
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Distributional semantics using
neural networks
PhD Study Report

Ing. Lukáš Svoboda

Technical Report No. DCSE/TR-2016-04
June, 2016

Technical Report No. DCSE/TR-2016-04
June 2016

Distributional semantics using
neural networks
Ing. Lukáš Svoboda

Abstract
During recent years, neural networks show crucial improvement in catching
semantics of words or sentences. They also show improves in Language
modeling, which is crucial for many tasks among Natural Language
Processing (NLP).

One of the most used architectures of Artificial Neural Networks (ANN) in
NLP are Recurrent Neural Networks (RNN) that do not use limited size of
context. By using recurrent connections, information can cycle in side
these networks for arbitrarily long time.

Thesis summarizes the state-of-the-art approaches to distributional
semantics. Thesis also focus on further use of ANN among NLP problems.

This work was supported by Grant No. SGS-2016-018 Data and Software
Engineering for Advanced Applications. Computational resources were
provided by the CESNET LM2015042 and the CERIT Scientific Cloud
LM2015085, provided under the programme ”Projects of Large Research,
Development, and Innovations Infrastructures..

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright c©2016 University of West Bohemia in Pilsen, Czech Republic

Contents

1 Introduction 1

2 Distributional Semantics 2

2.1 Hypotheses . 2

2.1.1 Distributional Hypothesis 2

2.1.2 Bag-of-word Hypothesis 3

2.2 Word Semantic Approaches 3

2.2.1 Context Types . 4

2.2.2 Model Architectures 4

2.3 Language Models . 5

2.3.1 Statistical Language Models 6

2.3.2 N-gram Language Models 7

2.3.3 Class-based N-gram Models 7

3 Neural Networks 9

3.1 Introduction . 9

3.2 Machine Learning . 10

3.2.1 Logistic Regression Classifier 10

3.2.2 Naive Bayes Classifier 11

3.2.3 SVM Classifier . 12

3.2.4 Clustering (Word Classes) 13

3.3 Perceptron . 14

3.4 Training of Neural Networks 15

3.4.1 Forward pass . 15

1

3.4.2 Backpropagation . 16

3.4.3 Regularization . 19

3.5 Feed-forward Neural Networks 20

3.6 Convolutional Neural Networks 20

3.6.1 Hyperparameters . 22

3.6.2 Pooling Layers . 22

3.6.3 Channels . 23

3.6.4 Use of CNNs in NLP 23

3.7 Recurrent Neural Networks 25

3.7.1 RNNs with Long Short-Term Memory 26

3.8 Recursive Neural Network . 29

3.9 Deep Learning . 29

3.9.1 Representations and Features Learning Process . . . 30

4 Distributional Semantics Using Neural Networks 32

4.0.2 Continuous Bag-of-Words 33

4.0.3 Skip-gram . 34

4.0.4 Paragraph Vectors . 34

4.0.5 Tree-based LSTM . 35

5 Preliminary Results 36

6 Summary and Future Work 38

6.1 Overall Aims of the PhD Thesis 38

2

Chapter 1

Introduction

Understanding the meaning of the text is crucial among many NLP tasks.
The model that improves on understanding the text may also improve the
particular job where the model is used.

The Internet changed our life and the way of thinking enormously. About
50% of human population is using Internet. In the social web people have
found a new way to communicate and we can find about 1 billion of web
pages on the Internet. Internet became almost an infinite source of texts
that can be used in models based on distributional hypothesis (see Chapter
2).

In this thesis we are going to investigate the models based on distributional
semantics (see Chapter 4) which says that similarly distributed words tend
to have similar meaning. Research into distributional semantics is evolving
more than 20 years. Most of techniques for modeling semantics has been
outperformed by neural networks based models and deep learning during
recent years. These models showed crucial improvement in meaning repres-
entation of a word and sentence/document. Such models usually work with
plain text data and unsupervised way of representation learning.

Thesis is organized as follows, the state-of-the-art architectures for distribu-
tional semantics are discussed in Chapter 2. Chapter 3 discusses problem
of standard machine learning approaches dealing with NLP problems and
describes neural networks architectures that play the current key role in
modeling semantics.

Some preliminary ideas to future development that imply the aims of doc-
toral thesis are discussed in Chapter 5.

1

Chapter 2

Distributional Semantics

Distributional semantics is a research area that develops and studies theories
and methods for quantifying and categorizing semantic similarities between
linguistic items based on their distributional properties in large samples of
language data. The basic idea of distributional semantics can be summed
up in the so-called Distributional hypothesis: ”linguistic items with similar
distributions have similar meanings”.

2.1 Hypotheses

2.1.1 Distributional Hypothesis

Famous quotes:

• [1]: “If we consider words or morphemes A and B to be more different
in meaning than A and C, then we will often find that the distributions
of A and B are more different than the distributions of A and C.”

• [2]: “You shall know a word by the company it keeps.”

This principle is known as the distributional hypothesis. The direct implic-
ation of this hypothesis is that the word meaning is related to the context
where it usually occurs and thus it is possible to compare the meanings of
two words by statistical comparisons of their contexts. This implication was
confirmed by empirical tests carried out on human groups in [3; 4].

The distributional semantics models typically represent the word meaning
as a vector, where the vector reflects the contextual information of a word
across the training corpus. Each word w ∈ W (where W denotes the word
vocabulary) is associated with a vector of real numbers w ∈ Rk. Represented

2

3

geometrically, the word meaning is a point in a high-dimensional space. The
words that are closely related in meaning tend to be closer in the space.

2.1.2 Bag-of-word Hypothesis

In this context, the term bag means a set where the order has no role,
however, the duplicates are allowed (the bags a, a, a, b, b, c and c, a, b, a, b, a
are equivalent).

The early reference can be found in [1], but the first practical application
was arguably in information retrieval. In work of [5], the documents were
represented as bags-of-words and the frequencies of words in a document
indicated the relevance of the document to a query. The implication is that
two documents tend to be similar if they have similar distribution of similar
words, no matter what is their order. This is supported by the intuition that
the topic of a document will probabilistically influence the author’s choice
of words when writing the document.

Similarly, the words can be found related in meaning if they occur in sim-
ilar documents (where document represents the word context). Thus, both
hypotheses (bag-of-words hypothesis and distributional hypothesis) are re-
lated.

This intuition later expanded into many often used models for meaning
extraction, such as Latent Semantic Analysis (LSA) [6], Probabilistic Latent
Semantic Analysis (PLSA) [7], Latent Dirichlet Allocation (LDA) [8], and
others.

2.2 Word Semantic Approaches

The models based upon distributional hypothesis are often referred to as
the distributional semantics models.

These models typically represent the word meaning as a vector which re-
flects the contextual information of a word across the training corpus. Each
word w ∈ W is associated with a vector of real numbers w ∈ Rk. Repres-
ented geometrically, the meaning is a point in a k-dimensional space. The
words that are closely related in meaning tend to be closer in the space.
This architecture is sometimes referred to as the Vector Space Model (VSM)
or Semantic Space (SS). Such methods are often called Word Embedding
methods.

In last years, the extraction of meaning from a text became the backbone
research area in natural language processing. It led to impressive results
(see Section 4).

4

2.2.1 Context Types

Different types of context induce different kinds of semantic space models.
[9] and [10] distinguish context-word and context-region approaches to the
meaning extraction. In this thesis we use the notion local context and global
context, respectively, because we think this notion describes the principle of
the meaning extraction better.

• Global context: The models that use the global context are usu-
ally based upon bag-of-word hypothesis, assuming that the words are
semantically similar if they occur in similar documents, and that the
word order has no meaning. The document can be a sentence, a para-
graph, or an entire text. These models are able to register long-range
dependencies among words. For example, if the document is about
hockey, it is likely to contain words like hockey-stick or skates, and
these words are found to be related in meaning.

• Local context: The models that collect short contexts around the
word using moving window to model its semantics. These methods do
not require text that is naturally divided into documents or pieces of
text. Thanks to the short context, these models can take the word
order into account, thus they usually model semantic as well as syn-
tactic relations among words. In contrast to the global semantics mod-
els, these models are able to find mutually substitutable words in the
given context. Given the sentence: The dog is an animal, the word
dog can be for example replaced by cat.

