
University of West Bohemia
Department of Computer Science and Engineering

Univerzitní 8
30614 Plzeň

Czech Republic

Detecting software development
process patterns in project data
The State of the Art and the Concept of Ph.D. Thesis

Petr Pícha

Technical Report No. DCSE/TR-2019-04
August 2019
Distribution: public

Abstract
Project Management (PM) and Software Process Improvement (SPI) are complex
activities demanding decisions which are not clear-cut even when using a defined pro-
cess based on best practices proven as beneficial to product quality and project suc-
cess. This is due to specific context surrounding each software development project
and the fact that much of the guidance is in textual form not suitable for automatic
processing. An deep know-how and extensive manual analysis of the project data
and progress is therefore needed to support the correct PM and SPI decisions. This
analysis is time and resource consuming, and prone to overlooking important data
and reaching incorrect conclusions potentially derailing the project even further.
The goal of this work is to represent the project data using a unified metamodel
allowing cross-examination of different projects, detection of defined errors in PM
(anti-patterns) as well as points of divergence from the defined software development
processes. The expected benefit is streamlining the anti-pattern detection activities,
leaving more time to handle their occurrences properly, while minimizing their ef-
fects on product quality and project success. To reach the goal we analyzed software
development methodologies, Application Lifecycle Management (ALM) tools com-
monly used in PM, techniques of software process modeling and current research in
methods and frameworks to aid PM and SPI efforts. We also review well-known PM
anti-patterns from literature and present a method for their operationalization. We
then propose an approach to analyze project data from ALM tools and detect anti-
pattern occurrence in it. The approach is partially validated through implementation
of an experimental tool.

This work was supported by the Ministry of Education, Youth and Sports university
specific research project SGS-2016-018 Data and Software Engineering for Advanced
Applications.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Copyright c○ 2019 University of West Bohemia, Czech Republic

http://www.kiv.zcu.cz/en/research/publications/

Acknowledgements

I would like to express my deep gratitude to my supervisor Doc. Ing. Přemysl
Brada, MSc., Ph.D. for continuous support, patience and guidance through-
out my studies. I would also like extend my sincere thanks to all the others
who supported and helped me along the way, like my colleagues, my friends
and my family, and especially, my mother.

Contents

1 Introduction 5
1.1 Problem Definition . 5

1.1.1 Software Development Processes and Practices 5
1.1.2 ALM Tools and Their Data 6

1.2 Goal of the Work . 7

2 Background and Related Work 9
2.1 Key concepts . 9

2.1.1 Process . 9
2.1.2 Methodology . 11
2.1.3 Project . 11
2.1.4 Practice . 12
2.1.5 Pattern and Anti-pattern 12

2.2 Software Development Methodologies 14
2.2.1 Waterfall . 14
2.2.2 Unified Process . 16
2.2.3 Scrum . 17
2.2.4 Extreme Programming 20
2.2.5 Kanban . 22
2.2.6 Disciplined Agile Delivery 23
2.2.7 DevOps . 25

2.3 ALM tools . 25
2.3.1 Version Control Systems 26
2.3.2 Issue-tracking Systems 27

1

Contents

2.3.3 Knowledge Bases Software 28
2.3.4 Communication Tools 28
2.3.5 Others . 29
2.3.6 Full-fledged ALM Tools 30

2.4 Similar Work . 30
2.4.1 CHAOSS . 31
2.4.2 Bloof . 32
2.4.3 SoftChange . 33
2.4.4 Codeface and PaStA 34
2.4.5 CoSEEEK . 35
2.4.6 YOSHI . 37
2.4.7 Vranić et al. 39
2.4.8 Hipikat . 39
2.4.9 SPARSE and PROMAISE 41

2.5 Software Process Modeling 41
2.5.1 SPEM . 42
2.5.2 OSLC . 43
2.5.3 ISO 24744 . 43
2.5.4 ISO 29110 . 44
2.5.5 BPMN . 44

2.6 ALM Tools Data Mining . 45
2.6.1 Mining Software Repositories 45
2.6.2 Cumulative sources 45

2.7 Pattern Representation and Detection 46
2.7.1 Textual Descriptions 46
2.7.2 Languages and Ontologies 50
2.7.3 Models . 51
2.7.4 Bayesian Networks 51
2.7.5 Others . 52

2.8 Quality Measuring . 53

3 Concept of the Thesis 55

2

Contents

3.1 Target audience . 55
3.2 Overview and Basic Concept 55

3.2.1 Main usage and benefits 57
3.3 Universal Metamodel . 57

3.3.1 Construction . 59
3.3.2 Entities . 61
3.3.3 Enumerations . 65
3.3.4 Absent Data Inference 72

3.4 ALM Data Mining . 73
3.4.1 Selected Set . 73
3.4.2 Methods . 74
3.4.3 Limitations . 75

3.5 Customization . 76
3.6 Anti-pattern format and detection 76

3.6.1 Structured Description 77
3.6.2 Operationalization 79
3.6.3 Detection . 80
3.6.4 Example – Collective Procrastination 81
3.6.5 Advanced Approach 87

3.7 Presentation . 89
3.8 Metrics . 91

4 Future Work 93
4.1 Possible Additional Uses . 93

5 Conclusion 95
References . 97
List of Abbreviations . 110
List of Figures . 114
List of Tables . 116

Appendices 117

3

Contents

A Project Management Anti-patterns from Literature 118

B Project Management Anti-patterns from Experience 125

C Nine Pregnant Women Anti-pattern 127

D SQL Query for Collective Procrastination Anti-pattern 128

4

Chapter 1

Introduction

While software development teams have access to large amount of materials
and support in terms of guidance and tools surrounding Project Manage-
ment (PM), they still struggle to implement the context specific best and
avoid bad practices (well-defined, frequently occurring mistakes). They could
greatly benefit from an automated framework of methods and tools checking
compliance of their activities to the specific process they are meant to fol-
low and warning them of the occurrence of suspicious behavior potentially
leading to diminishing the product quality or threatening the success of a
project.
This work focuses on identification, collection, definition and detection of PM
and process patterns (and anti-patterns) in software development projects
based on collecting and analyzing their data from Application Lifecycle Man-
agement (ALM) tools repositories. Once these patterns are detected (or at
least indicated with reasonable probability), there are many opportunities
for deriving information from their analysis usable in both further research
and industry. This includes studying the correlation between a presence of
any pattern and the software product quality, detection anti-patterns (i.e.,
patterns with detrimental effects on the project or its product), investiga-
tion of the compliance with a software process used to the one declared or
to a specific methodology, and even predictions about the project’s future
success/failure based on similar previously analyzed projects.

1.1 Problem Definition

1.1.1 Software Development Processes and Practices

Every software development project follows some kind of process, a set of
methods, practices, activities and tools. Sometimes, a process is well-defined

5

Chapter 1. Introduction

with the intention to be used as a framework to help reach the goals of a
project and ensure output quality. This is certainly true of today’s highly col-
laborative, often geographically decentralized and complex projects and even
about the simple and one-person projects (though in these projects the pro-
cess is usually not explicitly described). There is a large body of knowledge
in the Software Engineering (SE) discipline regarding processes, methodolo-
gies, particular practices, guidance and problem solving approaches. Unfor-
tunately, there are also several major issues in regards to this guidance.
First, because the discipline of SE is still relatively young, there is not exactly
a strict and widely accepted consensus on a unified way to capture this
knowledge. This results in conflicting terminologies, description format of
the practices and processes and opinions on their benefits and pitfalls even
in narrowly specified contexts. The second problem is that this guidance
exists predominantly as a (structured) description in natural language form
not allowing for automated way of use (i.e., operationalization).
These issues result in a state where even if developers and other stakeholders
of software development projects know (well or less well) what to do, what
to avoid and how to solve eventual problems, there is no straightforward
automated mechanism to let them know if they are proceeding as they should
(as opposed to how they interpreted the information) and/or if there is a
process problem (i.e., anti-pattern) emerging or already in effect. There is
a plethora of techniques like mentoring or process auditing and tools that
give indication of potential issues, but these are hardly straightforward –
the former being expensive and time-wise inefficient, and the latter often
decentralized (dependent on checking different aspects of a project in various
tools) and in need of a personal deductive skills, instincts and experience of
the person examining the data. Therefore, a deviation from the course or
a problem occurrence is detected late, if ever, making the course correction
harder or impossible and leading to project being overdue, over budget or
failing completely. Moreover, making this process automated and data based
would make it faster, repeatable, data-based, as objective as possible and
mitigate the human or judgment error proneness. In the meantime, it can still
be configurable for specific needs of each particular project and its context.

1.1.2 ALM Tools and Their Data

On the other hand, with the ever-growing complexity of the software
projects, involving more people geographically further away from each other,
building larger software, inter-application integration, etc., the usage of tools
to manage these projects has become practically a necessity. Consider the
Open-Source Software (OSS) development projects. These could hardly even
exist without the support of tools for managing requirements, sharing code,

6

Chapter 1. Introduction

individual versions, change requests, testing, defect reports and fixing. And
the in-house projects complexity makes it hard to imagine for them to func-
tion without these supporting tools as well. So once again, virtually every
software development project utilizes one or more of so called ALM tools.
This group of tools includes applications supporting every phase and disci-
pline present in the projects like Version Control System (VCS), ticketing
(a.k.a. issue-tracking, or change management) systems, requirements man-
agement systems, quality management systems for testing, etc. Tools like
Git, GitHub, Apache Subversion (SVN) and Atlassian Jira gained wide-
spread popularity and are commonly used in practice.
As a result, the repositories of these tools contain large amounts of data
about projects and (if handled honestly and properly, see section 3.4.3)
the accurate account of their history and present reality. There is a great
amount of potential in analyzing this data and deriving further informa-
tion about the projects. And although some tools provide means of simple
analysis like filers and charts, there is still untapped potential. Examples of
such potential include cross-examination of different projects, not to men-
tion from different source tools, and complex analyses giving clear indication
on (anti-)patterns presence/absence and process compliance. Our proposed
automated approach to collect and analyze the data form ALM tools can
harness this potential and benefit the project staff with the contextually
relevant and concrete data-based information to base the PM and Software
Process Improvement (SPI) decisions upon.

1.2 Goal of the Work

To summarize the previous section, there is an abundance of methodological
guidance which people struggle to utilize on one hand, and support from
tools describing in detail the reality of the projects on the other, present in
a large majority of collaborative software development efforts. This thesis
proposes utilizing data collection and analytics techniques applied to the
project data obtained from ALM tools to gain information regarding the
compliance of a specific project with a defined process and to identify well-
known, frequently occurring mistakes (anti-patterns) in PM.
We expect the process patterns can be detected, or at least indicated, au-
tomatically and with sufficient reliability from data collected form ALM
tool repositories with little necessity for extra input form the project staff.
Therefore the hypothesis of our work is as follows:
Hypothesis: The occurrence of PM (anti-)patterns can be automatically
detected in ALM data of a given project.
Each research question (RQ) from the following set must be answered affir-

7

Chapter 1. Introduction

matively to except this hypothesis.

∙ RQ1: Is it possible to create an unified generalized process represen-
tation capturing essential elements and semantics of various process
models and suitable for storing project data mined from ALM tools?

∙ RQ2: Can PM patterns and anti-patterns be represented in an opera-
tionalized form needed for their automatic detection?

∙ RQ3: Do patterns representing practices and processes occur in the
ALM data?

∙ RQ4: Does the presence or absence of patterns and anti-patterns have
a relation to the product quality and project success?

If the hypothesis is accepted based on these RQs a gap between method-
ological knowledge and actual project data can be bridged. A framework
can be built to analyze project data, detect (anti-)patterns, inform the de-
velopers and thus help them make timely, data-based PM and SPI decision.
This would then lead to better product quality, increase in project success
chances, lower costs on manual or outsourced process audits as well as on
consequences of bad decisions and late or no course corrections in PM and
SPI.
Similar automated approaches already exist on project elements, such as
coding and design patterns. Inspiration can be drawn from these techniques,
from generic pattern description and detection methods and even from ex-
isting approaches similarly focused to ours. Nevertheless, the systematic and
operationalized mechanism for process pattern detection and pattern form
suitable for such processing is missing in state-of-the-art research. This is,
however, vital to objective studies of the effects of (among others) anti-
pattern occurrence and process deviation on project success and product
quality. Our focus is therefore strictly on the process and PM patterns,
specifically anti-patterns (patterns with harmful effects on project and prod-
uct).
The text of this report first describes the context of the work, including
key concepts, terminology, software development methodologies and ALM
tools (Chapter 2). Then the review of similar and related work from areas
of Mining Software Repositories (MSR), pattern detection and project and
product measuring is presented (see Section 2.4). After that, the concept
of our approach and current state of our research is described (Chapter 3)
followed by discussion of future directions of our efforts (Chapter 4) and
conclusion (Chapter 5).

8

Chapter 2

Background and Related Work

This chapter presents the essential context of and terminology used through-
out the work as well as efforts already undertaken by other researchers in
the fields related to our goals.

2.1 Key concepts

This section describes the key concepts our work builds upon. The sources of
terminology and definitions are, among others, well-established metamodels
like Software & Systems Process Engineering Meta-Model ([86], see Sec-
tion2.5.1) and Open Services for Lifecycle Collaboration ([89], see Section
2.5.2), and methodologies like Unified Process (see Section 2.2.2) and Scrum
([112], see Section 2.2.3).

2.1.1 Process

A software development process is a set of interrelated and time-wise or-
dered (though not necessarily always sequential) activities, their designated
performers, inputs and outputs leading to a common goal of developing a
software product through multiple stages and intermediate milestones. A
process can be also decomposed to sub-processes making it a recursive con-
cept.
Three main building blocks of processes are:

∙ Roles – Sets of competencies and responsibilities usually associated
with a particular activity (e.g., requirements analyst, developer, sys-
tems tester, etc.) assigned to a person. A role-person relation is of N:M
cardinality, meaning a person can assume one or more roles in the span
of a project and one role can be assumed by multiple people.

9

Chapter 2. Background and Related Work

∙ Tasks – Atomic units of work effort with specific goal, inputs, out-
puts and place in the workflow of the process undertaken by one or
more people of one or more roles (e.g., describe requirements, unit-test
particular functionality, perform a team meeting).

∙ Work Products – Inputs and outputs of tasks, activities or the whole
process. The level of ceremony and concrete form can vary vastly
from formal rigorous documents with detailed templates (e.g., Soft-
ware Requirements Specification document), source code itself, test
cases (written scenarios, automatized scripts, etc.), plans in various
forms, to sketches, hand-written notes, screenshots, or even just a cer-
tain knowledge held in minds of the developers with no physical form
whatsoever. In wide SE practice a term artifact is more commonly
used for the concept. In [86] the term Artifacts is used just for a sub-
set of Work Products, with Deliverables and Outcomes being the other
subcategories.

Figure 2.1: Unified Process phases and disciplines [68]
With the growing complexity of processes, other concepts come into play,
like:

∙ Activity – A set of related tasks with a common specific goal, or a
periodical occurrence of a specific task (e.g., communication with a
customer).

∙ (Sub-)Process – The larger the process, the bigger the need to de-
compose it. As mention above, the overall process may be divided into

10

Chapter 2. Background and Related Work

smaller, partial (sub-)processes that allow focus on the tasks at hand
leading to intermediate milestone. This includes phases (in sequential
and iterative methodologies), iterations (time-wise smaller repeatable
instances of the project lifecycle in iterative, agile and lean method-
ologies), weekly, and even daily processes.

∙ Guidance – Anything supporting, easing and automating the pro-
cess. Guidance includes artifact templates and examples, guidelines,
manuals and tutorials for tools, practice and method descriptions, sup-
porting literature, knowledge base, experience reports from previous
projects, roadmaps, whitepapers, training materials, tools for various
project activities (communication, configuration and change manage-
ment, task assignments, planning, issue-tracking, etc.).

∙ Category – Other concepts (roles, tasks, artifacts, guidance, etc.) can
be grouped into categories based on their various aspects. Example
of such sorting are disciplines, dividing the process content by focus
on particular domain (e.g., design, implementation, testing, deploy-
ment, etc.). This categorization may correspond with phases (e.g., in
sequential methodologies) or be orthogonal to them (e.g., iterative ap-
proaches; see Figure 2.1). Each task and artifact is usually associated
with one or more disciplines.

2.1.2 Methodology

Software development methodologies are authored, well-described and semi-
standardized process models. Apart from the process model itself a guidance
on the its usage, adoption, scaling and tailoring, etc. is usually included in
the methodology, as well as the history of its evolution and justification for its
creation. Some methodologies even include several variations of the process
model (i.e., its overall workflow) for greater usability and context specific
settings of the project. Methodologies are predominantly a collection of best
practices and methods leading to the successful completion of the software
project.

2.1.3 Project

A software project is an executed instance of the software process. It is set in
a specific context, has concrete resources and goals. It can go through either
only some of the workflow branches of the process, or all of them based
on its context. Projects also have the ability to fine-tune their activities
according to their context and needs, because of the different levels detail
of the process and methodology used, as mentioned above. In some cases

11

Chapter 2. Background and Related Work

this can even mean deviating from the given process model by incorporating
practices not covered by the description (or prescription) of the model, or
ignoring those included.

2.1.4 Practice

“A practice represents a proven way or strategy of doing work
to achieve a goal that has a positive impact on work product or
process quality. Practices are defined orthogonal to methods and
processes. They could summarize aspects that impact many dif-
ferent parts of a method or specific processes.” [86]

Some sub-processes or ways of performing a specific task (e.g., producing
a certain artifact) are generalized and partially standardized, or at least
anchored in commonly used terminology. These are called practices.
Practices can describe which actor with which role performs which task in
which way using which tool or technology on which input to produce which
output, or be more general and abstract. Some practices can borderline
on something more like approaches permeating through the whole process
(e.g., iterative development), some can be as specific as using a particular
technology to capture concrete knowledge, for example, Unified Modeling
Language (UML) class diagram). Practices can encompass one or more tasks
with various level of detail and their specific context and concepts related to
them. Furthermore, practices can be extracted from processes and used in
other processes, making them the building blocks of processes. The process
can really be viewed as a set of practices.
Like processes, practices too can be adjusted by their specific context, spec-
ified to various level of detail, and be recursive (i.e., composed of other
practices). A practice can be viewed as a sub-process template, or pattern,
and, conversely, a process or methodology can be viewed as a high-level and
complex practice encompassing the whole project.

2.1.5 Pattern and Anti-pattern

The Merriam-Webster dictionary1 provides several definitions of a pattern.
Among others:

∙ a form or model proposed for imitation,

∙ something designed or used as a model for making things,
1https://www.merriam-webster.com/dictionary

12

Chapter 2. Background and Related Work

∙ a natural or chance configuration,

∙ a reliable sample of traits, acts, tendencies, or other observable char-
acteristics of a person, group, or institution,

∙ a discernible coherent system based on the intended interrelationship
of component parts,

∙ frequent or widespread incidence.

The term has been adapted to computer science from the work of architect
Christopher Alexander [1], who defined design pattern as “re-usable form of
a solution to a design problem”.
In SE context, the term pattern can have multiple meanings:

1. In a broad sense, pattern is any identifiable and reusable concept like
data structure, practice, process component, behavior, etc. irrespective
of judgment on benefits or detriments of its occurrence. Specifically,
process pattern is then defined in [86]:

“Process Pattern is a special Process that describes a reusable
cluster of Activities in a general process area that provides a
consistent development approach to common problems.”

2. Pattern is a commonly known and occurring template, which has pos-
itive consequences on the situation. In the realm of software processes
and PM, these are also called good or best practices. In sources like
[17] and [71] the term pattern is used in an even narrower meaning.
Here a pattern is a tested and reusable correct solution to a well-known
problem.

Anti-patterns are “common approaches to solving recurring problems that
prove to be ineffective” [2]. Therefore, anti-patterns can be viewed as a subset
of the first meaning of patterns, or an opposite to the second meaning of
patterns. They are also referred to as bad practices or smells (e.g., [91]).
In context of our work we will use the first, broader definition of a pattern.
Because our work is focused on patterns in general and anti-patterns specif-
ically, we have little use for a term to describe solely beneficial patterns.
Nevertheless, our approach can certainly be used for their handling as well,
since they are just another specific subset of patterns.
Both patterns and anti-patterns exist on various levels in software devel-
opment, like code, design, architecture, community, organization, environ-
ment, collaboration, etc. This work focuses predominantly on the class of
PM (anti-)patterns. In that context, anti-pattern can be an emerging prob-
lem, a mistake made, poorly applied solution to a problem, misused best
practice or a deviation from a prescribed/recommended process.

13

Chapter 2. Background and Related Work

2.2 Software Development Methodologies

As the best practices and methods had to evolve with time and changing
demands on the projects, so had the methodologies themselves evolve. To
put it simply, what was once a perfectly manageable strategy for a software
project in the era of standalone and (by today’s standards) simple appli-
cations specific to scientific calculations, is insufficient now in the times of
huge, heavily interconnected, multipurpose systems developed by hundreds
of people (or more) over several years and multiple platforms, utilizing many
different technologies and servicing potentially millions of users.
Some methodologies were not created in the software development domain
but rather adopted from manufacturing or other industries. For example,
the authors of [114] introduced the term Scrum (more in Section 2.2.3) in
1986 based on case studies from manufacturing firms in the automotive,
photocopier and printer industries. And Kanban (more in Section 2.2.3) was
inspired by the Toyota Production System[88].
Methodologies are most frequently categorized based on one common as-
pect of their approach but the categorization schema also correlates with
their age. The methodologies can be categorized into ad-hoc, sequential (also
called traditional), iterative (or incremental), agile, lean, hybrid (amalgama-
tions of several different types of methodologies), etc. The classification may
vary depending on the source as there is still a dispute on e.g., whether lean
methodologies are a subset of agile, which in turn can be viewed as a subset
of iterative methodologies.
The purpose of this work is not to give the full classification and descriptions
of different methodologies. The following subsections only describe a few
well-known process models in regards to some of the practices (in bold) that
distinguish them from each other and present potential patterns to look
for in the project data. If detected, these could be used to identify a process
model used by the project or to check the project’s adherence to the declared
process.

2.2.1 Waterfall

The most well-known example of the sequential methodologies is the Wa-
terfall model [101]. Despite many disadvantages of its sequential approach,
especially for modern dynamic projects, the Waterfall is used in practice
to this day in projects, where frequent changes are not expected, legally
possible, or for legacy reasons.
The practices used include:

14

Chapter 2. Background and Related Work

∙ Phases – The phases divide the lifecycle, have strict focus on one
aspect of the project, are sequential with no overlap and scarcely (only
if necessary) go back up the workflow seen in Figure 2.2. Once the
precise number and focus of the phases is known, this division itself
can be considered a pattern and signs of it can be investigated.

∙ Phase content – Each of the phases includes particular tasks and
has several outputs to be expected on their conclusion. Furthermore, in
strict application of the sequential approach, once created, the artifacts
should become static and not be amended in later phases. The artifacts
and activities can be specified as patterns and their presence verified.

∙ Role activity – Similar to artifacts being created and finalized in
particular phases, personnel with a particular role has its place only
in some phases. For example a person with only the Developer role
should not be active in the Analysis phase. This presents a potential
pattern to look out for.

∙ Artifact form(ality) – For the transition between two phases to be
executed smoothly, the ending phase has to produce artifacts of the
highest level of detail and content volume possible for the starting
phase to be able to build upon them. Therefore the pattern detection
can include measurements of size, structure and content of artifacts.

Figure 2.2: Waterfall process model [101]

15

Chapter 2. Background and Related Work

2.2.2 Unified Process

Perhaps the most well-known and commonly used example of the iterative
methodologies is the Unified Process (UP), from which more specific and
proprietary forms, such as IBM Rational Unified Process (RUP) [68], are
derived. UP specifies nine disciplines (see Figure 2.1) and corresponding
roles like Analyst, Architect, Developer, Tester, Project Manager,
etc.
The process of UP is divided into four phases, each of which is concluded
when a specific milestone is reached. A milestone is a set of criteria on the
state of the product and the knowledge among the staff vital to the contin-
uation of the project. Since they represent the partial state of the product
(code and other artifacts), the activities leading to that state and knowledge
acquisition (ideally captured in other artifacts), the criteria of milestones
can be viewed as patterns and described as such. Phases themselves, their
content and activity of appropriate roles can also serve as detectable patterns
similarly to the Waterfall model.
Moreover, being a representative of iterative methodologies, the UP process
is divided into time-constrained repeatable sub-processes, known as itera-
tions. Each of these has a basic structure of:

∙ Planning meeting – includes selecting tasks to be performed during
the iteration, their prioritization and assigning to team members,

∙ Iteration execution – depending on the phase and overall position
of the iteration inside the project lifecycle, but generally including
activities from all the disciplines,

∙ Customer feedback – a meeting with a customer to showcase results
of the iteration and decide on the next steps,

∙ Iteration review – contemplating the leftover work (if any exists),
the success of the iteration and possible approach adjustments.

The patterns related to iterations can include their number, length, struc-
ture, presence of the appropriate activities and outputs, etc.
On top of the phases and iterations, UP puts great emphasis on practices,
like use-case driven development, early baselining and testing of the
potential architecture, and continuous risk management, among others.
Each of these can be conceptualized as a pattern (or set of patterns), for
example, creation and updates of use-case models and descriptions, presence
of design and testing activities early in the process, and risk list existence
and maintenance throughout the lifecycle, respectively. The same can be
done with other practices as well.

