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Abstract
Shape characteristics play an important part in computer graphics. They help us
to better understand various properties of geometrical objects. One of the most
important shape characteristics is curvature. However, the curvature itself is not
always enough and other characteristics have to be utilized. Those can be based on:
angles between triangles, distances of points, topology of models, volume, area etc.
Once the characteristics of the object are obtained, there are many ways how to
use them. They can show important parts, such as: edges, sharp features, regions
of interest etc. Other very common use cases are object matching and recognition.
There are many different algorithms for shape characteristics with a different quality
and performance. In the first part, we focus on curvature-based characteristics and
related algorithms. We present a new solution for curvature estimation in the screen
space. The second part is focused on other shape characteristics.
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Chapter 1

Introduction

There are many ways how to characterize an object. We can describe an ob-
ject by its weight, color, material, shape etc. The shape of object is probably
the most important property and to describe it is an important research goal
in computer graphics. One possible way is to use shape characteristics 1 to
better understand objects. We can imagine this in the following way: if we
take a “black-box” and “feed” it with an object, it will return a shape char-
acteristic, usually in a form of a vector or a single number. It is a simplified
representation that tries to carry most of the important information, while
being easier to handle, to store and to compare than the shape itself directly.
This characterization can be local (created from a neighborhood of a certain
size) or global (created from the entire object).

Shape characteristics must meet certain requirements such as: invariance
to geometric changes (rotation, translation, sometimes scaling), robustness
to noise, robustness to sampling errors etc. The more of these we fulfill
the better characteristic we have. To meet these requirements, we have to
propose a solution for a “black-box”.

One of the most important shape characteristics is curvature. There are
many different algorithms with a different quality and performance. The
more triangles the model has, the more exact curvature estimation can be but
the calculation becomes slower. However, the curvature itself is not always
enough and other characteristics have to be utilized. Those can be based on:
angles between triangles, distances of points, topology of models, volume,
area etc.

Once the characteristics of the object are obtained, there are many ways
how to use them. They can show important parts, such as: edges, sharp
features, regions of interest etc. Other very common use cases are object
matching and recognition. Based on a set of descriptors from one model,
a similarity with another model can be expressed. The user can build a

1An alternative term for the shape characteristics is a shape descriptor. From our
point of view, a characteristic of an object provides its description; hence we use the
terms characteristic and descriptor interchangeably in this report.
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database from descriptors and try to match an object by descriptors to the
ones that are already in the database to find a similarity. Shape charac-
teristics can also be used for visualization purposes. Based on the surface
properties, certain effects can be achieved or even computed faster. For ex-
ample, curvature can be used in lighting to create lighter convex and darker
concave areas. Another use can be to show the user some regions of interest
that can be highlighted (by color, different rendering style etc.).

In computer graphics, the basic representation of objects are usually
triangle meshes. However, they represent only an approximation of the orig-
inal model and the same triangle mesh can be obtained for different models.
Based on that, triangle mesh representations cause problems, since we are
not able to restore the original model but only its approximation. This must
be taken into consideration if we work with shape characteristics.

In this report, we present shape characteristics mainly for triangulated
objects. The main attention is devoted to curvature, its use for lighting in the
term of ambient occlusion and curvature-based characteristics. To extend the
scope of knowledge, other shape characteristics (based on normal vectors,
Euclidean distances etc.) are briefly discussed as well. This part of the report
is mainly focused on the proposed future work.

Structure of report
This report begins with a description of basic terms (Section 2) that are used
through all sections. Basic theory behind curvature is covered in Section 3.
Description of selected state-of-the-art methods in curvature estimation is
presented in Section 4.

Shape characteristics, mostly curvature-based, are described in Section 5.
However, other characteristics are discussed as well (Fourier transformation,
Voxelization, Euclidean distances etc.).

From the visualization topic, the problem of ambient occlusion (Section
6) is presented. It can be partially solved with curvature or further improved
using characteristic of the shape or model.

Our contribution is presented in the second part of the report. This
section is based on our publication from [PVK16]. The screen space version
of curvature estimation algorithm is described in Section 7. This solution
is targeted to an interactive curvature estimation in the screen space on a
GPU. Application of this algorithm to an estimation of ambient occlusion is
presented as well.

The plans for a future research are summarized in Section 8. Section 9
concludes the report.

The used notation is as follows: 𝑏𝑜𝑙𝑑 𝑖𝑡𝑎𝑙𝑖𝑐 symbols represent vectors,
symbol “·” denotes the dot product, “×” denotes the cross product, |𝑥| is
the vector length and 𝑑𝑒𝑡(𝑋) is the determinant of a matrix 𝑋.
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Chapter 2

Basic terms

First, we will briefly introduce some of the basic terms needed for this report.
In this work, we concentrate primarily on the geometrical objects represented
by triangle meshes. For this representation, we need to define basic terms
regarding triangles and triangulated geometry. The basic notation used in
this text is as follows, see also Figure 2.1.

The geometry is represented as a set of vertices 𝑃 = {𝑃𝑗}𝑗=1,2...𝑀 , where
𝑀 is a total number of vertices. For triangle meshes, each triangle has ver-
tices denoted 𝑉𝑖, where 𝑖 = 1, 2, 3. In the used equations, notation 𝑖 + 1 is
actually (𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 3) + 1 because of circular indexing of triangle vertices.
However, we used the shortened notation to keep equations more readable.
We expect that the vertices 𝑉𝑖 are located on the original surface from which
the triangulated version is created.

Vectors 𝑒𝑖 are triangle edges computed as 𝑒𝑖 = 𝑉𝑖+1 − 𝑉𝑖. Vector 𝑛 is
the triangle normal vector and vectors 𝑛𝑉𝑖

are normal vectors at particular
triangle vertices.

Since we use the triangulated geometry, we need to establish the term
neighborhood. The neighborhood of a vertex 𝑃𝑗 is consisting of all vertices
adjacent to 𝑃𝑗 up to some given distance. This distance can be expressed
either by the number of edges 𝑘 (this is referred as 𝑘-ring) or as the Euclidean
distance.

2.1 Normal vectors
For a triangulated geometry, we can talk about two types of normal vectors
- normals of triangle faces and normals at triangles vertices.

Normal vector 𝑛 of a triangle face can be computed exactly by the direct
approach using the cross product. The normal 𝑛 for a triangle is computed
as

𝑛 = 𝑒𝑖 × 𝑒𝑖+1

|𝑒𝑖 × 𝑒𝑖+1|
, (2.1)
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Figure 2.1: Triangle labeling

where 𝑒𝑖 are edges of the triangle, 𝑖 ∈ {1, 2, 3}.
A problem is with normal vectors at the vertices. Since the triangle mesh

is a discrete representation of the original model, we are usually not able to
retrieve the original (and therefore exact) normal vectors. We can compute
only an estimation. The quality of this estimation is crucial for many geom-
etry processing algorithms such as curvature calculation, surface reconstruc-
tion, matching and recognition of shapes etc.

The simplest solution to obtain a single vertex normal 𝑛𝑉𝑗
at a vertex

𝑉𝑗 is by averaging normal vectors 𝑛𝑘 from neighboring triangles

𝑛𝑉𝑗
= 1

𝑁

𝑁∑︁
𝑘=1

𝑛𝑘, (2.2)

where 𝑁 is a number of triangles sharing the vertex 𝑃𝑗 (triangle fan with a
center at 𝑃𝑗).

This approach is fast, but the resulting quality can be often low, because
all adjacent triangles have the same weight regardless their area. This can
be sufficient for the purposes of rendering where accuracy problems can
be hidden (e.g. due to the movement of the camera). However, for further
computations, normal vectors with a higher quality are preferred. Today,
Max [Max99] is considered a basic algorithm used in various applications.
The algorithm computes the vertex normal 𝑛𝑉𝑗

as

𝑛𝑉𝑗
=

𝑁∑︁
𝑘=1

𝑒𝑘𝑖
× 𝑒𝑘𝑖+1

|𝑒𝑘𝑖
|2|𝑒𝑘𝑖+1 |2

, (2.3)

where 𝑒𝑘𝑖
is the 𝑖-th edge vector of 𝑘-th triangle and 𝑁 is a number of tri-

angles sharing the vertex 𝑃𝑗. This solution offers a good trade-off between
quality and performance. It takes account of triangle areas, while the com-
putation is quite simple.
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Other algorithms have been presented by various authors. Main differ-
ence between the algorithms is usually in using different weighting scheme of
triangle normals during summation. The weight can be the area of the trian-
gle, the angle between triangles etc. The comparison of various approaches
has been done by Jin et al. [Jin+05].

2.2 Tangent space
Tangent space (sometimes also called local space) is a coordinate system
defined by a triangle normal vector 𝑛, tangent 𝑇𝑢 and bitangent 𝑇𝑣. The
origin can be any point in the space, but one of the triangle vertices is usually
used. The main idea is to express every triangle in its own coordinate space
based on the tangent plane of the triangle. It reduces the dimensionality
from 3D to a 2D, because the tangent space triangle is located in a tangent
plane. The transformed triangle is labeled with vertices 𝑉𝐿1, 𝑉𝐿2, 𝑉𝐿3 and
normals 𝑛𝐿1, 𝑛𝐿2, 𝑛𝐿3 (see Figure 2.2).

Tv

Tu

n

X

Y

Z
V1

V3

V2

VL1

VL2

VL3

Global space

Local space

nL1
nL3

nL2

Figure 2.2: Transformation of triangle from Global (world) space to Tangent
(local) space.

To obtain the tangent space, we need a normal vector 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧),
tangent 𝑇𝑢 = (𝑇𝑢𝑥, 𝑇𝑢𝑦, 𝑇𝑢𝑧) and bitangent 𝑇𝑣 = (𝑇𝑣𝑥, 𝑇𝑣𝑦, 𝑇𝑣𝑧) at each vertex
of the triangle. These vectors are obtained using Equations (2.4):

𝑇𝑢 = 𝑉2−𝑉1
|𝑉2−𝑉1| ,

𝑛 = 𝑇𝑢×(𝑉3−𝑉1)
|𝑇𝑢×(𝑉3−𝑉1)| ,

𝑇𝑣 = 𝑇𝑢×𝑛
|𝑇𝑢×𝑛| .

(2.4)

Tangent and bitangent are both orthogonal to the normal vector. These
three vectors create a transformation matrix 𝜏 (see Equation (2.5)) to map
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every point from a global space to a local space. Note that this matrix is
different for every triangle.

𝜏 =

⎡⎢⎣ 𝑇𝑢𝑥 𝑇𝑢𝑦 𝑇𝑢𝑧

𝑇𝑣𝑥 𝑇𝑣𝑦 𝑇𝑣𝑧

𝑛𝑥 𝑛𝑦 𝑛𝑧

⎤⎥⎦ (2.5)

The original triangle is expressed in the tangent space, resulting in ver-
tices 𝑉𝐿1, 𝑉𝐿2, 𝑉𝐿3 and normals 𝑛𝐿1, 𝑛𝐿2, 𝑛𝐿3. For example, a conversion of
𝑉2 from the global to the local system is calculated as:

𝑉𝐿2 = 𝜏(𝑉2 − 𝑉1) . (2.6)

Normal vectors should be converted using the inverse transposed matrix
of 𝜏 . Due to the orthonormality of the system we do not need to compute
this, since inversion of the orthonormal matrix is equal to the matrix trans-
position.

Tangent space is often used for lighting effects. For example, normal
mapping and its variants are calculated using this space (see [AMHH08]). A
lot of curvature algorithms ([Rus04; Gri+12; BW07] etc.) exploit directly or
indirectly this space as well.

2.3 Other terms
• Screen space - during rendering, all triangles are converted from a 3D

global (world) space to the 2D screen space by using world - view
(camera) - projection matrix. Screen space is therefore the coordinate
space of the resulting 2D projection. We can imagine this as a resulting
rendered 2D image seen on our monitor. Screen space is often used for
post-processing effects, see [Mel+13; Mit07; BSD08].

• Local reference frame (LRF) - it is a local, usually orthogonal, coordi-
nate system. It is often used for creating shape descriptors [Guo+13;
TSS10; Sha+13].
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Chapter 3

Curvature

Curvature itself plays an important role in computer graphics. We can use
curvature as our “black-box” in shape characteristic, since it is a local charac-
teristic and describes how bent a curve is at a particular point on the curve.
In other words, it tells us how much the curve deviates from a straight line
at this point.

3.1 2D space
If the curve is defined parametrically in Cartesian coordinates as 𝑥 = 𝑥(𝑡)
and 𝑦 = 𝑦(𝑡), the curvature 𝜅 at the point 𝑃 (with a normal vector 𝑛 and a
tangent vector 𝑇 ) is computed as:

𝜅 = 𝑑𝜔

𝑑𝑆
, (3.1)

where 𝑑𝜔 is the rate of change of the tangential angle with respect to the
arc length 𝑑𝑆.

The infinitesimal neighborhood of 𝑃 can be replaced by the osculating
circle. It is a circle that approximates the curve in a neighborhood of a point
𝑃 . It is defined as the circle with a radius 𝑟 passing through 𝑃 and a pair
of additional points on the curve infinitesimally close to 𝑃 . The center of
the circle is located on a half-line passing through 𝑃 in the direction of the
normal vector at the point 𝑃 . The osculating circle has also a tangent vector
𝑇 equal to the tangent vector at the point 𝑃 . To better understand Equation
(3.1) and the osculating circle, see Figure 3.1 and [Rob01].

From Equation 3.1 we can obtain ([Kre91]) the equation

𝜅 = 𝑥′𝑦′′ − 𝑦′𝑥′′

(𝑥′2 + 𝑦′2) 3
2
. (3.2)

If the curve is defined explicitly in a form 𝑦 = 𝑓(𝑥), the Equation (3.2) can

12



Figure 3.1: Definition of curvature using tangential angle 𝑑𝜔 and arc length
𝑑𝑆. [Rob01]

be rewritten as

𝜅 =
𝑑2𝑦
𝑑𝑥2(︂

1 +
(︁

𝑑𝑦
𝑑𝑥

)︁2
)︂

3
2

. (3.3)

For more detailed explanations and derivations of Equations (3.1) - (3.3),
see [Kre91].

From a geometrical point of view, curvature in a point 𝑃 is defined by an
osculating circle. The sign of curvature is defined by the curve parametriza-
tion. See two osculating circles, curvature sign and a curve in Figure 3.2.

