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Abstract

A finding of path is an important task in many research areas and it is
a common problem solved in a wide range of applications. New problems of
finding path appear and complex problems persist, such as a real-time plan-
ning of paths for huge crowds in dynamic environments, where the properties
according to which the cost of a path is evaluated as well as the topology
of paths may change. The task of finding a path can be divided into path
planning and motion planning, which implicitly respects the collision with
surroundings in the environment.

Within the first group this thesis focuses on path planning on graphs for
crowds. The main idea is to group members of the crowd by their common
initial and target positions and then plan the path for one representative
member of each group. These representative members can be navigated by
classic approaches and the rest of the group will follow them. If the crowd can
be divided into a few groups this way, the proposed approach will save a huge
amount of computational and memory demands in dynamic environments.

In the second area, motion planning, we are dealing with another problem.
The task is to navigate the ligand through the protein or into the protein,
which turns out to be a challenging problem because it needs to be solved in
3D with the collision detection.
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Chapter 1

Introduction

The task of finding a path between at least two spots in some environment
finds its use in many areas of research and applications, e.g., in the simula-
tions of crowds, in molecular biology or robotics. In the most general form
the task is to transfer the moving object from its start position to the goal
position in a predefined environment. As an example, we can mention any
strategic game, such as Heroes of Might and Magic. The selected hero will
automatically move to the goal position (a user-marked position) depending
on the virtual environment. The hero avoids obstacles (mountains, rivers,
buildings, etc.) and prefers to move along marked paths in front of other
kinds of environment (marsh, snowy plains, etc.). A similar principle is also
used in research areas, for example when navigating a robot.

The finding path task can be currently split into two major research areas.
The first one is a path planning which suits to find the path of the geometri-
cally simple object from the start position to the end position. Most of path
planning tasks also include avoiding collisions, but this is not a prerequisite.
The second area is motion planning. Unlike path planning, it often uses
more complicated objects to navigate through environment. In addition, the
rotation of the navigated object, which can even change its shape in more
difficult tasks, is allowed.

Although it might seem that the path planning nowadays is an exhausted
problem and not very complex matter, the opposite is true. Firstly, there
are areas of the path planning that explore and improve their methods, and
secondly, in large projects, path planning is often a major problem. In the
first group, we can include, for example, the movement of a robot exploring
the environment, as it gradually discovers its surroundings and tries to recal-
culate the path based on updated data. The next example of the problems
being investigated are the crisis situations inside the buildings, such as the
escape of people from the burning building. In the second group we can
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include, e.g., game industrial or car navigation.
The motion planning is very often used in robotics to navigate the robot

through an unknown environment, which is gradually revealed by its sensors.
The autonomous vehicle navigation is also solved by this discipline just as
the navigation of a drone, which is currently one of the most often problems.
Another very important and relatively new problem is motion planning in
a protein. Proteins are large macromolecules that consist of long atomic
chains, called amino acids, and numbers may range in the order of tens to
hundreds of thousands. The problem of motion planning through protein
consists of a tunnel, cavity and collision detection. The idea is simple, for
example to navigate probe or ligand (molecule) into the protein cavity. The
protein itself is described by multiple atoms, which are represented as spheres
in 3D. The navigated ligand can also be a sphere but it is already a solved
problem. More difficult are complex rigid ligands, which can only rotate and
move in space, and the most complicated to navigate are non-rigid ligands,
which can additionally change their own structure (for example atoms bonds
may bend). These problems are widely studied in multiple disciplines, for
example biochemistry or computer science. New and better solutions find its
application in pharmaceutical design and protein engineering.

The environment, where navigated objects are (generally known as agents)
moving, can be divided into two groups – a static environment and a dynamic
environment. While the planning for one agent in the static environment,
who does not change during the whole simulation, can be considered as a
solved problem, the situation is different for more agents or even crowds in
a dynamic environment: a repeated recomputation of the path for many
changes and many agents may be too slow. For a huge amount of agents the
optimality of paths is less important than the speed of computation. The
application of this path planning problem usually rather needs the crowd to
look well and realistic than to compute and use optimal paths. The environ-
ment can also be divided into known, partially know and unknown. Both
divisions suit for the path planning as well as for the motion planning. The
known environment is known by all agents, unknown environment has to be
gradually discovered by each agent and the partially known is somewhere in
the middle of these two. Therefore, there is a research space for algorithms,
sacrificing optimality for speed.

There are several ways how to represent the planning environment. For
example a grid, a mesh, a graph or a configuration space. Each environment
representation has its advantages and disadvantages but all of them can
be used to represent any kind of the environment (static, dynamic, known,
etc.). The difference is only that the path planning mostly uses the grid,
mesh or graph representation, and the motion planning, which currently
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uses mostly the configuration space representaion. Each representation is
suitable for the path planning problems but the motion planning presumes
only the configuration space or the graph representation.

There are currently a large number of path planning algorithms but they
all have the common problem - they are not real-time for large crowds. We
aimed for the real-time computation in a project LH11006 (Interactive Ge-
ometrical Models for Simulation of Natural Phenomena and Crowds) we fo-
cused mainly on the fast path recomputation in the dynamic city environ-
ment and how to accelerate the computation in the case of the huge amount
of agents. If hundreds of agents have the same path, then we can calculate
this path only once and not a hundred times to speed up the program. In
the case that these hundreds of pedestrians will have a similar path, we will
compute only one path that will be used for all other agents. It means that
all the start positions will be in a circle with a radius 𝜖, analogous to the
goal positions. This will give us a faster computation, but at a price of some
inaccuracy. We call this a group approach.

The group approach has been modified to be faster and more precise.
The research presented in this thesis can reduce the high memory and com-
putational demands. The idea is to take the advantage of path similarities.
If some agents have a similar start and destination, they can be handled as
a group. We also proposed to incorporate a more sophisticated approach of
groups formation based on clustering. In this way it is possible to increase
the speed-up without fatal consequences on the relative error of the produced
paths.

In the course of the research, we obtained a project 17-07690S of the
Czech Science Foundation that focuses on motion planning of a agent (ligand)
through a protein. That is the reason why this work contains two, at a glance,
unrelated parts – path planning and motion planning. However, it is still a
finding a path. The group approach has been also used on the protein to
navigate huge amount of spherical ligands. At present we are testing a lot of
different metrics to find the optimal one which speeds up the computation
and/or finds a better solution.

This thesis is organized as follows. The existing environment representa-
tions are described in Chapter 2. Chapter 3 outlines existing path planning
methods, which are suitable for the simulation of crowds on the graphs. The
motion planning is described in Chapter 4. Chapter 5 describes our research
of the group approach. Chapter 6 contains our cluster approach and its the
results compared with the group approach. Future work is in Chapter 7 and
Chapter 8 concludes the thesis.
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Chapter 2

Environment

One of the most important parts of the search problem is to represent the
environment in which the navigated objects should move. There are a num-
ber of ways to describe an environment and each of these representations
has its advantages and disadvantages. However, each representation of the
environment can be converted to the graph representation.

2.1 Graph

The best data for the graph representation are the road network data, where
the intersections are often represented as vertices of the graph 𝐺, and the
roads that connect them as edges of the graph 𝐺. Each road has its length.
This length can be attributed to each edge, giving a weighted graph 𝐺.

Definition 2.1 (Graph). Graph or undirected graph 𝐺 is a pair 𝐺 = (𝑉,𝐸),
where 𝑉 is a finite, non-empty set of objects called vertices, and 𝐸 is an
unordered pair of vertices (𝐸 ⊂

(︀
𝑉
2

)︀
). The elements of 𝐸 are called edges.

Definition 2.2 (Weighted graph). A weighted undirected graph 𝐺 = (𝑉,𝐸)
is an undirected graph with the real function 𝑤 : 𝐸(𝐺)→ (0,+∞). The real
number 𝑤(𝑒), called the weight of the edge 𝑒, is associated with each edge 𝑒.

The real urban data of the graph representation are available on the Open
Street Map server [60]. The advantage of this data is that we do not have
to manually assign the map vertices to the intersections and graph edges.
As the name suggests, it is a database of roads, buildings, rivers and other
outdoor spaces that are accessible to everyone. The example of the Open
street map is shown in Figure 2.1. Its biggest advantage is at the same time
the biggest disadvantage, because anyone can add or change the data. It may
happen, for example, that two intersections are not interconnected by roads
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Figure 2.1: The example of the Open Street Map - Pilsen. [60]

in the model, although they are interconnected in real world. The missing
basic parameters such as road width or altitude may be also a disadvantage.

The advantage is that road network data can also represent underpasses
or bridges in 2D environment. The graph will not be planar but it is not
a problem at all. On the other hand, parks and squares cannot be well
represented because the road network is unable to maintain their shape or
size. The next advantage of this type of data is the found path. We can see
that the path described by the graph very accurately describes the real path.
In addition, we do not have to deal with collisions with surrounding objects
(such as buildings, rivers, etc.) in this representation.

2.2 Mesh

The mesh representation, which is primarily suitable for the computer graph-
ics, separates the passages from impenetrable parts. The input data can look
like a sequence of points that define polygons. The polygons represent im-
penetrable obstacles, giving us the structure of a virtual city, see example in
Figure 2.2 with white roads and gray impenetrable blocks of buildings. Sub-
sequently, the constrained Delaunay triangulation (CDT) for all supporting
points (points forming a polygon) is computed. Each triangle is then repre-
sented as a graph vertex and two adjacent triangles are connected by graph
edges, see Figure 2.3 (a). This graph can still be modified using a suitable
data structure. This can be a cell and portal graph [61] or a navigation
graph [61], thus reducing the size of the graph while speeding up the calcu-
lation of the graph path planning methods.

Another problem with the mesh representation is the found path (Fig-
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Figure 2.2: The input data for the mesh environment.

ure 2.3 (b)). Obviously, it is clear that this path is very different from the
real agent movement if we do not try to simulate the movement of a drunken
individual. The final path on the mesh can be approximated to make it more
straight and intuitive but it will cost more computing time.

The 2D mesh does not allow us to represent subways and bridges be-
cause it allows to create only a planar graph 𝐺. On the other hand, a mesh
very well represents parks and squares (e.g. shape and size). We consider
these limitations only in 2D environment and do not necessarily work for a
higher dimension. In 3D, bridges and subways can be included in the mesh
representation.

(a) (b)

Figure 2.3: (a) Computed CDT on the example of the input data, (b) Found
path on the mesh representation
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2.3 Grid

The next possible environment representation is to cover the environment
with a uniform grid, usually 2D. Suppose that an agent moves on a grid
which can be represented with a matrix. There are two possible approaches
how to use the grid for the path planning problem. Firstly, each grid vertex
has integer coordinates and can be considered as a possible agent position.
The movement is allowed along the grid edges. The second approach expects
that every possible position of the agent is in the middle of each cell and
the movement is allowed between two adjacent cells. Both these approaches
take discrete steps in one of four directions (up, down, left, right), each of
which increments or decrements one coordinate. There is also the option to
use eight directions (four mentioned above and the diagonal directions) to
move through grid environment.

The agent can move in all directions unless there is an obstacle in his
surroundings. Then the problem can become more complex and interest-
ing when some of the square tiles to represent obstacles will be shaded.
The shaded tiles represents impassable obstacles that the agent has to avoid
(Figure 2.4). In this case, every shaded cell has its corresponding vertex
and associated edges were deleted from the state transition graph 𝐺. Very
complicated labyrinths or maps can be constructed this way.

Figure 2.4: The example of the input data for the grid environment.

The grid environment can be easily converted to the graph environment
for both mentioned approaches. For example, each cell represents a graph
vertex and the adjacent cells are connected by edges of the graph 𝐺. Ob-
viously, we get a planar graph 𝐺, where each vertex has the degree 4 (four
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directions) or 8 (eight directions).

2.4 Configuration space

Path planning models may consider not only the position of the agent but
also, for example, its orientation (if it makes sense) or other properties. The
configurations are then described by vectors keeping the position of the agent
in the space of these models. The simplest problem is to navigate a point
agent in 2D because we have only a 2D vector that only describes its posi-
tion. With any further information, the vector that represents the properties
of the agent increases its number of components and the problem is more
complicated. For example, for the agent in 3D space, the configuration could
be, for example, a six dimensional vector describing its transformation con-
sisting of vectors of the position and the orientation in the space. The term
’state’ is also used for vectors that describe the configuration of the agents
in the dynamic constraint models.
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Chapter 3

Path Planning

First let us introduce necessary definitions.