2.2.2 Model Architectures

There are several architectures that have been successfully used to extract
meaning from raw text. In our opinion, the following four architectures are
the most important:

• Co-occurrence matrix: The frequencies of co-occurring words (of-
ten taken as an argument of some weighting function, e.g. Term Fre-
quency – Inverse Document Frequency (TF-IDF), mutual information,
etc.) are recorded into a matrix. The dimension of such matrix is
sometimes found to be problematic (it is proportional to the number
of contexts in the text), and thus the Singular Value Decomposition
(SVD) or different algorithm can be used for dimensionality reduction.

GloVe (Global Vectors) [11] represents the model focusing on the
global statistics of the trained data. This approach analyses log-
bilinear regression models that effectively capture global statistics and

5

also captures word analogies. Authors propose a weighted least squares
regression model that trains on global word-word co-occurrence counts.
The main concept of this model is the observation that ratios of word-
word co-occurrence probabilities have the potential for encoding mean-
ing of words.

• Topic model: The group of methods based upon the bag-of-word
hypothesis that try to discover latent (hidden) topics in the text are
called topic models. They usually represent the meaning of the text as
a vector of topics but it is also possible to use them for representing
the meaning of a word. The number of topics in the text is usually set
in advance.

It is assumed that documents may vary in domain, topic and styles,
which means that they also differ in the probability distribution of n-
grams. This assumption is used for adapting language models to the
long context (domain, topic, style of particular documents). LSA[6]
(or similar methods) are used to find out, which documents are similar
and which are not.

• Random indexing: Such models usually start by creating random
high-dimensional sparse vectors[12] that are unlikely to overlap and are
assumed to be nearly orthogonal. Co-occurrence of these vectors are
then recorded into the final matrix representing the meanings. These
method take advantage from setting the dimension at the beginning.

• Neural network: In the last years, these models have become very
popular. It is the human brain that defines semantics, so it is natural to
use a neural network for the meaning extraction. The principles of the
meaning extraction differ with the architecture of a neural network.
Much work on improving the learning of word representations with
using Neural Networks has been done, from feed-forward networks [13]
to hierarchical models [14; 15] and recently recurrent neural networks
[16]. In papers [17; 18] Mikolov examined existing word embeddings
and showed that these representations already captured meaningful
syntactic and semantic regularities such as the singular and plural
relation that vectors orange − oranges = plane − planes. Read
more in Section 4

2.3 Language Models

Language models are crucial in NLP, the backbone principle of language
modeling is often used in distributional semantics models. The goal of lan-
guage model is very simple, to estimate probability of any word occurrence

6

possible in the language. Even the task looks very easy, the satisfactory
solution for natural language is very complicated.

2.3.1 Statistical Language Models

Let W denotes the word vocabulary. The WN is the set of all combination
of word sequences possible to create from the vocabulary W . Let

L ⊆WN (2.1)

is a set of all possible word sequences in a language.

The sequence of words (i.e. sentence) can be expressed as

S = wk
1 = w1, · · · , wk, S ∈ L. (2.2)

The language model tries to capture the regularities of a natural language
by giving constraints on sequences S. These constraints can be either de-
terministic (some sequences are possible, some not) or probabilistic (some
sequences are more probable than others).

Reason why we are talking about Language modeling is simple, the better
the model represent language the better results we usually achieve solv-
ing our NLP problem (such as semantic understanding). Currently there
is a massive research invested in language modeling, but often this time
invested into bringing new representation is being outperformed by simple
n-gram model and recently by simple recurrent neural network model [16].
In Chapter 3 we will show, that standard n-grams and many others lan-
guage models with big mathematical background can be outperformed by
Recursive Neural Network with memory.

Through the nature of problems mentioned above it is clear that we can only
estimate words probabilities from the as large training data as possible. The
probability estimation of P (S) will be referred to P̃ (S) in the following text

P (S) ≈ P̃ (S) . (2.3)

By application of chain rule the probability P (S) can be decomposed into
the product of conditional probabilities

P (S) = P (wk
1) = P (w1)P (w2|w1) · · ·P (wk|wk−1

1) =

k∏
i=1

P
(
wi|wi−1

1

)
. (2.4)

7

2.3.2 N-gram Language Models

In previous Section the formula 2.4 shows that the probability of each word
wi is conditioned by complete history of words wi−1

1 . However, the problem
is still the same. There is no way how to process all possible histories of
words with all possible lengths k. The number of training parameters needed
to be estimated rises exponentially with extending the history.

According to all problems mentioned above, truncating the word history is
done to decrease the number of training parameters. It means, that the
probability of word wi is estimated only by n − 1 preceding words (not by
complete history)

P (S) = P (wk
1) ≈

k∏
i=1

P̃
(
wi|wi−1

i−n+1

)
. (2.5)

These models are referred to as the n-gram language models. N -gram lan-
guage models have been the most often used architecture for language mod-
eling since a long time. N-grams, where n = 1, are called unigrams. The
most often used are, however, bigrams (n = 2) and trigrams (n = 3).

Note that even for the trigram model of natural language, the number of
training parameters is still enormous. For example, in the case of 65,536
words vocabulary, there is 2.8 × 1014 potential parameters to train. There
will never be enough data for training all these parameters. Moreover, even if
it could ever be, the storage for parameters and probability estimate retrieval
time will not be satisfactory.

The lack of training data is sometimes referred to as the data sparsity prob-
lem.

2.3.3 Class-based N-gram Models

Class-based modeling is the most popular technique used for reducing the
huge vocabulary-related sparseness of statistical language models [19]. Indi-
vidual words are clustered into a much smaller number of classes. As a result,
less data are required to train a robust class-based language model. Both
manual and automatic word-clustering techniques are being used. Stan-
dalone class-based models usually perform poorly, which is the reason why
they are usually combined with other models.

Let W denotes the set of possible words (word vocabulary) and C denotes
a class vocabulary. Then we can define a mapping function m : W → C,
which maps every word wi ∈W to some class ci ∈ C.

The probability estimation of word wi conditioned by its history wi−1
i−n+1

8

(where n is the length of the n-gram) is given by the following formula

P̃
(
wi|wi−1

i−n+1

)
= P̃ (wi|ci) · P̃

(
ci|ci−1

i−n+1

)
. (2.6)

The probability estimate of the word occurrence given by its class is calcu-
lated as follows

P̃ (wi|ci) =
c (wi, ci)

c (ci)
, (2.7)

where c(wi, ci) is the number of times the word wi is mapped to the class ci
over the frequency of class ci.

Chapter 3

Neural Networks

Neural networks is a biologically-inspired programming paradigm which en-
ables a computer to learn from observational data.

The simplest definition of a neural network, respective ’artificial’ neural net-
work (ANN), is provided by the inventor of one of the first neurocomputers,
Dr. Robert Hecht-Nielsen. He defines a neural network as:

”...a computing system made up of a number of simple, highly interconnec-
ted processing elements, which process information by their dynamic state
response to external inputs.”

3.1 Introduction

Architecture of neural networks is composed from neurons, layers and con-
nections. Artificial neural networks are generally presented as systems of in-
terconnected ”neurons” which exchange messages between each other. The
connections have numeric weights that can be tuned based on experience,
making neural nets adaptive to inputs and capable of learning. As an ac-
tivation function of neurons that converts a neuron’s weighted input to its
output activation it is being commonly used sigmoid or tanh function, simil-
arly to logistic regression (see section 3.2). More information about neurons
(respective perceptrons) can be found in Section 3.3.

The main motivation is to simply come up with more precise way how to
represent and model words, documents and language than the basic machine
learning approaches. Like other machine learning methods – systems that
learn from data – neural networks have been used to solve a wide variety
of tasks, in this thesis we will however focus on NLP problems. There is
nothing that neural networks can do in NLP that the basic machine learn-
ing techniques completely fail at, but in general neural networks and deep

9

10

learning currently provide the best solutions to many problems in NLP. We
can benefit from those gains and see it as an evolution in machine learning.