16

Chapter 2. Background and Related Work

Apart from RUP, UP also spawned other related process models, like
Enterprise Unified Process (EUP) [7] and OpenUP [69]. EUP enhances the
RUP model with new phases Production and Retirement to cover the whole
product lifecycle, and 8 new enterprise disciplines on top of the development
ones from UP (see Figure 2.3). They can be translated into patterns in
similar fashion as practices from UP.

Figure 2.3: Enterprise Unified Process phases and disciplines [7]
OpenUP can be viewed as a lightweight and more agile form of UP contrast-
ing with robust and well-defined RUP. It puts smaller emphasis on tools and
artifact formality, introduces microincrements (small increases of function-
ality delivered after each iteration) and self-organizing teams. OpenUP is an
open-source approach constantly evolving by contributions of a wide com-
munity. It specifically outlines and describes practices used making it easier
to define the patterns to look for.

2.2.3 Scrum

In 2001, a group of practitioners trying to push development of so called
lightweight methodologies, authored the Agile Manifesto [12].It centering on
a set of four core values:

∙ individuals and interactions over processes and tools,

∙ working software over comprehensive documentation,

∙ customer collaboration over contract negotiation,

17

Chapter 2. Background and Related Work

∙ responding to change over following a plan.

The manifesto became a basis for agile methodologies. The principles of the
agile methodologies (such as putting the flexibility for dealing with chang-
ing requirements at the forefront, and delivering potentially shippable incre-
ments in functionality regularly) have existed and were used long before the
actual creation of the document itself.
The proof of this is the most commonly known representative of agile ap-
proaches, Scrum, which was presented in 1995 by Schwaber and Sutherland
[112]. Due to frequent misinterpretation of its core principles in practice,
Scrum can simultaneously be a perfect candidate for our intended process
adherence checking, and a difficult process to detect. In accordance to the
Agile Manifesto, the practices are just a set of well-established and tested
means of guiding the process to maximize its output and quality that proved
to benefit most projects. They are not prescribed dogmas demanding the
developers follow them at all cost. The overall process model is shown in
Figure 2.4.

Figure 2.4: Scrum process model [37]
Among the core practices of Scrum are:

∙ Self-organizing Teams – No external structure, hierarchy or role
assignment is imposed on the team. And though it might exist inter-
nally, to the people outside the team all its members have seemingly
the same role, taking collective responsibility for their outputs. Apart
from the actual role name (i.e. Team Member instead of e.g. Devel-

18

Chapter 2. Background and Related Work

oper) the pattern can be identified through the activity of each team
member being discipline-wise non-specific, meaning everyone can have
an area of dominance, but participates in tasks from all disciplines.
This is not only encouraged by Scrum, but often a natural result of
the self-organization.

∙ Sprint – Sprint is a Scrum term for iteration, most commonly 30
days long (or shorter). It is an uninterrupted period of development
efforts between two subsequent meetings with a customer. The meet-
ings themselves then serve two main purposes: 1) for the development
team to showcase the results of the Sprint (a.k.a. Sprint Demo), 2)
to reach an agreement with the customer on the following steps to
be taken during the next Sprint (a.k.a. Sprint Planning Meeting).
The latter includes deciding on the priorities of current unsatisfied
requirements and even their eventual changes and allocating the avail-
able resources to gauge the amount of progress attainable, to which
the team commits.

∙ Backlog – Backlog is a form of a plan. It consists of the items to
be processed (features to be implemented) and is usually prioritized,
though the set of requirements and their priorities are constantly a
subject to change. Usually, two forms of a backlog exist. One is for the
current iteration consisting of well-described, well-decomposed tasks,
which is essential for their most accurate estimation. The other is a
project backlog including all the yet-to-be-done tasks in the whole
project. These can be in different levels of decomposition, detail of de-
scription and estimation accuracy based on their priorities and current
knowledge about the project.

∙ User Stories – Short descriptions of fine-grained functional require-
ments written from the viewpoint of the actor (most commonly user)
using a particular functionality. They are usually captured on sticker
notes on so called Agile Board, physical or virtual (in a visual software
tool). The precise format of the board is not standardized, but usually
has a table with a row per each potential assignee, a column per each
state in the task workflow and description and effort estimation on
each note. The unassigned tasks are situated outside the table border
usually on the left-hand side (as the state columns go logically from left
to right). Through moving the stories through the table on the board,
everyone can get an easy and quick overview of the project status and
tasks currently processed by each individual team member.

∙ Daily Scrum – A short daily meeting of the development team serving
as a synchronization point to inform one another about the current
situation, tasks in progress, effort distribution and potential issues.

19

Chapter 2. Background and Related Work

∙ Sprint Retrospective – An internal meeting of the development
team usually shortly after a Sprint ended. It serves a similar purpose
as Daily Scrum but on the Sprint scale. Here, the progress and project
status is discussed, the process issues are addressed and changes to the
process made, if necessary.

∙ Timeboxing – A practice of putting a strict time constraint on some
activities. The intend is to keep focus on the important topics and
not to get sidetracked or bugged down by too much inconsequential
details. This practice is usually applied to Sprints, Daily Scrum and
other meetings, both internal or with the customer.

∙ Specific Roles – Apart from the development team, which can be
further differentiated internally but is viewed as a coherent whole from
the outside, Scrum defines two other major roles. Product Owner
represents the stakeholders and has the responsibility to keep the team
on track in terms of the business case. Scrum Master, on the other
hand, keeps an eye on the proper use and adherence to the Scrum
process. He advises the team on possible and proper enhancements to
the process in accordance with the context and status of the project,
enforces established policies (e.g., time constraints on meetings, etc.)
and keeps the team focused on the important practices. Both roles
can be assumed by personnel outside of the team (but within the
organization), individuals outside the team’s organization and even
team members themselves, though the accumulation of both roles in
one person is mostly viewed as a bad practice.

Scaled Agile Framework (SAFe) (currently in version 4.5) [103], Nexus [15]
and Large Scale Scrum (LeSS) [118] are relatively new agile methodologies,
trying to address the scalability issue that many practitioners still seem to
have with Scrum and other agile approaches. Their practices are in essence
the same as in Scrum, but extended to multiple teams and focusing on “the
bigger picture”. The adjustment of the patterns is then mostly a calibration
issue.

2.2.4 Extreme Programming

eXtreme Programming (XP) [13] is based on the idea of taking the beneficial
practices from traditional SE to the extreme. Figure 2.5 shows the core
practices and their relations.
Some of the practices are easily detectable as patterns:

∙ On-Site Customer – a person with a customer role involved in day-
to-day activities;

20

Chapter 2. Background and Related Work

Figure 2.5: Extreme Programming practices [13]

∙ 40 Hour Week – strictly timeboxed amount of effort a developer can
put in on any given week detected by measuring estimates of assigned
work and spent time reported;

∙ Refactoring – changing source code without changing its functional-
ity for better comprehensibility, modularity, reusability, etc; detectable
by categorization or labeling of tasks or analysis of associated changes
in the source code;

∙ Testing – the presence and prevalence of testing activities, for in-
stance, unit testing of all code;

∙ Pair Programming – coding in pairs of one developer typing the
code, the other instantly checking it; done for purposes of immediate
code review and consultation, exchange of knowledge and experiences,
etc.; detectable by similar spent time for similar time period reported
by two developers on the same task;

∙ Short Releases – short periods of time between two subsequent re-
leases

∙ Coding Standards – guidelines on structuring, formatting, comment-
ing, committing, etc. of produced source code; detectable by the exis-
tence of artifact holding the coding policies of their inference from the
code itself;

21

Chapter 2. Background and Related Work

∙ Continuous Integration – newly developed features are immediately
integrated into the overall product and tested in its context; detectable
by monitoring integration and testing activities, and measuring time
to integration of a newly introduced feature.

Other practices of XP include avoiding programming of features until just-
in-time (JIT)2, a flat management structure, code simplicity and
clarity, expecting changes in requirements with time and increasing com-
prehension of the problem, and frequent communication with the cus-
tomer and among programmers. All of those are apparently decomposable
to aspects detectable through patterns.

2.2.5 Kanban

Stemming from David Anderson’s 2010 book of the same name [8], Kan-
ban is a representative of the lean approaches. Lean Software Development
(LSD) came into existence as a subset of the agile community adopting the
principles of lean manufacturing as seen in Toyota Production Systems. It
takes almost all the concepts from agile and pushes them to even further
agility. The principles of LSD are:

∙ Eliminate waste – including extra processes and features, waiting
periods, defects and management activities;

∙ Amplify learning – focus on knowledge and experience gaining and
reuse;

∙ Decide as late as possible – pushing decisions to JIT moments,
after most of the relevant information comes to light;

∙ Deliver as fast as possible – allows for gaining quick approval and
feedback from the customer and minimizing misunderstandings and
time spent on the wrong, unwanted or extra features;

∙ Empower the team – give as much liberties and responsibilities to
the team as possible to foster sense of ownership and feeling of personal
investment;

∙ Build integrity in – meaning to build it into the system through im-
mediate testing, refactoring and architectural principles for modularity
and reuse;

∙ See the whole – “think big, act small, fail fast, learn rapidly”.
2i.e., until the moment they are actually needed

22

Chapter 2. Background and Related Work

Kanban practices differentiating it from agile methodologies like Scrum, and
therefore making the approach detectable include no prescribed roles,
continuous delivery of each feature as soon as it is developed and tested
– as opposed to batch delivery each Sprint, changes allowed anytime –
as opposed to no changes allowed mid-sprint, high degree of variability in
priority, limiting work in progress, making policies explicit, visualiza-
tion of progress through Kanban Board (similar to Agile Board) present-
ing the requirements in a form of user stories and showing their state in the
workflow, descriptions of the features just detailed enough to eliminate
potential misunderstandings, frequent feedback loops with customer – as
opposed to meetings at Sprint edges.

2.2.6 Disciplined Agile Delivery

In 2012, Ambler and Lines proposed small changes to the Agile Manifesto
along with a new methodology called Disciplined Agile Delivery (DAD) [6].
The methodology is a hybrid, taking practices from previously existing ap-
proaches and melting them together to create still agile, but more structured,
defined and scalable alternative to Scrum. It adopts practices from:

∙ Scrum – priority based processing of tasks, product owner, potentially
shippable product delivered after each Sprint, etc.

∙ RUP – continuous integration, refactoring, test-driven development,
collective ownership, etc.

∙ Agile Modeling – continuous documentation, requirements and ar-
chitecture envisioning, iteration modeling, JIT model storming, etc.

∙ UP – “lightweight” milestones, explicit phases, focus on baselining the
architecture early, risk mitigation in early stages of the lifecycle, etc.

∙ Agile Data – database refactoring, database testing, agile data mod-
eling, agile enterprise strategy, etc.

∙ Kanban – limiting work in progress, visualizing workflow, etc.

The process is divided into phases similar to UP, except for the elimination
of Elaboration, from which most of the activities were moved to Construc-
tion. The approach makes use of agile practices like Daily Coordination
Meeting, Backlog, Demo and feedback gathering. The structure of the whole
process is visible in Figure 2.6.

23

Chapter 2. Background and Related Work

Figure 2.6: Disciplined Agile Delivery process model [6]

24

Chapter 2. Background and Related Work

2.2.7 DevOps

With the demands on ever-faster time-to-delivery and factoring in the nature
of most modern software systems, where development of a new release coin-
cides with operations and maintenance of the previous one, while extensive
down-time due to new release deployment is deemed undesirable, a new ap-
proach to satisfy these needs was created. The approach is called DevOps (a
clipped compound of the words “Development” and “Operations”), a term
steadily used since 2009. It is perhaps best summarized in the definition
proposed by Bass, Weber, and Zhu [11]:

“DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed
into normal production, while ensuring high quality.”

DevOps rose from the success of agile approaches and pushes the bound-
aries of their philosophy even further through continuous development, in-
tegration and delivery. The point of the approach is to effectively chain the
activities of coding, validation (code review), building, testing, packaging,
release, (infrastructure) configuration and monitoring (of performance, end-
user experience, etc.). Adoption of DevOps in an organization requires a shift
in organizational and cultural paradigms, mainly because of the conflicting
nature of department roles of Operations, Developers and Testers, which
now need to work together. The issue is that the goals of the roles (organi-
zational stability, change, and risk reduction, respectively) often contradict
each other and achieving cohesive cooperation is therefore one of the main
challenges of the DevOps approach. All of the above mentioned practices
can be considered patterns, and especially the latter described challenge of
collaboration between roles presents potential for anti-pattern occurrences.

2.3 ALM tools

As discussed in introduction, the methodologies, processes, practices and
patterns and their descriptions are just one of the two major parts this work
tries to bring together. The other part are ALM tools.
ALM tools are a group of software means supporting the development of
an application from the very conception of an idea in the business domain
to development, deployment, operations, maintenance, all the way to re-
tirement and decommission. They allow the development teams and other
stakeholders to track the progress of the software projects, see who and when
made which changes to the artifacts pertaining to particular activity, archive
communications for later references, document the day-to-day events, report

25

Chapter 2. Background and Related Work

defects, build plans and manage the projects sources and goals to maximize
the satisfaction on all sides.
The scope of their usage in a project may vary based on parameters such as
number of people involved, project scope, timespan, geographical collocation
of the team members, legal requirements (e.g., some standards demand the
records of the development to be kept for a certain period of time), etc. Ap-
parently, a week long project with one developer delivering a simple utility
to a colleague sitting in the same office will call for much less involvement of
ALM tools, which would only add to unnecessary administrative overhead.
On the other hand, a multi-year project developing a new commercial operat-
ing system involving collaboration of hundreds of programmers from several
teams spread out throughout the globe obviously merits the utilization of
tools for the project to even be manageable. This subsection describes several
ALM tool categories of particular interest in regards to our data collecting
and analysis needs as a part of our work.

2.3.1 Version Control Systems

VCS are tools to keep track of the code (and other artifact) changes. They
keep the record of who and when made which exact change to which arti-
fact stored in their repository. They are used in situations where multiple
people need to simultaneously work on common set of artifacts (software,
documents, etc.) without creating conflicting changes and with minimal time
waste.
Each of the collaborators has a private (working) copy of the repository
content which needs to be regularly brought up to date (synchronized with
the common repository). They then apply changes to the artifacts locally,
upload (commit) the changes to the main repository, and deal with potential
conflicts. Conflicts occur when there are changes on the same artifacts done
by another collaborator in between the time that the first one updated his
working copy and committed his updates. For each change, the tools record
the changes to the artifacts themselves, timestamp, the author of the change,
a unique identifier of the change and a message from the collaborator de-
scribing the change. Thus, they allow the collaborators to return to any of
the previous versions of the artifact or overall state of the repository. This is
just the general purpose description, but VCS tools tend to have more func-
tionality, such as tagging versions, multiple development branches, patching,
reviews, forking repositories, etc.
Among the best known VCS tools are Git3, Apache SVN4, Concurrent Ver-

3https://git-scm.com/
4https://subversion.apache.org/

26

Chapter 2. Background and Related Work

sion System (CVS)5, Mercurial6 or Atlassian Bitbucket7.

2.3.2 Issue-tracking Systems

Issue-tracking systems (also known as issue-trackers or ticketing systems)
are a generalized version of bug-trackers serving predominantly the needs
of software change and PM. Their main usage is to log in planned tasks,
defect (bug) reports, and other work to be done in tickets. Tickets are forms
where all the parameters of the task are captured. This includes a short
summary, generated identifier, comprehensive description, priority, due date,
an assignee to perform the task, estimated and actual effort to finish the task,
current status of the task in a specified workflow, associated commits from
VCS, etc. This supports project activities like planning, change management,
progress monitoring, and tracking of requirements form their specification
to implementation and testing. These activities are further supported by
additional features of several issue-trackers, like release planning, relating
tickets to one another, progress visualization through plans, reports and
charts, time tracking, etc. Some issue-trackers can even be integrated with
instances of certain VCS tools completing the commit-issue traceability with
interactive features. The aforementioned bug-trackers are systems of the
same basic functionality but solely focused, at least in their early existence,
on reporting defects and their tracking through to fixing.
The commonly used examples include GithHub8, Redmine9, Mozilla
Bugzilla10, Assembla11, IBM Rational Team Concert (RTC)12 or Flyspray13.
The aforementioned bug-trackers (e.g., Bugzilla and Flyspray) are systems
of the same basic functionality but solely focused, at least in their early ex-
istence, on reporting defects and their tracking through to fixing. Over time
they became issue-trackers either through their evolution, or the manner in
which developers use them. Different tools also differ in the extensiveness of
their features and the detail of information they are able to capture. For in-
stance, GitHub, a tool massively used in OSS development, captures in ticket
only the ID, summary, description, assignee, project, comments and simple
open/closed status. To add further information, like priority, task type (de-
fect, feature, task, etc.), resolution, approvals and relation to commits or

5https://www.cvs.com/
6https://www.mercurial-scm.org/
7https://www.bitbucket.org/
8https://github.com/
9https://www.redmine.org/

10https://www.bugzilla.org/
11https://www.assembla.com/home
12https://www.ibm.com/us-en/marketplace/change-and-configuration-management
13https://www.flyspray.org/

27

Chapter 2. Background and Related Work

other tasks is realized through either tags or links in the text descriptions
and comments. The terms “issue” or “task” can be sometimes used in place
of “ticket”. We tend to avoid this terminology as some tools use these words
as a type (sub-class) of tickets. Therefore, for the abstract concept in process
we use “task” and for its representation in a issue-tracking tool we tend to
use “ticket”.

2.3.3 Knowledge Bases Software

Though certainly not beyond the realm of their abilities, VCS tools are not
always used to store and manage all of the project artifacts. It may be the
case that the development team uses VCS to manage only code, configura-
tion files, build scripts and other utilities necessary to run the application.
Or maybe they additionally keep only the artifacts meant for the customer
(deliverables) in VCS, but internal project documentation and knowledge
base is kept elsewhere. Some issue-tracking systems have features, modules
or plug-ins for wiki pages or document versioning, but the knowledge basis
storage can be completely separate as well. Tools able to satisfy this need
of document sharing can include Google Drive14, external wikies, Blackrock
iShares15 or Dropbox16. These repositories obviously contain information
relevant to the project describing its progress and intermediate and partial
outputs.

2.3.4 Communication Tools

Communication is an essential activity in collaborative projects. This fact is
demonstrated e.g., by it being one of the central points of the Agile Mani-
festo. Broad, open and effective communication channels have to be estab-
lished between different stakeholders of a project. Customer needs to share
its business case and comment on the current state of the work, manage-
ment needs to get status reports from development team and the team has
to internally communicate on the day to day activities to perform them
effectively.
Furthermore, it is preferable for all communication to be stored as human
memory is unreliable and the recollection on what was decided a week ago
can differ vastly among the participants. Of course face-to-face communica-
tion can (and if possible should) play a part. But as it cannot encompass
everything and its harder to document (e.g., in audio or video recordings),
the bulk of the project communication happens elsewhere. To support this,

14https://www.google.com/drive/
15https://www.blackrock.com/corporate/ishares-global
16https://www.dropbox.com/

28

Chapter 2. Background and Related Work

project staff employs different communication tools. Some of the communi-
cation capabilities can be included in previously mentioned tools. Document
sharing, meeting notes and progress tracking are means of conveying infor-
mation as well.
Some tools even come with instant messaging capabilities built-in. Neverthe-
less, external tools are also an option. The most common means of commu-
nication is email. The OSS projects even make their email archives publicly
accessible for documentation and analysis purposes. Other communication
applications can include Slack17, Skype18, Facebook Messenger19 or other
instant messaging and teleconference tools. Records of communication can
provide deeper insights into the inner working of a project and the origins
of ideas before they are captured in purpose-specific tools (e.g., for change
management).

2.3.5 Others

Other tools falling into the definition of ALM can include activity- or phase-
specific tools. These can include requirements management tools (e.g., IBM
Rational Dynamic Object Oriented Requirements System)20, design tools
(e.g., Sparx Enterprise Architect21), quality management tools (e.g., IBM
Rational Quality Manager22), or deployment tools (e.g., Elastic Cloud23).
Though these can also hold valuable information about the project, they are
at least for now out of scope of our work, which focuses mainly on tool cat-
egories specified in earlier subsections. Our rationale is that issue-tracking
tools are capable of capturing requirement and testing tasks in form of tick-
ets, an option a sufficiently large number of projects (especially OSS) takes
advantage of, and resulting artifacts from these, along with analysis and
design activities are stored in knowledge base or VCS tools. That gives us
at minimum the knowledge of about their existence, authors, creation and
modification dates and several other attributes which are currently suffi-
cient for our purposes. The particular format, source tool and details about
content can therefore be omitted.

17https://www.slack.com/
18https://www.skype.com/
19https://www.messenger.com/
20https://jazz.net/products/rational-doors-next-generation/
21https://www.sparxsystems.eu/start/home/
22https://jazz.net/products/rational-quality-manager/
23https://www.elastic.co/cloud

29

Chapter 2. Background and Related Work

2.3.6 Full-fledged ALM Tools

We consider a software to be a full-fledged ALM tool if it is able to really
manage and track the whole lifecycle of a project from business case, re-
quirements and design, through implementation, testing and deployment, to
even maintenance, operations and retirement (if such phases are a part of
the project). However, due to their usually modular and plug-in-based or
integration supporting architectures many singular tools posses such capa-
bilities. This is logical as from the business perspective of their developers
it is easier to market and sell specific customizable solutions with capable of
mutual integration than huge “all-powerful” systems. Therefore we use the
term full-fledged ALM tool for either a complex suites of tools, like GitLab24,
Atlassian Jira25 and IBM Rational solution for Collaborative Lifecycle Man-
agement (CLM)26, or tools from specific category with explicit integration
options that complete their ALM capabilities (e.g., Redmine and Assembla).

2.4 Similar Work

This section describes related work already done in the realm of software
process patterns and anti-patterns with the description of features distin-
guishing our work from each individual instance.

Figure 2.7: GrimoireLab architecture [24]
24https://gitlab.com/
25https://www.atlassian.com/software/jira
26https://www.ibm.com/us-en/marketplace/application-lifecycle-management

30

Chapter 2. Background and Related Work

2.4.1 CHAOSS

Community Health Analytics Open Source Software project (CHAOSS) [119]
is a complex system of tools, metrics and methodologies aimed at OSS. Its
goals are to measure health and sustainability of OSS projects to support
informed decisions for contributors of those projects (e.g., where to put their
effort and see the impact the are making), the OSS communities (e.g., at-
tracting contributors, reward the valuable ones and ensure product quality),
and companies (e.g., which communities and project to engage with and eval-
uate employees effort within OSS projects). The CHAOSS community has
a substantial social media presence, organizes events (such as CHAOSScon)
and is sponsored by The Linux Foundation.
One of the projects of the CHAOSS community is GrimoireLab [24] and their
tools for software analytics. The purpose of this tool set is to gather, analyze
and visualize data from various ALM tools dedicated to OSS development
contributing. Further use of this data and visualizations is vast and left to
the users and there is no specific purpose of the research on top of collecting
and presenting the data. The overall architecture is displayed on Figure 2.7.

“In the figure above, GrimoireLab components are represented in
the pale green box. Bold arrows show the main data flow: from
data sources to Perceval (which retrieves them), to Arthur (which
schedules retrieval batches and stores results in Reddis), to Gri-
moireELK (which stores retrieved items as raw indexes, and then
uses them to produce enriched indexes, both in ElasticSearch), to
Reports (to produce specialized reports) or Kibiter (to visualize
in actionable dashboards).
GrimoireELK uses SortingHat to store all the identities it founds
in a MariaDB database. SortingHat uses lists of known identi-
fiers (usually maintained in configuration files) and heuristics to
merge identities corresponding to the same person, and related
information (such as affiliation).
All the process is configured and orchestrated by Mordred, which
uses its own configuration about, for example, which data sources
to use.” [24]

Perceval, a collection of data pumps for various ALM tools, puts out data
in a form of JavaScript Object Notation (JSON) files for further process-
ing. It can then be analyzed and presented in dashboard-based tool called
Kibana. Kibana is a browser-based analytics and search dashboard plug-in
for Elasticsearch. GrimoireLab uses its own fork of the Kibana software,
a browser-based analytics and search dashboard plug-in for Elasticsearch,

31

Chapter 2. Background and Related Work

called Kitbiter. The resulting and customizable dashboards can be seen on
Figure 2.8. Kibana and as well as all the GrimoireLab tools and CHAOSS
projects are OSS themselves.
As a point of difference to our work, the approach is to analyze data from
one project representation from one tool at a time. Meaning one cannot
combine data about one project from various source and therefore would
have to rely on only those projects that utilize full-fledged ALM tools
eliminating those that use e.g., Bugzilla, SVN and external wiki. The other
option is to make judgment calls based solely on the incomplete data from
one tool. Moreover, the data are tool specific and a unified format across
tools is not used which makes comparison or analysis over several projects
from different sources impossible.

Figure 2.8: GrimoireLab’s Kitbiter (Kibana) dashboards [24]

2.4.2 Bloof

Draheim and Pekacki are developing an approach to analytically pro-
cess project data [31]. In their efforts they mine data form source code
repositories and analyze it from a process-centric viewpoint using metric
on collaboration, productivity, project evolution, etc. Their Java-based
experimental tool called Bloof utilizes data model (see Figure 2.9) capturing
realities of a analyzed project such as developer, file and revision with
expected attributes.

