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Chapter 1

Introduction

Sentiment analysis is a sub-field of natural language processing and employs
machine learning, computational linguistics and data mining. Generally, it
deals with the automatic extraction and analysis of sentiments, opinions,
emotions and beliefs expressed in written text.

Sentiment analysis has become a mainstream research field since the
early 2000s. Its impact can be seen in many practical applications, ranging
from analysing product reviews [Stepanov and Riccardi, 2011] to predicting
sales and stock markets using social media monitoring [Yu et al., 2013].
The users’ opinions are mostly extracted either on a certain polarity scale,
or binary (positive, negative); various levels of granularity are also taken
into account, e.g., document-level, sentence-level, or aspect-based sentiment
[Hajmohammadi et al., 2012].

Most of the research in automatic sentiment analysis of social media has
been performed in English and Chinese, as shown by several recent surveys
[Liu and Zhang, 2012, Tsytsarau and Palpanas, 2012].

The goal of sentiment analysis is to automatically detect the polarity of
a text. The emphasis should be on the word automatically as the task has
a particular focus on supervised and unsupervised machine learning.

If we understand the meaning (semantics) of a text, we will also uncover
the sentiment hidden in the text. We believe that distributional semantics
models are essential to understand the meaning and sentiment hidden in
text.

1



Introduction Motivation

1.1 Motivation

There are many researchers trying to surpass the latest best results and
achieve the state-of-the-art in English sentiment analysis by using hand-
crafted features. This approach may result into overfitting the data. How-
ever, sentiment analysis in Czech has not yet been thoroughly targeted by
the research community.

Czech as a representative of a inflective language is an ideal environ-
ment for the study of various aspects of sentiment analysis (overview or
breadth study of sentiment analysis if you will) for inflectional languages.
It is challenging because of its very flexible word order and many different
word forms.

We conceive this study to deal with several aspects of sentiment ana-
lysis. The breadth of this study can lead to more general view and better
understanding of sentiment analysis. We can reveal and overcome unexpec-
ted obstacles, create necessary evaluation datasets and even come up with
new creative solutions to sentiment analysis tasks.

Thus the aim of the doctoral thesis is to study various aspects of senti-
ment analysis with the emphasis on the Czech language.

1.2 Outline

Chapter 2 describes the challenges in sentiment analysis and formulates the
basic and aspect-based definitions.

It is necessary to define the state-of-the-art techniques and evaluation
measures before some results are presented, thus Chapter 3 is devoted to
machine learning techniques and evaluation measures. The most commonly
used features for sentiment analysis are covered in Chapter 4. The features
seems to have at least the same importance as the methods.

Distributional semantic models are introduced in Chapter 5. Semantics
models can be used as additional sources of information for sentiment ana-
lysis classification.

The related work for sentiment analysis is presented in Chapter 6.

Chapter 7 summarizes the challenges of sentiment analysis and states
the aims of the doctoral thesis.
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Chapter 2

Sentiment Analysis

This chapter describes the core problems of the current state-of-the-art al-
gorithms and present the formal definition of sentiment analysis.

Sentiment analysis in general is connected to not only to opinions but
to emotions, feelings and attitudes as well. Sentiment polarity is only a
part of this field which assigns a sentiment label (e.g. positive, negative
and neutral) to texts. In this report we will mainly focus on the sentiment
polarity task.

2.1 Challenges

A positive or negative sentiment word may have opposite orientations in
different application domains. The word “loud” is generally negative (“the
fan is very loud”) however in a certain situation it can be positive, e.g. “wow
the speakers are really loud”.

A sentence containing sentiment words may not express any sentiment.
This frequently happens in questions and conditional sentences, e.g. “Could
you tell me which printer is the best?” and “If I can find a good laptop in the
shop, I will buy it.” Both these sentences contain a positive sentiment word,
but neither expresses a positive or negative opinion on any specific product.
However, not all questions and conditional sentences express no sentiments,
e.g., “Does anyone know how to get this terrible camera to work?”.

Other aspects of subjective texts related to sentiment can be considered
important as well. Various emotions such as anger, fear, disgust, happiness,
sadness and surprise can be extracted from affected texts in order to determ-
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Sentiment Analysis Challenges

ine the state of mind of the author. This affected state can be later used
to switch to a different mode of sentiment interpretation or hateful posts
filtering in forums.

Sarcastic sentences with or without sentiment words are hard to deal
with, e.g., “What a great car! It stopped working in two days.” Sarcasm
will be discussed in more detail in Section 2.4.

Many sentences without sentiment words can also imply opinions. These
sentences usually express some factual information in an objective manner.
The sentence “This printer uses a lot of ink” implies a negative sentiment
about the printer since it uses a lot of resource (ink). This sentence is
objective as it states a fact.

Unlike factual information, opinions and sentiments have an important
characteristic, namely, they are subjective. Single opinion from one person
represents only the subjective view of that single person. It is thus important
to examine a collection of opinions from many people rather than only a
single person. Since product reviews are highly focused with little irrelevant
information and opinion rich, they allow us to see different issues more
clearly than from other forms of opinion text.

Twitter postings (tweets) are short (at most 140 characters) and in-
formal, and use many Internet slangs and emoticons. Twitter postings
are easier to analyse due to the length limit because the authors are usu-
ally straight to the point, but you have to deal with the Twitter specific
slang.[Liu, 2012]

Forum discussions are perhaps the hardest to deal with because the users
there can discuss anything and also interact with one another. Different
application domains are also considered very difficult to deal with. Social
and political discussions are much harder than opinions about products and
services, due to complex topic and sentiment expressions.[Liu, 2012]

The task of aggregating and representing sentiment of a document or ma-
jority of documents is called sentiment summarization. Since the amount of
information available on the Internet is huge a brief overview of market senti-
ment can be very helpful for both customers and producers. The automatic
summarization should be unbiased, quicker and accurate, unlike humans.
Moreover the average human reader could have considerable difficulty doing
the same.

There are even individuals or organizations who give fake opinions in
reviews and forum discussions to promote or to discredit target products,
services, organizations, or individuals. Such individuals are called opinion
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Sentiment Analysis Basic Sentiment Polarity Definition

spammers and the fake opinions are called opinion spam. Opinion spamming
has become a major issue. There is no easy way to detect these fake opinions.

These issues all present major challenges. In fact, these are just some of
the difficult problems.

2.2 Basic Sentiment Polarity Definition

An opinion is a quadruple (G,S,H, T ) [Liu, 2012], where

- G is the sentiment target,

- S is the sentiment about the target,

- H is the opinion holder,

- T is the time when the opinion was expressed.

Sentiment analysis can be done on different levels of granularity.

• Document level is usually used on various reviews, where the task
is to determine the overall sentiment towards the target (e.g. product
or movie).

• Sentence level analyses the overall sentiment of a sentence.

• Aspect-based sentiment analysis focuses on the precise features (as-
pects) of the sentiment target. Both the document and sentence level
of sentiment analysis fail to understand exactly which aspect of the
target is branded by the opinion holder with the given sentiment.
Aspect-based sentiment analysis will be discussed in Sections 2.3 and
6.3.