The osculating circle radius 𝑟, which equals to the distance of the circle
center from the point 𝑃 , is called the radius of curvature. The curvature 𝜅
of a curve at point 𝑃 is derived from Equation (3.1) using polar coordinates
(see [Kre91]). The final equation is defined as

𝜅 = 1
𝑟

. (3.4)

The smaller the radius of curvature 𝑟 is, the more bent the curve is and,
therefore, the larger curvature we have. The limiting case is a straight line.
The osculating circle that describes it would have an infinite radius and the
curvature 𝜅 = 1

∞ converges to zero.
The sign of the curvature depends on the orientation of the normal vector

in the point 𝑃 (see Figure 3.2).
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(a) Negative curvature

(b) Positive curvature

Figure 3.2: Plane curve with two osculating circle at points 𝑃 and curvature
sign given by curve parametrization

3.2 3D space
So far we have been talking about curvature in a 2D space. In 3D space,
however, we have to distinguish between curves and surfaces. The curvature
for 3D space curves can be calculated similarly to 2D curves. However, since
the 3D curves are not used in our research, we are not going further in their
description.

Solution for surfaces is more complicated. The curvature itself is still
related to the curves and is therefore not calculated for the surface directly.
The curvature is calculated for a curve in a particular plane defined by a slice
of the surface. There are different types of curvature for surfaces - normal
(𝑘𝑛), mean (𝐾𝐻), Gaussian (𝐾𝐺), dip (𝑘𝑑), strike (𝑘𝑠) etc. We will cover the
first three named curvatures in more details, the other can be seen, e.g., in
[Rob01].

3.2.1 Normal curvature
If we cut the surface at a point 𝑃 with a normal plane (plane containing the
normal vector 𝑛), we have a 2D slice (see Figure 3.3). There is a 2D curve
within this slice and we are looking for its curvature at a point 𝑃 .

The problem is that there is an infinite number of normal planes at a
point 𝑃 , because they can have various rotations around the normal vector
𝑛. From all of these possible rotations, two of them leads to the maximal
(𝐾𝑚𝑎𝑥, 𝐾1) and the minimal (𝐾𝑚𝑖𝑛, 𝐾2) curvature. These two curvatures
are known as principal curvatures. The normal curvature is connected with
principal curvatures by the following formula

𝑘𝑛 = 𝐾1𝑐𝑜𝑠2𝛼 + 𝐾2𝑠𝑖𝑛2𝛼, (3.5)

where 𝛼 is the angle between the plane of 𝐾1 and the plane for 𝑘𝑛 (see Figure
3.4).
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Figure 3.3: Normal curvature 𝑘𝑛 within a normal place

Figure 3.4: Angle between planes 𝐾1 and 𝑘𝑛. [Unk17]
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𝐾1 < 0 𝐾1 = 0 𝐾1 > 0

𝐾2 < 0 concave ellipsoid concave cylinder hyperboloid surface

𝐾2 = 0 concave cylinder plane convex cylinder

𝐾2 > 0 hyperboloid surface convex cylinder convex ellipsoid

Table 3.1: Surface Shape Classes as defined in [Fis89]

The principal curvatures are the most important for research. They can
be used to identify the type of the surface. Based on the sign, we can sub-
divide surfaces into different categories - see Table 3.1.

For every plane orientation, we also have its tangent vector. For principal
curvatures, these two tangent vectors are called principal directions (𝐾1,2).
They are always orthogonal to each other. However, their direction is am-
biguous, since they can differ in sign and still represent the correct principal
direction.

3.2.2 Mean and Gaussian curvature
We can derive other curvatures with a different meaning from principal cur-
vatures. The best known ones are the mean (𝐾𝐻) and Gaussian (𝐾𝐺) cur-
vature.

Mean curvature is defined as an average of any two orthogonal normal
curvatures as

𝐾𝐻 = 𝐾1 + 𝐾2

2 . (3.6)

Gaussian curvature is defined as

𝐾𝐺 = 𝐾1𝐾2. (3.7)

The mean and Gaussian curvature can be used to obtain principal cur-
vatures from equation

𝐾1,2 = 𝐾𝐻 ±
√︁

𝐾2
𝐻 − 𝐾𝐺. (3.8)

3.3 Curvature computation
The curvature computation can be divided into two main approaches - direct
and discretized computations. The direct computations give us exact results
but can be used only if we have function description of the surface. Dis-
cretized computations, on the other hand, are useful if we have only discrete
geometry. Both solutions are described in the following subsections.
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3.3.1 Implicit surface
The direct computation of curvature for implicit surfaces is a straightforward
solution. We can use the approach from [Gol05] directly. To compute the
principal curvatures (𝐾1,2) at a certain point 𝑃 , its gradient ∇𝐹 , Hessian
matrix 𝐻 and adjoint of Hessian matrix 𝐻*are used. Principal curvatures are
not computed directly, but from Gaussian (𝐾𝐺) and mean (𝐾𝐻) curvature.
The required steps are as follows:

𝐻* =

⎡⎢⎣ 𝐻11𝐻33 − 𝐻23𝐻32 𝐻23𝐻31 − 𝐻21𝐻33 𝐻21𝐻32 − 𝐻22𝐻31
𝐻13𝐻32 − 𝐻12𝐻33 𝐻11𝐻33 − 𝐻13𝐻31 𝐻12𝐻32 − 𝐻11𝐻32
𝐻12𝐻23 − 𝐻13𝐻22 𝐻21𝐻13 − 𝐻11𝐻23 𝐻11𝐻22 − 𝐻12𝐻21

⎤⎥⎦ ,

(3.9)

𝐾𝐺 = ∇𝐹 𝐻* ∇𝐹 𝑇

|∇𝐹 |4
, (3.10)

𝐾𝐻 = ∇𝐹 𝐻 ∇𝐹 𝑇 − |∇𝐹 |2𝑡𝑟𝑎𝑐𝑒(𝐻)
2|∇𝐹 |3

, (3.11)

𝐾1,2 = 𝐾𝐻 ±
√︁

𝐾2
𝐻 − 𝐾𝐺, (3.12)

where 𝑡𝑟𝑎𝑐𝑒(𝐻) is a sum of elements on the main diagonal of the square
matrix 𝐻. To see full derivations of the above equations, see [Gol05].

3.3.2 Explicit surface
For explicit surfaces, we have to use a different approach based on fundamen-
tal forms. The first fundamental form (I) is constructed from the first order
derivatives at a surface point, which give us two tangent vectors (𝑇𝑢, 𝑇𝑣),
see Figure 3.5.

Vectors 𝑇𝑢, 𝑇𝑣 are in general not orthogonal. They are, however, orthog-
onal to the normal vector 𝑛 to the surface at the given point. Elements of
the matrix I are computed as

I=
[︃

𝐸 𝐹
𝐹 𝐺

]︃
,

𝐸 = 𝑇𝑢 · 𝑇𝑢, 𝐹 = 𝑇𝑢 · 𝑇𝑣, 𝐺 = 𝑇𝑣 · 𝑇𝑣.

(3.13)

The second fundamental form (II) is calculated from the second partial
derivatives (𝑇𝑢𝑢, 𝑇𝑣𝑣, 𝑇𝑢𝑣) and the normal vector (𝑛). The elements of the
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Figure 3.5: Tangent vectors of surface at point P

matrix II are computed as

II =
[︃

𝐿 𝑀
𝑀 𝑁

]︃
,

𝑛 = 𝑇𝑢×𝑇𝑣

|𝑇𝑢×𝑇𝑣 | ,

𝐿 = 𝑇𝑢𝑢 · 𝑛, 𝑀 = 𝑇𝑢𝑣 · 𝑛, 𝑁 = 𝑇𝑣𝑣 · 𝑛.

(3.14)

Combining the fundamental forms gives the shape operator 𝑊 (also known
as the Weingarten operator). For every point of the surface it tells us the
change of the normalized normal vector in the direction of the tangent vector
at this point. 𝑊 is a 2 × 2 symmetric matrix that can be obtained from the
first (I) and second (II) fundamental forms:

𝑊 = I−1II. (3.15)

The matrix 𝑊 has two real eigenvalues that correspond to the first (𝐾1)
and second (𝐾2) principal curvatures. The eigenvectors of the matrix 𝑊
correspond to the directions of the principal curvature within the tangent
plane.

3.3.3 Monge patch
For a regular height field, curvature can be calculated directly using the
Monge Patch [Gra97]. This is a patch in a form

𝑥(𝑢, 𝑣) = (𝑢, 𝑣, ℎ(𝑢, 𝑣)), (3.16)

which is basically a 2.5D heightfield with a height defined as ℎ(𝑢, 𝑣). For
this, we need to obtain derivatives of the function ℎ(𝑢, 𝑣). Final curvatures
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are calculated as follows:

𝐾𝐻 = ℎ𝑢𝑢ℎ𝑣𝑣 − ℎ2
𝑢𝑣

(1 + ℎ2
𝑢 + ℎ2

𝑣)2 , (3.17)

𝐾𝐺 = (1 + ℎ2
𝑣)ℎ𝑢𝑢 − 2ℎ𝑢ℎ𝑣ℎ𝑢𝑣 + (1 + ℎ2

𝑢)ℎ𝑣𝑣

2(1 + ℎ2
𝑢 + ℎ2

𝑣) 3
2

, (3.18)

where ℎ𝑢, ℎ𝑣, ℎ𝑢𝑢, ℎ𝑣𝑣 and ℎ𝑢𝑣 are derivatives of the function ℎ(𝑢, 𝑣). Based
on Equation 3.8, we can obtain principal curvatures.
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Chapter 4

Existing methods for curvature
computation

We often deal with a discretized representation of the geometry that can have
various forms - triangles, volumetric data sets, height fields, point clouds
etc. All of them cause a problem with curvature in vertices, since we are
not able to compute exact values but only an estimation. Usually, with a
more detailed discretization, this estimation offers better results, but the
calculation itself is usually tied with a loss of performance.

Curvature estimation can be divided into two main categories of ap-
proaches - discrete and surface fitting. The discrete methods calculate cur-
vature directly from the data, while the surface fitting construct a local
approximation of the surface and then calculates the curvature of this ap-
proximation directly. Usually, discrete methods are faster but less accurate.
There is also a “third” category that includes algorithms combining discrete
and surface fitting approaches.

In this chapter, we introduce some of the existing methods for curva-
ture estimation. A more detailed description is provided for the solutions
relevant to our current and future research. We have directly tested these
methods, either by using implementation from original research articles or
by re-implementation from description of the algorithm.

4.1 Discrete methods
We start with a description of several discrete-based algorithms.

4.1.1 Monge patch
For a simple representation of 2.5D heightfield, we can use directly Monge
patch (see sub-section 3.3.3). Required derivatives can be estimated with a
discrete finite difference.
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4.1.2 Tangent space methods
The discrete method proposed by Rusinkiewicz [Rus04] uses the second fun-
damental form matrix II. Every triangle in the mesh is converted to the
tangent space and has a unique II matrix. The elements of this matrix are
unknown and need to be computed. For a single triangle this leads to a
system of equations:

II
[︃

𝑒1 · 𝑇𝑢

𝑒1 · 𝑇𝑣

]︃
=
[︃

(𝑛𝑉3 − 𝑛𝑉2) · 𝑇𝑢

(𝑛𝑉3 − 𝑛𝑉2) · 𝑇𝑣

]︃
,

II
[︃

𝑒2 · 𝑇𝑢

𝑒2 · 𝑇𝑣

]︃
=
[︃

(𝑛𝑉1 − 𝑛𝑉3) · 𝑇𝑢

(𝑛𝑉1 − 𝑛𝑉3) · 𝑇𝑣

]︃
,

II
[︃

𝑒3 · 𝑇𝑢

𝑒3 · 𝑇𝑣

]︃
=
[︃

(𝑛𝑉2 − 𝑛𝑉1) · 𝑇𝑢

(𝑛𝑉2 − 𝑛𝑉1) · 𝑇𝑣

]︃
.

(4.1)

From the above presented Equations (4.1), solution of 2 × 2 matrix II is
found using the least squares method. Principal curvatures are calculated as
eigenvalues of II. However, this gives us the curvature of the triangle face,
while we are looking for curvature in vertices. To estimate curvatures in
vertices, curvatures from all neighboring faces are used. Since every triangle
was expressed in the tangent space, the fundamental forms must be unified
by expressing the fundamental form in the tangent space of the vertices.

The final curvature is weighted in a way similar to Meyer et al. [Mey+03].
They use Voronoi areas to give a greater influence to curvatures from larger
areas. This step is also sometimes used for normal vector calculation in
triangle vertices, where weighting normals from adjacent triangle faces is
used.

Rusinkiewicz’s approach [Rus04] is quite popular because of its simplic-
ity and quite accurate results. Many other authors use the same basic idea.
Theisel et al. [The+04] calculate curvature for every triangle based on trian-
gle vertices positions and unnormalized normals. These normal vectors are
created from the cross product of triangle edges and because they are not
normalized, they describe the area of the triangle. By a linear interpolation,
a single point and a normal is calculated for each triangle. All these values
are used for curvature estimation. The estimated curvature weight depends
on the length and quality of the normals. Batagelo et al. [BW07] use the
basic idea from Rusinkiewicz [Rus04] and transfer the solution to the GPU.
They also improve numerical robustness.

4.1.3 Statistics-based methods
A statistics-based approach was presented by Kalogerakis et al. [Kal+07].
The algorithm is based on curvature tensor fitting using the finite normal dif-
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Figure 4.1: Re-estimation of curvature after initial estimation. Re-estimated
curvature is correctly cut on the feature boundary (see detailed subimage).
[Kal+07]

ferences in the way similar to Rusinkiewicz [Rus04]. For this, normal vectors
are needed. However, the presented solution does not require normal at its
input. If normal vectors are not present, they calculate their own using Max
algorithm [Max99]. Input normals are not used directly. They are further
re-estimated in several iterations. Kalogerakis et al. use this re-estimation
approach to increase the robustness of the algorithm based on the assump-
tion that input normals are usually incorrect. Of course, if we have exact
normals at the input, this would not an improvement.

The algorithm computes several curvature estimations with a different
neighborhood sizes. Based on statistic approach and iterative curvature re-
estimation, several versions of curvatures are estimated. The final one is
selected based on weights that are constructed with respect to boundaries
and feature lines of geometry. This leads to a correct estimation on neigh-
borhoods with feature boundaries. After initial weighting, curvature is in-
correctly spread across the entire neighborhood due to the weights. After
several steps, the final weights are obtained and curvature is cut off at the
boundary edge, as can be seen in Figure 4.1.

Weighting is also used to suppress effects of the noise and to find the
most smooth result. As a result, this method performs reasonably well for
noisy data. This, on the other hand, can be a problem as well, since the
algorithm can also smooth out the fine details that are not noise and we
want to keep them in data.

4.2 Surface fitting methods
The second large group of methods for curvature estimation are surface
fitting methods. These algorithms try to find a surface that is fitted to the
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neighborhood of a point of interest. The final curvature is directly computed
from the functional representation of the fitted surface. Due to the nature
of these methods, they are often used not only for triangle meshes but also
for point clouds and volumetric models.

