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Summary of the results
and the future work

This text summarizes my work in the field of computer generated display holog-
raphy. It tries to explain what motivated me to explore certain aspects of its
fundamental principles and briefly explains the results. The reader interested
in details finds them in my research articles; they are included as appendices.
My longest text, the draft of the intended book “Computer generated display
holography”, is available as a separate document.

I entered the world of holography in 2005 thanks to prof. Ing. Véaclav Skala,
CSc. and his involvement in the European project “3DTV — Integrated Three-
Dimensional Television — Capture, Transmission and Display”. The computer
graphics group from the University of West Bohemia, I am a member of, worked
mainly in two areas — compression of dynamic meshes and digital holography.
I was involved mainly in digital holography, together with Ing. Ivo Handk and
Ing. Martin Janda.

As a computer scientist specialized in computer graphics, I quickly real-
ized that computer generated holography is a big challenge — among high-
performance programming and algorithm design, it requires a deep understand-
ing of optics (especially Fourier optics), digital signal processing, and indeed op-
tical holography. Other areas such as computer graphics, 3-D display technology,
numerical mathematics, Fourier analysis, vision science or even chemistry and
precision mechanics are more than welcome.

I also quickly realized that a lot of texts about (computer generated) holog-
raphy are mostly written by opticians for the audience with strong background
in optics. Indeed, some texts were written by non-opticians — and here things
became complicated. Some authors talked about e.g. the Rayleigh-Sommerfeld
diffraction integral and described it by a particular equation; other authors
talked about the Rayleigh-Sommerfeld diffraction integral as well but used a
different equation. Some authors based their reasoning on formulas expressed in
the frequency domain, but the algorithms used the discrete Fourier transform
without bothering if the discretization is correct. Some authors used a certain
light propagation calculation while the others used a different one without any
clear reason. Some authors used zero padding in FFT calculations, the others
did not. And so on.



In such a situation, scepticism creeps into mind: do the authors really know
what are they doing? Or is it I just do not understand some common knowledge?
Unfortunately, I was not able to find any monograph on computer generated
holography written for non-opticians that would start from the very beginning
and followed a single track — towards computer generated holography.

I, therefore, decided I have to create my own reference tool that allows me to
compare results of various procedures to the result well supported by rigorous
physics. Especially for a beginner, it is extremely hard to guess the correct result
and differentiate implementation errors from approximate calculation artifacts
and to decide if the artifacts are serious or not. As the basic task in computer
generated holography is light propagation calculation between parallel planes,
I focused to this area. I created an algorithm based on discrete convolution in
the spatial domain that allows to propagate light between planes of different
sizes and different sampling distances, see [5] (included as the Appendix E on
page 55). Its main advantage is that it allows the trade-off between the time
and the memory complexity; I was then able to calculate light propagation that
would normally require thousands of gigabytes of main memory.

As a hologram is just a diffractive structure, and the simplest diffraction
structure is a diffraction grating, it became obvious that it would be helpful
to understand them before diving in computer generated holography. Unfortu-
nately, the only available spatial light modulator for displaying computer gener-
ated holograms allows just binary output, and binarization significantly affects
the pattern behaviour. When I was analysing effects of binarization and ways
to avoid them (together with L. Kovaf from the Brno Univerity of technology,
see [6] for the results; included as the Appendix F on page 65), I noticed a sig-
nificant discrepancy between real light behaviour and the result of my reference
tool — which was disturbing as the tool was designed to match reality.

A similar problem was reported by many other authors and they also re-
ported its cause — aliasing of the propagation kernel. However, in other cases,
when the propagation kernel was aliased as well, my algorithm gave precise
results. It was obvious that explaining the discrepancy just by aliasing is not
sufficient, and I sought for a more fundamental explanation, possibly physically
based and intuitive. Thanks to the previous study of fundamental principles
of wave phenomena I realized that the dreaded aliasing is actually not an er-
ror — the fact is that the calculation of light propagation based on discrete
convolution in the spatial domain solves a bit different physical problem. In
particular, if the problem of light propagation is discretised in a naive and the
most straightforward way (and by far the most common one!), it should be
interpreted as a propagation of wave emitted by discrete dipoles, or simply said
point light sources.

To solve the original propagation problem, i.e. the propagation of a con-
tinuous optical field defined in the plane z = 0, it is necessary to introduce



interpolation between samples to the discrete algorithm. This leads to a slightly
different formulation of the propagation formula; see [3] for the complete discus-
sion and an efficient algorithm for the calculation (included as the Appendix C
on page 29).

The result also allowed me to solve another fundamental problem that was
bothering me — while light propagation calculation can be equivalently formu-
lated in both the spatial and the frequency domains, the numerical algorithms
behave differently. Again, a common explanation just stated that the numerical
algorithms are different due to aliasing, and many authors proposed “a solu-
tion” — to throw away the aliased part of the signal. First of all, no evidence
was given that such a solution has a reasonable physical interpretation and if
the results of a “corrected” algorithm still match reality. Second, I felt that it
should be possible to discretise the problem carefully and to obtain a numerical
algorithm that works in both the spatial and the frequency domain.

I found the solution and published it in [1] (included as the Appendix A on
page 13). Moreover, I also showed that a careful discretisation in the frequency
domain requires to introduce additional terms to the calculation, and that these
terms would be normally considered as aliasing.

These insights would not be possible without an intuitive understanding
of light behaviour, which leads me to some aspects of my Ph.D. study. Every
Ph.D. student at the University of West Bohemia has to pass three exams, and
I was very lucky that all three teachers allowed me to combine their subject
with holography. In particular, Ing. Sirka Némcova, Ph.D. from the Czech
Technical University allowed me to learn optical holography in the diffractive
optics laboratory and taught me “an engineering approach” to thinking about
light and holograms. Moreover, I prepared the unique technical exhibition of
holograms that has been presented to public since then many times.

In the second subject, lead by prof. Dr. Ing. Ivana Kolingerova, I was allowed
to learn aspects of floating point arithmetic; I summarized it in the technical
report [7] (not included as an appendix here as it is too long). This gave me
a chance to spot and solve a numerical problem common to many algorithms
of computer generated holography. In short, a common knowledge states that
certain calculations should be done in double precision arithmetic, while single
precision is sometimes sufficient — regrettably without stating precisely which
calculations and when it is sufficient. I was able to analyse the problem, to
give the precise prediction of problems and to describe why certain calculations
suffer from single precision while others do not. The results were published in [4]
(together with P. Vanécek; included as the Appendix D on page 43).

Finally, in the third subject, lead by doc. Ing. Marek Brandner, Ph.D.,
I was allowed to learn about numerical methods of light simulation, which
gave me much deeper insight to computer generated holography. The results
are summarized in an unpublished document that tries to explain numerical



methods of light simulation from zero to advanced techniques such as linear
canonical transforms (the text is not included as an appendix here as it is too
long).

Here I again realized that a similar document on computer generated holog-
raphy is simply missing — there are indeed monographs about optical hologra-
phy, about technical digital holography (such as digital holographic microscopy
or digital holographic interferometry), but there is no introductory text on com-
puter generated display holography.

Every Ph.D. student is obliged to describe “state of the art”. I must confess
I have read many STAR reports and I consider most of them useless for a
common reader; they are usually very brief and hardly useful for a non-expert.
It is expected that a reviewer of my Ph.D. STAR report will not be an expert
in computer generated display holography, as there are quite a few of them. It
follows it would be desirable to write an “extended STAR report” that would be
suitable even for a non-expert, and could be eventually considered as a textbook.
This is why I wrote the text “Computer generated display holography”. It does
not reference every published idea, but tries to explain the important ideas step
by step; I consider it a first draft of a book I would like to publish.

The form of the “book” reflects my experience with teaching holography,
both computer generated and optical. I explained holography to many people
(hundreds at least) in talks targeted to a various audience — from populariz-
ing public talks to invited university lectures. I also explained holography to
dozens of students in intensive, “face to face” courses — the audience covers
both undergraduate students and university /industry researchers, both com-
puter scientists and opticians. I learned that every type of a student lacks some
fundamental knowledge — opticians have a poor understanding of digital signal
processing, computer scientists do not understand wave optics, undergraduate
students usually do not understand Fourier analysis, and so on. This is the
main reason why the presented “book” seems to explain obvious facts more
than necessary — the truth is that obvious for an optician is not obvious for a
computer scientist and vice versa.

I am aware that the presented “book” is far from perfect; especially Chap-
ters 5 (Light propagation calculation), 6 (Computer generated holography al-
gorithms for 3-D scenes) and 7 (Computer generated hologram display) should
be expanded considerably. I would like to finish them, but not necessarily as a
part of my Ph.D. study.

Instead, I would like to continue introducing new ideas based on my re-
sults to computer generated holography/digital holography. I have published
a method that significantly accelerates calculation speed of radially symmetric
functions, e.g. light propagation kernels; see [2] (included as the Appendix B on
page 23). Unfortunately, the publishers decided to limit length of the paper to
four pages; the original description and analysis of the algorithm (14 pages plus
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appendices) now waits for a small enhancement, then it will be resubmitted for
publication elsewhere.

I have also derived a method for improved light approximation in the fre-
quency domain that could be used in e.g. computer generated holographic stere-
ogram calculation. The method has to be implemented and tested.

Conference papers (in order of importance)

[1] Lobaz, P. “Discrete calculation of the off-axis angular spectrum based light
propagation”. In: Journal of Physics: Conference Series. Vol. 415. 1. 2013,
p. 012040.

[2] Lobaz, P. “Double lookup table method for fast light propagation calcu-
lations”. In: Proceedings of the 10th International Symposium on Display
Holography. 2015, in press.

Journal papers (in order of importance)

[3] Lobaz, P. “Memory-efficient reference calculation of light propagation using
the convolution method”. In: Opt. Express 21.3 (Feb. 2013), pp. 2795-2806.
DOI: 10.1364/0E.21.002795.

[4] Lobaz, P. and Vanécek, P. “Safe range of free space light propagation cal-
culation in single precision”. In: Opt. Express 23.3 (Feb. 2015), pp. 3260
3269. DOI: 10.1364/0E.23.003260.

[5] Lobaz, P. “Reference calculation of light propagation between parallel
planes of different sizes and sampling rates”. In: Opt. Ezpress 19.1 (Jan.
2011), pp. 32-39. DOL: 10.1364/0E.19.000032.

[6] Lobaz, P. and Kovar, L. “Binarizace poéitatem generovaného hologramu
pomoci ditheringu [Binarisation of a computer generated hologram using
dithering]”. In: Jemnd mechanika a optika 56.10, 11-12 (2011), pp. 290,
303-305. 1SSN: 0447-6441.

Conference tutorial

e Computer generated holography for computer graphics. [In English] A tu-
torial presented at the 3DTV Conference 2011, May 15, Antalya, Turkey.
DOI: 10.1109/3DTV.2011.5877153.
Selected talks (in order of year)

e Fourier transform and associated transforms in optics. [In Czech] Institute
of Mathematics of the Academy of Sciences of the Czech Republic, 2015.

e Holography and computer science. [In Czech] Czech Technical University,
Prague, Czech Republic, 2015.

11


http://dx.doi.org/10.1364/OE.21.002795
http://dx.doi.org/10.1364/OE.23.003260
http://dx.doi.org/10.1364/OE.19.000032
http://dx.doi.org/10.1109/3DTV.2011.5877153

Computer generated holography: 3D wvision and beyond. [In Czech] Series
of six lectures. University of West Bohemia, Pilsen, Czech Republic, 2013.

Computer generated holography: 3D vision and beyond. [In Czech] Come-
nius University in Bratislava, Bratislava, Slovakia, 2013.

Computer generated holography. [In English] Czech Technical University
in Prague, Prague, Czech Republic, 2012.

Computer generated holography for computer graphics. [In English] Uni-
versity of Maribor, Maribor, Slovenia, 2011.

Computer generated holography: 3D wvision and beyond. [In English] Uni-
versity of Minho, Braga, Portugal, 2011.

Computer generated holography. [In Czech] The Palacky University, Olo-
mouc, Czech Republic, 2010.

Selected popular talks and exhibitions (in order of year)

Hologramy [Holograms]. [In Czech] A workshop for grammar school teach-
ers on using holography in physics education. At 13th International con-
ference “Dilny Heuréky — Nachod 20147, Czech Republic.

Holograms. An exhibition of art holograms (concepts by students of In-
termedia art at the University of West Bohemia, holographer P. Lobaz)
at Galerie Zari, Prague, Czech Republic, 2014.

Holografie pro stredni skoly [Holography for grammar schools]. [In Czech].
A seminar and a hands-on course for grammar school teachers held in
Hazuka hotel, Pilsen, Czech Republic, 2014.

Holography. [In Czech] 3D Film Fest Prague, Prague, Czech Republic,
2013.

Holography. An exhibition and hands-on courses at Dny védy a techniky
(Days of Science and Technology), Pilsen, Czech Republic, 2013.

Kouzlo? Ne. Holografie [Magic? No. Holography]. Half technical, half artis-
tic exhibition of holography. Muzeum jizniho Plzenska v Blovicich, Blovice,
Czech Republic, 2013.

12



Appendix A

Discrete calculation of the
off-axis angular spectrum
based light propagation






9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012040 doi:10.1088/1742-6596/415/1/012040

Discrete calculation of the off-axis angular spectrum
based light propagation

P Lobaz

Department of Computer Science and Engineering, University of West Bohemia, Univerzitni 8,
306 14 Plzen, Czech Republic

E-mail: lobaz@kiv.zcu.cz

Abstract. Light propagation in a free space is a common computational task in many
computer generated holography algorithms. A solution based on the angular spectrum
decomposition is used frequently. However, its correct off-axis numerical implementation is
not straightforward. It is shown that for long distance propagation it is necessary to use digital
low-pass filtering for transfer function calculation in order to restrict source area illumination
to a finite area. It is also shown that for short distance propagation it is necessary to introduce
frequency bands folding in transfer function calculation in order to simulate finite source area
propagation. In both cases it is necessary to define properly interpolation filters that reconstruct
continuous nature of the source area out of its sampled representation. It is also necessary to
zero-pad properly source area sampling in order to avoid artifacts that stem from the periodic
nature of the fast Fourier transform.

1. Introduction

To calculate coherent light propagation in a free space, scalar approximation is used frequently.
A common task is such a calculation where complex amplitudes of light are given in the area
source in a plane z = 0 and we look for complex amplitudes in the area target in a plane z = zg,
20 > 0. A common procedure leads to the Rayleigh-Sommerfeld integral of the first kind [1], or
to its mathematically equivalent form, the angular spectrum decomposition [2]. Approximations
of these formulas are used frequently, namely Fresnel and Fraunhofer approximations. However,
these approximations are used in paraxial regime while in computer generated holography an
off-axis solution is often needed (e. g. [3]); therefore we will not discuss them.

The problem has to be solved numerically in computer generated holography. This
leads to discretization of signals. Discretization of the Rayleigh-Sommerfeld solution is not
straightforward [4, 5] and discretization of the angular spectrum decomposition is tricky [6, 7].
Onural [6] describes the discretization process in general and shows that it leads to formation
of signal copies in spatial domain that can be filtered out. However, he does not discuss
implementation issues. Matsushima [7] deals with the implementation and solves a troublesome
aliasing problem by local frequency estimation; however, he does not analyse the effect of hard
frequency clipping.

This article focuses on reference calculation of light propagation between parallel planes using
angular spectrum decomposition. We will point out what makes the discretization difficult

Published under licence by IOP Publishing Ltd 15
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and how to overcome the problems so that the method provides the same results as the
Rayleigh-Sommerfeld method. We will deal with both large propagation distances discussed
by Matsushima [7] and small propagation distances that were not discussed in literature yet.
We will explain the meaning of “large” and “small” distance later.

Structure of the article is as follows. At first we will precisely show how to discretize the
propagation calculation based on convolution (i. e. based on Rayleigh-Sommerfeld integral). We
will show that it is necessary to introduce spatial limitation of a convolution kernel for successful
discretization. This leads to frequency limitation of the transfer function used in the angular
spectrum decomposition method. We will show that the frequency limited transfer function can
be calculated using digital signal processing methods. At last we will deal with the case where
this frequency limitation is actually useless due to small propagation distance. We will show
that, in this case, we have to deal with exact nature of sampling and reconstruction of signals
involved. We will show that the choice of reconstruction leads to introduction of artificial alias.

