). Each layer is composed of another two sub-layers.
The first sub-layer is a multi-head self-attention mechanism and the second
sub-layer is a fully connected feed-forward neural network. The output of
each sub-layer is added to a residual connection [He et al., 2016] vector and a
layer normalization [Ba et al., 2016] is performed. All sub-layers in the model
and also the input embeddings layers produce outputs with a dimension
𝑑model = 512.

10In the original transformer paper [Vaswani et al., 2017] the authors used 𝑁 = 6.
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Figure 3.11: The architecture of the transformer model. The left part repre-
sents the encoder and the right part represents the decoder. Image is taken
from [Vaswani et al., 2017].

The decoder (right part of Figure 3.11) of the transformer also contains
𝑁 stacked layers identical to the encoder part besides the two following
modification. (1) One extra sub-layer is added and it performs multi-head
attention over the output of the encoder. (2) The first sub-layer (masked
multi-head attention) is modified self-attention mechanism to ensure that
the model predictions for position i depend only on the previous known
outputs.

In each transformer layer block, the fully connected feed-forward net-
work is applied to each sequence position separately. In each layer, the feed-
forward neural network has its own parameters. It consists of two linear
transformations with ReLU activation function between them. The feed-
forward layer FFN(𝑥) is given by:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.48)
The input sequence of the entire model is firstly used as an input for the

two embeddings layers that produce vector representations for the tokens,
the two embeddings layers share parameters. There is no information about
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the token position in the produced vector representation, thus the position
is encoded and added to this vector. Each position is encoded with sine and
cosine function, the produced positional encoding has the same dimension
as the 𝑑model.

The output of the final decoder layer is passed to the learned linear
transformation layer and then softmax function is used in order to produce
the output tokens probabilities.

3.7.2 Self-Attention
Self-attention or intra-attention is an attention mechanism relating differ-
ent positions of a single sequence to compute a representation of the same
sequence [Vaswani et al., 2017]. It allows the model to learn dependencies
and correlations between the current output at time step 𝑡 and the previous
parts of the sequence.

(a) Scaled Dot-Product Attention visual-
isation.

(b) Multi-head attention visualisation
that consists of several attention layers
running in parallel.

Figure 3.12: Attention visualisation. Images are taken from [Vaswani et al.,
2017].

The attention mechanism used in the transformer is called Scaled Dot-
Product Attention, see Figure 3.12a. This attention takes as an input query
and key vectors of dimension 𝑑𝑘 a values vector of dimension 𝑑𝑣. Firstly, the
dot product of the query with all keys (i.e., size of the input sequence) is
computed (the MatMul part in Figure 3.12a) and each of the computed dot
products is divided (scaled) by

√
𝑑𝑘. Next, the softmax function is applied11.

The result is then multiplied with the values vector using the dot product.
In reality, the queries are stacked into a matrix Q, the keys and values

are also stacked into matrix K and V, respectively. The computation is then
11In case of decoder the masking is also applied, see [Vaswani et al., 2017] for details.
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done by matrix multiplication and the matrix of outputs can be written as
follows:

Attention(Q, K, V) = softmax
(︃

QKT
√

𝑑𝑘

)︃
V (3.49)

3.7.3 Multi-Head Attention
Instead of computing the attention only once, multiple parallel attentions
can be used. The attention is computed ℎ times with separate parameters
for each individual attention, where ℎ denotes the number of heads (i.e.,
number of parallel attentions), see Figure 3.12b. The benefit of the multi-
head attention is that it gives an opportunity to the model to learn a different
type of information, for example, one attention could potentially learn to pay
attention to syntax and the second could learn to pay attention to semantic
information12. The outputs of the individual attentions are concatenated,
linearly transformed and the result is passed to higher layers. The multi-
head attention mechanism can be written as follows:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headℎ)W𝑂

= [head1, head2, . . . , headℎ]W𝑂 (3.50)

where W𝑂 ∈ Rℎ𝑑𝑣 ×𝑑model is the matrix with parameters for the final linear
transformation. The head head𝑖 is given by:

head𝑖 = Attention(QW𝑄
𝑖 , KW𝐾

𝑖 , VW𝑉
𝑖 ) (3.51)

where W𝑄
𝑖 ∈ R𝑑model×𝑑𝑘 , W𝐾

𝑖 ∈ R𝑑model×𝑑𝑘 , W𝑉
𝑖 ∈ R𝑑model×𝑑𝑣 are matrices

with parameters corresponding to each head. The authors used ℎ = 8 and
𝑑𝑘 = 𝑑𝑣 = 𝑑model/ℎ = 64.

3.8 Evaluation Metrics
The common evaluation metrics in SA are accuracy, 𝐹1 score (or F-measure),
precision and recall. Let us define some result cases that can occur during
classification. The tested examples are classified into one of the possible
classes13 and based on the predicted class and the gold label (the actual
true class of the example) they can be categorized into four types that:
(1) true positive (tp) i.e., positive example was predicted as positive, (2)
false positive (fp) i.e., negative example was predicted as positive, (3) false
negative (fn) i.e., positive example was predicted as negative and (4) true

12This example is just to give you an idea, in reality, it does not have to be so clear.
13Here we consider binary classification, i.e., each example can be classified either as

positive or negative but in general, any number of classes.
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negative (tn) i.e., negative example was predicted as negative. Accuracy is a
metric that summarizes the overall performance of the evaluated model and
it is given by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
(3.52)

For a given class 𝑐, precision is the ratio of the number of correctly clas-
sified examples as class 𝑐 to the total number of examples classified as class
𝑐. For a given class 𝑐, recall is the ratio of the number of correctly classified
examples as class 𝑐 to the total number of examples that are actually labeled
with class 𝑐. Precision P and recall R for class 𝑐 are computed as follows:

𝑃 𝑐 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
(3.53)

𝑅𝑐 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(3.54)

𝐹1 score for class 𝑐 is computed with precision 𝑃 𝑐 and recall 𝑅𝑐 as their
harmonic mean, which is given by:

𝐹 𝑐
1 = 2× 𝑃 𝑐 ×𝑅𝑐

𝑃 𝑐 + 𝑅𝑐
(3.55)

The F -measure allows to specify parameter 𝛽 that controls importance
for precision and recall, then the 𝐹𝛽 score for class 𝑐 is computed as follows:

𝐹 𝑐
𝛽 = (1 + 𝛽2)× 𝑃 𝑐 ×𝑅𝑐

(𝛽2 × 𝑃 𝑐) + 𝑅𝑐
(3.56)

In multiclass classification, the precision, recall and F -measure for each
class can be macro averaged. The average metrics summarize the overall
performance of the model. Macro recall 𝑅𝑀 and macro precision 𝑃 𝑀 are
computed as follows:

𝑃 𝑀 =
∑︀𝑛

𝑖 𝑃𝑖

𝑛
(3.57)

𝑅𝑀 =
∑︀𝑛

𝑖 𝑅𝑖

𝑛
(3.58)

where 𝑛 is a number of classes, 𝑃𝑖 and 𝑅𝑖 is precision and recall for individual
classes. The macro F -measure is computed using 𝑃𝑖 and 𝑅𝑖 with formula
3.55. Usually, in classification, when the recall is improved, the precision
drops and vice versa.



Chapter 4

Text Meaning Representation

Since machine learning algorithms require as an input vectors of numbers,
the text must be converted and represented as vectors of numbers. Such
a vector should be able to capture syntax and semantic information of the
text.

Word embeddings (sometimes referred to as semantic space, word vectors
or simply embeddings) have proven to be extremely useful in many NLP
tasks and they became the essential part for most current NLP systems
since they are able to capture meaning (semantic) of words. Probably the
most famous methods for learning word embeddings are word2vec [Mikolov
et al., 2013a], GloVe [Pennington et al., 2014] and fastText [Bojanowski
et al., 2017]. They are based on the Distributional Hypothesis [Harris, 1954]
that says that words that occur in the similar contexts tend to have similar
meanings. It was popularized by [Firth, 1957] and his famous quote, “a word
is characterized by the company it keeps”.

4.1 Static Word Embeddings
Word embeddings (static word vectors) are typically pre-trained and repre-
sented by an n-dimensional vector space, also called semantic space. Each
word 𝑤𝑖 from vocabulary 𝑉 is represented by a static vector h𝑖 ∈ R𝑛 [Hewitt,
2019]. They are usually stored in one matrix which is used as a lookup table
that maps words to vectors, it can be expressed as a mapping function:

𝑓𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑤𝑖 → h𝑖 (4.1)

We refer to them as static word embeddings (word2vec, GloVe, fastText1).
The disadvantage of pre-trained static embeddings is that they cannot han-
dle polysemy and do not consider the context. In other words, one word
can have multiple meanings and the one concrete meaning depends on the

1Although fastText is able to compute vector for out-of-vocabulary words, we catego-
rize it under static approaches.
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context of the word. For example, consider these two sentences: “I love Coca-
Cola in the new can” and “I can buy Coca-Cola for you tonight”. In both
sentences, the word “can” is used, but each time, depending on the context,
it means something different and using the static word embeddings, it will
be expressed with the same vector. The dynamic word embeddings are able
to handle different contexts, see Section 4.2.

4.1.1 Similarity between Word Vectors
The similarity between words (word vectors) is usually measured with cosine
similarity, which corresponds to the cosine of the angle 𝛼 between the two
vectors x and y with dimension 𝑑 and it is computed as follows:

cos(x, y) = x · y
||x|| ||y||

=

𝑑∑︀
𝑖=1

𝑥𝑖𝑦𝑖√︃
𝑑∑︀

𝑖=1
𝑥2

𝑖

√︃
𝑑∑︀

𝑖=1
𝑦2

𝑖

= cos(𝛼) (4.2)

4.1.2 Word2vec
The famous word2vec is a pair of two models for efficient learning of word
embeddings, i.e., Continuous bag-of-words (CBOW) and Skip-gram proposed
by Mikolov et al. [2013a]. Both word2vec models (CBOW and Skip-gram)
are actually neural networks2 with three layers: input layer, projection layer
and output layer, see Figure 4.1. The models are inspired by the feed-forward
neural network for language modeling (NNLM) proposed in [Bengio et al.,
2003]. The proposed NNLM consists of input, projection, hidden and output
layers, but the network is also computationally expensive, which is caused
by the non-linear hidden layer. In word2vec, the hidden layer is removed
and thus, the proposed models are computationally less expensive than the
NNLM.

Skip-gram with Negative Sampling

Skip-gram model learns to predict the surrounding context words within
a certain range 𝐶 (context size) before and after the current word 𝑤𝑡 as
shown on the right side of Figure 4.1. The input of the model is only the
current word 𝑤𝑡 encoded with a one-hot vector and output is a probability
distribution over a vocabulary 𝑉 . The probability distribution denotes how
likely the words will occur as context words around the word 𝑤𝑡.

The model is represented by an embedding matrix X ∈ R|𝑉 |×𝑑 (between
the input and projection layer) and a context embedding matrix X̂ ∈ R|𝑉 |×𝑑

2Sometimes word2vec is not considered as a neural network because of the removed
non-linearity that is so characteristic for neural networks.
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Figure 4.1: The CBOW architecture predicts the current word based on the
context and the Skip-gram predicts surrounding words given the current
word.

(between the projection and output layer), where 𝑑 is specified dimension.
These two matrices are parameters Θ (or weights) of the model. Given a se-
quence of training words 𝑤1, 𝑤2, . . . , 𝑤𝑇 , the model is optimized by minimiz-
ing the following objective function3 𝐽𝑆𝐺𝑁𝑆(Θ):

𝐽𝑆𝐺𝑁𝑆(Θ) = − 1
𝑇

𝑇∑︁
𝑡=1

∑︁
−𝐶≤𝑗≤𝐶,𝑗 ̸=0

log 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) (4.3)

and 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) is computed using the softmax function:

𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) =
exp(x̂𝑤𝑡+𝑗

Tx𝑤𝑡)∑︀|𝑉 |
𝑖=1 exp(x̂𝑤𝑖

Tx𝑤𝑡)
(4.4)

where x̂𝑖 is the context word vector from matrix X̂ for word 𝑤𝑖 and x𝑖 is the
embedding word vector from matrix X for word 𝑤𝑖.