4.2.1 Polynomial fitting
A common class of methods, used in many geometric modeling applications,
is based on polynomial fitting. Fitting polynomials to sample points of a
smooth surface yields an approximation of the curvature at a point of the
smooth surface. For faster computations, lower order polynomials are used,
usually quadratic or cubic surface approximations.

Taubin [Tau95] presented this as one of the first in 1995. A well-known
method is from Goldfeather and Interrante [GI04]. They use a cubic surface
approximation. However, the third-order fit of the surface greatly increases
both time and space required for computation. Their fitting scheme is not
done only by interpolating through points but normal vectors from 1-ring
neighborhood of vertex are used as well. The problem is with the neigh-
borhood that has many vertices or an oscillating shape. In this case, the
approximation is not accurate and the resulting error can be quite high.

4.2.2 Bézier surfaces
Bézier surfaces (or patches) are one type of mathematical splines. It is given
as the Cartesian product of the blending functions of two orthogonal Bézier
curves. General Bézier patch is defined as:

𝐹 (𝑢, 𝑣) =
𝑁∑︁

𝑖=0

𝑁∑︁
𝑗=0

𝑃𝑖𝑗𝐵
𝑁
𝑖 (𝑢)𝐵𝑁

𝑗 (𝑣); 𝑢, 𝑣 ∈ ⟨0, 1⟩ , (4.2)

𝐵𝑁
𝑖 (𝑢) = 𝑁 !

𝑖!(𝑁 − 𝑖)!𝑢
𝑖(1 − 𝑢)𝑁−𝑖, (4.3)

where 𝑁 is the patch degree and 𝑃𝑖𝑗 are patch control points. Function
𝐵𝑁

𝑖 (𝑢) is called the Bernstein polynomial.
Bézier patches can also been computed for triangles. Every triangle in

the mesh can be replaced with a Bézier patch in the form:

𝐹 (𝑢, 𝑣, 𝑤) =
𝑁∑︁

𝑖=0

𝑁−𝑖∑︁
𝑗=0

𝑃𝑖𝑗𝑘𝐵𝑁
𝑖𝑗𝑘(𝑢, 𝑣, 𝑤), (4.4)

𝐵𝑁
𝑖𝑗𝑘(𝑢, 𝑣, 𝑤) = 𝑁 !

𝑖!𝑗!𝑘!𝑢
𝑖𝑣𝑗𝑤𝑘, 0 ≤ 𝑢, 𝑣, 𝑤 ≤ 1, (4.5)

𝑢 + 𝑣 + 𝑤 = 1; 𝑖 + 𝑗 + 𝑘 = 𝑁, (4.6)
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Figure 4.2: Control points of Bézier patch for a single triangle (top view)

Figure 4.3: Calculation of control points on the edge of the triangle (side
view)

where 𝑁 is the patch degree and 𝑃𝑖𝑗𝑘 are control points. Every triangle is
defined by three corner points (𝑃003, 𝑃030, 𝑃300) and normal vectors in them.
Triangle points and normals are used to obtain remaining control points 𝑃𝑖𝑗𝑘

(see Figure 4.2) for the patch.

The control points 𝑃𝑖𝑗𝑘 need to be selected. Vlachos et al. in [Vla+01]
computed missing control points on edges using a projection. Each edge of
the triangle is divided to three equally long parts which leads to control
points (𝑃012, 𝑃021, 𝑃120, 𝑃102...). They are further projected on the plane cre-
ated by the nearest vertex and its normal vector. Figure 4.3 shows this for
one edge of the triangle. Each of the two endpoints (𝑃003, 𝑃030) has its own
normal (𝑛003, 𝑛030) (green). The combination of a point and a normal de-
termines a plane. We take the two control points (𝑃012, 𝑃021) and project
them to the plane of the nearest vertex (see green arrows at Figure 4.3).
The center control point 𝑃111 is calculated from all other control points as
defined in [Vla+01].

A Bézier patch representation is quite popular due to its simplicity. Sev-
eral authors used them for curvature estimation, see the following subsec-
tions.
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Biquadratic patch

Bézier patch with 𝑁 = 2 is called biquadratic. This solution was used by
Razdan et al. in [RB05]. To construct the patch, they use points from the
𝑘-ring neighborhood of a vertex (authors recommend to use 𝑘 = 2). The
standard least squares method is used to obtain the set of control points
from the neighborhood. Sometimes, smoothing can be added if the original
mesh contains noise. This is done by adding weights to the control points.
The final curvature is computed at a single vertex directly from the patch
itself.

The computational cost is very low, but if the selected neighborhood
occupies a small area, the results can be incorrect.

Bézier patches as triangle replacements

Based on the subdivision scheme by Vlachos et al. ([Vla+01]), a curvature
estimation solution was proposed by Zhihong et al. in [Zhi+11]. Derivatives
needed for curvature estimation are directly calculated from Bézier patch us-
ing derivation of Equation (4.4) with 𝑁 = 3. The final curvature is computed
as an average value from center vertices from adjacent triangles. The average
can be simply an arithmetic mean or a weighted average using Voronoi area
as described in [Mey+03].

Blended Bézier surfaces with 𝐺1 continuity

The problem with a classic Bézier patch is its continuity. There is no 𝐺1

continuity between neighboring surfaces, which means that surfaces are not
sharing a common tangent direction at the join points between them. There-
fore, on the edges, the curvature is not directly defined. It is calculated as
an average from neighboring edges but there could be a sharp turn lead-
ing to a steep change in the curvature. Fünfzig et al. in [Fün+08] proposed
a solution called PNG1 to overcome the problem. See Figure 4.4 for dif-
ference between PNG1 and a classic Bézier patch. PNG1 patch is created
by blending standard Bézier patches from neighboring triangles (see Figure
4.5).

The newly created patch is not a Bézier one. It was only created as a
blend from several Bézier patches and the result does not meet conditions
for a general Bézier patch and its definition. However, the description of this
blended PNG1 patch is analytical. The curvature can be directly calculated
using an analytic solution as proposed by the same authors in [Bos+12].
A drawback of this method is that the second derivatives are much more
complex than for a simple Bézier patch.
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Figure 4.4: Comparison of the PNG1 [Fün+08] (left) and Bézier patch
(right). Sharp change of the surface can be observed for a classic Bézier
patch.

Figure 4.5: PNG1 patch (gray) and neighboring triangles used for blending
in [Fün+08].
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4.2.3 Point clouds
Algorithms for point clouds can be used also for triangulated geometry. We
just simply omit triangles and use only their vertices as a point cloud repre-
sentation. A curvature estimation algorithm for point clouds was presented
by Yang et al. in [YQ07]. This method approximates the surface by the least
squares technique. Normal vectors are required for input points. If they are
not present in the input datasets, they can be calculated. This can be done
using a statistical analysis of the neighboring samples leading to a covariance
matrix. Normal vectors are obtained from eigenvectors of this matrix.

The final curvature is calculated directly from approximated functions
that describe the point set in a local neighborhood of the selected point.
In this case, mean and Gaussian curvature are calculated and from them,
principal curvatures can be derived.

4.3 Other methods
The last section is used for algorithms that cannot be directly assigned
to previously mentioned groups. They use combinations of approaches and
often take knowledge of both worlds - discrete and surface fitting.

4.3.1 Tensor-based method
Curvature can be computed from the eigenvalues of a tensor average over a
small area of the polygonal mesh as done by Cohen-Steiner and Morvan in
[CSM03]. This algorithm was also used for remeshing in [All+03]. A triangle
mesh is a piecewise-linear surface and curvature tensors cannot be expressed
directly, they are estimated at vertices of each triangle. To obtain a con-
tinuous tensor field, tensors from triangle vertices are linearly interpolated
over triangles. However, to define tensors directly at the vertices is not very
natural. A better way is to define tensors on the edges of triangle. Each
edge 𝑒 contains an infinite number of tensors, leading to a computation of
and integral. To simplify this, a discretization is used and the integral is
expressed via summing over an arbitrary region 𝑅 surrounding the vertex
𝑉 . The regions are usually discs with a radius that can be selected by the
user. A simple equation is used to create a 3 × 3 matrix:

Γ = 1
|𝑅|

∑︁
∀𝑒

𝛽(𝑒) |𝑒 ∩ 𝑅| 𝑒 𝑒𝑇 , (4.7)

where |𝑅| is a surface area of the region 𝑅, 𝛽(𝑒) is an angle between the
normals of two oriented triangles incident to the edge 𝑒 and 𝑒 is the unit
vector in the direction of 𝑒. From the matrix 𝜏 , three eigenvectors and their
corresponding eigenvalues are calculated. The eigenvectors associated with
the minimal-magnitude eigenvalue is a normal vector, the remaining two
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(a) Two triangles

(b) One triangle

Figure 4.6: Two possible splitting schemes of triangle with neighborhood
intersection

eigenvalues and eigenvectors represent principal curvatures 𝐾1,2 and their
swapped principal directions.

The quality of the resulting curvature depends on the size of the selected
area. If the size of the area is too large, fine details in curvature are lost.
If the neighborhood is too small, it can, on the other hand, lead to a noisy
result with incorrect curvatures.

4.3.2 Generalized shape operator
An approach based on a generalized version of the shape operator (see Equa-
tion (3.15)) has been proposed by Hildebrandt and Pohltier in [HP11]. The
algorithm uses triangles within neighborhood of a vertex. The neighborhood
is not a 𝑘-ring, but a disc with a certain radius is used (Euclidean neigh-
borhood). If the triangle of the mesh is fully in the neighborhood, the whole
face is used. If only a part is in the neighborhood, the triangle is split and
only relevant parts are used. The splitting scheme can create two triangles
𝑇1 and 𝑇2 (Figure 4.6a) or only one triangle 𝑇3 (Figure 4.6b).

Once the neighborhood of the vertex is created, a surface integral is
computed. Since triangles are used, the integral is discretized and the areas
of faces are summed together. A generalized version of the shape operator
(expressed using a 3×3 matrix 𝑆 while the classic shape operator is described
by a 2 × 2 matrix). The three eigenvalues of generalized shape operator
matrix represent two principal curvatures and negative mean curvature. The
mathematics behind computation is quite complex and out of the scope of
this chapter. The reader can find more in-depth details with proofs in the
original research publication [HP11].
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Figure 4.7: Mean curvature calculated on volume data. [Lev15]

Figure 4.8: Example of rasterization between sphere and curve intersection
in 2D. [Gel+05]

4.3.3 Integral invariants
An integral-invariant-based method was presented by Pottmann et al. in
[Pot+07] and [Pot+09]. The basic idea of this algorithm is to estimate cur-
vature on a voxelized version of the triangle mesh. Therefore, this algorithm
can also be used for volumetric data (see an example with mean curvature
in Figure 4.7). The modification of this algorithm by Levallois et al. is a part
of DGtal library [Lev15].

A sphere is circumscribed around each point and an integral of the de-
limited area is computed. This is done using a voxelization (rasterization),
where the integral is discretized. A 2D example can be seen in Figure 4.8.
The rasterized part of the sphere 𝐵𝑟(𝑃 ) with a radius 𝑟 and a center 𝑃
represents the target volume 𝑉𝑟(𝑃 ) that is used to estimate curvature. The
finer the rasterization is, the more detailed curvature we can get.

This process is, however, quite slow and memory heavy. To speed up
the process and save memory, an octree is constructed. It has the highest
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precision near the faces of the triangles and inside the model, the lower
precision is used.

4.4 Dynamic curvature estimation
The so far presented solutions were primarily designed for the static ge-
ometry. They can be also used for the dynamic geometry (deformations,
animations etc.), however, it will lead to a curvature re-estimation for the
entire model after every change (e.g. a frame of an animation). If we have
a high-detailed model representation, it can cause a non-interactive or slow
response of a modeling software if the geometry is changed. Of course, in
some cases the recomputations can be limited to a certain local part of a
model and then the performance of classic solutions may be sufficient. How-
ever, we cannot rely on this and it is better to have an algorithm designed
directly for the dynamic geometry.

The simplest solution to this problem is to paralellize the computation
of curvature estimation. This approach has been presented by Griffin et al.
[Gri+12]. They have created a parallel version of the Rusinkiewicz algorithm
[Rus04]. The paralellization is done directly on the GPU. The algorithm uses
vertex neighborhood and this information must be available for each vertex.
In every frame, normal vectors and Voronoi areas are recomputed from 1-ring
neighborhood of the vertex. Results are stored for every vertex in a single
texture. The curvature is estimated the same way, as Rusinkiewicz’s solution
described in Section 4.1.2. In the final step of the original Rusinkiewicz
algorithm, contributions from the vertex neighborhood are weighted and
summed for the vertex. In this step, there is a need for a synchronization of
threads, since the summation is over neighboring vertices and each vertex
is computed in its own thread. Synchronization slows down computations,
however, the main speed-up of the algorithm is in the curvature solving for
a single vertex via the least square method and computing transformations
from the object to the tangent space and vice versa.

Another approach designed directly for the dynamic geometry has been
presented by Kalogerakis et. al. [Kal+09]. They used this algorithm for line
drawing based on curvature.

The curvature estimation is based on a mapping function between a
shape representation and the curvature with other attributes (value and
directions). The shape is represented by a state vector, whose values can be
joint angles, blending weights etc. These parts are dependent on the model
we are describing and what information is available to us. The shape vector
is expressed in a reduced dimension, this vector is 2D for a 3D model.

The solution for curvature estimation consists of two steps - preprocess-
ing and main rendering. In the preprocessing step, the mapping function is
obtained using the learning process. Curvature values for a given mesh are es-
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timated by one of the existing algorithms (the authors, like many others, use
the Rusinkiewicz’s solution). The curvature estimations are mapped to the
state vector. Training is done using regression (back-propagation training).
In the rendering step, each frame or geometry update has its own unique
state vector. This vector is used together with the mapping function and the
curvature is reconstructed without the need of recomputing an entire model
directly. The difference between the curvature computed directly and from
the mapping function can be seen in Figure 4.9. The visual quality of both
results is quite similar, but the solution by Kalogerakis runs 1.7 ms, while
Rusinkiewicz took 91 ms.

Figure 4.9: Comparison of principal curvatures produced by the method of
Rusinkiewicz [Rus04] and the dynamic Kalogerakis [Kal+09]

4.4.1 Screen space
For dynamic computations the screen space can also be used, mainly for
visualization purposes. We are not able to assign the screen space curvature
estimations back to the geometry vertices. The curvature computations in
the screen space are not very common. The only algorithm dealing with
this problem known to us is by Mellado et al. presented in [Mel+13]. They
propose the screen space curvature calculation by a sphere fitting. A point
cloud is created from the screen space pixels and for each pixel, the best
fitting sphere is searched.