2. How to read the article

The mathematical explanation presented may be unpleasant to follow. Readers are therefore
encouraged to go through the presentation packed as a “multimedia” attachment to this article.
It shows pictures containing various problems that appear when calculating the propagation
numerically. I have decided to attach these pictures as a separate media for two reasons. The
first one is: the pictures show mainly problems with aliasing. It is therefore needed to control
the display of these images precisely which is not possible in a PDF reader or in printed media.
The second one is: separate media gives the opportunity to show much more images than any
printed media allows. I should note that the presentation does not contain any information not
covered by the article.

3. Convolution discretization

Let us assume that we know complex amplitudes u(z,y,0) of monochromatic coherent light
of wavelength X\ in the area source (Tsmin < T < Zsmax, Ysmin < ¥ < Ysmax, 2 = 0) and
we want to calculate complex amplitudes u(z,y, z9) in the area target (Timin < < Timax,
Yimin < Y < Ytmaxs 2 = 20 > 0). The solution is given by the Rayleigh-Sommerfeld integral of

the first kind:
8 exp(jkr
(e, 2) / [ uten0)5- 22U geay (1)

where r = \/(x — )2+ (y — )2 + 22, k = 27/, j> = —1 and u(&,,0) = 0 for [£,n,0] & source.
The second term of the multiplication inside the integral depends on (z — &) and (y — 1) only,
which means that the integral can be rewritten as the convolution with the Rayleigh-Sommerfeld
kernel h(z,y, 2):

'I,L(.’E,y, ZO) = u(x,y,O)@h(w,y,zO) = / u<£7n70)h($_€7y_na ZO) dfdﬁ (2)

h(xvy’ ) .. T o r 72

27 Oz r 2w
r JATETR

The kernel h(x,y, z) can be interpreted easily: the value h(x4,yq, zq4) describes the change of
the complex amplitude of light travelling from the point [xg,ys, z5] to the point [zs + x4, ys +

Yd, %s + Zd]'

—1 0 exp(jkr) —=z <k 1> exp( jkr)
ik — =) =2

16



9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012040 doi:10.1088/1742-6596/415/1/012040

To calculate u(z,y, z0) in the area target using (1) we have to know the kernel h(x,y, zg) for
Ttmin — Tsmax < T < T¢max — Tsmin, similarly for y. The value h(z,y, 2¢) is not important for
other z, y because in this case u(z,y,0) = 0. We will use this fact in a while.

We discretize (1) easily by changing integrals to sums and differentials to differences. The
sums will have finite extent of the indices thanks to (in fact) finite domain of the integration.
Therefore their calculation will be easy, although the computational complexity will be high.

To reduce computational complexity, let us rewrite the equation (2):

U(.’L’,y,ZO) = u(m,y,O)@h(m,y,zo) = f_l {f{u(x7y70)} ’ f{h(x7y720)}} (3)

where F and F~! are 2-D Fourier and inverse Fourier transform respectively. We will try to use
the discrete Fourier transform (DFT) implemented as the fast Fourier transform (FFT) after
discretization.

The discrete Fourier transform can be defined if the original continuous functions are periodic
before discretization (sampling); then we take into account one period of functions u,(x,y, 29),
up(z,y,0) and hy(z,y, z9) derived from functions u(x,y, 20), u(z,y,0) and h(z,y,20). We can
define the DFT another way if the functions to be transformed are spatially limited; in this case
we can assume just one period of the functions u,(x,y, 20), up(z,y,0) a hy(z,y, 20). Both ways
lead to the same results. This means that the results of the DFT can be interpreted in both
ways. We will choose the way that will be more suitable in a particular situation.

Let us briefly give a hint what is the meaning of the functions u,(z,y,0), uy(z,y, 20) and
hp(x,y, z0) before we define them precisely. Their period in z direction is equal to the sum
of widths of the source and the target (similarly in y). One period of the function u,(x,y,0)
is composed of values of u(x,y,0) in the way that one corner of the source is translated to
the origin. The meaning of the function wuy,(z,y, 29) is similar. The hy(z,y, 29) is restricted
and shifted version of the function h(z,y,zp). The meaning of the value h,(0,0,z2) is the
change of the complex amplitude of light travelling from the point [smin, Ysmin, 0] to the point
[wtmin, Ytmin, ZO]7 see ﬁg 1.

T extreme an,(_]]os T span of a propagation /NB
of propagation kernel hy(z, y, zq) =
...... r L¢max 1.
....... tm’get target 5/
Tsmax T “ X4min fundamental sizey | s
. source area
source size of up(z, y, 0) | source target
msmin e ) -+ size size
- =z > source
R size
S N
s S Sfundamental
S = area
S S of hp(z, y, 0)
z = z= 2y z=0 z= 2y

Figure 1. Geometry of the problem in xz slice. Left image: original setup. Red line in
the source area denotes the complex amplitudes to be propagated, blue line in the same plane
defines zero value. It should be clear that we need to know the values of a propagation kernel
contained in a green wedge only. Right image: setup prepared for discretization. Source and
target are shifted to the z axis, blue and red lines in the source plane show both zero padding and
periodicity. The green wedge shows one period (fundamental area) of the function hy,(x,y, 2o).
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Let us define the functions precisely. The function h,(z,y, 20) is defined in “the fundamental
area” Tsmin — Tsmax < T < Timax — Lmin (Similarly for y) as:

hp(xa Y, Z(]) = h($ + Ttmin — Tsmin, Y T Y¢tmin — Ysmin, ZO) (4)

Definition outside the fundamental area depends on situation: it can be either zero or the
function can be made periodic. However, as we will see, the values outside the fundamental area
are not important, which means that the periodic nature of the function is not harmful.

Let us define the function u,(x,y,0) in the fundamental area 0 < = < (Z¢max — Ttmin) +
(Zsmax — Tsmin) (similarly for y; notice that the size of the area is the same as for hy(z,y, 20))
as:

U(SU + Tsmin, Y + ysminvo) for 0 <z < Tsmax — Lsmin»
up(‘rv Y, 0) = 0 <y < Ysmax — Ysmin
0 elsewhere in the fundamental area
and again let us make it periodic.

Let us calculate uy(z,y, 20) = up(z,y,0) @ hy(z,y, 20). If we consider the function wu,(z,y,0)
to be periodic and the function hy(z,y, z0) to be zero outside the fundamental area, we can
easily prove that u,(x,y,29) will contain correct result of the propagation from the source to
the target in the area 0 < = < ZTymax — T¢min (similarly for y); the values of hy(z,y, 20) are
meaningless for other z, y as they are damaged by periodicity of the function u,(x,y,0). The
proof easily follows from the geometry of the problem.

If we consider the function u,(z,y,0) to be spatially limited and the function hy(z,y, o) to
be periodic, we get the same result. If we consider both functions to be periodic, the meaning of
the result remains the same; however, we are in fact in the world of discrete Fourier transform.

The form of the discrete calculation follows from the aforementioned ideas. The area source
is discretized by M, x M, samples, the area target by N, x N, samples. For simplicity let us
assume such parameters so that the sampling period A is the same in both directions z and y
and in both source and target areas. Its value is then e. g. A = (Zsmax — Tsmin)/ M.

The area source is discretized by samples ug[m,n] = up,(mA, nA,0), the convolution kernel
is discretized by samples h[m,n] = hy(mA,nA, z9) for m € {0,1,..., My + N, — 2} (similarly n,
see [4]). We consider functions u,(x,y,0) and hy(z,y, 20) to be periodic. Then we can calculate

uz,[] = IDFT { DFT{uo(]} - DFT{h[]} } (5)

to get the array u,,[] that contains complex amplitudes of the area target in the first Ny x N,
elements. In the equation (5), DFT and IDFT stands for forward and backward 2-D discrete
Fourier transform, respectively, and - stands for elementwise product (Hadamard product).

We can summarize the results as follows. For the discrete calculation of light propagation,
we have to use a convolution kernel spatially limited to a certain area. The source has to be
zero-padded to span the same area. The result of their convolution contains correct values in
the area of the size proportional to the size of the target.

4. Angular spectrum discretization for large propagation distances
The equation (1) can be written in the equivalent form called the angular spectrum
decomposition [2]:

u(x7 Y, ZO) = fﬁl{U(f:ca fya 0) : H(fxa fyv ZO)}

where
U(fe, fy,0) = F{u(z,y,0)}

H(fz, fy7 Zo) = exp <—j 27rz0\/)\—2_—H>
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and f;, f, are Fourier domain variables.
It follows from (3) that

u(z,y, 20) = u(z,y,0) @ h(z,y, 2) = F {U(fx, fy,0) - F{h(z,y, Z())}},

that is H(fz, fy.20) = F{h(z,y,20)}. It seems that the propagation calculation should be
advantageous using the angular spectrum decomposition compared to convolution with the
Rayleigh-Sommerfeld kernel because we have one Fourier transform less — the transform of
the kernel is known in the analytic form.

In the following paragraphs, we will talk about various limitations of functions in both spatial
and Fourier (frequency) domain. A function f(z,y) defined in spatial domain is spatially limited
if it is zero outside a bounded area in the plane (z,y); it is frequency limited if F{f(z,y)} is
zero outside a bounded area in the plane (fy, fy). Similarly, a function F(fs, f,) defined in
frequency domain is spatially limited if it is zero outside a bounded area in the plane (fs, fy);
it is frequency limited if 1 {F(fy, f,)} is zero outside a bounded area in the plane (z,y).

We know from the previous section that we have to introduce certain functions to discretize
the calculation. We have to define the periodic function uy(z, y, 0) based on the function u(z, y, 0)
and to calculate its (discrete) Fourier transform; we will follow this procedure exactly. We also
need to spatially restrict the function h(x,y, 2p), and to make its periodic form alternatively.
However, we do not know the Fourier transform of the function h,(z,y, 20) in the analytic form.

Fortunately we can use digital signal processing tools. If the signal is spatially limited in one
domain (in our case spatial domain), it is frequency limited in the other domain (in our case
frequency domain). We can calculate frequency limited signal using low-pass filter I( f;, f,). Let
us assume the function h,(z,y, 20) to be spatially limited (i. e. not periodic). For propagation
calculation, we have to use the transfer function Hy(fz, fy, 20) = H(fz, fy, 20) @ U fz, fy)-

It follows from properties of the Fourier transform that the function Hy(fy, fy,20) has to
be spatially unlimited. This does not matter even in numerical calculation. Since the function
up(z,y,0) is periodic, then U, ( fy, fy,0) is spatially limited; and we need to calculate the product
Up(fzs fy, 0)Hp(fz, fy,0). It also follows that the value of the function H,(fs, fy,20) can be
arbitrary outside the important area, and therefore we can use its periodic form to introduce
discrete calculation correctly.

We cannot limit the frequency content of the function H(f;, fy, 20) sharply using digital low-
pass filtering; the frequency limitation is approximate. In the spatial domain it means that the
transition between zero and non-zero part is gradual instead of sharp. This does not matter
either. All we need to do is to enlarge the fundamental area of the functions u,() and h,(),
i. e. zero-padding of the array u,[] will be larger than defined in section 3, so that the gradual
transition will not affect the target area.

We will face a problem in a practical implementation. The function H(f;, fy, 20) is frequency
unlimited — the local frequency [1, 7] in the point [f;, f,] grows without bound as this point
approaches a circle of a radius A~! centered in the origin. Moreover, if the propagation distance
zop is large, then the local frequency will be large as well everywhere except in the origin.
Therefore it is impossible to sample the function H(f,, fy, z0) correctly and then the low-pass
filtering will not work properly.

However, we can use the same procedure as described by Matsushima [7] who realizes the
aliasing problem. He evaluates local frequency when sampling the function H(f., fy,20), and
if the local frequency is bigger than a half of the sampling frequency, he sets the function
H(fz, fy,20) to be zero. He solves the aliasing problem this way, on the other hand he
introduces a spatial limitation of the function H(f., fy,20). It follows that the propagation
kernel F~ ' Hyfatsushima(fz, fy>20)} is then spatially unlimited which is not correct. It should
be however emphasised that even though it gives remarkably good results.
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The solution is easy. We can sample the function H(f., fy,20) using higher sampling
frequency than desired and use Matsushima’s procedure to avoid alias. Then we can filter
it using I(fz, fy) and downsample the result to get a correct sampling frequency. As the cutoff
frequency of the filter I(f,, f,) is derived from the sizes of the arrays used in the calculation, it
is guaranteed that no aliasing appears when downsampling.

It follows from practical experiments that it is sufficient to sample the function H(fz, fy, 20)
using sampling frequency twice as high as desired, and to use sinc low-pass filter with Hamming
window as [(fy, fy). The size of the filter should be chosen carefully — a long filter filters high
frequencies well, but takes long to evaluate. Evaluation with a short filter is faster but slow
attenuation of high frequencies has to be compensated with bigger zero-padding of the array

U()[]

5. Discretization for short propagation distances

To calculate the propagation numerically (either using convolution approach or angular spectrum
approach), we have to calculate (discrete) Fourier transform of the function u,(z,y,0). Its result
is the function Up(fz, fy,0) limited to the area A = (—1/(2A),1/(2A)) x (=1/(2A),1/(2A)), or
its periodic form. We also need to calculate the function Hy(fz, fy,20) in the same area, and
then to calculate F~{U,(fu, fy, 0)Hp(fu, fy,20) }-

We can naturally ask a question: what happens if the propagation distance zg is so small that
the low-pass filtering of the function H(f, fy,20) will not have any significant effect inside the
area A? It is not easy to find the answer. Let us start with one more look into the convolution
based approach described by the equation (2).

The convolution kernel h(z,y, zo) is a spatially unlimited function that is in fact frequency
limited if we ignore evanescent waves. We can easily show that its local frequency grows as
the point [z,y] moves away from the origin. The smaler is zy the faster is the growth. It can
therefore easily happen that the function h,(z,y, z0) cannot be properly sampled using sampling
period A for small propagation distances.

Physical meaning of wrong sampling is easy. Discretization is based on change of integrals
to sums in the equation (1). It means that we change a continuous light field in the source to a
number of point light sources. This replacement cannot be observed from a big distance or in
on-axis case but makes a big difference close enough or in off-axis case.

We have to assume (especially in small propagation distances) that one sample of the
function w(z,y,0) represents behaviour of the light field in a small neighbouring area. Let
us denote the result of the sampling of the function u(z,y,0) by the function wus(z,y,0) =
u(z,y,0) comb(z/A) comb(y/A), where comb(z) is the sampling function with period of samples
1 (see [1]). Then we can describe the reconstruction of the continuos form using convolution
with a reconstruction kernel r(z,y):

U(.I‘, Y, 0) ~ Ur(.%', Y, 0) = u8($7y70) ®7“(.TJ, y)

where u,(z,y,0) is a continuos function reconstructed from the discrete samples. The function
ur(x,y,0) is more or less similar to the function u(z,y,0) depending on the shape of a
reconstruction kernel r(z,y) and size of the sampling period A.

We can therefore express the propagation as

u(1:7 Y, ZO) ~ Us(l', Y, 0) ® <T(aj7 y) ® h(l’, Y, ZO))
It is possible to put big parenthesses in the equation thanks to associativity of the convolution.

It follows that we should not use the function h(z,y, zo) for discrete propagation calculation,
but we shoud use its filtered version r(x,y) ® h(x,y, z9) instead.
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It is most common to demand for one sample of the function u(z,y,0) to influence its close
neighbourhood only. For example, the kernel r(x,y) = rect(z/A)rect(y/A), where rect(z) is a
rectangular pulse of unity width and height centered in the origin, implies the function u(zx,y, 0)
to be approximated with a piecewise constant function. We can construct other kernels as
well that provide piecewise bilinear approximation, piecewise bicubic approximation and so
on. In either case, the kernel r(z,y) acts as a low-pass filter. If we use the filtered function
h(x,y,20) ®r(x,y) for construction of the function hy(z,y, 29) in the equation (4), we get the
result of the propagation calculation as precise as the function w,(x,y,0) resembles the function
u(z,y,0). Practical implementation of the procedure is described in [5].

We can repeat the analysis for the angular spectrum decomposition as well. We should
not use the function H(f, fy,20) for construction of the function Hy(fy, fy, 20); we should use
the Fourier transform of the filtered propagation kernel, the function F{h(z,y, 20} @r(z,y)} =
H(fz, fy,20) F{r(z,y)}. If we choose convenient kernel r(z,y), we will know analytic form of its
Fourier transform and calculation of the product will be simple. This step limits high frequencies
that were caused by the discretization process.