• Word level of sentiment analysis identifies the polarity of words. For
more information see Section 6.2.

Let us use the term entity to denote the target object that has been
evaluated.

An entity is a product, service, topic, issue, person, organization, or
event. It is described with a pair, hierarchy of parts, sub-parts, and so
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Sentiment Analysis Aspect-Based Sentiment Definition

Figure 2.1: Example entity (laptop), its parts (rounded rectangle), sub-parts
(rectangle) and attributes (hexagon). Clouds represent omitted hierarchical
structures.

on, and a set of attributes. Each part or sub-part also has its own set of
attributes [Liu, 2012]. Figure 2.1 shows an example of such hierarchy.

This entity as a hierarchy of any number of levels needs a nested relation
to represent it. Recognizing parts and attributes of an entity at different
levels of details is extremely hard, fortunately most applications do not need
such complex analysis. Thus, we simplify the hierarchy to two levels and use
the term aspects to denote both parts and attributes. In the simplified tree,
the root node is still the entity itself, but the second level (also the leaf level)
nodes are different aspects of the entity. This simplified framework (figure
2.2) is what is typically used in practical sentiment analysis systems. Note
that in the research literature, entities are also called objects, and aspects
are also called features (or product features).

2.3 Aspect-Based Sentiment Definition

An opinion is a quintuple (Ei, Aij , Sijkl, Hk, Tl) [Liu, 2012], where

- Ei is the name of an entity,
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Sentiment Analysis Aspect-Based Sentiment Definition

Figure 2.2: Example entity (laptop) and its aspects (rhomboids). Cloud
represents omitted aspects.

- Aij is an aspect of Ei,

- Sijkl is the sentiment about aspect Aij of entity Ei expressed by Hk

at the time Tl,

- Hk is the opinion holder,

- Tl is the time when the opinion is expressed by Hk.

The entity Ei and its aspects Aij together represent the opinion target.
The sentiment Sijkl is positive, negative, or neutral, or expressed on a certain
polarity scale, e.g., 1 to 5 stars as used by most review sites. Special aspect
GENERAL is used to denote an opinion on the entity itself as a whole.

In this definition, subscripts are used to emphasize that the five pieces of
information in the quintuple must correspond to one another. That is, the
opinion Sijkl must be given by opinion holder Hk about aspect Aij of entity
Ei at time Tl. Each of these five components is essential and any mismatch
is problematic in general.

For example, in the sentence “The English adore him but the Spanish
hate him.”, it is clearly important to distinguish between the two opinion
holders. The time component may seem not very important, but in practise
an opinion expressed two years ago is not the same as an opinion expressed
yesterday.

The definition does not cover all possible ways to express an opinion.
The definition would be too complex if it did and thus make the problem
extremely difficult to solve. However the definition is sufficient for most
applications.

7



Sentiment Analysis Aspect-Based Sentiment Definition

The limits of this simplification are evident e.g. in the case of a com-
parative opinion. Comparative opinion expresses a relation of similarities or
differences between two or more entities and/or a preference of the opinion
holder based on some shared aspects of the entities. [Liu, 2012]

There are other situations in which a more complex definition would
be needed. For example, the situation in “This car is too small for a tall
person,” which does not say the car is too small for everyone. The context
of the opinion is an important information, which is not covered in the
simplified definition.

Furthermore, we simplified the hierarchical structure of entity. If we
want to study different aspects of an aspect (e.g. phone battery and its
price and capacity), then we need to treat an aspect (battery) of an entity
(phone) as a separate entity.

Definition from Semantic Evaluation Workshop

The semantic evaluation workshop SemEval is an important series of work-
shops studying sentiment. There are several ways to define aspects and
polarities. The SemEval2014’s [Pontiki et al., 2014] definition distinguishes
two types of aspect-based sentiment: aspect terms and aspect categories.
The whole task is divided into four subtasks. Figure 2.3 gives examples for
each subtask.

Subtask 1: Aspect Term Extraction

Given a set of sentences with pre-identified entities (e.g., restaurants), the
task is to identify the aspect terms present in the sentence and return a list
containing all the distinct aspect terms.

Subtask 2: Aspect Term Polarity

For a given set of aspect terms within a sentence, the task is to determine
the polarity of each aspect term: positive, negative, neutral or bipolar (i.e.,
both positive and negative).

8



Sentiment Analysis Aspect-Based Sentiment Definition

CZ: Děti dostaly naprosto krvavé maso.
EN: The meat they brought to the kids was totally bloody.

→ {maso (meat)}

(a) Aspect term extraction

CZ: Děti dostaly naprosto krvavé maso.

EN: The meat they brought to the kids was totally bloody.

→ {maso (meat): negative}

(b) Aspect term polarity

CZ: Přivı́tala nás velmi přı́jemná servı́rka, ale také mı́stnost

s ošuntělým nábytkem.

EN: We were welcomed by a very nice waitress and a room with

time-worn furniture.

→ {služby (service), prostředı́ (ambience)}

(c) Aspect category detection

CZ: Přivı́tala nás velmi přı́jemná servı́rka, ale také mı́stnost

s ošuntělým nábytkem.

EN: We were welcomed by a very nice waitress and a room with

time-worn furniture.

→ {služby (service): positive, prostředı́ (ambience): negative}

(d) Aspect category polarity

Figure 2.3: Subtasks examples of aspect-based sentiment analysis.

Subtask 3: Aspect Category Detection

Given a predefined set of aspect categories (e.g., price, food), the task is to
identify the aspect categories discussed in a given sentence. Aspect categor-
ies are typically coarser than the aspect terms of Subtask 1, and they do not
necessarily occur as terms in the given sentence. In the analysed domain of
“restaurants”, the categories include food, service, price, and ambience.

9



Sentiment Analysis Sarcasm Detection

Subtask 4: Aspect Category Polarity

Given a set of pre-identified aspect categories (e.g., food, price), the task
is to determine the polarity (positive, negative, neutral or bipolar) of each
aspect category.

2.4 Sarcasm Detection

Since the goal of sentiment analysis is to automatically detect the polarity of
a text, misinterpreting irony and sarcasm represents a big challenge [Davidov
et al., 2010].

As there is only a weak boundary in meaning between irony, sarcasm
and satire [Reyes et al., 2012], we will use only the term. Sarcasm generally
reverses the polarity of an utterance from positive or negative into its oppos-
ite, which deteriorates the results of a given NLP task. Therefore, correct
identification of sarcasm can improve the performance. Bosco et al. [2013]
claim that “even if there is no agreement on a formal definition of irony,
psychological experiments have delivered evidence that humans can reliably
identify ironic text utterances from an early age in life”.

2.5 Sentiment Analysis for Inflectional Languages

Highly inflectional languages such as Czech are hard to deal with because
of the high number of different word forms. Czech is even more challenging
because it has very flexible word order. Czech language permits and fre-
quently uses double even a triple negative in one sentence, thus making it
difficult for computers to understand the meaning of the sentence. Moreover
the subject can be omitted if it is known from the context.

