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1 Introduction

According to an unsophisticated but perhaps still prevailing view, the output of
deterministic dynamical systems can in principle be predicted exactly and - as-
suming that the model representing the real system is correct - errors in prediction
will be of the same order of errors in observation and measurement of the vari-
ables. On the contrary - so the story runs - random processes describe systems of
irreducible complexity owing to the presence of an indefinitely large number of
degrees of freedom, whose behavior can only be predicted in probabilistic terms.

This simplifying view was completely upset by the discovery of chaos, i.e.,
deterministic systems with stochastic behavior. It is now well known that per-
fectly deterministic systems (i.e., systems with no stochastic components) of low
dimensions (i.e., with a small number of state variables) and with simple nonlin-
earities (i.e., a single quadratic function) can have stochastic behavior. This means
that for chaotic systems, if the measurements that determine their states are only
finitely precise - and this must be the case for any concrete, physically meaningful
system - the observed outcome may be as random as that of the spinning wheel
of a roulette and essentially unpredictable. The discovery that such systems exist
and are indeed ubiquitous has brought about a profound re-consideration of the
issue of randomness.

It is not difficult to understand why these theoretical findings have captured
the imagination of many economists. Since many important topics in economics
are typically formalized by means of systems of ordinary differential or differ-
ence equations, these findings alone should be sufficient to motivate economists’
broad interests in chaos theory. But there exists a question, or rather a group of
questions, in economics, usually labelled ‘business cycles’, for which the field of
mathematical research under discussion is eminently important1.

A scanty observation of the time series of most variables of economic inter-
est, such as the price of an individual commodity or the exchange rate between
two currencies, shows the presence of bounded and more or less regular fluctu-
ations, with or without an underlying trend. Even more interestingly, this oscil-
lating behavior seems also to characterize the aggregate activity of industrialized
economies, as represented by their main economic indicators. Economists have
long been concerned with the explanation of this phenomenon. The literature on

1There exist, of course, other areas of research in economics for which chaos theory is, or
could be shown to be, very important, i.e., technical progress. We believe, however, that the case
of business cycles can best illustrate the role of nonlinear dynamical analysis in general and of
chaos theory in particular, especially when we look at it in a historical perspective.
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the subject is enormous and the number of different theories equally vast. How-
ever, if we restrict ourselves to the ‘mathematical’ investigation of economic fluc-
tuations, we observe that two basic, mutually competing approaches have domi-
nated this area of research in modern times.

The origin of the first approach - which we shall label ‘econometric approach
to business cycles’ - may be traced back to the seminal works of Eugene Slutsky
(1927) and Ragnar Frisch (1933) and was later developed, and given the status of
orthodoxy, by the works of the Cowles Commission in the 1940s and 1950s. The
fundamental idea of the econometric approach is the distinction between impulse
and propagation mechanisms. In the typical version of this approach, serially un-
correlated shocks affect the relevant variables through distributed lags (the prop-
agation mechanism), leading to serially correlated fluctuations in the variables
themselves2. As Slutsky showed, even simple linear non-oscillatory propagation
mechanisms, when excited by random, structureless shocks, can produce output
sequences which are qualitatively similar to certain observed macroeconomic cy-
cles.

The ability of the econometric approach to provide an explanation of business
cycles was called in question largely on the ground that explaining fluctuations by
means of random shocks amounts to a confession of ignorance. An alternative ap-
proach - which we shall label ‘nonlinear disequilibrium’ - was then developed by
a school of economists who, somewhat misleadingly, was associated to the name
of Keynes. The basic idea of these authors was that instability and fluctuations
are essentially due to market failures and consequently they must be primarily ex-
plained by deterministic models, i.e., by models where random variables play no
essential role. Classical examples of such models can be found in the works of
Nicholas Kaldor (1940), John Hicks (1950), and Richard Goodwin (1951).

Mathematically, these models were characterized by the presence of non-
linearity of certain basic functional relationships of the system and lags in its
reaction-mechanisms. The typical result was that, under certain configurations of
the parameters, the equilibrium of the system can loose its stability, giving rise to
a stable periodic solution (a ‘limit cycle’), which was taken as an idealized de-
scription of self-sustained real fluctuations, with each boom containing the seeds
of the following slump and vice versa. The nonlinear disequilibrium approach

2For completeness’s sake, among the impulse-propagation models of the cycle, one should
distinguish between those in which random external events affect economic ‘fundamentals’ (es-
sentially, tastes and technology), and those in which those events directly change only agents’
expectations. The latter case has been extensively studied in recent years in the economic litera-
ture under the label ‘sunspots’.
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to the analysis of business cycles was very popular in the forties and fifties, but
its appeal to economists seems to have declined rapidly thereafter and a recent,
not hostile textbook of macroeconomics [Olivier Blanchard and Stanley Fischer
(1987, pp. 277)] declares it “largely disappeared”.