Definition 3.1 (Path). Path 𝑄 from the vertex 𝑠 to the vertex 𝑔 in the
graph 𝐺 = (𝑉,𝐸) is every vertex sequence (𝑠 = 𝑢0, 𝑢1, ..., 𝑢𝑛 = 𝑔), where
𝑢𝑖 ∈ 𝑉 for 𝑖 = 0, 1, ...𝑛 and 𝑢𝑗𝑢𝑗+1 ∈ 𝐸 for 𝑗 = 0, 1, ..., 𝑛− 1.

Definition 3.2 (Path weight). The weight 𝑤(𝑄) of the path 𝑄 is defined as∑︀𝑛−1
𝑖=0 𝑤(𝑒𝑖), where 𝑒𝑖 = 𝑢𝑖𝑢𝑖+1 and 𝑛 is the number of edges of 𝑄.

Definition 3.3 (Minimal path). Minimal path 𝑄𝑚𝑖𝑛 from the vertex 𝑠 to
the vertex 𝑔 in the graph 𝐺 = (𝑉,𝐸) is every path 𝑄 such that its weight
𝑤(𝑄) is minimal.

The basic problem of path planning is to find the minimal path in a static
known environment (i.e. the geometry of the environment is known and does
not change during the calculation). This problem has been already satis-
factorily algorithmically solved and therefore we focus on a more interesting
issue where the environment can change dynamically (e.g. the formation of a
new barrier or a new and cheaper path). This environment can be known in
advance, that is, whenever there is a change of the edge weight in the graph
𝐺, the method will respond appropriately to each change. Another type of
the environment may be the search in an unknown environment where the
method responds to each change of the edge rating of the graph 𝐺 only if it
has already explored that part of the graph 𝐺.

The path planning algorithms in the static or dynamic environment can
be divided into three groups. The first one are single source algorithms,
which find all paths from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 to every other vertex of the
graph 𝐺. The next single target algorithms find path from the start vertex
𝑠𝑠𝑡𝑎𝑟𝑡 to the goal vertex 𝑠𝑔𝑜𝑎𝑙. The last group are all-pair algorithms, which
find path from each vertex to all other vertices.
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There are currently lots of methods to find the minimal path, so we will
only pick those that suit to our problem. We are looking for methods that
are capable of searching for a path between two vertices in a dynamically
changing environment that may be known, partially known or unknown.
First, we only need methods that can be used to path planning in a dynamic
environment. Therefore, the methods adapted to the edge weight changes in
the graph 𝐺.

The important algorithms for our purpose are algorithms suitable for find-
ing paths of agents as individuals. Each agent has its own independent (on
other agents) path independently, thus we are avoiding algorithms specif-
ically designed for the crowd modeling of agents. We could also demand
methods that solve agents collisions with the environment, or methods to
solve pedestrian collisions with other pedestrians but it is another path plan-
ning problem. In this thesis, however, we only deal with path planning on
the graph 𝐺. Thus, we have selected almost every general algorithm for a
global path planning on the graph environment suitable for the agent-based
path planning without collisions. Although these are algorithms primarily
developed for robot navigation, it can also suit for the crowd path planning.
Therefore, we do not deal with other known algorithms such as search al-
gorithms based on Voronoi diagrams [3] or probability planning [3] or even
using Laplace equation to path planning [4].

3.1 Crowd models

At present, there are basically two types of crowd models, a continuous model
and an agent-based model. Both models differ in their concept and design.
At the same time, it is also possible to combine these two models together,
although this is not a trivial matter.

Both models are also used in different path planning problems than agent
navigation. They can also simulate not only the movement of humans, but
also animals or microscopic organisms.

3.1.1 Continuum model

The continuum path planning model is suitable for dense crowds. It has been
observed that the movement in a dense crowd is similar to the fluid flow [16],
which can be described by Navier-Stokes equations [25]. An application to
car traffic has also been reported [8]. Hughes [33, 34] developed a continuum
model that describes a crowd as a continuous density field and introduced
an evolving dynamic potential function. These partial differential equations
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describe the crowd dynamics to guide the field optimally toward its goal.
The continuous density field can be changed into a particle description of
the crowd. The particle description with an added velocity-dependent term
forms a model [81] which reproduces emerging phenomena of real crowds.
The sophisticated continuum model [37] naturally solves inherent collision,
produces smooth movement of the agents in a complex environments and the
model was expanded from [81]. Moreover, the continuum model problems
can be solved in parallel [52]. Although the continuum model is suitable for
the dense crowds, the disadvantage is that the fluid simulation is ruled by
the laws of physics. Therefore individual requirements of crowd members are
neglected.

3.1.2 Agent-based model

The more natural for human beings is the second mentioned model where a
path is planned for each agent separately. Every agent can have its individ-
ual requirements and the biggest advantage is that the agent-based model
respects them. On the other hand the path planning for this model may be
quite challenging in terms of time and memory complexity. Moreover, with
an increasing number of agents this approach stops to be a real time and
may become unsuitable.

Agent-based methods can be divided into local and global methods. The
local methods are less diverse because they are mostly focused on the collision
detection between agents themselves or between agents and obstacles. Meth-
ods of collision avoidance have been developed including grid-based rules [49]
or Bayesian decision processes [54]. The parallel computation of the collision
avoidance has also been proposed [26]. The smoothing of the planned path
for autonomous vehicles [11] or robots [82] ranks among local approaches.

The global methods which help to locate possible evacuation-critical spots
in buildings and simulate an emergency scenario belong to fire-escape algo-
rithms [59, 19]. Algorithms [5, 67] similar to the fire-escape algorithms have
been proposed but with a focus on the bottlenecks. Also human behaviour
have been examined by many interesting proposed approaches, e.g. [62, 27].

The graph representation of the environment is often used for the global
agent-based path planning. The most widespread A* algorithm [29], which
uses a heuristics to speed up the planning, is proposed for a static en-
vironment as well as the basic algorithms – Breadth First Search (BFS),
Depth First Search (DFS), Dijkstra’s algorithm or Floyd-Warshall algorithm
[23, 84], which rank among all-pair algorithms. The minimal cost path for
all pairs of vertices is found in the memory complexity 𝑂(|𝑉 |2) and time
complexity 𝑂(|𝑉 |3) in the worst case for a graph with |𝑉 | vertices. In the
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case of dynamic graphs, where weights of vertices and edges may change
over time, the D* algorithm [71] and its improvement D* Focused [72] are
more suitable. The D* Lite [43], which modifies the backwards algorithm
LPA* [44], may yield even better results than D* Focused. The memory
complexity 𝑂(𝑘(|𝑉 | + |𝐸|)) for 𝑘 agents, |𝑉 | vertices and |𝐸| edges can be
easily reached by these algorithms because each agent needs its own graph
ranking. Hierarchical Annotated A* [28] creates a hierarchical graph to find
an almost optimal path and Anytime D* [48] finds a sub-optimal path in a
limited time. The path planning for a moving target solves Moving Target
D*-Lite [76] or Generalized Fringe-Retrieving A* [75].

In addition, we chose agent-based model for our research. Although this
approach has higher computational demands, every individual in the crowd
has their own path as was mentioned earlier. We try to reduce these demands
by using the similarity of some paths and we use the graph representation as
the environment, because this representation is the most frequent and many
real data are freely available [60]. In addition, as mentioned in Section 2.1,
all possible types of representations can be represented as a graph. The
advantage of graph algorithms for path planning is that the algorithm with
minor modifications can be used for all other environment representations.
We can define the problem as follows

Input 1. A set of agents 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑐}, where every agent 𝑝𝑖 ∈ 𝑃 has
a start position 𝑠(𝑝𝑖) ∈ R2 and a goal position 𝑒(𝑝𝑖) ∈ R2.

Output 1. A set of paths 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑐}, where every path 𝑤𝑖 belongs
to the agent 𝑝𝑖 for each 𝑖 = 1, 2, . . . , 𝑐.

Obviously |𝑃 | ≥ |𝑊 | because each agent has only one path or none. Path
does not exist when the graph 𝐺 has two or more components and the start
position 𝑠(𝑝𝑖) ∈ R2 and the goal position 𝑒(𝑝𝑖) ∈ R2 do not belong to the
same graph component.

3.2 Static graph algorithms

The static path planning graph algorithms are not necessary to introduce
because they are already widespread. On the other hand, their ideas are
constantly used as the basis for the newer and more complex algorithms.
Therefore, we recall the most important path planning graph algorithms for
the static environment.
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3.2.1 Breadth first search

The breath-first search (BFS) is one of the basic path planning strategies, a
basis of other and more complex path planning algorithms. The main idea of
this algorithm is as follows: First it finds all vertices reachable from the start
vertex 𝑠𝑠𝑡𝑎𝑟𝑡 through one edge 𝑒(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠). Next it finds all vertices that are
reachable from the vertex 𝑠𝑠𝑡𝑎𝑟𝑡 through two edges. Generally all vertices in
the 𝑘 distance (𝑘 edges far) from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 are discovered sooner
than the vertices in 𝑘 + 1 distance.

The asymptotic complexity of BFS is 𝒪(|𝑉 | + |𝐸|), where |𝑉 | is the
number of discovered vertices and |𝐸| is the number of discovered edges.

3.2.2 Depth first search

The second basic path planning strategy, the depth first search (DFS), uses
backtracking to search through the graph 𝐺. Each step DFS expands the
first following vertex, if it has not been visited yet. The order of selection of
the next vertex depends on the graph representation and/or on the imple-
mentation. When the algorithm reaches the vertex, which has no following
vertices or all of them were already visited, it goes back by backtracking.
Depth first search uses the stack abstract data type and it has the same
asymptotic complexity as BFS, i.e. 𝒪(|𝑉 | + |𝐸|), where |𝑉 | is the number
of discovered vertices and |𝐸| is the number of discovered edges.

3.2.3 Dijkstra

Dijkstra’s algorithm, proposed in 1959 by E.W.Dijkstra [17], is one of the
most widely used path planning algorithms for the graph representation be-
cause of its simplicity and reliability. In fact, this algorithm is a generaliza-
tion of the BFS algorithm, which does not use the number of edges but the
distance (e.g. the Euclidean distance) from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡. Let us
assume that each vertex of the graph is a city and its edges represent the
distances between the cities, which are connected by a road. The Dijkstra’s
algorithm finds the minimal path from one city to another.

The asymptotic complexity for the easiest implementation solution is
𝒪(|𝑉 |2), where |𝑉 | is the number of discovered vertices. The use of an
appropriate queue representation for the sparse graphs, where |𝐸| ≪ |𝑉 |2,
will improve the complexity to 𝒪(|𝐸|+ |𝑉 | log |𝑉 |).
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3.2.4 Floyd-Warshall

Floyd-Warshall algorithm (FW) is an algorithm to find the minimal path in
the weighted graph 𝐺 and it ranks among into the all-pair minimal problem
algorithms. FW also accepts the negative edge rating and it detects a neg-
atively weighted cycle (if there is some). If there is no negatively weighted
cycle, the Floyd-Warshall algorithm finds the minimal path between each
pair of vertices.

The asymptotic complexity of the FW algorithm is 𝒪(|𝑉 |3), where |𝑉 | is
the number of vetrices.

3.2.5 A* search

The A* search algorithm (pronounced as ”A star”) is widely used in path
planning to find the minimal path between multiple vertices of the graph 𝐺
with time independent edge weights. The algorithm was firstly introduced
by Peter Hart, Nils Nilsson and Bertram Raphael in 1968 [29]. Currently it
is widely used due to its performance and accuracy. The A* search, from the
computation time view, performs better than Dijkstra’s algorithm.

As the A* search algorithm (see Alg.1) goes through the graph 𝐺, it fo-
cuses on the path with the lowest known edge weights (line 4), while the
alternative parts of this path discovered during the calculation are stored in
the priority queue. If the currently searched path has a higher cost at any
time during the computation than another alternative path in the priority
queue 𝑜𝑝𝑒𝑛, the method leaves the higher cost path and returns to the alter-
native path with the lowest cost. This process is repeated until the goal is
reached.

The A* search uses a heuristic function 𝑓(𝑠) to determine the order in
which the vertices of the graph 𝐺 will be visited (line 10). This heuristics is
a sum of two functions. The first function is the cost of the path 𝑔(𝑠) from
the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 to the currently visited vertex 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝐺. The
second function is the so-called heuristic estimation ℎ(𝑠) from any vertex
𝑠 ∈ 𝐺 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. Additionally, it has to be an admissible
heuristic estimation, so it must not overestimate the distance between any
vertex 𝑠 ∈ 𝐺 and the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺.