Text is often preprocessed by various techniques in order to reduce the
dictionary size. The importance of this preprocessing phase depends on
the language. For highly inflectional languages like Czech, stemming or
lemmatization is almost mandatory because it is necessary to reduce the
high number of different word forms.

Lemmatization identifies the base or dictionary form of a word which is
known as the lemma.

Stemming finds the base form of each word, usually by removing all
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Sentiment Analysis Evaluation Criteria

affixes. The result of stemming is called stem

Sometimes a list of stop words is used to filter out words which occur in
most documents and have only a small impact on the results.

2.6 Evaluation Criteria

The performance of methods used for sentiment analysis is evaluated by
calculating various metrics like accuracy, precision, recall and F-measure
(also F-score or F1 score).

We will define these measures on a binary classification of positive and
negative labels, but in general any number of labels can be used. We can
show the results in the form of a confusion matrix.

• Positive (P) - positive text classified as positive.

• Negative (N) - negative text classified as negative.

• False positive (FP)- negative text classified as positive.

• False negative (FN) - positive text classified as negative.

Positive Negative

classified as positive positive (P) false positive (FP)

classified as negative false negative (FN) negative (N)

Table 2.1: Confusion matrix.

Now we can easily define accuracy, precision, recall and F-measure as
follows.

Accuracy =
P +N

P +N + FP + FN
(2.1)

Precision =
P

P + FP
(2.2)

Recall =
P

P + FN
(2.3)

F-measure =
2P

2P + FP + FN
(2.4)

11



Sentiment Analysis Evaluation Criteria

Accuracy is a proportion of all correctly predicted labels compared to
all sentences. Precision is a measure of trust, that the objects marked as
positive are really positive. Recall is a measure of trust, that all the positive
objects are marked. F-measure is a harmonic mean between precision and
recall and it is considered to be an overall perspective.

Figure 2.4 shows the distribution of positive and negative objects. The
dashed line represents the decision threshold of classifier. The areas marked
as FN and FP contain incorrectly classified objects.

Decision
threshold

Classified as
negative

Classified as
positive

N P

FN FP

High
recall
threshold

High
precision
threshold

Figure 2.4: Precision and recall

Precision and recall compete against each other as shown on figure 2.4,
the dotted lines represent the decision threshold for high recall or high pre-
cision. For example if the decision threshold is moved to the left, there will
be fewer FN objects and more FP objects, resulting in high recall and lower
precision. A high recall (or precision) classifier can be more suitable for
various tasks. The commonly used evaluation metric is the harmonic mean
between precision and recall usually called F-measure.
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Chapter 3

Machine Learning

Sentiment analysis can be treated as a text classification problem. The
standard approach is to classify a document as being positive or negative
using a machine learning algorithm (classifier). The performance of senti-
ment analysis is strongly dependant on the applied classifier.

Machine learning algorithms essentially learn and store characteristics
of a category from the data during a training phase. This is achieved by
observing the properties of the annotated training data. The acquired know-
ledge is later applied to determine the best category for the unseen testing
dataset. The training and testing datasets are both annotated by sentiment
labels. Then depending on the data-size various model validation techniques
can be used. Cross-validation is commonly used for sentiment analysis eval-
uations. The annotated dataset is split into k equal parts, then the first part
is treated as the testing data and the rest as training data, this selection
process is repeated for each of the parts. Each part is used exactly once as
the testing data.

The de-facto standard for sentiment analysis is the Maximum Entropy
classifier and Support Vector Machines (SVM) classifier, however a simple
Naive Bayes classifier is often used as a baseline for evaluation.

3.1 Naive Bayes Classifier

The Naive Bayes (NB) classifier is a simple classifier commonly used as a
baseline for many tasks. The model computes the posterior probability of
a sentiment label based on predefined features in a given text as shown in

13



Machine Learning Maximum Entropy Classifier

equation 3.1, where s is the sentiment label and x is the given text.

P (s|x) =
P (x|s)P (s)

P (x)
(3.1)

ŝ = argmax
s∈S

P (s)P (x|s) (3.2)

The NB classifier is described by equation 3.2, where ŝ is the assigned senti-
ment label. The NB classifier makes the decision based on the maximum a
posteriori rule. In other words it picks the sentiment label that is the most
probable. The NB classifier makes label conditional independence assump-
tion.

3.2 Maximum Entropy Classifier

The Maximum Entropy (MaxEnt) classifier is based on the Maximum En-
tropy principle. The principle says that we are looking for a model which
will satisfy all our constraints in the most general way (maximum entropy).
To define a constraint we firstly need to define a feature. A feature is typ-
ically a binary function1. For example, consider the following dictionary
feature designed to capture positive emoticons in the given text x.

f(x, s) =

{
1 if s is positive and x contains a positive emoticon
0 otherwise

(3.3)

The constraint is then defined as equality of mean values for a given
feature.

Ep(fi(x, s)) = Ep̃(fi(x, s)) (3.4)

Ep̃(fi(x, y)) is the mean value of a feature computed over the training
data and Ep(fi(x, y)) is the mean value of the model. It is guaranteed
that such a model exists, it is unique and follows the maximum-likelihood
distribution (equation 3.5)[Berger et al., 1996].

p(s|x) =
1

Z(x)
exp

∑
i

λifi(x, s) (3.5)

1 In general any non-negative function can be used.
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Machine Learning SVM Classifier

fi(x, s) is a feature and λi is a parameter to be estimated. Z(x) is just a
normalizing factor and ensures that p(s|x) is a probability distribution.

Z(x) =
∑
s

exp
∑
i

λifi(x, s) (3.6)

Various training algorithms can be used for finding appropriate para-
meters. Limited memory BFGS (L-BFGS) method [Nocedal, 1980] proved
very good performance.

3.3 SVM Classifier

Support Vector Machines (SVM) is a machine learning method based on
vector spaces, where the goal is to find a decision boundary between two
classes that represents the maximum margin of separation in the training
data [Manning et al., 2008b].

SVM can construct a non-linear decision surface in the original feature
space by mapping the data instances non-linearly to an inner product space
where the classes can by separated linearly with a hyperplane.