The reasons for the crisis of the Keynesian style of theorizing and the associ-
ated nonlinear disequilibrium theories of the cycle are manifold, not all of them
perhaps pertaining to scientific reasoning, and a full investigation of this inter-
esting issue is out of the question here. However, there exist two fundamental
criticisms, raised against the nonlinear disequilibrium approach mainly by sup-
porters of the rational expectations hypothesis, which are relevant to our discus-
sion and can be briefly summarized. First, in the nonlinear disequilibrium ap-
proach, agents’ expectations, either explicitly modelled or implicitly derived from
the overall structure of the model, are, under most circumstances, incompatible
with agents’ ‘rational’ behavior. Second, the nonlinear disequilibrium approach
has been ‘refuted’ by empirical observation, as time series generated by the rele-
vant models do not agree with available data3.

The first of these criticisms can be best appreciated by making reference to
the original formulation of the rational expectations hypothesis. In John Muth’s
(1961, pp. 316) own words, “the expectations of firms (or, more generally, the sub-
jective probability distribution of outcomes) tend to be distributed, for the same
information set, about the prediction of the theory (or the ‘objective’ probability
distributions of outcomes)”. If expectations were not rational in the sense de-
fined above – so Muth’s argument continues – “there would be opportunities for
economists in commodity speculation, running a firm, or selling the information
to the present owners”4. This argument does have some validity if the outcomes
of the dynamical system under consideration can be accurately predicted once the
‘true’ model is known, i.e., if the outcome is periodic. In this case, if agents are
‘rational’, fluctuations can be explained only by exogenous random shocks5.

3For example, so the argument runs, a time series generated by a model characterized by a sta-
ble limit cycle will have a power spectrum exhibiting a sharp peak corresponding to the dominant
frequency, plus perhaps a few minor peaks corresponding to subharmonics. On the other hand,
aggregate time series of actual variables would typically have a broad band power spectrum, of-
ten with a predominance of low frequencies - see, for example, Clive Granger and Paul Newbold
(1977).

4Ibid., pp. 330.
5Even when the outcome is periodic, however, if the periodicity is long and the time path very

complicated, one may question the idea that well-informed real economic agents would actually
forecast it correctly: all the more so if the outcome is quasi-periodic, possibly with a large number
of incommensurable frequencies.
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However, if the theory implies chaotic, unpredictable dynamics of the system,
the rational expectations argument loses much of its strength and non-optimizing
rules of behavior – such as adaptive reaction mechanisms of the kind assumed
by the nonlinear disequilibrium models, or ‘bounded rationality’à la Simon –
might not be as irrational as they may seem at first sight. At any rate, the presence
of chaos makes the hypothesis of costless information and the infinitely power-
ful learning (and calculating) ability of economic agents, implicit in the perfect
foresight–rational expectations hypothesis, much harder to accept.

Equally strong reservations can be raised in relation to the second criticism
mentioned above. It is well known, for example, that deterministic chaotic sys-
tems can generate output qualitatively similar to the actual economic time series.
However, none of these broad considerations can be used as a conclusive argument
that business fluctuations are actually the output of chaotic deterministic systems.
They do, however, strongly suggest that, in order to describe complex dynamics
mathematically, one does not necessarily have to make recourse to exogenous,
unexplained shocks. The alternative option - the deterministic description of ir-
regular fluctuations - provides economists with new research opportunities un-
doubtedly worth exploiting.

In the following sections, we shall try to make the basic notions of complexity,
chaos, and the other related concepts more precise, having in mind their (actual or
potential) applications to economically motivated questions. In so doing, we shall
divide the presentation into two broad parts, nicknamed ‘deductive’ and ‘induc-
tive’. The former will deal with the analysis of given dynamical systems, whereas
the ‘inductive’ part will consider the complementary problem of studying eco-
nomic time series as output of unknown systems.

In particular, we have four tasks before us. First, we divide the ‘deductive’
part of the paper into two subparts, nicknamed ‘geometric’ and ‘ergodic’, and we
(thus) discuss two fundamentally different approaches to the study of dynamical
systems - the geometric approach (based on the theory of differential/difference
equations) and the ergodic approach (based on the axiomatic formulation of prob-
ability theory). Second, we discuss the question of predictability in a rigorous
manner to provide a very powerful, but abstract way of characterizing chaotic be-
havior. Third, we introduce specific applications in microeconomics, macroeco-
nomics, and finance, and discuss the policy relevancy of chaos. Finally, we briefly
discuss several statistical techniques devised to detect independence, nonlinear-
ity, and chaos in time-series data, and report the evidence of chaotic dynamics in
economics and finance.
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2 The Geometric Approach

Chaos theory is a very technical subject and a proper understanding of the issues at
stake requires that some fundamental concepts and results be discussed in detail.

Generally speaking, in order to generate complex dynamics a determinis-
tic model must have two essential properties: (i) there must be continuous- or
discrete-time lags between variables and (ii) there must be some nonlinearity in
the functional relationships of the model. In applied disciplines including eco-
nomics, the first of these features is typically represented by means of systems of
differential or difference equations and - even though there exist other mathemati-
cal formulations of dynamics which are interesting and economically relevant - in
this paper we shall concentrate our attention on them. The geometric (or topolog-
ical) approach to dynamics, which can be largely identified with the qualitative
theory of differential/difference equations, aims at the study of the asymptotic
geometric properties of the orbit structure of a dynamical system.