32

Chapter 2. Background and Related Work

Figure 2.9: Data model of Bloof [31]
Bloof uses an Extract-Transform-Load (ETL) layer (extraction, transfor-
mation, loading) to collect and store data in a database and provides an
analytical processing interface for performing data queries and allowing for
user defined custom queries. The queries are realized in two ways, standard
Structured Query Language (SQL) format and predefined analytical com-
pound queries, that can be parameterized for complex analysis problems.
The approach uses process-centric analysis focusing on developers activity
throughout the project with metrics like lines of code (LOC) changed per
day, collaborative vs. total changes, distribution of changes between mod-
ules, average time for file change, etc. Bloof includes graphical user interface
(GUI), Bloof Browser, which displays the charts and tables to visualize the
metrics calculated.
Though a valid starting point, the approach misses an opportunity for wider
context focusing solely on data form VCS and not incorporating other readily
available project data from sources like issue-tracking tools and mailing lists.

2.4.3 SoftChange

SoftChange is an OSS tool for extraction and validation of project data
described by German and Mockus in [41]. Through this tool they are striving
to create and test theories about the nature of the OSS projects as well
as compare them. SoftChange is a collection of scripts and analyses data
from mailing lists, CVS logs, ChangeLog files, and defect tracing databases,
specifically Bugzilla. It also identifies all contributors to software change
using cross-links records.
Though it collects and analyzes data from sources of different kinds (VCS,

33

Chapter 2. Background and Related Work

issue-tracking, mailing lists), it heavily focuses on specific toolset (CVS,
Bugzilla) limiting the potential dataset to only the projects making use of
these specific tools and no others.

2.4.4 Codeface and PaStA

Research efforts by Joblin, Mauerer, et al. to analyze project’s commu-
nity structures, interactions among contributors, and their evolution in OSS
projects resulted in an experimental tool called Codeface. Building on the
work of e.g., Jermankovics et al. [57], and Zimmerman and Weissgerber [124],
the approach is based on analyzing data from code repositories (mainly Git)
and mailing lists with regards to direct and indirect communication be-
tween developers. Codeface utilizes both Application Programming Interface
(API) and web-crawling to gather data, which it stores in a database. The
researchers use a fine grained function-level approach [61] to establishing
interaction between developers working on the same source code artifact,
which is the approach that separates their efforts from previous and other
concurrent research groups using file-level analysis only. They also use the
sliding window method to investigate the evolution of the project’s commu-
nity [60]. They then construct graphs of the overall community, calculating
a set of metrics with focus on different aspects. These include:

∙ Involvement – The distinction between core and peripheral contrib-
utors which Codeface calculates based on network-based operational-
ization rather than count-based one [59] (another aspect distinguishing
the approach from others).

∙ Turnover – The frequency of core developers becoming peripheral and
vice versa, or leaving the project completely.

∙ Scale-freeness – A property of developer which has characteristics
including robustness to perturbations. It means that a removal of a
random node from the network will likely not damage the connectivity
of the network

∙ Modularity – A measure of division of the developer network into
loosely connected clusters of heavily interconnected nodes.

∙ Hierarchy – The phenomenon of small cohesive groups are embedded
within larger and less cohesive groups. Hierarchy indicates a centralized
command-and-control structure.

Their findings suggest that while starting as such, the organizational prin-
ciples of communities involved in OSS are non-random, especially with in-
creasing size of the staff. The current focus of the Codeface project is to

34

Chapter 2. Background and Related Work

also incorporate data from other sources like issue-tracking tools to enhance
the completeness and accuracy of their results. They also intend to investi-
gate the relationship between the community attributes a metric values and
quality of the product produced by the projects.
The focus on the community graphs and developer network aspect of projects
means that most of the approach cannot be utilized for our purposes. The
data model includes domain specific entities and attributes obsolete for our
intended usage and lack other we would need. The analytical layer is even
more distant to our focus. However, Codeface and our approach can prove
complimentary and can benefit from each others ideas and results.
Another tool resulting from related research by Ramsauer, Mauerer et al.
is called Patch Stack Analysis (PaStA) [98]. This tool looks at data about
commits in VCS (again primarily Git) and their code increments (patches)
and their transfer from being suggested in the mailing list communication
records and actual appearance in the repository. This is done with detection
of similar patches, through which PaStA is also capable to recognize the
occurrences of the same patch in patch-stacks and main development branch
giving researches the insight into the history of the patch and its way from
patch-stack to mainline or the other way. It can also detect splitting of a
patch into two (or more) and the compression of multiple patches into one.
These attributes distinguish the research from similar ones, like Canfora et
al. [22]. The main goal of the work is to estimate the maintenance costs
in software development. The future work includes patch classification by
the purpose of the introduced patch (e.g., bugfix, new feature, licensing,
refactoring, etc.). For this purpose the researchers are conducting a survey
on the patch classes which people in OSS recognize, and they also utilize a
machine learning algorithms for automatic classification of the patches. In
near future PaStA is scheduled to be integrated into Codeface to enhance
its analytical abilities and provide deeper insights.
Both tools are developed as OSS themselves mainly in Osterbayerische Tech-
nische Hochschule (OTH) Regensburg and are implemented with technolo-
gies such as Python, R and SQL. Their proprietary forks are currently used
by both research (University of Passau) and industry (Siemens) communities
for different purposes.

2.4.5 CoSEEEK

The research efforts of Grambow, Oberhauser and Reichert center on SPI
through adjusting the workflow of individual developers. They call the ap-
proach and an experimental tool based on it Context-aware Software Engi-
neering Environment Event-driven frameworK (CoSEEEK) [85]. They also
proposed a specialized Software Engineering Workflow Language (SEWL)

35

Chapter 2. Background and Related Work

[46] represent executable workflow models. CoSEEEK uses technologies such
as AristaFlow, SPARQL, Hackystat, Drools, SensorBase and others. Figure
2.10 shows the overall concept of the CoSEEEK architecture.
The tool is connected to a developers environment through agents in various
SE tools the developers uses in his work. This includes virtually all software
a developer uses while working on a project from VCS and issue-tracking
systems, to email client applications, to multiple Integrated Development
Environments. The agents actively wait and react to events (i.e., actions
taken by the developer in the tool) that change the artifacts (e.g., source
code) or the tools themselves and their data. Events are extracted and
processed by designated modules [45] and captured in data storage while
the rules processing module analyzes tool data.

Figure 2.10: Conceptual architecture of CoSEEEK [44]
The data is then filtered by the Agile GQM (AGQM) module to gauge
the project quality according to its goals and to propose appropriate quality
measures. The process management module compares the previously defined
workflows with the reality of the project to identify possible injection points
for the proposed steps and the context management module collects high-
level information of all project areas (e.g., developer skills) to make the
contextually aware decisions on the measure injections [44].
This way, the personal workflow of an individual is reconstructed, and then
used to for example identify possible time slots which could be utilized for
performing quality measures if necessary (based on project quality state and
goals). If contextually appropriate, the measures are injected into the work-
flow and the user is notified. The end goal of this is to incentivize developers

36

Chapter 2. Background and Related Work

to address quality risks, through performing e.g., testing activities, as soon
as possible which presumably should lead to increase in the overall quality
of the software product.
The main goal of CoSEEEK research differs from ours. The main point of
difference is the need of CoSEEEK approach for nearly immediate collection
of data changes from the source tools and reactions to them. The events are
captured as they occur and the results are delivered as soon as possible to
maximize the impact of proposed changes to the workflow. Our approach
is more aimed at checking the progress of the whole team at discrete mo-
ments in time on e.g., periodic reviews or even post-mortem analysis. The
process patterns take days, weeks or even longer to manifest in detectable
fashion and require project- and team-wide analysis of the data for which
the usage of agents and event-driven recalculations might prove unnecessar-
ily burdensome in respect to computational power requirements, if possible
at all.

2.4.6 YOSHI

The work of Tamburri et al. [116] presents Yielding Open-Source Health
Information (YOSHI) tool focused on organizational aspects of OSS com-
munities in OSS development. They provide an automated support to evalu-
ate social and organizational characteristics mapping communities to known
organizational and social structures and providing insights vital for individ-
ual and organizational decision making. Opposite to e.g., Codeface, YOSHI
does not focus on a community on a single project, but investigates even
involvement of a particular developer in different projects and communities.
For these purposes it analyzes primarily data from Github and measures
community characteristics such as:

∙ structure – based on the interactions between people inside an ob-
served group and their frequency,

∙ formality – average membership type (in GitHub contributor or col-
laborator) divided by the milestones per project-lifetime ratio,

∙ engagement – levels across the community are established as a the
member averages of the measurements like commit/pull request com-
ment total and frequency, number of repository active members, watch-
ers, subscriptions, distribution of commits and collaboration on files
between users,

∙ cohesion – based on number of followed and following members of the
same community with shared expertise overlap,

37

Chapter 2. Background and Related Work

∙ longevity – difference between first and last commit for each member
of the community,

∙ geodispersion – the degree of distribution of the community member
around the globe.

Based on these measurements the researchers recognize nine types of or-
ganizations/communities [115]. This gives the researchers an opportunity to
investigate community health, reuse of type-specific best practices, diagnosis
of organizational ant-patterns, four of which are explicitly specified in their
work (Organisational Silo, Lone Wolf, Black Cloud and Bottleneck). To de-
tect these anti-patterns (or community smells) they make use community
metrics provided by the Codeface tool (see Section 2.4.4).
The data from for analysis is collected from GitHub using a Java API. The
overall architecture of the tool is captured in Figure 2.11 Same as a number
of the previously mentioned research tools, YOSHI implementation is made
public as an OSS as well.

Figure 2.11: YOSHI high-level architecture [116]
Because of its focus on communities, people data across different projects
and GitHub data only, YOSHI is not directly compatible with and there-
fore not usable for our purposes. However, the utilization of Java API is
a straightforward way of obtaining data and when computed over a single
project data only, we may be able to use Codeface metrics to detect anti-
patterns specified in [116].

38

Chapter 2. Background and Related Work

2.4.7 Vranić et al.

Researchers in Bratislava, Slovakia focus their research on organizational
patterns. Specifically they are interested in practices of agile and lean
methodologies and their adoption in individual organizations and projects.
To this end they developed a method of animating organizational patterns
as text adventure games [38]. The space of scenarios of the game is expressed
via UML state machine diagrams. The game presents the user with a sce-
nario, which is hypothetical, but based on real-world project situations and
experiences, and several options on actions to take, taking them into a new
state with new options, and so on. The purpose is to educate the user on
particular agile and lean practices and their usage through this soft simula-
tion and experience working from the hypothesis, that the approach has a
better chance on successfully demonstrate the benefits of the practices than
a pure theoretical textual description.
The work deals with hypothetical situations and aims to educate and train
users through them. It does not deal with data collection and pattern detec-
tion. But, our two approaches could be combined in scenarios in which an
anti-pattern is detected, team members then trained to adequately respond
to it, and the efficiency of the training judged by the subsequent measure-
ment still detecting the anti-pattern, or discovering its disappearance.

2.4.8 Hipikat

Čubranić and Murphy at University of British Columbia came up with
a method to identify relevant and important artifacts in OSS projects
[26]. The purpose is, among other uses, to get new contributors coming
into a project up to speed by providing them sources of with the highest
concentration of knowledge of use to them. This is important because in
OSS projects it is not always the case that another team member can
function as a mentor or trainer for newcomers. Such a person with both a
sufficient overview of the whole project and information sufficiently detailed
for the specific role or interests for the newcomer may not be available
or even exist in the project. The experimental tool they use is called
Hipikat and analyzes data from CVS, Bugzilla, mailing lists and online
documentation.

The domain model of Hipikat for storing data is shown in Figure 2.12. The
tool is a client-server application. The server is a web application running
on Apache Tomcat and the client is implemented as an Eclipse plug-in, they
both communicated using Simple Object Access Protocol (SOAP). The data
gathering from CVS is done through parsing history records obtained by

39

Chapter 2. Background and Related Work

command line commands, from Bugzilla and online documentation via web
page parsing (web crawling). This is done by monitoring, i.e., automatically
periodically invoking the commands and parsing the sources. By comparing
various attributes of artifacts Hipikat then infers the relationships between
them. User then specifies an artifact of interest and Hipikat follows the
relations to other artifacts to be recommended to the user. The architecture
and flow is captured in Figure 2.13.

Figure 2.12: Domain model of Hipikat [26]

Figure 2.13: Hipikat architecture [26]

40

Chapter 2. Background and Related Work

The source tools Hipikat gathers data from puts it on equal footing with
SoftChange (see Section 2.4.3) in terms of data sources. They are varied in
terms of types, but needlessly specific in that it uses only one representative
of each type.

2.4.9 SPARSE and PROMAISE

Settas, Stamelos et al. created two frameworks for capturing the knowl-
edge on software management anti-patterns and its effective communica-
tion among SE practitioners. The approaches are Symptom-based Antipat-
tern Retrieval Knowledge based System Using Semantic Web Technologies
(SPARSE) [107] and The Software Project Management Antipattern In-
telligent System (PROMAISE) [105]. They base their approaches on Web
Ontology Language (OWL) for capturing the anti-patterns and their symp-
toms, and Bayesian (Belief) Network (BN) for modeling the probabilistic
relationship among a set of variables. In their work they aim specifically at
PM anti-patterns based on the heterogeneity of personalities and character
traits of developers [104, 106]. These can result in ineffective communication
and lack of motivation to collaborate and therefore lead to problems and
uncertainty in managing the project.
This work is aimed at completely different set of (anti-)patterns, as person-
ality traits and temperaments can hardly be captured in the project data
from ALM tools and are therefore out of scope of our research.

2.5 Software Process Modeling

This section focuses on established software development process capturing
approaches, languages and models with the potential to store the gathered
project data from ALM tools in.
A large number of such entities have been developed and proposed over
the years and so this work will focus only on several most well-known and
potentially relevant example. The whole field of software process modeling
languages (at least up until 2011) has been reviewed and summarized
by García-Borgoñón [40]. As is visible in Figure 2.14, the trend in the
last decade or so has moved towards using metamodels (in bold frames),
therefore these are primary focus of this thesis.

41

Chapter 2. Background and Related Work

Figure 2.14: Software process modeling languages overview [40]

2.5.1 SPEM

Software & Systems Process Engineering Meta-Model (SPEM) is probably
the most well-known mean of modeling software development process. SPEM
was original established in 2002 in version 1.1, SPEM 2.0 [86] has been
introduced in 2008.
SPEM does capture the base theoretical concepts of software development
process such as roles, artifacts, activities, etc. and goes into great amount of
detail from there. It separates the definition of the concept and its instanti-
ated usage in the process, also known as a descriptor. It therefore provides
the user of defining the building blocks first, and subsequently create multi-
ple descriptors for each of them to be used as a building block of the overall
process model.
An IBM tool Rational Method Composer (RMC) is a software application
implementing SPEM modeling, allowing its user to create reusable process
models and their components as well as tailoring abilities to slightly alter a
defined process based on a context of a specific software project.
SPEM has also spawned several purpose-specific metamodels derived from

42

Chapter 2. Background and Related Work

it. A few of those potentially interesting and relevant for our future work we
will now describe.

eSPEM

The enactable SPEM (eSPEM) [32] was developed as an extension to SPEM
2.0 in 2010. It was developed to allow for computer-aided enactment of a
process model by providing an extension to SPEM based on UML metamodel
focused on fine-grained modeling generally considered out of scope of SPEM
itself.

vSPEM

Also an extension of SPEM 2.0, variability SPEM (vSPEM) [76] was intro-
duced in 2011. vSPEM is a concise notation specific to the process domain.
It addresses limitations of the SPEM 2.0 variability mechanisms. It allows
for identification of variability points in the process, each of which is replaced
by exactly one variant (one of the beforehand specified options) during the
process instantiation.

2.5.2 OSLC

Open Services for Lifecycle Collaboration (OSLC) [89] is an effort to provide
a standardized baseline for ALM tools in terms of the realities they should
capture along with their structure and naming conventions. The purpose
of this is to foster an easy way to migrate data from one tool to another
with similar purpose (e.g., change management). OSLC provides structure
for data in all standard activities in software project, such as requirements
management, PM, quality management, configuration and change manage-
ment, etc. Each of its parts is subject to independent versioning. The most
important specifications of OSLC for our work at this point are Change (cur-
rently in stable versions 2.0; 3.0 as a draft) and Configuration Management
(currently as a draft only).

2.5.3 ISO 24744

ISO/IEC 24744 [102] standard provides the Software Engineering Meta-
model for Development Methodologies (SEMDM). It serves as a source of
an ontology for standards harmonization. The metamodel is a semi-formal
language mainly focused on the ability to describe software methodologies,

43

Chapter 2. Background and Related Work

though it has been pointed out that it contains nothing that would hin-
der its use beyond this specific domain. Though similarly focused, SEMDM
goes into more detail than SPEM especially in the area of work products
(artifacts), producers (actors), stages (temporal aspects and relations) and
model units. Ruy et al. performed and ontological analysis of SEMDM to
identify several problems in the metamodel.

PMMM

An ISO 24744 derivative, Process Meta Meta Model (PMMM) [55] provides
a method and language to model domain specific process management meta-
models. It is therefore, and as the name suggests, at least a level above even
metamodels. It contains three basic entity types: Nodes, NodeAttachments
and Flows. It is a language to specify lower-level domain-specific languages
and is therefore out of scope of this work, though some inspiration and con-
cepts may be interesting for potential adoption.

2.5.4 ISO 29110

ISO/IEC 29110 [72] is a standard dealing specifically with very small entities
having up to 25 people. This means that, while useful in particular instances,
it is not suitable for majority of our work which is not constrained by any
upper bound in terms of team/organization scope. Nevertheless some con-
cepts can be adopted, especially when analyzing these very small entities,
or extrapolated.

2.5.5 BPMN

Business Process Model and Notation (BPMN) [87] is a well-known tech-
nique of modeling process models. It provides a notation to comprehensibly
describe business processes in a graphical, diagram format. It has the capa-
bility to capture elements like events, tasks, transactions, gateways, message
flows, and artifacts. Current version 2.0 released in 2011 among other fea-
tures added displaying different perspectives and Extensible Markup Lan-
guage (XML) schemata for model transformation. BPMN is obviously fo-
cused on business activities and provides overview and insights to support
executive decisions.

44

Chapter 2. Background and Related Work

2.6 ALM Tools Data Mining

A substantial amount of effort has been done in the realm of mining data
from ALM tools. This section serves as an overview of the literature gathered
on this topic not mentioned in the previous section.

2.6.1 Mining Software Repositories

Hemmati et al. [50] performed an extensive review of 117 papers on MSR
published between 2004 and 2012. They extracted 268 comments from these
papers and identified four high-level themes using grounded theory method-
ology. These themes are:

∙ data acquisition and preparation,

∙ synthesis,

∙ analysis,

∙ and sharing/replication.

The researchers also identified several recommendations in each of these four
themes. Bird et al. [14] focused their research of comparing benefits and pit-
falls of mining Git in contrast with centralized VCS (such as Apache Subver-
sion), while Kalliamvakou et al. [63] did a similar work on mining GitHub.
Jensen and Scacchi [56] explored techniques for discovering processes from
OSS repositories employing artificial intelligence technology. The work of
Fisher et al. [35] deals with combining data from VCS and bug-tracking
systems to populate and investigate a software release history database rep-
resenting the evolution of a software project. The Reengineering of Software
Evolution (ROSE) [125] tool developed by Zimmerman et al. strives to pre-
dict further changes in software based on mining version histories and inves-
tigating the likelihood of a set of programmers, who changed one function,
to also change another. Herzig and Zeller [53] provide a guide to mining bug
data and use the resulting knowledge to model, estimate and predict source
code quality. Mockus and Votta [81] mine the textual description of changes
to understand the maintenance activity and the relationship between type
and size of a change and the time needed to carry it out.

2.6.2 Cumulative sources

Several projects have been launched to gather and store huge amount of
project data. These can be used as a substitute for directly mining the ALM

45

Chapter 2. Background and Related Work

tools repositories and lead to faster results because of the concentration of
data and their relatively similar format in these sources and a unified access
due to the available API. One such source is the Software Heritage project
[30] with its goal to collect, preserve and share project data that could oth-
erwise be lost due to e.g., decommissioning of the original data sources, such
as Source Forge. The ever-growing storage of Software Heritage27 currently
contains more than 8 million projects, one billion commits and 4.5 billions
source files.
Other source of this nature is the dataset of GitHub projects made available
by GitHub itself specifically for research purposes [43]. The dataset is is
in the form of a data warehouse and analytics platform called Big Query
and it is equipped with web user interface (UI), command.line tool and
representational state transfer (REST) API with client libraries in Java,
.NET, or Python. The dataset is currently over 4 TB in size.

2.7 Pattern Representation and Detection

The general concept of a pattern was defined in Section 2.1.5. This section
provides an overview of the research done in the field on PM pattern and
anti-pattern detection and representation.

2.7.1 Textual Descriptions

Through (anti-)pattern sources in literature are plentiful, structures for tex-
tual description of (anti-)patterns vary heavily. Here we provide some exam-
ple of the (anti-)pattern description structures, mainly taken from [17] and
[71].

Degenerate Form

A description in textual form without any structure, template or separate
content sections for various aspects of the pattern. It is up to the reader to
identify by the free text given by the author, if the text describes a pattern
at all, its context, symptoms, consequences, solution and other properties.

Pattern Templates

Alexandrian Form captures name, problem and a solution lead by the
word “THEREFORE”. It partitions the motivation and the actions.

27https://www.softwareheritage.org/

46

Chapter 2. Background and Related Work

Conventionally also includes a diagram.

Micro-Pattern Template (also called Minimal) consist only of name,
problem and solution in short description.

Mini-Pattern Template decomposes the problem to context and forces
and adds benefits and consequences to the solution to focus on the
teaching elements of the pattern. It can be found in two forms: induc-
tive, focusing on the pattern applicability, and deductive, focusing on
the outcomes of the solution.

Formal Templates add many other sections to the descriptions, like rela-
tions to other patterns, aliases, intent, motivation, known uses, vari-
ants, implementation, examples, etc. The particular set of sections de-
pends on the domain and the pattern itself. The goal of the formal
templates is to describe the patterns in as much detail as necessary for
them to be understood, correctly identified and applied by the users.
Examples include Gamma et al. (a.k.a. Gang-of-Four) Template for
micro-architecture-level patterns [39], or System of Patterns Template
for idioms, application and system level patterns [20].

COBRA Design Pattern is a pattern description form devised by the
authors of [17]. Its main purpose is quick comprehension and limited
amount of long free-text descriptions. Therefore, it prioritizes the most
important sections first, like keywords, intent and solution diagram,
and pushes the longer sections further down. Furthermore, it uses a
common reference model for frequently repeating aspects like context
and forces, which are captured in the pattern itself in the form of
keywords and described elsewhere.

Anti-pattern Templates

Pseudo-AntiPattern Template is a short degenerate form of anti-
pattern, often in disparaging terms, subjective and because of the lack
of structure cannot be used as precise definition and analyzed.

Mini-AntiPattern is similar to the Mini-Pattern Template in that it con-
sist of name, problem and solution. Only, being aimed at anti-patterns
in a sense of frequently applied bad solutions of common problems, the
problem is actually the bad solution and then the better (refactored)
solution follows.

Full AntiPattern Template as used by Brown et al. [17]. It consists of
the following sections:

∙ Name,

47

Chapter 2. Background and Related Work

∙ Also Known As,
∙ Most Frequent Scale,
∙ Refactored Solution Name and Type,
∙ Root Causes,
∙ Unbalanced Forces,
∙ Anecdotal Evidence (optional),
∙ Background (optional),
∙ General Form of this AntiPattern,
∙ Symptoms and Consequences,
∙ Typical Causes,
∙ Known Exceptions,
∙ Refactored Solutions,
∙ Variations (optional),
∙ Example,
∙ Related Solutions,
∙ and Applicability to Other Viewpoints and Scales.

Laplante-Colin Structure is a template used by Laplante and Neill [71].
It is less formal than the previous form by Brown et al., and focuses
more on identification of the dysfunctional situation and remedies for
all involved. The template is structured as follows:

∙ Name,
∙ Central Concept,
∙ Dysfunction,
∙ Vignette,
∙ Explanation,
∙ Band Aid,
∙ Self-Repair,
∙ Refactoring,
∙ Observations,
∙ General Form of this AntiPattern,
∙ and Identification.

48

Chapter 2. Background and Related Work

Figure 2.15: A Process Pattern Language for agile methods [79]

49

Chapter 2. Background and Related Work

2.7.2 Languages and Ontologies

Ontologies are another technique for used for pattern representation, usu-
ally working with a proprietary language for easier automated machine pro-
cessing than pure textual description in natural language. As mentioned in
Section 2.4.9, SPARSE and PROMAISE use web-based ontologies to detect
anti-patterns in a knowledge base based on symptoms selected by a user.
CoSEEEK (see Section 2.4.5) also uses web ontology, SEWL, for example
to automate process assessment based on Capability Maturity Model Inte-
gration (CMMI) and other standards [47].
Research team [79] proposes a Pattern Process Language (PPL), and
specifically its version for agile methodologies – Agile PPL (APPL). Figure
2.15 shows APPL. In their work, language means the set of patterns and
their relationships to each other. Therefore the language cannot be general
for the whole domain of software development processes, since the set of
practices (i.e., patterns) each methodology or process model composes of
is different in some measure. That is why an agile specific PPL had to be
constructed.

Figure 2.16: Process Pattern Language primary elements relationships [79]
A language in this sense is basically an interconnected set of practices, which
can be customized by adding, removing and modifying patterns. The pat-
terns themselves are captured in a schema of primary and accessory elements
and their relationships. Figure 2.16 show the relationships between primary
elements.
In [117] researchers propose and formally define A Process-model Query Lan-
guage (APQL), a language for querying business process models independent
of their notation based on semantic relationships between tasks. Avoiding
committing themselves to specific keywords or to the order of statements,
the researchers opted to use an abstract syntax.
Research being conducted by Roa et al. [100] focuses on detection of

50

Chapter 2. Background and Related Work

onthology-based anti-patterns in BPMN models for the purposes of veri-
fication of the models’ behavior.