The original formulation of log 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) is very expensive to compute
(because of the denominator) and thus the negative sampling as an alterna-
tive solution for estimating the probability was proposed by Mikolov et al.
[2013c]. The idea of the negative sampling is to help the model to distinguish
the target word 𝑤𝑡 from words (called negative samples) taken from a noise
distribution 𝑃𝑛(𝑤). Words from the noise distribution 𝑃𝑛(𝑤) are unlikely to
occur as the context words of the target word 𝑤𝑡. The noise distribution
𝑃𝑛(𝑤) was empirically estimated and set to the unigram distribution raised

3SGNS stands for Skip-gram with negative sampling.
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to the 3/4𝑡ℎ power. The usual number of negative samples is 5 − 20. The
negative sampling is given by:

𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) = log 𝜎(x̂𝑤𝑡+𝑗

Tx𝑤𝑡) +
𝑁∑︁

𝑖=1
E𝑤𝑖∼𝑃𝑛(𝑤)

[︁
log 𝜎(−x̂𝑤𝑖

Tx𝑤𝑡)
]︁

(4.5)

where 𝑁 is a number of negative samples and 𝜎 is the sigmoid function. The
definition of the sigmoid function is the same as in equation 3.14:

Continuous bag-of-words

The continuous bag-of-words architecture is similar to the Skip-gram archi-
tecture. The goal of the CBOW model is to predict the target center word
𝑤𝑖 using all surrounding context words given by context size 𝐶. The CBOW
objective function 𝐽𝐶𝐵𝑂𝑊 (Θ) to be minimized is defined as follows:

𝐽𝐶𝐵𝑂𝑊 (Θ) = − 1
𝑇

𝑇∑︁
𝑡=1

log 𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) (4.6)

and 𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) is defined as:

𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) = exp(x̂𝑤𝑡
Tx𝑤𝑡)∑︀|𝑉 |

𝑖=1 exp(x̂𝑤𝑖
Tx𝑤𝑡)

(4.7)

where the vector x𝑤𝑡 is the sum of vectors of context words 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶

defined as follows:

x𝑤𝑡 =
∑︁

−𝐶≤𝑖≤𝐶,𝑖̸=0
x𝑤𝑡+𝑗

(4.8)

The negative sampling technique can be used for the CBOW as well. Accord-
ing to experiments presented in [Mikolov et al., 2013a], the CBOW model
works slightly better than the Skip-gram model in capturing syntactic infor-
mation, but the Skip-gram significantly outperforms the CBOW model in
capturing semantic information.

4.1.3 Global Vectors
Global Vectors (GloVe) [Pennington et al., 2014] is a method for learning
word vectors using co-occurrences of words in a training corpus. As first, the
word co-occurrence matrix C ∈ R|𝑉 |×|𝑉 | is constructed, where 𝑉 is vocab-
ulary and |𝑉 | its size. Each entry c𝑖𝑗 of the matrix C denotes the number
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of times word 𝑤𝑗 occurs in the context of word 𝑤𝑖. GloVe minimize the
following objective function 𝐽𝐺𝑙𝑜𝑉 𝑒(Θ):

𝐽𝐺𝑙𝑜𝑉 𝑒(Θ) =
|𝑉 |∑︁

𝑖,𝑗=1
𝑓(𝑐𝑖𝑗)(x𝑤𝑖

Tx̂𝑤𝑗
+ 𝑏𝑖 + 𝑏𝑗 − log 𝑐𝑖𝑗)2 (4.9)

where x𝑤𝑖
∈ R𝑑 is a word vector of the word 𝑤𝑖, x̂𝑤𝑗

∈ R𝑑 is a context
vector of the word 𝑤𝑗, 𝑑 is predefined dimensions of the vectors and 𝑓 is
a weighting function that should be relatively small for large values of 𝑐𝑖𝑗, so
that frequent co-occurrences are not overweighted and the function should
be non-decreasing so that rare co-occurrences are not overweighted. The
authors defined the function 𝑓 as:

𝑓(𝑥) =

⎧⎨⎩
(︁

𝑥
𝑥𝑚𝑎𝑥

)︁𝛼
if 𝑥 < 𝑥𝑚𝑎𝑥

1 otherwise
(4.10)

where 𝛼 and 𝑥𝑚𝑎𝑥 are hyper-parameters, Pennington et al. [2014] used 3/4
for 𝛼 and 100 for 𝑥𝑚𝑎𝑥. The function 𝑓 is visualized in Figure 4.2.
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Figure 4.2: Weighting function 𝑓 with 𝛼 = 3/4.

4.1.4 FastText
FastText [Bojanowski et al., 2017] is based on Skip-gram model with negative
sampling and using sub-words (character n-grams). FastText uses character
n-grams (hereinafter only n-grams) instead of entire words for training. Each
n-gram has its own vector representation, the vector representation of words
is computed as a sum of its character n-grams. Employing the sub-word
information allows to improve the vector representation for morphologically
rich languages. The advantage of this approach is that the model is able
to obtain vector representation even for words that did not appear in the
training corpus.
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4.1.5 Sentiment Specific Word Embeddings
The static word embeddings pre-trained on general text (e.g., Wikipedia or
news articles) will put words that occur in a similar context close to each
other in the embeddings space, but some of them can have the opposite
sentiment polarity. For example, the words “good” and “bad” often occur in
a similar context and thus, in the semantic space, their vectors are similar
as well. This feature for some specific sentiment words becomes the disad-
vantage in SA tasks because we would like to have these vectors not similar
(as they have opposite sentiment orientation) and thus, the subsequent sen-
timent classifier will be able to use them for learning (distinguish between
them). Such specialized word vectors are called sentiment specific word em-
beddings (SSWE).

The SSWE usually modifies the original semantic space to make the op-
posite sentiment words far from each other. Some deep learning models can
do this modification implicitly without any explicit help. Such an example
can be found in [Kim, 2014], where the word embeddings are used for initial-
ization of input weights and the model then updates these weights during
training and thus also modifying word embeddings.

The explicit methods for modifying word embeddings can be found in
[Maas et al., 2011, Tang et al., 2014, Zhou et al., 2015, Barnes et al., 2018,
Yu et al., 2017, Shi et al., 2018]. Maas et al. [2011] as first explored the idea of
SSWE. They proposed a model for capturing sentiment and semantic using
topic modeling approach similar to Latent Dirichlet Allocation [Blei et al.,
2003]. Tang et al. [2014] used tweets labeled by distant-supervision. They
extended the approach from [Collobert et al., 2011] using the hinge loss and
introducing a second objective that is focused on a polarity of tweets. Zhou
et al. [2015] proposed a method for learning bilingual sentiment word embed-
dings specifically for cross-lingual sentiment polarity classification. Barnes
et al. [2018] also introduced bilingual sentiment word embeddings that jointly
represent sentiment information in a source and target language. Another
method was introduced in [Yu et al., 2017] that is based on refining already
pre-trained word embeddings so that words can be closer to both semanti-
cally and sentimentally similar words and further away from sentimentally
dissimilar words.

4.2 Dynamic Word Embeddings
In recent years, a new type of word embeddings (text representations) based
on language models appeared. For example, Embeddings from Language
Models (ELMo) [Peters et al., 2018], Bidirectional Encoder Representations
from Transformers (BERT) [Devlin et al., 2019], Universal Language Model
Fine-tuning (ULMFiT) [Howard and Ruder, 2018], Generative Pre-Training
(GPT-2) [Radford et al., 2019] and Generalized Autoregressive Pre-training
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(XLNet) [Yang et al., 2019], we call them dynamic or contextualized word
vectors or contextualized embeddings4. The mentioned models are sometimes
called Generalized Language Models.

The dynamic embeddings are functions of an entire sequence of text,
unlike the static embeddings where the input is only one word. These models
take into account not only the word itself but also the context of the word
and thus, they eliminate the polysemy problem from static word embeddings.
We can express such a model with the following function:

𝑓𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =: (𝑤1, 𝑤2, . . . , 𝑤𝑁)→ (h1, h2, . . . , h𝑁) (4.11)

where (𝑤1, 𝑤2, . . . , 𝑤𝑁) is a text sequence of words, (h1, h2, . . . , h𝑁) are vec-
tors for the corresponding words and each word 𝑤𝑖 ∈ 𝑉 . In this case, the
word embeddings are not pre-trained, but they are produced by a pre-trained
model when they are needed.

In order to train them, usually, a large amount of unlabeled text and com-
putational resources are needed. The individual models differ in architecture
and in many other aspects, but they have in common two main properties.
(1) They are intended to learn and build a strong contextual representation
of language. (2) They are trained on objectives similar or closely related
to language modeling [Hewitt, 2019]. The disadvantage compared to static
word embeddings is that models for dynamic embeddings need much more
computational resources to be trained.

These models are usually not explicitly trained for one particular NLP
task (although there are exceptions, e.g., DocBERT [Adhikari et al., 2019]
for document classification), but they are meant to capture the general rep-
resentation of language. There are existing models for specific domains like
biomedical texts BioBERT [Lee et al., 2019] or scientific publications SciB-
ERT [Beltagy et al., 2019], but most of researchers use pre-trained and ready
to use general models. The reason is that training of such a model is not
trivial and it requires a large amount of computational resources and data.
The pre-trained model is then fine-tuned on a specific downstream task.

Even though that the dynamic embeddings outperforms the static, the
static embeddings are still used. The reason is that they can be easily trained
for any language or domain, unlike the dynamic embeddings.

4.2.1 ELMo
Embeddings from Language Models (ELMo)[Peters et al., 2018] is a lan-
guage model pre-trained with multiple layers of Bidirectional LSTM (BiL-
STM). The language model is trained from text using both directions (left to

4Often they can represent the entire text sequence (instead of one word), e.g., sentence.
Even though they can represent text sequence, we will refer to them as contextualized
word vectors or word embeddings.



63

right and right to left) and it is called the bidirectional language model. The
language representation is then stored in the internal states of the trained
model. The word vectors can then be obtained by combining and weighting
the weights or just by using any of the layers depending on the task that
is being solved. The reason for weighting the layers or selecting one specific
layer is that empirically was shown that the lower layer of the model is better
at capturing syntax information and the higher layer is better at capturing
context and semantic information.

More formally, given a sequence of 𝑛 tokens (𝑥1, 𝑥2, . . . , 𝑥𝑛) the clas-
sical (forward) language model learns to estimate the probability of the
sequence by computing the probability of next token 𝑥𝑘 given the history
(𝑥1, . . . , 𝑥𝑘−1). The probability of the sequence is then expressed as:

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∏︁

𝑘=1
𝑝(𝑥𝑘 | 𝑥1, 𝑥2, . . . , 𝑥𝑘−1) (4.12)

The bidirectional language model uses the forward pass over the text and
also the backward pass, where history (or rather following tokens) is given
by the tokens after the target token which can be expressed as:

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∏︁

𝑘=1
𝑝(𝑥𝑘 | 𝑥𝑘+1, 𝑥𝑘+2, . . . , 𝑥𝑛) (4.13)

The ELMo model consists of one input character-based and context-
independent layer followed by 𝐿 stacked BiLSTM layers5, see Figure 4.3.

For each token 𝑥𝑘 a set of 2𝐿+1 representations is computed. Each input
token 𝑥𝑘 is represented by one context-independent vector x𝐿𝑀

𝑘 (which comes
from the input layer) and then in each layer ℓ by two hidden states of the
LSTMs

−→
h 𝐿𝑀

𝑘,ℓ ,
←−
h 𝐿𝑀

𝑘,ℓ for forward and backward direction, respectively. The
overall representation 𝑅𝑘 for the token 𝑥𝑘 can be written as:

𝑅𝑘 = {x𝐿𝑀
𝑘 ,
−→
h 𝐿𝑀

𝑘,ℓ ,
←−
h 𝐿𝑀

𝑘,ℓ | ℓ = 1, . . . , 𝐿} = {h𝐿𝑀
𝑘,ℓ | ℓ = 0, . . . , 𝐿} (4.14)

where h𝐿𝑀
𝑘,0 is the representation from the first layer and h𝐿𝑀

𝑘,ℓ =
[︁−→

h 𝐿𝑀
𝑘,ℓ ,
←−
h 𝐿𝑀

𝑘,ℓ

]︁
is the representation of the higher layers. During the training the final layer
representation h𝐿𝑀

𝑘,𝐿 =
[︁−→

h 𝐿𝑀
𝑘,𝐿 ,
←−
h 𝐿𝑀

𝑘,𝐿

]︁
is used as an input for a final softmax

layer which outputs probabilities over tokens. The ELMo model is learned
by minimizing the negative log-likelihood of the forward and backward di-
rections:

𝐽𝐸𝐿𝑀𝑜(Θ) = −
𝑛∑︁

𝑘=1
(log 𝑝(𝑥𝑘 | 𝑥1, 𝑥2, . . . , 𝑥𝑘−1; Θ𝑥,

−→Θ 𝐿𝑆𝑇 𝑀 , Θ𝑠)

+ (log 𝑝(𝑥𝑘 | 𝑥𝑘+1, 𝑥𝑘+2, . . . , 𝑥𝑛; Θ𝑥,
←−Θ 𝐿𝑆𝑇 𝑀 , Θ𝑠))

(4.15)

5Any number of layers can be used. The authors used two layers.
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where −→Θ 𝐿𝑆𝑇 𝑀 and ←−Θ 𝐿𝑆𝑇 𝑀 are separate parameters for each direction, Θ𝑥

and Θ𝑠 are learnable parameters of the input layer and the softmax layer,
respectively. Θ𝑥 and Θ𝑠 parameters are shared across the directions.
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Figure 4.3: Architecture of the ELMo model.