It remains to solve the last, but important detail. In the beginning of the section we have
stated that the calculations in frequency domain are done inside the area A. It is however
possible that the support of the function Hpy(fz, fy,20) will not fit into the area A even if it was
filtered with both filters I( fz, f,) and r(z,y). If we reject the values of the function Hy(fz, fy, 20)
outside of A despite that fact, it means that the final function u(x,y, zo) was filtered by a third,
still unjustified low-pass filter.

We can explain this final low-pass filter. It would be appropriate if the kernel r(z, y) represents
a perfect sinc low-pass filter limiting the frequency content of the function u(z,y, 2¢) to a range
described by the area A. Then the kernel r(x,y) has to be be spatially unlimited. If we do not
care, the analysis is finished.

If we would rather keep the kernel r(z, y) spatially limited (which is physically more natural),
we have two choices to choose from. The first one is simple — we can use such a sampling period
A/s, s € N for the calculation so that the area A covers the support of H,(fs, fy, z0) now. This
leads to increase of time and memory demands of the calculation, of course. Moreover, if we
demand sampling of the target to be A, we have to downsample the result; we have to admit
that a lot of values were calculated needlessly.

The second one is a bit strange at first sight. Signal downsampling in spatial domain
can be described easily in frequency domain — the frequencies f and f + n/A merge due to
downsampling, where f is frequency f, or f, from the range (—1/(2A),1/(2A)) and n € Z.
This effect is called aliasing. We want to avoid it usually; however, if we are decided to sample
the target with an insufficient sampling period, we have to accept aliasing. It is worth to note
that aliasing needs not be harmful. If we are interested in intensities |u(x, vy, 20)|? only, aliasing
in the real or imaginary part of the function u(x,y,zp) may be harmless. For example, if
u(z,y, z0) = cosx + jsinz, then the intensity is always 1 regardless sampling period used, while
intensity of “correctly sampled” (i. e. low-pass filtered) version can be either 1 or 0 which is not
correct.

The procedure in the second case is obvious: we will perform the downsampling process in
frequency domain. Let us calculate the function Hy(fz, fy,20) in the area (—s/(24A),s/(2A)) x
(—s/(2A),s/(2A)), assume it is zero outside this area, and calculate

Ha(fa:afmzo) = Z Hp(fa: + %Jty + %720)

Nz, My

for [fz, fy] € A and all suitable ng, n,. To calculate the propagation, we have to use the function
Ha(f:r: fya ZO)'
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6. Conclusion

The analysis shows how to numerically calculate the propagation of light using the angular
spectrum decomposition method. Unlike the procedures described in the literature, it defines
low-pass filters I( f;, fy) and r(z,y) that are needed to introduce for correct discretization. Then
we can choose either more precise, slower calculation or faster, less precise by choosing their
parameters. The analysis also shows that it is worth introducing aliasing of the transfer functions
in certain situations. The results are shown in figures 2 and 3. The images may display wrong
due to resampling; the reader is encouraged to look at the images in the multimedia attachment.
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a

Figure 2. Light (A = 650 nm) diffracted by a grating (3 x 3 mm?) composed of vertical
slits (slits distance 40 pm). Off-axis propagation to a distance of 300 mm, size of each image
3 x 3 mm?2. Lower half of each image is overexposed to show the details. a) Reference Rayleigh-
Sommerfeld calculation. ) Angular spectrum based calculation without any modification.
Notice that aliasing errors destroy the image completely. ¢) Angular spectrum based calculation
with Matsushima’s kernel filtering. Notice different brightness of fine stripes compared to the
reference image. d) Angular spectrum based calculation with [(f,, f,) sinc kernel of length 50.

a b c d

Figure 3. Light (A = 650 nm) diffracted by a grating (3 x 3 mm?) composed of vertical slits (slits
distance 20 ym). Off-axis propagation to a distance of 50 mm, size of each image 3 x 1.5 mm?.
a) Reference Rayleigh-Sommerfeld calculation. b) Angular spectrum based calculation without
any modification. Notice that the right half is much darker than in the reference image. c¢)
Angular spectrum based calculation with Matsushima’s kernel filtering. Notice that the image
is the same as without any modification because aliasing did not occur. d) Angular spectrum
based calculation with introduced aliasing. Notice that the image is almost the same as the

reference one.
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Abstract. A method of rapid and robust calculation of radially symmetric functions is
presented. It is based on observation that f(z,y,2) = f'(p,z), where p = (2 + y2)1/2. The
method stores values of f’ and p in look-up tables. It can be used e.g for fast computer generated
hologram calculation. It is suitable for CPU, GPU or hardware implementation.

1. Introduction

In computer generated holography and digital holography, it is often necessary to evaluate
radially symmetric functions of two variables such as convolution kernels for free space light
propagation calculation, e.g. Rayleigh-Sommerfeld or Fresnel kernels [1]. There are several
approaches how to accelerate their evaluation. First of all, a moderately complicated formula,
such as the Rayleigh-Sommerfeld convolution kernel

1 /. 1\ exp(jkr) z
Krs(w,y;20) = —5~ (Jk - r) pg): where r = /2% +y? + 23 (1)

can be approximated by a simpler formula, such as the Fresnel approximation. Such kernels
are used to calculate light propagation from a plane z = 0 to a plane z = zp; A stands for
a wavelength, k& = 27/) is a wave number, z and y are transverse spatial coordinates and j
is the imaginary constant. Among acceleration, a simpler formula can have better numerical
properties [2]. On the other hand, the approximation error must be taken into account.

Other acceleration method pre-calculates the function for every necessary z, y and zp and
stores the values in a 3-D look-up table (LUT) [3, 4]. Some researchers do not calculate LUT
at points where the function is not properly sampled, thus reduce its size [5]. Certain functions,
e.g. the Fresnel convolution kernel, are separable, i.e. it holds K (z,y; 20) = Kz(x; 20) Ky(y; 20)-
In this case, it is sufficient to create one 2-D look-up table for each of the two factors K, K,
[6, 7, 8]. Indeed, this approach is not applicable for non-separable functions.

Some researchers try to accelerate function evaluation by using recurrence formulas,
e.g. [9, 10]. It should be noted that influence of computer arithmetic rounding errors is usually
poorly analysed and that recurrence formulas tend to produce a sequential computer code rather
than a parallel one. An original approach to evaluation of radially symmetric function K is
based on computer graphics algorithm for circle rasterisation [11]. Its biggest drawback is its
complicated memory access, thus memory caching cannot be used efficiently. Recently, authors
proposed a method that overcomes this difficulty using recurrence formulas [12].
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Parts of the method we are going to analyse in following sections were independently described
by other authors [12, 13, 14]. We will discuss these references after we describe the basic idea of
the proposed method in Sec. 2. Detailed analysis is given in Sec. 3 and 4, results in Sec. 5.

2. Principle of the method

For light propagation calculation, Kgrs(x,y;2z0) must be evaluated for a specific zg in a finite
area of the xy plane. This area should be sampled using sampling distance A,. It is easy to see
that Kgrs(z,y;20) depends in fact on r and zp, where 2 is constant. Moreover, we can define
p(z,y) = (2% + y*)'/* and write r = (p* + 23)'/? and Krs(z, y; 20) = Krs(p; 20).

To calculate Krg(mAyy, nAgy; z0), where m, n are integer indices, it is necessary to evaluate
p = Agy(m? + n?)/2 and Krs(p; 20). It is possible to calculate p directly or using a 2-D look-
up table; we call this look-up table “rhoLUT”. We can also build a look-up table with values
Krs(qAy; z0) where A, is sufficiently small and integer index ¢ spans all possible values of p.
We denote this look-up table “waveLUT” because it actually captures wave structure of light.

The waveLUT improves the calculation speed as the evaluation of Krg or more complicated
functions is usually slow. As any error in calculation of p can significantly affect the precision of
the result, the pre-calculated rhoLUT improves numerical behaviour of the calculation.

The authors of [14] used a very similar method. Instead of rhoLUT, they calculated a look-up
table directly for r = (2% + y? + 22), so they could not reuse it for other zy coordinate as in
the case of thoLUT. Moreover, sampling distance of this table was set to Ay, and thus keeping
this table for every zy would be memory inefficient. The authors of [13] use the table we call
waveLUT here and although they in fact use rhoLUT as well (due to Matlab style of matrix
manipulation), they do not discuss it explicitly, nor do they investigate its influence. The authors
of [12] use waveLUT as well, but instead of rhoLUT, they use recurrence formulas to find values
of p. They also do not discuss the influence of interpolation on calculation precision.

3. The rhoLUT analysis

The aim of the thoLUT is to replace the calculation of p(z,y) = (22 + y?)¥/2, x € [0, MA,,],
y € [0, MA,y], by a look-up operation, optionally followed by an interpolation. Let us define it
as a 2-D array thoLUT|[m, n] = A,v/m? 4+ n? for integer indices 0 < m,n < [MAgy/A,].

No interpolation is necessary for A, = Agy. For A, # A,,, either piecewise constant or
piecewise bilinear interpolation can be used. It can be shown that the approximation error
caused by the piecewise constant interpolation is not generally acceptable, as the approximate
value of p is used for the Kgrg calculation, where any error is greatly amplified. Piecewise bilinear
interpolation gives much better results. If we denote pp(z,y) as a result of the rhoLUT look-up
followed by the piecewise bilinear interpolation, it can be found that the approximation error
p(z,y) — p(z,y) vanishes for z — oo, y — oo, and its maximum is A,(2 — v/2)/4 ~ 0.146A,
located at (z,y) = (A,/2,A,/2).

To select a small enough sampling distance A,, it is not sufficient to examine error
pa(z,y) — p(x,y) alone, as we need to take into account that approximate value pp is used
in subsequent calculation of Krg. The most sensitive part of Kgrg is exp(j27r/)), because even
a slight error in r is greatly amplified. It is thus necessary to analyse error r(pg, z0) — 7(p, 20)-
Analysis reveals that this error is the biggest for p close to 0. As we know that pg(z,y) — p(x,y)
is the biggest at (z,y) = (A,/2,A,/2), we can guess that r(pg,20) — r(p, 20) at this point
estimates maximum error of r. We can thus define estimate of the maximum error of r as

w0 =120 [ (2.2 o o (25)5] ) @

where r(p,2z0) = (p? + 28)"/? and factor 1.2 reflects the observation that the error of 7 for

(x,y) = (A,/2,A,/2) is approximately 85% of the maximum.
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Figure 1. Approximate value of maximum Figure 2. Optimal sampling distance A, pt
error in calculation of . calculated using Eq. (3).

It can be seen in Fig. 1 that in the log-log graph, maxRErr can be approximated by a line
for a wide range of useful errors and A,. Recall that for visible light, error of r must be well
below 1 pm that is depicted by a thick dashed horizontal line.

A set of lines in a log-log graph is defined as log(maxRErr) = rlog(A,) + & + & log(zo),
where « is the slope and &y and &; define the intercept. We can measure in the graph that for a
wide range of common zy and acceptable maxRErr, k ~ 2, {g ~ —2 and & ~ —1.

The linear approximation allows us to find optimal A, o for a chosen maxRErr:

A, opt(maxRErr, 29) = exp <1 log [IWREH]> =~ 2.72v/zo maxRErr. (3)
K (20)%* exp(&o)

Example values of A, op¢ for A = 500 nm can be found in Fig. 2. Note they are much larger
than A, thus rhoLUT size is usually small.

4. The waveLUT analysis

Once we have the approximate p value, we can calculate Kgrg(p;20) using the waveLUT. We
should set small enough A,, and define waveLUT|q; z9] = Krs(qAw; 20), where ¢ is an integer
index. Again, for a particular value py we can estimate the value of Krs(po; 20) using piecewise
constant approximation or piecewise linear approximation.

The extent of the waveLUT in the p direction is given by the rthoLUT. For a given maximum
value pmax, we can calculate the local frequency 1fRs(pmax; 20) and set Ay, < 1/[21fRrs(Pmax; 20)]
to have at least two samples per cycle of Kgrs(p;zp). Our experiments show that good results
are obtained with 8 samples per cycle and a piecewise linear interpolation.

5. Results

As shown in [2], direct calculation of highly oscillatory functions such as KRrg is prone to
numerical error in single precision calculations. No problems appeared in single precision
environment when using a rhoLUT and a waveLUT pre-calculated in double precision. See Fig. 3
for an example of both correct and incorrect Krg calculation. Tests also show that selection of
A, and A, according to Sections 3 and 4 works as expected.

We have also measured actual error of calculation of Krg. Choosing 8 samples per fringe in
selection of A,, and linear interpolation in the waveLUT leads to maximum error 7.0% (1.1% on
average). While this number may seem high, it should be noted that the maximum error appears
in the finest fringes and has a negligible impact on the optical field properties. Combination of
the rhoLUT and the waveLUT further increases the error; typical value of maxRhoErr = \/100
leads to the maximum error 8.8% (2.8% on average), which is still acceptable for our purposes.
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Figure 3. Real part of Kyrg calculated in IEEE 754

single precision arithmetic and in double precision

% & 7% arithmetic (“correct calculation”). Calculation using

single precision  correct calculation look-up tables leads to the same correct result.

Calculation time was tested in realistic geometric scenarios. We have prepared two test cases —
one for complicated filtered propagation kernels (see [15]), and one for the Rayleigh-Sommerfeld
kernel. Complicated filtered propagation kernel calculation is accelerated mainly by utilizing
waveLUT; 10x or 100x faster calculation is easily achieved, depending on the complexity of
the kernel. Using waveLUT in simple kernel calculation leads to about 1.7x faster calculation.
These numbers include the waveLUT calculation, which takes about 1% of the overall time.

Introducing rhoLUT enhances numerical behaviour in single precision environment; in double
precision environment, this advantage is not important, as p can be easily evaluated directly.
Unoptimized implementation of the rhoLUT can actually double calculation time compared to
direct p calculation and the waveLUT. On the other hand, careful rhoLUT implementation that
uses integer arithmetic whenever possible leads to further 20% to 40% speed-up compared to
direct p calculation and the waveLUT.

6. Conclusion

We have introduced a method of calculation of arbitrary radially symmetric functions using a pair
of look-up tables, a thoLUT and a waveLUT. While using a waveLUT is always advantageous,
using a thoLUT has its pros and cons. The rhoLUT enhances numerical behaviour in a limited
precision environment, but it must be carefully implemented to improve the speed of calculation.
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Abstract: In computational Fourier optics, computer generated holo-
graphy, etc., coherent light propagation calculation between parallel planes
is the essential task. A proper calculation discretization in the off-axis
case leads to big memory demands in order to avoid aliasing errors. The
proposed method typically cuts down the memory demands one hundred
times. The principle of the method is based on the observation that there is
a close correspondence between the reconstruction process (opposite of the
sampling process) and prefiltering of the convolution kernel.
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OCIS codes: (070.2025) Discrete optical signal processing; (070.7345) Wave propagation.
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1. Introduction

Calculation of coherent light propagation in a free space is a fundamental tool in Fourier optics
[1, 2], digital holography [3], computer generated holography (e.g. [4—8]) and other areas of
optics. A very important and common task is the calculation of light propagation between two
parallel planes; however, the general case of light propagation between tilted planes is also
important in applications [9-11].

The problem is often given in this way: there is an area X in a plane z= 0 containing an
image called the source that is lit by a coherent light, mostly by a plane wave. The task is to
calculate the light field in a plane Z= 2z in an area called the target.

In this task, we usually assume validity of the scalar approximation of the light [1]. A good
approximation of the correct solution is then given by, e.g., a Rayleigh-Sommerfeld integral of
the first kind. In this article, let us assume this approximation as the reference one.

The Rayleigh-Sommerfeld solution cannot usually be used in an analytic calculation due
to its complexity. Sometimes it is possible to get some results by using its mathematically
equivalent form, the angular spectrum decomposition [12]. It is, however, most usual to restrict
the calculation to the paraxial approximation in either the near (Fresnel) or far (Fraunhofer)
region.

It is possible to evaluate the “reference” Rayleigh-Sommerfeld integral numerically using
computers; thanks to its form of convolution, the calculation leads to the use of three fast Fourier
transforms (FFT). The reason for the use of the aforementioned forms or approximations lies
in the number of FFT’s: the angular spectrum decomposition leads to two FFT’s; the Fresnel or
Fraunhofer approximation lead to just one FFT or fast fractional Fourier transform [13].