2.1 Continuous and Discrete Dynamical Systems

Typically, a system of ordinary differential equations will be written as6

ẋ= f (x); x2 Rn (1)

where f :U ! R
n with U an open subset ofRn andẋ� dx=dt. The vectorx de-

notes the physical (economic) variables to be studied, or some appropriate trans-
formations of them;t 2 R indicates time. In this case, the spaceR

n of dependent
variables is referred to asphase spaceor state space, while Rn�R is called the
space of motions.

Equation (1) is often referred to as avector field, since a solution of (1) at each
point x is a curve inRn, whose velocity vector is given byf (x). A solution of
Equation (1) is a function

φ : I ! R
n

6Systems described by Equation (1), in whichf does not depend directly on the independent
variablet are calledautonomous. If f does depend ont directly, we shall write

ẋ= f (x; t); (x; t) 2 Rn �R

and f :U ! R
n with U an open subset ofRn � R. Equations of this type are callednon-

autonomous. In economics they are used, for example, to investigate technical progress.
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whereI is an interval inR (in economic applications, typicallyI = [0;+∞)), such
thatφ is differentiable onI , [φ(t)] 2U for all t 2 I , and

φ̇(t) = f [φ(t)]; 8 t 2 I :

The setfφ(t) j t 2 Ig is theorbit of φ: it is contained in the phase space; the set
f(t;φ(t)) j t 2 Ig is the trajectory of φ: it is contained in the space of motions.
However, in applications, the terms ‘orbit’ and ‘trajectory’ are often used as syn-
onyms. If we wish to indicate the dependence on initial conditions explicitly, then
a solution of Equation (1) passing through the pointx0 at timet0 is denoted by

φ(t; t0;x0);

(if t0 is equal to zero it can be omitted). For a solutionφ(t;x0) to exist, continu-
ity of f is sufficient. For such a solution to be unique, it is sufficient thatf be
continuous and differentiable inU .

We can also think of solutions of ordinary differential equations in a slightly
different manner, which is now becoming prevalent in dynamical system theory
and will be very helpful for understanding some of the concepts discussed in the
following sections. Suppose we denote byφt(x) the point inRn reached by the
system at timet starting from the pointx at time 0, under the action of the vector
field f of Equation (1). Then the totality of solutions of (1) can be represented
by theone-parameter familyof maps of the phase-space onto itself,φt : Rn ! R

n,
which is calledphase flowor, for short,flow generated by the vector fieldf , by
analogy with fluid flow where we think of the time evolution as a streamline.

If we now taket as a fixed parameter and considering that, for autonomous
vector fields, time-translated solutions remain solutions [i.e., ifφ(t) is a solution
of Equation (1),φ(t + τ) is also a solution for anyτ 2 R], the problem may be
formulated as

xt+1 = T(xt); x2 Rn; t 2 N (2)

whereT = φτ andτ is the fixed value of the parametert, normalized so thatτ = 1.
Thus, a difference equation like (2) can be derived from a differential equation

like (1). This need not be that case and many problems in economics as well as
in other areas of research give rise directly to discrete-time dynamical systems. In
fact,non invertiblemaps such as the celebrated logistic map extensively discussed
later in this essay could not be derived from a system of ordinary differential
equations.

Equations like (2) are often referred to asiterated mapssince its orbit is
obtained recursively given an initial conditionxt . For example, if we composeT
with itself, then we get the second iterate
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xt+2 = T �T(xt) = T2(xt)

and by induction onn we get thenth iterate,

xt+n = T �Tn�1
(xt) = Tn

(xt)

Hence, by the notationTn(x), we meanT composed with itselfn�1 times - not
thenth derivative ofT or thenth power ofT7.

Notice the following difference between the orbits of continuous-time and
those of discrete-time systems: the former are continuouscurvesin the state space,
whereas the latter aresequences of pointsin space. Also, the fact that a map is a
function implies that, starting from any given point in space, there exists only one
forward orbit. If the function is non-invertible, however, backward orbits are not
defined8.

The short-run dynamics of individual orbits can usually be described with suf-
ficient accuracy by means of straightforward numerical integration of the differen-
tial equations or iteration of the maps. In applications, however, and specifically
in economic ones, we are often concerned not with short-term properties of indi-
vidual solutions, but with the global qualitative properties of bundles of solutions
which start from certain practically relevant subsets of initial conditions. Those
global properties, however, can only be effectively investigated in relation to tra-
jectories which are somehow recurrent (i.e., broadly speaking, those trajectories
which come back again and again to any region of the state space which they once
visited).

In what follows, we shall concentrate mainly on that part of the state space of
a system which corresponds to recurrent trajectories in the sense just indicated,
which will be made more precise below. Even so, a comprehensive analysis of the
global behavior of a nonlinear system may not be possible. In this case, the best
research strategy is probably a combination of analytical and numerical investi-
gation, the latter playing very much the same role as experiments do in natural
sciences.