3.2 Machine Learning

Machine learning explores the study and construction of algorithms that
can learn from input data and make predictions on data. Such algorithms
operate by building a model from the example data during a training phase.
Inputs comes into algorithm in order to make data-driven predictions or
decisions expressed as outputs. This is achieved by observing the properties
from labeled training data, this learning technique is called supervised learn-
ing. Unsupervised learning is the machine learning task of inferring a func-
tion to describe hidden structure from unlabeled data. Creating manually
annotated dataset is generally a hard and time-consuming task. However
most of current NLP problems are being solved based on annotated data
sets which has been annotated by humans. Often such datasets have lack
of data and together with features developed for NLP task often tend to be
over-tuned for specific data set and fail to generalize in real approach.

While supervised learning, the acquired knowledge is later applied to de-
termine the best category for the unseen testing dataset. For unsupervised
learning there is no error or reward signal to evaluate potential solution,
the goal is to model input data. Commonly used unsupervised learning al-
gorithms are artificial neural network models, about which we will talk in
next Chapter 3.

Machine learning techniques applied to NLP often uses n-gram language
models introduced in previous Chapter, word clustering and basic bag-of-
words representations as basic feature representation and further infer more
complicated features. Bag-of-words model assumes that the document is a
collection of words where the word order has no significance.

Basic machine learning technique how to perform classification is logistic
regression (also commonly referred as Maximum Entropy classifier).

3.2.1 Logistic Regression Classifier

The Logistic regression classifier is based on the maximum entropy principle.
The principle says that we are looking for a model which will satisfy all our
constraints and at the same time resembles uniform distribution as much as
possible. The logistic regression is a probabilistic model for binomial cases.
Input is a vector of features, output is usually binary. Logistic classifier can
be trained by stochastic gradient descent. The Maximum Entropy (MaxEnt)
generalizes the same principle for multinomial cases.

11

We want a conditional probability:

p(y|x), (3.1)

where y is the target class and x is vector of features.

The logistic regression follows binomial distribution. Thus, we can write
following probability mass function:

p(y, x) =

{
hΘ(x), if y = 1,
1− hΘ(x), if y= 0,

(3.2)

where Θ is the vector of parameters hΘ(x) is the hypothesis:

hΘ(x) =
1

1 + exp(−ΘTx)
(3.3)

The probability mass function can be rewritten as follows:

p(y|x) = (hΘ(x))y(1− hΘ(x))1−y (3.4)

We use maximum log-likelihood for N observations to estimate parameters:

l(Θ) = log

[
N∏

n=1

(hΘ(xn))yn(1− hΘ(xn))1−yn

]

=
N∑

n=1

[yn log hΘ(xn) + (1− yn) log (1− hΘ(xn))]

(3.5)

Another basic concept is Naive Bayes classifier.

3.2.2 Naive Bayes Classifier

Naive Bayes (NB) classifier is a simple classifier commonly used as a baseline
for many tasks. The model computes the posterior probability of a class
based on the distribution of words in the given document as shown in equa-
tion 3.6, where s is the output label and x is the given document:

P (s|x) =
P (x|s)P (s)

P (x)
(3.6)

ŝ = argmax
s∈S

P (s)
n∏

x=1

P (x|s) (3.7)

The NB classifier is described by equation 3.7, where ŝ is the assigned out-
put label. The NB classifier makes the decision based on the maximum a
posteriori rule. In other words it picks the label that is the most probable.

12

3.2.3 SVM Classifier

Support vector machines till recent time was one of the most used classifier,
is very similar to logistic regression. It is a vector space based machine
learning method where the goal is to find a decision boundary between two
classes that represents the maximum margin of separation in the training
data [20].

SVM can construct a non-linear decision surface in the original feature space
by mapping the data instances non-linearly to an inner product space where
the classes can by separated linearly with a hyperplane.

Support Vector Machines

Following the original description [21] we describe the basic principle. We
will assume only binary classifier for classes y = −1, 1 and linearly separable
training set {(xi, yi)}, so that the conditions 3.8 are met.

Figure 3.1: Optimal (and suboptimal) hyperplane.

w · xi + b ≤ −1 if yi = −1
w · xi + b ≥ 1 if yi = 1

(3.8)

Equation 3.9 combines the conditions 3.8 into one set of inequalities.

yi · (w0 · x + b0) ≥ 1, ∀i (3.9)

13

SVM search the optimal hyperplane (equation 3.10) that separates both
classes with the maximal margin. The formula 3.11 measures the distance
between the classes in the direction given by w:

w0 · x + b0 = 0, (3.10)

where w0 and b0 are parameters of optimal hyperplane in feature space.

d(w, b) = min
x;y=1

x ·w
|w|

− max
x;y=−1

x ·w
|w|

(3.11)

The optimal hyperplane, expressed in equation 3.12, maximizes the distance
d(w, b). Therefore the parameters w0 and b0 can be found by maximizing
|w0|. For better understanding see the optimal and suboptimal hyperplanes
on figure 3.1.

d(w0, b0) =
2

|w0|
(3.12)

The classification is then just a simple decision on which side of the hyper-
plane the object is. Mathematically written as (3.13).

label(x) = sign(w0 · x + b0) (3.13)

3.2.4 Clustering (Word Classes)

The goal of clustering is simple; to find an optimal grouping in a set of
unlabeled data. In other words, similar words should share parameters which
leads to generalization.

Example:

Class1 = {yellow, green, blue, red}
Class2 = {Italy,Germany, France, Spain}

(3.14)

There are many ways how to compute the classes - usually, it is assumed that
similar words appear in similar context. There are, however, two problems.
Firstly, the optimality criterion must be defined. This criterion depends on
the task that is being solved. The second problem is the complexity of the
problem. The number of possible partitioning rises exponentially1 with the
number of elements in the set. It is therefore impossible to examine every

1To be exact, the number of possible partitioning of a n-element set is given by the
Bell number, which is defined recursively: Bn+1 =

∑n
k=0

(
n
k

)
Bk.

14

possible partitioning of even a decently large set. The task is then to find
a computationally feasible algorithm that would be as close to the optimal
partitioning as possible.

Maximum Mutual Information Clustering

In [19] the MMI2 clustering algorithm was introduced. The algorithm is
based upon the principle of merging a pair of words into one class according
to the minimal mutual information loss principle.

The algorithm gives very satisfactory results and it is completely unsuper-
vised. This method of word clustering is possible only on very small corpora
and is not suitable for large vocabulary applications.

K-means Clustering

K-means clustering [22] is a method commonly used for word clustering. It
proceeds by selecting k initial cluster centers and then iteratively refining
them as follows:

• Each instance di is assigned to its closest cluster center.

• Each cluster center Cj is updated to be the mean of its constituent
instances.

The algorithm converges when there is no further change in assignment of
instances to clusters.

3.3 Perceptron

The perceptron is a mathematical model of a biological neuron. While in ac-
tual neurons that receives electrical signals from the axons of other neurons,
in the perceptron these electrical signals are represented as numerical values.
We can think of perceptron model in artificial computer neural network as
non-linear projections of data.

Without the non-linearity, it is not possible to model certain combinations
of features such as Boolean XOR function 3.2.

Rosenblatt [23] proposed a simple rule to compute the output. He introduced
weights, w1,w2,. . . , wi ∈ R expressing the importance of the respective
inputs to the output. The neuron’s output, 0 or 1, is determined by whether

2Maximum Mutual Information

15

Figure 3.2: Boolean XOR function.

Figure 3.3: Neuron with three input synapses x = (x1, x2, x3), w denotes to
input weights. Sigmoid function is used as an non-linear activation function.

the weighted sum
∑

j wjxj is less than or greater than some threshold value.
Just like the weights, the threshold ∈ R is a parameter of the neuron. More
formally:

output =

{
0, if

∑
j wjxj ≤ threshold.

1, if
∑

j wjxj > threshold.
(3.15)

3.4 Training of Neural Networks

The goal of any supervised learning algorithm is to find a function that best
maps a set of inputs to its correct output. There are many ways how to train
neural networks [24][25][26]. However, the most widely used and successful
in practice is Stochastic Gradient Descent (SGD) [27].

Training of neural networks involves two stages, at first so called forward
pass (respective forward propagation) it is being done:

3.4.1 Forward pass

• Input vector are presented at first in input layer.

• Forward propagation of a training takes input feature vector through

16

the neural network in order to generate the propagation’s output ac-
tivations. The target vector presents the desired output vector.

• While training we change weights that in another cycle, where the
same input vector is presented, the output vector will be closer to the
target vector.