2.7.3 Models

Modeling through graphical notation (i.e., diagrams) is another way of cap-
turing process patterns. Because process can be viewed as either a large com-
plex pattern itself or a composite of smaller patterns, the process metamodels
described in Section 2.5 can also be used for modeling individual patterns.
In an effort to compare model notations used in practice predominantly for
business process modeling, authors of [120] identified seven problems related
to the process modeling.
Models often rely and build on languages and ontologies (see Section 2.7.2).
The output of producing a diagram can be not only its image for better
human comprehension, but also a description of the model in the particular
language or ontology usually using technology like XML or JSON. This
format is then eligible for machine processing, an approach employed by e.g.
[23] on SPEM models.
Researchers in China [48] developed a predicate-based Control-flow Anti-
Pattern Description Language (CAPDL) to define and detect control-flow
anti-patterns in process models, specifically in BPMN. They decompose anti-
patterns they want to detect into rules and further into predicates in a
fashion not dissimilar to BN or Goal-Question-Metric (GQM) approaches.
Furthermore, Ramsin et al. identified patterns for Component Based Soft-
ware Engineering (CBSE) [67] and Aspect-Oriented Software Development
(AOSD) [64] by studying established methodologies, processes and practices
in the respective domains. They described these patterns using a special
model notation of their own device.
For process (and therefore pattern) models, using of UML activity diagrams
could also be considered, though it is not well-suited for ALM data specif-
ically since the activity, input, output and actor elements used by the no-
tation lack the means of detailed specification of all their attributes present
in project data. Similarly, process algebras could be utilized for modeling
process patterns but are insufficient to model e.g., pattern representing the
particular form and content of an artifact.

2.7.4 Bayesian Networks

A frequent technique for process problem or pattern modeling and detection
is the usage of Bayesian (Belief) Networks (BNs). BNs are directed, acyclic
graphs representing probability distribution. Examples like [107] and [105]

51

Chapter 2. Background and Related Work

were already mentioned (see Section 2.4.9), but others exist.
Khomh et al. presented Bayesian Detection Expert (BDTEX) [65], a GQM
based approach to build BNs from the definitions of coding anti-patterns and
discussed advantages of BNs over rule-based models. In their work, symp-
toms specifying anti-patterns are selected by a quality analyst, and cali-
bration is done automatically using Bayes’ theorem. They claim two main
benefits to their approach as compared to previous approaches. BNs work
with missing data and can be tuned using knowledge of quality analysts, and
candidate classes (i.e., potential anti-patterns) are associated with probabili-
ties, indicating the uncertainty that some anti-pattern indeed occurred. After
that, a focused manual inspection is needed.
Perkusich et al. [92] developed a procedure for modeling the whole process
of a project as a BN to detect problems (bottlenecks) inside the project that
can afterwards become a focus of corrective and preventive SPI methods and
thus increase the chance of a successful project completion. The procedure
first requires the construction of the BN for the specific process, meaning
the identification of key process factors and the quantification of their rela-
tionships. The researchers demonstrated their approach on a Scrum-based
development projects, validating the constructed BN through simulated sce-
narios and the procedure in two development projects. In this study they
used human input only to construct the BN and are currently working on a
mechanism based on metrics.
The approach developed by Smiari, Bibi and Stamelos [109] provides a frame-
work for acquiring knowledge during software project development and mod-
els it through anti-patterns represented by BNs. They start with a generic
BN that models application development, which can be tailored to the needs
of the individual development environment. Through Bayesian analysis they
measure people, process, project and product to support PM decisions pro-
viding and illustrate the effects of uncertainty by taking advantage of the
nature of BNs, which provide a graphical representation of the probabilistic
relationships among the set of variables.

2.7.5 Others

Palma et al. [90] detect business process anti-patterns via services, first using
domain specific language to specify the anti-patterns based on rules, then
generating the detection algorithms and finally detecting the anti-patterns
in structured business processes (e.g., in BPMN). In the future they strive
for automated generation of detection algorithms to not have to implement
the detection manually for each new anti-pattern.
The concept of meta-patterns [123] works with the idea of building high-level

52

Chapter 2. Background and Related Work

patterns from smaller, "basic" patterns as components. The approach is used
by researchers in the domain of object oriented programming [113] and data
mining [121]. While not applicable for the current stage of our research, we
will consider this approach in future stages of our work.
David Johnston [62] and Ian Mitchell [80] provide comprehensive work on
agile anti-patterns and patterns, respectively, their recognition, usage and
handling.

2.8 Quality Measuring

A realm of software project productivity and product quality measuring is
a well researched area with many validated and suggested data-based ob-
jective metrics included. Sources cover wide range of topics form software
development metrics in general [84] to software process management mea-
suring [36] to metrics for specific methodologies (e.g., agile [29]), or specific
types of software (e.g., [93]).
However, selection of appropriate metrics and their adjustment to fit the
context of a specific project can prove to be a challenge. Kitchenham et al.
[66] proposed an adjusted size to effort ratio, instead of a simple size to
effort ratio, to be used in projects with multiple possible size measures. The
adjusted size aggregates multiple size measures with a regression parameter.
The authors presented an example using the metric for web application
projects and explained the relationship between effort prediction models
and productivity models.
Of course, data accuracy is also an issue when measuring project and product
quality. The authors of [52], for example, found 33,8% of defects (or bugs) in
more than 7000 tickets from five OSS projects to be misclassified. Meaning,
that the issues reported as bugs in 33,8% where in fact new features, docu-
mentation updates, refactoring issues, etc. This, obviously, skews any metric
using the defect count, and shows that the data from ALM tools does not
have to accurately reflect reality. The specific problem of issue classification
is a topic undertaken e.g., by PaStA tool (see Section 2.4.4).
In the previous section, the use of GQM approach was mentioned when
representing and detecting (anti-)patterns. As project and product quality
metrics in essence represent patterns in project data, this approach is also
usable for their measuring. This approach was used by Morasca and Russo
[82] for a study of productivity in a real-life environment in the Italian Public
Administration.
Finally, the threshold values for the metrics can also vary based on project
context. This includes methodology used, scope and domain of the product.

53

Chapter 2. Background and Related Work

This is exemplified in [21], where authors present an approach to identifying
threshold values specifically for safety critical systems.

54

Chapter 3

Concept of the Thesis

This chapter presents the concept of our research, its main goals, considered
and selected methods of achieving them, and describes current state of our
efforts.

3.1 Target audience

Because of the intended main usage and benefits of our work described in the
following section, we see the people in position of certain level of authority in
the software development teams (such as team leads and project managers)
as the main beneficiaries of our research. Although, due to the potential
in the study of anti-patterns and their effects on projects the whole of SE
community and researchers especially might find our research interesting as
well.

3.2 Overview and Basic Concept

The approach we propose and the experimental tool for its validation (cur-
rently in development) is called Software Process Anti-patterns De-
tector (SPADe). Its central idea is to mine data from software project
repositories in various ALM tools and analyze it in regards to the potential
presence of patterns, reoccurring events, behaviors, concepts and methods,
with special focus on anti-patterns, patterns whose occurrences have a nega-
tive effect on the project and its product. The main motivation is to combine
the potential of vast volumes of project data stored in ALM tools and the
theoretical guidance on processes, practices and (anti-)patterns in an auto-
mated way to improve the chances of projects to succeed and enhance the
knowledge in the field.

55

Chapter 3. Concept of the Thesis

The basic architectural concept of the approach is captured in Figure 3.1
and will be briefly described in the following paragraphs. Similarly focused
existing research is described in Section 2.4 along with points of divergence
from ours, and reasons why each given approach is incompatible with and
unusable for reaching our goals.

Figure 3.1: Overall architectural concept of SPADe
Software development projects store their data in the ALM tools for bet-
ter management, resource usage efficiency, monitoring, communication and
coordination. Meaning the tools hold significant data about current status
and history of each such project. To harness the potential in this data, we
first need to recover it. This will be done through data pumps, simple ETL
software tools, one for each mined tool.
To be able to analyze this data, not only immediately after the mining pro-
cess, but also retrospectively, and also to potentially compare data from
different projects, we need a storage space. A data warehouse or database

56

Chapter 3. Concept of the Thesis

will therefore be used. But, because we intend to mine not only data from
different projects, but also from different tools with the intention of unified
way of analyzing it, the data warehouse has to store data in a unified for-
mat, independent of the source tool. Depending on the technology used, the
data warehouse itself can calculate and store basic statistics like sums, aver-
ages, maximums and minimums, etc. with stored functions and procedures.
The warehouse will also store the detectable patterns and anti-patterns and
metadata about the project, like size, timespan, methodology or process it
utilizes, type (brown-/green-field), product type (e.g., web/standalone ap-
plication), etc. This is because some patterns might be specific to projects
with certain attributes. For example, there is no point in looking for a GUI
prototype in project developing command line interface (CLI) application,
or for signs of sprint retrospectives in project with Waterfall process.
After successfully obtaining and storing the data, the application layer can
then perform different kinds of analyses. The main one being the (anti-
)pattern detection, but others, like comparisons of similar project, estimation
of progress based on the current state and emerging patterns discovery, are
also viable options.
The results of the analyses can be presented in a dashboard-like GUI to the
user, complete with warnings of detected anti-patterns, potential bad state
of the project and hints for remedies.
The following sections describe potential approaches and our selected or
devised ones for accomplishing this overall idea.

3.2.1 Main usage and benefits

The main focus of our research is detection of PM and process (anti-)patterns
in ALM data of software development projects and their relation to product
quality and project success/failure. The benefits include discovery of anti-
patterns early, providing actionable evidence for course-correcting decisions,
monitoring the adhesion to the prescribed or recommended process model
or methodology, and evidence-based support for post-mortem analysis and
SPI. Other potential usages are outlined in Chapter 4.

3.3 Universal Metamodel

To meet our goal of storing project data from ALM tools in a unified format
(RQ1, see Chapter 1), which separates our work from e.g. CHAOSS research
(see Section 2.4.1), we have investigated various means of software process
modeling (see Section 2.5). None of them fit strictly the needs of our research

57

Chapter 3. Concept of the Thesis

for different reasons.
SPEM (see Section 2.5.1) covers much the same ground as our intended
work. However, its main purpose is to describe a process divorced from
actual realities of projects. For example, it only models which roles the
people performing certain tasks should have and has no entities to capture
the real people themselves. This is a problem because of the N:M relation
between people and roles mentioned in Section 2.1.1. Tasks themselves
lack several attributes usually captured in ALM tools such as actual spent
time, start date, due date, resolutions, etc. Modeling iterations and phases
is also problematic. Specifically the very real and possible situation when
the reaching of milestone of a phase does not coincide with the end of
an iteration, but rather occurs somewhere during its course. A way to
capture criteria for reaching a milestone other than textual description is
also missing. Furthermore, the concept of splitting an element (task, role or
artifact) into its description and later usage instances which may or may
not override the content of the description is of no use for our purposes and
could make the mapping of the ALM data into SPEM model unnecessarily
problematic, if not impossible.

Figure 3.2: SPADe unified domain metamodel

58

Chapter 3. Concept of the Thesis

OSLC (see Section 2.5.2) specifications, while focused specifically on ALM
tools data, are currently not developed enough and cover only a small portion
of data we need to collect in order to perform accurate analyses. Specifically,
the Change Management specification is in stable versions 2.0 and 3.0 as a
draft none of which covers all data we can collect and may need to analyze.
Configuration Management exist as a draft only giving us even less to work
with.
BPMN (see Section 2.5.5) was designed for modeling business processes.
Therefore it uses many concepts not present in the ALM data (and therefore
unusable for our purposes), while simultaneously lacking elements of ALM
specific data we need to capture. The same problem of focusing on other
specific domains than the ALM data disqualifies usage of ISO standards
24744 and 29110 also described in Section 2.5
Because of the above mentioned deficiencies (further described also in [95]) of
the existing metamodels, we proposed our own [95] for storing the collected
data. The domain form of the metamodel is shown in Figure 3.2 and the
following sections describe it in greater detail. The color coding is explained
in Section 3.3.4.

3.3.1 Construction

Several options have been identified for constructing the meta-model to be
able to capture data from the selected toolset (see Section 3.4.1) while min-
imizing the possibility to lose data potentially useful for our intended anal-
yses: (a) union, (b) intersection, (c) mixed.
The union approach would mean incorporating every single attribute cap-
tured by every single tool. The obvious benefit is the ability to store max-
imum of the available data. However, there are significant disadvantages.
Not only is the approach overwhelming and needless (because not every at-
tribute from every tool is necessarily useful for pattern detection) but also
quite impossible. Because of the already mention customization capabilities
of some tools (mainly those with issue-tracking component) all the possible
custom attributes that every individual organization, team or person may
incorporate into the data cannot be predicted. One possibility to circum-
vent this would be to capture the custom attributes as just the name and
value pair. And while this is definitely an option we may revisit in the fu-
ture to enhance the capabilities and accuracy of SPADe, for now it would be
needlessly arduous a complicated to implement the analysis on such basis.
The intersection approach would mean storing only those entities and at-
tributes present only in all tools1. The main disadvantage of this approach

1Obviously we do not mean the intersection of data from different types of tools.

59

Chapter 3. Concept of the Thesis

is that it is limiting to the point of uselessness of the collected data. The
reason is (among others) that GitHub stores only summary, description, as-
signee, target release, labels a simple open/closed status in tickets. Standard
attributes from other tools like priority, estimate, severity, type, resolution,
due date and others would have to be stored in e.g., description attribute in
SPADe in a way conducive to parsing it during each analysis time and time
again. Other example could be that SVN has only one person associated
with a commit while in Git there is author, committer and other people
signing off in different capacities on the changes presented by the commit.
Since both extreme cases proved unfeasible, we opted for the middle road –
the mixed approach. We started with the intersection of all data captured in
different tools and afterwards weight all the elements to decide if they should
be included. The main criteria being the number of tools the element was
present in and the potential usefulness to our analyses. We then enhanced
the model with the passing elements as well as other concepts from e.g.,
software development methodologies we found necessary or useful for our
purposes. The methodologies had to be considered because the metamodel
needs to be able to capture development process irrespective of its model or
methodology. That is the reason for including for example Iteration, Phase
and Milestone, for which only some ALM tools have the corresponding con-
cept.
Despite none of the existing models examined in Section 2.5 fitting our pur-
poses exactly, there still is some measure of influence and inspiration we took
from them and similar research efforts in Section 2.4. For example, we did
make sure all the concepts from the current versions of Change and Config-
uration Management specifications of OSLC that would enhance analytical
capabilities of SPADe where included in the metamodel.
After identifying the elements we wanted to capture in the SPADe meta-
model, we also had to settle on the naming conventions. The names for
similar concept vary somewhat among all the studied models and tools. We
predominantly used to most common terminology from the studied work or
from SE practice, with some exceptions. The term Work Item comes from
IBM RTC, while Work Unit from CoSEEEK (see Section 2.4.5).Though the
meaning is not always the same as in the source we took the term from, we
adopted these terms because we felt they describe the particular concepts
best. The actual meaning of the terminology is described in the next section.

Rather a composite of all data present in all VCS, all data present in all issue-trackers,
etc.

60

Chapter 3. Concept of the Thesis

3.3.2 Entities

The following describes all the entities in the SPADe metamodel shown in
Figure 3.2, some of their attributes and some of the relations between entities
as well.

Activity

∙ a group of interrelated tasks (Work Units) with greater common goal;

∙ can represent e.g., disciplines or practices (see Section 2.2);

Artifact

∙ configuration item, subject to configuration management and version
control

∙ the term has been adopted from RUP (in SPEM it is used for one kind
of Work Product)

∙ type (enumeration) – in the realm of ALM data it can be a file or a
folder in the VCS repository, an uploaded file or a wiki page in the
tool (in the future also e.g., emails);

Authored Entity

∙ superclass extended by entities for which author and timestamp of
creation is stored (Work Item and Configuration);

∙ created (timestamp) – time and date of creation;

Branch

∙ development branch from VCS;

∙ type (enumeration) – trunk / master branch or other;

Change

∙ represents a change of a single Work Item at a point in time;

∙ type (enumeration) – addition, deletion or modification of an artifact;

61

Chapter 3. Concept of the Thesis

Configuration

∙ any state resulting from any Work Item Change or set of Work Item
Changes (e.g., repository commit, file upload, ticket (Work Unit) or
wiki page edit);

∙ an action of changing a Work Item or a set of Work Items (e.g., commit
of multiple files) performed in a singular point in time by an individual;

∙ description (string) – in Configuration, a description attribute holds
the comment associated with the action;

∙ number (integer) – revision identifier in VCS user interface (not nec-
essarily the same as external ID);

∙ type (enumeration) – revision in VCS or other state (e.g., after editing
wiki page or ticket);

∙ tags (string list) – VCS tags;

Competency

∙ represents expertise, certification, education or any such asset a person
has;

Criterion

∙ a partial goal of a phase, an indicator of achieving its milestone;

Development Program

∙ a group of related projects (e.g., series of products, application versions
for different platforms, etc.);

Group

∙ can represent a team, an organization, or another subgroup of the
people involved in the project;

62

Chapter 3. Concept of the Thesis

Identity

∙ represents user account in a particular tool, since a project can use
more than one tool for ALM purposes;

∙ name (string) – represents login or username;

∙ description (string) – represents full name;

Iteration

∙ repeatable sub-process from iterative and agile methodologies (see Sec-
tion 2.2);

Milestone

∙ a get of goals to be met by the end of a development Phase (see Section
2.2);

Person

∙ the consolidation of identities on this entity allows for statistics of a
particular person throughout various projects and tools used to be
calculated;

Phase

∙ a segment of the project lifecycle from software development method-
ologies (see Section 2.2);

Project

∙ a set of Project Instance instances representing the whole project
record from various source tools;

Project Instance

∙ holds information about a particular ALM tool installation, from which
the project data were obtained;

∙ url (string) – source link of the project data;

63

Chapter 3. Concept of the Thesis

Project Segment

∙ a superclass for sub-processes functioning as Work Unit containers
(Iteration, Phase, Activity);

Release

∙ release tagged in VCS or other important configuration;

Role

∙ a set of permissions and responsibilities a person can take on in the
project;

Work Item

∙ superclass for both Artifact and Work Unit;

∙ url (string) – direct link to the actual Work Item (in repository, wiki,
ALM tool GUI, etc.);

Work Unit

∙ task, ticket or issue from issue-tracker;

∙ the term has been adopted from CoSEEEK (see Section 2.4.5) because
it most accurately describes the use of the concept in our context and
is detached from the ALM specific terminology;

∙ number (integer) – ticket identifier in issue-tracking tool (unique in-
side a project);

∙ type (enumeration) – bug, task, feature, enhancement, etc.;

∙ estimated, spent (real) – amount of time;

∙ remaining (real) – estimated remaining time;

∙ status (enumeration) – ticket lifecycle status (new, assigned, resolved,
closed, invalid, etc.);

∙ progress (integer) – percentage of the ticket effort done.

64

Chapter 3. Concept of the Thesis

The self-referencing associations on Project and Work Unit represent that
they have sub-projects or sub-units respectively. Other non-labeled associ-
ations represent the “contains” relationship. There is no relation between
Phase and Iteration because a milestone achievement (end of a phase) does
not have to correspond with the end of an iteration.

3.3.3 Enumerations

Apart from the entities, attributes and terminology, some enumerative val-
ues also vary throughout the toolset. This is an issue in attributes such as
priority, severity, status, resolution and type in Work Unit, Role names and
relation type between Work Units. Without a concrete set of values a the
analysis cannot be undertaken in a unified way and comparison between
projects with different enumeration value settings can hardly be done at all.
For example, lets say that as a part of anti-pattern detection we need to
count the number of Work Units in “accepted” state. This status usually
signifies that a submitted task has been reviewed and deemed valid and will
be addressed by the team at some point in time. However, each tool (and
due to customization in fact each tool installation) can use different term for
this status. Furthermore, some tools may not have a value with this meaning
available at all. A unification of such enumeration values is therefore needed.
Rather than simply unify the values, we opted for keeping the original value
of each such attribute and at a classification schema on top of them. This
way we can perform analysis in a unified way while not loosing the more
granular and accurate original data. The classification schema was derived
from the default values used by the selected tools while considering terms
and distinctions from SE practice and methodologies. In some cases we used
a two-tier classification schema, with class and superclass, for to enhance
the capabilities and information provided by SPADe.
Following subsections describe the classification schema of each particular
enumeration for which such schema was used. Each enumeration description
is accompanied by a table showing the classes, the source tool(s) of the par-
ticular terminology, commonly used synonyms and mapping to superclasses.
If not apparent the explanation of the classes and superclasses meaning is
also given in the text.
Though it may appear some of the classes and/or terminology is not always
taken directly from any particular source tool (at least not in their default
setting), they do appear in many projects or have been taken from other
sources, for example, software development methodologies (see Section 2.2).
Examples are Work Unit relations and Roles. The reason is most often a
consistency in terminology or the benefit we see in including these classes as

65

Chapter 3. Concept of the Thesis

a result of our mixed approach to constructing the overall metamodel (see
Section 3.3.1).

Priority and Severity are enumerations with a lot in common. Both
signify a degree of their respective measures, both typically consist of a
medium value and several higher and lower values than the medium. The
number of values up and down from the medium varies, but two values
(either up or down) is usually the average. Therefore, on the higher level of
classification (superclass) we used the medium, one degree higher and one
degree lower, and the medium, two degrees higher and two lower on the lower
level of classification (class). This allows as the option of performing analysis
on several levels of granularity on the scale. We added the “Unassigned” value
to both levels of classification for Work Units where the value has not been
set yet. We used the most common terminology found in the ALM tools for
naming convention. Tables 3.1 and 3.2 show the classification schema for
priority and severity, respectively.

Table 3.1: Classification schema for Work Unit priority
Priority class Used in Synonyms Superclass
Unassigned Redmine Unassigned
Lowest Assembla, Bugzilla,

Jira
Low

Low Assembla, Bugzilla,
Jira, Redmine

Low

Normal Assembla, Bugzilla,
Redmine

Medium Normal

High Assembla, Bugzilla,
Jira, Redmine

High

Highest Assembla, Bugzilla,
Jira

Immediate, Urgent High

Table 3.2: Classification schema for Work Unit severity
Severity class Used in Synonyms Superclass
Unassigned Redmine Unclassified Unassigned
Trivial Bugzilla Minor
Minor Bugzilla Small Minor
Normal Bugzilla Common, Moderate Normal
Major Bugzilla Big Major
Critical Bugzilla,

Redmine
Blocker Major

66

Chapter 3. Concept of the Thesis

Work Unit type represents the character of the task. It may be a de-
fect in the implementation (Bug), a change request for existing feature
(Enhancement), a request for a new functionality (Feature) or any other
issue that should be addressed, for example, administrative, related to doc-
umentation, a call for a meeting, etc. (Task). The values and names of our
classes (in brackets above) are again derived from standard values used in
ALM tools, and once more the Unassigned value is added.
We currently only have one-tier classification for Work Unit type but are
considering revising the schema once the researchers from the PaStA project
(see Section 2.4.4) make their survey into the perceived classes of software
changes by developers public. If their results present more possible values
valid for our analysis we might take them as classes and move our current
classes to superclasses.

Status enumeration values are very diverse among the ALM tools and
their different installations. This is because different organizations and teams
want or need to capture different sets of events along the workflow of a task.
We therefore considered the points in lifecycle of a task we would need to
be able to recognize in our analyses. The result reflects the most commonly
used status values in ALM tools, in development methodologies and in SE
practice. For the higher level of classification, we used the simple distinction
(as used by GitHub) of open and closed tasks, because whether the task is
still active or yet finished is the most basic information we can work with.
The classification schema is shown in Table 3.3.

Table 3.3: Classification schema for Work Unit status

Status class Used in Synonyms Superclass
Unassigned Unassigned
New Assembla,

Redmine
Backlog, To Do, Unconfirmed Open

Open GitHub, Jira Open
Accepted Assembla Assigned Open
In Progress Jira, Redmine Reopened Open
Resolved Bugzilla, Jira,

Redmine
Under Review, Test Open

Verified Bugzilla Approved, Feedback Open
Done Jira Closed, Fixed Closed
Closed GitHub, Jira,

Redmine
Closed

Invalid Assembla Canceled, Rejected Closed
Deleted Closed

67

Chapter 3. Concept of the Thesis

The meaning of the class values is as follows:

∙ Unassigned – not a usual case, because most tools automatically put
a submitted task to an entry status of the workflow (e.g., “New”), but
the possibility of corrupted data or non-standard behavior, and there-
fore the possibility of an unassigned status value cannot be dismissed,

∙ New – a submitted task,

∙ Open – an ex-post added value for Work Units in the Open status
superclass for which, however, none of its (sub-)classes apply (i.e., does
not express the same meaning),

∙ Accepted – team reviewed the ticket in regards to duplicity, valid-
ity and comprehensiveness of its description and found it relevant to
address at some point,

∙ In Progress – the work on the task has begun,

∙ Resolved – the team member assigned to the task deems it finished
and submitted to verification by higher authority

∙ Open – the task has been verified and (possibly) awaits some final
formal activities and processes to take place before being closed defini-
tively,

∙ Done – work on the task has been successfully completed and the task
requires no more effort or attention,

∙ Closed – situation similar to Open but for the superclass Closed,

∙ Invalid2 – rather than being accepted, the team found the task irrele-
vant from the start or at any point during the lifecycle (e.g., customer
no longer needs the feature),

∙ Deleted – a status added for tickets referenced somewhere in the
project data but now longer existing in the ALM tool.