Support Vector Machines

Following the original description [Cortes and Vapnik, 1995] we describe the
principle in the simplest possible way. We will assume only binary classifier
for classes y = −1, 1 and linearly separable training set {(xi, yi)}, so that
the conditions 3.7 are met.

w · xi + b ≤ −1 if yi = −1
w · xi + b ≥ 1 if yi = 1

(3.7)

Equation 3.8 combines the conditions 3.7 into one set of inequalities.

yi · (w0 · x + b0) ≥ 1 ∀i (3.8)

SVM search the optimal hyperplane (equation 3.9) that separates both
classes with the maximal margin. The formula 3.10 measures the distance
between the classes in the direction given by w.
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Machine Learning SVM Classifier

1
|w0|

1
|w1|

Figure 3.1: Optimal and suboptimal hyperplanes.

w0 · x + b0 = 0 (3.9)

d(w, b) = min
x;y=1

x ·w
|w|

− max
x;y=−1

x ·w
|w|

(3.10)

The optimal hyperplane, expressed in equation 3.11, maximizes the dis-
tance d(w, b). Therefore the parameters w0 and b0 can be found by max-
imizing |w0|. For better understanding see the optimal and suboptimal
hyperplanes on figure 3.1.

d(w0, b0) =
2

|w0|
(3.11)

The classification is then just a simple decision on which side of the
hyperplane the object is.
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Chapter 4

Features

Choosing the best feature set for sentiment analysis has the highest im-
portance as it has a strong impact on the evaluation results. This chapter
describes the most common features.

Features are often preprocessed by various techniques in order to reduce
the feature space. The importance of this preprocessing phase depends on
the language. For highly inflectional languages like Czech, stemming or
lemmatization (see Section 2.5) is almost mandatory because it is necessary
to reduce the high number of different word forms.

A stem or a lemma can be used directly as a feature similarly to a
simple unigram feature. Stemming or lemmatization can also improve the
performance of other features.

4.1 N-gram Features

N-grams and their frequency or presence is often used as a valid baseline. In
some cases word positions and TF-IDF weighting scheme may be considered
effective features.

N-gram features do not have to use only words, any item will do. For
example POS patterns are simply POS n-grams.

N-gram Word n-grams are used to capture frequent word sequences. The
presence of unigrams, bigrams and trigrams is often used as binary features.
The feature space is pruned by the minimum n-gram occurrence (e.g. 5).

17



Features POS-related Features

Note that this is the baseline feature in most of the related work.

Character n-gram Similarly to the word n-gram features, character n-
gram features can be used, as proposed by, e.g., [Blamey et al., 2012]. Char-
acter trigrams are often used to capture frequent emoticons. The feature set
usually contains 3-grams to 6-grams. The feature space is further pruned
by the minimum occurrence of a particular character n-gram.

Skip-bigram Instead of using sequences of adjacent words (n-grams) skip-
grams Guthrie et al. [2006], which skip over arbitrary gaps, can be used.
Basic approach uses skip-bigrams with 2 or 3 word skips and removes skip-
grams with a frequency ≤ 20.

Bag of words Set of words without any information on the word order is
called bag of words.

4.2 POS-related Features

Direct usage of part-of-speech n-grams that cover sentiment patterns has not
shown any significant improvement in the related work. Still, POS tags do
provide certain characteristics of a text. Various POS-related features have
been used in related work e.g., the number of nouns, verbs, and adjectives
[Ahkter and Soria, 2010], the ratio of nouns to adjectives and verbs to ad-
verbs [Kouloumpis et al., 2011], and the number of negative verbs obtained
from POS tags.

4.3 Lexical Features

Additional lexical resources such as sentiment lexicons or SentiWordNet
[Baccianella et al., 2010] can be used as features. These resources use ex-
ternal knowledge to improve the results of sentiment analysis.
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4.4 Semantic Features

Distributional semantics (see Section 5) represent the latest trend in sen-
timent analysis. This is because of their ability to represent the meaning
of texts simply by using a statistical analysis. The direct application of a
joint sentiment and topic model proved to be useful [Lin and He, 2009].
Alternatively, semantics models can be used as new sources of information
for classification (e.g. n-gram features or as bag of clusters instead of bag of
words).

4.5 Other Features

Syntactic Features Features trying to capture word dependencies and
sentence structure usually by exploiting syntactic information generated
from parse trees

Orthographic Features Features based on the appearance of the word
(sometimes called word shape), e.g. the first letter is a capital letter, all
letters are capital or the words consists of digits.

Emoticons Lists of positive and negative emoticons (e.q.Montejo-Ráez
et al. [2012]) capture the number of occurrences of each class of emoticons
within the text.

Punctuation-based Features Features consisting of special characters,
number of words, exclamation marks, question marks, quotation marks.
These features usually do not significantly improve the results.

4.6 Feature Selection

The basic reason for using feature selection (or reduction) methods for super-
vised sentiment analysis is twofold: first, the reduced feature set decreases
the computing demands for the classifier, and, second, removing irrelev-
ant features can lead to better classification accuracy. Furthermore, noise
and redundancy in the feature space increase the likelihood of over-fitting
[Abbasi et al., 2011].
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A study by Sharma and Dey [2012] compares five methods for feature
selection, namely Information Gain, Chi Square, Gain Ratio, Relief-F, and
Document Frequency, with seven different classifiers. Results are reported
on the widely-used movie review database from Pang et al. [2002]. The
best performance was achieved by using the SVM classifier and the Gain
Ratio selector with the number of features ranging from 2,000 to 8,000 and
employing only unigrams as features sorted by their frequency.

Abbasi et al. [2008] proposed an entropy-weighted genetic algorithm
that combines Information Gain with a genetic algorithm for selecting fea-
tures in a bootstrapping manner, tuned on held-out data. They performed
document-level binary sentiment of English and Arabic and used SVM as
the main classifier. Their results were superior to other approaches, such
as plain SVM or Information Gain selection. In their later work, Abbasi
et al. [2011] proposed another feature selection method called the Feature
Relation Network. This manually constructed network of feature depend-
encies (e.g., subsumption1 or parallel relations of various n-grams) relies on
SentiWordNet in order to assign the final feature weights.

Forman [2003] proposes a metric called Bi-Normal Separation and
provides an extensive comparison with another twelve existing feature selec-
tion methods. Using SVM as the underlying classifier, the proposed method
yields the best results and is suitable for skewed (imbalanced) classes. Other
examples of feature selection methods for sentiment analysis or text classi-
fication can be found in, e.g., [Chen et al., 2009, Aghdam et al., 2009].

Since feature selection is also important outside the domain of text clas-
sification, Wasikowski and Chen [2010] conducted a systematic study, fo-
cusing on dealing with class imbalance on small samples. They compare
seven selection methods on 11 small datasets with highly skewed classes and
conclude by recommending two best-performing algorithms, especially for
scenarios that require a small number of features. Another approach based
on dynamic mutual information is presented in Liu et al. [2009]. Again, the
experiments are conducted on 16 benchmark datasets with a rather small
size (up to 8124 instances only) and a small number of features (from 18
to 279), which is a fundamentally different scenario from machine learning-
based sentiment analysis.

Feature selection, however, does not have to lead to a better performance
in all cases, as reported e.g. by Boiy and Moens [2009], who report Chi-
square selection results in their preliminary tests without any success.

1‘is-a’ hierarchical relation
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Chapter 5

Distributional Semantics

As mentioned in chapter 4, semantics models represent the latest trend in
sentiment analysis. They can be applied directly to jointly model sentiment
and topics or alternatively, the features derived from semantics models can
be used as new sources of information for classification (e.g. n-gram features
or as bag of clusters instead of bag of words).