If heuristics for all vertices 𝑠, 𝑢 ∈ 𝐺, which are connected with the edge
𝑒(𝑠, 𝑢) ∈ 𝐺, satisfy the additional condition ℎ(𝑠) ≤ 𝑑(𝑠, 𝑢) + ℎ(𝑢), then
the function ℎ(𝑠) is consistent. The function 𝑑(𝑠, 𝑢) is a metric function.
When the additional condition is satisfied, the A* search algorithm can be
implemented more efficiently. More specifically, the method can be modified
so that no vertex of the graph 𝐺 will be processed more than once.
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Algorithm 1: A* search algorithm

Input : Vertex 𝑠𝑠𝑡𝑎𝑟𝑡, vertex 𝑠𝑔𝑜𝑎𝑙
Output: A path 𝑇 from vertex 𝑠𝑠𝑡𝑎𝑟𝑡 to vertex 𝑒𝑛𝑑

1 𝑜𝑝𝑒𝑛← 𝑠𝑠𝑡𝑎𝑟𝑡 ; // insert 𝑠𝑠𝑡𝑎𝑟𝑡 into priority queue

2 𝑐𝑙𝑜𝑠𝑒𝑑← ∅ ; // initialize list of processed vertices

3 while 𝑜𝑝𝑒𝑛 is not empty do
4 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑜𝑝𝑒𝑛.𝑡𝑜𝑝() ; // pop vertex from the priority queue

5 if 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑠𝑔𝑜𝑎𝑙 then reconstruct 𝑇 ;
6 add 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑐𝑙𝑜𝑠𝑒𝑑 from 𝑜𝑝𝑒𝑛;
7 foreach neighbor 𝑠𝑛𝑒𝑖𝑔ℎ of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do
8 if 𝑠𝑛𝑒𝑖𝑔ℎ is not in 𝑐𝑙𝑜𝑠𝑒𝑑 then
9 𝑡𝑒𝑚𝑝← 𝑓(𝑠𝑛𝑒𝑖𝑔ℎ) ; // compute heuristic function

10 if 𝑠𝑛𝑒𝑖𝑔ℎ is not in 𝑜𝑝𝑒𝑛 then
11 𝑠𝑛𝑒𝑖𝑔ℎ.𝑓 ← 𝑡𝑒𝑚𝑝 ; // change the value

12 add 𝑠𝑛𝑒𝑖𝑔ℎ to 𝑇 and to 𝑜𝑝𝑒𝑛;

13 else
14 if 𝑡𝑒𝑚𝑝 < 𝑠𝑛𝑒𝑖𝑔ℎ.𝑓 then
15 𝑠𝑛𝑒𝑖𝑔ℎ.𝑓 ← 𝑡𝑒𝑚𝑝;
16 change 𝑇 ;

17 reconstruct 𝑇 ;
18 return 𝑇 ;

The time complexity of the A* algorithm depends on the used heuristic
ℎ(𝑠). In the worst case it is exponential, i.e. the number of visited vertices
grows exponentially depending on the size of the found solution.

Suppose we look for a path between the initial vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and a
goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺, where the searched graph 𝐺 is a tree. In this case,
polynomial complexity can be achieved if a heuristic function returning the
exact value of the distance between any vertex 𝑠 ∈ 𝐺 and the goal vertex
𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺 meets the condition

|ℎ(𝑠)− ℎ ⋆ (𝑠)| = 𝑂(log ℎ ⋆ (𝑠)) (3.1)

where ℎ⋆ (𝑠) is the optimal heuristics. In other words, the relation 3.1 states
that the error of the heuristics ℎ(𝑠) will not grow faster than the logarithm of
the ”perfect heuristics” ℎ⋆ (𝑠), which returns the exact and minimal possible
distance from the vertex 𝑠 ∈ 𝐺 to the vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺.
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3.2.6 Best-first search

The Best-first search algorithm uses only heuristics to select other vertices to
be processed. The natural implementation uses the priority queue to store
the most promising vertices for the computation. In essence, this is an A*
algorithm that does not use the current cost 𝑔(𝑠) of the path at all.

3.3 Dynamic graph algorithms

The group of dynamic algorithms is slowly getting into the greater awareness
of the scientific community. The simplest and fastest (from the implementing
point of view) solution can be to use the static algorithm for the path recom-
putation. If a very small number of graph changes appear in the graph 𝐺,
it can be considered as the correct approach. However, with a large number
of graph changes, it is better to use a specialized algorithm. These algo-
rithms are more memory-intensive, but computationally faster than static
path planning algorithms.

3.3.1 Original D* (Dynamic A*)(1994)

The first and original D* algorithm [71] was introduced by Anthony Stentz
in 1994. Its name (pronounced as ”D star”) comes from the term ”Dynamic
A*”. This term was used because the D* algorithm is a generalization of the
static A* algorithm for the dynamic environment (change of the edge weight,
insertion of the new vertex, etc.).

Similar to the A* algorithm the D* algorithm also uses a priority queue
𝑄, to which we insert all vertices, which have to be processed or which have
been changed. Each vertex 𝑠 ∈ 𝐺 might have several states 𝜏(𝑠). The first
state is 𝜏(𝑠) = 𝑁𝐸𝑊 . The meaning of this state is that the vertex 𝑠 has
been never processed in the priority queue. The second state 𝜏(𝑠) = 𝑂𝑃𝐸𝑁
informs that the vertex 𝑠 is still in the priority queue. The last state is
marked as 𝜏(𝑠) = 𝐶𝐿𝑂𝑆𝐸𝐷 and it means that the vertex has been already
processed (removed from the priority queue).

The D* algorithm in its initial computation on the graph 𝐺 works in
the same way as the A* algorithm, i.e. it finds the minimal path in the
graph 𝐺 from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 quickly. When
a graph change occurs, D* is able to find a new minimal path from the
current position of 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 much faster than the A*
algorithm that would run repeatedly. However, the D* algorithm has the
reputation of a complex algorithm and was pushed out by a much simpler
D* Lite algorithm.
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3.3.2 Focused D* (1995)

The Focused D* algorithm [72], as the name suggests, is an extension of the
original D* algorithm that was introduced in 1995 by the same author as D*
algorithm, Anthony Stentz. In contrast to the original version, heuristics are
used to focus the algorithm on the most important vertices. This reduces the
total number of processed tops of the graph 𝐺 and accelerates the calculation
of the minimal path.

Similarly to the original D* algorithm, the Focused D* uses a priority
queue 𝑄, to which vertices for processing are added. All of the graph vertices
can come to the same states 𝜏(𝑠) as in the D* algorithm - 𝑁𝐸𝑊 , 𝑂𝑃𝐸𝑁 ,
𝐶𝐿𝑂𝑆𝐸𝐷. Moreover, the two other states 𝐿𝑂𝑊𝐸𝑅 and 𝑅𝐴𝐼𝑆𝐸 can be
assigned to the elements in the priority queue 𝑄.

The basic structure of the algorithm is identical to the original D* algo-
rithm, so we focus only on the spot where these two methods differ. The
difference is the key by which the elements in the priority queue are ranked.
Previously, it was enough to sort the elements according to their minimal
rank for which they can be accessed. We now use the key 𝑓(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠),
which is the sum of two functions

𝑓(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠) = 𝑐(𝑠𝑔𝑜𝑎𝑙, 𝑠) + ℎ(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠),

where 𝑐(𝑠𝑔𝑜𝑎𝑙, 𝑠) is the path cost from the goal vertex 𝑠𝑔𝑜𝑎𝑙 to the vertex 𝑠
and the function ℎ(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠) is a heuristic estimate of the distance between
the current robot position 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the vertex 𝑠. Thus, the function
𝑓(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠) is no more than an estimate of the distance between the current
vertex 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the goal vertex 𝑠𝑔𝑜𝑎𝑙.

The addition of the heuristics to the D* algorithm is the main difference
between the original D* algorithm and the Focused D*. A newer version
of the D* algorithm goes, thanks to the heuristics, through a much smaller
number of nodes. The Focused D* still contains minor differences from the
original D* algorithm, which are not so significant, and can be found in the
article [72].

3.3.3 DynamicSWSF-FP (1996)

DynamicSWSF-FP [63], as originally proposed, finds a path from the goal
vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺 to the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and thus maintains estimates of
the goal distances rather than the start distances. The algorithm stores the
distance between each vertex 𝑠 ∈ 𝐺 and the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. On the
other hand, it is simple to switch the path planning direction to find the path
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from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. Furthermore,
DynamicSWSFFP recomputes all goal distances that have changed.

The DynamicSWSF-FP uses the breadth-first search (BFS) as its basis,
thus both algorithms compute the same start distances during the path plan-
ning. Unlike BFS, the DynamicSWSF-FP algorithm is much more complex
and reduces the number of searched vertices. Moreover it is able to quickly
react to the graph change and recompute the found path. The incremen-
tal search algorithm (DynamicSWSF-FP) is not very widespread because it
was overshadowed by another algorithm (Section 3.3.4) and its follower (Sec-
tion 3.3.5). However, it is still a useful algorithm when we need to find the
path from several vertices to one goal vertex after each graph change.

3.3.4 LPA*/Incremental A* (2001)

The Lifelong Planning A* algorithm (LPA*) [44], is an incremental search
method with a heuristics to find a path between the two specified vertices of
the graph 𝐺 whose edge rating changes in time 𝑡. The incremental search
consists of recalculating a so-called initial distance (i.e., the distance between
the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and any vertex 𝑠 ∈ 𝐺) for each vertex that has
changed or has not been calculated. Heuristic searches are only used to
recalculate the initial distances that are important for the recomputation of
the minimal path from the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺.
Thanks to incremental heuristics, the LPA* algorithm recalculates a very
small percentage of the initial distances.

Lifelong Planning A* can be used to path planning in the finite and
known graph 𝐺, whose edge rating increases or decreases over time 𝑡. In this
case, the algorithm is always able to find the minimal path between the start
vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺.

LPA* uses two variables in each vertex 𝑠 ∈ 𝐺 to calculate the initial
distance. The first one is the so-called 𝑔-value 𝑔(𝑠) and the second is the
so-called 𝑟ℎ𝑠-value 𝑟ℎ𝑠(𝑠). The 𝑟ℎ𝑠-value of the vertex 𝑠 ∈ 𝐺 is based on the
𝑔-values of the neigboring vertices of the vertex 𝑠. The vertex 𝑠 ∈ 𝐺 is called
locally consistent if 𝑔(𝑠) = 𝑟ℎ𝑠(𝑠). Otherwise it is called locally inconsistent.
If all nodes 𝑠 ∈ 𝐺 are locally consistent, then their 𝑔-values are equal to the
initial distances. Since it is not necessary for all the vertices of the graph
𝐺 to be locally consistent to find the minimal path, heuristic ℎ(𝑠, 𝑠𝑔𝑜𝑎𝑙) is
introduced. This helps the LPA* algorithm focus only on the relevant 𝑔-
values that are important for finding the minimal path between the start
vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. The heuristics are identical
to the heuristics used in the A* search algorithm (recall Section 3.2.5).

The priority queue 𝑄 contains only the vertices of he graph 𝐺 that are
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locally inconsistent, and the method tries to fix them. Inconsistent vertices
𝑠 ∈ 𝑄 in the priority queue 𝑄 are sorted by the special key 𝑘(𝑠). This key
is nothing but a two-component vector. The elements of the priority queue
𝑄 are lexicographically sorted. This means that we first compare the first
component of the vectors 𝑘(𝑠), 𝑘(𝑢) for 𝑠, 𝑢 ∈ 𝑄, 𝑠 ̸= 𝑢. If the first component
is identical, we compare the second component of the vectors 𝑘(𝑠), 𝑘(𝑢) for
𝑠, 𝑢 ∈ 𝑄, 𝑠 ̸= 𝑢.

3.3.5 D* Lite (2002)

The D* Lite [43] algorithm uses the LPA* algorithm (Section 3.3.4) to mimic
the behavior of the original D* algorithm (Section 3.3.1), which is based on
the A* algorithm. It uses LPA* to find the minimal path in the dynamic
graph 𝐺 for an object that moves along the initial minimal path. D* Lite is
considered to be a simpler algorithm than D*. D* Lite is at worst as fast as
D* algorithm.

In Section 3.3.4, an LPA * algorithm has been described that repeatedly
finds the minimal path between the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and the goal
vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺 in case of any graph change (edge change, deletion of the
vertex 𝑠 ∈ 𝐺, etc.). The difference against D* is that D* Lite repeatedly
finds a path from the current vertex 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝐺 to the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺
each time the graph 𝐺 changes while the agent moves along the found path
toward its goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. The method does not need any prerequisites
for the change rate of the edge of the graph 𝐺, its size, or how far away from
the current vertex 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝐺 the change appears.