Other commonly used statuses include Assigned3 and Reopened. We decided
not to use these because the information they convey can easily be obtained
through other data. Specifically, the assignee attribute in Work Unit is not
empty for the former, and there is a change of status from Closed superclass
to Open superclass in the history records of the ticket for the latter.

2This situation is more commonly captured by the resolution attribute, but some tools
still use the value or lack means of capturing the resolution.

3meaning an accepted task assigned to a person responsible for its completion

68

Chapter 3. Concept of the Thesis

Table 3.4: Classification schema for Work Unit resolution

Resolution class Used in Synonyms Superclass
Unassigned Unresolved Unassigned
Duplicate Bugzilla, Jira Finished
Invalid Bugzilla Finished
Won’t Fix Bugzilla, Jira Won’t Do Finished
Works as Designed Finished
Fixed Bugzilla, Jira Done, Fixed Upstream Finished
Finished Finished
Incomplete Bugzilla, Jira Cannot Reproduce Unfinished
Works for Me Bugzilla Unfinished
Unfinished Unfinished

Resolution specifies the circumstances of the ticket being closed. The
main distinction being, if the task was finished or does not require further
attention for another reason, or if some clarification or additional action is
needed. This is the basis for the superclasses used. The process of deriving
the classes was similar to the ones in status. The resulting classification is
shown in Table 3.4 and the class values are:

∙ Unassigned – here more relevant than in status because many tasks
do not have resolution value assigned until the ed of their lifecycle,

∙ Duplicate – a similar task has already been submitted,

∙ Invalid – similar to the status of the same name,

∙ Won’t Fix – the team recognizes that the ticket (in this instance most
probably defect) represents an existing problem but decides not to fix
it (e.g., for its low severity or priority),

∙ Works as Designed – typical “it’s not a bug, it’s a feature” situation,
when the reporter of the issue mistakes a deliberate behavior of the
software for a defect

∙ Fixed – a fallback class for tasks in the similarly named superclass
but not fit for any other class

∙ Finished – fallback class for units form similarly named superclass
not fitting into any other class,

∙ Incomplete – the information in the task is incomplete or incompre-
hensible, making addressing the issue impossible,

69

Chapter 3. Concept of the Thesis

∙ Work for Me – a team member was not able to replicate the issue
(defect) described, calling for independent review by another person
or more detailed context information,

∙ Unfinished – similar to Finished for its respective superclass.

Work Unit relations provide the capability to convey connection of sev-
eral kinds between two tasks. Table 3.5 show the classification schema for
relations. The types of relations most commonly found in ALM tools, and
our superclasses, are described below.

Table 3.5: Classification schema for Work Unit relations
Relation class Used in Synonyms Superclass
Unassigned Unspecified Unassigned
Duplicates Jira, Redmine Duplicate Similarity
Duplicated by Redmine Duplicate(s) Similarity
Copied from Redmine Clones Similarity
Copied by Cloned by, Copied to Similarity
Blocks Bugzilla, Jira,

Remine
Temporal

Blocked by Redmine Depends on Temporal
Precedes Redmine Before, Predecessor Temporal
Follows Redmine After, Successor Temporal
Child of Child, Subtask Hierarchical
Parent of Parent Hierarchical
Causes Jira Causal
Caused by Jira Causal
Resolves Causal
Resolved by Causal
Relates to Jira, Redmine Related General
Mentions General
Mentioned by General

∙ Similarity – one task is either a duplicate or a straight copy of the
other,

∙ Temporal – one task should follow after or is outright blocked by
another,

∙ Hierarchical – one task is superior to the other or to multiple others,
which represent decomposed components of the first one,

∙ Causal – one issue either causes or resolves another.

70

Chapter 3. Concept of the Thesis

∙ General – a simple connection between two tickets either as a explicit
type of relation or through one mentioning the other (e.g., by the
identifier of the latter in the description of the former).

Almost all the relations are non-symmetrical, meaning the nature of the re-
lationship is different when viewed from each of its endpoints. The exception
is the general relation which is equal from both sides. This, and the slight
distinction mentioned in superclasses descriptions above (i.e., being a dupli-
cate vs. being a copy, following vs. blocking, causing vs. resolving) led us to
the set of values for the lower level classification.

Role of each person involved in a project can be, in our view, either taken
straight from the ALM tool data (provided its present) or inferred through
analysis of the activities the person takes part in and tasks he/she performs.
The classes for the enumeration are derived again from the tools and software
development methodology theory (e.g. [68]). On the higher level we would
like to distinguish at least the member of the development team, the higher
level of managerial roles, other stakeholders (customers, mentors, etc.) and
outside people, or non-members of the organization. These often appear in
projects, where at least the change management system is accessible for the
public to be able to request or suggest changes to the software or report
defects. The schema is shown in Table 3.6.

Table 3.6: Classification schema for Role name
Role class Used in Synonyms Superclass
Unassigned Everyone Unassigned
Non-member Assembla,

GitHub
Anonymous Non-member

Mentor Scrum Master Stakeholder
Stakeholder Product Owner,

Reporter, User,
Watcher

Stakeholder

Project Manager Administrator,
Manager,
Owner, Project
Lead

Management

Team Member Contributor,
Member

Team Member

Analyst Team Member
Designer Architect Team Member
Developer Jira, Redmine Collaborator Team Member
Tester Team Member
Documenter Team Member

71

Chapter 3. Concept of the Thesis

3.3.4 Absent Data Inference

Due to our process of construction of the SPADe metamodel described in
Section 3.3.1 and the fact that specific data are necessary to perform some of
our intended analyses, some of the data can not be transferred from the ALM
tools in a straightforward fashion and require a degree of transformation.
This can be caused by several factors, including absence of the data in the
source tools, the need for restructuring some of it, or minimizing the reliance
of our analysis on the disciplined use of the source tools by developers.
As an example, this issue also goes beyond the enumeration values classifi-
cation described in Section 3.3.3. Unfortunately, not only do the tools use
different terminology for the same task relations, but some use symmetrical
records, whereas some do not. That means in some tools the relation is cap-
tured in both involved tickets and in some only in the source ticket of the
relation. Some of these issues can to be resolved by analysis performed either
immediately after or even during the data mining process. Some, though, go
beyond the possibilities of pure inference or analysis performed on the data
and require at least some measure of user involvement in order to obtain
the most decisive, complete, consistent and reality reflecting information
possible.
Different entities from the SPADe data model require different levels anal-
ysis and/or user input. The entities in Figure 3.2 in black require minimal
involvement and can be for the most part mapped straight to the elements
from ALM tools. The entities in blue require moderate additional effort,
while the entities in red are in need of heavy analysis or user input. All
these challenges can be in ideal cases resolved by parsing the textual data
(wiki pages, ticket descriptions, commit messages, etc.) looking for mentions
of other entities. Pattern matching based on regular expressions is one way
of accomplishing this, provided the information is included in the data. Oth-
erwise, the completion of data relies on user input. The specific challenges
leading to the color coding in the metamodel figure are:

∙ detecting iterations and phases,

∙ distinguishing iterations from phases,

∙ detecting milestones,

∙ capturing milestone criteria to check their achievement,

∙ recognizing the releases in VCS data,

∙ linking iteration and/or phases releases with their appropriate project
segments,

72

Chapter 3. Concept of the Thesis

∙ detecting prerequisites of tasks,

∙ grouping projects into development programs,

∙ detecting and factoring in competencies,

∙ recognizing identities belonging to the same individual person.

At this stage of the research, the method(s) for addressing the above issues
are part of the future work. For example, for the last one a simple heuristic
approach can be implemented to compare usernames, email addresses and
different forms of names (e.g., using full names or just initials for first names).
Already implemented and validated approaches from related research can
also be adopted (e.g., Section 2.4.4).

3.4 ALM Data Mining

The research into MSR was previously described in Section 2.6.1. This sec-
tion covers the set of ALM tools we have selected for mining, the methods
for MSR available and the limitations of mining these repositories.

3.4.1 Selected Set

Several criteria have been considered when selecting which ALM tools we
want to mine data from. Among them, the general types (described in Sec-
tion 2.3), the accessibility, the usage we observe in practice and the diversity
in terms of capabilities and detail of captured information. We have de-
cided to primarily focus on VCS, issue-tracking and full-fledged ALM tools,
because they cover the other categories to certain extend as well. Many issue-
trackers have wiki or other knowledge-base capabilities, the communication
can be handled through commenting or in-built messaging systems and VCS
and issue-trackers are often used even for capturing requirements and qual-
ity related artifacts and tasks. The inclusion of both VCS and issue-tracking
tools data is what distinguishes our work from efforts aimed at only one type
of tools, for example, Bloof (see Section 2.4.2). In our approach, where we
include more than one tool from each type, we also differ from other research
efforts, like SoftChange, Codeface, PaStA, YOSHI and Hipikat (see Section
2.4). The final set of tools we settled on is the following:

∙ Git and SVN – for their wide-spread use and the pair being the
representatives of decentralized and centralized VCS tools respectively,

∙ GitHub – for its prevalence in ever-growing OSS development domain,

73

Chapter 3. Concept of the Thesis

∙ Bugzilla – for its use by high-profile organizations like Mozilla and
Apache,

∙ Redmine – which we use for educational and research purposes and
is therefore a great source of smaller projects (useful for initial testing)
and student projects (to contrast wit industry),

∙ Jira and Assembla – used by several of industry partners of our
university, giving us a chance to analyze in-house projects and contrast
them with OSS.

Other ALM tools, such as mail repositories will definitely be included in
the future and once our ideas and their implementation is validated, the
expansion of the toolset is virtually limitless. But we are confident the this
initial set is sufficient to get to the intended results. Consolidated sources
like Software Heritage and GitHub’s experimental dataset (see Section 2.6.2)
were also considered, but ultimately disregarded for now. The main reason
validating the SPADe metamodel in regards to data from different source
ALM tools.

3.4.2 Methods

There are basically four ways of mining ALM tools repositories:

1. direct database mining,

2. using APIs,

3. parsing exported data,

4. parsing web pages of GUI (a.k.a. web crawling).

Direct database access is rarely an option with the exception of servers
we ourselves maintain. But, almost all ALM tool repositories provide some
API, and certainly all from our selected set do. In all cases at least a REST
API, in majority even API for Java4 and other programming languages. The
majority of tools also have some sort of data export capabilities in different
formats, be it JSON, XML of plain text. The downfall of this approach is
that often, due to tool-specific issues, the exports have to be done manually
or requires extra steps and therefore more effort with hardly better results
when compared to APIs. In early experimentation we found web crawling

4JGit, SVNKit, GitHub API for Java, Redmine Java API from TaskAdapter, Java
wrapper around Assembla API from Matthew Sladen, Jira REST Java API from Atlas-
sian, b4j for Bugzilla

74

Chapter 3. Concept of the Thesis

somewhat unreliable, because the structure of the web pages differs between
versions of the tool and even different server instances far more often than
the APIs. In those instances, a modification of ETL data pumps can prove
necessary for each individual server mined. Not to mention the not all tools
have a web-based GUI (e.g. SVN and Git).
For all these reasons we focus on utilizing APIs as often as possible, only
falling back on data exports and web crawling when proven absolutely nec-
essary or for some unforeseen reason more straightforward than APIs.

3.4.3 Limitations

Many pitfalls of MSR generally [50] or for Git [14] and GitHub [63] specif-
ically have already been outlined in literature. Here we will mention only a
few important ones. From the standpoint of the approach itself, the most
obvious issue are those of access, representativeness and incomplete data.
In the foreseeable future, possibility for any researcher to gain permission
to access all the repositories of all the tools is hard to imagine, limiting any
research aiming for large enough sample mostly to OSS projects. This can in
turn lead to the practicing community rejecting the results as irrelevant for
them. The divide between academia and practice is a long-standing issue,
one of those that we identified in our review into problems in empirical
SE research [94]. Even in instances, when researchers join with a private
company and gain access to their data, it is usually to small a sample.
Which leads directly to the second issue.
No matter how diverse or large a tool-set one selects, there is no guarantee
that the projects mined will provide a representative sample of the industry
in any measure. Moreover, the issue is made worse by the particular in-
house projects that certain companies may allow the researchers to analyze
and their relatively small number compared to the accessible OSS projects,
returning back to the previous limitation.
Lastly, the data from many projects may prove incomplete, therefore skewing
the results or rendering them useless completely. This may be cause by
the lack of discipline or need of developers from the analyzed projects to
document the progress and history of their efforts pushing the data captured
further away from reality. Some organizations may not even use the ALM
tools to their full or good enough degree, leaving out information vital for
certain analyses, some of which may be impossible to infer otherwise. Even
the capabilities of tools themselves may be limiting. For example, GitHub
lacks the explicit capability to capture estimated and real efforts (i.e., time)
spent on each particular task.
On the technical side, the issues hindering data mining and analyses include

75

Chapter 3. Concept of the Thesis

varying encoding, different standards of temporal data (timezones, times-
tamp format, etc.), and tools customization changing functionalities giving
projects teams the option to capture same data in different (custom) at-
tributes and making the mapping into unified format of project data more
challenging.

3.5 Customization

As mentioned in Section 3.2 and shown in Figure 3.1, our approach needs
metadata about the project in order to perform the analysis adequately. The
metadata include the definition of the process or methodology the project
should follow, its scale in terms of timespan and resources and the character
of the product. Furthermore the metadata would include the mapping of the
enumeration values used in the project to the classification schema described
in Section 3.3.3 with the possibility to manually correct the automatically
generated classification.
These factors can significantly skew the results of analysis if not taken into
account. This is caused by the diverse nature of the software projects, the
approaches of teams to using the ALM tools and difference in terminologies
used, among other factors, and presents one of the bigger challenges of our
research.
Similarly to the issues described in Section 3.3.4 some of the metadata can
ideally be obtained from the ALM tools data itself (e.g., project timespan,
staff size, process and product info from wiki), but if not, it needs to rely
on the user input. This is especially the case for enumeration values and
their mapping to our classification schemata. Unless the specific meaning of
each value is present in the data (e.g., in some ALM tools policy document),
or otherwise possible to infer, the mapping needs to be at least checked
and, if needed, adjusted manually. The particular approach to collecting
and inferring project metadata is subject of future work.

3.6 Anti-pattern format and detection

Though we intend on our approach to be applicable for general software
process and PM pattern detection, our current main focus is to detect anti-
patterns specifically. This does not take from the general usability of our
approach because, as described in Section 2.1.5, we see anti-patterns as a
subset of patterns, specifically consisting of those with harmful impact on
project success or product quality.
This focus is unique to our research and different from similar work de-

76

Chapter 3. Concept of the Thesis

scribed in Section 2.4. Codeface focuses on community structures and evo-
lution, PaStA on patches similarity, propagation and maintenance efforts,
CoSEEEK on individual developer workflow and quality assurance tasks in-
jection. SPARSE, PROMAISE and the work of Vranić et al. do deal with
anti-patterns, but not their detection in actual project data. Rather, the
former two focus on anti-pattern knowledge gathering and ontology and the
latter on training developers in adopting practices and avoiding common
mistakes.
To be able to detect anti-patterns in collected data (RQ2 and RQ3, see
Chapter 1) we first need to compose the set of anti-patterns already defined
and well-known in the practice. To this end, we performed a literature review
and collected a set of anti-patterns presented in Table A.1 in Appendix A
along with alternative names and sources in which they were found.
Some of the anti-patterns included stand on the border of the PM and e.g.,
architectural domain (JAR Hell, DLL Hell), etc. The reason is that the
field of PM anti-patterns is relatively immature and the borderlines with
other pattern domains are blurred. Other reason may be the fact, that PM
itself interfaces heavily with other disciplines in software development and
therefore total separation will never be possible. Nevertheless, even these
bordering anti-patterns can be viewed from the PM and process perspective,
hence being included by the authors of the sources.
The set of defined anti-patterns from literature is further expanded by several
anti-patterns we garnered form experience in both education and industrial
settings. These anti-patterns, each with a short description, are listed in
Table B.1 in Appendix B. We will investigate the validity of these anti-
patterns as part of future work.
Because the domain of PM anti-patterns is still changing, we started creating
a catalogue with all gathered anti-patterns from literature and experience
and make it public as an additional contribution of our work [16]5. We hope
this will lead to feedback, additions and corrections from researchers and
practitioners, and foster creation and contributions to the PM pattern com-
munities similar to the ones in design patterns domain [51].

3.6.1 Structured Description

Table 3.7 presents a more detailed definition of one of the anti-patterns we
have called Collective Procrastination as an example. It also presents the
structure we intend to use for textual description of the anti-patterns (e.g.,
in the aforementioned catalogue). It includes attributes commonly used in

5The catalogue is available at https://github.com/ReliSA/Software-process-
antipatterns-catalogue

77

Chapter 3. Concept of the Thesis

textual descriptions of anti-patterns (see Section 2.7.1): name and aliases of
the anti-pattern, its short summary and symptoms. The “Sources” section
lists the literature in which a description of the particular anti-pattern was
found. The “Specific To” section lists the types of projects the particular
anti-pattern is related to.

Table 3.7: Collective Procrastination – anti-pattern from experience
Name Collective Procrastination
Also Known As
Summary The team needs to handle several commit-

ments in parallel, focuses on most pressing
issues until that becomes the iteration, then
rushes to finish it off. From the outside, ac-
tual status of work done is unknown during
the iteration, hindering planning and prob-
lem solving.

Symptoms rock-edge (one occurrence spanning the
whole project) or staircase (repeated oc-
currence usually coinciding with a meeting,
milestone or release date) burndown
progress stalled for a time, then sudden in-
crease
a dramatic and fast paced (quasi-immediate)
burst of issues solved prefaced by a stagna-
tion period

Specific To -
Related Anti-patters Fire Drill – specific cause of management

spending to much time on pre-development
activities

Sources experience

As mentioned before, some anti-patterns are relevant only to projects with
specific context. For example, only those using Scrum methodology [34, 33],
RUP [70], or to innovation projects specifically [9]. Lastly, related anti-
patterns are also listed. This can include more generic or specific instances of
the same anti-pattern, opposite extremes of the same bad practice, patterns
sharing several similar symptoms, etc. On top of added informational value,
capturing relations among anti-patterns will foster reuse of components of
their operationalization form, which will be described in the next section.
Further textual specification can be found in referenced sources for literature-
sourced anti-patterns, though the ones from experience may need additional
context and other sections to fully describe the anti-pattern and facilitate

78

Chapter 3. Concept of the Thesis

comprehension. The operationalization of each anti-pattern is described sep-
arately and is discussed in the following section.
At this stage in our work, only two of the anti-patterns from experience are
described in at least the level of detail shown in Table 3.7. Namely Collective
Procrastination and Nine Pregnant Women. The description of the latter is
shown in Table C.1 in Appendix C. The pair was selected based on their fit-
ness for detection in student projects which are easy to obtain, independence
of project and product type, process model and other project metadata. All
these aspects make them primary candidates for first experiments to provide
preliminary validation of our approach.

3.6.2 Operationalization

The textual representation of the anti-patterns is not fit for automatic detec-
tion in data. We, therefore, need to express it in formalized representation
(i.e., in our case using the SPADe metamodel; see Section 3.3) and con-
sequently describe them in terms of data gathered from ALM tools. This
process is called operationalization and is a precursory step towards detec-
tion itself [96].
One section of the textual representation decomposes anti-patterns into
symptoms (see Section 2.7.1 and Table 3.7). These symptoms indicate the
presence of the anti-pattern and are much easier to translate into terms of
ALM tools data. So let there be 𝑆, a space of all possible symptoms. Then,
each (anti-)pattern 𝑝 can be modelled as a subset of 𝑆:

𝑆 ′ |= 𝑝, 𝑆 ′ ⊆ 𝑆.

To avoid confusion in terminology, we call symptoms expressed in terms of
the SPADe metamodel entities indicators. Let 𝐼 be a space of all indicators.
Then,:

∀𝑠 ∈ 𝑆 ∃ 𝐼 ′ ⊆ 𝐼, 𝐼 ′ |= 𝑠, 𝐼 ′ = {𝑖0, 𝑖1, 𝑖2, . . . 𝑖𝑛},

where 𝑖0, 𝑖1, 𝑖2, . . . 𝑖𝑛 are individual indicators necessary to be detected (i.e.,
triggered; see Definition 2 in Section 3.6.3) in order to detect symptom 𝑠.
Once expressed in the SPADe metamodel terminology, the indicators are
further decomposed into a set of measurements 𝐺′ of numerical and logical
values, which is a subset of 𝐺, a space of all such measurements possible in
SPADe data:

∀𝑖 ∈ 𝐼 ∃ 𝐺′ ⊆ 𝐺, 𝐺′ = {𝑔0, 𝑔1, 𝑔2, . . . 𝑔𝑚}.

Numerical values (i.e., metrics) represent measures of specified entities or
their attributes and arithmetic operations on them. Logical values signify

79

Chapter 3. Concept of the Thesis

presence/absence of some aspect of data (e.g., a textual attribute fitting a
regular expression, existence of relation between given entities, etc.). There-
fore,

∀𝑔 ∈ 𝐺, 𝑔 : 𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑑𝑎𝑡𝑎 −→ R ∪ B.

This allows for one metric to be used in many indicators.
From all the above, we arrive at the definition of operationalized anti-
pattern:
Definition 1 (Operationalized pattern) Let 𝑃 be a space of all process and
PM patterns, 𝑆 a space of all pattern symptoms, 𝐼 a space of all indicators
expressed in project data terms and 𝐺 a space of all metrics (numerical
and logical) measurable on project data from ALM tools. Operationalized
pattern 𝑝 is then a set of metrics 𝐺′ on project data which map to the
symptoms of the pattern:

𝑝 ∈ 𝑃, 𝑆 ′ |= 𝑝,

∀𝑠 ∈ 𝑆 ′ ∃ 𝐼 ′ |= 𝑠, 𝐼 ′ ⊆ 𝐼,

∀𝑖 ∈ 𝐼 ′ ∃ 𝐺′ = {𝑔0, 𝑔1, 𝑔2, . . . 𝑔𝑚}, 𝐺′ ⊆ 𝐺,

or simply put:
𝐺′ |= 𝑝.

3.6.3 Detection

The above model of (anti-)pattern operationalization is amenable for vari-
ous technical reifications. In our case, data is stored in relational database
management system (RDBMS) and the measurements on it have the form of
SQL queries. The indicators, and therefore, (anti-)patterns themselves also
have a form of (sets of) SQL queries in a script.
The detection depends on functions comparing the measured values with
configured thresholds. Each metric 𝑔 is compared to its designated thresholds
𝑡 by its specific function ℎ, such that:

ℎ(𝑔, 𝑡) : 𝐺 × (R ∪ B) → B ,

and it reaching the threshold is signified by:

ℎ(𝑔, 𝑡) = true.

When all the metrics from a set representing a given indicator reach their re-
spective thresholds, we say the indicator is triggered. A pattern is detected
when all indicators necessary for its detection are triggered.

80

Chapter 3. Concept of the Thesis

Definition 2 (Triggered indicator) Let 𝑡𝑟 : 𝐼 → B be a binary function
expressing the triggering of an indicator 𝑖 ∈ 𝐼 represented by 𝑚 metrics

𝑔0, 𝑔1, 𝑔2, . . . 𝑔𝑚, ∀𝑔𝑗 ∈ 𝐺′, 𝐺′ |= 𝑖

compared by their specific functions ℎ0, ℎ1, ℎ2, . . . ℎ𝑚 to their respective
thresholds 𝑡0, 𝑡1, 𝑡2, . . . 𝑡𝑚 :

𝑡𝑟(𝑖) =
𝑚⋂︁

𝑗=0
ℎ𝑗(𝑔𝑗, 𝑡𝑗), ∀𝑔𝑗 ∈ 𝐺′ .

An indicator is triggered when 𝑡𝑟(𝑖) = true.
Definition 3 (Detected pattern) Let 𝑑 : 𝑃 → B be a binary function
expressing detection of a pattern 𝑝 by its 𝑛 indicators

𝑖0, 𝑖1, 𝑖2, . . . 𝑖𝑛, ∀𝑖𝑘 ∈ 𝐼 ′, 𝐼 ′ |= 𝑝 ,

such that:
𝑑(𝑝) =

𝑛⋂︁
𝑘=0

𝑡𝑟(𝑖𝑘) = true, ∀𝑖𝑘 ∈ 𝐼 ′ .

A pattern 𝑝 is detected when 𝑑(𝑝) = true.

3.6.4 Example – Collective Procrastination

As a validation of this pattern detection method, we have created an oper-
ationalized form of the Collective Procrastination anti-pattern (structured
description shown in Table 3.7) in the form of an SQL script (see Appendix
D) and detected the sought instances in the students projects data.
The symptoms shown in Table 3.7 can be summarized into two conditions:
(1) a period of little to no activity (in terms of reported work done) occurs
– we call this phenomenon “silence” – (2) and is followed by a period of
abnormally dense effort, which we call a “cliff”. An occurrence of the anti-
pattern is demonstrated in the burndown chart shown in Figure 3.3. On the
“total” line, depending on the calibration, the whole period up until April
9th is an instance of the “silence” phenomenon. The days from then until
April 13th are an example of the “cliff” phenomenon.
The scope of the anti-pattern is an iteration, because monitoring the whole
project can skew the results. For example, team can work on tasks not
planned for current iteration, which is still procrastination. But, if viewed
from the perspective of the whole project, it would disrupt the silence and
cliff phenomena detection.