The backbone principle of methods for discovering hidden meaning in a
plain text is the formulation of the Distributional Hypothesis [Harris, 1954,
Firth, 1957]. The famous quote of Firth [1957] says that “A word is charac-
terized by the company it keeps.” The direct implication of this hypothesis is
that the meaning of a word is related to the context where it usually occurs
and thus it is possible to compare the meanings of two words by statistical
comparisons of their contexts. This implication was confirmed by empirical
tests carried out on human groups in [Rubenstein and Goodenough, 1965,
Charles, 2000]. The models based on the Distributional Hypothesis are often
referred to as distributional semantics models.

Some distributional semantic models use the Bag-of-word hypothesis
(e.g. LDA). Bag-of-word hypothesis assumes that the word order has no
meaning. The term bag means a set where the order of words has no role.

Distributional semantics models typically represent the meaning of a
word as a vector: the vector reflects the contextual information of the word
throughout the training corpus. Each word w ∈ W (where W denotes the
word vocabulary) is associated with a vector of real numbers w ∈ Rk. Rep-
resented geometrically, the word meaning is a point in a high-dimensional
space. The words that are closely related in meaning tend to be closer in
the space.
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The ability to compare two words enables us to use a clustering method.
Similar words are clustered into bigger groups of words (clusters). Example
of such a method is the k-means algorithm, which is often used because of
its efficiency and acceptable computational requirements. As a measure of
the similarity between two words, is commonly used the cosine similarity of
word vectors, calculated as the cosine of the angle between the corresponding
vectors.

5.1 HAL

HAL (Hyperspace Analogue to Language) [Lund and Burgess, 1996] is a very
simple method for building semantic space. HAL records the co-occurring
words into a matrix. The words are observed in a small context window1

around the target word in the given corpus. The Co-occurring words are
weighted inversely to their distance from the target word. This results in
the co-occurrence matrix M = |W | × |W |, where |W | is the size of the
vocabulary. Finally, the row and column vectors of M represent the co-
occurrence information of the words appearing before and after the target
word.

5.2 COALS

COALS (Correlated Occurrence Analogue to Lexical Semantics) [Rohde
et al., 2004] extends the HAL model. The difference is that after record-
ing the co-occurrence information, the raw counts of M are converted into
Pearson’s correlations. Negative values are reset to zero and other values
are replaced by their square roots. The optional final step, inspired by LSA
[Deerwester et al., 1990], is to apply the SVD (singular value decomposition)
to M, resulting in a dimensionality reduction and also the discovery of latent
semantic relationships between words.

5.3 CBOW

CBOW (Continuous Bag-of-Words) [Mikolov et al., 2013a] tries to predict
the current word using a small context window around the word. This model
estimates word vector representation based on the context. The word vectors

1typically four words
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can be compared using e.g. cosine similarity measure. Instead of using
a co-occurrence matrix this model uses a neural network for the meaning
extraction.

The architecture is similar to the feed-forward NNLM (Neural Network
Language Model) proposed in Bengio et al. [2006]. The NNLM is compu-
tationally expensive between the projection and the hidden layer. Thus, in
the proposed architecture CBOW, the (non-linear) hidden layer is removed
and the projection layer is shared between all the words. The word order
in the context does not influence the projection (see Figure 5.1a). This
architecture has proved to be of low computational complexity.

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

SUM

w(t)

(a) CBOW

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

(b) Skip-gram

Figure 5.1: Neural network model architectures.

5.4 Skip-Gram

The Skip-gram architecture is similar to CBOW. However, instead of pre-
dicting the current word based on the context, it tries to predict a word’s
context based on the word itself [Mikolov et al., 2013b]. Thus, the inten-
tion of the Skip-gram model is to find word patterns that are useful for
predicting the surrounding words within a certain range in a sentence (see
Figure 5.1b). The Skip-gram model estimates the syntactic properties of
words slightly worse than does the CBOW model, but it is much better at
modeling their semantics [Mikolov et al., 2013a].
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5.5 LDA

LDA (Latent Dirichlet Allocation) [Blei et al., 2003] is a well known topic
model. LDA is based on the Distributional Hypothesis and the Bag-of-
words Hypothesis, i.e., that the word order does not matter and there is
some latent relation between the words within the same document (within
the same context).

The underlying idea is that document is a mixture of topics and topic
is a mixture of words. The vector representation of words can be used to
model word meanings. The meaning of words can be represented by the
associated topic distribution. The model can be extended to jointly model
topic and sentiment [Lin and He, 2009].
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Chapter 6

State of the art in Sentiment
Analysis

There are many ways to categorize sentiment analysis approaches e.g. by
their use of methods and resources (dictionary-based and machine learning-
based). Whereas dictionary-based methods usually depend on a sentiment
dictionary (or a polarity lexicon) and a set of handcrafted rules [Taboada
et al., 2011], machine learning-based methods require labeled training data
that are later represented as features (see Section 4) and fed into a classifier
(see Section 3). Recent attempts have also investigated semi-supervised
methods that incorporate unlabeled data [Zhang et al., 2012].

However the granularity level of sentiment analysis seems to be the most
natural way to categorize the related work.

The most of the research in automatic sentiment analysis has been de-
voted to English. There were several attempts in other languages (e.g.
Banea et al. [2010], Ghorbel and Jacot [2011], VILARES et al. [2015], Basile
and Nissim [2013]), but we will focus only on Czech and English.

Although we have devoted substantial effort to clearly describe all meth-
ods in the following Sections in detail, we would like to direct curious readers
to in-depth surveys Pang and Lee [2008], Liu and Zhang [2012], Tsytsarau
and Palpanas [2012] and Mart́ınez-Cámara et al. [2014]1 for additional in-
formation.

1This survey is focused on sentiment analysis in Twitter
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6.1 Document-Level and Sentence-Level

The key point of using machine learning for sentiment analysis lies in engin-
eering a representative set of features (see Section 4). Pang et al. [2002] ex-
perimented with unigrams (presence of a certain word, frequencies of words),
bigrams, part-of-speech (POS) tags, and adjectives on a movie review data-
set. Martineau and Finin [2009] tested various weighting schemes for uni-
grams based on the TFIDF model [Manning et al., 2008a] and proposed
delta weighting for a binary scenario (positive, negative). Their approach
was later extended by Paltoglou and Thelwall [2010] who proposed further
improvements in delta TFIDF weighting achieving the accuracy of 96.9% on
the movie review dataset and 85.04% on the BLOG06 dataset.

The focus of current sentiment analysis research is shifting towards so-
cial media, mainly targeting Twitter [Kouloumpis et al., 2011, Pak and
Paroubek, 2010] and Facebook [Go et al., 2009, Ahkter and Soria, 2010,
Zhang et al., 2011, López et al., 2012]. Analyzing media with a very in-
formal language benefits from involving novel features, such as emoticons
[Pak and Paroubek, 2010, Montejo-Ráez et al., 2012], character n-grams
[Blamey et al., 2012], POS and POS ratio [Ahkter and Soria, 2010, Koulou-
mpis et al., 2011], or word shape [Go et al., 2009, Agarwal et al., 2011].

