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Abstract

The Delaunay triangulation is one of the most popular and most often
used methods in problems related to the generation of meshes. A lot of the
optimal properties of Delaunay triangulation are known in 2D, where it has been
intensively studied during the last twenty years, although the fundamentals were
formulated early in the twentieth century (Voronoi, 1908 and Delaunay, 1934).
This thesis presents Delaunay triangulation without addition or displacement of
points in 3D space. It focuses on its properties and on a summarization of
existing sequential algorithms. Also our experience with the implementation of
the incremental insertion algorithm is presented and observed features are
discussed.

The properties of Delaunay triangulation in 3D (or generally in higher
dimensions) are not as good as in 2D and different kinds of methods are used
mainly to remove the tetrahedra of undesirable shape. Although this area of
research was not within our main scope, we present an existing simple method
for tetrahedra shape improvement. We have implemented this method and our
results are presented and discussed.

In the implementation of algorithms, which have to deal with inprecise
floating-point arithmetic on real computers, the question of numerical stability
becomes very important for the proper function of the implementation. We
introduce several existing approaches for increasing the numerical stability of
algorithms, two of them for an exact evaluation of geometric predicates are
presented in more details. WWe made a comparison of them and we mention the
results of incorporating one of them in our implementation.
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1 Introduction

There are practical problems, which are described by nonlinear equations and which cannot
be solved analytically. Thus various approximate methods are used, which are based on
numerical computing of discretized original task (e.g. finite element methods) [TSW99]. The
discretization of the domain is provided by the meshing — the mesh is a network of discrete
cells over the domain. Meshes can be divided into structured (points are distributed regularly,
basic elements of discretization are quadrilaterals and hexahedra in 2D and 3D, respectively)
and unstructured (irregularly placed points, such meshes consist of triangles in 2D and
tetrahedra or hexahedra without directional structure in 3D). From a general point of view,
unstructured meshes are more flexible for the discretization of complex geometries and mesh
adaptation, on the other hand, they require a much more complex data structure for solution.

Structured meshes are not the topic of this thesis.

Unstructured meshes are generated by three methods in general [TSW99]:

e the Delaunay triangulation — first, Delaunay triangulation of the existing points is
made; if the mesh is not sufficiently fine, new points are generated, triangles are
subdivided and the mesh is refined to make the approximation more precise,

e advancing front techniques — the point generation (and triangulation) goes in the
direction from the boundary of the domain inwards,

e finite octree — the sparse regular grid over the domain is subdivided so that at the
boundaries the cell size is consistent with the boundary point spacing; the mesh is
then further modified by the boundaries.

Although a fully automated mesh generator for arbitrary domain is still only a dream,
the Delaunay-based methods are mentioned to be closest methods for black box mesh
generation [TSW99]. Although the Delaunay triangulation in 2D needs an extra algorithm to
conform to a given boundary, it has a great advantage in its optimal properties, mainly in 2D,
where it e.g. maximizes the minimal angle of each triangle and of the whole triangulation or it
minimizes the radius of circumscribed circles of triangles (i.e., in other words, produces well
shaped triangles). The optimal time complexity of algorithms is O(n log #) in 2D. Algorithms
for other optimal triangulations, which optimize e.g. minmax angle or minmax edge length,
are more complex. In 3D space not all the good properties of Delaunay triangulation are
preserved: the conformity of boundaries is a far more complex problem, which is not always
solvable. On the other hand, if the quality of triangulation is not sufficient, there is always a
“cheap” method of further improvement.

Delaunay triangulation got over the borders of the area of mesh generation for
numerical computing and entered the area of crystallography, metallurgy, cartography,
geology and also the area of computer graphics. There is used in many applications, e.g.,
object reconstruction from scattered data points, solid modelling, interpolation and iso-surface
extraction. It is also used in virtual reality for virtual surgery, etc.

The Delaunay triangulation is the main topic of this thesis. Firstly its properties are
presented. Then an overview of existing sequential algorithms for the construction of 3D
Delaunay triangulation (without Steiner points and point displacement), which are based on
different algorithmic paradigms, is given. Also our experience with the implementation of
incremental algorithm is mentioned. A technique for the optimization of tetrahedral meshes is
also mentioned and the results of our experiments in this area are presented. One important
part of the text is dedicated to an improvement in the numerical stability of triangulation
algorithms, where existing solutions are presented and experience with an incorporation of the
exact evaluation of geometric predicates into our implementation is commented.



2 Delaunay triangulation

Before we start, let us recall several definitions [GOR97]:
e simplex is the convex hull of d+1 affinely independent points in £,
e circumsphere is the sphere through the vertices of a simplex,
e flat is an affine subspace of dimension k.

Triangulation of a given set P of n points in d-dimensional space EY is a simplicial
decomposition of the convex hull of P. For 3D space it means the convex hull of P is
decomposed into tetrahedra such that

e vertices of tetrahedra belong to P,

e intersection of two tetrahedra is either empty or a vertex or an edge or a face.

Triangulation in 3D space can be called triangulation, 3D triangulation,
tetrahedralization [GOR97 p. 423] or tetrahedrization [MKO00]. The term triangulation will
be used in this thesis.

Delaunay triangulation (shortly DT) is a triangulation such that the circumsphere of
every d-simplex is empty, i.e., it does not contain any of the given points in its interior.
Properties of DT in E“ are as follows [GOR97]:

e the DT is unique, if the point set is in general position (or is non-degenerate): no d+2
points lie on a common d-sphere and no £+2 points lie on a common k-flat, for £<d,

e the DT includes at most O(nw 21) simplices,

e the DT minimizes the maximum radius of a simplex enclosing sphere (the enclosing
sphere is the smallest sphere containing a simplex), see [Rajo1],

e the faces of DT hold visibility depth ordering for any viewpoint (i.e. the “in front of”
relation of faces is acyclic),

e the edges of a DT form a graph DT; the following subgraph relations holds:

EMST c RNG < GG < DT,

where EMST is the Euclidean minimum spanning tree, RNG is the relative
neighbourhood graph and GG is the Gabriel graph.

For the comparison, in two dimensions there are more optimal properties proven or
observed [GOR97]:

e the DT minimizes the maximum radius of a circumcircle,

e the DT maximizes the minimum angle (and, also, lexicographically maximizes the
angles from smallest to largest),

e maximizes the sum of inscribed circle radii,

e minimizes the roughness of a piecewise-linear interpolating surface (roughness is the
square of the L, norm of the gradient of the surface, integrated over the triangulation),

e minimizes the surface area of a piecewise-linear interpolating surface for elevations
scaled “sufficiently” small,

e the distance along edges of the DT between any pair of vertices is at most a constant
(at most 2.42) times the Euclidean distance between them.

It really seems that two dimensional space is a promised land for Delaunay
triangulation. With an increasing dimension the complications appear. Let us make only one



step higher. The first complication in E° is that the same point set can be generally
triangulated in several ways with different number of tetrahedra. The second bad news is that

a triangulation can have as few as »—3 or as many as (n J tetrahedra [AEG87, GOR97].

For 3D DT it means that unlike the 2D case the amount of tetrahedra is not known in advance
and can vary from O(n) to O(r%). In 2D the number of triangles is always O(n). For example,
the expected number of simplices for points chosen uniformly at random from inside a sphere
is ~2n in 2D or ~6.77n in 3D. The worst number of simplices mentioned before leads to the
worst case time complexity of algorithms, which is O(n log n) resp. O(#?) for 2D resp. 3D.
But many of the 3D algorithms work in linear expected time, when the number of simplices is
linear too (which is in most cases).
Two more general properties of DT has not to be forgotten [GOR97]:
e the DT is dual of Voronoi diagram in the same dimension,
e there is a close connection between DT in d-dimensional space and convex hulls in
(d+1)-dimensional space.

These properties can be used for non-direct construction of DT. Creation of DT from
the convex hull constitutes a special class of algorithms (see below), while in the case of a
Voronoi diagram it is simpler to construct a DT directly than with the use of a Voronoi
diagram, although it is possible.



3 Algorithms for 3D Delaunay triangulation

In this chapter we give an overview of the existing sequential algorithms for Delaunay
triangulation. Firstly we present different classes or general concepts of the algorithms. The
algorithms themselves will be discussed and commented in more details later, each of them in
the section dedicated to a particular class.

The time complexity of algorithms for 3D DT is derived from the number of simplices
in the triangulation. The worst case optimal time is O(n%), but as we mentioned before, the
number of simplices depends on the distribution of data points. Thus the expected time
complexity can be even O(n).

As for the data structures, the faces or tetrahedra are often stored in simple or doubly
linked lists, or the hash table can be used. The selection of data structure depends on
particular algorithm, because, for example, when the searching for faces is not needed, it is
useless to manage a hash table for it.

There are several different types of algorithms for creating Delaunay triangulation.
According to [CMS98] in general we can classify DT algorithms into several groups:

e Jocal improvement — starting with an arbitrary triangulation, these algorithms
locally flip the faces of pairs of adjacent simplices according to the circumsphere
criterion,

e incremental construction (or shelling or face expansion) — the DT is constructed
by successively building simplices whose circumspheres contain no points in P,

o incremental insertion — these algorithms insert the points from P one at a time: the
simplex containing the currently added point is partitioned by inserting it as a new
vertex; the circumsphere criterion is tested on all the simplices adjacent to the new
ones, recursively, and, if necessary, their faces are flipped or processed in a
particular way,

o Zz{?her dimensional embedding — these algorithms transform the points into the

! space and then compute the convex hull of the transformed points; the DT is
obtained by projecting the convex hull into £,

o divide and conquer (D&C) — this is based on the recursive partition and local
triangulation of the point set, and then on a merging phase where the resulting
triangulations are joined.

3.1 Local improvement

This method is used mainly in 2D and is described for example in [GOR97]. We use this
example to explain the main idea of this class. The initial non-Delaunay triangulation can be
computed by some simple algorithm, e.g., a sweep-line one, which adds the points from the
input set in an x-coordinate order. After each addition the algorithm joins the new point with
the old visible points on the convex hull. The initial triangulation is then optimized to be a
Delaunay one as follows.

The main idea is to swap the diagonals of strictly convex quadrilaterals in
the triangulation to fulfil the following criteria, either the empty circle or the max-min angle.
All internal edges of triangulation are added to the queue. Then they are processed in the
following way:



while the queue is not empty do
take the first edge e
if the triangles sharing the edge e in the convex quadrilateral Q are not
Delaunay then
flip the diagonal of Q for the other
add outside edges of Q to the queue

The success of the local improvement by edge flipping is guaranteed and the convergence
proven. The generalization of flips into the higher dimensions is not entirely straightforward
and the flipping from an arbitrary triangulation can get stuck before reaching the DT [GOR97,
p.425]. This is probably the reason, why we did not meet any algorithm based on this method
in 3D. The algorithms using the flips have moved to the class of incremental algorithms,
where the convergence is sure.

3.2 Incremental construction

As the name of this class says, the triangulation is built step by step by adding the points from
the input set into the existing triangulation. Then the added point and the existing
triangulation are processed together to give a proper Delaunay triangulation at the end of each
step. In the general step of the algorithm no unused point has to be enclosed inside the
triangulation.

The whole process of the incremental construction starts with the first tetrahedron,
which does not contain any of the input points inside it. The selection of the first tetrahedron
depends on the particular method and will be described further. From the first tetrahedron the
triangulation is built by adding vertices in a special order to expand this tetrahedron or — in the
general step — expand the current triangulation. The vertices are added and the triangulation is
processed until the input set is empty.

From above it is clear that this class of algorithms needs to know all the points in
advance to create the first tetrahedron and to select the proper next point.

To speed up the algorithm, a preprocessing is often used to organize the points. Thus
there are methods based on the lexicographical sorting of the input points [Joe91a] or on
storing the input points in the uniform grid [FP95]. Instead of uniform grid, the sparse matrix
was also used in 2D algorithms, but no use in 3D was observed. Hierarchical data structures
such as oct-tree are not employed. The reason is probably that only local changes in the close
neighbourhood of an added point are made during the processing of triangulation and the
hierarchical structures are too huge for this purpose.

Let us describe several algorithms and their implementations based on incremental
construction in more detail. The first one uses the flips in 3D (generalized idea of edge
swapping from 2D). The second one uses no flips. Both of them were presented in [Joe91a].
The third one uses the regular grid to achieve a linear time expected complexity [FP95].

Use of local transformations

We have already mentioned the concept of diagonal flips in 2D, which was first used
by Lawson. In 3D the situation is more complex. We have to inspect all possible ways of
triangulating a set of five points (while in 2D we inspected all possible triangulations of only
four points). This research was done by Joe [Joe91] and several algorithms based on the use
of flips — sometimes also called local transformations — were proposed. Both algorithms



described in this section (named TRSPH1 and TRSPH2) have empirical time complexity
O(n*?) or O(n (log n)?) for sets of random points and O(n?) in the worst case, thus they are
worst case time optimal.