7As an example, ifT(x) =�x3, thenT2(x) = T �T(x) = �(�x3)3 = x9 andT3(x) = T �T �
T(x) = T �T2(x) =�(x9)3 =�x27:

8A map is invertible if and only if it is one-to-one. For example, tha mapT: R! R defined by
T(x) = x2 is not one-to-one, sinceT(1) = 1= T(�1). However, the mapT: [0;∞)! R defined
by T(x) = x2 is one-to-one (and therefore invertible).
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2.2 Conservative and Dissipative Systems.

Dynamical systems, whether of a continuous or of a discrete type, can be classified
into conservative and dissipative ones. A system is said to beconservative, if
certain physical properties of the system remain constant in time. Formally, we
may say that the flow associated with the system given by Equation (1) preserves
volumes if at all points the so-calledLie derivative(or divergence) is zero, i.e., we
have

n

∑
i=1

∂ fi
∂xi

= 0:

Analogously, the map given by Equation (2) is said to preserve volumes in the
state space if we have at all points

j detDxT(x) j= 1

whereDxT(x) denotes the matrix of partial derivatives ofT(x).
An especially interesting class of conservative systems is formed by Hamil-

tonian systems. A continuous-time (autonomous) system of ordinary differential
equations like (1), ˙x = f (x), wherex = (k;q); k;q 2 R

n is said to beHamilto-
nian if it is possible to define a continuous functionH(k;q):R2n ! R - called
Hamiltonian function- such that

k̇ = (∂H=∂q)

q̇ =�(∂H=∂k):

If we consider that(d=dt)H(k;q) = (∂H=∂k)k̇+(∂H=∂q)q̇ = 0, we can deduce
thatH(k;q) is constant under the flow.

From the fact that in conservative systems volumes remain constant under the
flow (or map), we may deduce that those systems cannot have attracting regions
in the phase space, i.e., there can never be asymptotically stable fixed points, or
limit cycles, or strange attractors. Since strange attractors (to be defined later) are
the main object of our investigation and conservative systems are relatively rare
in economic applications, we shall not pursue their general study here9.

9One interesting economic example of a conservative dynamical system is the well-known
model of infinite horizon optimal growth, which can be formulated as follows

max
k̇

Z ∞

0
u(k; k̇)e�ρtdt

with (k; k̇)2 S�R2n, andk(0) = k0. In this formulation,u is a concave utility function,k denotes
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Unlike conservative ones,dissipativedynamical systems, on which most of
this essay concentrates, are characterized by contraction of phase space volumes
with increasing time. Dissipation can be formally described by the property that
divergence is negative, i.e., we have

n

∑
i=1

∂ fi(x)
∂xi

< 0

or, in the discrete-time case,

j detDxT(x) j< 1:

Because of dissipation, the dynamics of a system whose phase space isn-
dimensional, will eventually be confined to a subset of dimension smaller than
n. Thus, in sharp contrast to the situation encountered in conservative systems,
dissipation permits one to distinguish betweentransientandpermanentbehavior.
For dissipative systems, the latter may be quite simple even when the number of
phase space variables is very large.

To better understand this point, think of ann-dimensional system of differen-
tial equations characterized by a unique, globally asymptotically stable equilib-
rium point. Clearly, for such a system, the flow will contract anyn-dimensional
set of initial conditions to a zero-dimensional final state, a point inR

n. Think also
of ann-dimensional (n� 2) dissipative system characterized by a unique, globally
stable limit cycle. Here, too, once the transients have died out, we are left with a
one-dimensional orbit, the cycle.

the capital stock,̇k is net investment,ρ 2 R+ is the positive discount rate, and the setS is convex
and embodies the technological restrictions.

To attack this problem by means of the Pontryagin Maximal Principle, we must first of all
introduce an auxiliary vector-valued variableq2 Rn and define a function

H(k;q)� max
k̇;(k;k̇)2S

fu(k; k̇)+qk̇g:

where the variablesq can be interpreted as prices of investment goods and the Hamiltonian func-
tion H(k;q) can be interpreted as the (maximum) current value of national income, evaluated in
terms of utility. The necessary (though not sufficient) condition for maximization is that the time
evolution ofk andq satisfies the following system of differential equations

k̇=
∂H
∂q

and q̇=�
∂H
∂k

+ρq

which can be thought of as a Hamiltonian system, plus a (linear) perturbation given by the term
ρq.
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The asymptotic, permanent regime of a dissipative system is the only observ-
able behavior, in the sense that it is not ephemeral, can be repeated and therefore
be ‘seen’ (i.e., on the screen of a computer), and is often easier to investigate
than the overall orbit structure. Even though transients may sometimes last for
a very long time and their behavior may be an interesting subject for investiga-
tion, for dissipative systems we shall concentrate instead on the long-run behavior
of the system, ignoring the transient behavior associated with the start up of the
system. That is, we shall consider only the attractor (or attractors, in general) to
which trajectories from a range of initial conditions are attracted, to understand
the asymptotic properties of a dynamical system. That is, we shall concentrate on
the asymptotic properties of a dynamical system, devoting our attention mainly to
the attractors of a system, i.e., to the sets of points to which trajectories starting
from a range of initial conditions tend as time goes by.