For every pixel 𝑝 on the screen, its neighboring pixels within a limited
radius are collected. Pixels, whose depth differences against the 𝑝 are greater
than a threshold value, are rejected. They can be from the background or
from another model. The final set of points (a local point cloud) is converted
from the screen space to the view space (or world space). These converted
values are fitted by the sphere. Final curvature is calculated from the sphere
radius. With this approach, however, only the mean curvature is calculated.
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The Gaussian curvature cannot be computed this way and, therefore, prin-
cipal curvatures cannot be calculated either.

The result of the method can be seen in Figure 4.10. Another limitation
of the screen space version is a loss of details if the objects are further away
from the camera. This effect can be seen in the upper right part of Figure
4.10, where the fine details of the hair are lost.

Figure 4.10: Comparison between mean curvature estimated directly from
mesh (left) and its screen-space version (right). [Mel+13]
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Chapter 5

Other shape characteristics

We have already covered curvature as a basic shape characteristic. However,
each object can have various other characteristics, such as normal vectors,
positions, local objects volumes etc. We can also combine several character-
istics together and create a different solution.

Comparisons

In literature, there are many comparisons of different descriptors. An arti-
cle comparing several algorithms to local descriptors have been presented
by Heider et al. [Hei+11]. Their survey work is mainly focused on local
descriptors but some information regarding global ones is also provided.
Performance-based comparison of several normal-based descriptors have been
conducted by Mateo et al. [MGT14]. Some of the interesting local descriptors
from these surveys are explained in more detail in the following paragraphs.

Subdivision of shape descriptors into categories can be found in a survey
by Tangelder et al. [TV08]. They divided descriptors into three main cate-
gories and each of them contains subcategories, see Table 5.1. Feature based
descriptors are based on important parts of the model, usually feature lines
or feature areas. Graph based descriptors use graph theory to describe ob-
ject. They represent triangle mesh as a graph, where vertices are nodes and
triangle edges are graph edges. Geometry based descriptors use geometry
information, such as volume, normal vectors etc.

Feature -based Graph-based Geometry-based
Global features Model graph View based

Spatial map Skeleton Volumetric
Local features Reeb graph Deformation based

Table 5.1: Descriptors division from [TV08]
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5.1 Curvature-based
In Section 3, the basic background regarding curvature was described. The
principal curvatures 𝐾1,2 themselves, however, are not used as descriptors
too often. They are represented by two values (𝐾1, 𝐾2) where each of them
hold one part of the information. A better way is to have a single value
that holds a certain information alone, rather than two values, each with a
partial information. Many authors create their own descriptors for certain
purposes. Their common ground is the use of principal curvatures.

5.1.1 Detection of points of interest
These descriptors are often used for the detection of points of interest -
points on faces, such as the nose, eyes, the mouth etc., as can be seen in
many publications [CSJ05; ZW07; SAC12; NC09] etc. Descriptors derived
from principal curvatures are as follows.

• Mean curvature (𝐾𝐻)
𝐾𝐻 = 𝐾1 + 𝐾2

2

• Gaussian curvature (𝐾𝐺)

𝐾𝐺 = 𝐾1𝐾2

• Shape index (𝑆𝐼)
𝑆𝐼 = 2

𝜋
𝑎𝑡𝑎𝑛

(︂
𝐾1 + 𝐾2

𝐾1 − 𝐾2

)︂
The shape index has been introduced by [KD92]. It describes a local
topology of the shape independently on the scale, e.g., a cup has always
the same index value, no matter what its size is. Shape index value is
always in the range ⟨−1, 1⟩ with −1 being a cup, 0 a saddle and +1 a
cap. See Figure 5.1.

Figure 5.1: Shape Index
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• Curvedness (𝐶)

𝐶 =
√︃

𝐾2
1 + 𝐾2

2
2

The curvedness has been introduced together with the shape index by
[KD92]. It describes the magnitude of the curvature at a point, which
is a measure of the extent to which a region deviates from flatness.

• Willmore energy (𝑊𝐸)

𝑊𝐸 = (𝐾1 − 𝐾2)2

4

Willmore energy ([KS12]) is a quantitative measure describing the
amount of deviation of the surface from a round sphere. A round sphere
has a minimal Willmore energy, which is zero. Any other surface has
always greater value, in other words, Willmore energy is never nega-
tive.

5.1.2 Saliency
Lee et al. [LVJ05] do not use curvatures directly because curvatures capture
fine details (see Figures 5.2a and 5.2b) that are usually not very interesting in
the first phase of object description. They use a method called mesh saliency.
Loosely speaking, a salient geometric feature is a region of the surface which
has a nontrivial shape. It is computed from the mean curvature by the
Gaussian-weighted average. This leads to the effect where fine details are
smoothed out and more important parts of the models are highlighted (see
Figure 5.2c). Another solution using saliency was presented in [GCO06].
Both of these solutions resemble a smooth version of curvature estimators,
such as [CSM03; All+03; Kal+07].
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(a) Original part of the mesh (b) Curvature (c) Saliency

Figure 5.2: Comparison of curvature and saliency. [LVJ05]

5.1.3 Curvature maps
A method based on the use of curvature was presented by Gatzke et al.
[Gat+05]. Since curvature is a local point metric, it cannot be used directly
for a description of points neighborhood. In the presented solution, a de-
scriptor named “Curvature map” is created from a neighborhood of a point.
Curvature map accumulates curvatures (calculated by [Mey+03], but any
other algorithm can be used) from a 𝑘-ring or geodesic neighborhood of a
point. The curvature map can be represented by two 1D, 2D or 3D vectors
(one vector for mean and one for Gaussian curvature). A 1D version contains
just curvature and leads to artifacts. It is not used and higher dimension
maps are utilized instead. The dimensionality comparison of curvature map
can be seen in Figure 5.3. The “Ear Tip Vertex” is selected as a reference
point. Similarity of this point to other points on model is color-coded from
the least to the most similar points. As can be seen, for 1D vector, a lot of
points within the model are identified as “Ear Tip Vertex”. A 2D version is
better, but not still quite correct. For a 3D version, only points within ears
are correctly identified to be similar.
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Figure 5.3: Curvature map and similarity measure relative to a selected
vertex (ear tip). [Gat+05]

In 2D solution the distances to the points are stored in vectors together
with curvature. In the end, curves are generated using each element created
vectors. To generate a curve from the curvature map, a set of piecewise
linear functions is used (a list of them can be found in article [Gat+05] ).
An example of one such curve with a distance can be seen in Figure 5.4.
Curvature (mean or Gaussian) is expressed as a function of the distance
from the point, for which the “Curvature Map” was created. The curves are
further used to compare different points and if the curves are similar, the
points are similar as well. The comparison metrics are described in [Gat+05].

Figure 5.4: Example of curve generated from curvature map for a single
point. [Gat+05]

A 3D version is similar to 2D. Apart from curvatures and distances,
directions are stored as well. From a point, several directions are randomly
chosen. In every direction, a 2D map is created as mentioned previously.

5.1.4 Scale independence
A scale-independent local descriptor has been presented by Cipriano et al.
[CJG09]. They use a vertex neighborhood with a given radius. Vertices inside
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this neighborhood are weighted with the area of their nearest triangle. Also,
vertices closer to the edge of the surface are given lower weights. Vertices are
represented as a heightfield on a surface tangent plane around the central
vertex. This is done to simplify further calculations. The final heightfield
is described by local descriptors. As the shape of the heightfield can be
quite complex, it is simplified by quadratic fitting. For very small areas, this
approach will end up with a value of curvature at the center point (basically,
it will be the algorithm for curvature estimation). For larger areas, however,
this solution will create a surface descriptor averaged from several curvatures
and their directions.

Another scale-independent solution was presented by Akagündüz et al.
[AU09]. They used mean (𝐻) and Gaussian (𝐾) curvatures to detect points
of interest on parametrized 3D surfaces.

5.1.5 Integral-based
Solution based on integral descriptors was presented by Gelfand et al. [Gel+05].
They use curvature computed from the geometry in a way similar to inte-
gral invariants from [Pot+09] (a voxelization-like algorithm). The computed
curvature, after normalization, is used to obtain descriptors on the model
surface (see Figure 5.5).

Figure 5.5: Normalized curvature computed with two different radius spheres
(left, middle) and the resulting descriptors (right). [Gel+05]

Interesting parts of the models are found using a curvature histogram.
The most important parts of the model are the ones, where frequency of the
curvature is the lowest (e.g., this curvature value is the fewest in the model).
The problem is to select only one point inside a certain neighborhood. For
this, distances within a sphere are used. After the first point is selected, the
sphere is created around it. If another point should be inside this sphere,
this new point is rejected.

A problem with curvature is its scale-dependance. The solution to this
problem is to use a different size of the sphere during the voxelization, as can
be seen in Figure 5.5. Values of curvature are different, but its characteristics
(convex/concave shape) are preserved and that is the important part for the
presented solution of the shape descriptor.
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5.1.6 Other
Specialized descriptors for certain purposes can be created. An example is
a curvature-based descriptor for a face recognition presented by Salazar et
al. [SCP10]. They use a statistics-based Fisher coefficients for surface fea-
ture description. Fisher´s analysis, instead of principal component analysis
(PCA), allows us to find features with the most relevant information.

Relation of Gaussian curvature with “Heat Kernel Signature” (HKS)
proposed by Sun et al.[SOG09] was discussed in [Bro11]. “Heat Kernel Sig-
nature” is based on the concept of heat diffusion over a surface. Given an
initial heat distribution over the surface, the heat kernel ℎ𝑡(𝑥, 𝑦) relates the
amount of heat transferred from one point (𝑥) to another (𝑦) after some time
𝑡. Using the transfer between two points directly will lead to a high com-
plexity of computations. The computations are therefore restricted to just
using ℎ𝑡(𝑥, 𝑥), which means that they transfer a heat from a point to itself
over a time. This descriptor is isometry-invariant, captures local geometric
information at multiple scales, is insensitive to noise. A disadvantage is its
dependence on the global scale of the shape.

The relation between the heat diffusion and Gaussian curvature for small
timesteps according to [Bro11] can be expressed as:

ℎ𝑡(𝑥, 𝑥) = 1
4𝜋𝑡

+ 𝐾𝐺(𝑥)
12𝜋

. (5.1)

5.2 Normal-based
Having a normal vector does not mean that we have the curvature. We can
compute it, but it may slow things down and we may want to use just normal
vectors.

A method for point clouds originating from a 2D algorithm was pro-
posed by Tombari et al. [TSS10]. They created a solution based on local
histograms. They use a 2D image descriptor SIFT [Low04] as a reference
and based on this, they have created a 3D modification called SHOT. Their
algorithm uses normal vectors of points to construct local histograms. Based
on a constructed Local Reference Frame (LRF, recall Section 2.3), the neigh-
borhood is divided into several 3D spherical volumes. Each volume has its
own histogram created from angles between normal vectors of points and a
normal at the center point. In the end, the normalization of the descriptor
is required to improve robustness.

Another descriptor for point clouds is Point Feature Histograms (PFH)
descriptor [Rus+08] created by Rusu et al. They use multi-dimensional his-
togram created around the point. PFH is based on the relationships between
the points in the neighborhood of radius 𝑟 and their estimated surface nor-
mals. The quality of the final descriptor is influenced by the quality of normal
vectors. If we have a pair of two points (𝑃𝑠, 𝑃𝑡) with normal vectors (𝑛𝑠,
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𝑛𝑡) and local coordinate systems in them (𝑢, 𝑣, 𝑤), they can be described
via a quadruple 𝑞 = ⟨𝛼, 𝜑, 𝜃, 𝑑⟩ (see Figure 5.6), where

𝛼 = 𝑣 · 𝑛𝑡

𝜑 = (𝑢 · (𝑃𝑡 − 𝑃𝑠))/||𝑃𝑡 − 𝑃𝑠||
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑤 · 𝑛𝑡, 𝑢 · 𝑛𝑡)
𝑑 = ||𝑃𝑡 − 𝑃𝑠||

. (5.2)

Instead of 12 values (two times - 3 values per position, 3 per normal) we
have only 4 values that are also rotationally and transitionally invariant.

v = (Pt - Ps ) × u

w = u × v

ns = u

Ps
Pt

Pt - Ps

v

w

nt

u

Φ

α

θd =

Figure 5.6: Angles from quadruple between two points (𝑃𝑠,𝑃𝑡) in PFH.
[Rus16]

Created tuples are treated as 4D vectors. In some cases, the fourth com-
ponent (distance) can even be omitted because points can be sampled in
some view-dependent manner. From the vectors, 16-bin histogram is cre-
ated as

𝑏𝑖𝑛 =
𝑖≤4∑︁
𝑖=0

2𝑖−1𝑠𝑡𝑒𝑝(𝑠𝑖, 𝑞𝑖), (5.3)

where 𝑖 is a quadruple index element, 𝑠𝑖 is the center of value interval (0 for
𝛼, 𝜑, 𝜃 and 𝑑/2 for distance 𝑑) and 𝑠𝑡𝑒𝑝 is a function that gives 0 if 𝑞 < 𝑠 and
1 otherwise. In the end, each bin contains points based on the neighborhood
with a radius 𝑑/2.

A problem is the complexity of the method, since it computes relations
between every two points, leading to complexity 𝑂(𝑛𝑘2), where 𝑛 is the
number of points 𝑃𝑖 and 𝑘 is the number of neighbors for each point 𝑃𝑖.

A solution for the slow performance of the PFH method was proposed
by the same authors as Fast Point Feature Histograms (FPFH) descriptor
[RBB09]. This version reduces the time complexity to 𝑂(𝑛𝑘), while retaining
most of the PFH power. The number of points in the neighborhood with a
threshold radial distance is limited and weighting is used for a final histogram
creation.
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5.3 Other
Apart from previously mentioned curvature or normal based methods, there
are many more ways how to describe geometrical object for further pro-
cessing. Some of them use a variation of 2D descriptors known from image
processing. Skeleton-based methods describe a model with its underlying
skeleton. These methods are mainly for global characteristics, but can be
used for a part of the model (e.g. a hand with fingers).

5.3.1 Local Reference Frame
The descriptor named TriSi based on axes of LRF (recall Section 2.3) has
been presented by Guo et al. [Guo+13]. A set of local descriptors is gener-
ated based on a triangle mesh surface. For a point on the surface, its radial
neighborhood is used. From neighboring points, a matrix 𝑆 is created us-
ing continuous PCA algorithm and three eigenvectors (𝑣1, 𝑣2, 𝑣3) of 𝑆 are
computed. They form the LRF system. However, the sign of eigenvectors is
ambiguous and a sign disambiguation technique is used. The newly created
“eigenvectors” (̃︀𝑣1, ̃︀𝑣2, ̃︀𝑣3) are used as the description of LRF.