But first, let us explain the principle of local transformations in 3D. The local
transformation procedure is based on all possible configurations of five distinct non-coplanar
3D points a, b, ¢, d, e. These configurations are depicted in Fig. 3.1.

configuration 1 — no four coplanar points, all points are in the convex hull; edge de
intersects an interior of the triangle abc; the interior of convex hexahedron can be
triangulated in two ways: either two tetrahedra abcd and abce or three tetrahedra
abde, acde and bcde are created,

configuration 2 — no four coplanar points, only four points are in convex hull; the
convex hull creates a tetrahedron which contains the fifth vertex inside; this
configuration decomposes the convex hull into four tetrahedra abcd, abce, abde
and acde,

configuration 3 — four points are coplanar and form a strictly convex quadrilateral;
such a pyramid can be triangulated in two ways: either two tetrahedra abcd and
abce or two tetrahedra acde and bcde are created,

configuration 4 — four points are coplanar, but quadrilateral from configuration 3
degenerated into a triangle; there is only one possible triangulation with two
tetrahedra abcd and abce,

configuration 5 — four points are coplanar, but the strictly convex quadrilateral
from configuration 3 is non-convex now; three points of it form a triangle, which
contains the fourth point inside; only one possible triangulation with tetrahedra
abced, abce and acde can be created.

configuration 1 configuration | configuration 2
0] (i) @iii)
5.
A
I
dé
configuration 3 configuration 3 configuration 4 configuration §

@@ (ii) (iii) (iv)

Figure 3.1: All possible configurations of five points [Joe91al.

Joe establishes several definitions:

Local optimality with respect to sphere criterion — let us have two tetrahedra
sharing a common face. Then the shared face is locally optimal if the circumsphere
of one tetrahedron does not contain a non-shared vertex of the second tetrahedron
in its interior. This automatically holds for both tetrahedra of the shared face. All
interior edges in configurations 2, 4, 5 are locally optimal. In configuration 1 either



face abc or three faces abe, bde, cde are locally optimal. In configuration 3 either
face abc or cde is locally optimal.

e Transformability — let us have two tetrahedra sharing a common face and let the
points be in configurations 1 or 3. Then the shared face is transformable if it is in
configuration 1(i) or in configuration 1(ii) where the third tetrahedron needed to
fill the convex hull of points has to exist; or in configuration 3 where four coplanar
points form boundary faces; or these four coplanar points form an interior faces
and then two tetrahedra at the opposite side has to share also a common face.
Otherwise the face is non-transformable.

e Pseudo-local-optimality — a triangulation is pseudo-locally-optimal if every non-
locally-optimal interior face is non-transformable.

Joe makes several assumptions on his algorithm: the input points have to be sorted in
lexicographical order of their coordinates. Then a slight reordering is possible if needed to
avoid the first four vertices being coplanar and being able to form a valid tetrahedron. The
first tetrahedron has to be empty and the ith point has to be outside the convex hull of the
triangulation of the first i—1 points.

Several algorithms are offered in [Joe91a]. The first algorithm, called TRSPH1, is the
basic version, which is further improved. The ith step of the algorithm is as follows: if a
newly inserted point v; is visible from a boundary face v,v;v. of the triangulation made in the
previous step i—1, the face is pushed onto the stack and the new tetrahedron v,vyv.v; is added
to the triangulation. After processing all old boundary faces, the faces pushed onto the stack
are processed in the following way:

while the stack is not empty do
pop interior face v,v,v, from the stack
if v,vpve 1s still in the triangulation then
find two tetrahedra v,v,v.vy and v,v,v.v. sharing this face
if the circumsphere of v,v,v.vy contains v, in its interior then
if v,vpv, is transformable then
apply appropriate local transform. in convex hull of points v..v.
if neighbouring tetrahedra have to be transformed (config. 3) then
apply local transformation to v,v,vav: and v,vpVeV:
push each face on boundary of union of 2, 3 or 4 transformed
tetrahedra onto stack if it is an interior face and not yet in
stack (do the same for v,vgv. and v,v4av. in case of configuration 3)

The proof that Delaunay triangulation is constructed by this algorithm is given in [Joe91].
From this proof the improvement of the presented algorithm was found. It lies in the reduction
of faces, which are put onto stack during the local transformation procedure. It is sufficient to
put onto stack only those faces, which were in the interior of the original triangulation, i.e. no
face containing point 7 has to be put onto the stack. The new algorithm is called TRSPH2.

For sets of random points this improvement reduced the number of faces, which were
locally optimal when tested for local optimality by about 60% and reduced the number of
faces, which were non-locally-optimal and non-transformable when tested for local optimality
by about 30%. In runtime the program TRSPH2 took only about 70% of time needed for
TRSPH1 for random data, for problems containing O(n?) tetrahedra the time ratio was closer
to 80%. When the data structure for boundary faces was enriched by pointers to three
neighbouring faces, the time needed to run TRSPH2 was reduced by a further 10%.

To store interior faces, which are to be checked, a stack or later a queue are used. The
boundary faces are kept in a doubly linked list. A hash table with direct chaining and with a
face as a key is used to store faces. The indices of the fourth vertices of tetrahedra incident to



a face are stored in each hash table entry. Hash table size is proportional to the number of
faces in  Delaunay  triangulation. ~As a  hash  function  was  used

h(a,b,c) = (an® +bn+c)mod M , where a<b<c are indices of three vertices of a face and the

hash table size M is a prime number. So searching, insertion and deletion of a face can be
performed in constant time on average.

The time relations of this algorithm are confirmed by our implementation experience —
the main part of the running time is spent on flips. By speeding up other than flipping parts of
the algorithm, no greatly better time is achieved. Although it is possible to generalize the flips
into higher dimensions, this does not seem to be practical as it is too complicated. The
parallelization of the algorithm seems improbable.

The algorithm without local transformations

The algorithm presented in the previous section can be also modified for use without
local transformations, in [Joe91] it is called TRSPH3. The triangulation is constructed in a
way similar to Watson’s algorithm (see page 12), where non-locally-optimal and non-
transformable interior faces do not occur and thus no local transformations have to be
explicitly performed. The assumption of lexicographically sorted points with possible
reordering holds here as well. The empirical time complexity of the algorithm is O(#*?) or
O(n (log n)?) for sets of random points and O(n?) in the worst case, thus it is worst case time
optimal.

The ith step of the algorithm is as follows: all boundary faces v,vyv., which are visible
from the ith point (remember that this point is always outside the current triangulation and the
triangulation is Delaunay), are stored at the end of the queue. Then the faces in the queue are
processed further to remove those tetrahedra, which are no more Delaunay after the ith point
has been added. This step is similar to creating the gap in Watson’s algorithm.

while queue is not empty do
remove face v,v,v, from the head of the queue
if v,vpve 1s still in the triangulation then
find the tetrahedron v,v,v.vy incident on face v,v,v,
if the circumsphere of v,v,v.vy does not contain v; in its interior then
push face v,v,v., onto stack
else
delete v,v,v., and v,v,v.vy from triangulation
for each of the faces v,Vvpvy, V.VeVa VpVeVy dO
if the face is a boundary face of i-1 and i triangulation then
push face onto stack
else 1f the face is already in the queue then
delete face from triangulation
else
add the face to the end of the queue

Then the faces stored in the stack are processed in order to construct a new triangulation.

while stack is not empty do
pop face v,vyv., from the stack
if v,vpve 1s a boundary face of i-1 triangulation with v; on the plane of
v,Vvpv, then
delete the face from v,v,v, triangulation
else
add tetrahedron v,v,v.vy and 3 faces involving v; to the triangulation



The implementation of this algorithm is simpler and the code is shorter than in the algorithms
mentioned in the previous sections, because part of the local transformations was omitted. The
program is also faster than TRSPH2 by about 20%, although the time complexity remains the
same.

The disadvantage of this algorithm, as Joe says himself, comes with degenerated cases
when five or more vertices are cospherical. In finite precision arithmetic with roundoff errors
this algorithm can lead to an invalid triangulation, in which there are overlapping tetrahedra or
gaps. On the other hand Joe mentioned, that it is not possible for the algorithm TRSPH?2 to
produce invalid triangulation, since local transformations only change the tetrahedra in a
constant volume. At worst it could lead to a triangulation which is not Delaunay in the
floating-point arithmetic.

This algorithm is quite simple and easy to implement. Its parallelization seems
improbable but generalization to a higher dimension is possible. Its unstability in degenerated
or close-to-degenerated cases makes it less suitable for practical purposes. The use of some
kind of exact arithmetic will make it really usable.

Shelling algorithm with a uniform grid

This algorithm was presented in [FP95]. It is a generalization of an algorithm for 2D
Delaunay triangulation made by the same authors. The same main idea is also used in the
InCoDe algorithm (Incremental Construction of Delaunay triangulation), see [CMS92], but
the implementation is a bit different (see the end of this section for comparison). The referred
time performance of the described algorithm is close to linear. The worst case time
complexity is O(7 ¥, thus O() for 3D space.

This algorithm uses a system of 3D cells to store the points from the input set. The
number and size of the cells are derived from the number 7 of input points and their maximal
and minimal coordinates (in other words from the min-max box, which is amplified a little,
because no point must lie on its boundary). The cell size is computed as follows:

size =3 (x max— x min)(y max— y min)(z max— z min)

n

It means that on average no more than one point lies within each cell. The authors note, that if
the distribution of data points is known in advance, it is reasonable to adjust the size up or
down to affect the performance of the algorithm.

The algorithm begins with creating a starting tetrahedron, which has to fulfil the
Delaunay criterion. The first point can be selected arbitrarily, but a point “somewhere in the
middle” is usually chosen because of program efficiency. The second point has to be the one
closest to the first point, because the sphere with a diameter equal to the distance of the first
and second points must not contain any other point from the input set in its interior. The
system of cells prepared during the preprocessing stage is used to investigate the space in the
vicinity of the first point to find the second one. The searching for the third point is similar. At
the end of this stage we have the first triangle, whose circumsphere is empty.

The process of range searching is a general step of the algorithm, which finds the
fourth point to any given triangular face, and makes it possible to create a Delaunay
tetrahedron (the authors call such points Delaunay points). Because most of the time of the
program is spent in searching for points to fulfil the Delaunay condition, the range searching
is of crucial importance. The authors offer two versions of the searching, box-based and
tunnel-based.
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The first method is slower. It searches many more cells than is necessary, but it is easy
to implement. It is based on a bounding box of cells, which is growing from the cell
containing the centre of the triangle. In addition to the growing the bounding box has also
changed according to the points already found and the circumscribed spheres they created. As
well as the next method it uses the searching only in the outer halfspace of the face (i.e. the
halfspace, where no tetrahedron is sharing this face so far).

The second method computes the normal vector of the face at first. Then it determines
the search direction as the axis-direction of the fastest growth of the normal vector (x, 1y,
+z). The cells are investigated in tunnels of search direction starting with the triangle centre.
Also the neighbouring tunnels are visited and all of them work in cooperation with the
bounding boxes of the spheres again. This method tries to search for points in the close
vicinity of the face and thus to minimize the number of cells visited. It is about twice as fast
as the previous one. But the program is long and complicated.

The final step of the algorithm is called shelling. For the shelling procedure let us
imagine the current triangulation as only the boundary faces of it. If a new Delaunay point is
found (remember it always lies outside the current triangulation), the new tetrahedron has to
be built in. If the new tetrahedron touches some of the old ones except its own face, it causes
some special cases to be solved. There are three special cases of touches:

e one-face touch — the base face (i.e. the boundary face, which was expanded) and

the shared face are eliminated, two new faces are added,

e two-face touch — the base face and both of the shared faces are eliminated, one

new face is added,

e edge-and-face touch — creating a new tetrahedron is not possible, because it will

cause a gap in the mesh; the fourth point is stored and the next face from the list is
then processed.

No other touch cases affect the algorithm.

To store points, a linked list of points is connected with each cell. It stores information
such as point number, flag — whether it is used or not, point coordinates. Each cell contains an
information about the number of its points. For the shell procedure the dynamic circular
doubly linked list of faces is maintained. The face information consists of face pointers to
neighbours, vertex pointers, boundary flag (boundary face will never have a fourth point),
pointer to the fourth point. For checking the edge touch, the list of edges is also maintained.

This algorithm has good properties to be parallelized, e.g. see [TSBP93, CMPS92]. It
works for arbitrary dimension [CMS92]. The authors do not say anything about numerical
stability, which should be discussed in such algorithms. From our experiences from
implementing the 2D version of the algorithm [KS98] we think that this algorithm is not very
stable in degenerated cases when more than four input points are cospherical. The
complications, which are elegantly avoided in Barry Joe’s similar algorithm, come if the
Delaunay point, which has already been used in the triangulation, is found. In degenerated
cases, where more Delaunay points are available, the “bad” one can be chosen, which implies
that the different touches do not need to be recognized properly and the algorithm can create
overlapping tetrahedra or gaps in the triangulation.

The InCoDe algorithm in [CMS92] is nearly the same as the one described. It also
uses the uniform grid to speed up the search for Delaunay points, but the shelling procedure is
simpler. The faces are managed in a hash table. The shelling procedure runs in the same way,
except all new faces that arise from a face expansion are stored in a so-called active face list.
If a face appears in the list for the second time, such a face is removed, because it has changed
from the external to the internal face and cannot be expanded anymore. This approach thus
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does not need to test any type of touch, nor does it affect the principle of numerical unstability
in degenerated cases of this type of algorithms.

Both of the mentioned algorithms were implemented by the students as semestral
works for selected algorithmical methods course. Both of them were considered to be fairly
difficult to implement and not too stable (especially the one with different cases of touches).
Also the speed of them did not come up to our expectations.