4.2.2 Generative Pre-training Transformer
Generative Pre-training Transformer (GPT) [Radford et al., 2018] share the
same idea with ELMo, i.e., train a language model on a huge amount of text
data, which brings strong contextualized language representation that can
be used in downstream tasks. GPT is a multi-layer transformer decoder,
see Section 3.7 for transformer architecture. GPT differs from ELMo in two
aspects. (1) ELMo uses independently trained forward and backward multi-
layer LSTMs (GPT uses transformers). (2) The usage of both models in
downstream tasks. ELMo produces word vectors that are used as additional
features for a custom model designed for one specific downstream task, while
GPT model itself is fine-tuned for the specific task, see Section 4.2.5.

The training procedure consists of two steps. In the first step, they train
the model on a large corpus of unlabeled text with standard language mod-
eling objective. The second step is to fine-tune the model for one specific
downstream task. Another difference in comparison with ELMo is that GPT
learns the language model only with a forward pass over the data, while
ELMo uses both directions, i.e., forward and backward.

The GPT architecture is based on the original transformer [Vaswani
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et al., 2017], but it is modified and it uses only the decoder part of the
transformer architecture, which is called Transformer decoder [Liu et al.,
2018b]. The proposed model stacks 12 layers of transformers followed by the
final softmax layer that produces a distribution over the target tokens, see
Figure 4.4 for the architecture overview.

 

Masked Multi Self-Attention

Layer Norm

Feed Forward

Layer Norm
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12 x

Figure 4.4: Architecture of the GPT model6.

The objective function that is being minimized is similar to the one used
in ELMo. For a given training sequence of tokens 𝒳 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) the
model minimizes the following objective function 𝐽𝐺𝑃 𝑇 (𝒳 , Θ):

𝐽𝐺𝑃 𝑇 (𝒳 , Θ) = −
𝑛∑︁

𝑘=1
log 𝑝(𝑥𝑘 | 𝑥𝑘−𝑗, . . . , 𝑥𝑘−1; Θ) (4.16)

where Θ are the optimized parameters of the model and 𝑗 is the size of the
context window. The model can be expressed as follows:

h0 = uW𝑒 + W𝑝

hℓ = transformer block(hℓ−1),∀ℓ ∈ [1, 𝐿]
𝑝(𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(h𝐿W𝑒

T)
(4.17)

where h0 is the hidden state (output) of the input layer, u = (𝑢−𝑗, . . . 𝑢−1) is
a context vector of tokens, 𝐿 is number of transformer layers7, hℓ are outputs
of stacked transformer layers, W𝑒 is the token embeddings matrix and W𝑝 is

6Image is based on https://lilianweng.github.io/lil-log.
7The authors used 12 layers but any number could be used.

https://lilianweng.github.io/lil-log
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the position embeddings matrix and 𝑝(𝑉 ) is a probability distribution over
the vocabulary 𝑉 .

After the unsupervised training with the objective in Equation 4.16, the
resulting pre-trained model can be fine-tuned for a certain task using su-
pervision (i.e., task-specific labeled data). Given a training corpus 𝒞, each
training sample 𝑐𝑖 ∈ 𝒞 contains a sequence of tokens (𝑥1, . . . , 𝑥𝑚) along with
a label 𝑦. The training sample is then passed through the pre-trained model
and the output h𝐿 of the last transformer layer is used as an input into
a new softmax layer (with a matrix of parameters W𝑦) that predicts the
probability of label 𝑦:

𝑝(𝑦 | 𝑥1, . . . , 𝑥𝑚) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(h𝐿W𝑦) (4.18)

The model is then trained (fine-tuned) by minimizing a new objective
function 𝐽𝐺𝑃 𝑇 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑(𝒞, Θ) given by:

𝐽𝐺𝑃 𝑇 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑(𝒞, Θ) = −
𝑛∑︁

𝑘=1
log 𝑝(𝑦 | 𝑥1, . . . , 𝑥𝑚; Θ) (4.19)

4.2.3 BERT
BERT stands for Bidirectional Encoder Representations from Transformers
[Devlin et al., 2019]. It is a recent model for language representation based
on transformer architecture.

Traditional methods for language modeling predict the next token in se-
quence using only the previous tokens or only tokens after the predicted
token (they do not use both at the same time). Even some new methods, for
example, GPT uses for learning only tokens before the target token. ELMo
uses tokens before and after the target token, but it treats them indepen-
dently. On the other hand, BERT is learning to predict the next token using
the left context (previous tokens) and the right context (following tokens)
jointly at once. This property is called bidirectionality (hence, the bidirec-
tional word in BERT name), see Figure 4.5, and it leads to performance
improvement in downstream tasks.

The authors of BERT proposed two models BERTBASE that has the
same size as GPT (i.e., 12 stacked layers of transformer blocks, it contains
110 million parameters in total) in order to be comparable with GPT and
BERTLARGE that consists of 24 stacked layers of transformer blocks with
a total of 340 million parameters.

BERT training is similar to GPT, but it differs mainly due to the men-
tioned ability to learn jointly from both (backward and forward) directions
when iterating over text. BERT is trained on a large unlabeled text corpus
with two auxiliary tasks instead of the basic language task. (1) Masked Lan-
guage Modeling (MLM), for a given input word sequence, a certain portion
of words are replaced by a special symbol [MASK] and the goal of the task is
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Figure 4.5: Comparison of pre-trained model architectures. BERT uses
a bidirectional Transformer. GPT uses a left-to-right Transformer. ELMo
uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three,
only BERT representations are jointly conditioned on both left and right
contexts in all layers. Image was taken from [Devlin et al., 2019].

to recover the replaced original words without any information about them.
(2) Next Sentence Prediction is a task where for a given sentence pairs A and
B, the goal is to decide whether the B sentence follows the A sentence in
a training corpus. The authors generated training corpus in that way that
50% of sentence pairs remained in the correct order and for 50% of sentence
pairs, the B sentence was replaced by other random sentences from the cor-
pus. Then the trained model is utilized for a specific downstream task in
a similar way as GPT.

Since BERT model contains millions of parameters, the training is very
computationally expensive. Thus, some modifications and variants of BERT
were introduced to reduce the number of parameters and the training time,
for example, ALBERT [Lan et al., 2020] or DistilBERT [Sanh et al., 2019].

4.2.4 XLNet
XLNet Yang et al. [2019] is the newest BERT-like pre-trained model for
language representation. It outperforms BERT on 20 NLP tasks. XLNet is
similar to BERT, it also learns bidirectionally, but in addition, it tries to
overcome some limitations of BERT.

The main difference between BERT and XLNet is that XLNet is a gen-
eralized autoregressive (AR) method for language modeling. Conventional
AR language models employ context to predict the next word in a sequence
using either forward or backward context. It can not use forward and back-
ward context at the same time, this is an obvious disadvantage because some
downstream language understanding tasks often require context information
from both directions.

On the other hand, BERT is referred to as autoencoder (AE) language
model. The AE language models learn on predicting original words from a
corrupted input text. The advantage of this approach is that it allows to
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learn jointly from both context directions (forward and backward). The dis-
advantage of BERT is its learning task called Masked Language Modeling
(see the previous section). BERT uses the bidirectional context for a predic-
tion of the original words and it leads to performance improvement. However,
the [MASK] symbol is not present when the model is fine-tuned for a certain
downstream task, resulting in a pretrain-finetune discrepancy. The second
disadvantage caused by the masking is that if there is more than one masked
word, then BERT assumes that the predicted words are independent, which
is not true in many cases [Yang et al., 2019]. For example, the sentence “Real
Madrid is a Spanish football club” can be masked as “[MASK] [MASK] is a
Spanish football club”. There is clear dependence between words Real and
Madrid, but BERT ignores this dependency, unlike XLNet.

XLNet tackles this problem by introducing a new language modeling
task, called permutation language modeling, where all tokens are predicted
in a random order, see Yang et al. [2019] for a detailed description. This task
used for learning, allowing the model to learn bidirectionally, unlike other
traditional AR language models.

4.2.5 Transfer Learning and Fine-tuning
Transfer learning is a technique used in machine learning, especially in com-
puter vision and NLP. The idea is to pre-train model on data (usually large
unlabeled dataset) and then use and adapt this model to another specific
task, i.e., transfer some knowledge. The detailed description and categoriza-
tion of transfer learning techniques can be found in [Pan and Yang, 2010].

The motivation for this technique is that for most supervised NLP tasks,
the labeled data are limited (insufficient amount of training data). Transfer
learning allows us to use some general knowledge from the pre-trained model
and thus improve performance on the task with limited data. The transferred
general knowledge would not be possible to learn with the small amount of
the available data for the specific task.

The mentioned models of dynamic embeddings (i.e., generalized language
models like ELMo, BERT, GPT, XLNet etc.) are directly intended to be used
as models for transfer learning. They can be categorized according to their
usage in downstream tasks into two groups [Devlin et al., 2019]:

1. Feature-based approach: The pre-trained model produces vector rep-
resentations of text and these representations are used as additional
features for another custom model for a specific task. The ELMo ar-
chitecture belongs under this category.

2. Fine-tuning approach: The pre-trained model (its parameters) is di-
rectly fine-tuned on the downstream task and no additional model is
needed. Examples of this approach are BERT or GPT.



Chapter 5

Approaches for Sentiment
Analysis

In the next sections, we describe common or basic approaches applicable for
aspect sentiment classification, document-level and sentence-level polarity
detection (also called sentiment analysis). At the end of this chapter we give
an overview of state-of-the-art approaches.

In general, all approaches can be placed into three groups; lexicon-based
approach, machine learning approach and hybrid approach. The machine
learning approach can be further divided into supervised learning approach
and unsupervised learning approach [Giachanou and Crestani, 2016, Liu,
2012, Medhat et al., 2014, Maynard and Funk, 2011] as is shown in Figure
5.1. Figure 5.1 shows the categorization of approaches that can be applied
to SA and other related tasks.
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Figure 5.1: Sentiment analysis techniques overview.
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5.1 Lexicon-based Approaches
The lexicon-based approaches use a list of predefined words or phrases, called
sentiment lexicons or opinion lexicons. For each word or phrase, they contain
sentiment orientation, which can be a real number denoting a sentiment
score where positive value means positive sentiment and negative number
means a negative sentiment [Liu, 2012, Singh et al., 2018, Giachanou and
Crestani, 2016, Medhat et al., 2014, Bravo-Marquez et al., 2014]. These
sentiment words values are then in each sentence, document or other pieces
of text (based on their presence in the text) summed up and the resulting
number decides the sentiment polarity of the document or sentence. The
calculation of the final sentiment polarity can be done in many ways and
does not necessarily have to be summation. The score is usually normalized,
for example, by the length of the evaluated text.

The advantage of lexicon-based approaches is their easy implementation
in case that we already have the sentiment lexicon. In current times, there is
a large number of available lexicons for different languages and domains, see
Section 2.7.1 for examples. A huge advantage of this approach is that there is
no need for training data that can be extremely useful because, in practice,
we may not have enough training data or even any data to train a supervised
machine learning approach. The disadvantage is that some implementations
of this approach can not handle negation (e.g., not so good or not bad) or
contrary (e.g., It is good, but I don’t like it) expressions which usually shift
or change the sentiment orientation. Further text without sentiment words
may also express sentiment. In such a case, the lexicon-based approach will
fail.

The vast majority of lexicon-based approaches are currently obsolete and
overcome by recent state-of-the-art methods based on supervised learning.
However, in some cases in practice, there may not be any other applica-
ble approach or it just makes sense to use the lexicon-based approach. For
example, the European Media Monitor (EMM) system [Steinberger et al.,
2017] from Joint Research Center1 (JRC) uses a lexicon-based approach for
SA in almost all European languages. Obtaining training data for so many
languages to use the traditional supervised machine learning algorithms or
even deep neural network would be enormously difficult and expensive.