2.3 Invariant and Attracting Sets

To discuss recurrence properties of orbits of a dynamical system, we shall start
from the notion of invariant sets. Such sets play an important role in the organiza-
tion of system orbits in the state space and their investigation is an indispensable
first step in the study of the dynamics of a system. Formally, for the discrete dy-
namical system given by Equation (2), we say that the setS�X is invariantunder
the action of the mapT, if we have:

φt(S) � S; 8 t 2 R

[respectively,Tn(S) � S; 8 n2 N ]

This says specifically that as we apply the mapT to any point ofS, then we obtain
yet another point ofS:

When constructing a mathematical model of the time evolution of certain
physical, or economic variables, we often wish to impose constraints on the set
A of ‘reasonable’ values of those variables. For example, quantities such as cap-
ital stock, consumption or relative prices should remain positive, or at least non-
negative for all times; quantities such as the saving ratio or the ratio between factor
remunerations and total income should be between zero and one at all times, etc.
In other words, we want the ‘acceptable’ setA to be invariant. The invariance of
A is a necessary (although not sufficient) condition for the validity of a dynamical
model and in particular of its, implicit or explicit, adjustment mechanisms.
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In most cases of practical interest, however, finding invariant sets is not enough.
We also wish to locate the region(s) of the state space which ultimately capture
all the orbits originating in a certain (not too small) domain. For this purpose, we
suggest the following definition.

Definition 1 A closed invariant set A is said to be an attracting set if for every
open set V� A, there exists an open neighborhood U of A, such that for all x2U
(except perhaps certain subsets of Lebesgue measure zero); Tn(x) 2 V for all
n> N > 0 and Tn(x)! A for n!∞:

For an attracting set we can also define thebasin(or domain) of attraction, as
the set of points each of which gives rise to an orbit that is caught by the attracting
set. Formally, we can define the basin of attraction as the setB=

S
t�0φt(V) [for

maps,B=
S

n�0Gn(V)].
The fact that a set is attracting does not mean that all its parts are attracting

too. Therefore, in order to describe the asymptotic regime of a system, we need
the stronger concept ofattractor. A desirable property of an attractor - as dis-
tinguished from an attracting set - isindecomposability,or irreducibility. This
property obtains when an orbit, starting from any point on the attractor, as time
goes by gets arbitrarily close to any other point. Strangely enough, there is no
straightforward and universally adopted definition of attractor, and although the
properties of the simpler cases can be easily dealt with, more complicated types
of attractors present difficult conceptual problems. In an operational, non-rigorous
sense, an attractor is a set on which experimental points generated by a map (or
a flow) accumulate for larget10. We shall retain this broad, operational definition
here, deferring a more sophisticated discussion of the question of attractiveness
and observability to the part of this paper concerning the ergodic approach11.

The simplest type of an attractor is a stablefixed point, or, using a terminology
more common in economics, a stableequilibrium12. Ascertaining the existence

10See, for example, Eckmann and David Ruelle (1985, pp.623).
11The notion of attractiveness is intimately related to that of ‘stability’ of orbits. Given the

vastity of the subject, we cannot deal with it in any detail here and shall refer the reader to the
relevant bibliography - for a recent, very clear discussion of this topic, see Paul Glendinning
(1994).

12In the recent times, economists often use a notion of equilibrium somewhat different from
that of mathematicians and physicists, sometimes labelled ‘dynamic’ or ‘sequence equilibrium’.
Broadly speaking, the latter implies that certain conditions hold (in a nutshell, ‘all markets clear’)
at all times, while the system evolves in time. As one of these author argued elsewhere [Al-
fredo Medio (1992, pp. 11-12)], this representation in fact implies the presence of two dynamic
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of a fixed/equilibrium point mathematically amounts to finding the solutions of
a system of algebraic equations. In the continuous-time case ˙x = f (x);the set of
equilibria is defined byE = fx̄ j f (x̄) = 0g, i.e., the set of values ofx such that its
rate of change in time is 0. Analogously, in the discrete-time casext+1 =T(xt), we
haveE = fx̄ j x̄�T(x̄) = 0g, i.e., the values ofx which are mapped to themselves
by T:

As an example, consider the ‘logistic’ map

xt+1 = Tr(xt) (3)

= rxt(1�xt); x2 [0;1]; r 2 (0;4]:

To find the fixed points of (3), we putxt+1 = xt = x and solve forx, findingx1 = 0
andx2 = 1�1=r - see Figure 1.

To get some idea of the importance of fixed points, in Figure 2 we plot the
phase diagram of the logistic map for different values of thetuning (or control)
parameter, r. Notice that the height of the phase curve hill depends on the value
r. For r < 1, the only fixed point in the interval 0� x� 1 is x̄= 0, but forr > 1,
there are two fixed points. Using graphical iteration (an algorithmic process of
drawing vertical and horizontal segments first to the phase curve and then to the
diagonal,xt+1 = xt , which reflects it back to the curve), it is easy to show that all
trajectories for starting values in the interval 0� x� 1 and forr < 1 approach the
final valuex̄= 0: The pointx̄= 0 is the attractor for those orbits and the interval
0� x� 1 is the basin of attraction for that attractor.