3.3 Incremental insertion

This class of algorithms, similar to the previous one, works on the principle of adding the
points from the input set one by one to the existing triangulation. But there are two
fundamental differences. Firstly, the new points are inserted inside the current triangulation.
Secondly, the order of added points is not important, which implies that the whole set of input
points do not need to be known in advance. The triangulation is usually constructed in such a
way, that all points are enclosed within a boundary tetrahedron (thus four new boundary
points have to be added), so only the range of the data set need be known before the algorithm
starts.

The common part of this class of algorithms is the location of the tetrahedron within
the current triangulation, which contains the added point. This search can be done by simply
inspecting all tetrahedra, or by using some data structure to speed up the searching process.
Hierarchical structures are welcomed because they are natural in such tasks. This type of
algorithm is naturally sequential.

Main types of algorithms of this class will be presented in the following sections; the
algorithm, which uses retriangulation of a hole to insert a new point into the current
triangulation, and the algorithm, which uses flips to achieve the same goal.

Watson’s algorithm

The algorithm was presented in [Wat81]. It is also know under the name Bowyer-Watson
[TSW99]. It works for arbitrary dimension d. The time complexity is O(n'*? ~ V%) and space
complexity O(n“~ ") for an input set of » points.

The algorithm uses a boundary tetrahedron to enclose the whole set of points. In
Watson’s implementation, an orthogonal tetrahedron was used, but any other one could be
used as well.

After one point is inserted into the triangulation, all existing tetrahedra must be
searched to find those, which contain the inserted point within their circumsphere. These
tetrahedra will be deleted. Before doing this, the list of their 2-faces (triangles) is created. If
any triangle occurs twice in the list, which means it is shared, it is dropped from the list. The
rest of the triangles composes a boundary of simplicial polyhedron within the 3-dimensional
triangulation — this is the “hole” or the “gap” from the words above. The inserted point lies
inside the simplicial polyhedron.

If the problems with numerical precision occur in this part of program and it cannot be
determined whether the inserted point lies inside or outside the sphere, computation in higher
precision arithmetic could be used to make the right decision. If no alternative treatment is
ready for use, the inserted point and the created list of triangles are abandoned. Maybe it is
strange, but in its original version this algorithm does not accept such points: “Any data point
found to be in non-general position is rejected because it leads to a non-unique tesselation. A
point is in non-general position when the resolution of the software is not sufficient to
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determine whether or not an intersection with a given circumsphere has actually occurred.”
[Wat81].

In the next step the polyhedron with boundary triangles has to be decomposed into
new tetrahedra. This is simply done by joining the vertices from each boundary triangle and
the newly inserted point into the new tetrahedra.

At the end of the algorithm the boundary tetrahedron must be removed. The Delaunay
tetrahedra of the original data set are well separated from those boundary ones, because the
boundary tetrahedra contain at least one of the boundary points as a vertex.

The algorithm uses a list of data points and a list of 4-tuples of indices of data points,
which represent Delaunay tetrahedra. Each 4-tuple of indices is associated with a 4-tuple of
real values representing the circumsphere: coordinates of its centre and the square of the
circumsphere radius (for speeding up the execution by eluding the computation of square
root).

Another implementation of Watson’s algorithm for decomposition of the models into
tetrahedra for finite elements analysis is mentioned in [Fie86]. This approach tries to cope
with the problem of points in a non-general position, so called insertion degeneracy. The
author offers three methods to solve the case when a point lies on a circumsphere. The point is
“on” a sphere when its distance to a circumcentre is within a prescribed small epsilon of the
circumradius. For checking whether the insertion of a point was correct, the volumes of the
polyhedra before and after the insertion are compared. So called volume degeneracy is
reported to tend to occur when the inserted point is nearly in insertion degeneracy. Also
secondary degeneracy was reported, which means that more than four points are on or inside
the circumsphere of newly created tetrahedra. Then the volume degeneracies tend to occur
later in the algorithm.

Three methods for solving degenerated cases together with their results are as follows:

e definition of the point to be always inside or outside the circumsphere — fewer
volume degeneracies occurred by taking points “on” as “inside” rather than
“outside” the circumsphere,

e postponing of insertion of problematic points — new list of postponed points was
created and after the original list of points was empty, the insertion started from
the beginning of the new list; at the end only points which always cause the
degeneracy are in the list; if used with previous strategy, it rarely failed,

e shifting and reinserting of the points — the shift is made in random direction ten
times the epsilon as long as the point lies on the circumsphere; this approach is
reported to sometimes create very thin tetrahedra, so called slivers; the creation of
slivers by Watson’s algorithm is also mentioned in [GD97]; both approaches solve
this problem by their own scheme of generating the new points, which are then
added to the original triangulation to avoid mentioned problems.

The author [Fie86] also notes it is not sure that by removing the boundary tetrahedron,
the part of the convex hull of the original point set will not also be removed. He recommends
selecting the boundary points carefully, but does not say how.

In fact, the use of boundary tetrahedron brings a problem how to choose its points. Let
us assume, that their coordinates are always sufficient to enclose the original set. But still one
problem remains. If the boundary points are chosen too close to the original set, tiny non-
convexities can appear after removing the boundary tetrahedra instead of the assumed convex
hull of original point set, because too close points influence the computation of empty
circumsphere of the original point set. If points are chosen in greater distance, the algorithm
becomes more unstable in usual floating-point arithmetic. There is a method in 2D [ZKPO01],
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which solves this problem by modification of circumsphere test for boundary triangles, but we
have not been able to develop its generalization into 3D yet.

Incremental insertion with local transformations

The idea of local transformations presented in the previous section can be combined with an
incremental insertion to construct a 3D Delaunay triangulation in the following way. This
algorithm is presented in [Joe91], where it is called TRSPH4. There are also alternative
algorithms [Fac95]. The input points can be sorted, but it is not necessary; the selection of
input points can be also randomized [Fac95].

Let us describe the ith step of the algorithm. To insert ith point into the existing
triangulation the tetrahedron, which contains this point, has to be found. This search can be
done naively by inspecting all existing tetrahedra. Then this step could take O(i%) time in the
worst case, which could lead to the worst case time complexity of O(n*). Joe proposes a faster
way of searching: to take any tetrahedron containing point i—1 as one of its vertices and walk
towards a tetrahedron containing vertex i. A successful termination of this process is
guaranteed.

When a tetrahedron abcd containing point i is found, there are three possibilities of
mutual position of a point and a tetrahedron.

e if i lies in the interior of tetrahedron, then four new tetrahedra abci, abdi, acdi and

bcdi are created and faces abc, abd, acd and bcd are put into the queue,

e if i lies on a face of tetrahedron, let say abc, then three tetrahedra abdi, acdi, bcdi
are created and faces abd, acd, bcd are put into the queue; the same process is
done with the tetrahedron abce, which is sharing the face abc,

e if i lies on an edge of tetrahedron, let say ab, then all tetrahedra sharing this edge
(i.e. tetrahedra abcycy,..., abcy_ic,, where co=c,) has to be divided; tetrahedra
acic;+1i, bejey i are created and faces acic;j+;, bejcj+; where j=0,..., m—1, are put
into the queue.

The faces stored in the queue are processed in a way mentioned before and local
transformations are applied until the queue is empty. At the end of each step a 3D Delaunay
triangulation of 7 points plus four boundary points is created.

At the end of the algorithm all tetrahedra containing one or more boundary points as a
vertex are deleted. Joe like Watson notes that boundary points have to be chosen carefully to
keep the convex hull of original points unbroken. Joe tested the algorithm on random sets up
to 5000 points and on sets with O(n?) tetrahedra up to 250 points and he concludes, that
coordinates of boundary points may have to be up to 10° times greater than those from the
original set.

Two versions of the given algorithm were tested — one with sorted and one with
unsorted input points. For random data sets the unsorted version is faster, it takes less than
80% of the time needed for the sorted version. For data sets with O(#?) tetrahedra the sorted
version is the faster one by about 10%. But this algorithm always takes longer than the
algorithm called TRSPH2. Joe also notes, that much more time is spent on making local
optimality tests and applying local transformations than in walking through the tetrahedra.

This algorithm is described in more detail in the chapter dedicated to our own
implementation of the DT triangulator.
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3.4 Higher dimension embedding

As we have mentioned before, there is a close relation between Delaunay triangulation in d-
dimensional space and convex hulls in (d+1)-dimensional space. This means that a Delaunay
triangulation in 3D space can be constructed from the convex hull in 4D space. We now
introduce the main idea of this approach [GOR97]. Because most people still live in 3D space
and find it easier to imagine something in this rather than in higher dimensions, we are
concentrating only on a 3D convex hull and thus on 2D Delaunay triangulation.

Let us identify E* with the plane spanned by the first two coordinate axes of E° and
call the direction of third coordinate the vertical direction. Let us define the lifting map:

A E* = E° by Mxy, x2) = (1, X2, X0+ x20).

A = A(E%) is a paraboloid of revolution about the vertical axis. Let CH be the convex hull of
the lifted points A(P).

The Delaunay triangulation of P is exactly the orthogonal projection into E of the
lower faces of CH (a face is lower if it has a supporting plane with inward normal having a
positive vertical coordinate). For a better explanation let us imagine that triangle A(s)A(1)A(u)
is a lower facet of CH and that plane m passes through A(s)A()M(u). The intersection of 7
with A is an ellipse that projects orthogonally to a circle in E%. Since all other lifted points are
above the plane, all other unlifted points are outside the circle and stu is a Delaunay triangle.

This is the principle of creating a Delaunay triangulation from a convex hull. The
convex hull algorithms are a fundamental part of computational geometry. There are many
different convex hull algorithms, see e.g. [GOR97 chap.19]. The properties of DT algorithms
by using this class of method, e.g. time and space complexity, possible parallelization of the
algorithm, the necessity to know all the data in advance, etc., totally depend on the convex
hull algorithm.

The approach of higher dimension embedding is used e.g. in Qhull implementation,
see [Bar96].

3.5 Divide and conquer

Divide and conquer is a general approach for many types of different algorithms. The main
idea is to split the problem to be solved into two subproblems and solve them in the same
way. At the lowest level the problem is simply solved and then comes the necessity to merge
the solutions at the same level to provide the result for the level one step higher. Thus, there
are two main parts of this algorithm class: recursive splitting and merging.

Divide and conquer algorithms are very often worst case time optimal, but it of course
depends on the algorithms used inside. D&C algorithms can be also naturally parallelized and
used in higher dimensions. The implementation is usually difficult. It is always good to know
something about the input data in order to split the set into similarly large subsets, otherwise
the parallel execution is not balanced.

In the following section a DeWall algorithm is presented, which uses a clever idea to
avoid the complications of joining phase in 3D — it sounds foolish, but it joins the halves
before their splitting.
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DeWall algorithm

As a member of a group of D&C algorithms the DeWall (Delaunay Wall) algorithm from
[CMS98], which is presented here, is based on the idea of InCoDe algorithm [CMS92]. The
DeWall algorithm is generally used in arbitrary dimension d. Its worst case time complexity is
O(r), the expected time complexity is subquadratic. The main idea of D&C algorithms is to
divide an input set of points P into subsets P; and P,, make recursively a solution of these
subsets and merge the partial results S} and S to build solution S. The main problem of such a
solution is the merging phase of two sub-solutions, because both of them have to be modified.
In 2D it does not cause much trouble thanks to the possibility of explicitly ordering the edges
incident to a vertex, but in higher dimensions this ordering is not possible.

The solution in [CMS98] exchanges the phases of the classical D&C concept. The set
of points is split by the splitting plane into two subsets of points. The tetrahedra of the
imaginary triangulation are thus separated into three disjointed subsets:

e tetrahedra intersected by the plane a (they are called the simplex wall),

e tetrahedra in the left halfspace of a,

e tetrahedra in the right halfspace of a.

The simplex wall can be chosen as a valid merging triangulation if

e cach tetrahedron of it is also in the final triangulation,

e by subtracting the simplex wall from the final triangulation we get two
disconnected simplicial complexes.

The whole DeWall algorithm can be briefly written as follows (see also Fig. 3.2
below):

select the dividing plane a

split P into two subsets P; and P, and construct triangulation X,
recursively apply DeWall on P; and P, to build triangulations Z; and X,
return the union of %X,, X%; and Z,

Figure 3.2: An illustration of the divide and conquer approach [CMS98].

Let us describe each step in more detail.
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The splitting plane o is cyclically selected as a plane orthogonal to the axes of the E°
space (i.e. x, y, z). Two subsets of input points obtained by the splitting should be of
comparable cardinality. The median of the set is usually used for this purpose.

The simplex wall (tetrahedra intersected by a) is constructed by a simple incremental
algorithm (already mentioned algorithm InCoDe). The whole process starts with the following
construction of the first tetrahedron. The point p; is the one closest to a.. The point p, has to
lie on the other side of o and the third point p; is selected in such a way that circumcircle of
triangle p1p,p3 has the minimal radius. Thus the triangle (i.e. 2-face) is obtained from the edge
(i.e. 1-face) and the whole process continues until the required tetrahedron (i.e. d-simplex in
general dimension) is constructed.

Then the adjacent simplices are constructed according to the Delaunay definition by
searching for the Delaunay points. The point, which is selected as the Delaunay one, is the
point, which minimizes the function dd (Delaunay distance). The dd(f,p) for face f and point p
is defined as

e r if the centre of the circumscribed sphere is in the halfspace of fand p,
e —r otherwise,

where r is the radius of the circumscribed sphere around fand p.