In second stage it is so called backpropagation (respective ”backward
propagation of errors”) performed. Backpropagation takes output activa-
tions through the neural network using the training pattern target in order
to generate the deltas (the difference between the targeted and actual output
values) of all output and hidden neurons.

3.4.2 Backpropagation

The backpropagation algorithm was originally introduced in the 1970s [28],
but its importance was not fully appreciated for use in artificial neural
networks until 1986 [27]. That paper describes neural networks where back-
propagation works far faster than earlier approaches to learning and making
it possible to use artificial neural networks to solve problems which were not
solvable before.

Algorithm

Before we dive into a mathematical background and full explanation of back-
propagation algorithm, will briefly introduce an algorithm. If we are going to
use software library which will train our Neural Network, we will get familiar
with α parameter which is necessary to set to train the network using SGD.
To train the network, it is possible to compute gradient of the error. The
gradients are sent back using the same weights that were used in the forward
pass. Learning rate α controls how much we change the weights. For every
iteration, making better prediction of our current neuron, we slightly change
the weights and ensure that our change gives us a smaller error. However,
if there is too little α value, it will result in long training time, too high
value will erase previously learned patterns. With reasonably little α we are
guaranteed to get a good approximation of some local minimum (though it
might not be a global one). Usually there is being set a high learning rate
at the beginning of training and reduce it during training.

Several training epochs over the training data are often performed, the train-
ing is usually finished when performance on held-out (development) data
does not improve anymore. Held-out data are usually a small portion of
training data and are used only for verification of the network performance
- the network is not trained on these examples.

17

Figure 3.4: Backpropagation

Mathematical Background

Let us show an easy example of single neuron N (fig. 3.3), where w =
(w0, . . . , wk) and an input x = (x0, . . . , xk). At the moment we will not
consider the activation function σ of neuron N , f thus computes only the
summation part of input weights and data f =

∑
nwixi. Given set of

training inputs xj with labels yj , we can compute the error of our neuron
with following standard equation:

E(w) =
1

2

∑
j

(yj − f(xj))2 (3.16)

E is a function of the weights wi ∈ R, which specifies the behavior of single
neuron and denotes to jth input vector. We would like to find a global
minimum of the error function E, for that we can use already mentioned
standard gradient-descent algorithm [27]. We compute the gradient ∇E of
E for our current set of weights:

wcurrent = wcurrent − α∇E(wcurrent), (3.17)

where α is fixed parameter between 0 and 1 representing the ”learning rate”.

This gives vector which points in direction of steepest ascent of the function
E. Error function will always have values greather than zero. If we substract
some sufficiently small multiple of this vector from our current weight vector,
we will be closer to a minimum of the error function:

∇E =

(
∂E

∂w0
, . . . ,

∂E

∂wn

)
(3.18)

In each partial ∂E
∂wi

we consider each other variable beside wi to be constant,
and combining this with the chain rule gives:

18

∂E

∂wi
=

∂

∂wi

1

2

∑
j

(yj − f(xj))2

=
∑
j

(yj − f(xj))
∂

∂wi
(yj − f(xj))

=
∑
j

(yj − f(xj))

(
− ∂f

∂wi

)
= −

∑
j

(yj − f(xj))
∂f

∂wi

(3.19)

Because in the summation formula for f the wi variable only shows up in
the product wi

xj,i
(where xj,i is the i-th term of the vector xj), the last part

expands as xj,i. We also add our update rule, i.e. we have:

wi = wi + α
∑
j

(yj − f(xj))xj,i (3.20)

There is an alternative form of an update rule that allows one to update
the weights after each individual input is tested (as opposed to checking the
outputs of the entire training set). This is called the stochastic update rule,
and is given identically as above but without summing over all j:

w = w + α(yi − f(xj))xj (3.21)

In last part we also add the activation function σ (we assume sigmoid func-
tion σ = 1

1+e−x) to the equation, sigmoid function satisfies the identity:

σ
′
(x) = σ(x)(1− σ(x)) (3.22)

So instead of ∂f in the formula 3.19 above we need ∂(σ ◦ f)/∂wi and this
requires the chain rule:

∂E

∂wi
=
∑
j

(yj + σ(f(xj))σ
′
(f(xj))xj,i (3.23)

And using the identity for σ
′

gives us:

∂E

∂wi
=
∑
j

(yj + σ(f(xj))σ(f(xj)(1− σ(f(xj)))xj,i (3.24)

19

There is a problem in training more than one layer neural network using
the update rule above. We do not know what the “expected” output of any
of the internal neurons in the graph are. In order to compute the error we
need to know what the correct output should be, but we do not immediately
have this information. We showed, how to backpropagate errors for one
layer network, in reality we have two or more layer network and we have to
backpropagate errors of inner neurons with proportion to all weighs [29], we
end up with equation:

w = w + αoj(1− oj)

(∑
i

wj,i(yi − oi)

)
z (3.25)

where by z we denote the vector of inputs to the neuron – these may be
the original input x if this neuron is the first in the network and all of the
inputs are connected to it, or it may be the outputs of other neurons feeding
into it, oi is the output value σ(f(xi)).

3.4.3 Regularization

While network is being trained, it often overfits the training data, so it
has good performance during training, but fails to generalize on Test-data.
In section 3.4.2 we briefly talked about Held-out data, but we did not say,
why to use them. Simple answer is that we are using them to setup the
hyper-parameters - such as α, regularization parameters, cache for RNN and
others. To understand why, consider that when setting hyper-parameters we
are going to try many different choices for the hyper-parameters. If we set
the hyper-parameters based on evaluations of the Test-data it is possible
that we will end up overfitting our hyper-parameters to the Test-data. That
is, we may end up finding hyper-parameters which fit particular Test-data,
but where the performance of the network will not generalize to other data
sets. We guard against that by figuring out the hyper-parameters using the
Held-out data.

The network itself ”memorizes” the training data, after training is finished,
it will contain high weights that are used to model only some small subset
of data.

We can try to force the weights to stay small during training to reduce this
problem.

20

3.5 Feed-forward Neural Networks

A feedforward neural network is an artificial neural network where connec-
tions between the units do not form a cycle and the network can be seen
on figure 3.5. This is different from recurrent neural networks introduced in
followed section 3.7.

Figure 3.5: Feed-forward Neural Network

3.6 Convolutional Neural Networks

When we hear about Convolutional Neural Network (CNN), we typically
think of Computer Vision. CNNs were responsible for major breakthroughs
in Image Classification and are the core of most Computer Vision systems
[30; 31] today, from Facebook’s automated photo tagging [32] to self-driving
cars [33].

More recently we’ve also started to apply CNNs to problems in Natural
Language Processing and gotten some interesting results.

Before we dive into exploring of convolutional neural networks in NLP, we
will show how they works on simple image demonstration (see 3.6). What
happens in parts of the image that are smooth, where a pixel color equals
- the additions cancel and the resulting value approaches to 0, or black? If
there’s a sharp edge in intensity, a transition from white to black for example,
you get a large difference and a resulting white value. This behavior can be
used to detect object edges in an image, like it is on figure 3.7 using Sobel
filter 3.26.

Mx =

∣∣∣∣∣∣
−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣∣ and My =

∣∣∣∣∣∣
1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣∣ (3.26)

CNNs are basically just several layers of convolutions with nonlinear activa-

21

Figure 3.6: Convolution example using 3x3 filter, multiply its values
element-wise with the original matrix, sum them up and slide the filter
window over the whole matrix. b22 = (a11 ∗m11)+(a12 ∗m12)+(a13 ∗m13)+
(a21 ∗m21) + (a22 ∗m22) + . . .)

(a) Input image.
(b) Output gray-scale image after convo-
lution with Sobel mask.

Figure 3.7: Edge detection with Sobel mask.

tion functions like tanh applied to the results. In a traditional Feedforward
Neural Network we connect each input neuron to each output neuron in the
next layer. That is called a fully connected layer, or affine layer. In CNNs
we do not do that. Instead, we use convolutions over the input layer to com-
pute the output. This results in local connections, where each region of the
input is connected to a neuron in the output. Each layer applies different
filters, typically hundreds or thousands, and combines their results.