The LPA* algorithm can be used to navigate the agent into the goal
position in an unknown environment. As already mentioned, LPA* (Sec-
tion 3.3.4) searches for the path between the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺 and the
goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. Their 𝑔-values are calculated as the distance from
the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺, but for D* Lite we need to change the search
direction so that the 𝑔-values are counted from the goal vertex 𝑠𝑔𝑜𝑎𝑙 ∈ 𝐺. In
a non-oriented graph, it is only necessary to swap the start vertex with the
goal. In addition, the direction of the oriented edges in the oriented graph is
to be changed.

The demands on the heuristics are the same as in the A* and LPA*
algorithms. If the initial computation of the algorithm returns 𝑔-value in the
start vertex as 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) = ∞, the path from the vertex 𝑠𝑠𝑡𝑎𝑟𝑡 to the vertex
𝑠𝑔𝑜𝑎𝑙 does not exist. Otherwise, it is possible to track the minimal path from
the start vertex 𝑠𝑠𝑡𝑎𝑟𝑡 to the goal vertex 𝑠𝑔𝑜𝑎𝑙. We reach the goal by moving
from the current vertex 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the neighboring node 𝑠, which minimizes
𝑑(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠) + 𝑔(𝑠). We repeat this process until we reach the goal 𝑠𝑔𝑜𝑎𝑙.
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To solve the problem of reaching the goal vertex in the unknown envi-
ronment, it is necessary to modify the LPA* algorithm, although most of its
functions and methods do not change. The main method have to be modified
to correctly calculate all elements in the priority queue 𝑄 whenever the agent
moves. The heuristics changes with the agent movement because it is always
counted with respect to the current position of the agent 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and this is
why this part is very important. This modification only changes the keys of
all vertices 𝑠 ∈ 𝑄, but does not affect the local consistency of the vertices
and thus does not increase (or reduce) the size of the priority queue 𝑄.

The algorithm can also be used for the path planning in the unknown
environment where the graph 𝐺 would have the shape of a network. Every
vertex 𝑠 ∈ 𝐺 would have just eight adjacent vertices. The price of edges
(𝑠, 𝑠𝑛𝑒𝑖𝑔ℎ) ∈ 𝐺 would be initially set to the value one, but if the agent found
an inaccessible spot, then the edge price would change to infinity.

3.4 Any-angle movement

The next group of algorithms removes the constraints of movement directions
in the selected environment representation. The following algorithms use the
grid representation, which is most suitable for this problem and allows us
to move standardly in 4-directions or 8-directions. This representation may
seem to be strict, but the opposite is true. Algorithms do not need only to
consider direct neighbor cells, but the cells of adjacent cells can be used or
any other cell in the whole environment representation. Note that the grid
can be easily converted to the graph representation, and these algorithms
can also be used in graph environments. On the other hand, algorithms
conversion to the graph representation would be a little more complicated.

3.4.1 Field D* (2007)

The Field D* algorithm [21] is a method based on an interpolation path
search and its interpolation recomputation. This method extends D* and
D* Lite algorithms by using linear interpolation to efficiently calculate low
cost paths. Due to linear interpolation, these paths are optimal and very
effective in practice. At present, the Field D* algorithm is widely used in
robotics for large environments.

Definition 3.4 (Planar graph). A graph is planar if it can be drawn on the
plane such that no two edges cross.

The problem solved by the Field D* algorithm can be formulated as
follows. Given a region in the plane partitioned into a uniform grid of square
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cells 𝑇 , an assignment of traversal costs 𝑐 : 𝑇 → (0,∞] to each cell, and
two points 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑔𝑜𝑎𝑙 within the grid, find the path within the grid from
𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑔𝑜𝑎𝑙 with minimum cost.

Such a problem is important to approximate appropriately. A very often
used approach is to represent the uniform grid as an undirected planar graph
𝐺, where each vertex 𝑠 ∈ 𝐺 has exactly eight neighboring vertices. The path
through the graph 𝐺 is then found. Generally, the vertex is assigned to each
cell center, and the edge between two vertices exists only when the two cells
are adjacent. The cost of such an edge corresponds to the metric between
the two adjacent vertices.

The current methods, which are looking for the minimal path for this
problem, do not provide exact solutions, as can be seen in Figure 3.1. The
methods for this problem without obstacles provide the green path from the
start vertex (green) to the goal vertex (black). On the other hand the Field
D* method uses better approach, which finds a shorter path (Figure 3.1,
blue).

Figure 3.1: The difference in the way found and the minimal way.

The Field D* algorithm is an extension of already described D* algo-
rithms. It uses linear interpolation to calculate optimal paths. This method
finds more direct and cheaper paths than traditional cellular search algo-
rithms without loosing a real-time computation.

The algorithm, Field D*, according to the performed tests [21], provides
better (cheaper) paths than the D* Lite algorithm in the cell planning envi-
ronment. On the other hand, the cheaper found path is balanced by longer
calculation times. However, the authors suggest that Field D* may not al-
ways find a cheaper path than other cellular planning algorithms, although
this is a very rare case.

Let us note that the idea that Field D* comes up with can be easily
added to all cell-based dynamic D * algorithms. Currently there is a modified
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version of this algorithm that improves this deficiency in the form of a longer
time calculation.

3.4.2 Theta* (2007)

Theta* [15] is a modified A* algorithm, which produces better paths than
the Field D* algorithm (Section 3.4.1). The path planning method Theta*
propagates information along grid edges without constraining the paths to
grid edges. It is fast, simple and finds short and realistic looking paths in the
grid environment. Theta* considers paths that are not constrained to grid
edges during the path planning and can thus make more informed decisions
during the planning. Theta* finds shorter paths for the path planning prob-
lems faster than the Field D* algorithm, it is more general than Theta*. The
Field D* can be applied to grids whose cells have different sizes and traversal
costs.

The Theta* is basically a modified A* algorithm where the main difference
between Theta* and A* is that Theta* allows the parent of a vertex to be
any vertex, unlike A* where the parent must be a successor. Its biggest
disadvantage is that it is based on A* algorithm, which results in the slow
recomputation of the path. However, authors have modified and improved
this algorithm to the algorithm Lazy Theta* [57].

What we did not mention above is that the Theta* combines the grid
representation of the environment and the visibility graph. The algorithm
Theta* searches for the path on the grid, but at the same time it tries to
create and move along the visible graph. For this reason, a line-of-sight check
between a vertex 𝑠 ∈ 𝐺 and its parent has to be processed. When the vertex
𝑠 ∈ 𝐺 is never expanded, it is wasted computation. A large number of these
line-of-sight checks is just the deficiency that is subsequently solved by the
algorithm Lazy Theta*.

3.4.3 Incremental Phi* (2009)

Incremental Phi* algorithm [56] combines the advantages of the previous two
algorithms. This is the version of the Theta* algorithm (Section 3.4.2), which
is incremental. This allows a quick recomputation of the path. The authors
created Phi* and Incremental Phi* algorithms and both of them are complete
and correct. The Incremental Phi* is simple and it finds paths of essentially
the same length as the Theta*. In comparison with basic Theta* algorithm it
can also provide a speedup of approximately one order of magnitude for the
path planning with the freespace assumption. The path planning with the

22

http://www.aaai.org/Papers/AAAI/2007/AAAI07-187.pdf
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1021&context=grasp_papers


freespace assumption is when the agent can move from a given start position
to a given goal position without knowing the blockage status a priori.

3.5 Moving goal position

This section summarizes the algorithms used to find paths in an environment
where the end position is not static but it moves. These algorithms can be
used for any representation of the environment because all of them are based
on the algorithms mentioned above, namely the A* search algorithm and D*
Lite algorithm.

GAA* (2008)

GAA* (Generalized Adaptive A*) [74] is a modified A* algorithm (Sec-
tion 3.2.5) that finds the shortest paths in state spaces where the action
costs can increase or decrease over time. It handles the path planning of
the moving goal 𝑠𝑔𝑜𝑎𝑙. This is a generalization of an older algorithm called
”Adaptive A*”. Adaptive A* is an incremental heuristic search algorithm
that solves series of similar search problems faster than A* because it updates
the h-values (values of heuristic) using information from previous searches.
It is not guaranteed to find shortest paths in state spaces with the older
Adaptive A*. However, GAA* finds shortest paths in state spaces where the
action costs can increase or decrease over time and it also outperforms both
breadth-first search, A* and D* Lite for moving-target search and works only
on the graphs in two dimensions.

G-RFA* (2010)

G-FRA* (Generalized Fringe-Retrieving A*) [75] is a generalization of the
previous GAA* algorithm (Section 3.5) for any graphs that are not limited
only to 2D. The algorithm uses a technique from another incremental search
algorithm FRA* (Fringe-Retrieving A*), which is the fastest algorithm to
solve moving target search problems only on two dimensional grids. G-FRA*
can also be up to one order of magnitude faster than GAA*. Moreover G-
FRA* reuses search trees from previous searches to speed up the current
search and thus often find cost-minimal paths for series of similar search
problems faster than by solving each search problem from scratch.
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MTD*-Lite (2010)

MTD*-Lite (Moving Target D*-Lite) [76] is basically the extension of the D*
Lite (Section 3.3.5) algorithm that uses techniques of the G-RFA* algorithm
(Section 3.5) to recompute path for the moving goal 𝑠𝑔𝑜𝑎𝑙. Although the
D*Lite algorithm is very slow on moving target search problems, where both
the start 𝑠𝑠𝑡𝑎𝑟𝑡 and goal 𝑠𝑔𝑜𝑎𝑙 vertices can change over time, Moving Target
D* Lite is four to five times faster than Generalized Adaptive A*.

Tree-AA* (2011)

Path planning algorithm [31] for an unknown environment based on the A*
algorithm (Section 3.2.5). Tree-AA* is an incremental heuristic search algo-
rithm with the freespace assumption and use A* searches to find a minimum-
cost path from the current state of the agent to the goal state. Tree-AA*
generalizes Path-Adaptive A* (Path-AA*) [30] to reuse the minimal paths of
the current and all previous A* searches and thus creates a reusable tree.

Path-Adaptive A* [30] solves navigation problems in initially unknown
terrain using planning with the freespace assumption. The agent repeatedly
finds and then follows a cost-minimal path from its current state to the goal
state. If the agent senses that the cost of at least one action on the path
increased while it follows the path, then it repeats the process.

3.6 Fast suboptimal algorithms

As the name itself suggests, fast suboptimal algorithms are looking for a
path faster than the other algorithms mentioned above. This is possible
after accepting some limitations (such as finding a path within 5 seconds) or
rather simplifying the problem. All the algorithms in this section will quickly
find some path they claim to be suboptimal and then try to improve it.

Anytime D* (2005)

This is the ”Anytime” variant [48] of the D* Lite algorithm (Section 3.3.5),
which was created by combining the D* Lite algorithm with the Anytime
Repairing A* algorithm. The ”Anytime” algorithm is an algorithm that can
run under any time constraint. It finds very quickly a suboptimal (in the
sense of a short time calculation) path with which it continues to work. This
path then improves with time. The more time the algorithm has, the better
the found path will be.
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HPA* (2004)

HPA* (Hierarchical Path-Finding A*) [7] is an algorithm for the path plan-
ning of the large number of objects to move along the large graph. For
example, navigating armies in RTS computer games. Objects may have dif-
ferent start positions 𝑠𝑠𝑡𝑎𝑟𝑡𝑠 and potentially different goal positions 𝑠𝑔𝑜𝑎𝑙𝑠.
HPA* creates a graph hierarchy to quickly find an almost optimal path. The
algorithm should find the way for all objects faster than A* for each of them
separately.

PRA* (2005)

PRA* (Partial Refinement A*) [73] should address the same problem as the
HPA* algorithm (Section 3.6). The difference is in the implementation. Both
algorithms should have similar computational requirements. It is not only
able to cleanly interleave planning and execution, but it is also able to do so
with only minimal losses of optimality.

HAA* (2008)

HAA* (Hierarchical Annotated A*) [28] is a generalization of the HPA* algo-
rithm (Section 3.6), which allows for varying movement of objects around the
terrain (e.g. narrow paths where only small objects can pass). HAA* is able
to find near-optimal solutions to problems in a wide range of environments
yet still maintain exponentially lower search effort over standard A*.

3.7 Others

The last section contains the remaining algorithms that are used for the path
planning in the graph 𝐺 but cannot be classified into the above sections.

SetA* (2002)

This is a next variant of the A* algorithm [36] that searches the binary
decision diagram, which is the model of the graph. The algorithm should be
faster than A* in some cases. However, it appears that SetA* is only faster
in the case of a high degree of graph vertices (graphs similar to full graphs).
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LEARCH (2009)

LEARCH [65] (LEArning to seaRCH ) is a combination of machine learning
algorithms that are used to teach the robot to look for an almost optimal
path itself. Combined with the Field D* algorithm (Section 3.4.1), it provides
better results.
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Chapter 4

Motion Planning

In the previous chapter, we discussed a great part of existing methods for path
planning mainly in the graph environment. In parallel with path planning
there is another important and very complex problem of finding paths –
motion planning. In this case, we only have some space that describes a
collision free area and the area with the obstacles description. This problem is
more complex and desirable, because it is necessary to process this free space
in an appropriate way so that the agent can move though the environment
without any collision.