81

Chapter 3. Concept of the Thesis

Figure 3.3: Burndown chart with calculated values
The detection process calculates the following metrics for each iteration 𝑖𝑡
in the project:

∙ 𝑎𝑖𝑡 – start day of the iteration,

∙ 𝑏𝑖𝑡 – end day of the iteration,

∙ 𝑑𝑖𝑡 = 𝑏𝑖𝑡 − 𝑎𝑖𝑡 + 1 – duration of the iteration in days,

∙ 𝑛𝑖𝑡 – number of tickets6 in iteration,

∙ 𝑠𝑖𝑡 = 𝑛𝑖𝑡/𝑑𝑖𝑡 – average expected number of tickets closed per day7.

The values are demonstrated in the burndown chart in Figure 3.3.
The symptoms can be expressed as indicators (i.e., in terms of SPADe meta-
model):

1. i1 (potential “silence”) – represented by metric 𝑛− which is the number
of issues from an ALM tool within the iteration that changed their
status to any value similar to “closed” during a period of 𝑝− days; the
corresponding threshold is 𝑡1;

2. i2 (potential “cliff”) – represented by metric 𝑛+ which is the number
of issues within the iteration similarly changed (i.e., closed) during the

6also reffered to as issues, in SPADe terminology they are called Work Units
7the “actual” line in burndown chart

82

Chapter 3. Concept of the Thesis

period of 𝑝+ days directly following the 𝑝− period; the corresponding
threshold is 𝑡2.

The values 𝑝+, 𝑝− are parameters which need to be set.
The metrics 𝑛− and 𝑛+ each constitute a singular metric (𝑔1 and 𝑔2, respec-
tively) for the indicators 𝑖1 and 𝑖2, respectively. The detection criteria for
the indicators are then:

1. 𝑡𝑟(𝑖1) ⇔ ℎ1(𝑔1, 𝑡1), ℎ1 = (𝑔1 < 𝑡1) = (𝑛− < 𝑡1) and

2. 𝑡𝑟(𝑖2) ⇔ ℎ2(𝑔2, 𝑡2), ℎ2 = (𝑔2 > 𝑡2) = (𝑛+ > 𝑡2) .

The Collective Procrastination anti-pattern (𝑝) is detected if

𝑑(𝑝) ⇔ 𝑡𝑟(𝑖1) ∧ 𝑡𝑟(𝑖2) = true

for any day 𝑥 ∈ [𝑎𝑖𝑡, 𝑏𝑖𝑡], where 𝑖𝑡 is the inspected iteration.
The actual metric values are obtained as follows. For each day in the iteration
(∀𝑖 ∈ [𝑎𝑖𝑡, 𝑏𝑖𝑡]) we calculate:

∙ 𝑛𝑥 – the number of tickets from the iteration closed that day,

∙ 𝑛+ – the number of tickets from the iteration closed in 𝑝+ days, in-
cluding the currently investigated, looking forward

𝑛+ =
𝑚𝑖𝑛(𝑥+𝑝+−1,𝑏𝑖𝑡)∑︁

𝑗=𝑥

𝑛𝑗,

∙ 𝑛− – the number of tickets from the iteration closed in 𝑝− of previous
days

𝑛− =
𝑥−1∑︁

𝑘=𝑚𝑎𝑥(𝑥−𝑝−,𝑎𝑖𝑡)
𝑛𝑘.

The number of units closed during respective periods of time constituting
silence or cliff (i.e., the thresholds 𝑡1 and 𝑡2) are apparently dependent on
the size of the iteration, specifically, the number of issues planned for it. For
instance, 10 closed tasks do not amount to much significance in an iteration
with 250 tasks overall. But, they constitute a majority in an iteration of 15
tasks. Therefore, thresholds need to be adjusted for iteration size.
Silence threshold 𝑡1 is the fraction of the overall number of tickets in the
iteration low enough to qualify for the “little to no activity” in the first
condition when applied to tickets closed in a day. It is 𝑛𝑖𝑡 divided by a
“silence slow-down” parameter 𝑝𝑠, whose value needs to be set.

𝑡1 = 𝑛𝑖𝑡/𝑝𝑠

83

Chapter 3. Concept of the Thesis

Conversely, cliff threshold represents the steepness of the burndown line
recognized as the “abnormally dense effort” in the second condition. To
represent this, we must first multiply the expected daily average of closed
issues 𝑠𝑖𝑡 by a “cliff speed-up” parameter 𝑝𝑐, whose value needs to be set. The
resulting increased daily average must then be sustained over the period of 𝑝+
days. Thus, the final number of issues closed serving as the “cliff” threshold
is

𝑡2 = 𝑠𝑖𝑡 * 𝑝𝑐 * 𝑝+

From all the above, we see that, to perform the detection process, we need
to set the values for the above mentioned parameters 𝑝+, 𝑝−, 𝑝𝑠 and 𝑝𝑐. All
of them are positive, non-zero integers:

{𝑝+, 𝑝−, 𝑝𝑠, 𝑝𝑐} ⊂ N

The rationale behind the values is the following:

∙ 𝑝− needs to be high enough to represent a significantly long period of
silence and low enough to be able to detect the anti-pattern even in
the case of week long iterations. Taking into account the possibility of
occurrence of at least three-day weekends caused by national holidays,
the value should be in the range

𝑝− ∈ [4, 𝑑𝑖𝑡 − 1] .

∙ 𝑝+ needs to eliminate instances of short (at least one- or two-days-
long) bursts of effort in between two periods of silence and/or regular
velocity of work. The upper limit has to leave a period in the iteration
long enough to detect the previous silence period. Therefore,

𝑝+ ∈ [3, 𝑑𝑖𝑡 − 𝑝−] .

∙ 𝑝𝑠 needs to be high enough (and therefore, 1/𝑝𝑠 low enough) to be
reasonably considered to represent slow pace in relation to the average
tickets closed in a day (𝑠𝑖𝑡) and the length of the silence period (𝑝−).
The silence threshold should be considerably lower than tickets closed
with average velocity over the silence period, or

𝑡𝑠 ≪ 𝑠𝑖𝑡 * 𝑝− .

By using the above equations for 𝑡𝑠 and 𝑠𝑖𝑡, we arrive at

𝑝𝑠 ≫ 𝑑𝑖𝑡/𝑝− .

∙ 𝑝𝑐 needs to detect not the “return to regular tempo instances” but the
panicky rush to make up for lost time.

𝑝𝑐 > 1

84

Chapter 3. Concept of the Thesis

Figure 3.4: Collective Procrastination detected
For our preliminary experiments we have investigated 35 student projects
which have iteration length of one to three weeks, and so we have selected
the following parameter values:

𝑝+ = 3,

𝑝− = 6,

𝑝𝑠 = 10,

𝑝𝑐 = 2.

That means that in the last 6 days less than 10% of the overall tickets in
iteration was closed and the average of tickets closed daily in the following
3 days needs to be more than double the ideal average.

85

Chapter 3. Concept of the Thesis

Figure 3.5: Collective Procrastination not detected – indicators
As is apparent from the rationale, the values not only may be, but definitely
are dependent on the project context (metadata). Therefore, not only are
these purely experimental values for preliminary validation of the overall
approach, but will vary based on the analyzed projects.
Figure 3.4 shows the detection of the Collective Procrastination anti-pattern
by our experimental tools in the iteration from Figure 3.3. In Figure 3.4 the
lookbehind and lookahead values show the 𝑛− and 𝑛+ values, respectively.
From the chart it is apparent that detection criteria have been met only on
April 10th, which is exactly where the silence ends and cliff begins in Figure
3.3.
Figures 3.5 and 3.6 show the burndown and detection charts, respectively,
for another iteration where the anti-pattern was not detected. In Figure
3.6 the silence is present between March 27th and April 2nd but the

86

Chapter 3. Concept of the Thesis

subsequent cliff is not big enough. The cliff appears around April 5th and
6th, but is not preceded by silence with April 3rd breaking it. Consequently,
there are dates in Figure 3.5 where lookbehind falls below silence thresh-
old and lookahead rises over cliff threshold, but never both at the same time.

Figure 3.6: Collective Procrastination not detected – burndown

3.6.5 Advanced Approach

As mentioned in Section 3.6.1, some anti-patterns can be related. In extreme
case, this can mean that one anti-pattern is part of another in its entirety,
making it effectively the indicator. Conversely, some symptoms can have
only one indicator and be considered as anti-patterns themselves in different
context. The point being, there is no straight line between anti-pattern and
indicator. The distinction can depend solely on the point of view. This allows
for composition of indicators and anti-patterns into other anti-patterns, and
is the reason for including information about related anti-patterns in our
structure for their textual description (see Section 3.6.1).
Furthermore, some indicators can be used in other anti-patterns, only with
different threshold values. The values can also vary based on the context of
each individual project. The approach to operationalization should therefore
allow for easy reconfiguration of the threshold values.
There may also be several sets of metrics (variants) to express the same
indicator with the same validity. In fact, it is preferable to come up with such
variants whenever possible. The reasons are mainly the incompleteness of
data and inconsistencies in capabilities of different source tools (see Section
3.4.3). For example, a variant of an indicator can depend on overall time
spent on an activity. But not all tools provide a time logging feature and,
even if they do, not all project make use of it. Therefore, there is a benefit

87

Chapter 3. Concept of the Thesis

of having the option of detecting the indicator in another way.
Then, if indicator 𝑖 has 𝑛 variants 𝑖𝑣, it is triggered when any of its variants
is triggered:

𝑡𝑟(𝑖) =
𝑛⋃︁

𝑣=0
𝑡𝑟(𝑖𝑣).

The same applies to patterns because, as mentioned above, they themselves
can be viewed as indicators in their entirety, and can therefore also have
variants of the same validity. Pattern 𝑝 with 𝑚 variants 𝑝𝑣 is then detected
when any of its variants is detected:

𝑑(𝑝) =
𝑚⋃︁

𝑣=0
𝑡𝑟(𝑝𝑣).

While the detection approach described in Section 3.6.3 is a good start for
validating our research ideas, it leads to only binary (true/false) detection of
anti-patterns (i.e., each metric reaches its threshold or not, the logical values
are as expected or not, the anti-pattern is present or not). The complex real-
ity of software development projects is rarely this black and white. Therefore,
in the future a probabilistic approach based on e.g. BNs will be considered.
The principle of decomposing anti-patterns into indicators and further into
metrics is not too distant from the GQM method and the construction of
BNs.
The function ℎ normalizing the distance of a metric 𝑔 to its threshold 𝑡
would then be:

ℎ(𝑔, 𝑡) : R × R −→ [0, 1],

and the whole indicator 𝑖 composed of 𝑛 metrics could be reduced to a single
value, like this:

𝑖 =
𝑛∑︁

𝑗=0
𝑤𝑗 * ℎ𝑗(𝑔𝑗, 𝑡𝑗),

where 𝑤𝑗 is the weight of the metric 𝑔𝑗 expressing its significance.
The rule for triggering indicator 𝑖 would then be:

𝑡𝑟(𝑖) = (𝑖 > 𝑞),

where 𝑞 is a probability threshold for the indicator 𝑖.
Again, as mentioned above, patterns can be looked upon as more complex
indicators. So, a pattern 𝑝 of 𝑚 indicators 𝑖𝑘, each with its respective weight
𝑤𝑘 and its probability threshold 𝑞𝑘 is detected if:

𝑑(𝑝) = {[
𝑚∑︁

𝑘=0
𝑤𝑘 * (𝑖𝑘 − 𝑞𝑘)] > 𝑞𝑝},

88

Chapter 3. Concept of the Thesis

where 𝑞𝑝 is the probability threshold for the whole pattern.
The rule-based nature of comparing metrics to thresholds makes utilizing
methods from similar research described in Sections 2.7.4 and 2.7.2 also a
possibility. Further options of improving on the approach is the employment
of Natural Language Processing (NLP) approaches for textual data and
machine learning mechanisms.
The process of deriving the appropriate indicators from the textual descrip-
tion is presently reliant on manual execution. However, the need to stream-
line the process of operationalization of the anti-patterns for purposes of in-
dependently repeatable experimentation and eliminating the need to write
the potentially extensive SQL queries manually for each individual (anti-
)pattern compels us to consider options of partial automation. Research into
automatic pattern extraction from processes exists (e.g. [42, 58, 100]), but
is focused on mainly business processes using specific notations, like BPMN.
However, the indicators do not have to be transcribed directly into the SQL
query form.
We are also considering developing a specialized domain-specific language
(for similar approaches see Section 2.7.2) for describing the indicators and
anti-patterns which could be automatically processed. The language would
be more readable for humans and the descriptions using it would be trans-
lated into SQL. Alternatively, we are considering using XML Schema Def-
inition (XSD) schema to represent a pattern and XML data to represent
the project, making use of the XSD validation of XML. The language for
anti-patterns and indicators can then be a XSD schema that validates the
anti-pattern XSD schemas.

3.7 Presentation

The presentation layer of the experimental tool SPADe (see Section 3.2 and
3.1) has more functions than just enhancing the user experience with GUI
base interface.
Data consistency during the transfer into SPADe database through data
pumps is a major thread to validity of our approach. To mitigate this risk
we need to be able to check the obtained data by comparing it the source
tools data. This, however, is arduous and almost impossible effort when
simply manually checking data in each table in the database after each
instance of mining. Therefore, visual tools that facilitate easier validation
of the successful transfer of the mined data in bulk are almost a necessity.
The visual presentation of the data can also serve to manually confirm the
presence of a anti-pattern (or its symptoms) in the data (RQ3, see Chap-

89

Chapter 3. Concept of the Thesis

ter 1) before it is operationalized for automatic detection. This can in ideal
circumstances lead even to identification and subsequent description of pre-
viously not considered anti-patterns.
We are currently developing several tools for such validation, examining
different aspects of the data, such as aggregate metrics, charts, structures
of and relations among entities, temporal distribution of developer actions
and entities lifecycles. The prototype implementations of chart- and
timeline-based GUIs are shown in Figures 3.7 and 3.8, respectively.

Figure 3.7: Chart-based GUI of SPADe

Figure 3.8: Timeline visualization of SPADe data

90

Chapter 3. Concept of the Thesis

Moreover, the SPADe data can be visualized in a node-edge type graph in
Interactive Multimodal Graph Explorer (IMiGEr) [54], another tool being
developed at our department (see Figure 3.9). IMiGEr is able to process
and show data in an interactive interface provided they conform to simple,
but specific format input file format. Specifically, it works with JSON
files, which can represent either raw data, using a generic data format
and limiting the functionality of the tool to an extend, or various domain
specific data, which require a particular configuration first. The specific
configuration for SPADe data has already been developed.

Figure 3.9: Visualization of SPADe data in IMiGEr [54]

3.8 Metrics

To be able to address the possible link between anti-pattern detection and
product quality, as well as project success (RQ4, see Chapter 1), we have
to measure these project aspects. A multitude of research has been done
into software project and product measuring (see Section 2.8) and we will
have all the relevant project data available through mining the ALM tools.
This allows us to measure standard quality metrics, such as defect frequency
in time or relative to the product size, adherence to a plan, testing efforts,
average time to defect fix, remaining effort estimates, etc.
However, the challenge here is the selection of proper metrics both in general
and considering the specific context of a project (an issue also mentioned in
Section 2.8). Especially, if we want to compare different projects and their
quality, we have to use similar metrics to not introduce unnecessary biases
and threads to validity into our experiments. A related challenge is the

91

Chapter 3. Concept of the Thesis

determination of threshold values to be used.
The biggest issue in this aspect of our work is a certain measure of unreli-
ability of the data from ALM tools. As shown in [52], the classification of
tickets does not accurately reflect reality. And the same can be assumed in
all other aspects of ALM data entities. The indication is, that the data has to
be not only enhanced as described in Section 3.3.4 but cross-validated using
as much of the available information inferred from the data as possible. The
commit classification from PaStA project (see Section 2.4.4) should serve to
resolve one of these issues, as it does not depend on the information from the
developers (i.e., the assigned issue type) but rather on the resulting source
code and commit message analysis. Similar mechanisms improving the data
accuracy and minimizing the reliance on the developers input and the impact
of misrepresentation of reality should be applied as much as possible.
Though not as objective as the project data itself, other approaches to gaug-
ing project and product quality, such as development team member and user
surveys, can also be adopted. The results should nevertheless be confronted
with the outcomes of project data analysis.

92

Chapter 4

Future Work

The main objective of our work in the near future is to implement enough
of our approach into the SPADe experimental tool to be able to perform
preliminary experiments through which we intend to validate our approach
as a whole. While we will make an effort to obtain even data from in-house
projects from our industrial partners, we will first focus on OSS and student
projects data, which we have readily available. The main challenges after
implementation therefore being the selecting a representative enough dataset
and mining the projects, as well as transforming a substantive enough subset
of anti-patterns into the operationalized form. The validation of the data
transfer and the approach as a whole can also result in the need to expand
the SPADe metamodel to include more detailed data as well as broadening
the set of ALM tools mined, if it proves insufficient. Also, the metrics for
product and project quality measurements will be established.
We already identified several research groups with whom we can work to
mutually validate our approaches and enhance our respective research ef-
forts. Some we reached an agreement with about our future collaboration,
for instance, a research group from Chalmers University of Technology in
Gothenburg, Sweden[78, 77] and Vranić et al. from Bratislava [38], some we
already actively work with towards these goals [97]. An agreement on us-
ing our approach to validate the compliance of the process of our industrial
partners with the process models they use (e.g., from standard EN 50128
[19]) in the future has also been reached.

4.1 Possible Additional Uses

We are convinced that our research can yield results and experimental tools
with capabilities beyond our main intended usage described in Section 3.2.1.
Some of the following ones were already mentioned throughout the text of

93

Chapter 4. Future Work

this thesis concept.
The data pumps and unified metamodel for storing ALM data about projects
can be used for e.g., data migration between different ALM tools1. Separate
instance of the pumps and database can also be used by other researchers and
practitioners to gather data from their own set of projects and perform either
our anti-pattern detection, or any other analysis they need. Our dataset from
OSS projects in the unified database can be made public to perform different
analysis on by other users. Along with the anti-pattern catalogue, this may
serve as a knowledge base for all SE communities.
The approach and implementation as a whole can be used for education
purposes to showcase to students the mistakes they make, discussing the
options of addressing them and checking their progress. Since a process can
be described as a pattern and our anti-patterns are just harmful patterns,
the approach can be used to check the adherence of a project to a particular
process model, or to identify and describe the one used through practices
(patterns) employed. The same can be done with different policies (e.g., for
ALM tools usage, artifact content and format, etc.) used by company or
team, which can be described as patterns, checked or identified (i.e., reverse
engineered). We have already done the preliminary work on how to detect
architects in the project data, or check the appropriateness of their activities
in research conducted with our colleagues from OTH Regensburg [97].
Furthermore, the approach can be used for cross-project comparison, infer-
ring the future progress estimation (i.e., probability of success, project being
on schedule, product quality, etc.) of current project based on past similar
projects and anti-patterns in common. Lastly, new (anti-)patterns can be
discovered through studies of reoccurring phenomena in data from different
projects, provided the data set is large enough.

1Provided both mining and pushing data capabilities are implemented in the pumps.

94

Chapter 5

Conclusion

This work mainly concerns the detection of commonly and frequently oc-
curring bad practices (anti-patterns) in software development projects and
their management in data gathered from ALM tools and the impact of these
anti-patterns on project success and product quality.
The text has outlined the intended areas of our current work, described
the background and existing research in similar fields throughout the SE
community, presented the current state of our work, the adopted approaches
and future research directions.
We have thoroughly researched current state of the art in areas of software
development processes, ALM tools data mining, patterns and anti-patterns
and measuring of software projects and products. Though research shows
that work similar in some aspects to our own does exist, it also shows current
state-of-the-art is unable to fully investigate the relation between PM anti-
pattern occurrences in ALM project data and their impact on project success
and product quality.
Finding no good enough match in existing software process metamodels, we
have defined our own SPADe metamodel for storing project data from ALM
tools independent of both the source tool and process model utilized by a
particular project. We have implemented the database for ALM data based
on our metamodel, the data pumps for various source tools and several GUIs
for our experimental tool, SPADe. Through this implementation the feasi-
bility of data mining from various ALM tools as well as the structure of
the metamodel has been validated. We created two anti-pattern represen-
tations and performed experiments on their detection with some promising
preliminary results. Along with the metamodel, the additional benefit of our
work is the collection (catalogue) of PM anti-patterns enhanced with several
patterns garnered from our own experiences in SE education and practice.
Based on the designed model and experiments performed we conclude that it

95

Chapter 5. Conclusion

is possible to (1) represent project data from different methodologies in uni-
fied format (answering RQ1), (2) represent and detect at least some subset
of (anti-)patterns in the ALM data (partially answering RQ2 and RQ3).
Our work in the near future concerns steps to further validate our research,
such as the fully operational implementation of SPADe, operationalization
of selected anti-patterns, cross-validation with results from other researchers
and examination of the relationship between anti-patterns detection and
project and product quality metrics.
We are confident, that our work has significant potential in helping SE re-
searchers and practitioners in understanding the realities of the software
project development and the impact of PM missteps on software projects
and products. Furthermore, we see great potential in utilizing different parts
of our approach (dataset, metamodel, anti-pattern catalogue, SPADe imple-
mentation) for other research efforts, especially as it can be refocused from
the narrower set of anti-patterns (i.e., harmful patterns) to patterns in gen-
eral.

96

References

[1] C. Alexander. A pattern language: towns, buildings, construction.
Oxford University Press, Oxford, UK, 1977.

[2] S. W. Ambler. Process patterns: building large-scale systems using
object technology. Cambridge University Press, Cambridge, UK, 1998.

[3] S. W. Ambler. The “Broken Iron Triangle” Software Development
Anti-pattern. Online, 2012.
http://www.ambysoft.com/essays/brokenTriangle.html. Accessed
November 14th, 2018.

[4] S. W. Ambler. Common Role Anti-Patterns in Online Discussion
Forums. Online, 2014.
http://www.ambysoft.com/essays/discussionListAntiPatterns.html.
Accessed November 14th, 2018.

[5] S. W. Ambler. The “Change Prevention Proces” Anti-Pattern.
Online, 2014.
http://www.ambysoft.com/essays/changePrevention.html. Accessed
November 14th, 2018.

[6] S. W. Ambler and M. Lines. Disciplined Agile Delivery. IBM Press,
Indianapolis, IN, USA, 2012.

[7] S. W. Ambler, J. Nalbone, and M. Vizdos. The Enterprise Unified
Process: extending the Rational Unified Process. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2005.

[8] D. J. Anderson. Kanban: successful evolutionary change for your
technology business. Blue Hole Press, 2010.

[9] D. Aydinli. Software project management anti-patterns in innovation
projects. Master’s thesis, University of Tampere, 2015.

[10] D. Aydinli, E. Berki, T. Poranen, and I. Stamelos. Management
anti-patterns in IT innovation projects. In Proceedings of the 20th

97

References

International Academic Mindtrek Conference, pages 1–10, New York,
NY, USA, 2016. ACM.

[11] L. Bass, I. Weber, and L. Zhu. DevOps: A software architect’s
perspective. Addison-Wesley Professional, Boston, MA, USA, 2015.

[12] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, et al. Manifesto for agile software development, 2001.

[13] K. Beck and E. Gamma. Extreme programming explained: embrace
change. Addison-Wesley Professional, Boston, MA, USA, 2000.

[14] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining Git. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE International
Working Conference on, pages 1–10, Piscataway, NJ, USA, 2009.
IEEE.

[15] S. Bourk and P. Kong. An Introduction to the Nexus Framework.
Online, 2016.
https://www.scrum.org/resources/introduction-nexus-framework.
Accessed November 14th, 2018.

[16] P. Brada and P. Picha. Software Process Anti-pattern Catalogue. In
EuroPLoP ’19: Proceedings of the 24th European Conference on
Pattern Languages of Programs, New York, NY, USA, 2019. ACM.

[17] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray.
AntiPatterns: refactoring software, architectures, and projects in
crisis. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[18] W. J. Brown, H. W. McCormick, and S. W. Thomas. Anti-patterns
project management. John Wiley & Sons, Inc., New York, NY, USA,
2000.

[19] BSI. Railway applications. Communication, signalling and processing
systems. Software for railway control and protection systems., 2011.

[20] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
A system of patterns: Pattern-oriented software architecture. John
Wiley & Sons, Inc., New York, NY, USA, 1996.

[21] Š. Cais and P. Pícha. Identifying software metrics thresholds for
safety critical system. In The Third International Conference on
Informatics Engineering and Information Science (ICIEIS2014),
pages 67–78, Kowloon, Hong Kong, 2014. The Society of Digital
Information and Wireless Communications.

98

References

[22] G. Canfora, L. Cerulo, and M. Di Penta. Identifying Changed Source
Code Lines from Version Repositories. In Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007), volume 7, page 14, Washington, DC, USA, 2007.
IEEE Computer Society Press.

[23] J. P. Castellanos Ardila, B. Gallina, and F. U. L. Muram. Enabling
Compliance Checking against Safety Standards from SPEM 2.0
Process Models. In The Euromicro Conference on Software
Engineering and Advanced Applications, Piscataway, NJ, USA,
August 2018. IEEE.

[24] CHAOSS. GrimoireLab Tutorial. Online, 2018.
https://chaoss.github.io/grimoirelab-tutorial/. Accessed November
14th, 2018.

[25] M. Cohn. Make the Product Backlog DEEP. Online, 2009.
https://www.mountaingoatsoftware.com/blog/make-the-product-
backlog-deep. Accessed November 14th,
2018.

[26] D. Čubranić and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Proceedings of the 25th
international Conference on Software Engineering, pages 408–418,
Washington, DC, USA, 2003. IEEE Computer Society.