The implementations of these faster algorithms are unfortunately not straightforward, as the
discretization of their equations leads to various problems. Correct implementation of the an-
gular spectrum decomposition is especially tricky [14]; even Fresnel and Fraunhofer approxi-
mations have to be discretized carefully [2, 15, 16].

It is therefore wise to verify fast algorithms by comparing them with a reference method
based on the carefully discretized Rayleigh-Sommerfeld integral [17, 18]. The discretization
process must consider both correct sampling of the source and sampling of the illumination
light field and the Rayleigh-Sommerfeld convolution kernel. It is also necessary to consider
the inverse operation to the sampling, i.e. the reconstruction. All of these considerations often
lead to sampling distances smaller than the wavelength of light, and therefore to huge memory
demands. This article studies the discretization process and suggests a method to avoid huge
memory demands and consequent time demands of large arrays FFT’s.

The structure of the article is as follows. Section 2 shows a naive method of discretization; the
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example given will show an illuminated amplitude diffraction grating with a sine transmittance
profile. We will show that the naive discretization leads to “wrong” results; we will explain the
“wrong” result in a physical way and show that a fine sampling leads to the correct result (and
to huge memory demands). In Section 3, we will show how to lower memory demands by a
simple 1D example. In Section 4 we will remove certain simplifications introduced in Section 3,
and in Section 5 we will discuss the general 2D algorithm. Finally, in Section 6 we will present
the time and memory demands of the algorithm and in Section 7 we will give conclusions.

In the rest of the article we will assume SI units. Absolute value of a complex amplitude
is electric field amplitude, unit volt/m. For conversion of a complex amplitude to an intensity
value, see e.g. [1,2]. Please also note that 1D examples should not be interpreted physically as
propagation integrals were derived for 3D space; they just demonstrate main ideas of the final
algorithm.

2. Effect of naive discretization

Both theoretical analysis and experiments show that an amplitude diffraction grating with a
sine transmittance profile illuminated by a plane wave (let us call it the source) creates just
three diffraction maxima in the far field — the directly transmitted wave and the plus-minus first
diffraction order [1]. Sampling of the sourceis easy in this case; it is necessary to use a sampling
frequency at least 2x higher than the frequency of the pattern. Let us choose the perpendicular
illumination and set its complex amplitude at z= 0 to be 1. Let us choose a sampling whose
samples coincide with maxima and minima of the transmittance of the grating, i.e. the samples
will be progressively ...,0,1,0,1,0,1,... (this is exactly at the Nyquist limit, see also the end of
the section), and let us calculate the diffraction pattern using the Rayleigh-Sommerfeld integral.
It is given as

-1 d exp(jkr)
Utxya) = 5 [[U(En.0) 5 S agan (1)

where U (X,Y, Zy) is the calculated complex amplitude at a point [X,Y, ] of the target, U (&, n,0)
is the complex amplitude at a point [£,7,0] of the source (i.e. the product of the complex
amplitude of incoming light and the transmittance of the grating), X is the extent of the source,
j* = —1,k=2m/2 is the wave number and r = ((x— &)>+ (y—1n)? +2)~!/? is the distance
between points [X,Y, 2] and [§,7,0].

Let us discretize the calculation by replacing the double integral with a double sum. The
result shown in Fig. 1(a) differs a lot from the theoretical result. Where is the problem? (Note
that Fig. 1 displays diffraction at sine grating of finite rectangular area in a finite distance,
therefore the diffraction maxima have rectangular shape.)

a) [mm]5
i = m = E &
)

b) [mm]5

-50 40 -30 -20 -10 0 10 20 30 40 50 [mm)]
Fig. 1. Light diffraction at sine grating 5 x 5 mm? of period 50 cycles/mm illuminated

perpendicularly by a plane wave with A = 650 nm at a distance Z, = 0.5 m. a) Discretization
using A = 10 um. b) Discretization using A = 10/12 um = 0.83 um.
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When talking about discretization, let us discuss the direction of varying transmittance only
(i.e. perpendicular to the grating stripes). The other direction is not important in this case.

The replacement of the integral by the sum means, in fact, that the original continuous
function U(&,n,0) is replaced by an array of Dirac pulses; in other words, by ideal point
light sources arranged in a periodic lattice with spacing A. Light originating from a lattice of
sources of equal complex amplitude interferes and creates m-th diffraction maximum in angle
Om = arcsinmA /A (see e.g. [19]), where mis an integer. In our case, every second sample is
zero; that is, we are working in fact with a lattice with spacing 2A. This lattice creates diffrac-
tion maxima of equal intensities for all m, and the first diffraction maximum of this lattice
coincides with the first diffraction maximum of the original sine grating, because its period is,
thanks to sampling distance, equal to 2A. The result presented in Fig. 1a is therefore physi-
cally correct — although not for a sine grating, but for another experiment. The problem is that
the discretization process did not take into account how to reconstruct the original continuous
function U (&, 7,0) from the samples of the source, i.e. if there is zero transmittance between
samples, if the samples represent a sine profile, a rectangular profile, etc. If we took this into
account, the diffraction maxima created by the lattice would be attenuated somehow and the
result would correspond with the original continuous situation.

A simple solution is easy. In the continuous situation, two close enough point light sources of
the same complex amplitude do not create any interference pattern, i.e. at least one destructive
interference. In the discretized situation, two point light sources of the same complex amplitude
in adjacent samples can interfere destructively if the sampling distance is too big. Therefore,
the sampling of the source has to represent the source correctly, and, moreover, the effect of the
discretization has to be hidden — it must be such that the first-order destructive interference of
adjacent point light sources created by the discretization (assume they have the same complex
amplitude for now) has to lie out of the target area; note that in numerical calculations we are
dealing with finite areas only. Mathematically, for any point T of the target and any adjacent
samples S, S of the source, the inequality [T — S| —|T — S| < A/2 must hold as the den-
sity of the samples has to resemble continuous nature of the source. The same idea could be
expressed in terms of correct sampling of the propagation integral kernel (e.g. [2, 14, 18]), but
this explanation based on point light sources is perhaps more intuitive. It is interesting to note
that this simple explanation based on point light source model has not been explicitly published
yet (as far as I know). Also note that advanced solutions exist that do not need finer sampling,
e.g. [13, 15]; the purpose of this paragraph is to provide simple insight and a starting point for
the following sections.

The result of the simple solution is presented in Fig. 1b. It was necessary to work with 12x
finer sampling, i.e. with an array 12> = 144 x bigger. This results in noticeably higher memory
and time demands. In the following text we will present a way to discretize correctly without
increasing memory demands.

At the end of the section it is worth noting that the sampling of the sine grating in the example
above was not done “correctly”, as the Nyquist limit (in its simplest form) requires a sampling
frequency higher than double the maximum frequency contained in a signal. We have used
exactly double the maximum frequency, and moreover, we did not consider that the source is
spatially limited. However, had we used the mathematically precise method, the result would
be the same and the discussion would not be as clear.

3. Simplified solution

In search of a memory-efficient algorithm, let us start with the solution presented in the last
section, i.e. the sampling finer than requested by the Nyquist limit. For the sake of clarity, let
us introduce two simplifications: let the source and the target be one-dimensional objects in the
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Xz plane (this will be relaxed in Section 5) and let us suppose they are unbounded (this will be
relaxed in Section 4).

Let the object source represented by samples sourceli], i € Z (let the sample source[0] be
located at the point [0,0]) be perpendicularly illuminated by a plane wave of wavelength A (see
Fig. 2). We will consider transmittance of the source to be complex, i.e. any source illuminated
by any light can be converted to this scenario.

x
illumination 3 3 Ta
= 20
TR §
>
[x0, 2]
[0, 0] z=2z z

Fig. 2. Geometry of the simplified 1D case. Samples with index O are depicted as full
circles, the others as empty circles.

Let us calculate complex amplitudes of propagated light in the “plane” z= 7y > 0 in the
unbounded area target represented by samples target[j], j € Z (let the sample target[0] be
located at the point [Xy,Z]). The samples source]i] are samples of the complex function U (x,0);
the samples target|j] represent the function U (X,Z) (see Eq. (1)). If the sampling distance is
equal in both the source and the target, let us call it A, the following holds:

target(j] =U(jA+30.2) = A Y UGA.0)h((j~)A+%0.0.2) =

j=—o0

= A i sourceli] hy, z.1[j —i] = @)

j=—oc0

= A(source(] ®hy, z.1(])[i]

where ® is the discrete convolution and the array hy, , 1[] represents the Rayleigh-Sommerfeld
convolution kernel (impulse response) defined as

Py, 20.ups[}] = N(JA/ups+x0,0,2y) 3)

and according to (1)

1 9 exp(jkr —z (. 1Y exp(jkr
h(X,yyz):_gjz xp(kr) <Jk—) Xprg ), r=vxX+y+22 )

r 2z r

Equation (2) is a discretization of the integral (1), i.e. we have changed the integral to the
sum and the differential to the difference A. As we will be interested just in the structure of the
target, we will omit the constant term A.

Let us suppose that the source is sampled correctly, such that the structure of U (x,0) is fully
acquired, but not fine enough for the propagation calculation. Please note that this “correct
sampling” is not the same as sampling that obeys the sampling theorem; for example, piecewise
constant signal cannot be sampled correctly according to the basic formulation of the sampling
theorem as it has infinite frequency extent. However, if we know that the signal is piecewise
constant with “steps” at known locations, then we can express the signal precisely using just
one sample per constant part of the signal.
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For the propagation calculation, we have to use a Ups-times finer sampling, Ups € Z, ups > 1.
Let us call the preliminary upsampled array sourceyps| ]. To obtain this array, let us put (Ups—1)
zero samples between every two original samples of the source (see Fig. 3 top):

. source|j /ups) if (j/ups) € Z
sourceyps|j] :{ 0 /e otl(lia{w?sg

The final upsampled array sourceﬂgs[] is calculated using convolution with a kernel filter[],

ie. SourcefJ'BsH = sourceyps|] @ filter[]. The convolution kernel filter[] has to be chosen accord-
ing to the nature of the function U (X,0): a rectangular kernel provides a piecewise constant
interpolation (which is suitable if U (X, 0) represents a pixelated spatial light modulator), a win-
dowed sinc kernel provides a good interpolation in terms of frequency content (which is suitable
if U(x,0) is a general continuous function), a triangular kernel provides a piecewise linear in-
terpolation (which is faster than a windowed sinc kernel and can provide acceptable results),
etc. (see Fig. 3). Examples of kernel implementations will be shown at the end of Section 4.
The main idea of the method to be derived exploits the fact that the length of the filter[] array
is much smaller than the length of the array source[] and target[]. For simplicity, let us assume
the length of the filter[] array to be odd. Let us write it as 2 x fwh+ 1, where fwh € Z, fwh > 0.
Thanks to associativity of the convolution, the following holds:

target,ps|| = (sourceyps|] ®f|lter[]) @ hyy 20.ups|] = Sourceyps[] @ (filter[] @ hy, z.upsl]) =
= SOUrceyps|] ® hXo 2o.ups|]

where target [ | represents the target sampled with a period A/ups and h;i(r)],zo,ups[] is the prop-
agation kernel convolved by the array filter[]. Specifically,

targetyps[j] = Z SourCeyps| j — ]hg(?zo ups[-]

j=—o0

= Z SOUrceyps|j — i Z filter [K] hy, 2, upsli — K]

j=—oc0

However, we need the final result ups-times downsampled, i.e. target[j] = target,,s[ups x j|.
Moreover, the sample Sourceyps(i] is zero for i/ups ¢ Z. We can therefore omit these samples
from the sum. It follows that

target[j] = target,ps[ups x j] = z sourceyps[ups x (j —1)] h;I(TZO ups|UPS X i] =

. (5)
= Z sourcelj — i h;'{')‘ZO’1 [i]
j=—oco
where hxo 2.11] is a filtered propagation kernel:

fwh
hl:‘z() ij= 3 filter[k] hy, 2 ups[upsx i — K] (6)
k= —fwh

The propagation calculation leads to two discrete convolutions: in the first one (5), we work
with sampling period A, in the second one (6), with sampling period A/ups.
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The aforementioned equations worked with an infinite extent of the indices in order to avoid
array boundary effects. In the following section, we will adjust the indices extent but the struc-
ture of the result will remain the same. The section will also explain the advantage of the
presented method, which can be briefly described as follows.

The discrete convolution can be calculated indirectly using FFT or directly using the defi-
nition Eq. (2). The first way is advantageous if the convolution kernel is large; we will use it,
therefore, for Eq. (5). The second way is better in the opposite case; we will therefore use it for
Eq. (6). Here we will also use a nice property of direct calculation: the samples h can be

calculated with minimum memory demands.

xozol[]

4. Practical 1D solution

Let us assume that the source is sampled using M samples and the target is sampled using N
samples. If we want to use FFT for the target[] calculation, we have to work with cyclic con-
volution. This means that the arrays source[| and target|] have to be zero-padded to C samples,
C>M+N-—1 (see [17]). Then:

C—-1

target[|] ;6 sourcefi mod C] hﬂ:zO (G

—i)mod C]
The array source[] contains correct values for sample indices 0,1,...,M — 1, the array

target[] for indices 0, 1,...,C — M. The array hXO 2,11) has to be then calculated as:

fwh

Y filter [k] hy, 2 ups[ups x i — K] if0<i<N
fi =—fwh
h><|<?72<)71[] - fwh
Y filter[K] hy, 2, upslupsx (i—C) —k] ifN<i<C

It is worth noting that in the calculation of the sample pin [i], it is possible to use the

X0,20,1
samples hy, 7 ups|] calculated before, specifically for hfln \[i = 1]. It is therefore convenient to
save the samples hy, 7 ups[] in a temporary buffer of 51ze 2 x fwh+ 1 samples, and to replace

part of them in the calculation of h with new values. The number of these new samples
depends on the filter type.
To calculate the filter[] array, we have to choose the number of samples of the source[] array

that contribute to the calculation of the interpolated sample in the source™[] array, or in other
words, in the h;'(TZO ,[i] array. This user-defined number specifies all the parameters needed: the
size of the filter[] array, the interpolation type, and the number of the samples shared in the
calculation of the neighbouring samples of the hf'nZO [] array.

It is practical to use separable kernels when working with 2D arrays. We can discuss them
right now, when working with 1D arrays. For clarity, some examples are given in Fig. 3. To
make things simpler, we will show pure interpolation kernels in both the Fig. 3 and the fol-
lowing text, i.e. they do not preserve signal energy. For propagation calculation it is, however,
appropriate to normalize the filter, i.e. the sum of its coefficients equals 1.

xozol[]

Piecewise constant interpolation. It is suitable if the source is split to rectangular pixels of
non-zero area. In this case it is appropriate for upsto be odd, due to symmetry. Then the
interpolation process adds an even number of samples between every two samples of the
source]] array. Therefore, fwh = (ups— 1)/2 and the kernel is given as: filter[i] = 1 for
—fwh <i < fwh.
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constant

linear

windowed sinc

b (] (] original sample
source T T T
ups — 1 new samples
b @ @ J I ®
SOUrceyps o—o0—0O—0—=© T o—@ T oOo—D T o—0—0—0—=©
2fwh + 1 filter values
o
@ @ o
ﬁ lter +— T T filter array indices
1 0 1 -
® ®
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samples affected by the interpolation

® [0.33, 0.66, 1, 0.66, 0.33]
o ® ® o
ﬁlter T T T

T
2 -1 0 1 2

fin m
sourceyps =

(]
filter L L

fin
Source;ps

Fig. 3. Examples of interpolation convolution kernels (filters) for ups = 3. The windowed
sinc filter shown is the normalized Lanczos filter for a = 2.

Piecewise linear interpolation. It is suitable if the source represents a continuous function

and it does not contain fine details. We need two neighbouring original samples for the
calculation of the interpolated one, i.e. fwh = ups— 1, filter[i] = 1 —|i|/(fwh+ 1) for
—fwh <i < fwh.

Windowed sinc interpolation. It is suitable if the source represents a continuous function and

we care about good replication of its frequency content. Choice of the number of the
original source[| samples has to be a compromise. The more samples are included, the
better is the frequency content replication; on the other hand, too large kernels perform
badly in the spatial domain. A Lanczos filter is considered a reasonable compromise.
It considers 2a neighbouring samples, where usually a = 2 or a = 3 [20]. Then fwh =
ax ups— 1 and a preliminary kernel is defined as filter , o [i] = lanczos(ax i/(fwh+1),a),
where lanczos(x,a) = asin(7X) sin(nx/a) /(7>x?) for —fwh < i < fwh. The final kernel
has to be adjusted before use: the coefficients contributing to the same sample calculation,
i.e. the coefficients ups samples apart, have to sum to 1 [21]. Mathematically, filter[i] =
filter pg [i]/ 2 filter g [i + K x ups| for all allowed values of k.
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5. Final 2D solution

Generalization of the aforementioned ideas is straightforward; instead of 1D cyclic convolu-
tions (or FFT’s), we have to use 2D versions. For simplicity, let us assume the sampling periods
in both X and y directions to be the same, let us call them A.