5.1.1 Existing Lexicon-Based Methods
For the document-level SA, supervised machine learning techniques are usu-
ally used, but there are also works using lexicon-based methods. The Europe
Media Monitor (EMM) system from Steinberger et al. [2017], Balahur et al.
[2010], is also used to detect sentiment polarity (in the paper they call it

1Joint Research Center is a research center of European Commission
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tonality) in news articles. The EMM system counts occurrences of language-
specific sentiment terms from their language-specific dictionaries. Each sen-
timent term has a sentiment value assigned. The system sums up values for
all words (which are present in the mentioned dictionary) in a given text.
The resulting number is normalized and scaled to a range from −100 to
100 where the negative value indicates negative sentiment and the positive
value indicates positive sentiment and the neutral sentiment is expressed
with zero.

Balahur et al. [2009] detected sentiment quotations from newspaper ar-
ticles. They used multiple sentiment lexicons to detect the sentiment. They
mapped terms in the lexicons to a common score scale and they summed the
scores of sentiment words that are present in the quotations. The polarity of
each quotation was determined by the resulting summed value, i.e., a pos-
itive value means positive sentiment and a negative value means negative
sentiment.

Cho et al. [2014a] classify product reviews. They tackle the problem of
the lexicon domain dependency. They merge multiple sentiment dictionaries
in order to expand the usable dictionary. Then, they modify the resulting
lexicon to adapt it for a specific domain. They remove non-profitable words
(words that do not improve the classification) from the dictionary or they
change sentiment orientation of some words. The sentiment score of each
review 𝐷𝑗 is computed as follows:

𝑠𝑐𝑜𝑟𝑒(𝐷𝑗) = 1
𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 (5.1)

where 𝑤𝑖 is a sentiment word present in the dictionary and in the review
𝐷𝑗 and 𝑛 is a number of matched dictionary words.

5.1.2 Lexicon Methods for Aspect-Based Sentiment
The early approach is used in [Hu and Liu, 2004], where the author uses
WordNet [Miller et al., 1990] lexicon by counting positive and negative ex-
pressions.

A more advanced approach is described in [Ding et al., 2008] that takes
into account context dependent sentiment words and negations. They fo-
cus on customer reviews of products and sentiment expressed towards their
aspects, assuming that entities and aspects are known. Their main idea to
determine the polarity towards a particular aspect is to use sentiment words
around the product aspect. They compute a score for each aspect. For a given
sentence 𝑠 with a set of aspects 𝐴 and list of all sentiment words 𝑉 with
their sentiment orientation 𝑂 value, they compute the sentiment score for
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each aspect 𝑎𝑗 ∈ 𝐴 using the following function:

𝑠𝑐𝑜𝑟𝑒(𝑎𝑗, 𝑠) =
∑︁

𝑤𝑖:𝑤𝑖∈𝑠∧𝑤𝑖∈𝑉

𝑂𝑤𝑖

𝑑𝑖𝑠(𝑤𝑖, 𝑎𝑗)
(5.2)

where 𝑤𝑖 is the sentiment word, 𝑂𝑤𝑖
is the sentiment orientation value of the

sentiment word 𝑤𝑖 and 𝑑𝑖𝑠(𝑤𝑖, 𝑎𝑗) is the distance between aspect 𝑎𝑗 and the
sentiment word 𝑤𝑖. Thanks to this function, the sentiment words that are far
away from the aspect 𝑎𝑗 get lower weights. If the final score is negative, then
the sentiment of the aspect 𝑎𝑖 in sentence 𝑠 is negative. If the final score is
positive, then the sentiment of the aspect is positive. It is neutral otherwise.
The sentiment orientation value of −1 is assigned to negative sentiment
words and +1 to positive sentiment words. They handle negations and but-
clauses separately. For the sentiment words that are close to negation words
(e.g., no, not, never, none, nobody etc), they reverse the original sentiment
orientation. The second case are the but-clauses which are words or phrases
indicating contrary and they often change the sentiment orientation. The
most common contrary word in English is the word “but” but there are also
other phrases like “except that”, “except for” or “with the exception of”.

5.2 Supervised Learning Approaches
Supervised learning is the most common way to solve the SA task [Liu,
2012, Medhat et al., 2014], there is a huge amount of papers using supervised
machine learning, for example, [Pang et al., 2002, Martineau and Finin, 2009,
Go et al., 2009, Pak and Paroubek, 2010, Balahur and Turchi, 2012, Socher
et al., 2013, Kiritchenko et al., 2014, Kim, 2014, Baziotis et al., 2017, Sun
et al., 2019b] and many more. Usually, the task of SA is treated as a regular
text classification problem, i.e., classify text into one of 𝑛 predefined classes.
But a regression task can be employed as well, in that case, the task is to
predict continuous number (sentiment score) instead of one predefined class.

In supervised learning, there is a list of examples 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
for training (e.g., sentences, documents, tweets etc.). Each training record
is labeled with one label, for example, positive, negative or neutral, but in
general, any number of predefined classes can be used. The labels are given
by a list 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}. The goal is to create a model using the training
list 𝑋 and a list of labels 𝑌 that predicts output 𝑦𝑖 based on input 𝑥𝑖. The
model represents function 𝑓 , which map input 𝑋 to output 𝑌 . It can be
rewritten as mapping function 𝑓 as follows:

𝑓 : 𝑋 → 𝑌 (5.3)

During the training of the model, the goal is to find the best approxima-
tion of mapping function 𝑓 .
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5.2.1 Features for Supervised Learning in NLP
The input of supervised machine learning algorithms are vectors of numbers,
but in NLP, there is usually only unstructured text. To be able to use text as
the input for traditional machine learning methods, features from the text
must be extracted and converted to numbers.

In the case of deep learning methods, the features are not selected and
extracted manually, but the model itself will extract and learn which features
are important and beneficial for the model from raw input.

Although the huge improvement in deep learning, traditional approaches
are still used in practice. Next, we describe features for SA [Liu et al., 2010,
Medhat et al., 2014, Giachanou and Crestani, 2016] used in the traditional
supervised machine learning methods.

Terms Presence and Frequency

One of the most common and basic features is the presence of individual
words (unigrams) or other n-grams with their frequency. The frequency value
can be expressed in multiple ways, such as, binary (one if the word or n-
gram is present, zero otherwise) or by a number of occurrences of the n-gram.
Another option is to use a weighting method for the number of occurrences,
for example, tf-idf weighting scheme [Manning et al., 2010] which is defined
as follows:

tf-idf𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 × 𝑖𝑑𝑓𝑡 (5.4)
where 𝑡𝑓𝑡,𝑑 is a logarithmic term frequency and 𝑖𝑑𝑓𝑡 is an inverse document
frequency. They are computed as follows:

𝑡𝑓𝑡,𝑑 =

⎧⎨⎩1 + log 𝑐𝑓𝑡,𝑑 for 𝑐𝑓𝑡,𝑑 > 0
0 otherwise

(5.5)

𝑖𝑑𝑓𝑡 = log 𝑁

𝑑𝑓𝑡

(5.6)

where 𝑐𝑓𝑡,𝑑 is a number of occurrences of term 𝑡 in document 𝑑, 𝑁 is the
total number of documents in the training collection and 𝑑𝑓𝑡 is a number of
documents in the training collection in which the term 𝑡 is present.

The idea of using any weighting method is that it takes into account the
relative importance of n-grams in the training data. In general, any weighting
scheme can be used. The common practice is to use n-grams that appeared
in the training data at least 𝑛 times. Apart from the word n-grams presence,
character-based n-grams can be used as well.

Part of Speech

The part-of-speech (POS) tags of words can hold valuable information re-
lated to SA, such as adjectives. So the presence of certain POS tags, its
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combination or counts can be used as separate features. The n-gram rep-
resentation of POS tags can also be used, the words are replaced by their
corresponding POS tags and n-grams are created in the same way.

Sentiment Words and Phrases

Words, phrases and idioms from sentiment lexicons (see Section 2.7.1) can
also be used as features. The presence of positive (good, nice) or negative
(bad, poor) words can be a beneficial indicator of sentiment. Most sentiment
words are adjective or adverbs, but verbs (e.g., hate, like or love) and nouns
(e.g., junk, rubbish) hold some sentiment as well [Liu, 2012]. The feature can
be constructed in many ways, for example, a binary presence of sentiment
words from a certain lexicon, a ratio of positive/negative words or sum of
sentiment scores of the sentiment words. These features are called lexical
features.

Negations

Negations in text change the sentiment orientation. Thus their presence can
be used as a feature.

Word Embeddings

Word in semantic space (also called word embeddings, See Chapter 4) is
represented as a dense vector of real numbers. This vector represents the
meaning (semantic) of the word. The traditional word embeddings are pro-
duced by word2vec [Mikolov et al., 2013a], GloVe [Pennington et al., 2014]
and fastText [Bojanowski et al., 2017] algorithms. There are also embed-
dings called sentiment specific word embeddings (SSWE) which are created
specially for SA tasks, for such example see [Tang et al., 2014].

In general, text (sentences, paragraphs or documents) vary in length and
traditional supervised machine learning algorithms take as an input a fixed
number of features (vector of fixed dimension) and they are not able to
handle different feature input size (different number of input vectors in this
case). The simplest method to obtain a single vector representation of any
text is to use global pooling (e.g., average-pooling or max-pooling) over their
word vectors. The resulting vector then has the same dimension and it is
independent on the text length.

Syntactic Features

Apart from the POS tags, other syntactic features can be generated from
parsing or dependency trees. These features capture word dependencies and
structure of sentences.



75

Stylistic Features

Stylistic features [Giachanou and Crestani, 2016], are typically used for a text
from social media websites (Facebook, Twitter). They capture some non-
standard writing styles like emoticons, emojis, abbreviations, slang expres-
sions or specific usage of punctuation.

5.2.2 Existing Supervised Methods
In this section, we present some important works for SA that use supervised
machine learning. The recent state-of-the-arts methods are discussed in Sec-
tion 5.5. Again, we do not distinguish between methods for the document-
level and sentence-level polarity detection despite the fact that some of them
were developed for a specific type of text and they may slightly vary when
used on a different type of text.

Work presented in [Pang et al., 2002] is one of the earliest that uses super-
vised machine learning. They classified movie reviews as positive or negative
with Naive Bayes classifier, SVM and Maximum Entropy classifier. They ex-
perimented with the following features: unigrams, bigrams, adjectives and
POS tags.

Go et al. [2009] focused on the classification of Tweets with distant super-
vision using Naive Bayes classifier, Maximum Entropy classifier and SVM.
The work was based on [Pang et al., 2002], they used similar features as well
as similar machine learning algorithms. They created a training dataset of
1.6M tweets (50% negative and 50% positive) automatically.

Pak and Paroubek [2010] built a Naive Bayes classifier based on tradi-
tional n-gram and POS features that is able to classify Tweets as positive,
negative or neutral.

Socher et al. [2013] introduced neural network architecture called Recur-
sive Neural Tensor Network and nowadays very known Stanford Sentiment
Treebank dataset. The model was able to capture accurately the effect of
negation and its scope at various tree levels for both positive and negative
phrases. They used a corpus of movie reviews from [Pang and Lee, 2005],
they parsed the dataset’s sentences into o parse trees, which were subse-
quently annotated by human judges. Using the novel Recursive Neural Ten-
sor Network and the created dataset, they were able to push state-of-the-art
result in sentence positive/negative classification from 80% of accuracy up
to 85.4%.

Another breakthrough work is presented in [Kim, 2014]. He was first,
who effectively used a convolutional neural network (CNN) and pre-trained
word embeddings for polarity detection and other sentence-level classifica-
tion tasks. The proposed model improved the state-of-the-art results on 4 out
of 7 tasks, including SA.

Baziotis et al. [2017] won with their deep learning system the SemEval-
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2017 Task 4 competition called Sentiment Analysis in Twitter [Rosenthal
et al., 2017]. They employed Long Short-Term Memory (LSTM) network
with attention mechanism, on top of pre-trained word embeddings (they
classified Tweets as positive/negative/neutral).

The last cited papers [Socher et al., 2013, Kim, 2014, Baziotis et al.,
2017] showed that incorporating the deep learning techniques and neural
networks is beneficial, significantly outperforms the traditional supervised
machine learning algorithms and push forward the state-of-the-art results in
SA. We describe some of the very recent state-of-the art methods for SA in
Section 5.5.