[27] W. Cunningham. Management Anti Pattern Road Map. Online,
2010. http://wiki.c2.com/?ManagementAntiPatternRoadMap.
Accessed November 14th, 2018.

[28] W. Cunningham. Anti Patterns Catalog. Online, 2013.
http://wiki.c2.com/?AntiPatternsCatalog. Accessed November 14th,
2018.

[29] C. W. H. Davis. Agile Metrics in Action. Manning Publications,
Shelter Island, NY, USA, 2015.

[30] R. Di Cosmo and S. Zacchiroli. Software Heritage: Why and How to
Preserve Software Source Code. In iPRES 2017: 14th International
Conference on Digital Preservation, pages 1–10, 2017.

[31] D. Draheim and L. Pekacki. Process-centric analytical processing of
version control data. In Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, pages 131–136, Piscataway,
NJ, USA, 2003. IEEE.

99

References

[32] R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, and
M. Philippsen. eSPEM – A SPEM extension for enactable behavior
modeling. In European Conference on Modelling Foundations and
Applications, pages 116–131, New York, NY, USA, 2010. Springer.

[33] V.-P. Eloranta, K. Koskimies, and T. Mikkonen. Exploring
ScrumBut -— An empirical study of Scrum anti-patterns.
Information and Software Technology, 74:194–203, 2016.

[34] V.-P. Eloranta, K. Koskimies, T. Mikkonen, and J. Vuorinen. Scrum
Anti-Patterns – An Empirical Study. In Software Engineering
Conference (APSEC), 2013 20th Asia-Pacific, volume 1, pages
503–510, Piscataway, NJ, USA, 2013. IEEE.

[35] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International
Conference on, pages 23–32, Piscataway, NJ, USA, 2003. IEEE.

[36] W. A. Florac, R. E. Park, and A. D. Carleton. Practical software
measurement: Measuring for process management and improvement.
Technical report, Carnegie-Mellon University Pittsburgh, PA,
Software Engineering Institute, 1997.

[37] J. C. Freudenbegr. Certified Scrum Master Training. Technical
report, Scrum Alliance, Inc., 2013.

[38] T. Frtala and V. Vranic. Animating organizational patterns. In
Cooperative and Human Aspects of Software Engineering (CHASE),
2015 IEEE/ACM 8th International Workshop on, pages 8–14,
Piscataway, NJ, USA, 2015. IEEE.

[39] E. Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, Chennai, India, 1995.

[40] L. García-Borgoñon, M. A. Barcelona, J. A. García-García, M. Alba,
and M. J. Escalona. Software process modeling languages: A
systematic literature review. Information and Software Technology,
56(2):103–116, 2014.

[41] D. German and A. Mockus. Automating the measurement of open
source projects. In Proceedings of the 3rd workshop on open source
software engineering, pages 63–67, Cork, Ireland, 2003. University
College Cork.

[42] M. F. Gholami, P. Jamshidi, and F. Shams. A procedure for
extracting software development process patterns. In Computer

100

References

Modeling and Simulation (EMS), 2010 Fourth UKSim European
Symposium on, pages 75–83, Piscataway, NJ, USA, 2010. IEEE.

[43] Google. GitHub Data | BigQuery | Google Cloud. Online, 2018.
https://cloud.google.com/bigquery/. Accessed November 14th, 2018.

[44] G. Grambow, R. Oberhauser, and M. Reichert. Contextual injection
of quality measures into software engineering processes. International
Journal on Advances in Software, 4(1&2):76–99, 2011.

[45] G. Grambow, R. Oberhauser, and M. Reichert. Event-driven
exception handling for software engineering processes. In
International Conference on Business Process Management, pages
414–426, New York, NY, USA, 2011. Springer.

[46] G. Grambow, R. Oberhauser, and M. Reichert. Towards a Workflow
Language for Software Engineering. In 10th Int. Conf. on Software
Engineering (SE’11), Calgary, Alberta, Canada, February 2011.
ACTA Press.

[47] G. Grambow, R. Oberhauser, and M. Reichert. Automated software
engineering process assessment: supporting diverse models using an
ontology. International Journal on Advances in Software, 6(1 &
2):213–224, 2013.

[48] Z. Han, P. Gong, L. Zhang, J. Ling, and W. Huang. Definition and
detection of control-flow anti-patterns in process models. In
Computer Software and Applications Conference Workshops
(COMPSACW), 2013 IEEE 37th Annual, pages 433–438,
Piscataway, NJ, USA, 2013. IEEE.

[49] R. Hebig, G. Gabrysiak, and H. Giese. Towards patterns for
mde-related processes to detect and handle changeability risks. In
Proceedings of the International Conference on Software and System
Process, pages 38–47, Piscataway, NJ, USA, 2012. IEEE Press.

[50] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang,
R. Holmes, and M. W. Godfrey. The MSR Cookbook: Mining a
Decade of Research. In Proceedings of the 10th Working Conference
on Mining Software Repositories, pages 343–352, Piscataway, NJ,
USA, 2013. IEEE Press.

[51] S. Henninger and V. Corrêa. Software pattern communities: Current
practices and challenges. In Proceedings of the 14th Conference on
Pattern Languages of Programs, page 14, New York, NY, USA, 2007.
ACM.

101

References

[52] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 2013
international conference on software engineering, pages 392–401,
Piscataway, NJ, USA, 2013. IEEE Press.

[53] K. Herzig and A. Zeller. Mining bug data. In Recommendation
Systems in Software Engineering, pages 131–171. Springer, New
York, NY, USA, 2014.

[54] L. Holy, P. Picha, R. Lipka, and P. Brada. Software Engineering
Projects Analysis using Interactive Multimodal Graph Explorer –
IMiGEr. In Proceedings of the 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 3: IVAPP, pages 330–337, Setubal, Portugal,
2019. SciTePress.

[55] S. Jablonski, B. Volz, and S. Dornstauder. A meta modeling
framework for domain specific process management. In Computer
Software and Applications, 2008. COMPSAC’08. 32nd Annual IEEE
International, pages 1011–1016, Piscataway, NJ, USA, 2008. IEEE.

[56] C. Jensen and W. Scacchi. Data mining for software process
discovery in open source software development communities. In Proc.
Workshop on Mining Software Repositories, pages 96–100, Stevenage,
UK, 2004. IET.

[57] A. Jermakovics, A. Sillitti, and G. Succi. Mining and visualizing
developer networks from version control systems. In Proceedings of
the 4th International Workshop on Cooperative and Human Aspects
of Software Engineering, pages 24–31, New York, NY, USA, 2011.
ACM.

[58] N. Jlaiel, K. Madhbouh, and M. B. Ahmed. A semantic approach for
automatic structuring and analysis of software process patterns.
International Journal of Computer Applications, 54(15):24–31, 2012.

[59] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer. Classifying
developers into core and peripheral: An empirical study on count and
network metrics. In Software Engineering (ICSE), 2017 IEEE/ACM
39th International Conference on, pages 164–174, Piscataway, NJ,
USA, 2017. IEEE.

[60] M. Joblin, S. Apel, and W. Mauerer. Evolutionary trends of
developer coordination: A network approach. Empirical Software
Engineering, 22(4):2050–2094, 2017.

102

References

[61] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. From
developer networks to verified communities: a fine-grained approach.
In Proceedings of the 37th International Conference on Software
Engineering – Volume 1, pages 563–573, Piscataway, NJ, USA, 2015.
IEEE Press.

[62] D. Johnston. Agile Anti-Patterns: A Systems Thinking Approach.
Online, 2019. https://www.infoq.com/articles/agile-anti-patterns-
systems-thinking/. Accessed June 20th,
2019.

[63] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The promises and perils of mining GitHub. In
Proceedings of the 11th working conference on mining software
repositories, pages 92–101, New York, NY, USA, 2014. ACM.

[64] M. Khaari and R. Ramsin. Process patterns for aspect-oriented
software development. In Engineering of Computer Based Systems
(ECBS), 2010 17th IEEE International Conference and Workshops
on, pages 241–250, Piscataway, NJ, USA, 2010. IEEE.

[65] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. BDTEX:
A GQM-based Bayesian approach for the detection of antipatterns.
Journal of Systems and Software, 84(4):559–572, 2011.

[66] B. Kitchenham and E. Mendes. Software productivity measurement
using multiple size measures. IEEE Transactions on Software
Engineering, 30(12):1023–1035, 2004.

[67] E. Kouroshfar, H. Y. Shahir, and R. Ramsin. Process patterns for
component-based software development. In International Symposium
on Component-Based Software Engineering, pages 54–68, New York,
NY, USA, 2009. Springer.

[68] P. Kroll and P. Kruchten. The Rational Unified Process made easy:
A practitioner’s guide to the RUP. Addison-Wesley Professional,
Boston, MA, USA, 2003.

[69] P. Kroll and B. MacIsaac. Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Pearson Education, London, UK,
2006.

[70] Y. Kuranuki and K. Hiranabe. Antipractices: Antipatterns for XP
practices. In Agile Development Conference, 2004, pages 83–86,
Piscataway, NJ, USA, 2004. IEEE.

103

References

[71] P. A. Laplante and C. J. Neill. Antipatterns: Identification,
Refactoring, and Management. Auerbach Publications, New York,
NY, USA, 2005.

[72] C. Y. Laporte, R. V. O’Connor, and G. Fanmuy. International
systems and software engineering standards for very small entities.
CrossTalk – The Journal of Defense Software Engineering,
26(3):28–33, 2013.

[73] Livejournal. Antipatterns. Online, 2008.
https://thespleen.livejournal.com/109833.html. Accessed November
14th, 2018.

[74] N. Malik. Project Management AntiPattern – PMs who write specs.
Online, 2006.
https://blogs.msdn.microsoft.com/nickmalik/2006/01/03/project-
management-antipattern-pms-who-write-specs/. Accessed November
14th, 2018.

[75] N. Malik. Project Management Antipattern 2: Pardon My Dust.
Online, 2016.
https://blogs.msdn.microsoft.com/nickmalik/2006/01/19/project-
management-antipattern-2-pardon-my-dust/. Accessed November
14th, 2018.

[76] T. Martınez-Ruiz, F. Garcıa, M. Piattini, and J. Münch. Modelling
software process variability: an empirical study. IET software,
5(2):172–187, 2011.

[77] A. Martini and J. Bosch. A multiple case study of continuous
architecting in large agile companies: current gaps and the CAFFEA
framework. In Software Architecture (WICSA), 2016 13th Working
IEEE/IFIP Conference on, pages 1–10, Piscataway, NJ, USA, 2016.
IEEE.

[78] A. Martini, L. Pareto, and J. Bosch. Towards introducing agile
architecting in large companies: the CAFFEA framework. In
International Conference on Agile Software Development, pages
218–223, New York, NY, USA, 2015. Springer.

[79] X.-x. Meng, Y.-s. Wang, L. Shi, and F.-j. Wang. A process pattern
language for agile methods. In 2013 20th Asia-Pacific Software
Engineering Conference (APSEC), pages 374–381, Piscataway, NJ,
USA, 2007. IEEE.

[80] I. Mitchell. Agile Patterns. Online, 2019.
https://dzone.com/refcardz/agile-patterns. Accessed June 20th, 2019.

104

References

[81] A. Mockus and L. G. Votta. Identifying Reasons for Software
Changes using Historic Databases. In Proceedings of International
Conference on Software Maintenance, pages 120–130, Washington,
DC, USA, 2000. IEEE Computer Society Press.

[82] S. Morasca and G. Russo. An empirical study of software
productivity. In Computer Software and Applications Conference,
2001. COMPSAC 2001. 25th Annual International, pages 317–322,
Piscataway, NJ, USA, 2001. IEEE.

[83] C. J. Neill. Effective Teams |
Management Antipatterns – how NOT to manage teams. Online, 2018.
http://www.personal.psu.edu/cjn6/Personal/Effective%20Teams.htm.
Accessed November 14th, 2018.

[84] D. Nicolette. Software development metrics. Manning Publications,
Shelter Island, NY, USA, 2015.

[85] R. Oberhauser. Leveraging Semantic Web Computing for
Context-Aware Software Engineering Environments. In Semantic
Web. IntechOpen, London, UK, 2010.

[86] Object Management Group. Software & Systems Process
Engineering Meta-Model Specification, 2008.

[87] Object Management Group. Business Process Model and Notation
(BPMN), 2011.

[88] T. Ohno. Toyota production system: beyond large-scale production.
CRC Press, Boca Raton, FL, USA, 1988.

[89] OSLC. Open Services for Lifecycle Collaboration. Online, 2018.
https://open-services.net/. Accessed November 14th, 2018.

[90] F. Palma, N. Moha, and Y.-G. Guéhéneuc. Specification and
detection of business process antipatterns. In International
Conference on E-Technologies, pages 37–52, Cham, Switzerland,
2015. Springer International Publishing.

[91] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A.
Fontana, and R. Oliveto. How do community smells influence code
smells? In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pages 240–241, New
York, NY, USA, 2018. ACM.

[92] M. Perkusich, G. Soares, H. Almeida, and A. Perkusich. A procedure
to detect problems of processes in software development projects

105

References

using Bayesian networks. Expert Systems with Applications,
42(1):437–450, 2015.

[93] K. Petersen, P. Roos, S. Nyström, and P. Runeson. Early
identification of bottlenecks in very large scale system of systems
software development. Journal of software: Evolution and Process,
26(12):1150–1171, 2014.

[94] P. Picha and P. Brada. Empirical Research in Software Engineering:
A Literature Review. In The Ninth International Conference on
Software Engineering Advances, volume 7, pages 209–214,
Wilmington, DE, USA, 2014. IARIA.

[95] P. Pícha and P. Brada. ALM tool data usage in software process
metamodeling. In Software Engineering and Advanced Applications
(SEAA), 2016 42th Euromicro Conference on, pages 1–8, Piscataway,
NJ, USA, 2016. IEEE.

[96] P. Picha and P. Brada. Software Process Anti-pattern Detection in
Project Data. In EuroPLoP ’19: Proceedings of the 24th European
Conference on Pattern Languages of Programs, New York, NY, USA,
2019. ACM.

[97] P. Pícha, P. Brada, R. Ramsauer, and W. Mauerer. Towards
Architect’s Activity Detection through a Common Model for Project
Pattern Analysis. In Software Architecture Workshops (ICSAW),
2017 IEEE International Conference on, pages 175–178, Piscataway,
NJ, USA, 2017. IEEE.

[98] R. Ramsauer, D. Lohmann, and W. Mauerer. Observing Custom
Software Modifications: A Quantitative Approach of Tracking the
Evolution of Patch Stacks. In Proceedings of the 12th International
Symposium on Open Collaboration, page 4, New York, NY, USA,
2016. ACM.

[99] C. Raptopoulou, E. Berki, T. Poranen, I. Stamelos, and L. Aggelis.
Management anti-patterns in finnish software industry. In
Proceedings of the SQM/INSPIRE 2012 Conference, pages 173–187,
Tampere, Finland, 2012. School of Information Sciences of the
University of Tampere and the BCS.

[100] J. Roa, E. Reynares, M. L. Caliusco, and P. Villarreal. Towards
Ontology-Based Anti-patterns for the Verification of Business
Process Behavior. In New Advances in Information Systems and
Technologies, pages 665–673. Springer, New York, NY, USA, 2016.

106

References

[101] W. W. Royce. Managing the development of large software systems:
concepts and techniques. In Proceedings of the 9th international
conference on Software Engineering, pages 328–338, Washington,
DC, USA, 1987. IEEE Computer Society Press.

[102] F. B. Ruy, R. de Almeida Falbo, M. P. Barcellos, and G. Guizzardi.
An Ontological Analysis of the ISO/IEC 24744 Metamodel. In
Formal Ontology in Information Systems, pages 330–343,
Amsterdam, Netherlands, 2014. IOS Press.

[103] Scaled Agile, Inc. Scaled Agile Framework – SAFe for Lean
Development. Online, 2018.
https://www.scaledagileframework.com/. Accessed November 14th,
2018.

[104] D. Settas, S. Bibi, P. Sfetsos, I. Stamelos, and V. Gerogiannis. Using
bayesian belief networks to model software project management
antipatterns. In Software Engineering Research, Management and
Applications, 2006. Fourth International Conference on, pages
117–124, Piscataway, NJ, USA, 2006. IEEE.

[105] D. Settas and I. Stamelos. Towards a dynamic ontology based
software project management antipattern intelligent system. In Tools
with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE
International Conference on, volume 1, pages 186–193, Piscataway,
NJ, USA, 2007. IEEE.

[106] D. Settas and I. Stamelos. Using Ontologies to Represent Software
Project Management Antipatterns. In Proceedings of the Nineteenth
International Conference on Software Engineering & Knowledge
Engineering (SEKE’2007), pages 604–609, Skokie, IL, USA, 2007.
Knowledge Systems Institute Graduate School.

[107] D. L. Settas, G. Meditskos, I. G. Stamelos, and N. Bassiliades.
SPARSE: A symptom-based antipattern retrieval knowledge-based
system using Semantic Web technologies. Expert Systems with
Applications, 38(6):7633–7646, 2011.

[108] P. Silva, A. M. Moreno, and L. Peters. Software Project
Management: Learning from Our Mistakes. IEEE Software,
32(3):40–43, May–June 2015.

[109] P. Smiari, S. Bibi, and I. Stamelos. Knowledge acquisition during
software development: Modeling with anti-patterns. In Synergies
Between Knowledge Engineering and Software Engineering, pages
75–92. Springer, New York, NY, USA, 2018.

107

References

[110] Sourcemaking.com. AntiPatterns. Online, 2018.
https://sourcemaking.com/antipatterns. Accessed November 14th,
2018.

[111] I. Stamelos. Software project management anti-patterns. Journal of
Systems and Software, 83(1):52–59, 2010.

[112] J. V. Sutherland and K. Schwaber. The Scrum methodology. In
Business object design and implementation: OOPSLA workshop,
Londen, UK, 1995. Springer-Verlag London.

[113] L. Tahvildari and K. Kontogiannis. A metric-based approach to
enhance design quality through meta-pattern transformations. In
Seventh European Conference on Software Maintenance and
Reengineering, 2003. Proceedings., pages 183–192, Piscataway, NJ,
USA, 2003. IEEE.

[114] H. Takeuchi and I. Nonaka. The new new product development
game. Harvard business review, 64(1):137–146, 1986.

[115] D. A. Tamburri, P. Lago, and H. van Vliet. Uncovering Latent Social
Communities in Software Development. IEEE Software, 30(1):29–36,
2013.

[116] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman.
Discovering Community Patterns in Open-Source: A Systematic
Approach and Its Evaluation. Empirical Software Engineering,
23:1–49, 2018.

[117] A. H. M. Ter Hofstede, C. Ouyang, M. La Rosa, L. Song, J. Wang,
and A. Polyvyanyy. APQL: A process-model query language. In
Asia-Pacific Conference on Business Process Management, pages
23–38, Cham, Switzerland, 2013. Springer International Publishing.

[118] The LeSS Company B.V. Overview – Large Scale Scrum (LeSS).
Online, 2018. https://less.works/. Accessed November 14th, 2018.

[119] The Linux Foundation. Home – CHAOSS. Online, 2018.
https://chaoss.community/. Accessed November 14th, 2018.

[120] W. M. P. van der Aalst. What makes a good process model?
Software & Systems Modeling, 11(4):557–569, 2012.

[121] W. Wang, J. Yang, and P. S. Yu. Meta-patterns: Revealing hidden
periodic patterns. In Proceedings 2001 IEEE International
Conference on Data Mining, pages 550–557, Piscataway, NJ, USA,
2001. IEEE.

108

References

[122] Wikipedia. Anti-Pattern. Online, 2018.
https://en.wikipedia.org/wiki/Anti-pattern. Accessed November
14th, 2018.

[123] P. Wisse. Metapattern: context and time in information models.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[124] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for
fine-grained analysis. In Proceedings of the First International
Workshop on Mining Software Repositories, pages 2–6, New York,
NY, USA, 2004. ACM.

[125] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining
version histories to guide software changes. IEEE Transactions on
Software Engineering, 31(6):429–445, 2005.

109

List of Abbreviations

AGQM Agile GQM. 36

ALM Application Lifecycle Management. 5, 7, 8, 25, 26, 29–32, 41, 43, 45,
51, 53, 55–61, 63, 64, 66–68, 70–76, 79, 80, 82, 91–96

AOSD Aspect-Oriented Software Development. 51

API Application Programming Interface. 34, 38, 46, 74, 75

APPL Agile PPL. 50

APQL A Process-model Query Language. 50

BDTEX Bayesian Detection Expert. 52

BN Bayesian (Belief) Network. 41, 51, 52, 88

BPMN Business Process Model and Notation. 44, 51, 52, 59, 89

CAPDL Control-flow Anti-Pattern Description Language. 51

CBSE Component Based Software Engineering. 51

CHAOSS Community Health Analytics Open Source Software project. 31,
32, 57

CLI command line interface. 57

CLM Collaborative Lifecycle Management. 30

CMMI Capability Maturity Model Integration. 50

CoSEEEK Context-aware Software Engineering Environment Event-
driven frameworK. 35–37, 50, 60, 64, 77, 114

CVS Concurrent Version System. 26, 33, 34, 39

DAD Disciplined Agile Delivery. 23

110

List of Abbreviations

DEEP Detailed appropriately, Emergent, Estimated, and Prioritized. 125

eSPEM enactable SPEM. 43

ETL Extract-Transform-Load. 33, 56, 75

EUP Enterprise Unified Process. 17

GQM Goal-Question-Metric. 51–53, 88

GUI graphical user interface. 33, 57, 64, 74, 75, 89, 90, 95, 114

IMiGEr Interactive Multimodal Graph Explorer. 91, 115

JIT just-in-time. 22, 23

JSON JavaScript Object Notation. 31, 51, 74, 91

LeSS Large Scale Scrum. 20

LOC lines of code. 33

LSD Lean Software Development. 22

MSR Mining Software Repositories. 8, 45, 73, 75

NLP Natural Language Processing. 89

OSLC Open Services for Lifecycle Collaboration. 43, 59, 60

OSS Open-Source Software. 6, 27, 29, 31–35, 37–39, 45, 53, 73–75, 93, 94

OTH Osterbayerische Technische Hochschule. 35, 94

OWL Web Ontology Language. 41

PaStA Patch Stack Analysis. 35, 53, 67, 73, 77, 92

PM Project Management. 5, 7, 8, 13, 27, 41, 43, 46, 52, 57, 76, 77, 80, 95,
96

PMMM Process Meta Meta Model. 44

PPL Pattern Process Language. 50

PROMAISE The Software Project Management Antipattern Intelligent
System. 41, 50, 77

111

List of Abbreviations

RDBMS relational database management system. 80

REST representational state transfer. 46, 74

RMC Rational Method Composer. 42

ROSE Reengineering of Software Evolution. 45

RQ research question. 7, 8, 57, 77, 89, 91, 96

RTC Rational Team Concert. 27, 60

RUP Rational Unified Process. 16, 17, 23, 61, 78

SAFe Scaled Agile Framework. 20

SE Software Engineering. 6, 10, 13, 20, 36, 41, 55, 60, 65, 67, 75, 94–96

SEMDM Software Engineering Metamodel for Development Methodolo-
gies. 43, 44

SEWL Software Engineering Workflow Language. 35, 50

SOAP Simple Object Access Protocol. 39

SPADe Software Process Anti-patterns Detector. 55, 56, 58–61, 65, 72, 74,
79, 82, 89–91, 93, 95, 96, 114, 115

SPARSE Symptom-based Antipattern Retrieval Knowledge based System
Using Semantic Web Technologies. 41, 50, 77

SPEM Software & Systems Process Engineering Meta-Model. 42–44, 51,
58, 61

SPI Software Process Improvement. 7, 8, 35, 52, 57

SQL Structured Query Language. 33, 35, 80, 81, 89

SVN Subversion. 7, 26, 32, 60, 73, 75

UI user interface. 46

UML Unified Modeling Language. 12, 39, 43, 51

UP Unified Process. 16, 17, 23

VCS Version Control System. 7, 26–29, 33, 35, 36, 45, 60–62, 64, 72, 73,
125

vSPEM variability SPEM. 43

112

List of Abbreviations

XML Extensible Markup Language. 44, 51, 74, 89

XP eXtreme Programming. 20, 22

XSD XML Schema Definition. 89

YOSHI Yielding Open-Source Health Information. 37, 38, 73, 114

113

List of Figures

2.1 Unified Process phases and disciplines [68] 10
2.2 Waterfall process model [101] 15
2.3 Enterprise Unified Process phases and disciplines [7] 17
2.4 Scrum process model [37] . 18
2.5 Extreme Programming practices [13] 21
2.6 Disciplined Agile Delivery process model [6] 24
2.7 GrimoireLab architecture [24] 30
2.8 GrimoireLab’s Kitbiter (Kibana) dashboards [24] 32
2.9 Data model of Bloof [31] . 33
2.10 Conceptual architecture of CoSEEEK [44] 36
2.11 YOSHI high-level architecture [116] 38
2.12 Domain model of Hipikat [26] 40
2.13 Hipikat architecture [26] . 40
2.14 Software process modeling languages overview [40] 42
2.15 A Process Pattern Language for agile methods [79] 49
2.16 Process Pattern Language primary elements relationships [79] 50

3.1 Overall architectural concept of SPADe 56
3.2 SPADe unified domain metamodel 58
3.3 Burndown chart with calculated values 82
3.4 Collective Procrastination detected 85
3.5 Collective Procrastination not detected – indicators 86
3.6 Collective Procrastination not detected – burndown 87
3.7 Chart-based GUI of SPADe 90