To propagate the source sampled by My x My samples to the target sampled by Ny x Ny
samples, let us create the arrays source[,| and target[,| of size Cyx x Cy, Cx > My + Ny — 1,
Cy > My + Ny — 1. It is convenient to choose the numbers Cx and Cy so that the FFT of these
arrays runs fast, e.g. powers of 2. The samples of the source must be stored in the array source], |
at indices from [0,0] to [My — 1, My — 1]. After the calculation, the correct samples are located
in the array target/,] at indices from [0,0] to [Ny — 1,Ny —1].

As the next step, we have to choose the parameter ups. The way to do it is as follows. Let
us assume for a while that we work with the original lattice, i.e. UpS = 1. In the propagation
calculation, we have to calculate (4) for every vector T —S§ where Sis a 3D position of a
sample in the source and T is a 3D position of a sample in the target. In (4) we have to use
r = |T — 9 (see its application in (2)). Let S; and S be positions of adjacent samples in the
source and these samples have the same value; they represent two point light sources of the
same complex amplitude. Let us calculate rj = [T =S| and rp = [T = S|. If [r] —r2| = 1/2,
then the contributions from S; and S cancel each other at the point T, i.e. in this direction
there is the first diffraction minimum. As we have shown in Section 2, we need to exclude the
first diffraction minimum from the target. To make this happen, we have to refine the sampling,
i.e. increase the parameter ups until |r; —ra| < A/2. If a more precise result is needed, we
can refine further. Numerical experiments have shown that higher ups than those leading to
[ri —ra| < A/5 did not have any significant impact. The adjacent points §;, S and the point T
have to be chosen as “the worst case”, i.e. the angle between T —§; (or T — $) and the z axis
has to be as big as possible. _

As the next step, we have to calculate the array hQ:,VO«Zm 1,1, where [Xo,Yo,2o] is the position
of the sample target[0,0]. We assume the position of the sample source]0,0] to be [0,0,0]. For
the calculation, we need the numbers hy v 7 upsli, j] = h(iA/ups+Xo, jA/ups+Yo,2) (see (3)
for comparison). Thanks to separability of the filters, we can calculate them for one upsampled
row only, convolve them with filter[] and downsample, i.e. to use the procedure described in
Section 4. We need to calculate 2 x fwh- 1 of such rows, convolve them by columns and down-
sample; this procedure leads to one row of the array hﬂ:_yo‘z()‘l [,]. The other rows are calculated
in the same way. o

Finally, we can calculate the propagation itself:

target],] = IFFT (FFT(source],]) © FFT(h", _ |[.])

where FFT and IFFT are fast Fourier transform and inverse fast Fourier transform, respec-
tively, and © is the Hadamard product (element-wise product). The propagation calculation is
complete now. Examples of the propagations are shown in Fig. 4.

It is worth adding three remarks:

* The same result can be obtained using the basic method, i.e. using upsampling, interpo-
lation of the source, and convolution with a common Rayleigh-Sommerfeld propagation
kernel. The upsampled array Sourceyps|, | would have ups— 1 zero samples between orig-
inal samples in every row (column), and additionally fwh zero samples to the sides in
order to correctly calculate the convolution with an interpolation kernel filter[,] of size
(2 x fwh+ 1) x (2 x fwh + 1) samples. The size of the array sourceyps would then be
(2 xfwh+1+upsx (My—1)) x (2 x fwh+1+upsx (My — 1)) samples, sampling pe-
riod A/ups. This means that the physical size of the source increases a bit for fwh > 1;
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b)

)

d)

Fig. 4. Examples of diffraction by grating with vertical strips; grating size 5 x 5 mm?,
sampling period 10 um, samples in eachrow 1, 0, 1, 0, ... (i.e. 50 slits/mm). Propagation
distance 500 mm, illumination at normal incidence, A = 650 nm. The left images show right
halves of the diffraction patterns (compare with Fig. 1); the graphs to the right show the
intensity relative to the central intensity. The interpolation used is a) none, b) rectangular
filter, c) triangular filter, d) Lanczos filter, & = 2, e) Lanczos filter, a = 3.

this is the reason why the article never mentions the exact physical sizes of the source
and the target. The additional borders are an interpolation artifact. However, their effect
is negligible for big arrays.

The proposed method with propagation kernel filtering is nothing else than a calcula-
tion rearrangement. The article [17] that describes the propagation calculation with large
source and target or with different sampling periods of source and target is therefore
fully compatible with the proposed method; is is sufficient to replace the calculation of
propagation kernels.

The calculation rearrangement leads to different rounding errors in numerical calculation
and thus to differences between the basic and the proposed method. The differences are
negligible, though. As it is hard to tell which method gives a more precise result, we will
not discuss the numerical aspects of the proposed method.

6. Time and memory requirements

The motivation to create the proposed method was to calculate reference propagation using a
small amount of memory. Let us compare its memory and time demands with the basic method.
In this section, we will assume square arrays for simplicity, i.e. My = My = M, Ny = Ny, = N.

The basic method, as we have shown in the last section, upsamples the array sourcel, | to the

array SOUrCeyps with (2 x fwh+ 1+ upsx (M — 1))2 samples and calculates propagation to the
array targetyps. There is no need to introduce additional zero borders due to interpolation, i.e.

the target will have (1 +upsx (N— 1))2 samples. The propagation will be calculated in the
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arrays with (2 x fwh+1+upsx (M+N—2)) * samples, which gives the memory requirements
of the basic method.

The proposed method uses the original arrays source], | and target|, ], so the propagation will
be calculated in arrays with (M +N — 1)? samples. The memory demands are, however, a bit
higher, as we have to take account of temporary memory used in the calculation of the filtered
propagation kernel hL':’yO}ZO_’l [,]- Tt is 2 x fwh+ 1 samples for “row convolution” and 2 x fwh +
1 rows with M 4+ N — 1 samples for “column convolution”; together (2 x fwh+1)(M + N)
samples. Typically, fwh = a x ups, where a is small (in our examples at most 3), and ups is
much smaller than M + N. Therefore, it is possible to ignore this amount in further discussion.

By comparing the memory demands, we conclude that the propagation calculation using
the proposed method takes approximately (2 x fwh+ 1+ upsx (My -+ Ny — 2))2 /(M +N—
1)? ~ ups’-times less memory. Common experiments in computer generated holography with
centimetre-sized fields using a sampling period of about 10 yum off-axis propagated to a dis-
tance in the order of tens of centimetres require the ups parameter up to 20. We can therefore
say that the proposed method has about 100-times less memory demands than the basic method.

On the other hand, the time of the computation does not fall so quickly. This is because the
calculation consists not just of a convolution calculation using the FFT, which is very fast in
the proposed method, but of a convolution kernel calculation as well that is approximately as
slow as in the basic method. More precisely, the FFT works with arrays approximately ups’-
times smaller than in the basic method, which means it is approximately ups’-times faster. The
convolution kernel calculation requires calculating the array hy, v, 7 ups|,] (the same as in the
basic method), filtering it by rows and by columns using a filter of width 2 x fwh+ 1, where
again fwh = a x ups, and downsampling the result. The analysis shows that the convolution
kernel calculation in the proposed method is approximately 4a’-times slower than in the basic
method, where a is again a small number. It is not worth making a precise analysis, as the speed
of the FFT, the Rayleigh-Sommerfeld convolution kernel and its filtering are hard to compare
theoretically. It is more useful to measure the calculation times (see Fig. 5). The graph to the
right shows that the speedup of the proposed method is not as big as its memory savings; this
is mainly because the calculation of the convolution kernel dominates in the total time of the
calculation.

time Proposed method time Basic method speedup Proposed method
runtime A runtime relative speedup
1200 1200 10
1000 complete time 1000 8
800 4 . FF]l"evajuattion : 800 6
ernel evaluation
600 600
400 400 4
_ 4 2
200 \_0_0_0 200
ioooeetifnen- oo 0T
1357 9111315171921 ups 1 357 9111315171921 ups 1357 9111315171921 ups

Fig. 5. Time of the calculation comparison. The graphs to the left and in the middle show
the dependency of the time of propagation calculation for N = M = 500 on the upsampling
factor ups; the vertical scale used defines the time of the basic method for ups =1 to be
1. Besides the complete time of the calculation, the times of the FFTs and the propagation
kernel calculation times are shown. The rightmost graph shows the ratio of the proposed
and the basic method calculation times; e.g. a value of 4 means that the proposed method
is 4 faster for a given ups.
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7. Conclusions

In Section 2 we have shown and explained in terms of physics that in the discretization of the
light propagation between parallel planes it is necessary to take into account both the correct
sampling of the source and the opposite procedure, the reconstruction. We have shown that the
correct result can be obtained using upsampling; we have shown in Section 5 how fine this
upsampling should be. We have demonstrated in Section 6 that in typical tasks in computer
generated holography the upsampling can be approximately 10X, which leads to 100x slower
calculation and 100x bigger memory demands.

In Sections 3 to 5 we have derived a procedure based on filtration of the propagation kernel
by the “interpolation” kernel that is used for interpolated upsampling of the source. Thanks to
the properties of the interpolation kernel (small support, separability), the proposed method is
faster and cuts the memory demands to approximately those values which would be needed
if no upsampling was used. It can thus be said that the proposed method has approximately
100x smaller memory demands than the basic method of the same precision. As the method
just rearranges the calculation, the result is mathematically the same.
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1.

Introduction

Itis a well known fact that double precision computer calculations usually provide more precise
results than single precision ones [1]. It is also “conventional wisdom” that many calculations
in wave optics (such as free space light propagation) are more reliable using double precision.
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The question whether to use single or double precision numbers is quite unimportant in CPU
calculations as they are often internally performed in higher than single precision and the final
result is rounded to the requested one.

The question, however, is rather important in GPU calculations as current GPUs favour single
precision calculations over double precision ones (see [2] or other list of GPU parameters). It
is of utmost importance today as many researchers, especially in computer generated (digital)
holography, utilize GPU calculations whenever possible (see e.g. [3, 4]). We will focus our
attention to one of the most fundamental task in digital holography, Fourier optics and wave
optics — calculation of light propagation in free space to a certain distance. As far as we know,
no one analysed range of distances where it is safe to use single precision, where it is better to
switch to double precision and what to do if we want to avoid double precision calculations.

In Sec. 2 we will show that single precision calculations can lead to significant problems even
in realistic scenarios. In Sec. 3 we will point out the problem origin; as most readers are likely
not computer scientists, an overview of important facts about floating-point representation is
given there as well. Sec. 4 gives basic analysis of the problem and tells when it is safe to use
single precision in on-axis calculations; Sec. 5 adds a few notes to an off-axis generalization.
Sec. 6 shows that parabolic (Fresnel) approximations can save single-precision calculations in
most cases. Finally, Sec. 7 supplements the discussion with reference to aliasing and phase
quantization; Sec. 8 concludes the article.

2. The problem demonstration

Let us perform the most basic calculation in scalar wave optics: let us calculate an interference
pattern on the plane z = 0 of two mutually coherent, monochromatic, equally bright point light
sources. Simply written:

_ exp(j2mro/A) n exp(j2mri /1) 2

1(x,,0
(x,,0) . .

; )]
where I(x,y,0) is the light intensity at a point [x,y,0], o and r; are the distances between the
point [x,y,0] and the particular point light source, j? = —1 is the imaginary constant, and A is
the wavelength.

Let us place the light sources (for instance) to the points [£0.001z9,0,z], set A = 500 nm
and calculate the pattern for various zg in both single and double precision. Figure 1 shows the
result. The patterns for zo = 10 mm are basically the same regardless precision used. It is clear
that for zop = 100 mm, the pattern calculated in single precision contains noise introduced by
limited precision, but its quality is generally acceptable. The pattern for zo = 1000 mm in single
precision loosely reminds the correct one, but its quality is generally not acceptable. Finally,
for zop = 10000 mm, the single precision result is completely useless.

This demonstration naturally leads to several questions. What is the source of such be-
haviour? Where is the boundary between acceptable and unacceptable calculations? What do
we mean by “acceptable”? Is it possible to improve the calculation without switching to higher
precision? Let us try to answer them all.

3. Origin of the problem

Let us begin by reviewing the basic facts about floating-point numbers. We decided to include
this short section written in a form of tutorial as we do not know any suitable, short enough
reference that would explain all the necessary concepts. Readers familiar with theory of floating
point calculations and their limitations can skip this section.

A floating-point number x is usually (according to the IEEE 754 standard for floating-point
arithmetic) internally expressed as x = s x m x 2°"P~!, where 1-bit number s (sign) is equal
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Fig. 1. Interference pattern (normalized intensity) of two point light sources located at
[£0.001z0,0, 7] in the plane z = 0. The first row shows calculation in single precision, the
second row in double precision. Each column stands for a particular zy. The bottom row
of graphs shows the normalized intensity values; for better clarity, only a segment of each
image is shown.

to +1 or —1, m (mantissa or significand) is a p-bit unsigned integer and e (exponent) is a
g-bit signed integer. Most often, significand m > 27~ (number x is then called a normalized
number), or in other words, the most significant bit of m is usually 1. The IEEE 754 standard
defines p = 24 for single precision, p = 53 for double precision. As log;;2%4~! 6.9, we can
say single precision corresponds to about 7 significant decimal digits; double precision to about
16 decimal digits.

If the basic arithmetic operations (+, —, X, /, mod, \/ ) are performed according to the
IEEE 754 standard, their results are the same as if they were calculated exactly and correctly
rounded to the requested precision; the numerical error is therefore bounded [1]. As an example
(we will recall it later in Sec. 4), let us see what happens in the addition operation.

When calculating (for instance) 25165824 41 in single precision, we need to understand
how the operands are internally expressed. Because 25165824 = 224 223 it cannot be directly
represented by a 24-bit unsigned integer; instead, it is expressed as m; x 21 where m; = 2% +
222 The second operand can be also expressed in the normalized form as 1 = m» x 2723, where
my = 223, The exact sum is equal to 25165825 = 22* 4+ 223 4 1. Unfortunately, this number
cannot be expressed by a 24-bit unsigned integer as it contains 25 significant bits. So the least
significant bits (in this case one bit) must be cut off and the result must be altered in such a way
the “rounding error” is the smallest. The altered 24-bit value is then used as a significand in the
approximate floating-point value of the result, i.e. (22° +22%) x 2!, It is clear that size of the
rounding error is comparable with the unit at the least significant binary digit of the result.
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20 [m] n = 2 (minimum n value) 20 [m] n = 2 (minimum n value)
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10+0 4 Fresnel zone, xmax = 1 cm 10+8 4

10-1 4 \ 10+6 4
Xmax = 1 mm

10-2 4 10+4 4

10-3 4 \ Xmax = 0.1 mm 10+2

104 4 10+0 4 Fresnel zone, xmax = 1 cm
Xmax = 1 mm
10_5 3 10_2 Xmax = 0.1 mm
10_6 T T T T T T 10—4 T T T T T T
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Single precision Double precision

Fig. 2. Maximum zg according to inequality (2) as a function of n for A = 500 nm, i.e.
the maximum distance for which (z3 + (1/ n)2)1/2 £ 74 holds. For example, if we want
to calculate in single precision (left graph) and to resolve about 100 values in the first
fringe, zog should be at most about 0.1 m. “Safe region” is then below the black line. For
convenience, Fresnel zones for different xpyax are shown as magenta horizontal lines, see
Sec. 6 for details. The Fresnel approximation is valid near the z axis (x| < Xmax, || < ¥max)
for zg bigger than the value depicted.

The real numerical problem appears when operands of floating-point operations are results of
other floating-point operations, i.e. they are rounded versions of their “true values”. Operation
by operation, the numerical error accumulates without any bound.