To speed up the searching for Delaunay points, the uniform grid is used. The space of
input points is divided into a uniform grid where the number of cells is equal to the number of
points. The search is then restricted to those cells contained in the bounding box of the
circumscribed sphere with minimal radius. Another technique is also mentioned, where the
bounding boxes are replaced by the union of cells made by a sphere scan conversion
algorithm. This approach is not used in implementation, because the number of searched cells
is not significantly less, while the overheads of this technique are too big.

In the implementation the lists are used to store the faces. The following three disjoint
so-called active faces lists (AFL) are used:

e AFL,: the triangles intersected by the plane a,

e AFL,: the triangles with all of the points in P,

e AFL;: the triangles with all of the points in P».

For each tetrahedron from the simplex wall its triangles are stored in the suitable face
list. The simplex wall is built by removing and expanding the triangles from AFL,. The wall
is finished when the AFL, is empty. The algorithm is then recursively applied to the pair
(P1,AFL)) and (P,,AFL;), unless all the active face lists are empty.

Both the parallelization and the use in higher dimension are natural for this type of
algorithm. The knowledge of all input data is always necessary. The numerical stability of it
depends on partial algorithms and as we mentioned before, the expected numerical stability of
InCoDe algorithm is not so great.

The chapter concerning the algorithms of Delaunay triangulation is at an end. We have
presented different approaches for the construction of DT in 3D space. We have shown, that
not each idea (local improvement) can be generalized from 2D space to a higher dimension.
We also met the question of numerical stability, which will be discussed in more detail at the
end of the thesis.
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4 Our implementation of DT triangulator

We decided to implement the algorithm based on the incremental insertion with local
transformations (flips). Reasons for this choice were as follows: this type of algorithm is one
of the most popular and most used in practice [Joe91a, Fac95, Miic95]. The algorithms of this
class always converge. Incremental algorithms with the flips are known to be more robust
than the same algorithms without them. Input can be randomized to achieve good expected
time complexity. The algorithm is relatively easy to implement. It can also be modified for
other types of triangulations (e.g. regular triangulations [Fac95]). Moreover, we have had
good experience with this type of algorithm from 2D.

4.1 Explanation of the algorithm

Let us describe the main points of the algorithm, which was briefly mentioned in the
chapter dedicated to DT algorithms. It is based on incremental insertion, i.e., it works on the
principle of inserting new points one at a time into the existing triangulation. For each
inserted point it is necessary to find the tetrahedron which contains this point. This
tetrahedron must be divided; it becomes a parent (it means, that it is no more valid in the
triangulation and it is useful only for searching purposes). Newly created tetrahedra become
its children. The search can be done naively by inspecting all existing tetrahedra — the
complexity of this process can be seen in the worst case O(x°) because the number of the
tetrahedra can be O(#°). It is better to use some data structure for speeding up the searching
process. A proper structure for this purpose is DAG, directed acyclic graph. More precisely,
it is the tree-like structure, where the root represents a big tetrahedron comprising the whole
scene, each node corresponds to a parent tetrahedron and the sons of it correspond to the
children tetrahedra. Leaves belong to those tetrahedra, which have not been divided (i.e.,
current triangulation). Although the DAG in this case is similar to a tree, it cannot be
simplified to it, because one child can have more than one parent in our application.

If we want to find the tetrahedron containing the inserted point, we take the root in
DAG and then test the mutual position of the point and children of this tetrahedron. When the
relevant child is found, the whole process is repeated until a leaf of DAG is reached. This last
tetrahedron contains the inserted point and must be divided. The method of its division
depends on the mutual position of the tetrahedron and the point.

There are three such positions, see Fig. 4.1. If the point lies inside the tetrahedron, this
tetrahedron is divided into four new tetrahedra. If the point lies on the surface of the
tetrahedron (on one of the boundary triangles), this tetrahedron is divided into three new
tetrahedra (if there is a neighbour which shares divided triangle, such tetrahedron must be
divided, too, see Fig. 4.1b). If the point lies on one of the edges, the tetrahedron is divided
into two new tetrahedra. In addition, every tetrahedron that shares this edge must be divided,
too. This operation doubles the number of the tetrahedra around the edge. That is the reason
why the number of the tetrahedra can be O(r°) in relation to the number of the points if too
many points lie on the edges of the triangulation.
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Figure 4.1: A point inside tetrahedron.

If we use only this incremental method, empty circumsphere property is not ensured
and the resulting triangulation has a lot of thin tetrahedra, which are bad for applications. To
reach the Delaunay triangulation, the idea of local transformations [Joe91a] is incorporated.
After a new point is inserted, the obtained geometrical configuration is inspected to see
whether or not it fulfills the Delaunay criterion. This means that each new tetrahedron has to
have an empty circumsphere — if no five points lie on the sphere then the sphere
circumscribed to each tetrahedron must not contain any other point inside. If there are five or
more points lying on the sphere, the triangulation is not unique — there exist several
triangulations and each of them can be called Delaunay’s. If Delaunay property is not
fulfilled, the surroundings of newly created tetrahedra should be locally transformed.

However, the transformation is sometimes impossible. The decision whether the
transformation is possible is based on the tetrahedra configuration formed by the set of five
points. As we have seen in Fig. 3.1 and as it was described before, there are five such
configurations.

From Fig. 3.1 it is clear that configurations 1 and 3 can be made in two ways. The
convex hulls of these configurations are the same, while the interior is different. Which one of
two possibilities is better is determined by the value of the optimization criterion, e.g., the
Delaunay criterion.

These two ideas (the incremental algorithm and the local transformations) are joined in
one algorithm as follows. First it is necessary to put the whole set of the input points into one
large tetrahedron — we must add four special points to the input set. Coordinates of these
points are obviously chosen as closely to the point set as possible to avoid problems with
numerical precision and so distantly to enclose all the set. Points (kMM.,0,0), (0,kM,0), (0,0,kM),
(—kM, —kM, —kM) are suitable, when M is taken as the maximal absolute value of the extremes
inx, y, z directions and £ is in the order hundreds or thousands.

The incremental algorithm can start now by inserting the first point from the set. It
divides the first tetrahedron in the way described above. After creating new tetrahedra and
new triangles, it is necessary to optimize the current triangulation as a newly inserted point
might cause non-optimality of some triangles. Triangles that must be checked form the
convex hull of the current configuration. All these triangles are inserted into the queue and
step by step are checked to see if they are changeable — i.e. that they form a changeable
configuration (configuration 1 or 3). If they are, a Delaunay test is made. If the current
configuration does not pass, it is changed to the other possibility and all convex hull triangles
of this configuration are inserted into the queue, because the flip could cause another non-
optimality in the mesh.

In this way, local optimizations are processed after one point is inserted. The
convergence of this process and avoidance of the cycling of flips is proven. If the current
mesh is locally optimal and nothing can be improved, the next point can be inserted. The
whole algorithm can be written as follows:

19



. while (input set is not empty) do
insert a new point

find and divide the tetrahedron
do local transformations

=W N

Step 4 is more detailed as follows:

insert the triangles from the convex hull of the divided tetrahedron into
the queue
while (the queue is not empty) do
take a triangle from the queue
get triangle configuration
if (configuration is 1 or 3) then
if (triangle is not Delaunay) then
change the configuration
remove old triangle from the queue
insert new triangles into the queue

At the end of the algorithm, it is necessary to remove the big boundary tetrahedron, created at
the beginning, and all the tetrahedra that coincide with any of four vertices of the big
tetrahedron. This is very easy because Delaunay triangulation forms the convex hull of the
input point set, so the above condition can be satisfied by removing all those tetrahedra and
triangles that coincide with one of the four added points.

The theoretical complexity of this algorithm can be derived in the following way:
suppose the worst case in the number of tetrahedra, which is O(#?). If we use DAG for the
search speedup, the proper tetrahedron can be found in log(#?), i.e. O(log n). Subdivision of a
tetrahedron is done in constant time, so an important part of the time will be spent only on
local optimizations. Suppose again the worst case, i.e., when all tetrahedra must be optimized
at each step. So the resulting worst-case time complexity for » points is O(n(n* + log n)), i.e.
O(n). The expected time complexity is O(n log 1), because of the expected linear number of
tetrahedra in the mesh and constant number of tetrahedra to be optimized for the set of
uniformly distributed points.

Now several words about the data structures used in our implementation. At the
beginning, only the number of input vertices and their coordinates are known. Hence we used
the array allocated one time in runtime to store all the points. As we already know, the
number of the tetrahedra or the triangles is not known and cannot be computed in any way in
advance. Therefore, bidirectionally linked lists with mutual references were used. The
tetrahedron structure was adapted for composing DAG (to speed up search).

4.2 Results of implementation

The whole algorithm was implemented in Borland C++ Builder 3.0 environment under
Windows NT and tested on PC PIII 450 MHz, 1GB RAM. Randomly generated data sets of
uniform, gaussian and cluster distribution were used, while the number of points varied from
5000 to 100000 (cluster distribution means, that points are distributed into clusters, each
cluster has a gaussian distribution of points).

Computation time, obtained as an average for five data sets, is shown in Table 4.1 and
Fig. 4.2.
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Vertices no. / 5000 | 10000 [ 50000 (100000
distribution

Uniform 4.407 | 9.203 51 108.1

Gauss 4.453 | 9.265 | 51.05 | 110.9

Clusters 4407 | 9.578 | 54.72 | 111.3

Table 4.1: Computation time in seconds measured on sets with a different number of points
and different point distribution.
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Figure 4.2: Computation time from Table 4.1.

The graph in Fig. 4.3 tries to examine the time complexity of the program. On the x-
axis there is the number of points in the set. On the y-axis there is the ratio of time actually
spent and the expected time complexity. If the resulting curve is decreasing, the time
complexity of the program is better than the one in the formula denominator. Depicted curves
show that for the uniform distribution of points, the expected time complexity is as good as in
[Joe9la], i.e. O(n(log n)*) or O(n*?) and, moreover it is better than O(x log n). It is also
visible from Fig. 4.2 that the expected time complexity seems to be linear.
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Figure 4.3: Time complexity.
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Fig. 4.4 examines time relations in the main parts of the program. IncStep is the
program part which searches for the adequate tetrahedron in the DAG and subdivides it.
OptimizeMesh makes the main local optimization loop. And CleanTheMesh is the part
destroying the DAG and removing the boundary tetrahedron. It can be seen that the main part
of the time is spent on optimizing. The importance of the time needed for removing auxiliary
data structures grows with the increasing number of points — this observation leads to the idea
of using block-allocation of memory instead of member-allocation.
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Figure 4.4: Time relations in the program.

The next observations from implementation concern the number of nodes generated in
the DAG data structure. As previously mentioned, linear time complexity was observed as
well as the linear dependence of the resulting number of tetrahedra. The number of tetrahedra
was about 6.5 times the number of points. The number of all nodes generated in the DAG
structure was not greater than 50 times the number of points, but on most occasions it was
lower (between 40 and 50). These numbers can serve for memory requirement estimation.
The number of performed flips was on average also nearly constant for every data set.
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5 The quality of the mesh

5.1 Measuring tetrahedra properties

How can we evaluate the quality of the created triangulation? The mesh has good quality if
the shape of the tetrahedra is good. Which shape is good? For example, for interpolation on
tetrahedral mesh it is bad to have tetrahedra with very long edges because the distant vertices
would have a weak mutual influence. The best shape is the equilateral tetrahedron. How “far”
a created tetrahedron is from this ideal shape is told in different ways by the following
properties [Joe91b, LI9%4].

(Relative) volume This property has no exact meaning in the sense written above, it
only informs us about the size of created tetrahedra. The relative volume of the current
tetrahedron is computed as its real volume divided by the value of maximal volume in
triangulation.

Radius ratio Computed as 3*7/R where r is the radius of the inscribed sphere, R is
the radius of the circumscribed sphere. For the equilateral tetrahedron this value is
equal to 1, for any other shape it is somewhere between 0 and 1.

Solid angle Because the angle properties are very important for the shape of a
tetrahedron, we decided to watch the behaviour of the solid angles of a tetrahedron.
The solid angle is the area of a spherical triangle created on the unit sphere whose
centre is in the tetrahedron vertex [Rek95]. Vertices of the spherical triangle are found
as the intersection of the unit sphere and the edges incidating with the tetrahedron
vertex. This criterion is a naturally generalized feature of 2D triangulations — the inner
angle of a triangle.

Minimum solid angle This property tells us whether the tetrahedron is flat or not
because the sum of all four solid angles in a tetrahedron is less or equal to 2m. This
property was also used because of observation of the behaviour of the minimal inner
angle of a triangle generalized into 3D, which is a very important feature of Delaunay
triangulation.

Maximum solid angle This property is also very important, because it reports
whether the tetrahedron is flat or not, but from the opposite point of view of the
minimum solid angle. If all four vertices of the tetrahedron are coplanar, the maximum
solid angle is equal to 2.

Edge ratio Computed as E/e, where E, e is the length of the longest, shortest edge of
the tetrahedron, respectively, and is always greater than (or equal to) 1. It tells us how
big is the difference between the longest edge E and the shortest edge e, and so how
“nonequilateral” this tetrahedron is.