There is also something technique called pooling (subsampling) layers (see
Section 3.6.2). During the training phase, a CNN automatically learns the
values of its filters based on the task you want to perform. For example,
in image classification a CNN may learn to detect edges from raw pixels
in the first layer, then use the edges to detect simple shapes in the second
layer, and then use these shapes to deter higher-level features, such as facial
shapes in higher layers. The last layer is then a classifier that uses these
high-level features.

There are two aspects of this computation: Location Invariance and Com-
positionality. Because of sliding filters over the whole image we do not really
care where our output object sits on image. In practice, pooling also gives
invariance to translation, rotation and scaling. The second key aspect is
(local) compositionality. Each filter composes a local patch of lower-level

22

features into higher-level representation. That is why CNNs are so powerful
in Computer Vision. It makes intuitive sense that you build edges from
pixels, shapes from edges, and more complex objects from shapes.

3.6.1 Hyperparameters

Architectures of Neural Networks other than Feed-forward Neural Network
usually introduce additional parameters than just α parameter for training
the network. We will explain traditional hyperparameters for CNN:

• Narrow or wide convolution (respective zero-padding). While sliding
the filter, we add zero for values outside of a scope for our input matrix
- means when we are with the center of the filter on edges of input
matrix, that is called wide convolution and without using zero elements
it is called narrow convolution (less computations).

• Stride size is another hyperparameter of CNN. Defining by how much
you want to shift your filter at each step. In all the examples above the
stride size was 1, and consecutive applications of the filter overlapped.
A larger stride size leads to fewer applications of the filter and a smaller
output size.

• Pooling parameter distinguish between max or average pooling (see
3.6.2).

3.6.2 Pooling Layers

Pooling layers are typically applied after the convolutional layers. Pooling
layers subsample their input. The most common way to do pooling is to
apply a max operation to the result of each filter. We do not necessarily
need to pool over the complete matrix, we could also pool over a window.
For example, the following figure 3.8 shows max pooling for a 2×2 window
(in NLP we typically apply pooling over the complete output, yielding just
a single number for each filter).

There are a couple of reasons to use pooling. One property of pooling is
that it provides a fixed size of output matrix regardless of the size of used
filters, which typically is required for classification. This allows us in NLP
to use variable size sentences, and variable size filters, but always get the
same output dimensions to feed into a classifier.

Pooling also reduces the output dimensionality keeps the most ”useful” in-
formation. We can think of each filter as detecting a specific feature, such as
detecting if the sentence contains a negation like ”not amazing” for example

23

Figure 3.8: Max pooling with 2×2 filters and stride 2.

of sentiment analysis. If this phrase occurs somewhere in the sentence, the
result of applying the filter to that region will yield a large value, but a small
value in other regions. By performing the max operation you are keeping
information about whether or not the feature appeared in the sentence, but
you are losing information about where exactly it appeared. It is similar to
what a bag-of-words model is doing. We are losing global information about
locality (where in a sentence something happens), but we are keeping local
information captured by your filters, like ”not amazing” being very different
from ”amazing not”. We distinguish between two types of pooling - max-
pooling which takes maximum value as it is on figure 3.8, or avg-pooling
which takes average number.

3.6.3 Channels

Channels are different ”views” of the input data. For example, in image
recognition you typically have RGB (red, green, blue) channels. We can
apply convolutions across channels, either with different or equal weights.
In NLP we could imagine having various channels as well: Separate channels
for different word embeddings, or we could have a channel for the same
sentence represented in different languages, or phrased in different ways.

3.6.4 Use of CNNs in NLP

Location Invariance and local Compositionality made intuitive sense for im-
ages, but not so much for NLP. We do care a lot where in the sentence a
word appears. Pixels close to each other are likely to be semantically related
(part of the same object), but the same is not always true for words. Clearly,
words compose in some ways, like an adjective modifying a noun, but how
exactly this works what higher level representations actually “mean” is not
as obvious as in the Computer Vision case.

However, it turns out that CNNs applied to NLP problems perform quite
well. The simple bag-of-words model is an obvious oversimplification with
incorrect assumptions, but has nonetheless been the standard approach for

24

years and lead to pretty good results. Especially during recent years there
is being dedicated a lot of attention to CNNs. A good start is [34] where
authors evaluate different hyper parameter settings on various NLP problem.
Article [35] evaluates CNNs on various classification NLP problems. In [36]
they train CNN from scratch, without need for pre-trained word embeddings.
Another use case of CNNs in NLP from Microsoft Research lab can be
found in [37] and [38]. They describe how to learn semantically meaningful
representations of sentences that can be used for Information Retrieval. The
example given in the papers includes recommending potentially interesting
documents to users based on what they are currently reading.

Figure 3.9: CNN for Sentence Classification, picture is taken from [35].

The input to most NLP tasks are sentences or documents represented as
a matrix. Each row of the matrix corresponds to one token, typically a
word represented by word embeddings computed by Word2Vec/GloVe, but
it could be a character. That is, each row is vector that represents a word.
Typically, these vectors are word embeddings (low-dimensional representa-
tions) like Word2vec or GloVe, but they could also be one-hot vectors that
index the word into a vocabulary. For a 10 word sentence using a 100-
dimensional embedding we would have a 10x100 matrix as our input. That
is our ”image”. In NLP we typically use filters that slide over full rows of
the matrix (words). Thus, the ”width” of our filters is usually the same as
the width of the input matrix. The height, or region size, may vary, but
sliding windows over 2-5 words at a time is typical.

A big argument for use of CNNs is that they are fast to train. CNNs are
also efficient in terms of representation. With a large vocabulary, com-
puting anything more than 3-grams can quickly become expensive. Even
Google does not provide anything beyond 5-grams. Convolutional Filters
learn good representations automatically, without needing to represent the
whole vocabulary. It’s completely reasonable to have filters of size larger

25

than 5.

3.7 Recurrent Neural Networks

Popular in NLP due to their capability for processing arbitrary length se-
quences. The idea behind RNNs is to make use of sequential information.
In a traditional neural network we assume that all inputs (and outputs) are
independent of each other. But for many tasks that is an ideal idea, espe-
cially in NLP tasks. If you want to predict the next word in a sentence you
better know which words came before it. RNNs are called recurrent because
they perform the same task for every element of a sequence, with the output
being depended on the previous computations. Another way to think about
RNNs is that they have a “memory” which captures information about what
has been calculated so far. In theory RNNs can make use of information in
arbitrarily long sequences, but in practice they are limited to looking back
only a few steps, because it is also often claimed that learning long-term
dependencies by stochastic gradient descent can be difficult [39].

For Language modeling [16] there is being used a so called simple recurrent
neural network (see figure 3.10) or Elman network [40].

Notation:

• xt is the input at time step t. For example for language modeling,
x1 could be seen as a vector corresponding to the second word of a
sentence.

• hst is the hidden state at time step t. It is the networks ”memory”
(captures information about what happened in all the previous time
steps0) and it is calculated based on the previous hidden state and
the input at the current step: hst = f(Uxt +Whst−1), where the f is
usually our well known nonlinearity function such as tanh. hs−1, which
is required to calculate the first hidden state, is typically initialized to
all zeroes.

• yt is the output at step t. For example, if we wanted to predict the
next word in a sentence, it would be a vector of probabilities across our
vocabulary, yt = softmax(V hst). Output is calculated based on the
memory at time t, but it is more complicated in practice, because hst
can not capture information from too many time steps ago (explana-
tion in section 3.7.1). Softmax regression is a probabilistic method
with function similar to the Logistic regresion, we use the softmax
function to map inputs to the the predictions (can be multinomial).

26

• U and W are parameters of RNN that are shared across the whole
network and are not different at each layer as it is for example in
Feed-forward Neural Networks and its weight parameters.

Figure 3.10: Picture shows a RNN being unrolled (or unfolded) into a full
network. By unrolling we simply mean that we write out the network for the
complete sequence. For example, if the sequence we care about is a sentence
of 5 words, the network would be unrolled into a 5-layer neural network, one
layer for each word.

3.7.1 RNNs with Long Short-Term Memory

Long Short-Term Memory (LSTM) units [41] have re-emerged as a popular
architecture due to their representational power and effectiveness at captur-
ing long-term dependencies. LSTMs do not have a fundamentally different
architecture from RNNs, but they use a different function to compute the
hidden state.