TriSi descriptor is in 3D created from three spin sheets (also known as
spin images). These are planes, where every one of them corresponds to one
axis defined by a sign-corrected eigenvector. An example of one spin sheet
aligned in the plane given by ̃︀𝑣1 and ̃︀𝑣3 can be seen in Figure 5.7. Points
from the model are projected into these planes.

Figure 5.7: Generating a spin sheet for TriSi, 𝛼 and 𝛽 are distances of origin
from projected point 𝑞 after its perpendicular projection onto axes ̃︀𝑣1 and̃︀𝑣3. [Guo+13]
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For every projected point, values of 𝛼 and 𝛽 are accumulated into a 2D
histogram of size 𝐵 × 𝐵. To overcome problems caused by noise, histograms
can be bilinearly interpolated. The histogram can be quite large (depends
on the size of 𝐵). To decrease its size, PCA is used again. From a selected
set of training descriptors, a matrix 𝑀 is calculated as

𝑀 =
𝐷∑︁

𝑖=1
(𝑓𝑖 − 𝑓)(𝑓𝑖 − 𝑓)𝑇 , (5.4)

where 𝐷 is the number of training descriptors, 𝑓𝑖 is the selected training
descriptor and 𝑓 is the mean vector created from all training descriptors.
Using the eigenvalue decomposition, eigenvectors of 𝑀 are calculated. The
final compressed descriptor is created by an approach partially similar to
a singular value decomposition (SVD) used for image compression. The re-
sulting TriSi descriptor is robust to noise and a mesh resolution.

Another algorithm using LRF was proposed by Shah et al. [Sha+13].
They detect 3D keypoints on the surface of the mesh. For each keypoint,
local surface patch is created using a sphere of the given radius. In the next
step, the LRF is constructed for each keypoint the same way as described in
previous paragraphs for the method [Guo+13]. For every keypoint, its LRF
vectors, and local surface patch, the trilinear interpolation is performed to
get uniformly sampled points. The normalized 3D vector field is computed
from the local surface patch and aligned with LRF. A gradient is computed
for this reoriented field. For a keypoint, Euclidean distances to its neigh-
bors within the local surface patch are calculated. Gradient combined with
distances of neighboring points is used as the final descriptor.

5.3.2 Euclidean distances
Solution presented by Maximo et al. [Max+11] uses local heightmaps with
stored Euclidean distances. The tangent plane is created at a vertex from its
position and a normal vector. The distance-map (sampled as a grid 16×16)
in the tangent plane is aligned with the principal curvature directions at the
vertex. Each grid cell has associated one ray perpendicular to the tangent
plane. Distances are computed from the plane to the intersection of the
mesh surface with the ray. See an example of one such tangent plane for
a single vertex in Figure 5.8. This approach is simple, but robust to holes,
non-manifoldness etc. since it only computes ray - triangle intersections and
store distances.
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Figure 5.8: A surface descriptor example for a single vertex (red). The de-
scriptor is a distance-map in a tangent plane. Distances are visualized as
color-coded values. [Max+11]

We can directly compare meshes from the constructed distance-map at
each vertex. However, this solution is not robust. This is caused by principal
curvature directions, because they are not always correctly aligned with the
tangent plane. The solution could be to compute differences for every possi-
ble rotation and select the minimal value as the similarity. This brute-force
solution is, however, very slow. Authors use Zernike polynomial functions
instead. The Zernike polynomials are a set of functions orthogonal over the
unit circle. They compare Zernike polynomial coefficients instead of pixels
from the distance-map. The theory behind this is quite complex and out-of-
scope of this report.

The basic solution uses a descriptor defined at a single vertex. This may
cause some problems in ignoring objects features. In the proposed solu-
tion, Maximo et al. use the vertex neighborhood. For each vertex, Gaussian
weights are applied to Zernike coefficients. Final coefficients are combined
as an average from nearby vertices (within a neighborhood radius).

5.3.3 Voxelization
The solution based on local voxelization has been presented by Knopp et
al. [Kno+10]. Their solution is a 3D variant of 2D feature descriptor SURF
[Bay+08]. The geometry is voxelized into the cube using the intersection
of mesh faces with the grid-bins. The saliency measure 𝑆 is computed of
each grid-bin. 𝑆 is defined as the absolute value of the determinant of the
Hessian matrix that is computed from box filters on the rasterized volume.
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This is similar to 2D convolution for 2D image. The 3D SURF descriptor is
computed at the maxima of the voxelized grid. Another voxel based solution
was created by Song [Son15].

5.3.4 Fourier transform
Fourier transforms are very popular in 2D geometry and image processing.
Descriptors using Fourier transform are more of a global character. However,
instead of their use for the entire geometrical object, they could possibly be
used for only a neighborhood as well. In this case, we expect the neighbor-
hood to be of a bigger size then in case of truly local descriptors. This idea
is not described in the presented articles, but in the future work we would
like to examine this and see, if this assumption is valid or not.

A descriptor based on Fourier coefficients has been proposed by Foulds
et al. [HF11]. To overcome the problem with rotation and translation, the
objects are first processed using PCA. The centroid of the object is set based
on the results of PCA. In the next step, distances of triangle faces from the
centroid are stored in a matrix 𝐶. The matrix is indexed with angles in polar
coordinates. The distances are stored in the matrix at the positions [𝜃, 𝜙],
where 𝜃 ∈ ⟨0, 𝜋⟩ and 𝜙 ∈ ⟨0, 2𝜋⟩. The angles are used with an increment
step, the authors suggest to use the increments of size 1, 4, 9 or 18 degree.
The larger the increment is, the smaller matrix and thus the lower precision
we have.

From the 𝐶 matrix, the Fourier transform is calculated, from which a
(2𝑁+1)×(2𝑁+1) feature matrix centered on the lowest frequency coefficient
is created (𝑁 is the number of Fourier coefficients selected by the user). For
each element of the feature matrix, its distance to the centroid is calculated.
Based on this distance, the elements of the feature matrix are rearranged
and sorted into a 1D array. This creates the feature vector (descriptor). Later
on, the feature vectors are used to compare the similarity of models. The
matching process can be found in [HF11].

Solution based on 3D curve and its description by Fourier series have been
proposed by Lmaati et al. [Elm+10]. They again use PCA to align models
to the initial positions. From the model in its initial position, a closed 3D
curve is built. They use a Helix curve (see Figure 5.9) constructed on the
unit sphere given by:

𝑥(𝑡) = 𝑐𝑜𝑠(𝑞𝑡)𝑠𝑖𝑛(𝑡)
𝑦(𝑡) = 𝑠𝑖𝑛(𝑞𝑡)𝑠𝑖𝑛(𝑡)
𝑧(𝑡) = 𝑐𝑜𝑠(𝑡)

, (5.5)

where 𝑞 is a parameter of curve quality (the bigger value, the more points
the curve has) and 𝑡 is a curve parameter, 𝑡 ∈< 0, 𝜋 >.
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Figure 5.9: A spherical Helix curve

For the descriptor curve extraction, ray-casting is used. The unit sphere
with a helix curve is placed in the center of the mass. Rays go from the
object’s center of mass through the points on the helix curve (points are
given by Equation 5.5). The furthest intersections of the ray with the faces
of the surface triangles create points of the descriptor curve. To close the
curve the first and the last point are set to be the same.

The created curve must be re-parametrized in order to compute the
feature vector. The authors have selected the natural parametrization (the
arc length parametrization). Fourier series are applied to this parametrized
curve. The feature vector is created from the magnitudes of complex quan-
tities. It is a good decision to take the first coefficients, because the later
represents high frequencies with noise. The feature vectors are used for ob-
jects comparison and searching in large databases, for more details see the
article [Elm+10].
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Chapter 6

Ambient occlusion

Curvature can be partially utilized for an ambient occlusion (𝐴𝑂) estima-
tion. 𝐴𝑂 is a shading technique used to calculate the exposition of a point to
an ambient light. It is a global method, unlike the well-known local Phong
shading, and must be computed as a function of the geometry of the entire
scene.

Using curvature for 𝐴𝑂 is not very common and have a disadvantage
in missing occlusions from non-connected geometry. However, if curvature
of objects is already estimated, it can be used as the first estimation of an
ambient occlusion and later, if necessary, the quality can be improved with
a traditional approach.

6.1 Basic theory
There are two basic types of the light in the scene - direct and indirect.
While the direct light comes from a certain source with a direction (it can
be, e.g., a lamp), indirect has no fully defined source and direction. It comes
from every direction. Its source does not even have to be a light source itself,
but some other surface that only reflects the light. Therefore, to calculate
𝐴𝑂 for a given point is a very complex task since all objects in the scene
can be possible light sources.

The amount of light in the point 𝑃 (see Figure 6.1 for a simplified 2D
case) is given as an integral over the hemisphere Ω.

The hemisphere Ω has its center at the point 𝑃 and is oriented along
a normal vector 𝑛. To compute 𝐴𝑂 in a point 𝑃 , samples from the entire
hemisphere must be used. A ray with a direction 𝜔 from the point 𝑃 is
used for every sample with an integration step 𝑑𝜔. This ray is tested by a
visibility function 𝑉𝑃 𝜔 whether it intersects another object in the scene Ω
(called occluder). It can be written as:
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Figure 6.1: A hemisphere Ω at a given point 𝑃 with a shaded unocluded
area
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𝑉𝑃 𝜔(𝑛 · 𝜔)𝑑𝜔, (6.1)

where 𝑉𝑃 𝜔 is a visibility function defined as

𝑉𝑃 𝜔 =
{︃

0 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑎𝑦 𝜔 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑎 𝑠𝑐𝑒𝑛𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (6.2)

Equation (6.1) is quite complex and simplifications are often made. The
integral can be approximated by Monte Carlo integration (a technique for
numerical integration using random sampling) with a randomly selected di-
rection vector 𝜔𝑖 for every 𝑖 as

𝐴𝑂 ≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑉𝑃 𝜔(𝑛 · 𝜔𝑖), (6.3)

where 𝑁 is a total number of random samples.
In this simplified case, the problem of the presented visibility function

𝑉𝑃 𝜔 (Equation (6.2)) is its binary character. There is no difference how far
the occluder is from the point 𝑃 . With this simplified approach, the final
scene is usually too dark. To overcome this problem, visibility function 𝜌
based on the distance 𝑑(𝑃, 𝜔) to the first occluder is presented. This solution
was first proposed by Zhukov et. al. in [ZIK98] as an Ambient Obscurance
(𝐴𝑂𝑏):

𝐴𝑂𝑏 = 1
𝜋

ˆ

Ω

𝜌(𝑑(𝑃, 𝜔))(𝑛 · 𝜔)𝑑𝜔. (6.4)

Today, the terms ambient occlusion and ambient obscurance are used
interchangeably. They both can be expressed with the same beginning let-
ters, which increases the confusion. In this paper, the notation 𝐴𝑂 = 𝐴𝑂𝑏
is used.
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Figure 6.2: Mesh converted to a list of discs [PF05]

6.2 Related work
The best 𝐴𝑂 approximation can be calculated with ray-tracing. This solu-
tion is not real-time and even for small scenes it can take hours to compute.
Of course, the total time depends on the level of details and geometry qual-
ity in the scene. For a real-time computation of 𝐴𝑂, other faster methods
are usually preferred.

There are two main categories of methods - object and screen space.
The main difference between these two categories is in computational steps.
The screen-space methods are running entirely in the pixel shader on GPU,
while the object space methods either use other shaders (vertex, geometry,
tessellation) or need some sort of an object-based preprocessing. A very
nice comparison of several algorithms for real-time 𝐴𝑂 has been written by
Aalund in [FPA13].

Only a minority of methods computes 𝐴𝑂 directly at vertices. These
methods are not very well studied because of their special use cases. For a
per-vertex ambient occlusion, ray-casting with acceleration structures (such
as octree, BSP tree etc.) is usually preferred. These algorithms are not de-
signed for use in real time.

6.2.1 Object space methods
One of the first real-time methods was proposed by Pharr et al. [PF05]. In
their approach, all scene objects are converted to set of discs that fill out the
object surface (see Figure 6.2). The discs are used to speed up calculations,
because to calculate an intersection of rays with the discs is fast. There can
(and often are) holes between discs. They are neglected during computations
and the intersection is simply not found.

The computation of occlusion is done by mutual comparison of discs.
This leads to the time complexity 𝑂(𝑛2). To speed up the process, only
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discs within a certain distance are tested. Another speed-up is achieved by
geometry simplification, where disc are computed from a simplified model.

The method similar to shadow volumes was presented by McGuire [McG10].
This work is an improvement of Kontkannen et al. [JS05] in combination with
shadow volumes. While [JS05] precomputes the occlusion integral (see Equa-
tion 6.1) using bounding volume and stores results in a texture, [McG10]
computes the same integral on the fly. For each face of the mesh within
the visible scene, a bounding volume is calculated in the geometry shader
and passed to the pixel shader. An evaluation if a pixel is inside (occluded)
or outside this volume is executed for every pixel. There is no need for an
additional blurring, because this method does not produce noise artifacts.

Algorithm based on voxelization of the currently visible region has been
proposed by Reinbothe et. al. in [RBA09]. This approach is independent of
the current depth buffer used in screen space methods and allows occlusion
from the currently invisible parts of the scene. The final occlusion is, however,
computed in the screen space, therefore, this technique is marked as a hybrid
one.

6.2.2 Screen space methods
In 2007, Mittring [Mit07] presented new algorithm to compute 𝐴𝑂 in the
screen space. He was the first author ever to do this and his algorithm is ever
since known as SSAO. This solution uses only the depth buffer as the scene
approximation, no normal vectors are used. Each depth pixel is surrounded
by the sphere and sample points are collected within this sphere. If the
sample is inside the object (e.g., its depth is greater then the current pixel),
it contributes to the final occlusion factor. This method is very simple, its
quality depends only on the number of samples within the sphere. This leads
to a noisy result that have to be blurred to get a smoother effect. With a
bigger count of samples, the noise is less visible, but the algorithm is more
computationally expensive. The sampling is done inside a full sphere and it
causes a characteristic look of the occlusion. The areas with no occlusion are
not white but light-gray (e.g. they are in the middle of the gray-scale range
⟨0, 255⟩). This can be seen in Figure 6.3a.

Improvement of SSAO was proposed by Fillion et al. in [FM08]. They use
a hemisphere (instead of a sphere) oriented along the normal in the given
pixel. This overcomes the previously mentioned problem with not having
white areas, where there is no occlusion. See Figure 6.3b. The rest of the
algorithm is the same as SSAO.