This problem gained attention with robots and their control. The robot
should get from the start position 𝑠𝑠𝑡𝑎𝑟𝑡 to the goal position 𝑠𝑔𝑜𝑎𝑙 without
collision with any obstacle. Usually it does not know the environment in
advance, so it had to scan its surroundings and make its decision. It is
obvious, therefore, that this is not a simple problem and it brings a number
of pitfalls. After working with the robots, autonomous vehicles have been
added to research, and nowadays motion planning of drones has the greatest
attention.

However, the motion planning solution can also be applied to other areas
than to the navigation of the mechanical objects. A very important problem
is, for example, navigating the ligand (or probe) into the protein or out of
the protein. This problem is in the simplest case representable by 3D c-
space if the ligand has a zero size or looks like sphere only. In the case of
a more complex ligand, space dimension increases, as both 3D position and
3D orientation need to be considered. Flexible ligands can be represented
as articulated mechanisms with relative motion of atoms. The atoms may
be constrained due to bond torsions [13] [80] which leads to search in the
high-dimensional configuration space.

The representation of the high-dimensional configuration space using a
regular grid is not computationally viable, although the methods for the
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grid motion planning exist. The solution used in most cases are random-
ized sampling-based planners [39] [47] which (probably) compute at least
one result very quickly with high probability. The idea is to sample the
configuration space randomly and to classify the samples as free (without
collision) or non-free (collision). The non-free samples are discarded and the
free samples are stored in the graph (roadmap). The graph approximates
the free regions of the configuration space and enables to search a path with
graph-based path planning methods. The tunnel detection of flexible lig-
ands can be processed with the above mentioned sampling-based methods.
Moreover, in dynamic scenes time can be taken as another dimension [32].

The widely used sampling-based methods are Probabilistic Roadmaps
(PRM) [39] and Rapidly Exploring Random Tree (RRT) [47].

4.1 Protein models

Biomolecules (proteins) [53] are chemical compounds found in living organ-
isms. Proteins consist of the basic building blocks such as proteinogenic
amino acids, molecules consisting of few atoms (t̃wenty species based on the
definition). Each amino acid contains a portion of the peptide bond that
makes it possible to form an amino acid sequence. Proteins consist of one
or more of these chains. The sequence in the chain is called the primary
structure of the protein. This sequence is encoded in DNA and amino acid
chains are synthesized by ribosomes in transcription and translation.

In the areas of chemistry that deal with drug development and molecular
enzymes, it is important to analyze these biomolecules. During the analysis
of biomolecules, it is necessary to describe the spatial relationships between
individual atoms to accelerate molecular surface computation, volume com-
putation, internal cavity analysis, tunnel search in a molecule, etc. Tunnels
in molecules of the protein determine their essential properties, such as the
induction of a chemical reaction or the complexity of the modification of the
molecule. The tunnel analysis is used in the protein engineering, where it
helps to better understand specific chemical reactions. These reactions are
affected by modifying the structure of the protein by expanding or closing
the tunnel at a particular site, thereby facilitating or disabling the reaction.

The Van der Waals model [6] captures the structure of proteins along
with interacting forces between atoms and allows the study of the protein
behavior. In this model, atoms are represented by spheres. If there is a
strong bond between the atoms, their spheres overlap. In other cases, the
spheres should not overlap because of the repulsive forces. The Van der
Waals model example is illustrated in Figure 4.1. The spherical radii, the Van
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Figure 4.1: An example of the Van Der Waals representation of the
molecule [53]

der Waals model constants, are determined by experimental measurement.
Model spheres are also usually dyed according to the chemical element to
which they belong.

4.2 Probabilistic Roadmaps

The PRM algorithm [24] [41] builds the graph over the explored parts of the
configuration space. This approach has two phases. First the random sam-
ples are generated and tested for collisions. The second phase tries to connect
the close samples with the edge if possible. A precise implementation of ran-
dom sampling, as well as candidate selection procedures for interconnection
and the configuration of the local planning, may vary and is therefore left
to the programmer. The possibilities of implementing these procedures are
stated in [24] which also compares these procedures in detail.

A sufficient input for the PRM algorithm is a set of obstacles. The knowl-
edge of the start and the goal configuration is not required by the algorithm
itself, but their knowledge can be used in some sampling heuristics. The
algorithm output is an oriented graph mapping the examined configuration
space. The algorithm works with the time complexity 𝒪(𝑛 log 𝑛) [40], where
𝑛 is the number of samples. The graph path planning strategy (Chapter 3)
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is always used on this output graph 𝐺.
There are two problems in the PRM algorithm. The first one is called

boundary value problem. It rises up when connecting the two given configu-
rations. This problem can be difficult to solve under motion constraints, so
PRM is primarily used in motion planning without motion constraints. The
second problem is called the narrow passage problem. Narrow passages are
small regions of configuration space whose removal changes the connectivity
of the space. These small regions have a very low probability of coverage
by sampling methods. Many iterations are needed to sample them densely
enough (or sample them at least once) because of their small volumes. This
problem can be solved (or at least approximated) by generating random
samples close to obstacles or around medial axis of the environment [45].
However, this is particularly suitable only for low-dimensional configuration
spaces [45].

Probabilistic Roadmaps can be used in the computational biology to sam-
ple the conformational space in protein folding [2] [58] [80] in order to speed
up molecular dynamics simulations.

4.2.1 sPRM

sPRM [40] is a simplified version of the Probabilistic Roadmaps algorithm.
Rather than for practical use it is used for the analysis of follow-up algo-
rithms. The time complexity of this algorithm, which is worse than in the
case of the standard PRM algorithm, is 𝒪(𝑛2), where 𝑛 is the number of
samples. On the other hand, unlike previous methods the sPRM finds the
path asymptotically optimal [38].

In this algorithm, all generated samples are considered as useful, so they
are all inserted into a set of samples. Subsequently, every sample is processed.
The algorithm tries to connect each sample with each sample, thus the 𝒪(𝑛2)
complexity. When collision-free connection between two samples is found,
their interconnection is inserted into the graph as the graph edge.

4.2.2 PRM*

PRM* [40] is another possible variant of the group of the PRM algorithms.
This is an algorithm based on sPRM with the only difference that potential
samples for interconnection are selected from the neighborhood with radii
𝑟 > 0.

The goal of this constraint is to reduce the number of attempts to con-
nect two samples to the average 𝒪(log 𝑛). This leads to the time complexity
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𝒪(𝑛 log 𝑛), where 𝑛 is the number of samples. Similarly to sPRM, this algo-
rithm finds the asymptotically optimal path.

4.3 Rapidly-exploring Random Tree

The Rapidly-exploring Random Tree (RRT) is the second and newer of the
described probability algorithms. RRT has been designed for use in models
with a number of complex physical constraints. Emphasis on the complex
physical constraints is enhanced by the use of the agent control inputs as the
ranking of the tree edges. Compared to the PRM, the basic version of the
algorithm is easier in a few ways. RRT generates a tree instead of the graph,
which simplifies the path planning part. In addition, instead of the nearest
𝑛 vertices, a single candidate for interconnection is found.

The RRT planner represents the graph (roadmap) as a tree rooted at
the starting configuration. Next it incrementally grows towards unexplored
regions of the configuration space. Similarly to PRM, a sufficient input for
the RRT algorithm is a set of obstacles. In addition, it also needs the start
configuration. The knowledge of the goal configuration is not required by the
algorithm itself, but it may be used in some variants of the RRT algorithm,
e.g. the RRT with heuristics. The algorithm output is a tree mapping the
examined configuration space.

The basic idea of the algorithm is to link the new randomly generated
configurations to the nearest vertex of the tree. The motion constraints
are checked during the tree expansion and new configurations are added to
the tree if they satisfy the constraints. Therefore, the RRT algorithm is an
appropriate planner for flexible ligand [14]. The ability to generate new con-
figurations greatly affects the performance of the RRT. The high-dimensional
space problem can be time consuming and the ML-RRT copes with this prob-
lem [22]. The method was further extended for flexible ligands [14] and used
in several studies [46]. Moreover, the resulting tree can be projected back to
3D space from the high-dimensional space [12]. This projection allows us to
visualize and further explore the problem.

The RRT algorithm time complexity is the same as the time complexity
of the PRM algorithm – 𝒪(𝑛 log 𝑛), where 𝑛 is the number of samples. It
also suffers from the narrow passage problem as the PRM algorithms. Biased
sampling, e.g., [45], that work for the PRM, is not suitable for RRT-based
planners, as the tree can be stuck due to obstacles. Guiding the tree along
a precomputed path by geometry-based methods in the protein [83] is a
possible solution for the narrow passage problem.
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4.3.1 RRT*

This algorithm is based on a standard RRT algorithm. Like in PRM*, with
the increasing number of samples it finds the optimal path and its time
complexity is the same - 𝒪(𝑛 log 𝑛), where 𝑛 is the number of samples. The
potential samples for interconnection are also selected from the neighborhood
with radii 𝑟 > 0 as in the PRM*. The difference is that the created structure
remains a tree because the new sample is linked only to the one tree vertex.
The chosen tree vertex minimizes the weight of the path from the tree root
to the new vertex. Once a new vertex has been added, parental vertex values
are adjusted if there is path weight improvement (the path is cheaper).

The input of the algorithm is the start configuration, the set of obstacles,
the radius 𝑟 of the candidate’s surroundings to the connection and the number
of iterations. The output is the tree mapping the configuration space. The
tree is optimal with respect to the cost of the path from its vertices to the
root of the tree.
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Chapter 5

Group Approach

New path planning problems appear and complex problems persist, such
as a real-time planning of paths for huge crowds in dynamic environments,
where the properties according to which the cost of a path is evaluated as
well the topology of paths may change. We have invented a new approach,
called group approach [79], of planning paths for crowds, applicable to any
environment representation (e.g. graph, mesh,..). The main idea is to group
members of the crowd by their common initial and target positions and
then plan the path for one representative member of each group. These
representative members can be navigated by classic approaches such as A*,
D* Lite, etc., and the rest of the group will follow them. If the crowd can be
divided into a few groups this way, the proposed approach will save a huge
amount of computational and memory demands in static as well as dynamic
environments.

This section describes the path planning approach for many agents in an
environment represented by an undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 is a
finite, non-empty set of vertices, and 𝐸 is a set of unordered pair of vertices
(𝐸 ⊂

(︀
𝑉
2

)︀
) called edges. First, we will describe how to plan paths for agents

in a group. Then we will discuss an approach for creating the groups and
finally we present the experiments.

Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑐} be a set of agents. Each 𝑝𝑖 ∈ 𝑃 needs to
individually rate vertices of an undirected graph. The graph represents
the dynamic environment which can be interpreted as a set of pairs 𝐷 =
{(𝑑1, 𝑡1), (𝑑2, 𝑡2), . . . , (𝑑𝑟, 𝑡𝑟)}, where 𝑑𝑖 is a graph change and 𝑡𝑖 is a simula-
tion time. Each vertex of the graph describes a point in R2. Moreover, every
agent 𝑝𝑖 has a starting vertex with the position 𝑠(𝑝𝑖) ∈ R2 and a destination
vertex with 𝑒(𝑝𝑖) ∈ R2.
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5.1 Path Planning for Groups

Let 𝑔 ⊆ 𝑃 be a group of agents. The group has one leader 𝑝𝑚 ∈ 𝑔, the main
agent that will be followed by others. The criteria for creating groups and
choosing a leader will be discussed later, now let us focus on planning paths
for the members of 𝑔. Figure 5.1 illustrates the idea. First, the path for the
leader 𝑝𝑚 is computed by any standard algorithm for path planning. The
path starts in 𝑠(𝑝𝑚) and ends in 𝑒(𝑝𝑚). After that, the path for each agent
𝑝𝑖 ∈ 𝑔 ∖ {𝑝𝑚} is computed: First from 𝑠(𝑝𝑖) to 𝑠(𝑝𝑚), then the part of the
path from 𝑠(𝑝𝑚) to 𝑒(𝑝𝑚) is reused, and finally the part from 𝑒(𝑝𝑚) to 𝑒(𝑝𝑖)
is computed. The path is not necessarily optimal and may require further
optimizations, which will be discussed next.