5.2.3 Supervised Aspect-Based Methods
As we mentioned in Section 2.3.3, the aspect-based SA is composed of sev-
eral tasks. Here, we discuss some supervised methods for Aspect sentiment
classification and Aspect extraction. To the Aspect extraction task, four main
types of approaches2 can be applied [Liu, 2012].

(1) Aspect extraction using frequent nouns and noun phrases relies on
finding and counting of their occurrence frequencies. This method is applied
to a large number of reviews in a specific domain. Hu and Liu [2004] use POS
tags to identify nouns. The most frequent nouns and noun phrases are kept
(considered as aspects) and the less frequent are removed. Improvement of
this approach was proposed in [Popescu and Etzioni, 2005].

Another similar approaches can be found in [Blair-Goldensohn et al.,
2008, Moghaddam and Ester, 2010, Scaffidi et al., 2007, Long et al., 2010,
Zhu et al., 2009].

(2) Aspect extraction by exploiting opinion and target relations. Some
referenced papers can be found in [Liu, 2012].

(3) Supervised machine learning can also be used to extract aspects.
Since it is a supervised based method, it requires labeled data. The common
methods are based on sequential learning, for example, Hidden Markov Mod-
els (HMM) [Rabiner, 1990] or Conditional Random Fields (CRF) [Lafferty
et al., 2001]. The HMM approach was used in [Jin and Ho, 2009] and usage
of CRF can be found for example, in [Jakob and Gurevych, 2010, Choi and
Cardie, 2010, Hercig et al., 2016].

(4) Topic models are the last type. Topic modeling is an unsupervised
method that models a probability distribution of topics in a document and
a probability distribution of words for each topic. The output of topic mod-
eling is a set of word clusters. The following works used topic models for
aspect extraction: [Mei et al., 2007, Titov and McDonald, 2008, Brody and
Elhadad, 2010, Li et al., 2010a, Zhao et al., 2010, Mukherjee and Liu, 2012,

2Only one approach is based on supervised learning, but we mention all four.
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Xianghua et al., 2013]. Next, we mention more recent works focused on as-
pect extraction.

Poria et al. [2016] first used the deep learning approach to aspect ex-
traction. They employed convolutional neural network in combination with
linguistic patterns and word embeddings to tag each word in a sentence as ei-
ther aspect or non-aspect word. [Shu et al., 2017] tries to tackle the problem
of domain dependency. They proposed a method to use a pre-trained CRF
model for aspect extraction on different domains to improve results on a new
domain. In [Xu et al., 2018] is proposed novel convolutional neural network
model with two types of pre-trained word embeddings, i.e., general-purpose
embeddings and domain-specific embeddings. The usage of two types of em-
beddings brought performance improvement and the model outperformed
the other state-of-the-art methods at that time.

In the case of the aspect sentiment classification task, supervised methods
for sentence-level polarity detection can also be used. Recent models usually
rely on neural networks. Khalil and El-Beltagy [2016] used CNN classifier
with fine-tuned word embeddings for a specific domain to detect aspect senti-
ment polarity of laptops and restaurant reviews. Chen et al. [2017] proposed
a novel model that adopts a multiple-attention mechanism to capture senti-
ment features separated by a long distance. They combined multiple atten-
tions with a recurrent neural network, concretely Long Short-Term Memory
and Gated Recurrent Unit. [Liu et al., 2018a] proposed a novel recurrent
neural network architecture with external memory and with a delayed mem-
ory update mechanism to track entities specifically for the aspect-based SA
task. This is one of the recent state-of-the-art approaches for this task. For a
more detailed description of other tasks in aspect-based sentiment see [Liu,
2012, Do et al., 2019, Zhang et al., 2018].

5.3 Unsupervised Learning Approaches
Unlike the supervised learning, the unsupervised machine learning usually
takes only input data 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} with no defined output (labels).
The unsupervised algorithm then finds some patterns and structures in the
input data with a minimal human supervision. The unsupervised techniques
usually require much more data than the supervised techniques. There is also
semi-supervised learning, which is between the unsupervised approaches and
supervised approaches and usually, only a small part of the input data 𝑋 is
labeled and labels are missing for the rest of the input data.

The supervised approach is much more common for SA, although unsu-
pervised methods are studied as well. [Turney, 2002] is one of the earliest
works in SA and the unsupervised approach was there used to classify re-
views as recommended (positive) or not-recommended (negative). In the first
step, they use a POS tagger to identify phrases of adjectives or adverbs. In
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the second step, they estimate the sentiment orientation 𝑆𝑂 of the phrase
composed of words 𝑤1 and 𝑤2 using pointwise mutual information (PMI)
which is computed as follows:

𝑃𝑀𝐼(𝑤1, 𝑤2) = log2

(︃
𝑝(𝑤1 ∧ 𝑤2)

𝑝(𝑤1)× 𝑝(𝑤2)

)︃
(5.7)

where 𝑝(𝑤1 ∧ 𝑤2) is the probability that 𝑤1 and 𝑤2 occur together and
𝑝(𝑤1) and 𝑝(𝑤2) are the occurrence probabilities of separate words. The
ratio between 𝑝(𝑤1 ∧𝑤2) and 𝑝(𝑤1)× 𝑝(𝑤2) is thus a measure of the degree
of statistical dependence between the words. 𝑃𝑀𝐼(𝑤1, 𝑤2) = 0 means that
the words are independent, positive values indicate dependency between the
words (the words often occur together). The final sentiment orientation 𝑆𝑂
of the phrase is computed as follows:

𝑆𝑂(𝑝ℎ𝑟𝑎𝑠𝑒) = 𝑃𝑀𝐼(𝑝ℎ𝑟𝑎𝑠𝑒, “excellent”)− 𝑃𝑀𝐼(𝑝ℎ𝑟𝑎𝑠𝑒, “poor”) (5.8)

Other unsupervised approaches can be found in [Xianghua et al., 2013,
Garćıa-Pablos et al., 2018]. Liu [2012] considers the lexicon-based (see Sec-
tion 5.1) methods as another type of unsupervised learning but, we treat it
as a separate approach.

5.4 Hybrid Approaches
The combination of traditional machine learning (supervised or unsuper-
vised) and lexicon-based approach is called the hybrid approach [Medhat
et al., 2014, Giachanou and Crestani, 2016, Singh et al., 2018].

Zhang et al. [2011] proposed a hybrid approach for entity-level SA on
Tweets. They firstly employed a lexicon-based approach to perform entity-
level SA with high precision but low recall. In order to improve the recall
of the method, they automatically identified additional tweets. They then
trained the Support Vector Machines classifier on Tweets that were labeled
automatically by the lexicon-based approach. Zhang et al. [2015a] classify
sentiment polarity of chines comments on clothing products. They used word
embeddings to cluster similar features in the selected domain. Then, the
lexicon-based and part-of-speech based feature selection methods are em-
ployed to extract features. Using the generated features, the SVM classifier
is trained.

Another related work can be found in [Feldman et al., 2011, Khuc et al.,
2012, Mudinas et al., 2012, Khan et al., 2014, Ortigosa et al., 2014, Kolchyna
et al., 2015, Khan et al., 2016].
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5.5 State-of-the-Art of Sentiment Analysis
The latest state-of-the-art methods in SA are based on neural networks, deep
learning techniques and contextualized representations of words (contextu-
alized word vectors). The initial deep learning models for used traditional
static word embeddings like word2vec [Mikolov et al., 2013a], GloVe [Pen-
nington et al., 2014] or fastText [Bojanowski et al., 2017] as a sequence input,
followed by next hidden layers using recurrent neural network (RNN) (e.g.,
[Baziotis et al., 2017]) or convolutional neural network (CNN) (e.g., [Kim,
2014]) or using their combination [Wang et al., 2016]. The RNN is imple-
mented either with Long Short-Term Memory [Hochreiter and Schmidhuber,
1997] (LSTM) layer (eventually Bidirectional LSTM [Graves and Schmid-
huber, 2005]) or with Gated Recurrent Unit [Cho et al., 2014c]. The output
is then passed to a fully-connected dense layer followed by a softmax layer.
The output of the softmax layer is a probability distribution over all possible
output classes, see Figure 5.2 for visualisation of such example architecture
with BiLSTM.

Mom

Word
Embeddings BiLSTM

50 x 300

Input Text

#super

so
is

happy

:)
#happy

...

LSTM LSTM

...

LSTM

LSTM

LSTM
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Dense Layer
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Figure 5.2: Example of neural network architecture for SA. The input text
is represented by word vectors with dimension 300, the maximum length of
the input sequence is 50. Then the input is passed to one layer of BiLSTM
and one fully connected dense layer. The output probabilities are computed
with the last softmax layer.

The most recent state-of-the-art approaches use pre-trained models with
hundreds of millions of parameters, for example, Embeddings from Language
Models (ELMo) [Peters et al., 2018], Bidirectional Encoder Representations
from Transformers (BERT) [Devlin et al., 2019], Universal Language Model
Fine-tuning (ULMFiT) [Howard and Ruder, 2018], Generative Pre-Training
(GPT 2) [Radford et al., 2019] and Generalized Autoregressive Pre-training
(XLNet) [Yang et al., 2019]. These models are trained on large corpora of
unlabeled text and they are capable of producing contextualized word or
sentence embeddings, see Chapter 4.



80

The pre-trained model is then fine-tuned on a specific downstream task.
Next, we mention the most recent state-of-the-art approaches for SA and
their results. They are usually built on top of the mentioned pre-trained
models. We do not explain them in detail, but a brief description of some of
them is provided in Section 4.2.

Bidirectional Encoder Representations from Transformers (BERT) [De-
vlin et al., 2019] is a recent breakthrough model for language representation
based on neural network architecture called Transformer, see Section 4.2.3
for BERT description. In the original paper, BERT achieved 94.9% of accu-
racy on SST-2 dataset. Sun et al. [2019b] utilize BERT fine-tuning methods
for text classification tasks and they were able to achieve 95.79% of accuracy
on IMDb dataset, 28.62 of error rate3 on Yelp-Fine dataset and 1.81 of error
rate on Yelp-Binary dataset.

XLNet Yang et al. [2019] is the newest BERT-like pre-trained model by
Google Brain. It outperforms BERT on 20 NLP tasks, including four well-
known datasets for sentiment polarity classification in which it holds the
best results among any other models at all. More concretely, for polarity
detection, XLNet achieved 96.21% of accuracy on IMDb dataset, 96.8% of
accuracy on SST-2 dataset, 27.8% of error rate on Yelp-Fine dataset and
1.55 of error rate on Yelp-Binary dataset.

In aspect-based sentiment, Sun et al. [2019a] utilized BERT specifically
for aspect-based sentiment task. They constructed an auxiliary sentence from
the aspect and converted the aspect-based task to a sentence-pair classifica-
tion task (similar to question answering task). They obtained state-of-the-art
results for SentiHood dataset, they achieved 87.1% of 𝐹1 score for the as-
pect extraction task and 93.6% of accuracy for sentiment polarity prediction.
For older deep learning approaches and for more comprehensive survey, see
[Zhang et al., 2018].

3The error rate is computed as 1− 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦



Chapter 6

Multilingual Sentiment
Analysis

In this chapter, we describe two general approaches for multilingual SA
in Section 6.1. In Section 6.2, we elaborate cross-lingual word embeddings
in more detail. Cross-lingual word embeddings are one of the two general
approaches for multilingual SA.

6.1 Multilingual Approaches
At the very beginning of the SA research, papers were almost exclusively
focused on English, but in the following years, the attention has moved
and research has been made even for other languages, moreover multilin-
gual and cross-lingual methods were developed in recent years. However,
developing multilingual methods for most NLP tasks is still an open and
challenging problem. Also, there is still preserving problem with English ori-
ented datasets, in other words, there is very little (or any) of SA datasets for
other languages, so-called low-resource languages [Liu, 2012, Balabantaray
et al., 2012, Dashtipour et al., 2016, Chen et al., 2018, Ruder et al., 2019].

The multilingual and cross-lingual concepts are very closely related and
there is a large overlap between them, but they are not equal. We would like
to mention the difference between them, generally in NLP. The multilingual
system or approach is a system that can process text (perform some NLP
task) on more than one language. There can be part of the approach that
is common for all languages (e.g., some common preprocessing steps) and
language-specific, for example, training sentiment classifier for each language
separately. On the other hand, the cross-lingual system transfers or adapts
knowledge of other languages to perform the task. The approach (or its
parts) for a particular language depends on approach, data or tool of the
other languages.