In many cases, the gold data for training and testing the classifiers are
created semi-automatically [Kouloumpis et al., 2011, Go et al., 2009, Pak and
Paroubek, 2010]. In the first step, random samples from a large dataset are
drawn according to the presence of emoticons (usually positive and negative)
and are then filtered manually. Although large high-quality collections can
be created very quickly with this approach, it makes a strong assumption
that every positive or negative post must contain an emoticon.

Balahur and Tanev [2012] performed experiments with Twitter posts as
part of the CLEF 2012 RepLab.2 They classified English and Spanish tweets
with a small but precise lexicon, which also contained slang, combined with
a set of rules that captured the manner in which sentiment is expressed in
social media.

Balahur and Turchi [2012] studied the manner in which sentiment ana-
lysis can be done for French, German and Spanish, using Machine Transla-
tion. They employed three different MT systems (Google Translate, Bing
Translator, and Moses [Koehn et al., 2007]) in order to obtain training
and test data for the three target languages. Subsequently, they extracted
features for a machine learning model. They additionally employed meta-

2http://www.limosine-project.eu/events/replab2012
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classifiers to test the possibility to minimize the impact of noise (incorrect
translations) in the obtained data. Their experiments showed that training
data obtained using machine translation do not significantly decrease per-
formance of sentiment analysis and thus it can be a solution in the case of
unavailability of the target language annotated data.

Socher et al. [2013] present their Recursive Neural Tensor Network and
Sentiment Treebank. The Sentiment Treebank contains five sentiment labels
(very positive to very negative) for 215,154 phrases in the parse trees of
11,855 sentences. They train the Recursive Neural Tensor Network on the
new treebank and evaluate against the state of the art methods. This model
outperforms all previous methods on several metrics and pushes the state of
the art in binary sentence-level classification on the Rotten Tomatoes dataset
from 80% up to 85.4%. The accuracy of predicting the five sentiment labels
for all phrases reaches 80.7%, an improvement of 9.7% over bag of features
baselines. This is due to the fact that the model accurately captures sentence
composition and the effects of negation at various tree levels for both positive
and negative phrases.

Kiritchenko et al. [2014b], Zhu et al. [2014] describe a state-of-the-art
sentiment analysis system that detects the sentiment of short informal tex-
tual messages (tweets and SMS messages) and the sentiment of terms. Their
supervised system is based on a machine learning approach leveraging a
variety of features. They employ automatically generated lexicons using
tweets with sentiment-word hashtags and tweets with emoticons. Separate
sentiment lexicon captures negated words. The system ranked first in the
SemEval-2013 shared task “Sentiment Analysis in Twitter” (Task 2), ob-
taining an F-measure of 69.02% in the message-level task and 88.93% in the
term-level task. Additional improvements boost the F-measure to 70.45%
(message-level task) and 89.50% (term-level task).

6.2 Word-Level

Identifying the semantic orientation of subjective terms3 (words or phrases)
is a fundamental task for sentiment lexicon generation. These sentiment
or opinion lexicons are compiled in an automatic manner with an optional
final human check. The task of identifying semantic word orientation is also
called words polarity detection. There are publicly available resources con-
taining sentiment polarity of words e.g. General Inquirer4, Dictionary of

3Also called sentiment words, opinion words and polar words
4http://www.wjh.harvard.edu/ inquirer/
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Affect of Language5, WordNet-Affect6 or SentiWordNet [Baccianella et al.,
2010] These resources are mainly used for computing the sentence or docu-
ment sentiment by dictionary methods or as features for machine learning
methods. Another use is the generation of a domain specific lexicon.

Turney [2002], Turney and Littman [2003] estimate the semantic ori-
entation of words by computing the Pointwise Mutual Information (PMI)
between the given word and paradigm words (e.g. good, bad, nice, nasty).
Another approach [Kamps et al., 2004] measures the synonym relation of
words based on WordNet7.

Another popular way of using WordNet obtains a list of sentiment words
by an iterative process of expanding the initial set with synonyms and ant-
onyms Kim and Hovy [2004], Hu and Liu [2004]. Kim and Hovy [2004]
determine the sentiment polarity of unknown words according to the relat-
ive count of their positive and negative synonyms.

Wiebe et al. [2005], Wilson et al. [2005] create the Multi-Perspective
Question Answering (MPQA) corpus containing 535 news articles from a
wide variety of news sources and describe the overall annotation scheme.
They also compile a subjectivity lexicon with tagged prior8 polarity values
of words.

Rao and Ravichandran [2009] treat the sentiment polarity detection as a
semi-supervised label propagation problem in a graph, where nodes represent
words and edges are the relations between words. They use WordNet and
OpenOffice thesaurus and positive and negative seed sets.

As demonstrated by Fahrni and Klenner [2008] the polarity of words
is domain specific and lexicon-based approaches have difficulty with some
domains. Machine learning algorithms naturally adapt to the corpus domain
by training. Statistical approach to lexicon generation adapts the lexicon to
the target domain. Fahrni and Klenner [2008] propose to derive posterior
polarities using the co-occurrence of adjectives to create a corpus-specific
dictionary.

He et al. [2008] use Information Retrieval methods to build a dictionary
by extracting frequent terms from the dataset. The sentiment polarity of

5http://www.hdcus.com/
6http://wndomains.fbk.eu/wnaffect.html
7WordNet Miller and Fellbaum [1998] is a hierarchical lexical database containing

nouns, verbs, adjectives and adverbs grouped into synonym sets (synsets). The synsets
are related by different types of relationships to other synsets.

8“Prior polarity refers to the sentiment a term evokes in isolation, as opposed to the
sentiment the term evokes within a particular surrounding context.”[Pang and Lee, 2008]
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each document is computed as a relevance score to a query composed of
the top terms from this dictionary. Finally, the opinion relevance score is
combined with the topic relevance score, providing a ranking of documents
on that topic.

Choi and Cardie [2008]determine the polarity of terms using a structural
inference motivated by compositional semantics. Their experiments show
that lexicon–based classification with compositional semantics can perform
better than supervised learning methods that do not incorporate composi-
tional semantics (accuracy of 89.7% vs. 89.1%), but a method that integrates
compositional semantics into the learning process performs better than the
previous approaches (90.7%). The results were achieved on the MPQA data-
set. Later they study the adaptability of lexicons to other domains using an
integer linear programming approach [Choi and Cardie, 2009].

Xu et al. [2012] have developed an approach based on HAL (see Sec-
tion 5.1) called Sentiment Hyperspace Analogue to Language (S-HAL). The
semantic orientation of words is characterized by a specific vector space.
This feature vectors were used to train a classifier to identify the sentiment
polarity of terms.