Figure 5.1: The idea of path planning for a group of agents. The path of
each agent 𝑝𝑖 starts in 𝑠(𝑝𝑖) and ends in 𝑒(𝑝𝑖), 𝑝𝑚 is the leader. The others
can reuse leader’s path.

The agent 𝑝𝑖 can find the path of the leading agent 𝑝𝑚 (Figure 5.2a)
before 𝑝𝑖 reaches 𝑠(𝑝𝑚). The path of the agent 𝑝𝑖 will be longer because 𝑝𝑖
would have to visit 𝑠(𝑝𝑚) and return back to the position where the path of
𝑝𝑚 was discovered. Therefore, the path planning is modified in the following
way to handle such situations. When the agent 𝑝𝑖 reaches the path of the
leader 𝑝𝑚, the path planning to the start position 𝑠(𝑝𝑚) is stopped and the
essential part of the path of the leader 𝑝𝑚 is used instead (Figure 5.2b). Once
the agent 𝑝𝑖 reaches the destination position 𝑒(𝑝𝑚), path planning algorithm
from the position 𝑒(𝑝𝑚) to 𝑒(𝑝𝑖) should be started. However, Figure 5.2c
illustrates that a situation similar to Figure 5.2a may happen. The change
of the path planning direction transforms this problem to the already solved
problem (Figure 5.2b).

5.1.1 Creating Groups

Let us describe how to create groups of agents in such a way that all agents
in a group have similar starting positions and similar destinations.
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(a) (b) (c)

Figure 5.2: Group path planning problems and solutions (a) Problem near
the start position, (b) Solution for the start position (c) Problem near the
destination

The approach for creating groups of agents is shown in Algorithm 2.
It takes a list 𝑃 of agents and a grouping parameter 𝜏 (threshold) as the
input and produces a set 𝐺𝑟 = {𝑔1, 𝑔2, . . . , 𝑔𝑞} of non-empty distinct groups
of agents. The algorithm also needs a path planning strategy implementing
some of the classic path planning algorithms, e.g., A*, D* or D* Lite, because
the computation of agent groups also depends on the paths of leading agents.

Algorithm 2 just iterates over all agents and compares them to all groups
created so far. There is always the main agent 𝑝𝑚 for each group. In our
case, it is the first agent which was added to the group. The start position
𝑠(𝑝𝑖) and the destination 𝑒(𝑝𝑖) of each agent 𝑝𝑖 is compared with the start
and the destination of the main agent 𝑝𝑚 ∈ 𝑔𝑗. If both distances are less
than some 𝜖 value computed from the threshold 𝜏 , the agent 𝑝𝑖 is added to
the group 𝑔𝑗 and the cycle over groups is terminated. If the agent 𝑝𝑖 is not
added to any existing group, a new group is created for the agent and added
to the set of groups 𝐺𝑟.

The worst-case time complexity is 𝑂(|𝑃 ||𝐺𝑟|) or 𝑂(|𝑃 |2) if each group
contains only one agent. The algorithm is output-sensitive, its performance
and quality of results depend on the value of 𝜖. In the rest of this section we
will discuss two strategies for choosing this parameter.

The easiest way of using 𝜖 constant for all agents might produce bad
results: Let us consider a hypothetical example, where 𝜖 = 200m and the
final length of the path of the main agent 𝑝𝑚1 is 20km. Some agents added to
the group of the agent 𝑝𝑚1 may have their paths longer about approximately
2𝜖. The agent 𝑝𝑖 added to the group with the agent 𝑝𝑚1 will have the path
of the length somewhere between 20km and 20km+2𝜖. At this moment the
error is relatively small but what if there is the main agent 𝑝𝑚2 with the
path 100km long? The path length of 𝑝𝑖 added to the group with 𝑝𝑚2 is then
between 100km and 100km+2𝜖. The path might be even 5 times longer than
the minimal one and that is a problem. Small 𝜖 produces a small number of
groups and with growing 𝜖 the error with the short paths grows.

To fix the shortcomings of the static threshold, we use a dynamic 𝜖 specific
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Algorithm 2: Creating agent groups

Data: A list 𝑃 of agents, a threshold 𝜏 ∈ [0, 1], a path planning
strategy find path(. . . )

Result: A set 𝐺𝑟 of agent groups
1 𝐺𝑟 ← ∅;
2 foreach 𝑝𝑖 ∈ 𝑃 do
3 foreach 𝑔𝑗 ∈ 𝐺𝑟 do
4 𝑝𝑚 ← the first member of 𝑔𝑗; // the main agent of the

group (leader)

5 𝜖← 𝑝𝑚.path length * 𝜏/2;
6 if ‖𝑠(𝑝𝑖)− 𝑠(𝑝𝑚)‖ < 𝜖 and ‖𝑒(𝑝𝑖)− 𝑒(𝑝𝑚)‖ < 𝜖 then
7 𝑔𝑗 ← 𝑔𝑗 ∪ {𝑝𝑖};
8 break

9 if 𝑝𝑖 was not added to any group then
10 𝐺𝑟 ← 𝐺𝑟 ∪ { {𝑝𝑖} };
11 path ← find path(𝑠(𝑝𝑖), 𝑒(𝑝𝑖));
12 𝑝𝑖.path length ←

∑︀
𝑒𝑑𝑔𝑒∈𝑝𝑎𝑡ℎ length(edge);

13 return 𝐺𝑟;

to each group, which approximates the maximal allowed error in per cents
of the path length of the main agent. For instance if 𝜖 = 10%, the final path
is allowed to be approximately 1.1-times longer than the path of the main
agent. When a new group is created in Algorithm 2, the path length of the
main agent is computed, multiplied by half of the grouping parameter 𝜏 and
used as the group-specific 𝜖. We also use this approach to bound the relative
error of the found path.

5.2 Experiments and Results

The proposed method was mainly tested on real data – the Open Street
Map of the City of Pilsen, Czech Republic, but the agents (pedestrians)
were generated in random positions. The only exception is the relative error
dependency on the common path which has been tested on artificial data
and agents. The solution was implemented in C++ and all experiments
were performed on a computer with the CPU Intel R○ CoreTM i7-950 (8MB
Cache, 3.07GHz) and 12GB 668MHz RAM.

Although the computational time and space are the most important char-
acteristics to measure, we are not able to determine them generally because
the characteristics highly depend on the chosen path planning method and
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the distribution of the agents. For example the proposed solution with A* as
the path planning algorithm will not save any computational space. On the
other hand with the D* Lite algorithm this approach is able to save up to
𝑂(𝑘𝑛) space, where 𝑘 is the number of the similar paths and 𝑛 is the number
of vertices. Therefore, the experiments compare the computational time of
the Algorithm 2 and especially the path correctness.

5.2.1 Computational Time

Figure 5.3 shows the computational time of the A* algorithm and the A* with
the proposed solution for the cases where |𝐺𝑟| = |𝑃 |, |𝐺𝑟| = |𝑃 |

2
and |𝐺𝑟| = 1.

The computational time of the A* algorithm in this graph problem is 𝑂(𝑛)
as the experiments prove. The proposed method is completely inappropriate
for the case |𝐺𝑟| = |𝑃 | where the agents do not create the common groups
at all. When no agent 𝑝𝑖 has similar path with agent 𝑝𝑗, every path has to
be computed and the proposed method only slows down the computation
(the top curve in Figure 5.3). The computational time of the second case

|𝐺𝑟| = |𝑃 |
2

is slower than the computational time of the single A* algorithm.
The computational time of the proposed method and the single standard
path planning algorithm is similar when 35-40% of all agents belong to the
group 𝑔𝑖 with another agent. The situation with |𝐺𝑟| = 1 is the fastest, as
was expected.

Figure 5.3: Computational time of single A* and A* with groups approach

Figure 5.4 shows how the computational time of A* algorithm with the
proposed method changes with different allowed relative error bound 𝜖. When
the allowed relative error is chosen as 10% of the leader agent path, 74524
groups are created from 100k of agents. The 20% allowed error bound pro-
duced 59478 groups, 30% 48624 groups, 40% 41471 groups and 50% 32678
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groups. Obviously the growing relative error bounds produces a smaller
number of the groups, because the groups have greater radius. The more
important the computational time for the 40% and higher bound the compu-
tational time grows. The 35% bound is the milestone relative error 𝛿𝑚 where
the paths to and from the centre of the group start to be longer than the
common path. Therefore, the proposed solution starts to slow down when
𝛿𝑚 is reached. The better agents data (a lot of intended groups) provides
higher 𝛿𝑚.

Figure 5.4: Computational time of A* alone versus our approach for different
values of the grouping parameter 𝜏

Although Figure 5.4 shows that with less groups the path computation
is faster, it is not always true. The proposed solution is faster until the
milestone relative error 𝛿𝑚 is reached. When the value 𝛿𝑚 is crossed, the
approach starts to slow down, because the paths to and from the centre of
the group start to be longer than the common path.

5.2.2 Path Correctness

The correctness of the found path shows how large is the difference between
the minimal path and the path found by the proposed solution. The path
correctness is measured by a relative error (5.1).

𝛿 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑟𝑜𝑢𝑝.𝑝𝑎𝑡ℎ)− 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ)
(5.1)

where 𝑔𝑟𝑜𝑢𝑝.𝑝𝑎𝑡ℎ is the path found with the group approach including exist-
ing path planning method and𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ is the path found with the same
path planning algorithm without the proposed solution. Note that 𝛿 ≥ 0.
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The result in Figure 5.5 shows the dependency of the relative error on
the common path. The experiments have been performed on artificially gen-
erated data of 1000 agents for the 10% error bound, where all of them were
in the same group 𝑔𝑗. The relative error decreases with the growing common
path, as was expected. Although the maximal relative error may be large,
the proposed solution should be used when the common path is over 80% of
the found path.

Figure 5.5: The relative error dependency on the length of the common path

Relative error per cent Relative error per cent
𝜏 [%] Min Mean Max Groups 𝜏 [%] Min Mean Max Groups

1 0.000 0.000 0.000 99700 11 0.470 4.610 13.193 93500
2 0.913 0.913 0.913 99500 12 0.470 4.934 17.916 92100
3 0.913 1.104 1.296 99400 13 0.470 5.345 17.916 90700
4 0.913 1.634 2.694 99000 14 0.413 5.602 24.534 89900
5 0.913 2.150 3.358 98900 15 0.161 6.566 24.534 87700
6 0.470 2.104 3.822 98300 16 0.161 7.192 24.534 86600
7 0.470 2.587 5.801 97500 17 0.161 7.316 24.534 84600
8 0.248 2.837 9.092 96800 18 0.261 7.779 26.667 82100
9 0.248 3.999 13.193 95600 19 0.261 8.463 33.868 80200
10 0.248 4.352 13.193 94500 20 0.044 8.924 41.353 78200

Table 5.1: The final path inaccuracy with the proposed solution (Algo-
rithm 2) for increasing values of the grouping parameters 𝜏

The found paths of the proposed solution were compared with the exact
minimal paths of the randomly generated data of the agents. The solution
has been tested for the allowed relative error from 1% to 20% and its results
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are listed in Table 5.1. The Table 5.1 contains the number of groups and the
minimal, average and maximal relative error for the allowed relative error.
The minimal relative error is the smallest relative error higher than zero.
It is obvious that with the decreasing number of groups, the average and
maximal relative error grows. Although the maximal relative error grows
over the allowed boundary from the value 0.08, the overall average relative
error is still within the expected range. Moreover, the average error is smaller
than the half of the allowed relative error in every tested case.

Depending on the data there may occur three extreme cases of the pro-
posed solution. In the first case every agent starts and ends his path at
the same positions. Then the approach saves a huge amount of the com-
putational time and space. The second case is the worst possible situation,
where none agent has a similar path with another agent. This kind of data
is unsuitable for the proposed solution because the group computation not
only does not save computational time but even slows down the computa-
tion. The expected result is shown in Figure 5.6, where the minimal path is
found for every agent (red point) without using the proposed solution (Fig-
ure 5.6a). Figure 5.6b illustrates the same case with the proposed solution
as Figure 5.6a.

(a) (b)

Figure 5.6: (a) Minimal found path of each agent, (b) Found path with the
proposed solution
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Chapter 6

Cluster Approach

This section describes our path planning approach for many agents in an
environment represented by an undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 is a
finite, non-empty set of vertices, and 𝐸 is a set of unordered pair of vertices
(𝐸 ⊂

(︀
𝑉
2

)︀
) called edges. A clustering approach [77] is based on the group

approach [79], and, therefore, it uses the same assumptions and sets. The
cluster approach has exactly the same idea as the group approach. The only
difference is in the way how to create the groups. As the name of the newer
approach suggests, we will use clustering to create groups of agents.