In general, we can examine the dynamical information contained in the deriva-
tive of the map at the fixed point,T 0(x̄). If jT 0(x̄)j 6= 1; x̄ is calledhyperbolic fixed
point. In fact a fixed point ¯x is stable(or attracting) if jT0(x̄)j < 1, unstable(or
repelling) if jT0(x̄)j> 1, andsuperstable(or superattractive) if jT 0(x̄)j= 0 - super-
stable in the sense that convergence to the fixed point is very rapid. Fixed points
whose derivatives are equal to one in absolute value are callednonhyperbolic(or
neutral) fixed points.

Next in the scale of complexity of invariant sets, we considerstable periodic
solutions, or limit cycles. For maps, a point ¯x is a periodic point ofT with period
k, if Tk(x̄) = x̄ for k > 1 andT j(x̄) 6= x̄ for 0 < j < k. In other words, ¯x is a
periodic point ofT with period k if it is a fixed point of Tk. In this case we

mechanisms: a short-run, often hidden, dynamics generating a temporary equilibrium (‘market
clearance’), and a long-run dynamics describing the evolution of equilibria in time, not necessar-
ily converging to a stationary state (fixed point).
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say that ¯x has periodk underT, and the orbit is a sequence ofk distinct points
fx̄;T(x̄); : : : ;Tk(x̄)g which, under the iterated action ofT, are repeatedly visited
by the system, always in the same order. Since all points between ¯x andTk(x̄)
are also periodk points, the resulting sequence is known as aperiod k cycleor
alternatively ak-period cycle. Notice thatk is theleastperiod - if k= 1, then ¯x is
a fixed point forT13.

The third basic type of attractor is calledquasiperiodic. If we consider the
motion of a dynamical system after all transients have died out, the simplest way
of looking at a quasiperiodic attractor is to describe its dynamics as a mecha-
nism consisting of two or more independent periodic motions - see Robert Hilborn
(1994, pp. 154-157) for a non-technical discussion. Quasiperiodic orbits can look
quite complicated, since the motion never exactly repeats itself (hence,quasi),
but the motion is not chaotic (as it was wrongly once conjectured). Notice that
quasiperiodic dynamics have been found to occur in economically motivated dy-
namical models - see, for example, Hans-Walter Lorenz (1993), Medio (1992,
chapter 12), and Medio and Giorgio Negroni (1996).

Attractors with an orbit structure more complicated than that of periodic or
quasiperiodic systems are calledchaoticor strange attractors. The strangeness
of an attractor mostly refers to its geometric characteristic of being a ‘fractal’
set, whereas chaotic is often referred to a dynamic property, known as ‘sensitive
dependence on initial conditions’, or equivalently, ‘divergence of nearby orbits’.
Notice that strangeness, as defined by fractal dimension, and chaoticity, as defined
by sensitive dependence on initial conditions, are independent properties. Thus,
we have chaotic attractors that are not fractal and strange attractors that are not
chaotic.

As we shall see, separation of nearby orbits, or, equivalently, amplification of
errors is the basic mechanism that makes accurate prediction of the future course
of chaotic orbits impossible, except in the short run. On the other hand, as chaotic
attractor are bounded objects, the expansion that characterizes their orbits must be
accompanied by a ‘folding’ action that prevents them to escape to infinity. The
coupling of ‘stretching and folding’ of orbits is the distinguishing feature of chaos
and it is at the root of both the complexity of its dynamics and the ‘strangeness’
of its geometry.

In dissipative systems, a chaotic attractor typically arises when the overall con-

13For example, the point 1 lies on a 2-cycle forT(x) =�x3, sinceT(1) =�1 andT(�1) = 1:
Similarly, the point 0 lies on a 3-cycle forT(x) =�3

2x2+ 5
2x+1, sinceT(0) = 1; T(1) = 2, and

T(2) = 0:
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traction of volumes, which characterizes those systems, takes place by shrinking
in some directions, accompanied by (less rapid) stretching in the others. How-
ever, one-dimensional, non-invertible maps that generate chaotic orbits charac-
terized by sensitive dependence on initial conditions - such as, for example, the
logistic map - pose a puzzling problem. Strictly speaking, they are not conser-
vative or dissipative: they might indeed be called ‘anti-dissipative’. These maps
only have a stretching action and their output remains bounded due to the effect
of the (nonmonotonic) nonlinearity. We could think of these maps as limit cases
of (dissipative) two-dimensional, invertible maps with very strong contraction in
one direction - so strong that, in the limit, only one dimension is left, along which
nearby orbits separate.

In what follows, we shall discuss the ‘fractal’ property of chaotic attractor
briefly, whereas the ‘sensitive dependence on initial conditions’ property of chaos
will be given greater attention here and in the ergodic section of the paper, since
this property of chaos is, in our opinion, the most relevant to economics.