The most numerically sensitive operations are subtraction and modulo. It is easy to see why.
For example, both 7 = 8192 x 8192 = 213 x 213 =226 and 1, = 8191 x 8193 = (213 — 1) x
(213 41) = 2% — 1 are evaluated as 2%6 = 67108864 in single precision, because significand
is only 24 bits long; hence difference of their floating-point values is 0. The true difference
value is of course t; —t, = 67108864 — 67108863 = 1. Generally, if the “true value” #; is
approximated by a floating-point number x| = f; + € (€] is the rounding error), other “true
value” #; is approximated by x, = #, + &, then subtraction of floating-point approximations is
X| —Xp =1t —t)+ € — & + €3, where & is the rounding error of the subtraction. Naturally,
if #{ = 1, then the subtraction result is strongly influenced by rounding errors, i.e. the relative
error of the result is big.

The same problem (often called cancellation [1]) appears in the modulo operation, as
a mod b = a— |a/b]b. The “hidden subtraction” inside the modulo operation damages the
result, especially if a is just a floating-point approximation of a certain true value and b < a; in
this case, |a/b| = a/b, therefore |a/b|b ~ a and cancellation appears.

A short look at Eq. (1) reveals origin of strange behaviour in single precision calculations.
The complex exponential can be written as exp(j27r/A) = cos(2wr/A) + jsin(2mr/A), soitis
necessary to evaluate trigonometric functions of a very large argument, because usually r > A.
The trigonometric function evaluation begins with range reduction [5] of its argument, which
is basically (mod 27) operation; therefore it is very sensitive to cancellation due to rounding
errors of the argument. Let us analyse when to expect strong cancellation problems.

4. On-axis analysis

The function exp(j27r/A) is a periodic function with respect to r. We know that a periodic
function evaluation starts with range reduction operation, in this case by (27r/A mod 2x). It
follows that when 27tr/A >> 27, this operation evaluated in floating-point arithmetic cuts many
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Color coding:

a complex number a + bj
is represented by

a RGB color [a, b, a]
where a and b are scaled
to fit 0255 range.

©

zo = 1000 mm, xy extent 6.91 mm x 6.91 mm

zg =100 mm, xy extent 2.30 mm X 2.30 mm  zp= 2154 mm, xy extent 9.97 mm x 9.97 mm

zg =215 mm, xy extent 3.32 mm X 3.32 mm  zy=4641 mm, xy extent 14.4 mm x 14.4 mm

= = Nl —=

zg =464 mm, xy extent 4.79 mm X 4.79 mm  zy= 10000 mm, xy extent 20.7 mm X 20.7 mm

2

single double single double
precision precision precision precision

Fig. 3. Visualization of the phasor exp(j27r/A)/r for various distances zg calculated in
single and double precision. The lateral extent of each pair (single/double precision) is the
same; it was chosen so that all images contain approximately the same number of fringes.
It is not a fault that all double precision images look similar to each other; they really do.

significant digits of ». An extreme cancellation appears when 27r/A and e.g. 27r/A + 7 are
expressed by the same floating point number; in this case, sine or cosine of both numbers is the
same.

In order to capture fine details of exp(j27r/A), the argument must be evaluated in floating-
point arithmetic in such a way that its value differs for ry and r| = ro + A /n where n > 2. In
other words, we need at least two different results per period in the same way as alias-free
sampling requires at least two samples per period.
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For simplicity, let us place the first point of evaluation to [0,0,z¢], zo > 0, therefore ry = zo.
Let us place the second point of evaluation to [x1,0,zo] in such a way that r| = (x? +z(2))1/ 2=
ro+A/n=z0+2A/n. Itis easy to see that x2 = 2z0A /n+ (A /n)>.

Let us continue. We need to evaluate r| = (x% +z(2))1/ 2. It is absolutely necessary to hold
inequality x% + z% =+ z% in floating-point evaluation; we have seen in Sec. 3 that floating-point
summation may violate it under certain circumstances. If we assume x; < zo, then the inequality
will hold if

xf > 277

where p is again number of significand (mantissa) bits, in case of single precision p = 24. After
substitution,
2z0A/n+ (A/n)? >27PH12,

It is easy to solve the quadratic inequality for zp; the square root in the result can be then
approximated by a Taylor series (assuming 277 < 1) and we get final simple result:

20 < A2P /n. )

For A = 500 nm, p = 24 (single precision) and n = 2 we get approximately zo < 4.19 m. For
p = 53 (double precision) we get approximately zg < 2.25 x 10° m.

It is worth explaining meaning of this value. First of all, by setting n = 2 we calculated upper
limit of zo; beyond it, the evaluated value of exp(j27r/A) has no significant digits. We also
explored just one source of rounding error, the range reduction operation; other operations also
contribute to the overall error, however their contribution is very small. We have found that the
upper limit is slightly less than the calculated one, about 0.95 x A27 /n. See Sec. 7 for further
details.

Second, we are usually interested in evaluation of exp(j27r/A) in a non-zero area, but this
analysis is valid for points only on z axis. We should therefore generalize the analysis to an
off-axis case; see Sec. 5. It would be definitely possible to show just off-axis analysis as it is
more practical; however, its derivation is more complicated and the idea can be seen in on-axis
analysis more clearly.

Finally, although evaluation near the upper limit theoretically captures the correct structure
of the function exp(j27r/A), the error is usually unacceptably big as the result has about one
significant digit. For practical calculations, we should set n > 2, see Fig. 2 for a dependency of
zo0 on n and Fig. 3 for actual evaluation of the function exp(j27r/A). See also Sec. 7 for further
details.

5. Off-axis analysis

We are usually interested in evaluation of the function exp(j27r/A) in a non-zero area. Without
loss of generality, we can analyse the function evaluation on the xz plane only.

Let us again place the first point of evaluation to [x9,0,zo], i.e. 7o = (x3 —i—z%)l/ 2, and the
second point of evaluation to [x1,0,z] such that r; = (x} +2z3)'/? = ro + A /n. By setting a =
xo/zo and applying the same procedure as in Sec. 4, we get simple rule:

2P
n/1+a%
The estimation of the upper zo seems to be reliable, see Fig. 4 for the visualization of the case

a =1 (i.e. 45° inclination), A = 500 nm; inequality (3) predicts the calculation to be right for
approximately zp < 2.1 m.

20 < A 3)
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zo=100mm 215 mm 464 mm 1000 mm 2154 mm 4641 mm

xy extent of all images 5 pm x 5 pm

single prec.

double prec.

Fig. 4. Visualization of the phasor of off-axis calculation exp(j27r/A)/r for various dis-
tances zg in single and double precision. The center of each image is set to [z9,0,z0], i.e.
a =1 (see inequality (3)). The color coding is the same as in Fig. 3.

For paraxial calculations where xp/zp < 1, the result of inequality (2) is virtually the same
as of inequality (3). In practical estimations, we can use inequality (2) even for off-axis cal-
culations provided that we ask for “high enough” n; one should, however, ask if the scalar
approximation of light is reliable in highly off-axis cases.

6. Fresnel approximation

The analysis and examples given clearly show that single precision calculations should be used
with the utmost care; on the other hand, double precision calculations are good enough for most
practical cases. Still, single precision calculation are attractive in massively parallel systems
such as GPUs as single precision circuits naturally occupy less space on a chip, consume less
power etc. It would be then desirable to avoid single precision problems without going to double
precision.

A simplistic approach would be to use double precision for the calculation of r and the range
reduction. Unfortunately, switching between single and double precision tends to be slow as
GPU architectures are not optimized for such a weird task. Moreover, we still need double
precision for a substantial part of the calculation.

We have seen that the precision problem arises when zg is big. On the other hand, in a big
distance, we can use paraxial parabolic (Fresnel) approximation

. ) . _xP4y?
exp(j2m\/x2 +y* +25/A) = exp(j2mzo/A)exp | jm i 4)
0

provided that x,y < zo, or more precisely (according to [6]) zo > [(x? 4 y?)2,.x /4A]'/3.

It is worth noting that there are no cancellation problems in Eq. (4). First of all, there is no
summation of a large zo and small x, y in the argument of exp() function; recall that the most
serious error appears when floating-point value of x> +y* + Z(Z) is almost the same as floating-
point value of z(z). In Eq. (4), arguments dependent on zg and x, y are separated to separate
exponential functions, i.e. their arguments are range reduced independently. There is no other
modulo or subtraction operation prone to cancellation in Eq. (4). Visualization of the calculation
in Fig. 5 therefore shows no significant sign of numerical problems except, of course, slightly
different pattern due to 7y quantization in single precision (i.e. zo in single precision # zg in
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Fig. 5. Comparison of the phasor exp(j27r/A)/r for various distances z in single and
double precision and in the Fresnel approximation in single precision. The lateral extent
was chosen so that the images contain approximately the same number of fringes. The
color coding is the same as in Fig. 3. The phase in the center of the image for Fresnel
approximation, zo = 10000mm is different from double precision calculation because such
a big 27zp cannot be represented in single precision well enough.

double precision). For convenience, Fig. 2 also shows various “Fresnel approximation safe”
zones.

In an off-axis case, where the area of interest is located around a point [xg, yo, zo], it is possible
to use parabasal parabolic approximation that approximates

Xxo + 2 +y?
V0 + o)+ g+ S TR
0 0

where rg = (x3 +y3 +23)"/2, provided that x,y < ro.

The only problem remains if it is necessary to evaluate exp(j27r/A) over a large area, i.e. we
cannot use parabolic approximation. It should be possible to use partial quadratic approxima-
tion of the square root [7], but we did not verify it.

7. Additional notes

We have mentioned in Sec. 4 that setting n = 2 in inequality (2) leads to an approximate value of
the upper limit of zg; beyond that limit, information about structure of the function exp(j27r/A)
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Fig. 6. A closer look at calculation exp(j27r/A)/r for zg = 3.99999 in single and double
precision. The upper graph shows “range reduction” of the argument, i.e. (27rr/A) mod 27,
which is basically the same as 27(r mod A). The lower graph shows the real part of
exp(j2mr/A). The distance zp was chosen so that the transition between “correct” and
“wrong” calculations can be easily seen; in this case, the transition appears near x = 9 mm.

is lost. Let us try to find experimentally an example of precise zo where the effect of “informa-
tion loss” can be seen.

Figure 6 shows evaluation of the function for zo = 3.99999 m. The upper part shows the
result of range reduction in both single and double precision. It is clear that for x < 9 mm
the evaluation performs “well” — at least in a way that single precision calculation returns two
distinct values in a single cycle. In other words, the value of r is quantized to just two levels in
each cycle.

The lower part of the figure shows the result of cos(27r/4). It is no surprise that for x <
9 mm, the single precision result contains the same frequency as the double precision one.
The effect for x > 9 mm would be normally called aliasing [8] as a high frequency content
is misinterpreted as a low frequency content. In this case, aliasing is a direct consequence of
quantization of floating point numbers.

The sampling theorem [6] states that the signal can be recovered if we have more than two
samples per cycle. It is then worth asking if e.g. calculation for z = 2.2 m (see Fig. 7) is good
enough. Let us then try to calculate (in single precision) a complex optical field on the plane
7z = zo of a single point source located at the origin and calculate the back-propagation (in
double precision) to the plane z = 0. Figure 7 shows the results for various zp; we have used
the filtered Rayleigh-Sommerfeld convolution [9] for propagation calculation. It is clearly seen
that even optical fields heavily damaged by errors of evaluation in single precision, but in the
“safe zone of single precision”, perform very well. Naturally, optical fields for zy beyond its
upper limit are irreparably damaged.

This result is by no means surprising. Floating-point calculations lead to quantization of the
argument of exp(j27r/A), and therefore to phase quantization of the optical field. The effects
of phase quantization are shown in e.g. [10]; it is known that even coarsely quantized phase
does not completely damage information “stored” in an optical field.
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Fig. 7. Upper row: phasor of the optical field in the plane z = zg of a single point light source
located at the origin. The lateral extent was chosen so that the images contain approximately
the same number of fringes. Please note that fringes are damaged for zyp = 4641 mm and
zp = 10000 mm due to single precision calculation, not due to incorrect sampling rate.
Lower row: normalized intensity of the light field backpropagated to the plane zg = 0. The
images should contain just a single bright dot. Naturally, the last two images are damaged
as the optical field was calculated incorrectly.

8. Conclusions

We have shown that unwary use of single precision floating-point numbers in calculations of
free space light propagation can lead to significant errors or even completely pointless results,
such as those presented in Sec. 2. The errors stem from the calculation of (r mod A), where
r is a distance; serious precision problems can appear for approximately » > 1091, the results
are pointless for approximately r > 10’ A. We have also shown that in certain cases, Fresnel ap-
proximation or similar one can significantly improve range where single precision calculations
remain valid. For example, wrong results shown in Sec. 2 can be fixed using Fresnel approxi-
mation or at least predicted using analysis in Sec. 5. We have also shown that double precision
calculations are safe in most practical situations.

While the analysis of computer arithmetic may seem to be rather technical and unrelated to
optics, we believe the opposite is true. There are many approximations that are used in optics,
e.g. scalar approximation of light, Fresnel approximation of light propagation, etc. Applica-
bility of such “classical” approximations are widely studied using “classical” tools such as
mathematical analysis; results are obvious for practical optics calculations. As most calcula-
tions today are performed with computer approximation of arithmetic, we believe that analysis
of computer arithmetic issues should belong to standard mathematical toolbox of an optician.
This is especially true because GPU calculations are so popular today and limited precision
numbers are usually necessary in massively parallel calculations.
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zero-padding in case of different plane sizes. In case of memory restrictions,
it suggests splitting the calculation into tiles and shows that splitting leads to
a faster calculation when plane sizes are a lot different. Next, it suggests
how to calculate propagation in case of different sampling rates by splitting
planes into interleaved tiles and shows this to be faster than zero-padding
and direct calculation. Neither the speedup nor memory-saving method
decreases accuracy; the aim of the proposed method is to provide reference
data that can be compared to the results of faster and less precise methods.
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1. Introduction

A fundamental tool of digital holography, or computer generated holography, is a numerical
simulation of coherent light propagating in free space. We will use, as usual, scalar
approximation of the vectorial nature of light, and will not consider time-dependent behavior
of the light [1]. One of the most usual tasks is to calculate light propagation between two
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parallel planes; the Rayleigh-Sommerfeld integral [1], its mathematical equivalent angular
spectrum [1,2] or their various approximations are used most often.

Those equations need to be discretized for numerical calculation, i.e. one has to both
sample and spatially restrict optical fields involved. The discretization itself leads to various
errors well described in literature [3,4]. The calculation tries to avoid those errors while trying
to work as fast as possible.

It is, however, often hard to decide what is an error of discretization itself, what is an
inherent error of a given fast method and what is just an error of a particular implementation.
The goal of this article is to describe the reference numerical calculation of light propagation
between parallel planes that has just one “error”, the discretization. Any other method can be
then compared to this one. As we will assume fine sampling that does not lead to aliasing
errors, we have to deal with a large amount of data. We will try to handle it as fast as possible
while retaining the accuracy of the calculation.

The proposed method focuses on off-axis light propagation between two rectangular areas
that share neither size nor sampling, or, between a spatial light modulator (SLM) and a camera
sensor. Reference calculation is described, e.g., in [5], off-axis propagation, e.g., in [6,7];
different samplings are treated in [8] by coordinate system change, in [9] by shifted
convolution kernel, in [10] by scaled Fourier transform; different sizes of SLM and sensor is
solved in [10,11] using tiling while decreasing memory demands. This article solves all the
requirements in a unified way by using the convolution approach and tiling; in contrast to
references given, it deals with optimization too.

2. One-dimensional case

We are going to show all the principles in a one-dimensional case before showing the full 2D
version. This means that we will calculate light propagation between two line segments
instead of two rectangular areas. We will call them Source and Target.

s(x) I s[m] ] \Qp[{)]Jh I I W:Jw'r
| pln—m] [l IRt
M i i N oo
. #(x) 1 A t[n] I P
z s[011 [ 0] I
Source Target Source Target Source Target
(a) (b) (c)

Fig. 1. One-dimensional light propagation. Description of (a), (b), (c) is given in the text below.
In linear optics it is assumed that light sources do not influence each other and that every
single point t(x) of Target (e.g. a camera sensor) is affected by the shining of all points s(x)

of Source (e.g. a SLM, see Fig. 1a). As mentioned in the introduction, we will assume scalar
approximation of coherent light, i.e. the light source can be completely described by

amplitude A and phase ¢, or complex amplitude Aexp(jg), where j° =-1.