First, we will make a clustering background to find the most suitable
candidate (Section 6.1). Then we describe a better and faster solution with
the use of clusters in Section 6.2 and finally we present experiments and
results which will compare the group approach with the clustering approach
(Section 6.3).

6.1 Clustering background

The clustering algorithms group similar elements (called clients) together [1,
35] into groups (called clusters) represented by one centroid (called a cluster
center or a facility). The nature of the elements are based on the application
and in a general case they could be any objects, which can be described by a
characteristic 𝑁 -dimensional vector. Depending on the area of application,
a transformation into the 𝑁 -dimensional space may be needed to express
elements. For example, for processing a point in a 𝑁 -dimensional space
its 𝑁 spatial coordinates are used. A similarity of elements is measured
by a distance function. The function can be modified based on application
requirements and basically might not fulfill the properties of the metrics such
as non-negativity, symmetry or triangle inequality. However, the Euclidean
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distance is used most often.
The literature shows many clustering methods such as single-link [70, 66],

complete-link [42], sweep-line [85], k -means [50] and facility location [10].
Now we will define the clustering task more precisely. As we have chosen

the facility location algorithm for our purpose, we will present the definition
suitable for this type of algorithm.

A given data set of 𝑁 input data points 𝑥1, 𝑥2, . . . , 𝑥𝑁 is subdivided into
𝑘 disjoint subsets 𝐹𝑖, 𝑖 = 1, . . . , 𝑘 each containing 𝑛𝑖 data points, 0 < 𝑛𝑖 < 𝑁
by minimizing the following mean-square-error (MSE) clustering cost:

𝐽𝑀𝑆𝐸 =
𝑘∑︁

𝑖=1

∑︁
𝑥𝑗∈𝐹𝑖

‖𝑥𝑗 − 𝑓𝑖‖2 (6.1)

where 𝑥𝑗 is a vector representing the 𝑗-th data point in the cluster 𝐹𝑖

and 𝑓𝑖 is the cluster centre of the cluster 𝐹𝑖. The 𝐽𝑀𝑆𝐸 function in Eq. (6.1)
represents the distance between the data point 𝑥𝑗 and the cluster center 𝑓𝑖.

As we can see, the number of clusters has to be determined before clus-
tering, which is not suitable in all scenarios. Moreover, if 𝑘 equals to 𝑁 ,
𝐽𝑀𝑆𝐸 loses its measuring property and the result of clustering is not cor-
rect. The facility location algorithm keeps a reasonable amount of clusters
by minimization of the following clustering cost:

𝐽𝐹𝐿 =
∑︁
𝑓𝑖∈𝐹

𝑓𝑐+
∑︁
𝑗∈𝐶

𝑐𝑓𝑖𝑗 (6.2)

where 𝑐𝑓𝑖𝑗 is the distance between a data point 𝑗 ∈ 𝐶 and its facility
𝑓𝑖 ∈ 𝐹 . The set 𝐶 contains all data points. To open a new cluster center, a
cost 𝑓𝑐 must be paid, this way a quantity of cluster centers can be controlled.

The clustering task is an NP-hard problem, so the most algorithms pro-
duce only approximate results or have some restrictions. On the other hand,
in many scenarios the approximate solution suffices.

Clustering methods are used in technical as well as non-technical dis-
ciplines, such as data analysis [18, 3], data mining [20], image segmenta-
tion [35], pattern recognition [4], information retrieval [64].

There are several ways how to categorize the clustering algorithms [68].
One of possible subdivisions is into partitional and hierarchical methods.
The partitional ones divide the data into an exact number of clusters (parti-
tions), the hierarchical ones create a hierarchy of small clusters grouped into
larger clusters forming a tree structure. Another possible subdivision is into
agglomerative and divisive (or partitional) approaches. The agglomerative
ones start with each element in a single cluster. The final result is formed by
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successively merging these clusters according to a similarity measure until a
stopping condition is met. The divisive approaches start with one large clus-
ter which contains all the data. By repeatedly splitting clusters according to
a dissimilarity measure smaller clusters are created. Both agglomerative and
divisive algorithms stop when there is a predetermined number of clusters or
when existing clusters are homogeneous enough so that no further iteration
is needed.

The clustering is called hard if each element is assigned into exactly one
cluster. Fuzzy clustering determines for each element a degree of membership
in several clusters.

Clustering algorithms can be deterministic or stochastic. Stochastic tech-
niques usually use randomized algorithms which are more suitable for pro-
cessing large amounts of data due to their smaller time complexity.

6.2 Clustering approach

The output groups of the group approach are sensitive to the order of the
input data because the algorithm has a greedy character - the first possible
solution is accepted and never reconsidered. An additional optimization of
the found groups would improve the final paths but deteriorate the com-
plexity which is already 𝑂(𝑛2). What is more, although the group approach
speeds up the path computation, there is still room for acceleration. There-
fore, we incorporate to the group creation a clustering by a non-modified
local search algorithm [69, 55] with relevant parameters setup discussed in
5.2. The algorithm implicitly optimizes the agent groups and their found
paths. Moreover, the clustering even speeds up the computation because the
clustering can be done in 𝑂(𝑛 log 𝑛).

For clustering purposes the agent 𝑝 in the input set 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁}
is described as the following 4-dimensional vector:

𝑣𝑖 =
(︀
𝑠(𝑝𝑖), 𝑒(𝑝𝑖)

)︀𝑇
, 𝑣𝑖 ∈ R4 (6.3)

where 𝑠(𝑝𝑖) ∈ R2 is the starting and 𝑒(𝑝𝑖) ∈ R2 the destination position
of the agent.

The main idea of the proposed improvement is to incorporate Eq. (6.2) as
a heuristic to avoid checking so many possible cases compared to the original
group approach at a price of a lowered accuracy of the clustering result.

Let us describe the used local search clustering algorithm steps in detail.
At first, a coarse initial solution is generated. A cluster center is always
created at the first point and further points are then taken in the random
order. A point 𝑣𝑖 is connected to the closest already open cluster center based
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on the measured distance 𝑑 between the 𝑣𝑗 point and the open cluster center.
A new cluster center is opened at the point 𝑣𝑗 with probability 𝑑/𝑓𝑐 (or one
if 𝑑 > 𝑓𝑐). This initial coarse solution is improved by 𝑂(𝑛 log 𝑛) iterations
of the following local search step. The explanation for 𝑂(𝑛 log 𝑛) steps of
iterations is given in [69].

A single local search step can be described as a random selection of a
point 𝑣𝑖 ∈ 𝐶

⋃︀
𝐹 (it does not matter whether it is a cluster center or not)

and it is computed whether the agent 𝑝𝑖 can improve the current solution (if
𝑣𝑖 is not already a cluster center, the facility cost would have to be paid for
its opening). Some clients (points) may be closer to the investigated (new)
cluster center 𝑓𝑣𝑖 than to their current facility. All such clients can be re-
assigned to 𝑓𝑣𝑖 , it decreases the connection cost. If these changes result in
some cluster center having only a few clients remaining, the cluster center
could be closed and its facility cost spared.

A possible improvement of the current solution by declaring the point 𝑣𝑖
a new cluster center 𝑓𝑣𝑖 and reassigning all near clients from their cluster
centers to 𝑓𝑣𝑖 is determined by a gain function according to the following
relation:

𝑔𝑎𝑖𝑛(𝑣𝑖) = −𝑓𝑐+
∑︁
𝑐𝑖⊆𝐶

𝑑𝑠𝑖 +
∑︁
𝑓𝑗⊆𝐹

𝑐𝑠𝑗 (6.4)

where 𝑓𝑐 is the facility cost, or zero if the cluster center 𝑓𝑣𝑖 is already
open, 𝑑𝑠𝑖 is the distance spared by reassigning the client 𝑐𝑖 from its current
cluster center to the cluster center candidate 𝑓𝑣𝑖 and 𝑐𝑠𝑗 (close spare) is the
facility cost minus expenses for reassigning all remaining clients from their
current cluster center 𝑓𝑗 to 𝑓𝑣𝑖 . If the current cluster center 𝑓𝑗 lies closer
to 𝑣𝑖 than 𝑓𝑣𝑖 then 𝑑𝑠𝑖 < 0 and 𝑑𝑠𝑖 needs to be set to 0. Again, if 𝑐𝑠𝑗 < 0
(cluster center 𝑓𝑗 has enough clients, so no spare can be achieved by closing
the cluster center and reassigning all their clients to the new cluster center
𝑓𝑣𝑖) then 𝑐𝑠𝑗 is set to 0. If 𝑔𝑎𝑖𝑛(𝑣𝑖) > 0, the cluster center at point 𝑣𝑖 is
opened (if not already open) and reassignments and closures are performed.

The algorithm of the group approach with the facility location clustering
is summed up as Algorithm 3. When the clusters, which represent the groups
of agents, are computed (Alg. 3, line 1) from the input set of agents 𝑃 , the
path of each agent is planned by any standard path planning strategy, e.g.,
Dijkstra, A* or D*. First the path of the leader 𝑝𝑚 of the group 𝑔𝑖 is found
(Alg. 3, line 4). Then two paths are computed each other member of the
group 𝑔𝑖 - first between vertices 𝑠(𝑝𝑗) and 𝑠(𝑝𝑚) and second between 𝑒(𝑝𝑗)
and 𝑒(𝑝𝑚) (Alg. 3, lines 6-7). Finally, this paths and path of the leader are
joined (Alg. 3, lines 8). This process goes in cycle for each group 𝑔𝑖 ∈ 𝐺𝑟. The
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procedure 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑎𝑔𝑒𝑛𝑡𝑠 generates first a coarse solution of agent groups, then
it repeatedly tries to improve it by reassignment of a randomly chosen point
to another group. If the new connection improves the overall clustering cost
𝐽𝐹𝐿, then it is preserved and another randomly chosen point is investigated.
The improvement phase is repeated 𝑂(𝑛 log 𝑛) times.

Algorithm 3: The clustering path planning approach

Data: A list 𝑃 of agents, a path planning strategy find path(. . . )
Result: The list 𝑃 of agents with computed paths

1 Algorithm cluster approach

33 𝐺𝑟 ← cluster agents(P); // groups of agents

55 foreach 𝑔𝑖 ∈ 𝐺𝑟 do
77 𝑝𝑚 ← the first member of 𝑔𝑗; // the leader of the group

99 𝑝𝑚.path ← find path(𝑠(𝑝𝑚), 𝑒(𝑝𝑚));
1111 foreach 𝑝𝑗 ∈ {𝑔𝑖 ∖ {𝑝𝑚}} do
1313 path start ← find path(𝑠(𝑝𝑖), 𝑠(𝑝𝑚));
1515 path end ← find path(𝑒(𝑝𝑖), 𝑒(𝑝𝑚));
1717 𝑝𝑗.path ← Join paths(path start, 𝑝𝑚.path, path end)

18 return 𝑃 ;

1 Procedure cluster agents(the list of agents 𝑃)
33 Generate a coarse solution of groups.
55 repeat 𝑂(𝑛 log 𝑛) times
77 Pick 𝑣𝑖 ∈ 𝑃 at random;
99 if 𝑔𝑎𝑖𝑛(𝑣𝑖) > 0 then

1111 Perform reassignments and closures.

12 return groups;

6.3 Experiments and Results

The proposed method was implemented in C# and all experiments were
performed on a computer with the CPU Intel R○ CoreTM i7-950 (8MB Cache,
3.07GHz) and 12GB 668MHz RAM. The proposed solution was tested on
two types of the testing data. First type (’unsuitable data’) contains agents
generated at random positions and the second type (’suitable data’) contains
groups of agents (many agents with similar paths). The environment is
represented by real data – the Open Street Map of the City of Pilsen, Czech
Republic.

We were unable to determine the computational time and space generally
because they highly depend on the distribution of the agents and the chosen
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path planning algorithm. For instance the A* algorithm as the path planning
method will not save computational space because it does not need to store
a unique graph rating for each agent. However, dynamic algorithms such as
D* Lite algorithm are able to save up to 𝑂(𝑘𝑛) space for 𝑘 similar paths and
𝑛 vertices. Therefore, the experiments focus on the computational time and
especially on the path correctness of the proposed solution.

6.3.1 Computational Time

The computational time of the clustering method without the path planning
is shown in Figure 6.1, where the time dependencies on the facility cost 𝑓𝑐
are depicted. The higher value of 𝑓𝑐 produces bigger clusters and speeds up
the computation of the clusters. The reasonable facility cost is for 𝑓𝑐 > 0.1,
where the computational time becomes relatively low (Figure 6.1) and with
the growing 𝑓𝑐 the time still descents.