A method that uses multiple resolutions to avoid noise and therefore the
need of additional blurring was presented by Hoang et al. [HL10]. They use
multiple resolutions and blend them together to obtain the smooth result.
Blending is done according to the desired quality. For objects with low details
or far away from the camera it is sufficient to use only a low-resolution version
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(a) Mittring SSAO ([Mit07]) (b) Fillion ([FM08])

Figure 6.3: Original Mittring SSAO [Mit07] characteristic look (left) vs. Fil-
lion [FM08] with correct shading colors [FPA13] (right)

of 𝐴𝑂.
The method similar to the parallax occlusion mapping was presented by

Bavoil et al. [BSD08] (known as HBAO). From every point of the scene, the
ray is traced to find the limit intersection with the heightfield created by the
depth buffer, see Figure 6.4. Found intersections are marked 𝑆𝑖. The horizon
angle to every intersection point is calculated. The maximal angle is used to
compute occlusion weighted by the length |𝑃 − 𝑆𝑖|. The weighting creates
smaller values for large angles at greater distances. To overcome artifacts
and noise, the ray direction is randomized.

Loos et al. [LS10] presented a solution where line samples are used instead
of point samples. Lines are sampled inside the sphere around the point.
Lengths of visible parts line segments inside the sphere are calculated, see
Figure 6.5. Length ratio of the visible (green) and the occluded (red) part
of each line is used to calculate 𝐴𝑂. The quality and the strength of the
resulting occlusion depends on the radius of the used sphere and number of
samples inside it.

The majority of the presented methods use a similar solution to the
visibility function. They mostly differ in a way, how they sample the depth
and reconstruct 𝐴𝑂. A method aimed at deferred rendering1 was presented
by McGuire et al. [McG+11]. The use an updated visibility function called
the falloff function 𝜎. This is defined as

1Deferred rendering is a screen-space technique that stores intermediate results into
textures (called a normal buffer, a depth buffer...), then complete the rendering equation
by sampling this intermediate data.
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Figure 6.4: HBAO sampling scheme from point 𝑃

later
Figure 6.5: Length ratio of visible (green) and occluded (red) are used to
compute 𝐴𝑂. [LS10]
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Figure 6.6: Comparison of [McG+11] (left) and its improvement [MML12]
(right). The frame time for both methods is the same.

𝜎 = 𝑢𝑑

𝑚𝑎𝑥(𝑢, 𝑑)2 , (6.5)

where 𝑑 is the distance between samples and 𝑢 is a user-defined parameter
to enhance the shape of the falloff function.

The function from Equation (6.5) is used in the integral from Equation
6.4 instead of 𝜌(𝑑). To solve the integral, Monte Carlo integration over a
selected number of samples is used. The sampling is achieved with the ap-
proach similar to the one presented in [LS10]. Fewer samples are used for
further objects to reduce the computational time.

McGuire et al. presented an improvement of their previous method (see
[McG+11]) in [MML12] (known as SAO). See a comparison between both
methods in Figure 6.6. The new algorithm is no longer intended only for
the deferred rendering. Instead of the normal and the depth buffer, only
the depth buffer with an increased precision is needed. Normal vectors and
positions can be reconstructed directly from depths. 𝐴𝑂 is reconstructed
from the depth using a bilateral filter. It is a non-linear, edge-preserving
and noise-reducing smoothing filter for images. The intensity value at each
pixel in the image is replaced by a weighted average of intensity values from
nearby pixels.

𝐴𝑂 computed from a two-layered depth buffer was presented by Mara
et al. [Mar+14]. During a depth buffer creation, two textures are used as
an output. The first one is a classic depth buffer, the second one is a depth
buffer in a certain distance from the camera. The closest objects are not
presented in the second buffer. Generated buffers are used to improve the
occlusion effect created by [MML12] by removing some artifacts and create
smoother transitions between the illuminated and the shadowed area. This
solution is not only applicable to 𝐴𝑂 but can also be used for other effects
(e.g., screen space reflections, illuminations).
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Figure 6.7: A hand model with visualized properties: curvature (left), shaded
with ambient occlusion (middle), just ambient occlusion (right). [Gri+12]

Curvature-based

Apart from the traditional approaches, a solution based on curvature has
been presented by Hattori et al. in [HKM11] or [HKM12]. The presented
solution uses a local neighborhood approximation at a point by principal
curvatures (𝐾1,2), that are used as terms of Taylor series. A sphere is cir-
cumscribed around the same point. The 𝐴𝑂 is calculated as a volume of an
intersection of the sphere and a local approximation of surface. This leads
to an integral

𝐴𝑂 =
ˆ 2𝜋

0

ˆ 𝜃

0
𝑟2𝜑𝑠𝑖𝑛𝜃′𝑑𝜃′𝑑𝜑, (6.6)

𝜃 = 𝑎𝑐𝑜𝑠

(︃
−1 ±

√
1 + 𝐴2

𝐴

)︃
, (6.7)

𝐴 = 𝑟(𝐾1𝑐𝑜𝑠2𝜑 + 𝐾2𝑠𝑖𝑛2𝜑) (6.8)
where 𝑟 is the radius of circumscribed sphere around the point. The solution
of this integral is too complicated to be calculated at real time, so the so-
lution is simplified. 𝐴𝑂 is computed directly from curvature by an integral
simplification

𝐴𝑂 = 2
𝜋

𝑎𝑐𝑜𝑠

⎛⎝−1 ±
√︁

1 + (𝐾1 + 𝐾2)2𝑟2

(𝐾1 + 𝐾2)2

⎞⎠ . (6.9)

The algorithm to compute 𝐴𝑂 from curvature has also been used by
Griffin et al. [Gri+12]. Their solution is partially based on [HKM11], but
instead of a full computation of Equation 6.9, they use a mapping function
with precomputed coefficients:

𝐴𝑂 = 1.0 − 0.0022(𝐾1 + 𝐾2)2 + 0.0776(𝐾1 + 𝐾2) + 0.7369. (6.10)

To increase the effect of occlusion and create darker corners, the principal
curvatures can be scaled up. The result of the curvature and shading with
𝐴𝑂 can be seen in Figure 6.7.
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Chapter 7

Our contribution - Screen
space curvature and Ambient
Occlusion

Curvature estimation can be computationally expensive for geometry objects
with a high number of triangles. The existing algorithms are usually not
suitable for a real-time curvature estimation if object is changing for example
during interactive sculpting.

To partially mitigate this problem, the curvature is not estimated directly
from the mesh, but rather from the final rendered image in screen space. In
screen space, only data that are currently visible and interesting for the
viewer are processed. Calculations are independent of triangle count of the
original object, the only limitation is the screen resolution. There is also
an advantage that the curvature can be calculated from any possible model
representation with the same algorithm. There is no limitation to triangle
meshes, the final scene can contain volumetric models, implicit surfaces,
procedurally generated geometry and other screen space generated effects,
such as a water surface.

Our proposed algorithm, published in [PVK16], works in the screen space
and it can also be used for triangle meshes. The core of the algorithm is
similar to the one used in [Rus04] and uses fundamental forms as well.

The screen space techniques have a major advantage to existing rendering
software - they can be easily added as post-process methods or replace an
existing rendering output. Nowadays, these methods are quite popular for
many problems, such as water rendering, lighting, ambient occlusion and
reflections. In screen space, however, some problems may occur, usually on
the object edges, where pixel flickering may occur. Another disadvantage
comes directly from the screen space itself, where the geometry outside the
visible area cannot contribute to the results.

First, a description of the proposed algorithm for a triangle mesh is
presented. The screen space version is discussed next.
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7.1 Object space version

7.1.1 Basic algorithm
The main idea is to describe every triangle independently by the shape
operator 𝑊 , recall Equation (3.15). Elements of the shape operator must be
calculated in order to find eigenvalues of the matrix and calculate the final
curvatures.

The proposed method uses an orthonormal basis. In such a case, the first
fundamental form (I) is the identity matrix which means that the second
fundamental form (II) is equivalent to the shape operator, i.e. 𝑊 = II.

To eliminate one dimension, every triangle is transformed to a local co-
ordinate system, also known as the tangent space (see Section 2.2). Once the
triangle is in the local space, one of the dimensions is constant and repre-
sents the plane of the triangle. In the following calculations, this dimension
is not used and the problem is reduced from 3D to 2D.

7.1.2 The curvature calculation
The triangle in the local space is used to build the shape operator, as can
be seen in Equation (3.14), where variables 𝐿, 𝑀, 𝑁 are unknown.

The shape operator describes the change of the normal over the edge of
the triangle. The triangle is in the local space and one of the coordinates is
constant. This coordinate is left out, which leads to 2D vectors instead of
3D. The edges of the triangle are expressed as 2D vectors

(𝑢𝑖, 𝑣𝑖)𝑇 = 𝑉𝐿𝑖 − 𝑉𝐿(𝑖+1), (7.1)

and changes of the triangle normals are again as 2D vectors

(𝑑𝑁𝑢𝑖, 𝑑𝑁𝑣𝑖)𝑇 = 𝑛𝐿𝑖 − 𝑛𝐿(𝑖+1), (7.2)

where 𝑖 = 1, 2, 3. Index 𝑖 denotes the triangle edge index.
Changes of normals along the edges of the triangle are known. These

changes together with edge vectors are used to create a system of equations
to find the unknown variables 𝐿, 𝑀, 𝑁 . For one edge of the triangle, we get
the underdetermined system[︃

𝐿 𝑀
𝑀 𝑁

]︃ [︃
𝑢1
𝑣1

]︃
=
[︃

𝑑𝑁𝑢1
𝑑𝑁𝑣1

]︃
. (7.3)

However, by constructing the same system for every edge of the local space
triangle, an overdetermined system is obtained. The system is in the form
𝐴𝑥 = 𝑏, the least squares method is used to obtain unknown variables:

𝑥 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑏 . (7.4)
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In this particular case, the matrix 𝐴 is built from the triangle edge vectors
(𝑢𝑖, 𝑣𝑖)𝑇 , 𝑖 = 1, 2, 3 and 𝑏 is the vector of changes of the triangle normals
(𝑑𝑁𝑢𝑖, 𝑑𝑁𝑣𝑖)𝑇 , 𝑖 = 1, 2, 3. Index 𝑖 denotes the triangle edge index. Final
matrices are as follows:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1 𝑣1 0
0 𝑢1 𝑣1
𝑢2 𝑣2 0
0 𝑢2 𝑣2
𝑢3 𝑣3 0
0 𝑢3 𝑣3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑁𝑢1
𝑑𝑁𝑣1
𝑑𝑁𝑢2
𝑑𝑁𝑣2
𝑑𝑁𝑢3
𝑑𝑁𝑣3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑥 =

⎡⎢⎣ 𝐿
𝑀
𝑁

⎤⎥⎦ . (7.5)

Some optimizations can be done to decrease the total number of numerical
operations. Substitution 𝐵 = 𝐴𝑇 𝐴 is introduced. The matrix 𝐵 is symmetric
and its elements can be represented by variables 𝑝, 𝑞, 𝑟:

𝐵 = 𝐴𝑇 𝐴 =

⎡⎢⎣ 𝑝 𝑞 0
𝑞 𝑝 + 𝑟 𝑞
0 𝑞 𝑟

⎤⎥⎦ ,

𝑝 = 𝑢2
1 + 𝑢2

2 + 𝑢2
3,

𝑞 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3,

𝑟 = 𝑣2
1 + 𝑣2

2 + 𝑣2
3.

(7.6)

The inverse of the matrix 𝐵 can be computed using Equation (7.7). Since
𝐵 is symmetric, the computation is fast and easy.

𝐵−1 = 𝑑𝑒𝑡(𝐵)

⎡⎢⎣ 𝑝(𝑟 + 𝑝) − 𝑞2 −𝑞𝑟 𝑞2

−𝑞𝑟 𝑝𝑟 −𝑝𝑞
𝑞2 −𝑝𝑞 𝑝(𝑟 + 𝑝) − 𝑞2

⎤⎥⎦ (7.7)

The final step of the calculation is to calculate values for the unknown
vector 𝑥. A part of this step can be simplified, because the inverse of the
matrix 𝐵 is symmetric (see the symmetry pattern in Equation (7.8)) and
the matrix 𝐴 has many zero elements. A simplified multiplication can be
seen in Equation (7.9).

𝐵−1 = 𝑑𝑒𝑡(𝐵)

⎡⎢⎣ 𝑏1 𝑏2 𝑏3
𝑏2 𝑏4 𝑏5
𝑏3 𝑏5 𝑏6

⎤⎥⎦ , (7.8)

56



𝐵−1𝐴𝑇 = 𝑑𝑒𝑡(𝐵)*⎛⎜⎝
⎡⎢⎣ 𝑢1𝑏1 𝑢1𝑏2 𝑢2𝑏1 𝑢2𝑏2 𝑢3𝑏1 𝑢3𝑏2

𝑢1𝑏2 𝑢1𝑏4 𝑢2𝑏2 𝑢2𝑏4 𝑢3𝑏2 𝑢3𝑏4
𝑢1𝑏3 𝑢1𝑏5 𝑢2𝑏3 𝑢2𝑏5 𝑢3𝑏3 𝑢3𝑏5

⎤⎥⎦+

⎡⎢⎣ 𝑣1𝑏2 𝑣1𝑏3 𝑣2𝑏2 𝑣2𝑏3 𝑣3𝑏2 𝑣3𝑏3
𝑣1𝑏4 𝑣1𝑏5 𝑣2𝑏4 𝑣2𝑏5 𝑣3𝑏4 𝑣3𝑏5
𝑣1𝑏5 𝑣1𝑏6 𝑣2𝑏5 𝑣2𝑏6 𝑣3𝑏5 𝑣3𝑏6

⎤⎥⎦
⎞⎟⎠

(7.9)
Having obtained the final vector 𝑥, we can construct the desired shape

operator. From this matrix, the eigenvalues 𝜆1, 𝜆2 are computed by solving
the characteristic polynomial. These values correspond to the principal cur-
vature estimated to the triangle. The principal curvatures can be used to
evaluate the mean and Gaussian curvature (see Equations (3.6) and (3.7)).

The presented algorithm computes the curvature for each triangle. To
obtain the curvature at the vertices, we have to use all adjacent triangles at
the given point. The final curvature can be estimated as a simple average
from all adjacent triangles or the curvature can be further weighted by the
triangle area.

In the above calculations, an overdetermined system was constructed
from all three edges of the triangle. To solve the system, only two edges are
sufficient (values for 𝑖 = 3 will be zero). Differences in both approaches are
shown in Section 7.5.