The memory in LSTMs are called cells and they take as input the previous
state hst−1 and current input xt. Internaly these cells decide what to keep
in (and what to erase from) memory. They then combine the previous state,
the current memory, and the input.

In a traditional RNN, during the gradient back-propagation phase, the gradi-
ent signal can end up being multiplied a large number of times (as many as
the number of timesteps) by the weight matrix associated with the connec-
tions between the neurons of the recurrent hidden layer. This means that
the magnitude of weights in the transition matrix can have a strong impact
on the learning process.

When the weights in this matrix are small (if the leading eigenvalue of the
weight matrix is smaller than 1), it can lead to a situation called vanishing
gradients [39] where the gradient signal gets so small that learning either

27

becomes very slow or stops working altogether. It can also make more
difficult the task of learning long-term dependencies in the data. Conversely,
if the weights in this matrix are large (or, again, more formally, if the leading
eigenvalue of the weight matrix is larger than 1), it can lead to a situation
where the gradient signal is so large that it can cause learning to diverge.
This is often referred to as exploding gradients.

Figure 3.11: LSTM memory cell. Green boxes represent learned neural
network layers, while circles inside a cel represents pointwise operations.

These issues are the main motivation behind the LSTM model which intro-
duces a new structure called a memory cell (fig. 3.11). Cells take as input
the previous state ht−1 and current input xt. Internally these cells decide
what to keep in (and what to erase from) memory. They then combine
the previous state, the current memory, and the input. Forget gate makes
decision what information we are going to throw away from the cell state.
Input gate layer decides which values we will update (which information
we keep). It has turns out that these types of units are very efficient at
capturing long-term dependencies.

Mathematical Background

Notation:

• xt is the input to the memory cell layer at time t

• hst is the network state at time t

• Wi,Wf ,Wc,Wo are weight matrices

• bi, bf , bc and bo are bias vectors

First, we compute the value for ft, the activation of the memory cells forget
gates at time t, we need to decide what information we are going to throw

28

away from the cell state. It looks at hst−1 and xt, outputs a number between
0 and 13 for each number in the cell state Ct−1. For instance of the language
model which is trying to predict next word based on all the previous ones,
cell state might include the gender of a present subject, so that the correct
pronouns can be used. But after few words in a sentence we might get to
subordinate clause talking about a new object and want to forget the gender
of the old one:

ft = σ(Wf · [hst−1, xt] + bf) (3.27)

Second, we compute the values for it, the input gate, and C̃t the candidate
value for the states of the memory cells that could be added at time t. We
want to decide what new information we are going to store in the cell state.
Input gate layer decides which values we will update. In the next step, we
will combine these two to create update to the state. For instance of the
language model again, we would like to add the gender of the new subject
to the cell state replacing the old one.

it = σ(Wi · [hst−1, xt] + bi) (3.28)

C̃t = tanh(Wc · [hst−1, xt] + bc) (3.29)

Given the value of the input gate activation it, the forget gate activation ft
and the candidate state value C̃t, we can compute Ct the memory cells’ new
state at time t. We multiply the old state by ft, forgetting the things we
decided to forget and we add it · C̃t. For the case of the language model, this
is where we actually drop the information about subject gender and add the
new information.

Ct = it · C̃t + ft · Ct−1 (3.30)

With the new state of the memory cells, we can compute the value of their
output gates and their outputs. For the language model example, since it
just saw a subject, it might want to output information relevant to a verb,
in case it is coming next. For example it might output whether the subject
is singular or plural, so that we knot what for of a verb should be following.

yt = σ(Wo · [hst−1, xt] + bo) (3.31)

ht = yt · tanh(Ct) (3.32)

3One for strongly remember, zero to not remembering the information.

29

There exists a lot of variants of LSTM models [42; 43; 44], for instance one
of recent variation called Gated Recurrent Unit [43] combines the forget and
input gates into a single ”update gate”. It also merges the cell state and
hidden state, and makes some other changes. However the differences are
minor and as has been investigated, usually does not perform better [45; 46].

3.8 Recursive Neural Network

There is another special type of Reccurent Neural Network, it is called Re-
cursive Neural Network. A Recursive Neural Network is more like a hier-
archical network where there is really no time aspect to the input sequence,
but the input has to be processed hierarchically in a tree fashion. Example
of how a recursive neural network looks can be seen at figure 3.12. It shows
the way to learn a parse tree of a sentence by recursively taking the output
of the operation performed on a smaller chunk of the text. Recursive Neural
Networks operate on any hierarchical structure, combining child representa-
tions into parent representations, Recurrent Neural Networks operate on the
linear progression of time, combining the previous time step and a hidden
representation into the representation for a current time step.

(a) Recursive Neural Network (b) Recurrent Neural Network

Figure 3.12: Sentence representation with Recurrent and Recursive Neural
Network.

3.9 Deep Learning

Deep learning algorithms attempt to learn multiple levels of representation of
increasing complexity (respective abstraction of the problem). Most current
machine learning techniques requires human-designed representations and
input features. Standard Machine learning approaches just optimize the

30

weights to produce best final prediction. Machine Learning methods are
heavily dependent on quality of input features created by human.

Deep belief networks (DBNs), Markov Random Fields with multiple lay-
ers, various types of multiple-layer neural networks are techniques which
has more than one hidden layer and are able to model complex non-linear
problems. Deep architectures can represent certain families of functions
more efficiently (and with better scaling properties) than shallow ones, but
the associated loss functions are almost always non convex. Deep learning
is practically putting back together representation learning with machine
learning. It tries to learn a good features, across multiple levels of increas-
ing complexity and abstraction (hidden layers) of the problem [47].

Hidden layer represents learned non-linear combination of input features.
With hidden layer, we can solve non-linear problem (such as XOR):

• Some neurons in the hidden layer will activate only for some combin-
ation of input features.

• The output layer can represent combination of the activations of the
hidden neurons.

Neural network with one hidden layer is universal approximator. The univer-
sal approximator theorem for neural networks states that every continuous
function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer perceptron
with just one hidden layer. However, not all functions can be represented ef-
ficiently with a single hidden layer. That is why deep learning architectures
can achieve better accuracy for complex problems.

In recent work, there are being used deep LSTM networks, often bidirec-
tional deep recurrent (LSTM) network [48]. Bidirectional RNNs are based
on the idea that the output at time t may not only depend on the previous
elements in the sequence, but also future elements. For example, to predict
a missing word in a sequence you want to look at both the left and the right
context. Bidirectional RNNs are quite simple. They are just two RNNs
stacked on top of each other. The output is then computed based on the
hidden state of both RNNs. Deep (Bidirectional) RNNs are similar to Bi-
directional RNNs, only that we now have multiple layers per time step. In
practice this gives already mentioned higher learning capacity (but we also
need a lot of training data).

3.9.1 Representations and Features Learning Process

Development of good features is hard and time-consuming process. Features
are eventually over-specified and incomplete anyway. In NLP research we

31

Figure 3.13: Deep neural network. X represents the input layer, h1, h2, . . . hn
represents hidden layers and y denotes to output layer

usually after some time can find and tune features for manually annotated
corpus dealing with some NLP problem. However problem is, that in real
situation we will often find that developed features were over specified for
concrete corpus and fail in generalization during a real usage.

If machine learning could learn features automatically, the learning process
could be automated more easily and more task could be solved and there
deep learning provides one way of automated feature learning.

Chapter 4

Distributional Semantics
Using Neural Networks

Many models in NLP are based on counts over words such as Probabilistic
Context Free Grammars (PCFG) [49]. In those approaches it can hurt gen-
eralization performance when specific words during testing were not present
in the training set. Because an index vector over a large vocabulary is very
sparse, models tends to overfit to the training data. The classical solutions
to the problem involve in already mentioned time consuming manual engin-
eering of complex features. Deep learning models of language usually use
distributed representation (see 2.1.1). Methods for learning word repres-
entations where meaning of words or phrases is represented by vectors of
real numbers, where the vector reflects the contextual information of a word
across the training corpus.

It was shown that the word vectors can be used for significant improving
and simplifying of many NLP applications [50; 51]. There are also NLP
applications, where word embeddings does not help much [52].