Saif et al. [2014] adapt the social-media sentiment lexicon from Thelwall
et al. [2012] by extracting contextual semantics of words to update prior
sentiment strength in lexicon and apply it to three different Twitter datasets
achieving an average improvement of 2.46% and 4.51% in terms of accuracy
and F-measure respectively.

6.3 Aspect-Based Sentiment Analysis

Recently a lot of attention has been targeted on sentiment analysis at finer
levels of granularity, namely, aspect-based sentiment analysis (ABSA). The
goal of ABSA is to extract aspects and to estimate the sentiment associated
with the given aspect [Liu, 2012]. For the task definition see Section 2.3.

6.3.1 Aspect Term Extraction

The basic approach to aspect extraction is finding frequent nouns and noun
phrases [Liu et al., 2005, Blair-Goldensohn et al., 2008, Moghaddam and
Ester, 2010, Long et al., 2010].

Sequential learning methods (e.g. Hidden Markov Models [Rabiner,
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2010] or Conditional Random Fields [Lafferty et al., 2001]) can be applied
to aspect extraction. This approach treats aspect extraction as a special
case of the general information extraction problem.

Hu and Liu [2004] extract the most frequent features (noun or noun
phrases) and then remove meaningless feature phrases and redundant single-
word features. Wei et al. [2010] further prune the feature space using a list
of subjective (positive and negative) adjectives. Pavlopoulos and Androut-
sopoulos [2014] propose adding a pruning mechanism that uses continuous
space vector representations of words and phrases to further improve the
results.

Another widely used approach to this problem is the use of topic models.
Brody and Elhadad [2010] present a system that uses local (sentence-level)
LDA (see Section 5.5) to discover aspect terms (nouns). Observing that
every opinion has a target, a joint model can be designed to model the
sentiment of words and topics at the same time [Xianghua et al., 2013, Mei
et al., 2007, Titov and McDonald, 2008a]. A topic-based model for jointly
identifying aspect and sentiment words was proposed by Zheng et al. [2014].

6.3.2 Aspect Sentiment Classification

Aspect sentiment classification can be divided into lexicon-based approaches
and machine learning approaches. Machine learning performs better in a
particular application domain but it is difficult to be scaled up to a large
number of domains. Lexicon-based techniques are more suitable for open-
domain applications [Liu, 2012].

Lexicon-based approaches (e.g. [Xianghua et al., 2013, Ding et al., 2008,
Hu and Liu, 2004]) use a list of aspect-related sentiment phrases as the core
resource for aspect sentiment classification.

Jiang et al. [2011] use a dependency parser to generate a set of aspect
dependent features for classification. Boiy and Moens [2009] weights each
feature based on the position of the feature relative to the target aspect in
the parse tree.

Brody and Elhadad [2010] extract sentiment polarity from a constructed
conjunction polarity graph.

Jo and Oh [2011] propose probabilistic generative models that outper-
form other generative models and are competitive in terms of accuracy with
supervised aspect sentiment classification methods.
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Semantic Evaluation Workshop SemEval 2014

The current state of the art of aspect-based sentiment analysis methods was
presented at the SemEval 2014 Task 4 [Pontiki et al., 2014]. The detailed
description of each system is beyond the scope of this paper, however we
try to briefly describe the highest ranking systems. The task description
was introduced in Section 2.3. The comparison of the systems are shown in
table 6.1.

Kiritchenko et al. [2014a] (NRC-Canada) proposed a hybrid system that
incorporates both machine learning ngram features and automatically con-
structed sentiment lexicons for affirmative and negated contexts.

Brun et al. [2014] (XRCE) train one classifier to detect the categories
and for each category they train a separate classifier for category detection
of the corresponding polarities They extend their previous system built on
a robust deep syntactic parser, which calculates semantic relations of words.
The adaptation includes additional hand-written rules (regular expressions),
extending dependency grammar and lexicons.

Castellucci et al. [2014] (UNITOR) exploit kernel methods within the
SVM framework. They model the aspect term extraction task as a se-
quential tagging task by using SVMhmm. The aspect term polarity, aspect
category detection and aspect category polarity detection are tackled as a
classification problem where multiple kernels are linearly combined to gen-
eralize several linguistic information. Tree kernels proposed in Collins and
Duffy [2001] are adopted to model syntactic similarity through convolutions
among syntactic tree substructures.

Chernyshevich [2014](IHS RD) relies on a rich set of lexical, syntactic
and statistical features and the CRF model to correctly extract the aspect
terms. She also runs a preprocessing step that performs e.g. slang and mis-
spelling corrections, POS tagging, parsing, noun phrase extraction, semantic
role labeling, entity boundary detection.

Toh and Wang [2014] (DLIREC) ranked the first in the aspect term ex-
traction task in the restaurant domain and second in the laptop domain.
They use a Conditional Random Field based classifier for aspect term ex-
traction and linear classifier for aspect term polarity classification with lex-
icon, syntactic and semantic features. They created semantic clusters using
word2vec tool Mikolov et al. [2013c]9

9https://code.google.com/p/word2vec/
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Aspect detection Aspect polarity

Const. Team P [%] R[%] F1[%] Const. Team ACC[%]
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m

U DLIREC 85.35 82.71 84.01 C DCU 80.95

C XRCE 86.25 81.83 83.98 SC NRC-Can. 80.16

C NRC-Can. 84.41 76.37 80.19 U UWB 77.69

C UNITOR 82.45 77.87 80.09 C XRCE 77.69

C
at

eg
or

y C NRC-Can. 91.04 86.24 88.58 C NRC-Can. 82.92

U UNITOR 84.98 85.56 85.27 C XRCE 78.15

C XRCE 83.23 81.37 82.29 U UNITOR 76.29

U UWB 84.36 78.93 81.55 C SAP RI 75.61

L
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to

p
s

T
er

m

SC IHS RD 84.80 66.51 74.55 C DCU 70.49

U DLIREC 81.90 67.13 73.78 C NRC-Can. 70.49

C DLIREC 79.31 63.30 70.41 C SZTE-NLP 66.97

C NRC-Can. 78.77 60.70 68.57 C UBham 66.66

Table 6.1: Comparison of the four best participating systems in each sub-
task. (SC) indicates a strongly constrained system that was not trained on
the in-domain training data, (C) constrained system that was trained on the
in-domain training data and (U) unconstrained system. ACC, P , R, and
F1 denote accuracy, precision, recall and F-measure, respectively.

Wagner et al. [2014] (DCU) combine various lexicons such as MPQA,
SentiWordNet and General Inquirer and use both rule-based and machine
learning approach. They focus on fine tuning of parameters and the systems
efficiency.

[Brychćın et al., 2014] (UWB) present a system based on supervised
machine learning extended by unsupervised methods for latent semantics
discovery (LDA and semantic spaces - HAL and COALS see Section 5) and
sentiment vocabularies. Their approach to aspect term extraction is based
on Conditional Random Fields.

6.4 Summarization in Sentiment Analysis

One opinion from a single source is usually not sufficient for sentiment ana-
lysis applications thus some form of a summary of opinions is necessary.