7.2 Screen space variation
The screen space version of the proposed algorithm was designed to fit di-
rectly into an existing deferred rendering pipeline. Only normal and depth
(from which the position is reconstructed) is required for every pixel. There
could be probably some quality improvements, if additional information (id
of the triangle to which the current pixel belongs, the triangle size in the
screen space etc.) were available, but this is not the current target.

The screen space depth buffer can be interpreted as a 2.5D function with
an underlying regular grid and function values of the depth. In the screen
space, there is a constant step size between neighboring pixels. Those pixels
are triangulated and each pixel center is taken as a triangle vertex. One pos-
sible subdivision can be seen in Figure 7.1. This screen space triangulation
is converted to the world or camera space by reconstruction of the position
and the normal for each pixel. This creates a simple triangulated mesh and
the curvature is estimated on this mesh using the technique described in
Section 7.1.1.
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Figure 7.1: The local triangulation of neighborhood pixels. The center pixel
is currently calculated, one-ring neighborhood forms triangulation.

The algorithm from Section 7.1.1 can be used directly in the screen space.
It can run entirely on the GPU, using a pixel shader. As shown in Section
7.1.1 (see Equation (7.7)), the inverse matrix can be computed very fast and
only six values have to be stored due to the matrix symmetry.

There is only one difference in the final calculation step of the vector 𝑥.
If all three edges of three triangle are used, there is a limitation caused by
shaders, where maximal dimension of the native data type can be four, but
3×6 matrix and 6×1 vector are needed. However, if the simplified matrices
from Equation (7.9) are used, the calculation can be split into two parts.
Each of these parts has a halved dimension (Equation (7.10)) of the original
matrix.

𝐵1 =

⎡⎢⎣ 𝑢1𝑏1 + 𝑣1𝑏2 𝑢1𝑏2 + 𝑣1𝑏3 𝑢2𝑏1 + 𝑣2𝑏2
𝑢1𝑏2 + 𝑣1𝑏4 𝑢1𝑏4 + 𝑣1𝑏5 𝑢2𝑏2 + 𝑣2𝑏4
𝑢1𝑏3 + 𝑣1𝑏5 𝑢1𝑏5 + 𝑣1𝑏6 𝑢2𝑔 + 𝑣2𝑏5

⎤⎥⎦ ,

𝐵2 =

⎡⎢⎣ 𝑢2𝑏2 + 𝑣2𝑏3 𝑢3𝑏1 + 𝑣3𝑏2 𝑢3𝑏2 + 𝑣3𝑏3
𝑢2𝑏4 + 𝑣2𝑏5 𝑢3𝑏2 + 𝑣3𝑏4 𝑢3𝑏4 + 𝑣3𝑏5
𝑢2𝑏5 + 𝑣2𝑏6 𝑢3𝑏3 + 𝑣3𝑏5 𝑢3𝑏5 + 𝑣3𝑏6

⎤⎥⎦

𝑥 = 𝑑𝑒𝑡(𝐵)

⎛⎜⎝𝐵1

⎡⎢⎣ 𝑑𝑁𝑢1
𝑑𝑁𝑣1
𝑑𝑁𝑢2

⎤⎥⎦+ 𝐵2

⎡⎢⎣ 𝑑𝑁𝑣2
𝑑𝑁𝑢3
𝑑𝑁𝑣3

⎤⎥⎦
⎞⎟⎠

, (7.10)

If only two edges are used, calculations can be computed even more efficiently
on the GPU:

𝑥 = 𝑑𝑒𝑡(𝐵)

⎡⎢⎣ 𝑢1𝑏1 + 𝑣1𝑏2 𝑢1𝑏2 + 𝑣1𝑏3 𝑢2𝑏1 + 𝑣2𝑏2 𝑢2𝑏2 + 𝑣2𝑏3
𝑢1𝑏2 + 𝑣1𝑏4 𝑢1𝑏4 + 𝑣1𝑏5 𝑢2𝑏2 + 𝑣2𝑏4 𝑢2𝑏4 + 𝑣2𝑏5
𝑢1𝑏3 + 𝑣1𝑏5 𝑢1𝑏5 + 𝑣1𝑏6 𝑢2𝑔 + 𝑣2𝑏5 𝑢2𝑏5 + 𝑣2𝑏6

⎤⎥⎦
⎡⎢⎢⎢⎣

𝑑𝑁𝑢1
𝑑𝑁𝑣1
𝑑𝑁𝑢2
𝑑𝑁𝑣2

⎤⎥⎥⎥⎦ .

(7.11)
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All calculations are based on triangles that need to be reconstructed in the
screen space. They are obtained directly from the currently rendered pixel
and its neighbors. See again Figure 7.1, where possible subdivision and the
triangle reconstruction are shown. However, if the neighborhood width is
only one pixel (as the case in Figure 7.1), all of those triangles are not
needed to compute the curvature estimation and based on our testing, the
use of only one of them is sufficient.

7.2.1 Level of detail
In the screen space, visible details often depend on the camera distance from
the scene object. Small triangles in the world space can occupy almost all
the pixels of the rendered image if the camera is very close to the surface.
On the other hand, if the camera is far away, the same triangle can take
only one pixel of the final image. Taking this into consideration, the level of
detail can be used to improve the visual quality of the estimated curvature.

If the neighborhood with one pixel width is used, triangles of the original
mesh can be seen in the estimated curvature (see Figure 7.2a). The estimated
curvature within every triangle is the same. GPU interpolates normals and
positions during rendering, leading to a smooth Phong shading, but the
proposed method uses differences in the positions and normals. These dif-
ferences are constant (except for the numerical errors) for a flat geometry,
leading to the same curvature at every inner point of each triangle.

To solve this problem, level of detail (LOD) sampling can be used. For
points closer to the camera, triangles are constructed from a wider neigh-
borhood. Our solution is based on a power function and the final equation
is:

𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒𝑚𝑎𝑥

(︃
1
𝑓 2

)︃𝑑

+ 1, (7.12)

where 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 is the maximal size of the neighborhood, 𝑓 is the distance
of the camera far clip plane (in our tests, this value was always set to be
𝑓 ≥ 100, smaller values were clamped to this interval) and 𝑑 is a current pixel
depth in interval ⟨0, 1⟩ where 0 is for the closest points to the camera. The
𝑠𝑖𝑧𝑒 represents the step to the neighboring pixels. For this, the value should
be converted to integer by omitting the fractional part. For this reason, there
is the +1 term in Equation (7.12). The value of 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 can be achieved only
for 𝑑 = 0, but this value is very rare in the depth buffer.

Using this approach, the final curvature should be computed from more
than one triangle. According to our observations, a maximal number of four
triangles for one pixel, creating a triangle fan, is sufficient. The final cur-
vature is calculated as an average value from all triangles. The result with
LOD for the same model can be seen in Figure 7.2. There are used two
different samplings. In Figures 7.2a and 7.2b, sampling is accurate with ex-
act normals computed directly from the function equation. In Figures 7.2c
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and 7.2d, the sampling contains noise and normals are computed from mesh
geometry using the algorithm from [Max99].

(a) Without LOD (b) With LOD

(c) Without LOD - data with noise (d) With LOD - data with noise

Figure 7.2: Screen space curvature

The problem with LOD are discontinuities between neighboring pixels. If
the neighborhood has the size of one pixel, they are not very visible and are
often not recognizable during movement. However, with an increased step
size, the problem is more serious. We have used the simplest solution with
the condition

|𝑑 − 𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟| >
1
𝑓

, (7.13)

where 𝑑 is the depth of the current pixel, 𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the depth of the neighbor
with the step 𝑠𝑖𝑧𝑒 (see Equation (7.12)) and 𝑓 is the camera far clip plane.
If the condition is met, e.g., there is a depth discontinuity, the LOD for the
current neighbor is disabled and step is set to 𝑠𝑖𝑧𝑒 = 1.

7.3 Ambient occlusion
The ambient occlusion can be computed using various algorithms, as stated
in Section 6. However, we are interested in curvature-based algorithms (see
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Section 6.2.2). The curvature in those solutions is transferred as an addi-
tional vertex parameter. In the proposed solution we use the newly created
screen space version of the curvature estimation algorithm. Both presented
curvature-based 𝐴𝑂 solutions require the principal curvatures 𝐾1 and 𝐾2
which can be calculated directly from the shape operator 𝑊 . This approach
is also used in our screen space curvature algorithm. Therefore, both of these
existing algorithms can be used in the screen space together with our pro-
posed solution for the estimation of the principal curvatures.

However, there is a problem with both existing solutions. Neither of them
consider convex and concave areas. In both solutions, the sign of curvature
is mostly suppressed by the use of quadratic power. This leads to ignoring
convexity and concavity, where concave areas should be dark, while convex
areas are usually fully lit by light. Another problem is linked with the process
of obtaining the final Equations (6.9) and (6.10) from Section 6.2.2. The
sphere with a certain radius is used, but the selection of the radius is difficult
to set.

Based on previously mentioned information, we propose a new function
to map curvature to the 𝐴𝑂. In the proposed solution, the mean curvature is
used. The curvature has to be mapped to the symmetrical interval ⟨−1, 1⟩,
where 0 is zero curvature. For this, we need the curvature extreme for the
mapping. However, this is similar to the need of scaling factor in [Gri+12].
We know that convex areas are usually darker than concave. We have created
a statistics-based function that maps the mean curvature to the occlusion
based on a threshold. This function consists of two separate parts. One for
convex and one for concave areas.

For values below zero (convex areas), we use the Gaussian function

𝐴𝑂 = 𝑎 · 𝑒𝑥𝑝

(︃
−(𝑚 − 𝜇)2

2𝛿2

)︃
, (7.14)

where 𝑚 is the negative part of the normalized mean curvature from the
interval ⟨−1, 1⟩. 𝜇 is the expected value and 𝛿2 is the variance. We have set
those two parameters to 𝜇 = 0 and 𝛿2 = 0.2 to get a normalized function
centered around zero. The parameter 𝑎 sets the maximal occlusion value.
We use 𝑎 = 0.9.

Values above zero (concave areas) should be lit with a maximal amount
of light and therefore 𝐴𝑂 = 1 can be used. However, in some cases, we want
a slight occlusion even in these areas to create a smoother transition. For
that reason, we use a linear mapping of the interval ⟨0, 1⟩ (positive part of
the normalized mean curvature) to the final interval ⟨𝑎, 1⟩.
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Figure 7.3: Curvature based AO limitation

7.4 Limitations
Similarly to other screen space techniques, the proposed algorithm has its
disadvantages. When two neighboring pixels do not come from the same part
of the surface, there appears a surface discontinuity between those pixels
and an artifact in the computed curvature may appear. We have proposed
one possible solution in Section 7.2.1, but it is not guaranteed to work in
every situation. If the depth difference is small and pixels belong to different
surfaces, the problem will persist.

Another problem is related to LOD. The estimated curvature depends on
the distance of the mesh from the camera, where small details are smoothed
if the camera is far away from the surface. The setting of the correct LOD
can improve the curvature estimation quality.

In the proposed solution, the LOD comes with a performance lost. Usu-
ally, LOD is included to increase the performance by using less samples or to
simplify computations. In the proposed solution, the LOD version is less effi-
cient due to the need of sampling more pixels than for a simple neighborhood
of size 1.

The limitation connected to the ambient occlusion is the same as for
other curvature based solutions - the inability to calculate occlusion from
non-connected parts of the geometry. See Figure 7.3. If we calculate occlusion
directly, using ray-casting (rays 𝑟1, 𝑟2, 𝑟3...) within a half-sphere, there should
be an occlusion from ray 𝑟3. However, the curvature at the point P is zero
and, therefore, no occlusion will be calculated.

7.5 Experiments and results
To test the proposed method, a PC with the following configuration was
used: Intel Core i7 CPU running at 4GHz, 32GB of RAM memory, NVidia
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Geforce 960GTX graphics card with 2GB of video memory. The algorithm
was implemented in C++ and OpenGL 4.4 with GLSL shaders.

The implementation of the algorithm by [Mel+13], based on [Mel15], has
been done using GLSL instead of CUDA used in the original paper.

The color gradient used for all visualizations goes from the blue for nega-
tive values to the red color for positive values. The green color in the middle
represents zero. See Figure 7.4.

Figure 7.4: The color gradient used in all presented visualizations

7.5.1 Curvature error
In this section, comparison of the proposed method for triangle meshes,
as defined in Section 7.1.1, and exactly computed curvature from analytic
surfaces are provided. Every test uses exact unit-length normals computed
from the function itself. In the comparisons, two and three edges were used
to create overdetermined system.

The proposed method on the triangle mesh has been also tested against
the Bézier triangles algorithm from [Zhi+11].

First, a sphere was tested. A sphere has a constant mean and Gaussian
curvature, dependent on the sphere radius 𝑟. Curvatures on the sphere can
be calculated as 𝐾𝐻 = 1

𝑟2 and 𝐾𝐺 = −1
𝑟
. As a discrete representation of

the sphere, a subdivided (with a step 6) icosahedron sphere with an exact
normal and radius 6 was used. The proposed method in both variations has
a constant mean square error (MSE) with the value 8.2 * 10−16 for Gaussian
and 7.8 * 10−17 for mean curvature. For different radii, MSE has a similar
behavior.

Next, two analytic functions were tested (see Figure 7.5). The function 𝑓1
has convex and concave parts, a high peak at its center, and it is undefined
at the point [0, 0] (at this point, division by zero occurs). Function 𝑓2 has a
saddle shape with minor bumps.

To test the proposed algorithm, the functions have been tessellated with
Delaunay triangulation in the 𝑋𝑌 plane using different random point clouds
in the interval [−10, 10] in both directions. MSE value gives the error of the
proposed method on the triangle mesh in comparison with the analytically
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Figure 7.5: Tested functions 𝑓1 = 10 𝑠𝑖𝑛(
√

𝑥2+𝑦2)√
𝑥2+𝑦2)

, (𝑥 ̸= 0), (𝑦 ̸= 0), 𝑓2 =
𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦) + 0.1(𝑥2 − 𝑦2), 𝑥, 𝑦 ∈< −10; 10 >

(a) Mean curvature (b) Gaussian curvature

Figure 7.6: Curvatures of the function 𝑓2 calculated from the triangle mesh

computed curvature from the input function. See Figure 7.6 for the result of
the curvature for the function 𝑓2.

Result of the comparison is in Figure 7.7. Small peaks in the graph are
caused by random distribution of vertices in the underlying triangulation.
This is more visible for 𝑓1 due to its peak around the point [0, 0]. For more
dense tessellation, there is a very small difference in using two or three edges
of the triangle to solve the system. In some cases, two edges offer better
results, while in other scenarios, three edges are marginally better.