For example, we can train a sentiment classifier for low-resource lan-
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guages using English data and machine translation. A sentiment classifier is
trained using the English data and any known supervised approach. When
a text is needed to be classified, the text is translated into English and clas-
sified with the trained classifier. The second option is that the English data
are translated into all required languages and then for each language, a sin-
gle classifier is trained on the translated data and the machine translation
is no longer needed. The reason for this approach can be that the machine
translation tool does not have to be available when the system is deployed
or it can be too slow for a production environment or it can be too expensive
in case of using it as a paid service.

In this example, low-resource languages depend on English. The cross-
lingual approach is usually also multilingual and applicable for all involved
language (first option), but as it is evident from the second mentioned ap-
proach, the system does not have to be usable for all involved language
(English) in this example. The multilingual and cross-lingual concepts are
often used interchangeably, even though they are not equal.

The primary motivation for developing cross-lingual methods is to enable
transfer learning between languages, in most cases between resource-rich
language (e.g., English) and low-resource language. The goal is to develop
methods that will allow us to use resources (data, methods etc.) of resource-
rich languages for low-resource languages in a certain NLP task [Ruder et al.,
2019]. The resource-rich language is a language that has enough available
resources (any type of data or methods) for a specific NLP task. Let us
explain the concept of target and source language. The source language
denotes language used for obtaining some knowledge or training data, usually
it is the resource-rich language (English in the example above). The target
language is usually the low-resource language and the goal is to solve the
task in the target language.

Next, we divide the cross-lingual approaches into two categories – ma-
chine translation based approaches and cross-lingual embeddings based ap-
proaches. They are divided according to the technique used for knowledge
transfer between language. Since not all existing methods perfectly fit this
categorization, we place all other methods under the cross-lingual embed-
dings based approaches.

6.1.1 Machine Translation Approaches
As we already mentioned, machine translation (MT) can be used as a tool
for building cross-lingual methods for SA. Liu [2012] mentions that there are
three main strategies:

1. Create a classifier for the source language and translate the evaluated
text in the target language (low-resource, e.g., Czech) into the source
language and classify it using a source language classifier.
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2. Translate source training data into the target language and build
a classifier in the target language.

3. Translate sentiment lexicon in the source language to the target lan-
guage and build a lexicon-based method in the target language.

The flawless MT system would allow achieving similar state-of-the-art
results on the target language text using only the source language’s train-
ing data. The current machine translation achieves very promising results
[Edunov et al., 2018], yet they are still not perfect [Ruder et al., 2019]. Such
MT system brings errors into the translated text and thus decreasing the
performance of a classifier that uses these data. The quality of the translation
very significantly affects the performance of the classifier.

The early approaches and experiments with machine translation can be
found in Wan [2008, 2009] for Chinese, in Brooke et al. [2009] for Span-
ish, [Kim and Hovy, 2006] for German. Banea et al. [2010] experimented
with sentence-level subjectivity classification in five languages. Lu et al.
[2011] used labeled data for two languages and unlabeled parallel corpus
to improve sentiment polarity classification in both languages. Balahur and
Turchi [2012] employed three distinct machine translation systems and su-
pervised machine learning in French, German and Spanish. In [Balahur and
Turchi, 2014], authors extended the work from [Balahur and Turchi, 2012]
with tf-idf weighting of unigram features. Balahur and Perea-Ortega [2015]
experimented with sentiment polarity of tweets using n-gram features and
sentiment lexicons along with a supervised learning approach. Singhal and
Bhattacharyya [2016] translated reviews/sentences in Hindi, Marathi, Rus-
sian, Dutch, French, Spanish, Italian, German and Portuguese into English
and then they used English word embeddings, polarities from a sentiment
lexicon and a CNN model for sentiment classification. Zhou et al. [2016] also
used a machine translation to create training data in the target low-resource
language. Then they built a bilingual LSTM network with attention mech-
anism for sentiment polarity detection of documents. In [Can et al., 2018],
the authors studied possibilities of usage of English model for SA in Russian,
Spanish, Turkish and Dutch, where the annotated data are more limited.

6.1.2 Sentiment Analysis with
Cross-Lingual Embeddings

Word embeddings (WE) allow us to capture the meaning of words in a vector
representation and in recent years they turned out to be extremely useful and
important in building NLP systems. Cross-lingual word embeddings (CWE)
project monolingual embeddings spaces into one shared space where vectors
in different languages for semantically close words are similar, as shown in
Figure 6.1. Methods for cross-lingual projection are described in Section 6.2.
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(a) Embeddings before the projection.
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(b) Embeddings after the projection.

Figure 6.1: Sample visualisation of monolingual embeddings for English and
German before and after their projections into a shared cross-lingual space.

In SA (and in NLP generally), CWE allows transferring of knowledge be-
tween languages, which is very useful especially, for low-resource languages.
For example, with CWE, approaches using monolingual embeddings that
were already developed can be trained with the training data from resource-
rich language and CWE. Thanks to the cross-lingual embeddings and its
properties, samples from the low-resource language can now be predicted
with the trained model.

Further, we mention methods based on CWE or approaches that are
similar or related to the idea of transforming knowledge between languages
without machine translation.

Jain and Batra [2015] employed recursive autoencoder architecture and
sentence aligned corpora of English and Hindi texts to create a system for
cross-lingual sentiment polarity classification. The model was evaluated on
a Hindi movie reviews dataset. Zhou et al. [2015] proposed a method for
learning bilingual sentiment word embeddings specifically for cross-lingual
sentiment polarity classification. Then, they trained SVM algorithm using
the embeddings for sentiment polarity classification. Barnes et al. [2016]
compared multiple techniques for aspect-based cross-lingual sentiment clas-
sification.

Abdalla and Hirst [2017] experimented with linear transformation method
from [Mikolov et al., 2013b] on English, Spanish and Chinese. In [Barnes
et al., 2018], authors presented a method for training bilingual sentiment
word embeddings which are jointly optimized to represent (a) semantic in-
formation in the source and target languages, that are bound to each other
through a small bilingual dictionary and (b) sentiment information, which
is annotated on the source language only. They showed the effectiveness of
their approach by comparing it with other cross-lingual methods. Dong and
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De Melo [2018] proposed an algorithm for cross-lingual SA with CNN that
they evaluated on nine different languages.

Chen et al. [2018] trained adversial neural network that uses bilingual
embeddings to train cross-lingual system for polarity classification in Chinese
and Arabic using only English train data. They outperformed other two
state-of-the-art systems.

Recently a multilingual language model XLM-R was proposed by [Con-
neau et al., 2019]. The model was evaluated using multiple NLP cross-lingual
tasks and achieved new state-of-the-art results on many of them. The model
was also evaluated on the GLUE [Wang et al., 2019] benchmark that contains
an English dataset for binary sentiment classification task SST-2 [Socher
et al., 2013]. The model achieved very competitive results (95% of accuracy)
compared with other state-of-the-art monolingual systems.

6.2 Cross-Lingual Word Embeddings
Introducing static word embeddings like word2vec, GloVe or fastText brought
a huge performance boost in almost all NLP tasks. In recent years, these
monolingual embeddings are being substituted by more powerful contextu-
alized vector representations (e.g., BERT, ELMo, XLNet etc.). Nowadays,
static WE are used in experiments that aim to create cross-lingual word em-
beddings (CWE). CWE allows representing words multilingually. It means
that vectors representing semantically close words in different languages are
similar, see Figure 6.1.

Cross-lingual methods are being developed mainly for two reasons. (1)
they enable us to compare the meaning of words across languages, which is
key to machine translation or cross-lingual information retrieval. (2) CWE
allows transferring knowledge between languages, in most cases between
resource-rich and low-resource languages [Ruder et al., 2019].

The most recent works like multilingual BERT (mBERT) [Devlin et al.,
2019] or XLM-R [Conneau et al., 2019] focus on multilinguality in using
contextualized word vectors, but most of the research so far has been done
with static word embeddings. Next, we will mention approaches that are
usually focused on mapping only two monolingual embeddings. These CWE
are called bilingual word embeddings (BWE). The final (future) and a much
more difficult goal of CWE is to learn a shared embedding space between
words in all languages [Ruder et al., 2019].

Ruder et al. [2019] categorize cross-lingual embedding methods mainly
by the parallel data required by the methods. The parallel data represents
the bilingual supervision signal that allows us to learn to align two mono-
lingual spaces into one cross-lingual space. The main differences between
the models usually come from the required data. The other differences are
not so important since they are just implementation details for the specific
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architecture. To support this claim, they showed that the methods usually
optimize still the same or very similar learning objective (it is just written
in different forms).

The parallel data used by the methods have two key properties that
distinguish them: (1) type of alignment and (2) comparability of the parallel
data. The parallel data alignment defines whether the data are aligned at
the level of words, sentences or documents. The comparability means how
much are the parallel data similar, i.e., whether it is a literal translation
(data are parallel) or whether the parallel data are just similar (comparable).
Here, we do not distinguish between them. Finally, we can define the basic
categorization according to type of data alignment:

1. Word-level alignment: Most methods use data aligned at word-level
as bilingual or multilingual dictionaries of translated pairs of words.
Such dictionaries are easy to obtain for most languages.The majority
of these approaches use pre-trained monolingual word embeddings,
a bilingual dictionary and linear transformation.

2. Sentence-level alignment: A parallel corpus aligned at a sentence-
level is another type of data used by cross-lingual methods. An example
of commonly used sentence-level aligned dataset is Europarl corpus
[Koehn, 2005], which usually used for training machine translation
systems.

3. Document-level alignment: A parallel corpus that contains trans-
lated documents in different languages. An example of such a corpus is
Wikipedia, where many pages (about the same topic) are in multiple
languages (topic aligned corpus).

Next, we will focus on methods that use data aligned at a word-level,
concretely on mapping-based approaches, since these methods are very com-
mon and easy to obtain approaches for CWE. We summarize the multi-level
categorization of methods for CWE in Figure 6.2. We do not describe all
mentioned types of methods, but we provide a brief description and exam-
ples of some of them as they were described in [Ruder et al., 2019]. The
detailed description of the other not mentioned methods, including the orig-
inal papers, can be found in the same paper.

6.2.1 Methods for Word-Level Alignment Data
Mapping-based approaches usually transform pre-trained monolingual
word embeddings using linear transformation and bilingual dictionaries into
one joint space [Brychćın, 2020]. Linear transformation allows transforma-
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Figure 6.2: An overview of categorization of methods for creating CWE
according to [Ruder et al., 2019].

tion between two vector spaces1 using affine transformations, e.g., scaling,
rotation, translation, reflection.

Let us define monolingual vector spaces and dictionary of translated pairs
of words. The dictionary 𝐷 contains 𝑛 translated pairs of words (called seed
words or seed dictionary) ((𝑤𝑠

1, 𝑤𝑡
1), (𝑤𝑠

2, 𝑤𝑡
2), . . . , (𝑤𝑠

𝑛, 𝑤𝑡
𝑛)). Vector space of

the source language 𝑠 is represented by a matrix X𝑠 ∈ R𝑛×𝑑 and vector space
of the target language 𝑡 is represented by a matrix X𝑡 ∈ R𝑛×𝑑 where 𝑛 is
the size of the seed dictionary and 𝑑 is a dimension of the vector spaces.
Each word 𝑤𝑖 from the dictionary 𝐷 is in matrices X𝑠 and X𝑡 represented
by vectors x𝑠

𝑖 , x𝑡
𝑖, respectively.

Then, the linear transformation transforms the vector space X𝑠 of the
source language into the vector space X𝑡 of the target language using trans-
formation matrix W𝑠→𝑡 ∈ R𝑑×𝑑 by the following matrix multiplication:

̂︁X𝑠 = W𝑠→𝑡X𝑠 (6.1)

where ̂︁X𝑠 is the transformed source vector space in the target space.
The goal is to estimate the transformation matrix W𝑠→𝑡. The simplest

methods are called regression methods. They map the vector space of source
language into the vector space of the target language by maximizing the

1By space we mean word embeddings also called semantic space, expressed by ma-
trix X.
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similarity between the transformed source matrix and the original matrix of
the target space. The first of these methods was proposed by [Mikolov et al.,
2013b]. They estimate W𝑠→𝑡 with stochastic gradient descent by minimizing
the square Euclidean distance, i.e., mean squared error (MSE), between the
pairs of vectors (x𝑠

𝑖 , x𝑡
𝑖) of words from the seed dictionary after applying the

transformation, thus the goal is to minimize MSE computed as follows:

𝑀𝑆𝐸 =
𝑛∑︁

𝑖=1

⃦⃦⃦
W𝑠→𝑡x𝑠

𝑖 − x𝑡
𝑖

⃦⃦⃦2
(6.2)

It can also be rewritten using only matrices and Frobenius norm as fol-
lows:

𝑀𝑆𝐸 =
⃦⃦⃦
W𝑠→𝑡X𝑠 −X𝑡

⃦⃦⃦2

𝐹
(6.3)

Orthogonal methods constraint the transformation matrix W𝑠→𝑡 to be
orthogonal in order to improve the regression method proposed by [Mikolov
et al., 2013b]. Matrix W is orthogonal when it is a square matrix and the
columns and rows are orthonormal vectors (WTW = WWT = 𝐼, where 𝐼 is
the identity matrix). The optimal transformation matrix W𝑠→𝑡 is the given
by:

W𝑠→𝑡 = VUT (6.4)
where matrices V and U are computed by Singular Value Decomposition
(SVD) [Golub and Reinsch, 1970] of X𝑡TX𝑠 = UΣVT which is derived in
[Artetxe et al., 2016].