Aspect ratio Computed as R/E, a ratio of the circumsphere radius and the longest
edge of a tetrahedron. A high value tells us that the tetrahedron is close to being flat
and is “pressed” near to the surface of the circumsphere.

5.2 Properties of Delaunay tetrahedra

All the properties listed above were tested on sets of points with a different number of points
and with a different distribution of points. Most of the graphs do not differ as much as
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expected. It seems that distribution of vertices has no great influence tetrahedra shape if the
number of created tetrahedra is close to linear.

Most of the triangulations have similar histograms of volume. They contain most of
the small tetrahedra and very few greater tetrahedra.

You can see typical histograms of the radius ratio made from five different data sets
in Fig. 5.1. The typical shape is that the maximum of the graph is almost at the same place in
all graphs. The maximum is closer to higher values — it means that there are more tetrahedra
with good ratios than those with bad ratios.
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Figure 5.1: Radius ratio.

Histograms of aspect ratio and edge ratio are not easily readable because of their
great variation in values. In edge ratio, see Fig. 5.2, most of the values are placed in low
ratios, very few tetrahedra have a ratio greater then 10. The histograms of these properties did
not bring any benefit to us. Thus, we decided not to use them in further experiments.
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Figure 5.2: Edge ratio.
Minimum solid angle has its own typical graph, much like that of radius ratio, see

Fig. 5.3. Most of the tetrahedra are placed at lower values. This criterion says that these
tetrahedra are quite different from equilateral ones.
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Figure 5.3: Minimum solid angle.

The graph of maximum solid angle, see Fig. 5.4, is only presented here to illustrate
the maximum solid angle situation and to compare its behaviour with the minimum solid
angle (see Fig. 5.3).
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Figure 5.4: Maximum solid angle

We can say that by measuring presented tetrahedron properties it was found that
Delaunay triangulation produces mostly good shapes of the tetrahedra (a small number of
tetrahedra have a bad edge or aspect ratio, mainly maximal values of these criteria, but we
think those tetrahedra are the ones in convex hull and their quality is thus limited by the
boundary). Histograms of all criteria for different distribution of the vertices and for their
different numbers were surprisingly similar when the number of created tetrahedra was nearly
linear.
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6 Post-optimization of DT

The previous chapter was closed by the statement, that 3D Delaunay triangulation produces
mostly good shapes. But from the histograms presented there, we can imagine a triangulation
whose quality can be better. At the beginning of this thesis we also said, that properties of DT
in 3D are not as brilliant as those in 2D, for example it seems that in 3D the DT does not
satisfy any optimal angle condition [Joe91b].

Thus it seems that there is a possibility of improving the quality of Delaunay
triangulation. It is reported in [Joe91b] that a sort of post-processing can be applied to a
completed Delaunay triangulation to improve the quality of the tetrahedra. The main idea is
simple: the use of the flips on a completed Delaunay triangulation, but now with other than
empty circumsphere criterion. After this post-optimization is finished, we obtain a
triangulation, which is locally optimal to the given criterion. By using this process, two things
are important for the resulting mesh:

e starting mesh of post-optimization,

e the order of performed flips.

It is noted in [Joe95] that if the starting triangulation is far from Delaunay, results are
poor. But if the starting triangulation is Delaunay or nearly Delaunay, the quality of resulting
mesh is better.

As mentioned before, this approach to an improvement of Delaunay mesh was
presented in [Joe91b]. As a post-optimization criterion it was used only the maximizing of the
minimal solid angle there. The Delaunay mesh was really improved in both of the observed
properties — relative volume and minimum solid angle. We decided to extend this method by
using various post-optimization criteria — mainly those, which directly improve some of the
properties presented in the previous chapter, but also others — to find out, whether post-
optimization used according to different criteria gives better or worse shapes of the tetrahedra.
We also watched more properties than Joe in order to find out more about the quality of the
resulting meshes.

The whole post-optimization of Delaunay triangulation can be described by the
following algorithm.

put all non convex hull triangles into the queue
while (queue is not empty)
do flips according to a selected criterion

We decided to use three main groups of criteria. First we started to improve the geometrical
properties directly. For example, we would like to have a triangulation, which locally fulfils
the condition of maximal volume (we want to reach locally a maximal value of volume).
Thus, we use this condition in a local transformation decision, i.e. in one step of the algorithm
the flip is done and the configuration is changed if the other configuration has a greater value
of maximal volume than the current configuration. Furthermore these geometrical criteria can
be divided into two groups — simple and compound ones. Both of them are described later.

The second group of criteria does not deal with any geometrical feature. It only
increases or decreases the number of tetrahedra in the current mesh.

The third group of criteria (in fact there is only one criterion) deals directly with badly
shaped tetrahedra. It is well known, that Delaunay triangulation is not able to remove special
types of tetrahedra — so called s/ivers, which have a flat shape and small solid and dihedral
angles. The reason for this is that Delaunay criterion optimizes the radius of circumsphere to

26



be minimal, but these badly shaped tetrahedra have small radius of circumsphere by
themselves. Thus they cannot be removed and they remain in the Delaunay mesh. Our goal in
this branch of post-optimization is to find such tetrahedra and try to remove them. How can
we recognize this type of tetrahedra? We decided to create a tetrahedra classifier, whose
classification is based on the number of short edges of a tetrahedron. There are also other
methods of tetrahedra classification, see [CDEFT, BCER95].

6.1 Post-optimization by geometrical criteria

Simple criteria

In this case it is enough for us if the measure or value of a geometrical property satisfies only
one simple condition — it means that by making the flips we watch only the maximal or
minimal values. In other words we want to achieve an extreme value for this property. Thus, a
configuration with a greater maximal value (for maximizing) or a smaller minimal value (for
minimizing) is selected.

An expected improvement in the shape of the tetrahedra with such criteria is not very
high, because if we watch only one extreme, the second extreme tends to get worse. The
criteria below were selected:

e MaxVol — maximizing relative volume property of tetrahedron,

e MaxRR — maximizing radius ratio,

e MinAR — minimizing aspect ratio,

e MinER — minimizing edge ratio.

Compound criteria

On the other hand, compound criteria used in the post-optimization move extreme values in
the opposite direction. By making the flips, for example, maximal values are watched, but the
one with a lower value is selected as a good configuration.

The expected improvement in tetrahedra shape with this type of criteria is greater,
because the main idea of this process is to move the level of all tetrahedra in the mesh towards
a better quality. Selected criteria are:

e MaxMinVol — maximizing minimal volume property of tetrahedron,

MaxMinRR — maximizing minimal radius ratio,
MinMaxAR — minimizing maximal aspect ratio,
MinMaxER — minimizing maximal edge ratio,
MaxMinSA — maximizing minimum solid angle,
MinMaxSA — minimizing maximum solid angle.

6.2 Changing the number of tetrahedra

Next, there are two criteria, which only change the number of tetrahedra towards the
minimum or maximum values by performing only one type of flips. To minimize the number
of tetrahedra, only the flips, which transform three tetrahedra into two are made, but to
maximize the number of tetrahedra, only the flips transforming two tetrahedra into three are
made.

¢ MinThNo — minimizing number of tetrahedra,

e MaxThNo — maximizing number of tetrahedra.
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6.3 Removing of slivers

This type of criterion was introduced to try another approach towards improving Delaunay
triangulation. The condition used in deciding whether or not to make the flip is simple. Both
possible configurations are inspected for the number of slivers, which are provided by the
tetrahedra classifier. Finally, the flip is done if the number of slivers in the other configuration
is smaller than in the current configuration. It means we make the flip if we are able to
decrease the number of slivers.

The classification of tetrahedra shapes is based on the number of short edges and by
using such a classification four classes can be declared.

e class 0: no short edge or more than three short edges — in other words tetrahedra,

which are classified as equilateral or nearly equilateral,

e class 1: one short edge,

e class 2: two short edges,

e class 3: three short edges.

Classes 1, 2 and 3 belong to badly shaped tetrahedra (the tetrahedra are too flat or too
sharp). Nearly equilateral tetrahedra in class 0 seem to be well shaped— but only for the first
sight (see below). It is good to say that a tetrahedron cannot have more than three short edges.

The procedure of classification is as follows. Firstly the ratio of the shortest to the
longest edge is computed. If this ratio is greater than the coefficient of equilaterality (which is
the first parameter of classifier and which belongs to the interval <0,1>) then the tetrahedron
is classified as equilateral. Next, the edges are separated into two clusters. The rule for the
separation is the greatest difference between two following edges, which are sorted in
increasing order according to their lengths. The number of edges in the cluster of shorter ones
gives the number of the appropriate class of the tetrahedron.

Sliver tetrahedra are classified in the second step. The tetrahedra, whose edges have
similar lengths, seem to be shaped well. But such tetrahedra can have small height and thus
they can be flat, i.e. poorly shaped. According to this condition, the classifier has to have a
second parameter, which will serve for recognition of slivers. This parameter is tetrahedron
height, which is built from a face with the largest surface. As before, this parameter is again in
relation to the longest edge: if the height is smaller than the longest edge multiplied by the
coefficient of height, then the tetrahedron is classified as a sliver. In fact, class for slivers is a
part of class 0, but it is separated from it and constitutes its own class. “Equilateral”
tetrahedra, which are not slivers, remain in class 0.

The parameters coefficient of equilaterality and coefficient of height were empirically
set to the values 0.1 and 0.25, respectively.

Before presentation of the results of post-optimization by removing slivers, let us take
a look at the situation of tetrahedra classes in Delaunay and post-optimized meshes. In
Fig. 6.1 you can see on the left graph situation of classes slivers and equilateral and on the
right graph situation of classes with one, two and three short edges. There are the columns,
which represent the amount of tetrahedra that belong to each class.

The first column called Delaunay depicts the situation of original mesh. The second
column called RemSliv shows the number of tetrahedra after removing those tetrahedra that
belong to sliver class. Third column called RemSlivAll is the result of our next experiment,
not to remove only slivers, but all tetrahedra that do not belong into the equilateral class. As
you can see, the number of bad tetrahedra in classes one, two and three was reduced slightly
by this method. But it did not have any influence on the resulting histograms, because the
number of such tetrahedra was minimal compared to zero class.
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These graphs can be understood as an experimental proof of the quality of Delaunay
triangulation, which is reported to have a minimal number of tetrahedra in classes one, two
and three. Also you can see, that not all slivers were removed, due to the kind of optimization
method, which is not global. And thus only the local extreme could be reached.
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Figure 6.1: Classification of tetrahedra.

6.4 Results of geometrical criteria use

The properties, which were used in the previous chapter to measure the quality of Delaunay
triangulation, are now used to measure the quality of post-optimized triangulation. The results
are presented as a comparison of the properties of Delaunay and the post-optimized meshes to
make a clear image of differences and improvement.

All post-optimization criteria mentioned before were used in order to create improved
meshes the properties of which were inspected. Our goal is to find such post-optimization
criteria which most are able to improve each property.

The tests were performed on five different data sets of 2000 uniformly distributed
points as a representative example. The graphs are very similar for a different number of
points.

Volume
Two types of histograms were reached by post-optimization. Both of them are shown on the
graphs in Fig. 6.2. The first one compares the Delaunay mesh to the mesh post-optimized to
MaxRR criterion. One of them is a smooth curve, while the other is a curve with a small peak
at the lowest values. As it can be seen, Delaunay tetrahedra are better than those created with
MaxRR criterion because there is less tetrahedra with small volume in Delaunany case. And
our desire is to have as much tetrahedra with big volume as possible.

Slight improvement of volume histogram in the part with the peak is reached by
MaxMinVol criterion. It is not a general rule but most of the simple criteria lead to a
histogram looking like a smooth curve while compound criteria create a curve with a peak.
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Figure 6.2: Histograms of volume.

Radius ratio

This property has three characteristic histograms. First one is a really improved Delaunay
curve, as it is shown on the first graph in Fig. 6.3. It is clear that some of the tetrahedra were
moved from the lower ratios towards the higher — better — ones, which was our goal. This
improvement is reached by all of the MaxMin, MinMaxAR and MinThNo criteria.

The second type of curve is not shown here — the improvement was not successful,
wrong tetrahedra has moved in the bad direction. There are more tetrahedra with lower ratios
than in the Delaunay mesh. But still, the curve has a small local minimum in the right part.
Such curves are produced by MaxRR, MinAR or MinMaxER criteria.

The third type of curve, which is shown on the second graph in Fig. 6.3, misses even
this local minimum and only decreases. It is the worst type of histogram because all the
tetrahedra are pressed close to very low ratios. It is produced for example by MaxThNo or
MaxVol criteria.
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Figure 6.3: Histograms of radius ratio.

Solid angle

Histograms of solid angles produced by different post-optimization criteria are very similar in
their shapes to the histograms of volume. Just for the illustration the same graphs as in the
case of volume are shown in Fig. 6.4 to document this fact. This property does not show
anything new or surprising.

30



MaxRR - Solid Angle MaxMinVol - Solid Angle

0.8 0.7
5 07 v 0.6
2 061 S 05 1
€ 05 E .
254 —MaxRR 2 044 — MaxMinVol
g 0'3 ] — Delaunay 203 — Delaunay
5 0. S
3 0.2 502
3 0.
"o A S0ty \\

0 0 T T T
0 1 2 3 4 0 1 2 3 4
values of criterion values of criterion

Figure 6.4: Histograms of solid angle.