2.4 Fractal Dimension

The term ‘fractal’ was coined by Benoit Mandelbrot (1985) and it refers to ge-
ometrical objects characterized by non-integral dimensions and ‘self-similarity’.
Intuitively, a snowflake can be taken as a natural fractal14. The problem of defin-
ing measurement criteria finer than the familiar Euclidean dimensions (length,
area, volume) in order to quantify the geometric properties of ‘broken’ or ‘porous’
objects was tackled by mathematicians long before the name and properties of
fractals became popular. There now exists a rather large number of criteria for
measuring qualities that otherwise have no clear definition (such as, for example,
the degree of roughness or brokenness of an object), but we shall limit ourselves
here to discuss the simplest type concisely.

Let Sbe a set of points in a space of Euclidean dimensionp (think, for exam-
ple, of the points on the real line generated by the iterations of a one-dimensional
map). We now consider certain boxes of sideε (or, equivalently, certain spheres
of radiusε), and calculate the minimum number of such cells,N(ε), necessary to
‘cover’ S. Then, thefractal dimension Dof the setSwill be given by the following
limit (assuming it exists)

14The termfractal comes from the Latinfractuswhich means broken.
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D� lim
ε!0

log(N(ε))
log(1=ε)

(4)

The quantity defined in Equation (4) is also called the (Kolmogorov)capacity
dimension. It is easily seen that, for the most familiar geometrical objects, it
provides perfectly intuitive results. For example, ifS consists of just one point,
N(ε) = 1 andD = 0; if it is a segment of unit length,N(ε) = 1=ε, andD = 1;
if it is a plane of unit area,N(ε) = 1=ε2 and D = 2; finally, if S is a cube of
unit area,N(ε) = 1=ε3 andD = 3, etc. That is to say, for ‘regular’ geometric
objects, dimensionD does not differ from the usual Euclidean dimension, and, in
particular,D is an integer.

The fractal dimension, however, is not always an integer. Let us consider the
fractal calledCantor set(or Cantor dust)- named after the German mathematician
George Cantor (1845-1918). To make a Cantor set, start with a line segment
of unit length. Remove the middle third and repeat this process without end,
each time on twice as many line segments as before. The Cantor set is the set
of points that remains, which are infinitely many but their total length is zero.
What is the fractal dimension of the Cantor set? By making use of the notion
of capacity dimension, we shall haveN(ε) = 1 for ε = 1, N(ε) = 2 for ε = 1=3,
and, generalizing,N(ε) = 2n for ε = (1=3)n. Taking the limit forn ! ∞ (or,
equivalently, taking the limit forε! 0), we can write

D = lim
n!∞
(ε!0)

log 2n

log 3n ' 0:63

We have thus quantitatively characterized a geometric set that is more complex
than the usual Euclidean objects. Indeed the dimension of the Cantor set is a
non-integer. We might say that the Cantor dust is an object ‘greater’ than a point
(dimension 0) but ‘smaller’ than a segment (dimension 1). It can also be verified
that the Cantor set is characterized by self-similarity.

Let us consider another fractal, namely the Sierpinski triangle - named after
the Polish mathematician Vaclav Sierpinski (1882-1969). To construct a Sierpin-
ski triangle, we start with an equilateral triangle of unit side length. Connect the
inner midpoints of the sides with lines and remove the inner triangle of the four
equal triangles. Repeat this process to infinity, each time on three times as many
triangles as before. At its infinite stage of growth, when the Sierpinski triangle is
complete and fully grown, it will consist of an infinite number of triangles with a
total area of zero. What is the value ofD for the Sierpinski triangle? Since after
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n stages we are left withN(ε) = 3n triangles of side lengthε = 1=2n; taking the
limit for n! ∞ (or, equivalently,ε! 0) we have

D = lim
n!∞
(ε!0)

log 3n

log 2n ' 1:584

Here,D is smaller than 2, in spite of the fact that the triangle is embedded in two
dimensions15.

The concept of fractal dimension is useful in the geometric analysis of dynam-
ical systems, because it can be conceived of as a measure of the way trajectories
fill the phase space under the action of a flow or a map. A non-integer fractal
dimension, for example, indicates that trajectories of a system fill up less than
an integer subspace of the phase space - see Medio (1992, chapter 7) for a non-
rigorous, but intuitive discussion. Also, the concept of fractal dimension is useful
in the quantitative analysis of chaotic attractors. For example, the dimension of the
attractor of a system [as measured by (4)] can be taken as an index of complexity,
as indicated by the essential dimension of the system.

2.5 Lyapunov Exponents

To provide a rigorous characterization, as well as a way of measuring sensitive
dependence on initial conditions, we shall now discuss a powerful conceptual tool
known as Lyapunov exponents. They provide an extremely useful tool for char-
acterizing the behavior of nonlinear dynamical systems. They measure the (in-
finitesimal) exponential rate at which nearby orbits are moving apart. A positive
Lyapunov exponent is an operational definition of chaotic behavior16.