Canonical methods are based on a method called Canonical Corre-
lation Analysis (CCA), which is a way of measuring a linear relationship
between two multivariate variables (i.e., vectors) [Brychćın, 2020]. These
methods map both monolingual vector spaces X𝑠 and X𝑡 to a different
shared space represented by matrix Y𝑜, thus canonical methods compute
two transformation matrices W𝑠→𝑜 for the source language and W𝑡→𝑜 for
the target language, in order to map their vector spaces into one shared
space Y𝑜. The transformation matrices are computed by minimizing the
negative correlation (denoted as 𝑁𝑐𝑜𝑟) between the vectors x𝑠

𝑖 (source) and
x𝑡

𝑖 (target) projected into the shared space Y𝑜, given by:

𝑁𝑐𝑜𝑟 = −
𝑛∑︁

𝑖=1
𝜌(W𝑠→𝑜x𝑠

𝑖 , W𝑡→𝑜x𝑡
𝑖) (6.5)

The correlation 𝜌(W𝑠→𝑜x𝑠
𝑖 , W𝑡→𝑜x𝑡

𝑖) is computed as follows:

𝜌(W𝑠→𝑜x𝑠
𝑖 , W𝑡→𝑜x𝑡

𝑖) = 𝑐𝑜𝑣(W𝑠→𝑜x𝑠
𝑖 , W𝑡→𝑜x𝑡

𝑖)√︁
𝑣𝑎𝑟(W𝑠→𝑜x𝑠

𝑖 )× 𝑣𝑎𝑟(W𝑡→𝑜x𝑡
𝑖)

(6.6)

where 𝑐𝑜𝑣 the covariance and 𝑣𝑎𝑟 is the variance.
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Faruqui and Dyer [2014] used the method as first for the mapping two
monolingual word embeddings space into one cross-lingual space. Ammar
et al. [2016] extended the approach for multiple languages. Using the ap-
proach from [Ammar et al., 2016] the transformation matrix W𝑠→𝑡 can be
computed as follows:

W𝑠→𝑡 = W𝑠→𝑜(W𝑡→𝑜)−1 (6.7)

Margin methods use different loss functions to optimize the transfor-
mation matrix. Lazaridou et al. [2015] used a max-margin based ranking loss
(MML) instead of mean square error (MSE). They used MML in order to
reduce hubness and the idea is to rank the correct translations of word 𝑤𝑖

(i.e., vectors x𝑠
𝑖 and x𝑡

𝑖) higher than random translation (negative example)
of word 𝑤𝑖 (i.e., vectors x𝑠

𝑖 and x𝑡
𝑗) which is given by minimizing the following

function:

𝑀𝑀𝐿 =
𝑛∑︁

𝑖=1

𝑘∑︁
𝑗 ̸=𝑖

max{0, 𝛾 − cos(W𝑠→𝑡x𝑠
𝑖 , x𝑡

𝑖) + cos(W𝑠→𝑡x𝑠
𝑖 , x𝑡

𝑗)} (6.8)

where 𝛾 and 𝑘 are tunable hyper-parameters denoting the margin and the
number of negative examples, respectively. The negative example x𝑡

𝑗 is a vec-
tor for random word that is not the translation of word 𝑤𝑖. In other words,
the goal of the optimization is to estimate the matrix W𝑠→𝑡 in that way
that cos(W𝑠→𝑡x𝑠

𝑖 , x𝑡
𝑖) (i.e., translated word pairs) is highest as possible and

cos(W𝑠→𝑡x𝑠
𝑖 , x𝑡

𝑗) (i.e., random word pairs) is as smallest as possible.
Methods using pseudo-multilingual corpora are another type of

approach that uses word-level alignment data. They are trained on a modi-
fied corpus. Randomly chosen words from the corpus in the source language
are replaced with their translation. The replaced words are part of the seed
dictionary. Xiao and Guo [2014] applied this approach first. They first create
a bilingual dictionary and then map each pair of words from the dictionary
to the same vector in the vector space. Next, they train word embeddings
using the same approach as [Collobert and Weston, 2008] with sentences in
target and source language and using max-margin based ranking loss. An-
other approach using pseudo-multilingual corpora can be found in [Gouws
and Søgaard, 2015, Ammar et al., 2016, Duong et al., 2016, Adams et al.,
2017]

Joint methods differ from the previously mentioned method in that
way that they optimize monolingual and cross-lingual objectives at the same
time jointly. Their description, along with concrete examples of models, can
be found in [Ruder et al., 2019].



90

6.2.2 Methods for Sentence-Level Aligned Data
Research in machine translation brought a sufficient amount of sentence-
aligned data for some European languages, but generally, obtaining such
data is much more difficult and expensive than word-level aligned data.
Methods using sentence-level alignment data can be categorized into four
sub-categories: (1) word-alignment based matrix factorization approaches, (2)
compositional sentence models, (3) bilingual autoencoder models, (4) bilingual
skip-gram models and (5) other sentence-level approaches [Ruder et al., 2019].

Word-alignment based matrix factorization approaches use ma-
trix factorization methods and they also usually require some data to be
aligned at the word-level. The common approach is to assemble an alignment
matrix A𝑠→𝑡 between source and target language. The alignment matrix can
be obtained in an unsupervised manner and contain information how many
times was each word from source language aligned (translated) to word in
the target language. More precisely, A𝑠→𝑡

𝑖𝑗 denotes how many times was the
i-th in the target language aligned to j-th word in the source language. Then,
the assumption is that if a word the in source language is aligned with more
than one word in the target language than the word holds multiple meanings
and its representation should be composed of its aligned words.

Zou et al. [2013] applied this approach for creating English-Chinese bilin-
gual word embeddings. They first, trained monolingual embeddings and they
constructed two alignment matrices A𝑠→𝑡 and A𝑡→𝑠 (one for each direction of
translations). Next, they jointly minimize the following objective functions
𝐽𝑠→𝑡 and 𝐽𝑡→𝑠 in both directions:

𝐽𝑠→𝑡 =
⃦⃦⃦
X𝑡 −A𝑠→𝑡X𝑠

⃦⃦⃦2
(6.9)

𝐽𝑡→𝑠 =
⃦⃦⃦
X𝑠 −A𝑡→𝑠X𝑡

⃦⃦⃦2
(6.10)

The objective functions are similar to the MSE approach from [Mikolov
et al., 2013b], but the alignment matrices A𝑠→𝑡 and A𝑡→𝑠 are fixed (they
do not change during training) and the embeddings matrices X𝑠 and X𝑡 are
optimized during training. Another related work can be found in [Shi et al.,
2015, Huang et al., 2015, Vyas and Carpuat, 2016, Guo et al., 2015]

Compositional sentence models learn cross-lingual embeddings based
on the aligned sentence representations. In other words, the model optimizes
the vector representation of each sentence (in target and source language)
to be close to each other. Hermann and Blunsom [2013] represented each
sentence as a sum of embeddings vectors of the sentence words. More pre-
cisely, the representation y𝑠 of the sentence 𝑠𝑒𝑛𝑡𝑠 in the source language 𝑠 is
computed as follows:

y𝑠 =
|𝑠𝑒𝑛𝑡𝑠|∑︁

𝑖=1
x𝑠

𝑖 (6.11)
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where x𝑠
𝑖 is a vector representing word 𝑤𝑖. The representation y𝑡 of sentence

𝑠𝑒𝑛𝑡𝑡 in the target language 𝑡 is computed in the same way. Then they utilize
the vector representation with the following objective function 𝐽𝑀𝑀𝐿:

𝐽𝑀𝑀𝐿 =
𝐶∑︁

(𝑠𝑒𝑛𝑡𝑠,𝑠𝑒𝑛𝑡𝑡)

𝑘∑︁
𝑖=1

max(0, 1 + 𝐸𝑑𝑖𝑠𝑡(𝑠𝑒𝑛𝑡𝑠, 𝑠𝑒𝑛𝑡𝑡)− 𝐸𝑑𝑖𝑠𝑡(𝑠𝑒𝑛𝑡𝑠, 𝑠𝑒𝑛𝑡𝑡
𝑖))

(6.12)
where 𝑘 is a number of negative random non-aligned sentences, 𝐶 is a set
of aligned sentences. The distance 𝐸𝑑𝑖𝑠𝑡(𝑠𝑒𝑛𝑡𝑠, 𝑠𝑒𝑛𝑡𝑡) between sentence rep-
resentations is computed as follows:

𝐸𝑑𝑖𝑠𝑡(𝑠𝑒𝑛𝑡𝑠, 𝑠𝑒𝑛𝑡𝑡) = ||y𝑠 − y𝑡||2 (6.13)
The optimization is based on max-margin loss and it pushes the represen-

tation of aligned sentences to be closer than the negative random non-aligned
sentences.

Bilingual encoder encodes the representation of the sentence in the
source language into a hidden state and then reconstructs the representation
of the aligned sentence in the target language. Such approach was applied
in [Lauly et al., 2014, Chandar et al., 2014].

Bilingual skip-gram methods are the cross-lingual extensions of the
original skip-gram with negative sampling (SGNS) algorithm. These meth-
ods a) jointly optimize the objectives for each language and b) optimize one
shared cross-lingual objective for more details, see [Ruder et al., 2019].

Other sentence-level approaches have been a subject of research in
recent years, especially with the rise of contextualized word vectors tech-
niques based on pre-trained language models that became very popular, for
example, ULMFiT [Howard and Ruder, 2018], BERT [Devlin et al., 2019],
GPT-2 [Radford et al., 2019] or XLNet [Yang et al., 2019], see Section 4.2.
Some of these were utilized to allow learning cross-lingual representation for
multiple languages at once. Conneau and Lample [2019] introduced an unsu-
pervised method for learning cross-lingual representations along with a vari-
ant of a supervised approach that allows improving the cross-lingual model
when parallel data is available. Another completely unsupervised work is
presented in [Artetxe et al., 2018]2. Recently, a multilingual language model
XLM-R was proposed by [Conneau et al., 2019] specifically aimed to train
multilingual language models.

6.2.3 Methods for Document-Level Aligned Data
Methods using data aligned on document-level are not so common as the two
previous two categories, but some research has been done. These methods

2According to the categorization, this method belongs under the mapping-based ap-
proaches
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mostly rely on comparable documents (not parallel, i.e., exact translations).
The natural source of such documents is Wikipedia, where many topics are
covered by multiple languages. These methods can be further divided into
three types and some of them are based on principles from the previous
two categories. (1) Approaches based on pseudo-bilingual document-aligned
corpora modify existing documents by randomly replacing words with their
translations (same idea as in case of word-level aligned data). Vulic and
Moens [2016] experimented with this type of data. The last two categories are
(2) concept-based methods and (3) extensions of sentence alignment methods
that extend methods for sentence aligned data in that way that they are
applicable to comparable data [Ruder et al., 2019].

6.2.4 Hubness
Hubness [Radovanović et al., 2010] is a feature that occurs in high-dimensional
spaces (and cross-lingual embeddings spaces are usually high-dimensional).
In the space, there are hubs, i.e., points (in our case word vectors) that are
nearest neighbours, of many other points (other word vectors), but they
should not be similar3 to each other because their semantic or meaning is
very different. Hubness negatively affects the quality of cross-lingual spaces.

6.2.5 Evaluation
With the rise of cross-lingual methods, their evaluation became an important
part of their development. There are two main types of evaluation tasks:
intrinsic and extrinsic, that measure the quality of the embeddings.