Light changes both amplitude and phase by propagation. This change can by described by
multiplication with some complex number p. Light propagation is space invariant; therefore,

it is just the mutual position of points on Source and Target that matters, not their absolute
positions. It follows that the calculation will have a convolution form:

) =], sEp(x-&ds (1)

In the equation there is no distance along z axis between Source and Target because it is a
constant and can be a part of the function p.
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We can discretize the equation by equidistant splitting of Source and Target into M and
N basic elements sim] (0O<m<M —1) and t[n] (0<n<N-1), i.e. by uniform sampling.

Therefore, the element t[n] receives from the element s[m] light with complex amplitude
s[m]p[n—m], see Fig. 1b. Equation (1) can be written in discrete form:

t[n]:lels[m]p[n—m] forO<KmM<M-1, 0<n<N-1 (2)

m=

To compute all elements t[n], we have to know numbers p[n—-m] for

—-M-)<n-m<N-1, i.e. M+N-1 different values. We can obtain them in different

ways, some of which will be mentioned in section 3. For now, let us assume we know them.
The calculation of all elements t[n] is most often done by rewriting Eq. (2) as a cyclic

convolution and subsequent use of the discrete Fourier transform. The cyclic convolution has
a form:

Cc-1

tn]= ) s[mlp[(n-m)modC] for0<m<C-1, 0<n<C-] (3)

m=0
where C>M+N-1 and sfm]=0 forM <m<C-1 (i.e, the s is zero-padded to the size
C). Notice that the important values of t[n] are those for 0<n<C—M; the others are
damaged by the cyclic behavior of indices in arithmetic (mod C). It is also worth mentioning
that in cyclic convolution it is usually assumed that M = N . The proof of validity for the case
M =N consists just in the expansion of equations for t[n]. Finally, C is an arbitrary
number bigger than or equal to M +N—1. By choosing a suitable C, we can speed up the
computation significantly, because

t = IDFT(DFT(s)x DFT(p)), (4)

where t, s and p are C-dimensional vectors (arrays) of complex numbers, DFT is a discrete
Fourier transform of a vector, IDFT is an inverse discrete Fourier transform of a vector and
x is the Hadamard product (element by element product). The speedup is expected due to the
fact that the calculation of DFT , or IDFT, can be done in time O(ClogC) [12]. Choosing a

suitable C is important because the actual calculation time is highly sensitive to its character.

Let us assume that the sampling rate of Target is twice as fine as the sampling rate of
Source. Then the subset of even samples from Target has the same sampling rate as Source.
Consequently, we can easily calculate the propagation of Source to even samples of Target.
Obviously, we can do the same with odd samples. It means we can split the calculation of
light propagation into two calculations; they are denoted in Fig. 1c by black and magenta
arrows. It follows that the same principle can be applied when the sampling rate of Target is
7 -times finer than the sampling rate of Source, where 7 is a natural number; we have to split
Target into = “interleaved tiles”, i.e. the calculation has to be split into z calculations.

The same situation appears when Source has o -times finer sampling than Target. The
idea can be generalized: if the sampling rates of Source and Target are in a ratio o : 7, where
o and ¢ are coprime natural numbers (i.e. o elements of Source have the same size as
elements of Target), we can split the calculation into o xz independent calculations. More
precisely, we have to o -times calculate the propagation for the sampling rate ratio 1:7 and
sum the results. Usually we do not care about the exact value of the sampling rate; therefore,
we can choose such o and 7 that approximate the desired sampling fairly well.
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It follows from Eg. (3) that the vectors s and t have to be padded to size C. This means
that for M =N, approximately 50% of elements are held in memory uselessly; in 2D
convolution, it is as much as 75%. Therefore, for big M and N we can expect a lack of
memory very soon, especially when using special hardware for DFT calculation, e.g. GPU.
For example a naive approach to propagation of a microscopic Source to an extended detector
Target could require hundreds of gigabytes.

We need two memory spaces of size C>M+N -1 for the calculation of Eq. (4); in
practice a restriction may appear: that just two spaces of size P <C are available. Let us
assume, for example, that M =512, N=1024 and P=1024. We cannot make the
calculation directly because C >1535; but we can split Target in the middle into two parts
(let us call them “common tiles”) with N'=512 elements and make two calculations. For
them, we need only two spaces of size at least M +N’'—1=1023, and therefore we are not
limited by P =1024. The same idea would apply if M =1024, N =512 and P=1024: we
would calculate the light propagation of both small parts of Source to Target and sum the
results. As in the “different sampling” case, even this idea can be generalized: Source can be
splitinto S parts, Target into T parts and then we have to calculate SxT propagations.

3. Two-dimensional case

The extension of equations from section 2 to the 2D case is straightforward: instead of sums
we just put double sums there. For calculation of light propagation of a part of Source to a part
of Target, it is necessary to carefully calculate the convolution kernel, i.e. 2D array p. A

practical aid is the fact that its element p[0,0] describes light propagation from element
s[0,0] of a particular part of Source to element t[0,0] of a particular part of Target. The

equations for sampling rates, samples counts and offsets are simple but technically
demanding, so we will not show them here.

We should, however, mention the calculation of convolution kernel values. The Rayleigh-
Sommerfeld equation [2] for the light propagation from the plane z =0 to point [x,y, z] is:

U(xy,2)= ;—iﬂu &, 0)5%:"%5@

where U(x,y,z) is a complex amplitude of light in a point [x,y,z], k=2z/A4 is a
wavenumber (A is a wavelength), and r is the distance between points [x,y,z] and [£,7,0].
This equation can be written in a convolution form:

-z . 1 exp(jkyx* +y* +2°)
U(X: y,Z)ZU(X: y10)® 2_ Jk_ 2 2 2 (5)
4 Xy + 722 X“+y +z

where ® is the 2D convolution operator, (f ® g)(x,Y) :”O; f(&nag(x=¢& y—n)d&dn .

The simplest method of convolution kernel discretization (the expression on the right side
of the convolution operator in Eq. (5)) is a plain sampling, i.e. its calculation for a particular
X, y (z is a constant). Alternatively, we can assume that a sample of Source in fact

expresses — using some pixel spread function — the shining of a particular non-zero-area
element of Source and alter the kernel accordingly. If we take non-zero area of Target
(sensor) elements into account, we can pre-filter the kernel. If Source is a mathematical model
of a real display, we can even measure the kernel. The proposed method therefore does not
depend on particular features of the kernel; its only assumption is the description of light
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propagation as a convolution. In our implementation, we did not deal with advanced methods
of kernel calculation, however, and we have chosen plain sampling.

4. Theoretical time of computation

The calculation works with arrays of size C=C, xC, samples. It consists of three DFT's
(more precisely, two forward and one backward), calculation of the convolution kernel p
with complexity O(C) and the Hadamard product of the same complexity. For a large C,
only times spent on DFT 's matter. The time of calculation using the fast Fourier transform is
therefore proportional [12] to

(DFT's count)ClogC (6)

In the following analysis, we will assume light propagation from a square area of size M xM
samples to a square area N xN samples. For the convolution calculation, we will assume
memory space C =(M + N)x(M + N). Time of calculation is then given by:

t,...(M,N)=3(M +N)?log(M +N)? =6(M +N)?log(M + N)

Let us begin with the case that Source and Target share the sampling. Then we can also split
Target into TxT common tiles of size (N/T)x(N/T). It follows that we calculate
DFT(Source) once and calculate DFT(p) and IDFT(DFT(Source)®@DFT(p)) T xT -

times, while we assume the array sizes for DFT as C=(M +N/T)x(M +N/T). Using Eq.
(6), we get time of calculation

N N
t o (MUN,T)=(1+2T%)2| M +— | log| M +—
commontlles( ) ( ) [ Tj g( Tj
Let us assume that M =N and watch the speedup

tbasic (a)Nv N)
(oN,N,T)

S, (o,N,T) =
tt:ommon tiles
of tiled calculation versus direct calculation. The graph of s (e, N,T) shows that tiled

calculation starts to be faster for T =2 and w<1/4, while for bigger T it is faster for even

smaller o . Figure 2a shows the graph for N =1024; for different N it does not change very
much.

o 20 - .
2 s r=1 S 22 O
~ A = —o + =~ T
LA o e | 20 '
Z 14 =4 = x = e ©® ¢
§ 12 =5 518 . e ® °
=4 \ theoretic measured = P
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.4 T = ) + measured
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Fig. 2. The ratio of direct calculation time to (a) tiled calculation for given ratio  of Source to
Target side sizes (for Target side size N = 1024), and (b) tiled calculation for given ratio z of
Target to Source and sampling rates (for Source side size M = 1024). FFTW library was used
for time measurement.
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A more interesting result arises when Source and Target have different sampling rates. Let
us assume that Target has 7 -times finer sampling than Source, i.e. N =zM. For direct
calculation, Source must have the same sampling rate as Target, i.e. it must have M x M

samples too. We can increase number of samples by interpolation or just by interleaving
current ones by a suitable amount of zeros. By substituting C =(zM + zM)x(zM + zM) into

Eg. (6), we get time of calculation
typscated (M, 7) =6(zM +7M )2 log(zM +7M) = 247°M ? log(2cM)
If we split Target into zx 7 interleaved tiles, we have to calculate zxz light propagations

from Source to a part of Target of size MxM samples. By substituting
C=(M+M)x(M + M) into Eqg. (6), we get time of calculation

t (M,7) =(1+27*)2(M + M)’ log(M + M) =(1+27)8M° log (2M )

interleaved tiles
The speedup

t M, 2
s, (M ,T) _ upscaled( Z') _ 3r IOg(ZTM )

tinterleaved tiles (M ! 7'-) - (1+ 2T2 ) |Og (2M )

is bigger than 1 for z>1, i. e, tiled calculation is always faster; a graph of s,(M,7)

dependent on = for M =1024 is in Fig. 2b. Again, a different M leads to a similar graph.

One can see in Fig. 2 that measured speedups are scattered around theoretical curves. A
discussion of this fact is contained in the following section.

Until now we have assumed that Target has more samples than Source. That led to saving
nearly one-third of all DFT 's. In the opposite situation this does not hold any more; however,
the results of the analysis are similar, although not so outstanding. The analysis of general
situations, where the ratio of sampling rates or sizes is a general fraction, leads to the
following results: speedup is greater when the nominator and denominator of the sampling
rate ratio are big too; splitting of Source and Target of the same sampling rate into common
tiles in a complicated ratio leads rather to slowdown if we do not mind memory restrictions.

5. Implementation notes

The implementation of the proposed method is simple, although due to a number of variables
quite demanding. The first step is to estimate the ratio of Source and Target sampling rates,
and to split them into interleaved tiles of common sampling. In case we have enough memory
to calculate light propagations between these tiles, we can calculate them (but see later). In
another case, we are facing a still unresolved problem.

Let us assume that two memory spaces of size C are available. The interleaved tiles
created by splitting Source and Target due to the requirement of common sampling have to be
splitinto S, xS, common tiles of siz¢ M, xM_, and T, xT, common tiles of size N, xN,

(due to integer division one row and one column may be smaller) so that:
(M, +N, -D)(M, +N -1)<C

while the time of the calculation has to be as short as possible. We cannot trust the theoretical
time complexity of DFT O(ClogC) when searching for optimum; algorithms of DFT for
special array sizes (e.g. power of 2) are usually faster than for comparable (e.g. prime) array
sizes. For example, FFTW library used in our implementation calculates DFT of special array
sizes up to 6 x faster than for comparable prime sizes. This is the first expected reason for
scattered look of the measured data in Fig. 2. One can see in Fig. 2b that measured speedups
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are bigger than theoretical ones. This behavior starts to appear for M >512 in our
implementation. We expect this behavior appears due to a following fact. When calculating a
propagation without any tiling, we have to increase Source side size z-times, so DFT has to
work with a big array. Using interleaved tiling, DFT works with smaller arrays that fit into
cache memory more easily, and therefore bigger speedup can be expected.

Implemented heuristic suggests splitting in this way. First, we have measured calculation
times time[i] of one-dimensional DFT 's of array sizes i . From these times we have picked

“friendly-size” ones that satisfy condition time[ friendly-size] <time[i] for all measured
i > friendly-size. Two-dimensional DFT is separable, so it is expected that a two-

dimensional array of friendly-size side sizes will be “friendly” too. Next, we have measured
calculation times for those arrays. The propagation itself is then calculated in 2D “friendly-
size” arrays. In case we need to split into common tiles due to memory restrictions, we choose
tiles of maximum width (tiles are then in fact horizontal stripes); height of Source and Target
tiles is chosen to be approximately equal and as big as possible. We have compared this
heuristic to the optimal solution found using brute force; it suggests at most approximately
1.7 x worse tiling.

A topic that has not been discussed yet is the precision of the proposed algorithm
compared to the precision of direct calculation without any tiling. We have tried to propagate
the Source to the Target of the same size (for several different sizes) using different tiling
schemes. We have found that the relative difference of the calculated complex amplitudes is
in the order of 107° or smaller; the difference was calculated as the absolute value of complex
amplitudes differences. This difference is so small that we have not tried to find where it
comes from.

6. Conclusion

A method for reference calculation of light propagation between two rectangular areas of
parallel planes has been presented. These areas do not have to have either the same sampling
rate or the same size, see Fig. 3. The calculation can be split into tiles to meet memory
restrictions given; on the other hand, saving memory often leads to worse calculation times.
We have shown that in the case of a simple sampling rates ratio, the proposed method actually
speeds up the calculation up to 2x by splitting the areas into interleaved tiles compared to
zero-padding and direct calculation. We have shown as well that if one area is much bigger
than the other, it is faster to split the bigger one into common tiles. A still unresolved problem
is how to split the calculation into common tiles (due to memory restrictions) to get the fastest
calculation. We have, however, proposed suboptimal heuristic to address this problem.

(b)

0,1 mm

Fig. 3. Speckle simulation: an example of algorithm output. A patch of size 0.1 x 0.1 mm? with
a random phase (a) and a Gaussian intensity (b) was sampled to a 1024 x 1024 array of
complex amplitudes. Intensity of the off-axis propagation to the distance 5 mm is shown in the
subimage (c), size of the subimage is 4.7 x 1.6 mm? A naive approach to the convolution
would require approx. 28 GiB of memory while proposed algorithm can work on a common
PC.
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Binarizace pocitatem generovaného hologramu pomoci ditheringu

1. Uvod

Displeje poskytujici tfirozmérny vjem jsou zalozeny na rtiznych principech [1]. Nejjednodussi
z nich jsou zaloZeny na binokuldrnim vidéni ¢lovéka, tedy poskytuji pravému a levému oku
divéka ,,spravny* obraz 3D scény; nékteré takové typy displejli jsou dnes bézné komercné
dostupné (vyzadujici po divakovi aktivni nebo pasivni bryle), jiné (autostereoskopické)
existuji jako komer¢ni prototypy a prakticky nic nebrani jejich masové vyrob¢. Velkou
nevyhodou vSech takovych displeji je zejména konflikt mezi ocni vergenci a akomodaci [1];
oc€i se pii sledovani takového displeje chovaji jinak nez pti sledovani redlné scény. Dal§imi
potizemi (vice ¢i méné¢ feSitelnymi) jsou omezeni poctu divak, restrikce na pozorovaci
prostiedi apod.

Technologie, ktera potencialné fesi veskeré potize, je elektronicky holograficky displej. Neni
totiz zavisly na binokuldrnim vidéni ¢lovéka, ale pokousi se napodobit piimo svételné pole.
Elektronické holografické displeje dostatecné kvality vSak zatim neexistuji; pro testovani
vysledkt teoretického vyzkumu pocitacového generovani hologramti (computer generated
holography, CGH) [2, 3, 4] se proto zatim pouziva elektronova nebo laserova litografie (ty
vSak neumoziuji zobrazeni videa) [3], rychlé fotorefraktivni materidly [5], akusticko-optické
modulatory nebo prostorové modulétory svétla (spatial light modulator, SLM) [6].

Pouzivani amplitudovych prostorovych modulatort svétla zalozenych na mikrozrcatkové
technologii (digital micromirror device, DMD) [6] ma krom¢ nespornych vyhod (rychla
odezva, vynikajici kontrast) také jednu podstatnou nevyhodu — jde o binarni modulator svétla
s pevné danou rozliSovaci schopnosti. I tak jednoduché uloha, jakou je zobrazeni amplitudové
miizky se sinovym priab¢hem reflektance, je na DMD téZzko feSitelnd, nebot’ vlivem
binarizace se prub¢h reflektance méni na obdélnikovy (navic s hranami v pevné daném rastru)
a miizka za¢ne generovat nezddouci difrak¢ni fady. Jejich potlaceni, resp. potlaceni vlivu
binarizace, se d4 fesit iterativnimi algoritmy [7], které jsou ovSem ¢asoveé narocné;
pultonovanim [8], které se da ispéSné aplikovat jen pifi submikrometrovém rozliseni
difraktivni struktury; posuny jednotlivych vrypt [9], které 1ze zajistit u vyroby fyzické
miizky, nikoliv ovSem pfi simulaci na displeji; nebo zaSuménim signalu [10], tzv.
ditheringem.