Another comparison of the proposed method was done against the algo-
rithm [Zhi+11] using Bézier triangles. This algorithm was chosen according
to the promising results in tests and experiments published in the original
paper. However, the algorithm has worse quality on the triangle meshes cre-
ated from the random points (the same random grid has been used for both
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Figure 7.7: MSE of the method for the triangle mesh compared to the ana-
lytically computed curvature evaluated directly from the implicit function
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(a) Bézier curvature [Zhi+11] (b) Proposed method

Figure 7.8: The comparison of the curvature of 𝑓1, compared on a tessellation
created from the random point cloud.

tests). The result can be seen in Figure 7.8. MSE values for individual trian-
gles were varying from 0.5 to almost 40. For most of the triangles, the cal-
culated curvature gives us the error comparable with our proposed method.
However, there were large error values present in results from [Zhi+11],
caused by small or sliver triangles. This is because the Bézier triangles in
[Zhi+11], constructed from those small or sliver triangles, are too arched.
This problem is not present in the proposed method.

7.5.2 Screen space comparison
The comparison of the screen space method with and without the LOD active
is done against the curvature calculated by the proposed method directly on
the triangle mesh. Curvatures inside triangles are linearly interpolated from
curvatures at triangle vertices. The proposed algorithm was also compared
with [Mel+13], the only other screen space technique known to us.

The tested models are shown in Table 7.1. In the screen space, the quality
of the computed curvature depends on the camera distance from the model.
If we compute the curvature for the triangle mesh and render the result, with
the camera moving away from the model, the triangles become smaller and
more triangles can be rendered in the same pixel. This can cause an incorrect
curvature to be visualized. In the proposed screen space method the problem
associated with rasterization cannot happen because only visible parts are
used to calculate the result and only one value is used for the final pixel.
In every test, the model was tested as fully visible on the screen and the
camera was moving away from the model. The dependency of MSE on the
distance between the viewer and the model is shown in the following graphs
in Figures 7.9 and 7.10.
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Vertex count
Stanford Dragon 300 000

MaxPlanck 152 403
Function 𝑓1 15 000

Torus 1 000

Table 7.1: Tested models

From the graphs in Figure 7.9 it can be seen that the quality of both
screen space algorithms is comparable for the mean curvature. For the dragon
model, using LOD has a little or no effect at all. The original model has a
dense tessellation and LOD can skip fine details. On the other hand, for
the model of the function, the proposed method with LOD achieves better
quality.

The Gaussian curvature comparison was done only with and without
LOD, since there is no other screen space method known to us that calculates
the Gaussian curvature. See results in Figure 7.10. The behavior is similar to
Figure 7.9, with a roughly doubled amount of the MSE error. This is caused
by the curvature calculation, where the mean curvature is only a sum of
the principal ones, while the Gaussian is computed by multiplying principal
curvatures. In that case, the errors of both values are multiplied as well.

The visual comparison of the proposed method with [Mel+13] can be
seen in Figure 7.11. Both algorithms have a comparable visual quality. The
proposed method results look sharper, [Mel+13] is more blurry.

No LOD is used to show real differences based on the camera distance.
For the camera at a greater distance (full model), there is almost no visible
difference. With the camera closer to the surface (detailed parts of the im-
age), the triangles of the mesh begin to appear in the screen space curvature.

For visual comparison of the quality of the proposed method in the screen
space against the same method in the object space see Figures 7.13 and 7.12.

The effect of the used LOD can be seen in Figures 7.14 - 7.16. If the
camera is moving away from the mesh, there is a distance, from which further
there is a small or no difference between using and not using LOD. In some
cases, using LOD can bring worse results as it smooths out fine details (see
Figure 7.14). On the other hand, in the example of the Gaussian curvature
in Figure 7.15, the use of LOD improved the result considerably. Another
comparison can be seen in the closeup in Figure 7.16. If the camera moves
very close to the surface, LOD is required to obtain a smooth result. Without
LOD, the computed curvature appears as random colors. In some cases, e.g.,
in wireframe view, this visualization can be sometimes enough to see the
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(a) Stanford Dragon

(b) Function 𝑓1

Figure 7.9: Comparison of the screen space MSE for the mean curvature
calculated directly from the triangle mesh. The proposed method with and
without LOD and algorithm from [Mel+13] (Mellado) were tested.
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(a) Stanford Dragon

(b) Function 𝑓1

Figure 7.10: Comparison of the proposed screen space MSE for the Gauss
curvature calculated directly from the triangle mesh.
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(a) Proposed method (b) Algorithm from [Mel+13]

Figure 7.11: Comparison of the mean curvature. Because [Mel+13] has no
LOD, the presented comparison also uses none to create comparable images.
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Figure 7.12: Summary comparison of mean and Gaussian curvature com-
puted in the screen space with our solution and ground truth data

(a) Object space (b) Screen space without LOD

Figure 7.13: Comparison of the mean curvature for the MaxPlanck model.
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shape. To set a suitable distance for LOD is, however, difficult - the same
value does not work for all models.

(a) Object space (b) Screen space without
LOD

(c) Screen space with LOD

Figure 7.14: Comparison of the mean curvature.

(a) Object space (b) Screen space without
LOD

(c) Screen space with LOD

Figure 7.15: Comparison of Gaussian curvature using function 𝑓1.

The advantage of curvature estimated directly in the screen space is
the possibility to reduce geometry and use normal mapping to add missing
details. Our proposed algorithm can be used together with this approach.
We have used a plane with details added from a normal map. Since we used
fine details, LOD should be disabled in this case. The results can be seen in
Figures 7.17b and 7.17c. They are screenshots of a flat plane as seen from
above. The view from sides would result only in a plane with no geometry.

We have used a standard normal mapping test texture that contains a
torus, a sphere, a cone and a pyramid. The original test scene with geom-
etry can be seen in Figure 7.17a. The mean curvature (Figure 7.17b) has
a lower noise and therefore a higher quality than the Gaussian curvature
(Figure 7.17c). This corresponds to the visual quality of tests in Figures
7.14 and 7.15. The resulting curvatures correspond to the curvatures of real
objects even if there is no position (we have a flat plane), only a normal
vector obtained from a normal map. We have also tested the version with an
additional displacement (bump) map, but the results were almost identical.
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(a) Object space (b) Screen space without
LOD

(c) Screen space with LOD

Figure 7.16: Detail of the mean curvature

(a) Test scene (b) Mean curvature (c) Gaussian curvature

Figure 7.17: Mean and Gaussian curvature for normal mapped plane. Black
borders are caused by a high curvature that is outside the used mapping
function.
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(a) Ray-casted oc-
clusion

(b) Hattori et al.
[HKM11]

(c) Griffin et al.
[Gri+12]

(d) Proposed

Figure 7.18: Ambient occlusion estimated using the proposed curvature al-
gorithm

7.5.3 Ambient Occlusion
The proposed algorithm can be used to estimate the ambient occlusion in
combination with existing techniques from Hattori et al. [HKM11] and Grif-
fin et al. [Gri+12]. Both algorithms can be used with a precomputed cur-
vature, but in the proposed solution, the curvature is estimated directly
in the screen space. The comparison of the two methods against occlusion
calculated using ray-casting can be seen in Figure 7.18. Both results were
computed without LOD because the underlying mesh is of a high quality.

Hattori’s solution uses the radius 0.25. We have tested different radii,
but the results were too dark or too bright and the occlusion effect was hard
to perceive. Griffin’s solution offers a better visual quality. The curvatures
are scaled up with factor of 5. Different scales result again in a darker or
lighter effect, which is similar to Hattori’s solution. The problem with the
Griffin algorithm are non-white areas with zero occlusion.

In our proposed solution (see Figure 7.18d), the result is not as dark as
[Gri+12] and looks more like ray-casted result. On the other hand, solution
from [HKM11] keeps correct white areas, but the rest of the model is too
dark. We are using the threshold 𝑎 from Equation 7.14 set to 𝑎 = 0.9. If
we set this threshold to 𝑎 = 1, we can obtain white areas as well, however,
some details are lost. From our point of view, the configuration we have used
offers the best visual appearance.

7.5.4 Performance Evaluation
The proposed method runs at interactive frame rates. Due to the indepen-
dence of the geometry, all tested models brought nearly the same results. In
the tests, the method was computed for pixel coverage of 2 − 100 per cent
of the screen. The depth value of the remaining pixels was set to infinity
to discard these pixels. The comparison was done against the screen space
method from [Mel+13].

The resulting performance can be seen in Figure 7.19. In all tests, a
decrease of performance is partially caused by LOD computation but mostly
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by the need of branches in the pixel shader to decide if the triangle can be
used or will be rejected as described in Section 7.2.1. With a comparable
visual quality as [Mel+13] (no LOD used), the proposed algorithm is much
faster. The noisy peaks around 80 − 100 per cent of the screen coverage in
Figure 7.19a are caused by camera movements and some possible context
switching during measurements due to the graphics driver because the frame
time is very low.

(a) Proposed solution

Figure 7.19: Frame time based on screen pixel coverage. The proposed al-
gorithm in versions with only two edges (with and without LOD) against
[Mel+13] (Mellado) was tested.

The frame times for the ambient occlusion are equal to the version with-
out it. The occlusion computations itself are very fast due to the simplicity
of the used Equation (7.14).
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Chapter 8

Future work

Our future work will be divided into two main categories - curvature esti-
mators and the use of shape characteristics.

8.1 Curvature estimators
We have already proposed one curvature estimator [PVK16]. This one was
designed for an interactive curvature estimation, e.g. during editing of geom-
etry, but the accuracy of the estimation was not crucial to us. Our next target
is to create a curvature estimator with an improved quality of estimation
for certain types of data. We are going to focus on data with exact normal
vectors, since these data can be easily obtained. The possible availability of
exact normals for curvature estimation is rarely discussed in existing cur-
vature estimation algorithms. With exact normals, we are able to estimate
curvature with higher quality but none of the state-of-the-art algorithms is
primary designed to exploit exact normals.

There are many softwares which use analytical tools to describe data
during modeling. In the end, they are able to export these data as a discrete
representation with added exact normal vectors at vertices. These exported
data can be used elsewhere without the need of original modeling software
or its proprietary data format.

Based on our experiments, we have decided to create a surface-fitting-
based estimator. It can highly benefit from normal vectors, since they are
related to the gradient of such a surface. Based on this knowledge, the fitting
surface can be improved.

Our proposed solution is based on Radial Basis Functions (RBF) for
surface fitting. Description of a surface with RBF was already presented by
Carr et. al. [Car+01]. However, simple RBF presented in [Car+01] is not
a very stable algorithm for surface reconstruction. The need for off-surface
points is a limitation and if these points are incorrectly chosen, the surface
is noisy or self-intersecting. A better surface reconstruction can be obtained
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with [MGV09]. They use not only vertices, but also normal vector at them.
This suits our needs, because we are targeting to data equipped with exact
normal vectors. Once the surface is fitted with an interpolant, curvature can
be directly estimated using equations from Section 3.3.1. The same solution
can also be used in combination with approximation for non-exact or noisy
data.

There are other state-of-the-art algorithms based on surface fitting. A
similar approach to our proposed solution has already been proposed by
Goldfeather and Interrante [GI04]. However, based on our experiments, their
solution is hard to configure and there are many ways, how to choose the size
of 𝑘-ring neighborhood or the final fitting method from the ones described
in the article.

8.2 Use of shape characteristics
Another area, which we would like to investigate, is the use of shape charac-
teristics for registration of objects created from point clouds or triangulated
geometry. This is an important and interesting topic due to the boom of 3D
scanning and printing. The object is scanned from several directions which
leads to several partially overlapping data sets. The goal is to register these
sets and obtain the whole model which can be further edited or directly
printed. To register data sets, overlapping parts have to be found.

One of the latest methods that tries to solve object alignment problem
was proposed by Mellado et. al. [MAM14]. However, their solution is not
using shape characteristics that are quite useful for this kind of problems.
Based on the shape, we are able to identify feature points on both sets and
later decide which points should be paired together. Recently, Zhou et al.
[ZPK16] proposed a solution based on FPFH [RBB09]. They calculate de-
scriptors for both models and reduce their numbers by removing false pairs
based on several conditions. The registration computation from this reduced
set is very fast, since the number of input descriptors is decreased. However,
the accuracy of the method is still based on the quality of underlying de-
scriptor (FPFH in this case) because they still have to compute them for
both models.

Shape characteristics based on curvature can be used directly. However,
using curvature directly is not recommended, as explained in Section 5.1. We
would like to focus on creating a hybrid algorithm for objects registration
that combines curvature with another approach to create a robust solution.
A potential problem is a symmetry of models. The state-of-the-art shape
characteristics and descriptors are not performing well for data with a certain
degree of symmetry. Local descriptors create usually the same output for the
symmetrical geometry because they neglect the position of the registered
parts against the whole model. Based on this, the registration of symmetrical
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Figure 8.1: Incorrectly aligned symmetrical parts of a human head

models with the use of these descriptors ends up with incorrect position. This
problem can be observed if we use e.g. [ZPK16] for human heads. The left
and right ear are incorrectly paired together, resulting in a reflected part of
the model (see Figure 8.1).
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Chapter 9

Conclusion

Shape characteristics are an important topic in computer graphics. They can
be used for many tasks, including objects description, registration, feature
points detection etc. We have primary focused on one shape characteristic
- curvature. It is quite easy to obtain and can be used with some minor
modifications to create geometry objects descriptors.

In the Chapter 3, selected state-of-the-art methods for curvature estima-
tion are presented. Based on the research in this area, we have proposed (see
Chapter 7) a simple, yet effective and easy to implement solution for curva-
ture estimation in the screen space. This proposed algorithm can estimate
curvature in real-time. It can be easily added to existing rendering pipelines.
The algorithm can also be used for a low polygonal geometry where fine de-
tails are added from a normal map. The proposed method can be also used
for estimation of ambient occlusion.

However, our proposed solution has some limitations that are similar
to other screen-space algorithms. There are possible problems with depth
discontinuities caused by depth-buffer. This problem is difficult to solve,
because in screen-space techniques we usually have no information about
original data and the surface reconstruction cannot be done correctly. An-
other problem is related to LOD. Small details are smoothed and lost if
camera is far away from the surface.

The findings from state-of-the-art in curvature estimation (see Chapter
8) will also be used in our proposed future work. Based on the reviewed
literature, there is no algorithm targeted primarily for data equipped with
exact normals. These data are easy to obtain for objects created in a mod-
eling software. In the first part of our future work, we are going to propose
an algorithm based on these assumptions, as stated in Chapter 8.

State-of-the-art in shape characteristics is presented in Chapter 5. We
have mainly focused on methods based on curvature, but some other solu-
tions are discussed as well. The knowledge summarized in this section will be
used in our future work for creating symmetry aware registration algorithm,
as was discussed in Chapter 8.
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