In the extrinsic evaluation, the cross-lingual embeddings are used in
downstream tasks (real-world problems where cross-lingual embeddings can
be applied) and the quality of the embeddings is based on the results in the
specific downstream task.

The intrinsic evaluation is a specially designed task for the evaluation of
cross-lingual embeddings testing their ability to capture semantic or syntac-
tic relationships between words in comparison with human judgments. The
major disadvantage of intrinsic tasks is that if certain cross-lingual embed-
dings perform well on them, it does not necessarily imply a good performance
on downstream tasks [Ruder et al., 2019]. One of the most common intrinsic
tasks is called bilingual lexicon induction. For source language 𝑠 and given list
of 𝑁 source language words 𝑤𝑠

1, 𝑤𝑠
2, . . . , 𝑤𝑠

𝑁 the goal is to find for each word
𝑤𝑠

𝑖 its best-suited translation represented by a word 𝑤𝑡
𝑖 in target language 𝑡.

The common approach is to find word 𝑤𝑡
𝑖 that is the nearest neighbor (the

most similar3 vector) to the word 𝑤𝑠
𝑖 in the cross-lingual semantic space.

3The similarity can be measured, for example, with cosine distance.



Chapter 7

Summary

In the previous chapters, we presented the theory about opinion mining
stated in [Liu, 2012]. Then, we explored and described SA tasks and their
related approaches and data resources. We described recent state-of-the-art
works and techniques (mostly demonstrated in English). At the end, we
discussed multilinguality in SA and methods to deal with the lack of data
in low-resource languages. From the described papers, we can see that in
recent years the neural networks and deep learning techniques are used in
most cases but for some situations in practice (usually when there is no
or small amount of annotated data) older machine learning algorithms and
approaches can be used as well. Despite the great improvement in recent
years, especially in English, there are still open problems and challenges in
SA. We observe that there are two main open challenges:

∙ Domain adaption.

∙ Sentiment analysis in low-resource languages.

In the case of domain adaption, systems are usually trained using su-
pervised machine learning algorithms that require annotated data and these
data usually come from one domain (e.g., movie reviews). The system per-
forms well on data from this domain but it usually drops when the system
is used on different domain. This problem can be tackled by introducing
methods that allow the system to adapt to the new domain.

The lack of data in low-resource language can be solved in two ways.
(1) Annotating or creating data for low-resource languages. For some tasks,
the data can by obtained automatically or semi-automatically, (e.g., dis-
tant supervision) but data for other tasks have to be annotated manually
which is very expensive and time-consuming. (2) Applying or developing
new cross-lingual techniques that allow transfer knowledge from resource-
rich languages to low-resource languages.
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Chapter 8

Preliminary Results and
Future Work

In this chapter, I summarize my work and preliminary results. Next, I pro-
pose future work in a field of SA and related tasks. Lastly, the aims of the
doctoral thesis are specified.

8.1 Challenges and Future Work
As it was already mentioned in summary in Section 7, regardless of the
improvement in SA, there are still open problems. I identified two main
challenges: (1) domain adaption and (2) sentiment analysis in low-resource
languages.

The task of domain adaption is to adapt system or approach to be usable
for data from a domain other than the one used for the development of the
system. Nowadays, a big part of datasets for SA comes from a narrow set of
domains, e.g., movie reviews or social media websites like Twitter. Thanks
to insufficient data for some domains, train systems for such domains is
difficult. The challenge is to develop novel methods and approaches that
could solve this task.

Despite the improvement in SA, there is still a lack of data for low-
resource languages or generally other languages than English. I see two pos-
sible ways to tackle this problem: (1) create new datasets and resources for
languages other than English or (2) apply cross-lingual techniques that allow
the transfer of knowledge between languages.

A new dataset can be created either by a manual annotation or by de-
veloping methods that can obtain labeled datasets automatically or semi-
automatically (e.g., distant supervision). Unfortunately, some tasks are too
difficult to be labeled automatically and the annotation must be done man-
ually, which is a very time-consuming and expensive process. In the case of
these tasks, the cross-lingual techniques can be applied with existing datasets
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from a resource-rich language (e.g., English) to transfer the knowledge to
a low-resource language. This approach allows to perform the task of SA
on languages with little or even no training data. In the optimal case, the
same approach can be potentially used for performance improvement, even
for languages with a sufficient amount of data. The system is then trained on
data from both languages, which could lead to the performance improvement
thanks to extended training data.

In my future work, I would like to perform SA and other related tasks
in languages other than English, including low-resource languages. I want
to introduce new datasets that allow to use traditional machine learning ap-
proaches for SA. Next, I want to use cross-lingual techniques and data from
resource-rich languages and apply them to SA (and other related tasks)
and thus enable performing SA in other languages. Since most current ap-
proaches use neural networks and deep learning techniques, I also plan to
use these techniques in my future work.

The very recent generalized language models like BERT or GPT 2 (see
Section 4.2) seem to be very powerful tools for any NLP task in English.
I would like to investigate their possibilities to utilize them for other lan-
guages than English in SA.

8.2 Preliminary Results
In our initial work [Přibáň et al., 2018], we developed a system that can
detect an intensity of a given emotion in English, Spanish and Arabic tweets.
Given a tweet and one of four emotions (anger, fear, joy or sadness), the
output of the system is a degree of the intensity of the given emotion, where
the degree is either a real value number (regression task) or one of four
classes (classification task) corresponding to the strength of the intensity.

In [Přibáň and Mart́ınek, 2018], we employed a neural network with
BiLSTM to detect one of six implicit emotion in a given tweet, i.e., emotions
that are not explicitly mentioned in the text. We achieved 0.657 of 𝐹1 macro
score.

In another paper1, we thoroughly evaluated multilingual systems for SA
and we compared their performance on a rich collection of publicly available
datasets. We also performed an in-depth error analysis and we proposed
a potential solution for the misclassified examples.

In [Pražák et al., 2020], we developed an approach for detecting the
lexical semantic-change in English, German, Swedish and Latin, i.e., word

1The paper was not published yet. It was presented at the CICLing 2019 (20th In-
ternational Conference on Computational Linguistics and Intelligent Text Processing)
conference and it was accepted to be published in the Lecture Notes in Computer Science
(LNCS). The paper is available at http://home.zcu.cz/~pribanp/cicling/CICLing_
2019.pdf.

http://home.zcu.cz/~pribanp/cicling/CICLing_2019.pdf
http://home.zcu.cz/~pribanp/cicling/CICLing_2019.pdf
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sense changes over time. The paper is not directly related to SA, but we
applied cross-lingual techniques that are also applicable in any cross-lingual
task. In addition, the proposed approach can also be used to identify domain-
specific changes of word senses in comparison to general–language. Thus, it
can be very beneficial information in approaches for the domain adaption
task in SA.

In terms of multilinguality in NLP, in [Přibáň et al., 2019], we made avail-
able dataset for fact-checking task in Czech, Polish and Slovak. In [Piskorski
et al., 2019], we present the Second Multilingual Named Entity Challenge in
Slavic languages competition. The proposed task is to recognize mentions of
named entities in news articles, their normalization and cross-lingual linking
in Czech, Polish, Russian and Bulgarian. The work also contains publicly
available multilingual dataset for the mentioned languages.

8.3 Aims of the Doctoral Thesis
As I already mentioned, the doctoral thesis, generally speaking, aims to per-
form sentiment analysis and/or other related tasks in other languages than
English, either by introducing new datasets or by using cross-lingual tech-
niques for knowledge transfer between languages. The aims of the doctoral
thesis are summarized as follows:

∙ Tackle the problem of lack of data in languages other than English by
introducing new resources.

∙ Perform sentiment analysis and/or related tasks in languages other
than English by applying cross-lingual methods and transforming knowl-
edge between resource-rich and other languages.

∙ Apply recent state-of-the-art approaches for semantic text representa-
tion to sentiment analysis and other related tasks to data other than
English.
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Aitor Garćıa-Pablos, Montse Cuadros, and German Rigau. W2vlda: Almost
unsupervised system for aspect based sentiment analysis. Expert Systems
with Applications, 91:127 – 137, 2018. ISSN 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2017.08.049. URL http://www.sciencedirect.com/
science/article/pii/S0957417417305961.

Anastasia Giachanou and Fabio Crestani. Like it or not: A survey of twitter
sentiment analysis methods. ACM Computing Surveys (CSUR), 49(2):28,
2016.

https://www.aclweb.org/anthology/D18-1045
https://www.aclweb.org/anthology/D18-1045
https://www.aclweb.org/anthology/E14-1049
https://www.aclweb.org/anthology/C08-1031
https://www.aclweb.org/anthology/C08-1031
http://www.sciencedirect.com/science/article/pii/S0957417417305961
http://www.sciencedirect.com/science/article/pii/S0957417417305961


108
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Maximilian Köper, Evgeny Kim, and Roman Klinger. IMS at EmoInt-
2017: Emotion intensity prediction with affective norms, automatically
extended resources and deep learning. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis, pages 50–57, Copenhagen, Denmark, September 2017. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/W17-5206. URL
https://www.aclweb.org/anthology/W17-5206.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, page 282–289, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Stanislas Lauly, Alex Boulanger, and Hugo Larochelle. Learning multi-
lingual word representations using a bag-of-words autoencoder. CoRR,
abs/1401.1803, 2014. URL http://arxiv.org/abs/1401.1803.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and pol-
lution: Delving into cross-space mapping for zero-shot learning. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 270–280, Beijing, China,
July 2015. Association for Computational Linguistics. doi: 10.3115/v1/
P15-1027. URL https://www.aclweb.org/anthology/P15-1027.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. BioBERT: a pre-trained biomedical lan-
guage representation model for biomedical text mining. Bioinformatics,
36(4):1234–1240, 09 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btz682. URL https://doi.org/10.1093/bioinformatics/btz682.

Fangtao Li, Minlie Huang, and Xiaoyan Zhu. Sentiment analysis with global
topics and local dependency. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI’10, page 1371–1376. AAAI
Press, 2010a.

https://www.aclweb.org/anthology/W17-5206
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/1401.1803
https://www.aclweb.org/anthology/P15-1027
https://doi.org/10.1093/bioinformatics/btz682


114

Shasha Li, Chin-Yew Lin, Young-In Song, and Zhoujun Li. Comparable
entity mining from comparative questions. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, pages
650–658, Uppsala, Sweden, July 2010b. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P10-1067.

Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data (Data-Centric Systems and Applications). Springer-Verlag, Berlin,
Heidelberg, 2006. ISBN 3540378812.

Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies, 5(1):1–167, 2012.

Bing Liu et al. Sentiment analysis and subjectivity. Handbook of natural
language processing, 2(2010):627–666, 2010.

Fei Liu, Trevor Cohn, and Timothy Baldwin. Recurrent entity networks with
delayed memory update for targeted aspect-based sentiment analysis. In
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 278–283, New Orleans, Louisiana,
June 2018a. Association for Computational Linguistics. doi: 10.18653/v1/
N18-2045. URL https://www.aclweb.org/anthology/N18-2045.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepa-
ssi, Lukasz Kaiser, and Noam Shazeer. Generating wikipedia by sum-
marizing long sequences. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018b. URL
https://openreview.net/forum?id=Hyg0vbWC-.

Chong Long, Jie Zhang, and Xiaoyan Zhu. A review selection approach for
accurate feature rating estimation. In Coling 2010: Posters, pages 766–
774, Beijing, China, August 2010. Coling 2010 Organizing Committee.
URL https://www.aclweb.org/anthology/C10-2088.

Bin Lu, Chenhao Tan, Claire Cardie, and Benjamin K. Tsou. Joint bilingual
sentiment classification with unlabeled parallel corpora. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 320–330, Portland, Oregon, USA,
June 2011. Association for Computational Linguistics. URL https://
www.aclweb.org/anthology/P11-1033.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.
Ng, and Christopher Potts. Learning word vectors for sentiment analysis.

https://www.aclweb.org/anthology/P10-1067
https://www.aclweb.org/anthology/N18-2045
https://openreview.net/forum?id=Hyg0vbWC-
https://www.aclweb.org/anthology/C10-2088
https://www.aclweb.org/anthology/P11-1033
https://www.aclweb.org/anthology/P11-1033


115

In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 142–150, Port-
land, Oregon, USA, June 2011. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/P11-1015.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Natural Language Engineering, 16(1):
100–103, 2010.

Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin, and
Marco Ortu. Mining valence, arousal, and dominance: possibilities for de-
tecting burnout and productivity? In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 247–258, 2016.
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Apidianaki, Xavier Tannier, Natalia Loukachevitch, Evgeniy Kotelnikov,
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