Clanek [10] ukazuje, jak zaSuménim signélu, tj. difraktivni struktury, potlagit nezadouci
difrakcni fady. Kromé pocitacem generovanych hologramii se zabyva i jednoduchymi
miizkami se sinovym profilem; uvazuje vsak jednak fazové modulatory svétla, jednak
piedpokladd moznost generovani Sumu s jemnou (8bitovou) kvantizaci. V tomto ptispévku
ukdzeme, jak se klasicky dithering [11] projevuje na bindrnim amplitudovém prostorovém
modulatoru svétla, a to jak pii zobrazovani jednoduchych mitizek, tak pti zobrazeni pocitaCem
generovanych hologrami.

Struktura ¢lanku je nésledujici. V kapitole 2 ptfipomeneme chovani amplitudové difrakéni
miizky se sinovym a obdélnikovym profilem, v kapitole 3 shrneme princip ditheringu.

V kapitole 4 ukédzeme vliv DMD na difrakéni miizku 1 na pocitacem generovany hologram a
ukazeme, ze zaSuméni ma dobry vliv na mfizku, ale nikoliv na hologram. V kapitole 5 se
pokusime postup zaSuméni modifikovat a ukdzeme, Ze ani modifikace nema na rekonstrukci
hologramu dobry vliv. V zévéru vysledky experimentii shrneme.

V nasledujicim textu budeme pozorovat difrakci na rtiznych strukturach. Budeme-li pozorovat
vypocetni simulaci, budeme ptredpoklédat, ze struktura meni prochazejici svétlo lokalni
zménou transmitance. V piipadé experimentu na DMD ¢ipu budeme ménit odrazené svétlo
lokalni zménou reflektance. Experiment ale pfipravime tak, aby byl ekvivalentni
transmitan¢nimu piipadu.
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2. Amplitudova difrakéni mrizka

Popis chovani amplitudové transmitancni difrakéni miizky patii k zdkladnim znalostem

v optice [12]. Nekone¢né velka miizka s periodou struktury A (tj. prostorovou frekvenci
f=1/A) kolmo nasvicena koherentni rovinnou vlnou vlnové délky A vytvaii ve vzdalené
oblasti pod thlem 8,, (Ghel mezi nedifraktovanym a difraktovanym smérem S$ifeni viny) m-té
difrakéni maximum, kde m je celé Cislo; plati mriZkova rovnice

sin@,, =m A
Intenzita difrakénich maxim je pak dana transmitanénim profilem. Je-li prib¢h sinovy, jsou
vyznamna pouze maxima 0., +1. a —1. fadu, viz obr. 1. Je-li prab¢h obdélnikovy, je tieba
uvazovat vSechny fady. Nékteré v§ak mohou vlivem poméru Sitky prihledné Stérbiny a
periody mtizky (faktor plnéni, fill-factor) zmizet, napt. pro faktor plnéni 0,5 mizi maxima
sudych tadi (kromé 0. fadu).

Obr. 1: Difrakce na mrizce 11,574 car/mm (perioda 8 x rozte¢ mikrozrcatek) osvetlené
paprskem He-Ne laseru (632,8 nm) ve vzdalenosti 1000 mm, vypocetni simulace.

a) Transmitance idealni mrizky (predpokladdame rozsah 0 az 1), resp. mrizky s kvantizaci na
256 stupnu Sedi, a simulace difrakcniho vzoru. b) Struktura binarizovand prahem 0,5 a jeji
difrakcni vzor.

3. Dithering

Libovolny realny signal s(x) je zapotiebi pied ¢islicovym zpracovanim kvantizovat, tj.
vyjadtit jeho obor hodnot konecnym poctem diskrétnich Grovni; fikdme jim kvantiza¢ni
urovngé. Jejich pocet zavisi jak na pouzité technologii zpracovani signalu, tak na pozadavcich
na odchylku ptivodniho a kvantizovaného signélu. Této odchylce fikdme kvantizacni Sum
nk(x). Podrobné informace o kvantizaci lze najit v libovolné monografii o ¢islicovém
zpracovani signalu, napt. [13].

Nejjednodussi kvantizaci je binarizace, tj. mame k dispozici dvé kvantizacni urovné s a s;.
Rozhodnuti, zda signal v daném bodu reprezentovat prvni ¢i druhou kvantizacni Grovni, se
nejcastéji déla porovnanim s prahovou hodnotou z. Vysledkem kvantizace je novy signal sk:

so  jelisg(x) <t
s;  je-lisg(x) >t

sg(x) = {

Prahovou hodnotu 7 volime tak, aby byl kvantizacni Sum ng(x) = s(x) — sx(x) minimalni ve
smyslu zvoleného kritéria, napt. minimalni amplitudy.

Vliv kvantizace se da n¢kdy potlacovat tzv. ditheringem; pouziva se napiiklad ve zpracovani
obrazu nebo zvuku [11]. Jeho princip je jednoduchy — pted binarizaci se k signalu pficte
nahodny Sum np(x) s amplitudou d:

so jelisg(x) + np(x) <t
s; jelisg(x) + np(x) >t

skp(X) = {
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Je-li préh ¢ aritmetickym primérem kvantizacnich urovni, ¢ = (s; + s59)/2, voli se ¢asto
amplituda ditheringového Sumu d = (s1 — s0)/2. Kvalita kvantizovaného signalu se objektivné
samoziejmé zhorsi, ale statisticky bude kvantizovany signél piivodnimu signalu blizsi. To lze
dokumentovat napft. ukazkou kvantizace Sedoténového obrazu, viz obr. 2.

-

a) b)
Obr. 2: Vliv ditheringového Sumu na binarizaci. a) Sedotonovy obrazek. b) Prosta binarizace.
¢) Nahodny sum pouzity pro dithering. d) Binarizace s pouzitim ditheringového sumu.

4. Difraktivni struktura na DMD

Pti zobrazeni difraktivni struktury na DMD musime brat v tivahu tfi jevy:

1. DMD ¢ip svétlo bud’ odrazi, nebo neodrazi. Jde tedy o binarni modulétor amplitudy.
Pouzivé-li se DMD v rezimu zobrazeni stupiii Sedi (typicky s 256 kvantiza¢nimi
urovnémi), jde o oklamani oka pulsné-Sitkovou modulaci, tj. dané mikrozrcatko
periodicky pfepina mezi stavy odrazi svétlo — neodrazi svétlo.

2. DMD ¢ip je rozdélen na obrazové elementy (pixely). Hranice mezi odrazivou a
neodrazivou oblasti tedy nemuze lezet kdekoliv, ale jen v pfedem daném rastru.

3. Mikrozrcatko nepokryva celou plochu pixelu. Odraziva plocha je tedy de facto piekryta
neodrazivou ¢tvercovou miizkou s rozteci stejnou, jako je rozte¢ pixeli.

V experimentech jsme pouzili ¢ip Texas Instruments 0.95" 1080p (1920x1080) 2xLVDS ze

sady DLP® Discovery™ 4100:

e rozliSeni Cipu 1920 sloupct x 1080 radek,
e rozte€ zrcatek 10,8 um,
e mikrozrcatko pokryva 91 % plochy pixelu.

V numerickych simulacich jsme uvazovali stejné parametry; vypocty probihaly referenénim

zpusobem podle [14] s pouzitim plného (nezjednodusené¢ho) Rayleigh-Sommerfeldova

integralu I. druhu.

Zabyvejme se nejprve zobrazenim jednoduché miizky, viz obr. 3. Druhy bod z vySe

uvedeného vyctu jevu tikd, Ze binarizaci Ize idedln¢ provést pouze tehdy, je-1i perioda miizky

sudym nasobkem rozte¢e mikrozrcatek. V opaéném piipad¢ je vyslednd binarizovana
struktura souctem nékolika obdélnikovych prabéhti s riiznymi faktory plnéni. To pochopitelné
ovlivni difrakéni vzor; takova binarizovana miizka je velmi Spatnou aproximaci miizky se
sinovym prubéhem; pro srovnani viz obr. 1. Ditheringem se na jednu stranu zmens$i kontrast
difrakéniho vzoru (piivodné ¢erné pozadi je poSkozeno speckle Sumem), na druhou stranu
miizka piestane tvotit nezddouci difrakéni fady. Jakkoliv binarizovand miizka ovsem
nepiestane tvofit difrakéni maxima pod tthlem danym roztec¢i mikrozrcatek, protoze ostré
zmény reflektance na hranicich pixelil jsou neodstranitelné.
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Obr. 3: Difrakce na mrizce 12,346 car/mm (perioda 7,5 % roztec mikrozrcatek) osvétlené
paprskem He-Ne laseru (632,8 nm) ve vzdalenosti 1000 mm, vypocetni simulace.

a) Transmitance idealni mrizky (predpokladdame rozsah 0 az 1), resp. mrizky s kvantizaci na
256 stupnu Sedi, a simulace difrakcniho vzoru. b) Struktura binarizovand prahem 0,5 a jeji
difrakcni vzor. Nestejné Siroké cary struktury jsou diisledkem necelociselného nasobku
roztece mikrozrcatek. c) Struktura binarizovana prahem 0,5 a ditheringovym Sumem
amplitudy 0,5 a jeji difrakcni vzor. Speckle sum uprostied snizuje kontrast obrazu. Silné
difrakcni Fady po strandach odpovidaji difrakci na rastru mikrozrcatek.

Jina situace nastava, pokousime-li se zobrazovat komplikovangjsi difraktivni strukturu,
jmenovité pocitatem generovany Fresneliv hologram 3D objektu. Z obrazku 4 je ziejmé, ze
prosta binarizace prahovanim také vytvari vyssi difrak¢ni fady, prahovani s ditheringem ale
nyni tvoii tolik Sumu, Ze se znacn¢ poskozuje i minus prvni difrakéni fad, redlny obraz
tvofeny hologramem.

Obr. 4: Rekonstrukce pocitacem generovaného amplitudového Fresnelova hologramu 3D
objektu ve vzdalenosti 1 m (uhel objektové a referencni viny 0,75° ve svislé roviné), vypocetni
simulace. Svetly obdélnik uprostied kazdého obrazku je nedifraktované svétlo. a) Hologram

s kvantizaci na 256 urovni Sedi. b) Binarizovany hologram. c) Hologram binarizovany

s pouZitim ditheringového Sumu.

5. Modifikace ditheringového Sumu

Ditheringovy Sum, ktery jsme k difraktivni struktute pficitali, jsme tvofili generatorem
nahodnych Cisel s rovnomérnym rozlozenim pravdépodobnosti. Takovy Sum ma ploché
spektrum [13]. Difrakéni vzor ve vzdéalené oblasti je proto také rovnomérny a svym svitem
vSude snizuje kontrast. Nabizi se proto myslenka, zda by ditheringu neprospélo uzivani Sumu
s jinym nez rovnomérnym rozlozenim pravdépodobnosti. Takova myslenka neni nova;
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napfiklad pfi kvantizaci audiosignalu se pouziva ditheringovy Sum, jehoz frekvencni
charakteristika koreluje s frekvencni citlivosti lidského ucha [11].

Pokud bychom ze spektra ditheringového Sumu vynechali naptiklad nizké frekvence, mél by
se Sum v difrakci projevovat predevsim pod vyssimi difrakénimi tthly. Vime-li, pod jakym
uhlem se vytvaii redlny obraz hologramu, méli bychom byt schopni vytvofit takovy
ditheringovy Sum, ktery jej bude poskozovat minimaln¢.

Nejjednodussi metodou generovani Sumu npg(x) s danym spektrem je digitalni filtrace
rovnomeérného Sumu np(x), resp. jeho konvoluce s jistym konvolu¢nim jadrem K.

V jednorozmérném ptipadu:

nps() = > K(Dnp(x = ))
J

Pro ovéfeni principu jsme zkusili konvoluéni jadra Ky =[1 1] (low-pass) a Ky = [1 —1] (high-
pass), viz obr. 5. Je zfejmé, ze zakladni idea funguje: v ptipadé nizkofrekvenéniho Sumu je
speckle koncentrovan pobliz nedifraktovaného paprsku, v piipadé vysokofrekvencéniho je
naopak stfed difrakéniho vzoru relativng ¢isty. Na druhou stranu uz dithering nestaci
odstraniovat vSechny nezadouci difrak¢ni fady.

[ . & e e e
HH—e—e—eet 8 oo}

Obr. 5: Difrakce na mrizce 12,346 car/mm (perioda 7,5 % rozte¢ mikrozrcatek) osvétlené
paprskem He-Ne laseru (632,8 nm) ve vzdalenosti 1000 mm, vypocetni simulace. Viz téz
obr. 3. a) Struktura binarizovand prahem 0,5 a ditheringovym sumem amplitudy 0,5
filtrovanym jadrem Ky a jeji difrakcni vzor. b) Struktura binarizovana prahem 0,5 a
ditheringovym sumem amplitudy 0,5 filtrovanym jadrem Ky a jeji difrakcni vzor.

Stejné chovani miizeme pozorovat i na Fresnelové hologramu, viz obr. 6. I tentokrat se
speckle kumuluje v pfedpokladané oblasti a schopnost rusit nezadouci difrakcni fady klesa.

Obr. 6: Rekonstrukce pocitacem generovaného amplitudového Fresnelova hologramu 3D
objektu ve vzdalenosti 1 m (uhel objektové a referencni viny 0,75° ve svislé roviné), vypocetni
simulace. a) Hologram binarizovany s pouzitim nizkofrekvencniho ditheringového sumu.

b) Hologram binarizovany s pouzitim vysokofrekvencniho ditheringového Sumu. Povsimnéte
si rozdilného rozloZeni speckle sumu.
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Podivejme se vSak na dosazené vysledky z pohledu kontrastu. Na obrazku 7 jsou jasy
jednotlivych difrak¢énich vzort (rekonstrukci hologramu) upraveny tak, aby obraz figurky byl
stale stejné jasny. Na prvni je pohled vidét, Ze jakékoliv experimenty s ditheringem vedou ke
zhorSeni odstupu jasu obrazu a jasu pozadi. Dokonce se ukazuje, ze plivodni binarizace
pouhym prahovanim dava témér stejné vysledky jako rekonstrukce piivodniho
(nebinarizovaného) hologramu. Srovnatelné vysledky je mozné pozorovat na fotografiich
skutecného experimentu, viz obr. 8.

a) b) c) d) e

Obr. 7: Detail rekonstrukce pocitacem generovaného hologramu, vypocetni simulace.

a) Piivodni hologram. b) Prosta binarizace. c) Binarizace s obycejnym ditheringem.

d) Binarizace s nizkofrekvencnim ditheringovym Sumem. e) Binarizace s vysokofrekvencnim
ditheringovym Sumem. Pomeér jasu obrazu a pozadi je postupné 32,7, 18,9; 2,3, 3,8 a 5,0.

Obr. 8: Detail rekonstrukce pocitacem generovaného hologramu, redlny experiment.

a) Prosta binarizace hologramu. b) Binarizace s obycejnym ditheringem. c) Binarizace

s nizkofrekvencnim ditheringovym Sumem. d) Binarizace s vysokofrekvencnim ditheringovym
Sumem. Povsimnéte si rozdilného rozloZeni speckle sumu.

6. Zavér

Ove¢tili jsme, Ze binarizace difraktivni struktury vede k vytvareni nezadoucich difrakénich
fadld. Rovnéz jsme ovéfili, ze tyto fady Ize do jisté miry eliminovat technikou ditheringu.
Ukézali jsme, Ze pro zobrazovani pocitacem generovanych Fresnelovych hologramiti 3D
objekti je tato technika nevhodna jak v klasické, tak v nové navrzené podobé¢, nebot’ silné
degraduje kontrast pozorovaného obrazu. Jak klasicka, tak nové navrzena technika ditheringu
je nicméné pravdépodobné pouzitelnd u jednoduchych difraktivnich struktur, které¢ zaméruji
difraktovany paprsek do jistého sméru, naptiklad u optickych pinzet (optical tweezers). To
mize byt predmétem dal$iho vyzkumu.
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