Minimum solid angle

Two main types of graph appear here. The first curve, such as the one on the first graph in
Fig. 6.5, has a decreasing trend. It illustrates typical results of the simple criteria including
MaxThNo and MinMaxSA.

The second one is nearly the same as the curve of Delaunay triangulation, but some
tetrahedra were slightly moved towards the greater values, while some tetrahedra disappeared
from the area of smaller values of minimum solid angle, which was our goal. This small
improvement is reached by most of the compound criteria including MinThNo.
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Figure 6.5: Histograms of minimum solid angle.

Maximum solid angle

Unlike the minimum solid angle property, where the moving of the tetrahedra towards higher
values was wanted, the main goal here is to move the tetrahedra towards the lower values. All
criteria used in post-optimization produced histograms like that on the first graph in Fig. 6.6 —
values were moved in the wrong direction. The only one criterion, which is able to move the
curve towards the lower values, is direct minimization of maximum solid angle. The curves
reached by this type of post-optimization are shown on the second graph.
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Figure 6.6: Histograms of maximum solid angle.

6.5 Results of criteria changing the number of tetrahedra

Now, after inspecting all of the properties, we would like to focus on two more post-
optimization criteria, which only change the number of tetrahedra towards higher or lower
values. Which results provide these criteria? MinThNo behaves almost in the same way as
compound criteria — it tends to improve histograms, except in one case. This case is the
histogram of maximum solid angle, whose curve is moved by this criterion towards the higher
values (like by MaxMinSA).

On the contrary, MaxThNo behaves rather like simple criteria and it creates more
tetrahedra of poor shape, with one exception — this case is again the histogram of maximum
solid angle. Its curve has a shape, which is not produced by any of other criteria. This graph is
shown in the Fig. 6.7.
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Figure 6.7: Special histogram of maximum solid angle.

6.6 Results of removing slivers

We tested both of the variants of removing badly shaped tetrahedra — variant with removing
only those slivers, which originally belonged to zero class (RemSliv) and variant with
removing all those tetrahedra, which don't belong to equilateral class (RemSlivAll). The
method RemSlivAll produces slightly better histograms than RemSliv. In fact, both of them
bring no new surprises. This is the reason, why no graph with properties produced by these
criteria is shown here. Briefly said, both of them tend to optimize tetrahedra shapes in a
similar way as e.g. MinThNo does, but the results are slightly worse.
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6.7 Summary

For all properties, except maximum solid angle, the graph in Fig. 6.8 approximately shows the
move of the level of average values of all of the properties. From this graph it is clear that the
criteria for post-optimization like MinMaxSA, MaxThNo and MaxVol make the shape of the
tetrahedra more or less worse. The MinMaxSA is the most time-consuming criterion, because
of the computing of solid angles, while MaxThNo is only slightly slower than generating of
Delaunay mesh. It also produces the greatest number of tetrahedra and the worst average at
all.

On the opposite, the post-optimization criteria MaxMinSA, MinThNo, MaxMinVol,
MaxMinRR and RemSliv really improve the quality of the mesh. This fact can be seen from
the graph below. All of them have nearly the same time demand, all of them improve the
average and produce less tetrahedra than Delaunay produce. The last criterion MaxRR has
only slight influence on the quality of tetrahedra shapes.
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Figure 6.8: Typical statistics (c/k means time in milliseconds, tetrahedra is number of
tetrahedra, avg denotes average value of radius ratio property).

The behaviour of the maximum solid angle property is different. The only two criteria
which are able to decrease the values of this criterion are MinMaxSA, that means direct post-
optimization of itself, and MaxThNo, as you can see in Fig. 6.9. It seems good, but we should
know that the number of tetrahedra in these two cases is the biggest of all criteria. And what is
more, if we take a look back on the graph in Fig. 6.8, we will find out that these two criteria
make the average considerably worse. Thus, this way doesn't seem to be a good approach to
minimize maximum solid angle.

Table 6.1 shows movements of tetrahedra in some intervals of values of properties. It
can be seen that the compound criteria MaxMinRR, MaxMinVol and MaxMinSA have a
positive influence on tetrahedra shapes in given intervals. The same effect has criterion
MinThNo, which only minimizes the number of tetrahedra. On the opposite, it is clear, that
criterion MinMaxSA has bad influence on every watched shape criteria, except its own — this
situation has been already explained above.

33



MaxMinSA

MinMaxSA

MinThNo

MaxThNo

MaxMinVol mtetrahedra/50000

Oaw

MaxVol

post-optim criteria

MaxMinRR

MaxRR

\
|
|
|
‘ 1 Oclk/10000
|
|
|
|

Delaunay

0 02 04 086 08 1 1.2

values

Figure 6.9: Statistics of maximum solid angle property (c/k means time in milliseconds,
tetrahedra is number of tetrahedra, avg denotes average value of maximum solid angle).

MSA RR SA Vol XSA
(0.168,0.408) | (0.44,1.0) | (0.48,2.4) | (0.04,0.2) (0.8,3.2)
Delaunay 40.28 60.8 34.7 61.41 52.86
MaxMinRR 44 45 68.35 39.34 64.28 64.72
MaxMinVol 42.66 66.31 39.13 64.68 63.6
MaxMinSA 4447 67.43 38.54 63.29 63.34
MinThNo 4531 69.02 39.23 64.12 64.62
MinMaxSA 22.23 37.11 27.46 22.4 34.95

Table 6.1: Percentual improvement of properties in intervals made by some of criteria

As it can be seen, the greatest benefit comes from compound criteria. The
improvement — presented in graphs above and in Table 6.1 — is not as big as it was expected.
This is probably due to “too good” quality of Delaunay triangulation, or due to simplicity of
the algorithm. But there is an improvement up to 9 percent. Surprisingly nearly the same
improvement as by compound criteria is done by criterion which only minimizes number of
tetrahedra. It seems that for fast improvement of Delaunay tetrahedra it is enough only to
decrease number of tetrahedra as much as possible. But for reaching the top of improvement
of a property, the best way is to use direct post-optimization of this property.

As presented before, simple criteria mostly degrade the shape of tetrahedra and they
cannot be recommended for the practical use. Created tetrahedra are flat, which is not
desirable shape. Compound criterion MinMaxSA can be counted to this group, too.

We do not present here any comparison to results reached in [Joe91b] because Joe
generates extra (Steiner) points inside the convex region, while our method uses only points
that belong to the given data set.

Time demand of post-optimization criteria always depends on computational
complexity of them. Most time consuming criterion seems to be such, which uses solid
angles. But always the time of post-optimization is less than 10 percent of the main Delaunay
algorithm. This time loss is not too important, because in most of the applications the mesh is
constructed only once and the main goal is to have a mesh with the best possible quality.

We think that with this sort of post-optimization — it means local post-optimization
with inspecting only configurations of five points and only one flip in one step of algorithm —
it is not possible to get significantly better results. To reach them, one would have to use
either more flips in one step as in [Joe95] penalted by more complicated algorithm or
replacement of the points, such as in [ELMSO00].
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7 Numerical stability and robustness

“If you decide to use the efficient built-in number types, you have to cope with numerical
problems. Be aware of this. For example, you can compute the intersection point of two lines
and then check whether this point lies on the two lines. With floating-point arithmetic,
roundoff errors may cause the answer of the check to be false. With the built-in integer types
overflow might occur.”

CGAL support library reference manual about built-in number types

Although our implementation of incremental algorithm works well for point sets distributed
uniformly up to 200000 points (on a machine equipped with 1GB of memory), it can
sometimes fail. The errors occur more often in the gaussian distribution of points or when
distributing points in clusters. If the point set is more regular, especially when the points lie
on the uniform grid, the algorithm fails even for very small data sets (hundreds of points). In
our implementation we use so called € arithmetic — computing with small tolerance €. The
idea is simple: for example if the point is found to lie not exactly (in a usual floating-point
arithmetic) on the plane, but not further than in € distance, it is taken as though it was lying on
the plane. The results are not taken exactly, but with a small € tolerance around the exact
value. But it seems that this method cannot sufficiently solve the problems with numerical
stability that we have. To remove the unpleasant unstable behaviour of the implementation,
we had to look for a solution, which would improve the numerical stability and robustness of
the implementation.

In the available literature we have found several solutions, which should guarantee an
improvement in the area of numerical stability. There are solutions based on both types of
arithmetic — integer and floating-point (we assume 32bit signed integer arithmetic and binary
floating-point arithmetic according to IEEE Standard 754 [Hol98], which are the most usual
on current PCs). The following lines give a short overview of them, more information from
this area can be found e.g. in [GOR97 chap. 35].

Two examples of huge packages, which provide integer arithmetic in arbitrary
precision as well as floating-point arithmetic, are LEDA (Library of Efficient Data types and
Algorithms) and CGAL (Computational Geometric Algorithms Library). They offer a number
of different program classes for exact computation. As a basic type an integer is offered,
which is implemented by a vector of unsigned long numbers; the sign and the size are stored
in extra variables. Derived types are rational numbers, which consist of the numerator and the
denominator, both of them are integers. The real numbers, in LEDA called bigfloats, are also
implemented as two integers — one for the mantissa one for the exponent. The precision of
result and rounding method can be given by creating a bigfloat variable. CGAL for example
offers a data type for specialized predicates with fixed precision, given by integers in the
range (—2%*, 2**) and multiplying factor 2°. All these datatypes are very comfortable to use,
because the routines for conversion among these types as well as input and output operations
are provided. Moreover, these packages offer a floating-point filter with error bound
computation or geometric predicates even with some perturbation schemes (see below).

Another approach to improve the reliability of the results is the solution mentioned in
[DP98], which is based on an analysis of the input set of points and on an analysis of
geometric predicates computed on common floating-point arithmetic. The assumptions of the
analysis are 3D error-free input data and input points distributed uniformly in unit cube. The
analysis of an insphere predicate is provided for 24 bit and 53 bit mantissa. The result is: if the
absolute value of the insphere test is greater than 6 10™* for 53 bits or 3 107 for 24 bits then
the sign is reliable. The probability of failure is less than 6 10", resp. 0.011. This solution

35



shows, how often it is necessary to employ more powerful (or exact) computation methods if
we want numerically stable algorithms.

Solutions for integer arithmetic are also provided. The most notable is the so-called
SoS — Simulation of Simplicity described in [EM90]. It is designed for removing the
degenerated cases from the input data by symbolical perturbations in arbitrary dimension. The
points have to be moved a sufficient distance so as to destroy the degeneration but not so far
that they destroy the relations among the points. Each point from the input data set is
perturbed by adding a polynomial in € to each coordinate. For example, the original 3D point
pi = (pi1s pi2, pi3) s replaced by a perturbed point pi(e) = (p;1(€), pi2(€), pi3(€)), where p; ,(€)
= pi; t (i, j). The term €(i, j) is a polynomial in € that goes to 0 as € goes to 0. It is defined as

5(1', j ) =g , where d depends on the dimension of the matrix. The reason for evaluating the

determinant of the matrix is because we use geometric predicates (see below), which are able
to provide the results of different geometric tests, e.g. whether the point lies above or below
the plane. The algorithm, which uses SoS predicates, is then run on perturbed points, but the
result is presented as the solution of the original point set. The results have to be used
carefully. Some kind of post-processing is needed sometimes (for example in convex hull
algorithms, where the degenerated points can disappear from the convex hull by perturbing
them). The low-level computation in SoS is based on integer arithmetic. Because the
determinant evaluation results into finite expression, the finite number of bits is sufficient to
evaluate the determinant exactly.

The employing of so called constraints for robust and accurate computation is used in
[Hub96] for 3D Voronoi diagram construction. The inexact arithmetic is assumed and because
of this reason and to avoid topological inconsistencies in the resulting diagram topological
constraints are involved in the set of vertices to be deleted. Checking these constraints
requires no numerical computation. The vertex is deleted only if it satisfies both the numerical
and the topological criteria.

One of the possible approaches that can be used to obtain really exact result with
integer arithmetic on current computers is used in [Sug92] for construction of 2D Voronoi
diagram. The main idea lies in the range of restriction of the input values of expressions,
which has to be evaluated exactly. By making the analysis of the expression structure the
maximal values of inputs are derived. For example the expression for computing whether a
point lies inside, on or outside the sphere needs input values less than 23 170 if it should be
evaluated exactly on 64 bit integer arithmetic, or less than 5 931 640 if 96 bit integer
arithmetic is used. Otherwise the hardware equipment is not adequate to give an exact result
because of overflow.

For the exact decisions in triangulation algorithms it is possible to use the approaches
described above, but if we do not want to put any restrictions on input points in coordinate
values or their distribution, there are two more solutions, which offer exact evaluation of
geometric predicates both for integer and floating-point arithmetic. Both of them are
described below and practical experience of their use is mentioned at the end of the section.