A common form of summary is aspect-based opinion summarization.
Hu and Liu [2004] simply count positive and negative sentences regarding
aspects of target entity and then ranked based on their frequency. Finally,
top-ranking sentences are selected to form the summaries.
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Titov and McDonald [2008b] use statistical model based on LDA (see
Section 5.5) to discover corresponding topics in text and extract supporting
opinions as evidence for given aspect sentiment rating.

Paul et al. [2010] summarize multiple contrastive viewpoints of opinion-
ated text using probabilistic topic model and a random walk formulation
to score sentences and pairs of sentences from opposite viewpoints based on
both their representativeness of the collection as well as their contrastiveness
with each other.

Fang et al. [2012] propose cross-perspective topic model, that simulates
the generative process of how sentiment words occur in different collections.
They conduct a set of experiments on political domain to demonstrate the
qualitative and quantitative properties of their approach.

Wang et al. [2014] develop a submodular function-based framework for
query-focused opinion summarization. They also studied different metrics
on text similarity estimation and their effect on summarization and tested
the proposed framework on community question answering summarization
and blog summarization. A human evaluation task was conducted to show
the quality and information diversity of generated summaries.

6.5 Sentiment Analysis in the Czech Environment

Veselovská et al. [2012] presented an initial research on Czech sentiment ana-
lysis. They created a corpus which contains polarity categories of 410 news
sentences. They used the Naive Bayes classifier and a classifier based on a
lexicon generated from annotated data. The corpus is not publicly available,
and because of its small size no strong conclusions can be drawn. Error ana-
lysis of lexicon-based classifier on this dataset was done by Veselovská and
Hajič jr. [2013].

Subjectivity Lexicon for Czech [Veselovská, 2013, Veselovská et al., 2014]
consists of 4947 evaluative items annotated with part of speech and tagged
with positive or negative sentiment polarity. Although the lexicon did not
significantly help to improve the polarity classification it is still a lexical
resource worth mentioning.

Steinberger et al. [2012] proposed a semi-automatic “triangulation” ap-
proach to creating sentiment dictionaries in many languages, including
Czech. They first produced high-level gold-standard sentiment dictionar-
ies for two languages and then translated them automatically into a third
language by means of a state-of-the-art machine translation service. Finally,
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the resulting sentiment dictionaries were merged using the overlap of the two
automatic translations.

A multilingual parallel news corpus annotated with opinions on entit-
ies was presented in Steinberger et al. [2011]. Sentiment annotations were
projected from one language to several others, which saved annotation time
and guaranteed comparability of opinion mining evaluation results across
languages. The corpus contains 1,274 news sentences where an entity (the
target of the sentiment analysis) occurs. It contains seven languages includ-
ing Czech. The research targets fundamentally different objectives from our
research as it focuses on news media and aspect-based sentiment analysis.

The first extensive evaluation of Czech sentiment analysis was done by
Habernal et al. [2013]. Three different classifiers, namely Naive Bayes, SVM
(Support Vector Machines) and Maximum Entropy classifiers were tested
on large-scale labeled corpora (10k Facebook posts, 90k movie reviews, and
130k product reviews). Habernal et al. [2014] further experimented with
feature selection methods.

Habernal and Brychćın [2013] used semantic spaces (see Brychćın and
Konoṕık [2014]) created from unlabeled data as an additional source of in-
formation to improve results. Brychćın and Habernal [2013] explored the
benefits of the global target context and outperformed the previous unsu-
pervised approach.

Steinberger et al. [2014] present the first attempt at aspect-level senti-
ment analysis in Czech and provide an annotated corpus of 1244 sentences
from the restaurant reviews domain.

6.6 Sarcasm Detection

The issue of automatic sarcasm detection has been addressed mostly in
English, although there has been some research in other languages, such
as Dutch [Liebrecht et al., 2013], Italian [Bosco et al., 2013], or Brazilian
Portuguese [Vanin et al., 2013]. The first attempt at sarcasm detection in
Czech was done in Ptáček et al. [2014].
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Chapter 7

Future Work and
Preliminary Results

This chapter describes preliminary results and new ideas for future work
that imply the aims of PhD thesis.

Automatic sentiment analysis in the Czech environment had not yet
been thoroughly targeted by the research community. Therefore it was ne-
cessary to create a publicly available labeled dataset as well as to evaluate
the current state of the art for two reasons. First, many NLP methods must
deal with high flection and rich syntax when processing the Czech language.
Dealing with these issues may lead to novel approaches to sentiment analysis
as well. Second, freely accessible and well-documented datasets, as known
from many shared NLP tasks, may stimulate competition, which usually
leads to the production of cutting-edge solutions.1

We have done an in-depth research on machine learning methods for
sentiment analysis of Czech social media in Habernal et al. [2013, 2014].
Three different classifiers, namely Naive Bayes, SVM (Support Vector Ma-
chines) and Maximum Entropy classifiers were tested on large-scale labeled
corpora (10k Facebook posts, 90k movie reviews, and 130k product reviews).
We explored different pre-processing techniques and employed various fea-
tures and classifiers. We also experiment with five different feature selec-
tion algorithms and investigate the influence of named entity recognition
and preprocessing on sentiment classification performance. We significantly
outperformed the baseline (unigram feature without preprocessing) in three-
class classification and achieved an F-measure of 0.69 using a combination of

1E.g., named entity recognition based on Conditional Random Fields emerged from
CoNLL-2003 named entity recognition shared task.
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features (unigrams, bigrams, POS features, emoticons, character n-grams)
and preprocessing techniques (unsupervised stemming and phonetic tran-
scription).

We aim to investigate the effectiveness of several unsupervised methods
for latent semantics discovery as new features for sentiment analysis. We be-
lieve that semantics contains hidden information that can improve sentiment
analysis.

Czech as a representative of a inflective language is an ideal environ-
ment for the study of various aspects of sentiment analysis for inflectional
languages. It is challenging because of its very flexible word order and many
different word forms.

We conceive this study to deal with several aspects of sentiment analysis
– the document and sentence level of sentiment analysis, aspect-based senti-
ment analysis and the influence of figurative language on sentiment analysis.
The breadth of this study can lead to more general view and better under-
standing of sentiment analysis. We can reveal and overcome unexpected
obstacles, create necessary evaluation datasets and even come up with new
creative solutions to sentiment analysis tasks.

The detection of sarcasm in Czech was done in Ptáček et al. [2014]. The
next step is to incorporate sarcasm detection into the sentiment analysis
process and compare the results with and without the additional information
about sarcasm.

7.1 Aims of the PhD Thesis

The goal of the doctoral thesis is to propose novel methods for improving
performance of sentiment analysis with special emphasis on inflectional lan-
guages (e.g. Czech). The work will be focused on the following research
tasks:

• Deal with specific properties of Czech language in the sentiment ana-
lysis environment.

• Use additional semantic and/or syntactic information to improve sen-
timent analysis.

• Explore the influence of figurative language (e.g. sarcasm) on senti-
ment analysis.
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