Figure 6.1: Computational time of the clustering method for 100k agents

Figure 6.2 shows the computational time of the standard A* algorithm,
the A* with the group approach and with the proposed clustering approach
(Alg. 3). The experiments were made for 100𝑘 randomly generated agents
and the measured computational time of both approaches includes the groups
creation and path planning strategy. The group approach depicted in Fig-
ure 6.2 uses 𝜏 = 10% and the clustering approach is showed with the facility
cost 𝑓𝑐 = 0.5. The proposed clustering approach is the fastest. Small fluctu-
ations on the time curve are caused by the random character of the clustering
algorithm. The curve of the clustering approach is 𝑂(𝑛 log 𝑛), the group ap-
proach curve is 𝑂(𝑛2) and the A* curve is 𝑂(𝑛). Although the A* is in the
graph the slowest, obviously it thanks to its better algorithmic complexity
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for some number of agents overruns both the group and the clustering ap-
proaches. For the given size of the environment it will be ≈ 300𝑘 agents for
the group approach and over millions of agents for the clustering approach.
This number is relatively high and so it is not such a big problem as it might
seem.

However, the data of randomly generated agents are the worst possible
for the proposed approach. The clustering approach is most suitable for the
groups of agents where the clustering approach is a clear choice because it
is able to reuse many paths and save a huge amount of the computational
time (Figure 6.3). The same computational time of the A* algorithm and
the clustering approach with A* algorithm is for billions of agents for the
data of the groups of agents.

Figure 6.2: Computational time of single A* and A* with group and cluster-
ing approaches for the data of randomly generated agents.

6.3.2 Path Correctness

The correctness of the found path shows how large is the difference between
the minimal path and the path found by the proposed solution. The path
correctness is measured by a relative error (6.5).

𝛿 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑟𝑜𝑢𝑝.𝑝𝑎𝑡ℎ)− 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ)
(6.5)

where 𝑔𝑟𝑜𝑢𝑝.𝑝𝑎𝑡ℎ is the path found with the group or the clustering approach
including existing path planning method and𝑚𝑖𝑛𝑖𝑚𝑎𝑙.𝑝𝑎𝑡ℎ is the path found
with the same path planning algorithm without the proposed solution. Note
that 𝛿 ≥ 0.
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Figure 6.3: Computational time of single A* and A* with the clustering
approach for the data of the groups of agents.

The average relative error dependency on the chosen facility cost is shown
in Figure 6.4 for two above mentioned types of the testing data. The upper
curve, which reaches the relative error up to 15%, represents 100𝑘 randomly
generated agents positions and the lower curve represents data with generated
groups of agents (a lot of similar paths). The average relative error of the
groups does not exceed 2%. This is an expected result because this type
of data are most suitable for the proposed clustering approach. Moreover,
the result of the worst case (randomly positioned agents) is acceptable and
for the facility cost up to the value 0.1 is comparatively very good. It can
also be seen that the relative error does not change too much if 𝑓𝑐 > 0.5.

Figure 6.4: The average relative error 𝛿 for 100𝑘 generated agents, either
random or in groups, in dependence on facility cost 𝑓𝑐.
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It means that if a higher relative error is acceptable, number of clusters can
be kept relatively small. The parameter 𝑓𝑐 can be understood as percentage
expression number of clusters, where approximately 100(1− 𝑓𝑐) per cent of
agents from the input data become cluster centers.

Figure 6.5 shows the dependency of the relative error on the relative num-
ber of the created groups and the difference between the original group ap-
proach (without clustering) and the group approach with clustering (Alg. 3).

The x-axis describes the relative number of groups 𝜆 = |𝐺𝑟|
|𝑃 | , where |𝐺𝑟| is the

number of created groups and |𝑃 | the number of tested agents. The experi-
ments have been performed on the randomly generated data of 100𝑘 agents.
The higher the number of groups is, the fewer agents each group contains.
For example, when the proposed solution creates 100𝑘 groups (clusters) from
100𝑘 agents, the average relative error will be zero because every agent is a
leader of a group. The other extreme is only one group (a cluster) created
from 100𝑘 agents. In that case, relative error will be enormous because ev-
eryone has to follow the leader. The average relative error of both approaches
grows with the decreasing number of groups, as can be expected. Although
both approaches are almost the same for a high number of groups, the clus-
tering approach gives better results for a smaller number of groups, which
contain a higher number of agents. The average relative error of the cluster-
ing approach oscillates for the small number of groups because it contains
randomized operations which are more visible for greater groups.

In the graphs, attention was drawn to the average relative error. The
maximal relative error is influenced by the setting of the parameters - how
big attraction of the group leaders for other agents is allowed. If big, then

Figure 6.5: The average relative error 𝛿 of the group and clustering ap-
proaches in dependence on the relative number of groups 𝜆.

49



even more distant agents are pushed to group with a leader which may result
in a high suboptimality of the path for the given agent. Such a path then has
a high relative error and so contributes to a high maximal error. Fortunately,
maximal errors concern individuals while the approach is aimed at groups
or even crowds, so one strongly non-optimal path is not important in the
intended applications and will be amortized by good behavior of the whole
crowd.
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Chapter 7

Future Work

At present, we focus mainly on the motion planning in the biochemical field of
proteins. In Chapter 4, we have introduced some possible algorithms that are
able to find the path through environment represented by the configuration
space, which takes collisions with the environment into account. We decided
to focus primarily on the Rapidly-exploring Random Trees (RRT) group,
which is, in our opinion, more suitable for this issue.

We can already find a path, through which the ligand will move without
collisions. We can compute it for any rigid ligand and any static protein.
In the near future, our goal is to test various metrics to help us find the
widest path faster or find higher number of paths. The question is whether
it is appropriate to use only the Euclidean distance, angular rotation, a
combination of both, or incorporate some information about the surroundings
or the current state of the ligand into a metric. These metrics should be
thoroughly compared between all RRT algorithms and we will select the
most suitable candidate, whether in terms of speed or accuracy.

Another challenge lies in the transition from the static protein to the
dynamic protein. Individual parts of the protein can move, which affects the
length and shape of the resulting tunnel at each step. It may even happen
that the tunnel closes itself and becomes impassable.

One of the problems of dynamic data is data itself - specifically their size
on the hard drive. There is no analytical equation describing the movement
of the protein, and therefore the dynamic behavior of proteins is described as
hundreds or thousands of static proteins (frames). All these data describes
the same protein in different simulation time 𝑡𝑖, where 𝑖 = 0 . . . 𝑛 and 𝑡0 <
𝑡1 < . . . < 𝑡𝑛. Another problem will be to find a path or paths inside
the dynamic protein. The first possible approach is to find whole paths in
each frame from scratch. On the one hand, such an approach will be time
consuming, but on the other hand, a large number of paths will help us to

51



analyze the protein behaviour more closely to speed up computation or to
find more accurate paths. The second approach can be to find paths only in
the first frame, and then transfer the found paths to the second frame. It
would be necessary to check that there is no collision on paths and possibly
modify or recalculate the path in collision with the protein. The pitfalls that
may arise with this approach are that the PRM (Probabilistic Roadmaps)
algorithms will be more suitable for this problem (Section 4.2) than RRT
(Rapidly-exploring Random Tree) algorithms, because they sample the whole
space and create the graph 𝐺. With this information, we could then move
individual vertices to the correct positions or change the topology of the
resulting graph 𝐺.

It is also possible to use the technique of starting points and exit points.
The starting points represent an active site in the protein - the site where the
chemist wants to bring a ligand, because it has the greatest effect here. The
most problematic places (bottlenecks) around the active site are called exit
points. In the case of denser sampling of these sites, we could achieve better
results. To calculate starting and exit points, Voronoi diagrams are used,
which could also be very useful for us to find paths through protein. We do
not have to sample randomly, but we can follow the edges of the Voronoi
diagram.

A little less difficult, but also substantial, may be the incorporation of
nonrigid flexible ligands. The ligand has not just the same shape, but it can
vary, which can, of course, make it easier for us to pass through the protein
but it can also sometimes make it difficult to pass the ligand through the
protein.

Last but not least, there is the possibility to publish our research in
the field of path planning. We can speed up some path computation in a
partially-known or unknown environment. Acceleration can be achieved by
using some local heuristics, which can tell us the real pedestrian behavior on
the street.

52



Chapter 8

Conclusion

At the beginning of this thesis we introduced the possible representations
of the path planning environment. Subsequently, we focused on a thorough
study and description of static and dynamic algorithms for path planning
in known, partially known and unknown environments. The second theo-
retical part focused on the description of motion planning and its two ba-
sic approaches - Rapidly-exploring Random Tree (RRT) and Probabilistic
Roadmaps (PRM).

We also introduced our two path planning approaches for many agents in
an environment which can be represented by a graph of vertices and edges.
Both of the approaches can also be used for other types of environment,
e.g., grids or polygonal meshes and both of the proposed methods belong
to the class of global path planning methods, which do not handle collisions
detection and avoidance.

The first approach, the group approach, creates groups of agents based on
their start and goal positions and then it uses any standard graph-based path
planning algorithm, e.g., Dijkstra, A*, D* or D* Lite, to plan the paths of
group leaders and also partially paths of other group members. The major
advantage is that group members share a substantial part of the leader’s
path, but their paths are not necessarily optimal. Currently, we use the A*
algorithm for static graphs in our path planning framework, but it could be
easily extended to employ the D* Lite algorithm for dynamic graphs.

We have measured the influence of the grouping parameter on the quality
of the paths and the running time. Our experiments indicate that the pro-
posed approach is perfectly tailored for the data with a significant number
of potentially similar paths, however, it is output-sensitive and the quality
of results as well as the running time depends on the grouping parameter.

The second approach, the clustering approach, creates groups of agents
based on their start and target positions and optimizes the size of the created
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groups by clustering. Any standard graph-based path planning algorithm,
e.g., A*, D* or D* Lite is then used to plan the paths. The substantial
part of the computed path of group leaders is shared with the rest of the
group. In this way, computation time and memory can be saved at a price
of non-optimality of paths. The independence of the proposed approach of
the dimension and the data types, e.g. data of cities or proteins, has been
confirmed by extensive testing. The running time and the influence of the
clustering on the quality of the paths has been measured. The clustering
approach proved to be suitable for the data with a significant number of po-
tentially similar paths. Moreover, the experiments proved that it is possible
to use the online computation with a relatively small inaccuracy for this type
of data.

Although the clustering is the NP-complete problem, the clustering ap-
proach has proven to be faster and more accurate. We have achieved a
noticeable reduction of the relative error for a small number of groups (the
smaller number of groups, the higher relative error). The computation of
the clustering approach is nearly a third faster than in the case of the group
approach.

Thesis is concluded with a chapter that contains our vision and the po-
tential future research in the field of path and motion planning.
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Appendix A

Activities

A.1 Publications on International Conferences

∙ [79] Jakub Szkandera, Ivana Kolingerová, and Martin Maňák. Path
planning for groups on graphs. Procedia Computer Science, 108:2338–
2342, 2017

∙ [77] Jakub Szkandera, Ondřej Kaas, and Ivana Kolingerová. A clus-
tering approach to path planning for groups. In International Confer-
ence on Computational Science and Its Applications, pages 465–479.
Springer, 2017

A.2 Publications in Impacted Journals

∙ [51]Martin Manak, Michal Zemek, Jakub Szkandera, Ivana Kolingerova,
Elena Papaleo, and Matteo Lambrughi. Hybrid Voronoi diagrams, their
computation and reduction for applications in computational biochem-
istry, volume 74. Elsevier, 2017

∙ [78] Jakub Szkandera, Ondřej Kaas, and Ivana Kolingerová. A clus-
tering approach to path planning for big groups. International Journal
of Data Warehousing and Mining (IJDWM), 15(2):42–61, 2019

A.3 Publications in Non Impacted Journals

∙ [9] Petr Broz, Michal Zemek, Ivana Kolingerová, and Jakub Szkandera.
Dynamic path planning with regular triangulations. Machine Graphics
& Vision, 24(3/4):119–142, 2014
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A.4 Participation in Scientific Projects

∙ Interactive Geometrical Models for Simulation of Natural Phenomena
and Crowds. Project leader Ivana Kolingerová. Funded by The Min-
istry of Education, Youth and Sports, project code LH11006

∙ Advanced Graphical and Computing Systems. Funded by The Ministry
of Education, Youth and Sports, project code SGS-2016-013

∙ Methods of Identification and Visualization of Tunnels for Flexible Lig-
ands in Dynamic Proteins. Project leader Ivana Kolingerová. Funded
by Czech Science Foundation, project No. 17-07690S
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pling schema for rapidly exploring random trees using a guiding path.
In ECMR, pages 201–206, 2011.

[84] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12,
1962.

64
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