7.1 Geometric predicates

Geometric predicates provide results of various geometrical tests (e.g., mutual position of a
point and a line). They are computed as a value of a determinant of a particular matrix. The
advantage of such an approach is that it can be generalized into an arbitrary dimension. For
the purpose of a triangulation algorithm in 3D space, the two following predicates are of main
interest:
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e the test of a mutual position of a point d and a plane given by three oriented points a,
b, c, the so called orient3d predicate; this predicate is given by the following matrix of
dimension 4 or after some algebraic transformations by a matrix of dimension 3

az ay ap 1

by by b, 1
cz ¢y Cp 1
dy dy dy 1

g —dy ay—dy a,—d,
= by —dy by—dy b,—d,
Cy—dy cy—dy c,—d,

e the test of a mutual position of a point e and a sphere given by four oriented points a,
b, c, d, so called insphere predicate; this predicate is given by matrix of dimension 5

or 4
az ay a; ai+ai+a 1
by by b, b§+b§/+b§ 1
Cx Cy Cy c§+cg—|—c§ 1
dy dy d, Lrd+d 1
1
(

€z €y € e§+e§+e§

az — €z ay—ey a;—e, (az—ez)?+ (ay—ey)? + (a, —e,)?
= by —ex by—ey by—e, (by—ey)?+ (by—ey)>+ (b, —e,)?

Cr—€r Cy—ey C—ey (cp—egp)?+ (cy —ey)? + (c; —e,)?

dy—ez dy—ey dy—e, (dy—ez)?+ (dy—ey)+ (d, —e,)?

To make a correct decision about the mutual position of geometric primitives, these
matrices have to be evaluated exactly. Unlike the usual computation, which can be never
exact because of limited memory space, the evaluation of such predicates can be done exactly,
because the evaluation of determinant results in an expression, which is composed from a
finite number of terms. Thus we know how much memory space is needed to store the result
exactly. Moreover, the methods for predicate evaluation usually use some speedup
techniques, which means that the result is not exact in the numerical sense, but is always
correct in the geometrical sense.

Two such methods of predicate evaluating are presented in following sections in more
detail. The first one is based on integer arithmetic, while the second one on floating-point
arithmetic.

7.2 LN generator

The method for exact computation of several geometric predicates in integer arithmetic is
mentioned in [FVW96]. The program called LN generator was created and it serves for the
purpose of symbolical writing of an arbitrary predicate in the LN language. Then the
symbolical input is transformed into the C++ source code. The output of this process is a
routine for the exact computation of the predicate enriched by the so-called floating-point
filter for checking whether the result is exact enough in usual arithmetic or if it is necessary to
employ the exact arithmetic procedure.

As we mentioned before, the coordinates of the points in integer arithmetic are used as
the input for the computation of a predicate. The maximal bit-length of each coordinate is 53
bits. It is due to the internal processing of exact computation, where no integers are used,
because they have only 32 bit-length in current computers. Instead of them, the mantissa of
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floating-point data types is used, which have 53 bit-length. The fear of slowing down the
computation in floating-point arithmetic is described by the authors as useless, because this
type of computation is highly optimized on current computers.
The number in the exact arithmetic is represented as an unevaluated sum of double
precision floating-point variables
a=ayta;+...+ta,,

where a; = a;’x2", a; is a particular integer number and 7 is the bit-length of the radix. The
number of variables a; depends on the radix length and the expected bit-length of the resulting
value. Any integer up to 2'®* can be represented in this way. The limit comes from the limit
on exponents in IEEE double precision. An exact value is normalized if each a;” is at most 2"
in absolute value.

Let us have two exact numbers a =ay + ... +a, and b= by + ... + b,,. The exact sum
¢ =a+ b can be simply implemented as the sum of floating-point numbers:

o= a0+ b0> cp=das + b[ seees Cp = am+ bmv
The exact product ¢ = ab is implemented by using the usual O(mz) algorithm:
¢k = sum(a;by), 0 <j<m.

During the process of calculating the sum, very often by calculating the product, the
situation appears, when the term in a partial result cannot be represented exactly as a floating-
point value. Then the operands has to be normalized before the operation, which guarantees
that for each i, a;” is at most 2" in absolute value.

The choice of the radix bit-length may lie in the following:

e to minimize the number of components of exact number representation, the radix

bit-length has to be as big as possible,

e the evaluation of the determinant contains several additions and several
multiplications and our goal is to minimize the number of necessary
normalizations, which slow down the evaluation; this point of view leads to the
choice of minimal radix bit-length.

It is recommended by the authors to use 23 bit radix which is a good compromise
between the above mentioned requirements.

The floating-point filter is used to filter out the results, which are exact enough in
usual arithmetic. The filter is based on the computation of a static error in advance. The
following formulae for the maximal bit-lengths of results for the addition, subtraction and
multiplication operations are used

maxbitlen(a £ b) = 1 + max(maxbitlen(a), maxbitlen(d)),
maxbitlen(a x b) = maxbitlen(a) + maxbitlen(b).

The static upper bound of the error is based on the structure of a particular expression
(particular geometric predicate) and on the bit-length of the variables. It can be computed as
follows: if maxbitlen(x) < 53, then maxerr(x) = 0, else:

maxerr (a + b) = maxerr(a) + maxerr(b) + 2mHoen@* =33

maxerr(a x b) = maxerr(a)maxbitlen(b) + maxerr(h)maxbitlen(q) + 2m*0itlent@ > 6) =53
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The great advantage of the static upper bound of the error is that it can be computed statically
before the program is run. In the runtime the program only compares the absolute value of the
determinant computed in usual floating-point arithmetic with the value of maxerr and if the
determinant is greater than maxerr, the result is sufficiently exact. In other way, the process of
exact computation starts.

7.3 Adaptive floating-point geometric predicates

The previous approach can be also called a multiple-digit format. In this section a method of
evaluating geometric predicates based on multiple-term format, which was described in
[She96] is presented. This technique uses all 64 bits of floating-point double precision
numbers. The advantage of this approach can be seen for example in adding two numbers of
very different magnitudes — if we want to evaluate the expression 2°* + 2%, only two words
in memory are enough to store the result while the multiple-digit approach has to use at least
601 bits of memory, because all intermediate zero values have to be stored.

The computation in this method is based on a nonoverlapping expansion of the
number, where the number x is stored as

X=X, + . x2+x1, (6 < xi41),

where the values of all components x; do not overlap and components are ordered by
magnitude (x, largest, x; smallest). The values of two floating-point numbers are not
overlapping if the least significant nonzero bit of x is more significant than the most
significant nonzero bit of y, or vice versa. For example the binary values 1100 and —10.1 are
not overlapping, whereas 101 and 10 overlap.

The elementary functions, which transform the addition, subtraction and multiplication
of two floating-point numbers into the nonoverlapping expansion of the result (that are also
two floating-point numbers) are presented in the [She96]. As an illustration of such function a
FastTwoSum is depicted here, which transforms value a + b into a nonoverlapping result
x +y, where the x is an approximation to a + b and y represents the roundoff error in the

calculation of x. The assumption |a|2|b| holds. The operations are usual floating-point

operations.

FastTwoSum(a,b)
X =a + b
bPyirtuar = X — @

y = b - bvirtual
return (x,y)

Such elementary functions are then used to build more complex functions for addition or
subtraction of two expansions or for the multiplication of expansion by a floating-point
number. The important notice is, that after these complex operations many zero components
can appear in the resulting expansion, which can slow down the next computation. It is
recommended to perform explicit zero component elimination.

Fig. 7.1 represents a scheme of addition of two expansions e and f, which are first
processed into one expansion g. The result is expansion 4. Elementary functions TwoSum and
FastTwoSum are represented by the boxes.
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Figure 7.1: Scheme of addition of expansions [She96].
The same function written in pseudo-code is in the Fig. 7.2.

LINEAR-EXPANSION-SUM(e, f)
1 Merge e and f into a single sequence g,
in order of nondecreasing magnitude
(QZa q2) <~ FAST'TWO'SUM(QZa gl)
fori <3tom+n
(Ri, hi—2) <= FAST-TWO-SUM(g;, ;1)
(Qi,¢:) < TWO-SUM(Qi_1, R;)
hmtn—1 < @min

hm—i-n = Qm—i—n
return h

OIS U AW

Figure 7.2: Function of addition of expansions [She96].

Unlike the previous approach to geometric predicates evaluation, where the static
evaluation of error bound was used, in this method an adaptive scheme is incorporated, which
tests the resulting values at several levels. Let us show it in an example.

Let us have an expression for computing the distance of two points in the plane:

(a,-b,)’ +(a, -by)z. Let us replace the subtractions in parentheses by their expansions

(x1+ 1) and (x2 +)»), see Fig. 7.3 part a) and b). The resulting expression is
(1 +x27) + (2x1y1 + 2x3p2) + (1 + 20).

By the IEEE arithmetic it is guaranteed that |y| < glx|, where € = 277 is called the
machine epsilon and it is equal to 27 for double precision or 2" in single precision
arithmetic. The expression above can be divided into three parts, having magnitudes of O(1),
O(¢) a O(e?). The ith adaptive approximation of the exact result with the error of magnitude
O(€") is then understood as a sum of the intermediate parts up to magnitude O(g'™).
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Figure 7.3: Exact evaluation of simple expression [She96].

As can be seen from the picture, the first adaptive approximation of the result is CI,
which simply comes from the multiplication of the most significant part of the expansion with
error bound O(1) — this approximation is identical to the static floating-point filter from the
approach of Fortune and Van Wyk. If this value is not sufficiently exact, the computation
continues. In the next step the part with error bound O(1) is computed exactly into the first
exact approximation Al and the part with error bound O(¢) is computed inexactly. The sum of
these two results is a new adaptive approximation of the result C2, which is also examined to
see, if it is exact enough. In a similar way the whole expression is processed, until one of the
adaptive approximations is found to be exact enough or until the exact result is computed. In
practice the cases where exact results are needed are quite rare — very often the
approximations are sufficient.



The computation of real predicates is much more complicated and thus they are not
presented here. To give a better idea the exact result of the mutual position of a point and a
plane may have up to 192 components.

7.4 Practical experience

This section describes our practical experience with the afore mentioned methods for the
evaluation of geometric predicates. One more notice about the original implementation of our
tests before the presentation of our results. At the beginning we did not use the predicates in
our implementation of DT 3D algorithm. In the test of the mutual position of a point and a
plane, the coefficients of the plane equation of each face of a tetrahedron were stored. The
position of the point was computed only by putting its coordinates into the stored plane
equation. Instead of insphere predicate, we computed the centre of a sphere circumscribed to
the four points of a tetrahedron. Then the radius of a sphere was used to find out if the point
lies inside or outside or on a sphere. We had to change both of these tests if we wanted to use
an exact evaluation of the predicates.

The first part of the tests was made on artificial data sets with different distribution of
points. Particularly we used points with uniform and gaussian distribution, points distributed
in clusters, on the surface of the sphere and points on regular grid. The number of points in
each data set was 50, 100, 200 and 240 thousands. The results produced from artificial data
sets were taken as an average of results from five different data sets. As the second type of
input data we used 17 real objects, particularly the points on surface of the real models. There
were used objects such as chair, dino, teapot, CTHead and others [Stan, Geor], the number of
their vertices was up to 277 thousands.

To provide the same input data for all tested functions, all input data had to be
transformed onto integer numbers. It was done by simple scale. The reason for this was that
the Fortune’s predicates work only with integers. This correction of the range of the data did
not affect their data type. Each tested function used the data type suited for it.

For the testing, a simple algorithm was used. In the following example the processing
of input points is shown. The orient3d predicate is used, which needs only four input points.
If we used insphere predicate to test, five input points are needed.

take the points vl1,v2,v3,v4 from the input set

for (the number of input points - 3) do
result = orient3d(vl,v2,v3,v4)
vl = v2
v2 = v3
v3 = v4
v4d = next point

Thanks to Mr. Fortune and Mr. Shewchuk we obtained the source codes of their predicates
implementations. In the case of Fortune’s predicates two versions of them were provided — for
31 bit-length and for 53 bit-length. To achieve the equal conditions for all functions in the
tests, we had to use the same data structures and the same function calls. Therefore we had to
modify the source code of Fortune’s predicates to use arrays instead of structures to store the
coordinates of the input points. Thus we obtained four functions to be tested. Fortune’s exact
predicates for two different bit-lengths, named as Fort31 and Fort53 in the following text.
Then Shewchuk’s adaptive predicates named as Shew and, finally, pure unexact computation
of determinant called det. We also separated our own test-functions from our implementation
to use them in the tests. These functions are referred as orig. The last common property of all
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functions, which had to be united, was the returned value. The output of all functions was
restricted to values —1, 0 and 1.

After making these arrangements we performed the following tests on all mentioned
functions, i.e. exact Shewchuk’s predicates, exact Fortune’s predicates for 31 and 53 bit-
lengths, usual floating-point computation of determinant and original tests from our own
implementation. These functions will be called as “tested functions” in following text.

All experiments were executed on Pentium 3, 450 MHz equipped with 1GB of
memory under Windows 2000 operating system. Microsoft Visual C++ was used as the
compiler.

Test of precision

To test the precision of tested functions we used the following approach: in each step of
testing cycle we obtained the results of all tested functions and then we compared the results
among them. As the correct one, the result of exact predicates was taken. Differences in
results of other functions are depicted in Table 7.1 and Table 7.2.

It was surprising that on artificial data sets only the input points distributed on uniform
grid produced wrong results. On the other data sets the inexact functions gave the same results
as the exact ones. This held for orient3d tests as well as for insphere tests.

points Fort31 Fort53 Shew det orig

50000 0 0 0 0.0012 0.0024
100000 0 0 0 0.0002 0.0008
200000 0 0 0 0.0002 0.0003
240000 0 0 0 0.0004 0.0006

Table 7.1: Percentage of bad decisions of orient3d tests on grid data.

points Fort31 Fort53 Shew det orig

50000 0 0 0 0 0.0060
100000 0 0 0 0 0.0032
200000 0 0 0 0.0001 0.0019
240000 0 0 0 0 0.0014

Table 7.2: Percentage of bad decisions of insphere tests on grid data.