There has been introduced several methods based on the feed-forward NNLP
(Neural Network Language Model) in recent studies. One of the Neural
Network based models for word vector representation which outperforms
previous methods on word similarity tasks was introduced in [53]. The word
representations computed using NNLP are interesting, because trained vec-
tors encode many linguistic properties and those properties can be expressed
as linear combinations of such vectors.

Nowadays, word embedding methods Word2Vec [17] and GloVe [11] signi-
ficantly outperform other methods for word embeddings. Word representa-
tions made by these methods have been successfully adapted on variety of
core NLP task such as Named Entity Recognition [54; 55], Part-of-speech
Tagging [56], Sentiment Analysis [57], and others.

32

33

There are also neural translation-based models for word embeddings [43; 58]
that generates an appropriate sentence in target language given sentence in
source language, while they learn distinct sets of embeddings for the vocabu-
laries in both languages. Comparison between monolingual and translation-
based models can be found in [59].

We will shortly introduce current state-of-the-art Word Embedding meth-
ods called Word2Vec[17] and other methods for sentence representation in
following sections.

Vector Similarity Metrics

The distance (similarity) between two words can be calculated by a vector
similarity function. Let a and b denote the two vectors to be compared
and S (a,ab) denote their similarity measure. Such a metric needs to be
symmetric: S (a, b) = S (b,a).

There are many methods to compare two vectors in a multi-dimensional
vector space. Probably the simplest vector similarity metrics are the familiar
Euclidean (r = 2) and city-block (r = 1) metrics

Smink (a, b) = r

√∑
|ai − bi|r, (4.1)

that come from the Minkowski family of distance metrics.

Another often used metric characterizes the similarity between two vectors
as the cosine of the angle between them. The cosine similarity is defined as
follows:

Scos (a, b) = cos (θ) =
a · b
‖a‖ · ‖b‖

=

∑
aibi√∑
a2
i

∑
b2i

. (4.2)

4.0.2 Continuous Bag-of-Words

Continuous Bag-of-Words (CBOW) [17] tries to predict the current word
according to the small context window around the word. The architecture is
similar to the feed-forward Neural Network Language Model (NNLM) which
has been proposed in [60]. The NNLM is computationally expensive between
the projection and the hidden layer. Thus, CBOW proposed architecture,
where the (non-linear) hidden layer is removed (or in reality is just linear)
and projection layer is shared between all words. The word order in the
context does not influence the projection (see Figure 4.1a). This architecture
also proved low computational complexity.

34

(a) CBOW (b) Skip-gram

Figure 4.1: Nerual network models architectures.

4.0.3 Skip-gram

Skip-gram architecture is similar to CBOW. Although instead of predicting
the current word based on the context, it tries to predict a words context
based on the word itself [18]. Thus, intention of the Skip-gram model is
to find word patterns that are useful for predicting the surrounding words
within a certain range in a sentence (see Figure 4.1b). Skip-gram model
estimates the syntactic properties of words slightly worse than the CBOW
model, but it is much better for modeling the word semantics on English
test set [17; 18]. Training of the Skipgram model does not involve dense
matrix multiplications 4.1b and that makes training also extremely efficient
[18].

4.0.4 Paragraph Vectors

It does not make sense to treat phrases such as Czech Republic, or longer
sentences as separate words. Paragraph vectors were proposed in [61] as an
unsupervised method of learning text representation. Article shows the way
how to compute vector for the whole paragraphs, documents or sentences.
Resulting feature vector has fixed dimension while the input text can be of
any length. The paragraph vectors and word vectors are concatenated to
predict the next word in a context. The paragraph token acts as a memory
that remembers what information is missing from the current context.

The sentence representations can be further used in classifiers (logistic re-
gression, SVM or NN).

4.0.5 Tree-based LSTM

Tree-structured representation of LSTM was presented in [48].Tree model
represents the sentence structure. Dependency parsing is being used as
typical sentence tree structure representation [62]. LSTM processes input
sentences of variable length via recursive application of a transition function
on a hidden state vector hst. Such model was used for sentiment analysis
or given these representations, model predicts the similarity score using a
neural network considering distance and angle between vectors representing
sentences - i.e. for each sentence pair it creates sentence representations hL
and hR using Tree-LSTM model.

Chapter 5

Preliminary Results

This Chapter describes preliminary ideas for future work that imply the
aims of PhD thesis. The three main directions are indicated:

Much has been investigated about word embeddings of English words and
phrases, but only little attention has been dedicated to other languages. In
[63] we explore the behavior of state-of-the-art word embedding methods on
Czech that is a representative of Slavic languages with rich word morpho-
logy. These languages are highly inflected and have a relatively free word
order. Czech has seven cases and three genders. The word order is very
variable from the syntactic point of view: words in a sentence can usually
be ordered in several ways, each carrying a slightly different meaning. All
these properties complicate the learning of word embeddings. We introduced
new corpus for word analogy task that inspects syntactic, morphosyntactic
and semantic properties of Czech words and phrases. We experimented with
Word2Vec and GloVe algorithms and discussed the results on this corpus.
We showed that while current methods can capture semantics on English
at similar corpus with 76% of accuracy, there is still room for improvement
of current methods on highly inflected languages where the models work on
less than 38%.

In [64] we present our UWB1 system for Semantic Textual Similarity (STS).
Given two sentences, the system estimates the degree of their semantic sim-
ilarity. In the monolingual task, our system achieve mean Pearson cor-
relation 75.7% compared with human annotators. Our system is ranked
second among 119 systems. In the cross-lingual task, our system has correl-
ation 86.3% and is ranked first among 26 systems. It was shown, how good
can simple Tree LSTM Neural Network architecture perform representing
a meaning and was compared with complex state-of-the-art algorithms for
the meaning representation. We also experimented with Paragraphs vector

1University of West Bohemia

35

36

models and linear combination of word vectors (CBOW model) representing
the sentence.

Clustering of word vectors and Paragraphs vector models has showed signi-
ficance improvement in Sentiment analysis at SemEval2016 competition in
[65] and also in recent work targeted on Czech language [66]. Neural net-
work based Word Embedding models has helped with accuracy of previous
model originally developed for SemEval2014 competition [67] to get into first
position on several tasks during competition of year 2016.

Chapter 6

Summary and Future Work

This thesis presents overview of the current state-of-the-art approaches for
distributional semantics.

The performance of semantic representation models has rapidly improved
during recent years with use of neural network and deep learning. As a future
work we choose to reach a hard target. We will try to outperform current
state-of-the-art word embedding methods. We are going to experiment with
use of external sources of information (such as part-of-speech tags, NER, or
stemming and character n-grams) during training process of current state-of-
the-art neural network based word embedding methods and explore results
on highly inflected languages. We will explore further use of neural network
in solving NLP problems where the semantic knowledge is crucial to solve
the actual problem. Currently, we are working on article for Paraphrase
detection where we are going to use neural network based approach. This
thesis is a theoretical preparation for the future development.

6.1 Overall Aims of the PhD Thesis

The goal of doctoral thesis is to explore state-of-the-art distributional se-
mantics models based on neural networks and to propose novel approaches
to improve these models on inflectional languages. The work will be focused
on the following research tasks:

• Study the influence of rich morphology on the quality of meaning rep-
resentation.

• Propose of novel approaches based on neural networks for improving
the meaning representation of inflectional languages.

• Use of distributional semantic models for improving NLP tasks.

37

Bibliography

[1] Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–
162, 1954.

[2] J. R. Firth, “A Synopsis of Linguistic Theory, 1930-1955,” Studies in
Linguistic Analysis, pp. 1–32, 1957.

[3] H. Rubenstein and J. B. Goodenough, “Contextual correlates of syn-
onymy,” Communications of the ACM, vol. 8, pp. 627–633, Oct. 1965.

[4] W. G. Charles, “Contextual correlates of meaning,” Applied Psycholin-
guistics, vol. 21, no. 04, pp. 505–524, 2000.

[5] G. Salton, A. Wong, and C. S. Yang, “A vector space model for auto-
matic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[6] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis.,” Journal of the American Soci-
ety for Information Science 41, pp. 391–407, 1990.

[7] T. Hofmann, “Probabilistic latent semantic analysis,” in Proceedings of
15th Conference on Uncertainty in Artificial Intelligence, pp. 289–296,
1999.