114

List of Figures

3.8 Timeline visualization of SPADe data 90
3.9 Visualization of SPADe data in IMiGEr [54] 91

115

List of Tables

3.1 Classification schema for Work Unit priority 66
3.2 Classification schema for Work Unit severity 66
3.3 Classification schema for Work Unit status 67
3.4 Classification schema for Work Unit resolution 69
3.5 Classification schema for Work Unit relations 70
3.6 Classification schema for Role name 71
3.7 Collective Procrastination – anti-pattern from experience . . 78

A.1 Project management anti-patterns gathered from literature . 118

B.1 Project management anti-patterns gathered from experience 125

C.1 Nine Pregnant Women – anti-pattern from experience 127

116

Appendices

117

Appendix A

Project Management
Anti-patterns from Literature

Table A.1: Project management anti-patterns gathered from literature

Anti-pattern Name Also Known As Sources
Absentee Manager - [71, 73, 108]
An Athena - [27]
Analysis Paralysis Process Mismatch,

Waterfall
[9, 17, 27, 99, 110, 122]

Anybody Syndrome - [70]
Appointed Team - [27, 108]
Architects Don’t Code - [27]
Architects Play Golf - [28]
Band Aid Buff And Shine A

Rusty Car, Cosmetic
Surgery, The Quick
Fix

[27]

Bicycle Shed - [122]
Big Requirements
Documentation

- [33, 34]

Black-Cloud - [116]
Blame Storming - [27]
Blamer - [4]
Bleeding Edge - [122]
Blowhard Jamboree - [9, 17, 27, 99, 110]
Bottleneck Radio-silence [116]
Broken Iron Triangle - [3]
Brooks’ Law - [18, 71, 99, 108, 122]
Brownie’s Works - [70]

118

Appendix A. Project Management Anti-patterns from Literature

Business As Usual No Sprint Retrospec-
tive

[33]

Bystander Apathy - [122]
Cage Match Negotia-
tor

- [73]

Car Park Syndrome - [28]
Carbon Copy His
Manager

- [27]

Cargo Cult - [28]
Cart Before The Horse - [122]
Cash Cow - [122]
Change Prevention
Process

- [5]

Confusion Of Objec-
tives

- [27]

Copy And Paste Pro-
gramming

- [122]

Corncob Corporate Shark,
Loose Cannon, Third-
World Information
Systems Troubles

[9, 17, 27, 99, 110]

Creation Dependence - [49]
Cryptocracy - [28]
Customer Caused Dis-
ruption

- [33, 34]

Customer Product
Owner

- [33, 34]

Death By Planning Detailitis Plan [9, 17, 27, 99, 108, 110]
Death March - [17, 122]
Decision By Arith-
metic

Management By
Numbers, Manage-
ment By Objectives

[27, 122]

Dependency Hell - [122]
Design By Committee - [122]
Discordant Reward
Mechanisms

- [27]

DLL Hell - [122]
Doppelganger - [71, 73]
Dry Waterhole - [27, 108]
Egalitarian Compen-
sation

- [27]

Email Is Dangerous Email Flaming [9, 17, 27, 99, 110]

119

Appendix A. Project Management Anti-patterns from Literature

Emperor’s New
Clothes

- [27, 71, 99]

Empire Building - [27]
Escalation Of Com-
mitment

- [122]

Every Fool Their Own
Tool

- [122]

Extension Conflict - [122]
False Economy - [28]
False Surrogate End-
point

- [27]

Fear Of Success - [9, 17, 99]
Feature Creep Requirement Creep,

Scope Creep
[110, 122]

Fire Drill - [17, 108, 110]
Fruitless Hoops - [71, 73]
Fungible Project Man-
ager

- [27]

Fungible Teams - [27]
Geographically Dis-
tributed Development

- [28]

Give Me Estimates
Now

- [27]

Glass Case Plan - [108]
Glass Wall - [27]
Golden Child - [73]
Groupthink - [122]
Guilding The Lily - [99]
Half Done Is Enough - [27]
Headless Chicken - [71, 73]
Heir Apparent - [27]
Hero Culture Dragon Slaying [27]
Hidden Requirements - [27, 99]
Hours In Progress
Monitoring

- [33]

Hypocritical Preacher - [4]
Idiot Proof Process - [27]
If It Is Working Don’t
Change

If It Ain’t Broke Don’t
Fix It, You Aren’t
Gonna Need It

[27]

Improbability Factor - [122]

120

Appendix A. Project Management Anti-patterns from Literature

Inappropriate Techni-
cal Objective

- [27]

Indifferent Specialist - [4]
Inflexible Plan - [18, 108]
Intellectual Violence - [17, 110]
Invented Here - [122]
Invisible Progress - [33, 34]
Irrational Manage-
ment

- [9, 17, 71, 108, 110]

It’s Not Rocket Sci-
ence

- [27]

JAR Hell - [122]
Leader Not Manager - [71, 73, 83, 108]
Leading Request Paved With Good In-

tentions, Wild Goose
Chase

[27]

List Dictator - [4]
Lone-Wolf - [116]
Long Or Non-Existent
Feedback Loops

- [33]

Manager Controls
Process

- [27]

Manager Not Leader - [71, 73, 83]
Managerial Cloning - [71, 73]
Metric Abuse Bad Management By

Metrics, Metric Mad-
ness

[71, 73, 111]

Micromanagement - [18, 108, 122]
Mind Reader - [4]
Moral Hazard - [122]
Mr. Nice Guy - [71, 73]
Mushroom Manage-
ment

- [27, 71, 108, 122]

Myopic Delivery - [18, 108]
Net Negative Produc-
ing Programmer

- [27]

Ninety-Ninety Rule - [122]
Non-Creative Intelli-
gence

- [10, 111]

Not Invented Here Reinventing The
(Square) Wheel

[122]

Online Backstabber - [4]

121

Appendix A. Project Management Anti-patterns from Literature

Organisational Silo - [116]
Ostrich - [73]
Overengineering - [122]
Pairing Prison - [70]
Pardon My Dust - [75]
Peter Principle - [122]
Plate Spinning - [71]
Plug Compatible
Interchangeable Engi-
neers

- [27]

PMs Who Write Specs - [74]
Premature Optimiza-
tion

- [122]

Process Disintegration - [18, 108]
Product Owner With-
out Authority

- [33, 34]

Programming By Per-
mutation

Programming by Acci-
dent, Programming by
Coincidence

[122]

Project Mismanage-
ment

- [9, 17, 108, 110]

Proletariat Hero - [71, 73, 108]
Rising Upstart - [71, 73, 108]
Road To Nowhere - [71, 108]
Scapegoat - [27]
Seagull Management Hit and Run Manage-

ment
[27, 73, 122]

Selling A Product You
Can’t Realize

- [27]

Semi-Functional
Teams

- [33, 34]

Shaken But Not
Stirred

- [104]

Shoot The Messenger Blame The Messen-
ger, Kill The Mes-
senger, Visibility Gets
You Shot

[27]

Silver Bullet All You Have Is a
Hammer, Golden
Hammer, One Trick
Pony

[71, 108, 122]

Smoke And Mirrors - [9, 17, 99, 110, 122]

122

Appendix A. Project Management Anti-patterns from Literature

Software Merger - [28]
Spammer - [4]
Specify Nothing - [27]
Spineless Executive - [71, 73]
Standing On The
Shoulders Of Midgets

- [27]

Stovepipe Or Silos - [122]
Subsequent Adjust-
ment

- [34, 49]

Tester Driven Devel-
opment

- [122]

Testing In Next Sprint - [33, 34]
The Brawl - [18, 108]
The Customer - [99]
The Customers Are
Idiots

Users Are Idiots [27]

The Domino Effect - [18, 108]
The Feud Dueling Corncobs,

Territorial Managers,
Turf Wars

[9, 17, 110]

The Process Is The
Deliverable

- [27]

They Understood Me - [27]
Three Headed Knight - [71, 73]
Thrown Over The
Wall

- [9, 17, 27, 110]

Too Long Sprint - [33, 34]
Train The Trainer - [27, 99]
True Believer Born Again Developer [4]
Typecasting - [122]
Ultimate Weapon - [71, 73, 108]
Unjustified Criticizer - [4]
Unknown Poster - [4]
Unordered Product
Backlog

- [33, 34]

Untested But Fin-
ished

- [28]

Varying Sprint Length - [33]
Vendor Lock-In - [122]
Vietnam War - [28]
Viewgraph Engineer-
ing

- [9, 17, 27, 110]

123

Appendix A. Project Management Anti-patterns from Literature

Warm Bodies Deadwood, Mythical
Man Month, Seat
Warmers

[27, 71, 73, 99]

We Are Idiots - [27]
Work Estimates Given
To Teams

- [33, 34]

Yes Man - [73]
Yet Another Meeting
Will Solve It

- [27, 99]

Yet Another Program-
mer

- [27]

Yet Another Thread
Will Solve It

- [28]

124

Appendix B

Project Management
Anti-patterns from Experience

Table B.1: Project management anti-patterns gathered from experience

Anti-pattern Name Description
Artifact M.I.A. an important artifact that should already

exist is nowhere to be found
Backlog Not DEEP not using the DEEP1 strategy (i.e., prob-

lem description, prioritization, decomposi-
tion and effort estimation)

Collective Procrastination frantic effort after long period of stagna-
tion and falling behind on the plan; gen-
eral case of Fire Drill anti-pattern not tied
to the change in pace coinciding with the
stage switching from analysis to implemen-
tation

Done It? Tag It! unable to recognize releases in VCS
Exhausting Laziness commits small in numbers but large in

scale
Insufficient Prioritization not using prioritization in planning
Nine Pregnant Women similar to Brooks’ Law but focusing on the

product quality, not project deadline (i.e.,
adding more developers in the middle of
the project leads to worse quality of the
outputs)

One Type Fits All not signifying type of tasks or using just
the default option for all

1Detailed appropriately, Emergent, Estimated, and Prioritized (DEEP), a term coined
by Roman Pichler and Mike Cohn [25].

125

Appendix B. Project Management Anti-patterns from Experience

Overdue Work tasks finished after their respective due
dates

Over-/Underestimation constant bad estimates of work
Poor SCM traceability the relation between a task and resulting

source code changes cannot be found
Poor Ticket Workflow several statuses repeatedly skipped, even

though specified in the workflow
Poor Work Decomposition large tasks insufficiently broken down to

easier to handle sub-tasks
Rogue Tasks unplanned tasks
Team Keeps Hacking Away team keeps making the same mistakes even

after they are long apparent and should
have been identified and mitigated

The Flash not logging spent time resulting in tasks
seemingly done in an instant

Ticket QA Potemkin task completion is insufficiently verified by
entity independent of its assignee

To Infinity And Beyond tasks without a specified due date already
in progress or finished

Unbalanced Workload some team members overworked while oth-
ers underutilized

Unfinished Business tasks displaying two conflicting informa-
tion about their completion

Uphill Battle iteration backlog growing during its execu-
tion

What Are We Doing Again? no trace of knowledge base for the project
(e.g., wiki unused)

What Did I Do? work without description, comments, doc-
umentation

Weekend Hackathons Collective Procrastination, where the stag-
nation occurs during the week and effort
on weekends

126

Appendix C

Nine Pregnant Women
Anti-pattern

Table C.1: Nine Pregnant Women – anti-pattern from experience
Name Nine Pregnant Women
Also Known As Size Isn’t Everything
Summary An idea that adding more resources (devel-

opers) to the project will increase productiv-
ity or quality has the opposite effect. Leads
to slower pace and drop in productivity and
quality in general. Therefore failure to meet
mid-project milestones, release criteria, etc.
The name is derived from the colloquial ex-
pression “nine women can’t make a baby in
one month”.

Symptoms adding new people mid project
the overall productivity stays the same (pro-
ductivity per capita drops) or drops
higher bug rate per developer, lower feature
rate per developer, higher duplicate ratio
higher communication overhead due to new
people getting acquainted with the project
underdelivering or overdue releases, mile-
stones postponed

Specific To -
Related Anti-patters Brooks’ Law – more specific case, adding new

developers leads to overdue project
Sources experience

127

Appendix D

SQL Query for Collective
Procrastination Anti-pattern

s e t @projectId = ? ;
s e t @ i t e r a t i on Id = ? ;
s e t @daysLookahead = 3 ;
s e t @daysLookbehind = 6 ;
s e t @s i l enceSteepnes = 0 . 1 ;
s e t @ c l i f f S t e e p n e s = 2 ;
s e t @endDate = (

s e l e c t
max(date_format (work_item . created , ’%Y−%m−%d ’))

from
ppicha . f ie ld_change ,
ppicha . work_item_change ,
ppicha . work_unit ,
ppicha . conf igurat ion_change ,
ppicha . work_item

where
f i e ld_change . name = ’ status ’
and (f i e ld_change . newValue = ’ Closed ’ or newValue = ’ Inva l id ’)
and f i e ld_change . workItemChangeId = work_item_change . id
and work_item_change . workItemId = work_unit . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id
and work_item_change . id = conf igurat ion_change . changeId
and conf igurat ion_change . c o n f i g u r a t i o n I d = work_item . id

) ;
s e t @startDate = (

s e l e c t
min (date_format (work_item . created , ’%Y−%m−%d ’))

from

128

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

ppicha . work_unit ,
ppicha . work_item

where
work_unit . id = work_item . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id

) ;
s e t @issuesCount = (

s e l e c t
count (id)

from
ppicha . work_unit

where
work_unit . i t e r a t i o n I d = @i t e ra t i on Id) ;

s e t @duration = (s e l e c t d a t e d i f f (@endDate , @startDate)+1);
s e t @startDateFormatted =
date_format (@startDate , ’%Y−%m−%d ’) ;

s e t @endDateFormatted = date_format (@endDate , ’%Y−%m−%d ’) ;
s e t @da i ly Idea l = (s e l e c t @issuesCount /@duration) ;
s e t @s i l enceThresho ld = @s i l enceSteepnes *@issuesCount ;
s e t @c l i f fThr e sho ld =

@ c l i f f S t e e p n e s *@daysLookahead* @dai ly Idea l ;

s e l e c t
’ closedOn ’ ,
’ lookbehind ’ ,
’ s i l enceThre sho ld ’ ,
’ lookahead ’ ,
’ c l i f f T h r e s h o l d ’ ,
’ detected ’

union
s e l e c t

r e s u l t s . closedOn ,
r e s u l t s . lookbehind ,
@s i lenceThreshold ,
r e s u l t s . lookahead ,
@c l i f fThre sho ld ,
i f (
r e s u l t s . dayIndex >= @daysLookbehind and
r e s u l t s . lookbehind <= @si l enceThresho ld and
r e s u l t s . lookahead >= @cl i f fThre sho ld , true , f a l s e

) detec ted
from (

s e l e c t
@curRow := @curRow+1 as dayIndex ,

129

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

days . s e l ec ted_date as closedOn ,
i f n u l l (dataPoints . lookbehind , 0) as lookbehind ,
i f n u l l (dataPoints . lookahead , 0) as lookahead

from (
s e l e c t
*

from (
s e l e c t
adddate (

@startDateFormatted , t3 . i *1000+ t2 . i *100+t1 . i *10+t0 . i
) s e l e c ted_date

from
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t0 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t1 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t2 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t3
) v
where
v . s e l e c ted_date

between @startDateFormatted and @endDateFormatted
) days
l e f t j o i n (

s e l e c t
i f n u l l (lookbehind . dataPoint , lookahead . dataPoint)
as dataPoint ,

i f n u l l (lookbehind . closedCount , 0) as lookbehind ,
i f n u l l (lookahead . closedCount , 0) as lookahead

from (

130

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

s e l e c t
days . s e l ec ted_date as dataPoint ,
count (d i s t i n c t work_unit . id) as closedCount

from (
s e l e c t
*

from (
s e l e c t
adddate (

@startDateFormatted , t3 . i *1000+ t2 . i *100+t1 . i *10+t0 . i
) s e l e c ted_date

from
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t0 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t1 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t2 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t3
) v
where
v . s e l e c ted_date

between @startDateFormatted and @endDateFormatted
) days ,

ppicha . work_item ,
ppicha . conf igurat ion_change ,
ppicha . work_item_change ,
ppicha . work_unit ,
ppicha . f ie ld_change ,
ppicha . s tatus ,
ppicha . pro j ec t_ins tance ,

131

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

ppicha . p ro j e c t ,
ppicha . s t a t u s _ c l a s s i f i c a t i o n

where
date_format (work_item . created , ’%Y−%m−%d ’)
> days . s e l ec ted_date

and date_format (work_item . created , ’%Y−%m−%d ’)
<= adddate (days . se l ected_date ,
i n t e r v a l @daysLookahead day)

and work_item . id = conf igurat ion_change . c o n f i g u r a t i o n I d
and conf igurat ion_change . changeId = work_item_change . id
and work_item_change . workItemId = work_unit . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id
and work_item_change . id = f i e ld_change . workItemChangeId
and f i e ld_change . name = ’ status ’
and f i e ld_change . newValue = s ta tu s . name
and s ta tu s . p r o j e c t I n s t a n c e I d = pro j e c t_ ins tance . id
and pro j e c t_ ins tance . p r o j e c t I d = @project Id
and s ta tu s . c l a s s I d = s t a t u s _ c l a s s i f i c a t i o n . id
and s t a t u s _ c l a s s i f i c a t i o n . superClas s = ’CLOSED’

group by
dataPoint

) lookahead
l e f t j o i n (

s e l e c t
days . s e l ec ted_date as dataPoint ,
count (d i s t i n c t work_unit . id) as closedCount

from (
s e l e c t
*

from (
s e l e c t
adddate (

@startDateFormatted , t3 . i *1000+ t2 . i *100+t1 . i *10+t0 . i
) s e l e c ted_date

from
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t0 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

132

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

) t1 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9) t2 ,

(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2
union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t3
) v
where
v . s e l e c ted_date

between @startDateFormatted and @endDateFormatted
) days ,

ppicha . work_item ,
ppicha . conf igurat ion_change ,
ppicha . work_item_change ,
ppicha . work_unit ,
ppicha . f ie ld_change ,
ppicha . s tatus ,
ppicha . pro j ec t_ins tance ,
ppicha . p ro j e c t ,
ppicha . s t a t u s _ c l a s s i f i c a t i o n

where
date_format (work_item . created , ’%Y−%m−%d ’)
<= days . s e l ec ted_date

and date_format (work_item . created , ’%Y−%m−%d ’)
> subdate (days . se lected_date ,
i n t e r v a l @daysLookbehind day)

and work_item . id = conf igurat ion_change . c o n f i g u r a t i o n I d
and conf igurat ion_change . changeId = work_item_change . id
and work_item_change . workItemId = work_unit . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id
and work_item_change . id = f i e ld_change . workItemChangeId
and f i e ld_change . name = ’ status ’
and f i e ld_change . newValue = s ta tu s . name
and s ta tu s . p r o j e c t I n s t a n c e I d = pro j e c t_ ins tance . id
and pro j e c t_ ins tance . p r o j e c t I d = @project Id
and s ta tu s . c l a s s I d = s t a t u s _ c l a s s i f i c a t i o n . id
and s t a t u s _ c l a s s i f i c a t i o n . superClas s = ’CLOSED’

group by
dataPoint

) lookbehind

133

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

on lookahead . dataPoint = lookbehind . dataPoint
union
s e l e c t

i f n u l l (lookbehind . dataPoint , lookahead . dataPoint)
as dataPoint ,

i f n u l l (lookbehind . closedCount , 0) as lookbehind ,
i f n u l l (lookahead . closedCount , 0) as lookahead

from (
s e l e c t
days . s e l ec ted_date as dataPoint ,
count (d i s t i n c t work_unit . id) as closedCount

from (
s e l e c t
*

from (
s e l e c t
adddate (

@startDateFormatted , t3 . i *1000+ t2 . i *100+t1 . i *10+t0 . i
) s e l e c ted_date

from
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t0 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t1 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t2 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t3
) v
where
v . s e l e c ted_date

between @startDateFormatted and @endDateFormatted

134

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

) days ,
ppicha . work_item ,
ppicha . conf igurat ion_change ,
ppicha . work_item_change ,
ppicha . work_unit ,
ppicha . f ie ld_change ,
ppicha . s tatus ,
ppicha . pro j ec t_ins tance ,
ppicha . p ro j e c t ,
ppicha . s t a t u s _ c l a s s i f i c a t i o n

where
date_format (work_item . created , ’%Y−%m−%d ’)
> days . s e l ec ted_date

and date_format (work_item . created , ’%Y−%m−%d ’)
<= adddate (days . se l ected_date ,
i n t e r v a l @daysLookahead day)

and work_item . id = conf igurat ion_change . c o n f i g u r a t i o n I d
and conf igurat ion_change . changeId = work_item_change . id
and work_item_change . workItemId = work_unit . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id
and work_item_change . id = f i e ld_change . workItemChangeId
and f i e ld_change . name = ’ status ’
and f i e ld_change . newValue = s ta tu s . name
and s ta tu s . p r o j e c t I n s t a n c e I d = pro j e c t_ ins tance . id
and pro j e c t_ ins tance . p r o j e c t I d = @project Id
and s ta tu s . c l a s s I d = s t a t u s _ c l a s s i f i c a t i o n . id
and s t a t u s _ c l a s s i f i c a t i o n . superClas s = ’CLOSED’

group by
dataPoint

) lookahead
r i g h t j o i n (

s e l e c t
days . s e l ec ted_date as dataPoint ,
count (d i s t i n c t work_unit . id) as closedCount

from (
s e l e c t
*

from (
s e l e c t
adddate (

@startDateFormatted , t3 . i *1000+ t2 . i *100+t1 . i *10+t0 . i
) s e l e c ted_date

from
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

135

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t0 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t1 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t2 ,
(s e l e c t 0 i union s e l e c t 1 union s e l e c t 2

union s e l e c t 3 union s e l e c t 4 union s e l e c t 5
union s e l e c t 6 union s e l e c t 7 union s e l e c t 8
union s e l e c t 9

) t3
) v
where
v . s e l e c ted_date

between @startDateFormatted and @endDateFormatted
) days ,

ppicha . work_item ,
ppicha . conf igurat ion_change ,
ppicha . work_item_change ,
ppicha . work_unit ,
ppicha . f ie ld_change ,
ppicha . s tatus ,
ppicha . pro j ec t_ins tance ,
ppicha . p ro j e c t ,
ppicha . s t a t u s _ c l a s s i f i c a t i o n

where
date_format (work_item . created , ’%Y−%m−%d ’)

<= days . s e l ec ted_date
and date_format (work_item . created , ’%Y−%m−%d ’)

> subdate (days . se lected_date ,
i n t e r v a l @daysLookbehind day)

and work_item . id = conf igurat ion_change . c o n f i g u r a t i o n I d
and conf igurat ion_change . changeId = work_item_change . id
and work_item_change . workItemId = work_unit . id
and work_unit . i t e r a t i o n I d = @i t e ra t i on Id
and work_item_change . id = f i e ld_change . workItemChangeId

136

Appendix D. SQL Query for Collective Procrastination
Anti-pattern

and f i e ld_change . name = ’ status ’
and f i e ld_change . newValue = s ta tu s . name
and s ta tu s . p r o j e c t I n s t a n c e I d = pro j e c t_ ins tance . id
and pro j e c t_ ins tance . p r o j e c t I d = @project Id
and s ta tu s . c l a s s I d = s t a t u s _ c l a s s i f i c a t i o n . id
and s t a t u s _ c l a s s i f i c a t i o n . superClas s = ’CLOSED’

group by
dataPoint

) lookbehind
on lookahead . dataPoint = lookbehind . dataPoint

) dataPoints
on days . s e l e c ted_date = dataPoints . dataPoint
j o i n
(s e l e c t @curRow := 0) r

order by
days . s e l ec ted_date

) r e s u l t s

137

	Introduction
	Problem Definition
	Software Development Processes and Practices
	ALM Tools and Their Data

	Goal of the Work

	Background and Related Work
	Key concepts
	Process
	Methodology
	Project
	Practice
	Pattern and Anti-pattern

	Software Development Methodologies
	Waterfall
	Unified Process
	Scrum
	Extreme Programming
	Kanban
	Disciplined Agile Delivery
	DevOps

	ALM tools
	Version Control Systems
	Issue-tracking Systems
	Knowledge Bases Software
	Communication Tools
	Others
	Full-fledged ALM Tools

	Similar Work
	CHAOSS
	Bloof
	SoftChange
	Codeface and PaStA
	CoSEEEK
	YOSHI
	Vranić et al.
	Hipikat
	SPARSE and PROMAISE

	Software Process Modeling
	SPEM
	OSLC
	ISO 24744
	ISO 29110
	BPMN

	ALM Tools Data Mining
	Mining Software Repositories
	Cumulative sources

	Pattern Representation and Detection
	Textual Descriptions
	Languages and Ontologies
	Models
	Bayesian Networks
	Others

	Quality Measuring

	Concept of the Thesis
	Target audience
	Overview and Basic Concept
	Main usage and benefits

	Universal Metamodel
	Construction
	Entities
	Enumerations
	Absent Data Inference

	ALM Data Mining
	Selected Set
	Methods
	Limitations

	Customization
	Anti-pattern format and detection
	Structured Description
	Operationalization
	Detection
	Example – Collective Procrastination
	Advanced Approach

	Presentation
	Metrics

	Future Work
	Possible Additional Uses

	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Tables

	Appendices
	Project Management Anti-patterns from Literature
	Project Management Anti-patterns from Experience
	Nine Pregnant Women Anti-pattern
	SQL Query for Collective Procrastination Anti-pattern