The result of precision tests on real data sets is as follows. Results of exact predicates
were the same for all input data as it was expected. For the orient3d tests the percentage of
bad decisions made by the determinant was only 0.0002, the percentage of original test was
worse: 0.0026. For the insphere predicate the percentage of bad decisions made by the
determinant was 0.0878, the percentage of our test was surprisingly high: 10.69.

Test of speed

To test the speed of all tested functions we simply measured the time of each function needed
for processing the whole input data set. To show the results of these tests, we present here
only the following representative selection.

In Fig. 7.4 and Fig. 7.5 you can see the time needed for executing all tested methods
on several artificial data sets. As the representative number of points 100000 was chosen. It is
quite strange that the times are nearly equal for all data sets. We expected that execution on
sphere or grid data would be significantly slower. The reason for the speed similarity is
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probably in the random placement of the points in the data sets. If the points were placed in a
“more organized” way, e.g. the close points were also “near” in the input file, there would be
probably more differences among the different distribution of points.

speed of orient3d tests on 100000 points

300
250 -
T 200 B unif
‘o 150 - B sphere
£ 100 Ogrid
50 1
o L] | J]:LEI:L_El:L

Fort31 Fort53 Shew det orig
methods

Fig.7.4: Orient3d tests on artificial data sets.

speed of insphere tests on 100000 points
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Fig. 7.5: Insphere tests on artificial data sets.

The situation is quite different for real data sets. As it can be seen from Table 7.3 and
Table 7.4, inexact tests — such as determinants and original tests — are always faster ones. But
the situation in the field of exact predicates is not as clear as for the artificial data. Sometimes
the Fortune’s predicates are faster than Shewchuk’s one sometimes the situation is reversed.
In general, Fortune’s predicates are slower in cases, when the exact arithmetic is needed. It is
due to the fact that the floating-point filter marks more cases as inexact than necessary. On the
other side, Shewchuk’s predicates use exact computation in less cases, but there is more time
spent on making the decision, whether the exact computation is needed or not. This decision
is made faster in Fortune’s predicates, as the error bound is computed in advance.

points | Fort31 | Fort53 Shew det orig
teapot| 80203 94 219 141 15 31
CTHead | 230328 172 641 1094 62 78
14spheres | 277228 296 765 2780 78 109

Table 7.3: Time of orient3d tests spent on real data.
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points | Fort31 | Fort53 Shew det orig
teapot| 80203 375 1312 719 94 469
CTHead | 230328 1094 3750 5047 281 1750
14spheres | 277228 1313 4516 14500 328 2860

Table 7.4: Time of insphere tests spent on real data.

We decided to use Shewchuk’s predicates for the replacement of our unexact
computation tests. We have replaced all tests of mutual position of a point and a plane with
orient3d predicates, all computation of empty circumsphere with insphere predicates and the
detection of tetrahedra configuration with several orient3d tests. The results are as follows.

For a clear idea of how much the exact evaluation of predicates slows down the
implementation of DT triangulation algorithm, we made a speed comparison between the
inexact and exact evaluation of a determinant, as it is shown in Fig. 7.6 on the left graph. The
tests were made on uniform data sets of various sizes. Surprisingly the slowdown is only
about 30 percent. In the next experiment, comparisons of exact predicates speed on different
types of data sets were executed to see the slowdown on “bad” distribution of input points.
The results are shown on the right graph of Fig. 7.6. The slowdown is much higher in this
case, nearly four times — but it is no surprise. Grid data sets include a lot of degenerated cases,
thus the exact evaluation of predicates has to employ more adaptive steps to reach a proper
decision.

slow-down of exact arithmetic speed on uniform versus grid data
160 600
140 500
' 400
% 100 O Normal 2 Dunif
o 80 o 300 .
E 60 B Exact E BEgrid
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o ‘ 0-
10000 50000 100000 10000 50000 100000
vertices vertex

Figure 7.6: Time comparisons.

In Fig. 7.7 on the left graph the percentage of bad decisions in our original tests in
orient3d, insphere and detection of configuration is shown. The great number of bad decisions
in the grid distribution of points was made due to the impossibility of our test to compute the
circumsphere. With inexact arithmetic the program would fail in such cases. The right picture
shows that the number of non-Delaunay tetrahedra in inexact versions of the program is only
about tenths of percent for uniform data sets.
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Figure 7.7: Quality comparison.

Although the Shewchuk’s predicates are adaptive, in the cases when the
approximation of the result is not sufficient and exact result is needed, the computation takes
quite a long time. Also the computation of error bound in the runtime takes some time. Our
idea to speed up those predicates is in the use of such a floating-point filter, the error bound of
which is computed in advance. This filter would be placed before the procedure of adaptive
computation to make a first step of filtering the values, which are exact enough.

However, it is not easy to make such a filter for floating-point numbers — remember
that Fortune’s predicates are restricted on integers with maximal bit-length 53. For arbitrary
floating-point numbers it is impossible to give any general restriction on their values. This
fact leads to the idea of adaptive floating-point filter.

What does it mean — the adaptive floating-point filter? It means the static error bound
produced by the filter is dependent on the range of the input data. In our explanation we
restrict ourselves only on integer numbers. But the main idea works in general for any kind of
input — even for fixed point and floating-point numbers. The only thing we have to know is
the range, i.e. the maximal bit-length of the data values.

In Shewchuk’s predicates the decision whether to go to the next stage of adaptive
computation or to finish the computation (when the result is exact enough) depends on
comparison between the actual adaptive result and error bound, which is computed in runtime
similarly as the actual adaptive result. The possibility of speedup is in computation of the
error bound in advance — the values for the static error bound are not derived from actual
determinant, but from the whole data set. In other words it means we simulate the worst case
in the input data for the computation of determinant.

The algorithm for getting the error bound is as follows:

get maxbitlength for x, vy, z coordinates

compute maxbitlength for predicate expression

if (maxbitlength <= 53)
errpbound = 0.0

else
compute maximal value of expression from maxbitlength
compute errbound

The computation of maxbitlength is based on formulae mentioned in section about LN
generator. If the maxbitlength is less or equal to 53, the whole expression can be stored
exactly in the memory, thus no error bound is needed. Else the error bound is computed
according to the rules derived in [She96].

The static error bound is then used as the entering point for the original Shewchuk’s
predicates. We tested mentioned method on all predicates provided in [She96], i.e. orient2d,
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orient3d, incircle and insphere. Our improved predicates took only about 50% of time of
original predicates on artificial data. But this speed up was achieved mainly due to the fact
that exact arithmetic was not needed too often — we were able to filter out such cases quickly.
On the real data, where the necessity of exact computation is greater, the results of our
predicates are similar to the original ones, as you can see in Table 7.5. It is clear, because in
such cases, actually original predicates are used plus the time needed for two comparisons of
floating-point filter.

teapot CTHead60 | 14spheres
orient2d 0.5161 0.8297 0.8623
orient3d 1.128 0.9694 0.9996
incircle 1.0683 0.9880 1.1063
insphere 1.0208 0.9811 1.0033

Table 7.5: The time ratio of improved to original predicates.
Bit-length of input data is 40.

In conclusion we have to say that the exact evaluation of geometric predicates makes
our implementation really numerically stable and far more reliable for any input data sets. The
non-Delaunay tetrahedra completely disappeared from the resulting mesh when we started to
use exact evaluation of predicates. In addition, the slowdown of the implementation is not so
great if we take into account that more important than the speed of the program is the quality
of the mesh. Moreover, we presented the predicates, which are enriched with the floating-
point filter. However, from our experiments it is clear, that such enrichment is good only for
cases, where the exact arithmetic is needed only rarely.
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8 Our goals and future work

The main task of this thesis was to summarize existing algorithms for Delaunay triangulation
in 3D and present the results of our experiments with tetrahedra shape improvement.
According to our own implementation of the incremental insertion algorithm we concluded
that for correct functionality and reliable results of the implementation, usual floating-point
arithmetic is not sufficient. Thus we were forced to incorporate methods for the exact
evaluation of geometric predicates. This approach made our implementation really more
stable.

We are now at the point, where the Delaunay generator is implemented, it is
reasonably fast and also sufficiently stable. It is used for data reconstruction and iso-surfaces
extraction applications in our computer graphics centre. But for those applications that use
solid models in practice it is still not sufficient. Such applications require also tetrahedrization
of non-convex shapes or incorporation of special edges or faces, e.g. for breaks in geology.
For this purpose, the so-called constrained Delaunay triangulation (shortly CDT) is required.
CDT is a natural extension of DT in the sense that there are edges or faces, which are forced
to be included in the DT. In 2D, the existence of CDT is proven for any given boundary. But
in 3D, as we are aware, there are such objects, which cannot be triangulated in any way. There
not much work has been done in this area, although the use of CDT is obvious for the creation
of solid models. Hence we will focus on constrained Delaunay triangulation in our future
research.

Furthermore, we are not fully satisfied with the improvement of tetrahedra shape,
which we were able to reach. But recently in this area, theoretical computational geometry
came up with new suggestions on how to reduce the amount of badly shaped tetrahedra or
how to reach a sliver-free triangulation. These approaches are theoretically derived, most of
them are based on interesting ideas, but they still remain theoretical — no algorithms or
practical solutions are offered. This area is very attractive for us, because it is a typical task
for research in applied computer sciences.

There is another extension, or let us say generalization of DT, so called regular
triangulation. This type of triangulations assign a weight to each point from the input set and
the criterion of empty sphere of DT is replaced by more complex -criterion. Such
triangulations are often mentioned as providing very good resulting meshes. There are
algorithms for the construction of regular triangulations based on similar principles to DT
algorithms. This means that our implementation of the Delaunay triangulation generator can
be relatively simply modified to produce more powerful regular triangulation. It is probably
clear from the previous lines, that the second area of our research will be dedicated to the
improvement of tetrahedra shape.
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Appendix A: Other DT implementations

There are several implementations of algorithms for the construction of 3D Delaunay
triangulation, which are freely available from the Internet.

Qhull

Qhull is able to compute Delaunay triangulation in arbitrary dimension. It is based on a higher
dimension embedding algorithm. For computing a convex hull the divide and conquer
quickhull algorithm is used. The program is written in C and it is a console application. The
solving of degenerated cases in input data is left to the user. It can either select an option for
randomizing the input points or an option for joggling (a kind of perturbation) the points.
More about Qhull can be found in [Bar96].

The package includes documentation and source files. The homepage of Qhull is at

http://www.geom.umn.edu/software/ghull/

Detri

The author is Ernst P. Miicke. Detri is a program for the direct construction of 3D Delaunay
triangulation based on flips using an incremental insertion algorithm. It also uses
randomization of input points. The numerical problems are solved by the use of Simulation of
Simplicity. For details see [Miic95].

Detri is available via following URL, source codes are included.

http://www.cs.ust.hk/faculty/edels/alpha3d.html

DeWall, InCoDe

This implementation is made by the Visual Computing Group, which is a part of the Italian
National Research Council. The first implementation is based on the divide and conquer
paradigm, the second one is an incremental construction algorithm. Both of them use the
usual floating-point arithmetic. More details are in [CMPS92, CMS92, CMS98].

http://vecg.iei.pi.cnr.it/swOnTheWeb.html

Geompack

The author is Barry Joe. Geompack is a mesh generator for general polyhedral regions based
on 3D DT. It decomposes a general polyhedral region into simple or convex polygons, then it
uses Steiner points for their triangulation. It uses usual floating-point arithmetic. It is written
in FORTRAN 77, source code is available but no longer supported.

Geompack is available via

ftp://menaik.cs.ualberta.ca/pub/geompack
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Appendix B: Activities

Publications

[Mau00] Maur, P.: Generovani tetrahedronovych siti z rozptylenych dat. (Tetrahedral Mesh
Generation from Scattered Data, in Czech) Diploma thesis, University of West
Bohemia, Pilsen, 2000, supervisor I. Kolingerova.

[MKOO]  Maur, P., Kolingerova, I.: Properties of Delaunay Tetrahedra. In: Proceedings of
International Conference ECI 2000, Herlany, Slovakia, pp. 55-61, ISBN 80-
88922-25-9.

[MKOla] Maur P., Kolingerova I.: Post-optimization of Delaunay Tetrahedrization. In
Proceedings of Spring Conference on Computer Graphics, Budmerice, Slovak
Republic, 2001, ISBN 80 223 1606-7, pp.76-85.

[MKO1b] Maur P., Kolingerova I.: Post-optimization of Delaunay Tetrahedrization. In:
SCCG IEEE proceedings, ISBN 0-7695-1215-1, Los Alamitos, USA, 2001,
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Lectures, presentations, conferences abroad

e February-August 2000: Study stay at University of loannina, Greece.
e September 2000: Presentation of [MKO00] at ECI’2000, Herl'any, Slovakia.

e November 2000: Delaunay triangulation in 3D. Lecture given during a one-week
study stay at the University of Maribor, Slovenia.

e April 2001: CESCG 2001, Budmerice, Slovakia.
e April 2001: Presentation of [MKO01] at SCCG2001, Budmerice, Slovakia.
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