[8] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, p. 2003,
2003.

[9] B. Riordan and M. N. Jones, “Redundancy in perceptual and lin-
guistic experience: Comparing feature-based and distributional models
of semantic representation,” Topics in Cognitive Science, vol. 3, no. 2,
pp. 303–345, 2011.

[10] D. S. McNamara, “Computational methods to extract meaning from
text and advance theories of human cognition,” Topics in Cognitive
Science, vol. 3, no. 1, pp. 3–17, 2011.

38

39

[11] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1532–
1543, 2014.

[12] M. Sahlgren, “An Introduction to Random Indexing,” Methods and
Applications of Semantic Indexing Workshop at the 7th International
Conference on Terminology and Knowledge Engineering, TKE 2005,
2005.

[13] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural prob-
abilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155,
Mar. 2003.

[14] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model.,” in Aistats, vol. 5, pp. 246–252, Citeseer, 2005.

[15] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed lan-
guage model,” in Advances in neural information processing systems,
pp. 1081–1088, 2009.

[16] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudan-
pur, “Recurrent neural network based language model.,” in INTER-
SPEECH, vol. 2, p. 3, 2010.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distrib-
uted representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems, pp. 3111–3119,
2013.

[19] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, pp. 467–479, 1992.

[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Inform-
ation Retrieval. Cambridge University Press, 2008.

[21] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, pp. 273–297, Sept. 1995.

[22] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 1: Stat-
istics, (Berkeley, Calif.), pp. 281–297, University of California Press,
1967.

40

[23] J. Rosenblatt, “Testing approximate hypotheses in the composite case,”
Ann. Math. Statist., vol. 33, pp. 1356–1364, 12 1962.

[24] R. S. Scalero and N. Tepedelenlioglu, “A fast new algorithm for training
feedforward neural networks,” Signal Processing, IEEE Transactions
on, vol. 40, no. 1, pp. 202–210, 1992.

[25] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the marquardt algorithm,” Neural Networks, IEEE Transactions on,
vol. 5, no. 6, pp. 989–993, 1994.

[26] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms.,” in IJCAI, vol. 89, pp. 762–767, 1989.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[28] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal,
vol. 30, no. 10, pp. 947–954, 1960.

[29] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural Networks, 1989. IJCNN., International Joint Conference on,
pp. 593–605, IEEE, 1989.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[31] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recog-
nition: A convolutional neural-network approach,” Neural Networks,
IEEE Transactions on, vol. 8, no. 1, pp. 98–113, 1997.

[32] S. S. Farfade, M. J. Saberian, and L. Li, “Multi-view face detection
using deep convolutional neural networks,” CoRR, vol. abs/1502.02766,
2015.

[33] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[34] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practition-
ers’ guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1510.03820, 2015.

[35] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014.

41

[36] R. Johnson and T. Zhang, “Effective use of word order for text categor-
ization with convolutional neural networks,” CoRR, vol. abs/1412.1058,
2014.

[37] J. Gao, L. Deng, M. Gamon, X. He, and P. Pantel, “Modeling in-
terestingness with deep neural networks,” Dec. 17 2015. US Patent
20,150,363,688.

[38] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic
model with convolutional-pooling structure for information retrieval,”
in Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, pp. 101–110, ACM,
2014.

[39] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” Neural Networks, IEEE Trans-
actions on, vol. 5, no. 2, pp. 157–166, 1994.

[40] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,”
in Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, vol. 3, pp. 189–194, IEEE,
2000.

[43] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[44] K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer, “Depth-gated
lstm,” arXiv preprint arXiv:1508.03790, 2015.

[45] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and
J. Schmidhuber, “Lstm: A search space odyssey,” arXiv preprint
arXiv:1503.04069, 2015.

[46] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15), pp. 2342–2350,
2015.

[47] Y. Bengio, Y. LeCun, et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, 2007.

42

[48] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
CoRR, vol. abs/1503.00075, 2015.

[49] C. D. Manning and H. Schütze, Foundations of statistical natural lan-
guage processing, vol. 999. MIT Press, 1999.

[50] R. Collobert and J. Weston, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,” 2008.

[51] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. P. Kuksa, “Natural language processing (almost) from scratch,”
CoRR, vol. abs/1103.0398, 2011.

[52] J. Andreas and D. Klein, “How much do word embeddings encode about
syntax?,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), (Baltimore,
Maryland), pp. 822–827, Association for Computational Linguistics,
June 2014.

[53] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving
word representations via global context and multiple word prototypes,”
in Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics: Long Papers - Volume 1, ACL ’12, (Strouds-
burg, PA, USA), pp. 873–882, Association for Computational Linguist-
ics, 2012.

[54] S. K. Siencnik, “Adapting word2vec to named entity recognition,” in
Proceedings of the 20th Nordic Conference of Computational Linguistics
(NODALIDA 2015), pp. 239–243, 2015.

[55] H. Demir and A. Ozgur, “Improving named entity recognition for mor-
phologically rich languages using word embeddings,” in Machine Learn-
ing and Applications (ICMLA), 2014 13th International Conference on,
pp. 117–122, IEEE, 2014.

[56] R. Al-Rfou, B. Perozzi, and S. Skiena, “Polyglot: Distributed word
representations for multilingual nlp,” 2013.

[57] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. An-
droutsopoulos, “Semeval-2015 task 12: Aspect based sentiment ana-
lysis,” in Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), Association for Computational Linguist-
ics, Denver, Colorado, pp. 486–495, 2015.

[58] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

43

[59] F. Hill, K. Cho, S. Jean, C. Devin, and Y. Bengio, “Not all neural
embeddings are born equal,” CoRR, vol. abs/1410.0718, 2014.

[60] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain,
“Neural probabilistic language models,” in Innovations in Machine
Learning, pp. 137–186, Springer, 2006.

[61] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
pp. 1188–1196, 2014.

[62] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al., “Generating
typed dependency parses from phrase structure parses,” in Proceedings
of LREC, vol. 6, pp. 449–454, 2006.

[63] L. Svoboda and T. Brychćın, New word analogy corpus for exploring
embeddings of Czech words. Cham: Springer International Publishing,
2016.

[64] T. Brychćın and L. Svoboda, “Uwb at semeval-2016 task 1: Semantic
textual similarity using lexical, syntactic, and semantic information.,”
In Proceedings of the 10th International Workshop on Semantic Eval-
uation (SemEval 2016), San Diego, California, June, vol. 16, 2016.

[65] T. Hercig, T. Brychćın, L. Svoboda, and M. Konkol, “Uwb at semeval-
2016 task 5: Aspect based sentiment analysis,” in Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016),
(San Diego, California), pp. 354–361, Association for Computational
Linguistics, June 2016.

[66] T. Hercig, T. Brychćın, L. Svoboda, M. Konkol, and J. Steinberger,
“Unsupervised methods to improve aspect-based sentiment analysis in
czech,” Computación y Sistemas, in press.

[67] T. Brychcın, M. Konkol, and J. Steinberger, “Uwb: machine learning
approach to aspect-based sentiment analysis,” in Proceedings of the
8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 817–822, 2014.

	Introduction
	Distributional Semantics
	Hypotheses
	Distributional Hypothesis
	Bag-of-word Hypothesis

	Word Semantic Approaches
	Context Types
	Model Architectures

	Language Models
	Statistical Language Models
	N-gram Language Models
	Class-based N-gram Models

	Neural Networks
	Introduction
	Machine Learning
	Logistic Regression Classifier
	Naive Bayes Classifier
	SVM Classifier
	Clustering (Word Classes)

	Perceptron
	Training of Neural Networks
	Forward pass
	Backpropagation
	Regularization

	Feed-forward Neural Networks
	Convolutional Neural Networks
	Hyperparameters
	Pooling Layers
	Channels
	Use of CNNs in NLP

	Recurrent Neural Networks
	RNNs with Long Short-Term Memory

	Recursive Neural Network
	Deep Learning
	Representations and Features Learning Process

	Distributional Semantics Using Neural Networks
	Continuous Bag-of-Words
	Skip-gram
	Paragraph Vectors
	Tree-based LSTM

	Preliminary Results
	Summary and Future Work
	Overall Aims of the PhD Thesis