Although Lyapunov exponents could be discussed in a rather general frame-
work, we shall deal with the issue in the context of one-dimensional maps, since
they are by far the most common type of dynamical system encountered in eco-
nomic applications of chaos theory. Consider, therefore, the map given by Equa-
tion (2), withT : U ! R, U being a subset ofR. We want to describe the evolution
in time of two orbits originating from two nearby pointsx0 andx0+ ε (whereε is

15Similarly, the value ofD for the Sierpinski gasket (a 3-dimensional version of the Sierpinski
triangle) is 2 and the value ofD for the Koch snowflake (named after the Swedish mathematician
Helge von Koch who proposed it in 1904) is 1:261::: – see Hans Lauwerier (1991) for a discussion
of these and other fractal objects.

16Notice, however, that it is possible to have sensitive dependence on initial conditions with
orbit divergence less than exponential. In this case, no Lyapunov exponent will be positive.
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the difference, assumed to be infinitesimally small, betweenx0 andx0+ ε): If we
apply the map functionT, n times to each point, the difference between the results
will be related toε as follows:

dn = enλ(x0)ε

wheredn is the difference between the two points after they have been iterated by
the mapT, n times andλ(x0) is the rate of convergence or divergence.

Taking the logarithm of the above equation and solving forλ(x0) gives

λ(x0) =
1
n

logj
dn

ε
j:

Asymptotically, we shall have17

λ(x0) = lim
n!∞

1
n

logj
dn

ε
j (5)

= lim
n!∞

1
n

logjT0(xn�1):::T
0(x1)T

0(x0)j

= lim
n!∞

1
n

n�1

∑
j=0

logjT 0(xj)j

The quantityλ(x0) is called Lyapunov exponent. Note that the right hand side of
(5) is an average along an orbit (a time average) of the logarithm of the deriva-
tive18. From Equation (5), the interpretation ofλ(x0) is straightforward: it is the
(local) asymptotic exponential rate of divergence of nearby orbits19.

As an example, let

TΛ(x) =

�
2x for 0� x� 1=2
2(1�x) for 1=2� x� 1

(6)

be the symmetric ‘tent’ map. Clearly,λ(x0) is not defined ifx0 is such thatxj =

T j
Λ(x0) = 1=2 for somej (because the derivative is not defined). For other points

x0 2 [0;1], jT 0Λ(xj)j= 2 for all j, so thatλ(x0) = log2.

17Notice thatdn
ε = T0(xn�1):::T 0(x1)T 0(x0):

18Notice that, in general, Lyapunov exponents depend on the selected initial conditions. We
shall see later under what conditions they may be independent of them.

19It is local, since we evaluate the rate of separation in the limit, asε! 0. It is asymptotic, since
we evaluate it in the limit of indefinitely large number of iterations, asn! ∞ - assuming that the
limit exists.
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As another example, consider the logistic map,Tr(x), given by Equation (3).
SinceT 0r (xj) = r(1�2xj), the Lyapunov exponent is given by

λ(x0) = lim
n!∞

1
n

n�1

∑
j=0

log
��r(1�2xj)

��
= logr + lim

n!∞

1
n

n�1

∑
j=0

logj1�2xj j

Clearly, if x0 = 0 or 1, thenλ(x0) = logr. For pointsx0 2 (0;1) and for r = 4,
λ(x0) = log2.

The sign of Lyapunov exponents is especially important to classify different
types of dynamical behavior. In particular, the presence of a positive Lyapunov
exponent signals that nearby orbits diverge exponentially in the corresponding
direction. In its turn, this indicates that observation errors will be amplified by the
action of the map. We shall see in what follows that the presence of a positive
Lyapunov exponent is intimately related to the lack of predictability of dynamical
systems, and thus it is an essential feature of chaotic behavior20.

2.6 Topological Conjugacy

Before we move on, we shall discuss a fundamental type of equivalence relation
between maps, calledtopological conjugacy. It plays an important role in the
study of dynamical systems, since it shows that two apparently different systems
may actually be dynamically equivalent.

Definition 2 Let f : X ! X and g: Y ! Y be two maps. A homeomorphism21

h : X!Y is called a topological conjugacy (or topological equivalence) if h� f =
g�h. We also say that f and g are topologically conjugate by h, or that f and g
are conjugate.

The relationship can be described pictorially as a commutative diagram

20The calculation of Lyapunov exponents in the general, multidimensional case is more complex
and cannot be discussed here in any detail.

21A maph : X ! Y is ahomeomorphismif and only if h is continuous, one-to-one, onto, and
has a continuous inverse. In this case, we say that the domain and codomain are homeomorphic to
one another.
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x2 X
f

�! f (x) 2 X

h

?????y
???y h

h(x) 2Y
g
�! h( f (x)) = g(h(x)) 2Y

Broadly speaking, the diagram says that if we start with an elementx 2 X in
the upper left corner and then follow the arrows in either possible direction, we
always end up at the same elementh( f (x))= g(h(x))2Y in the lower right corner.
The homeomorphic property ofh and the conditionh� f = g� h guarantee that
the dynamics off on X and that ofg on Y are essentially the same - see Clark
Robinson (1995) for more details.

As an example, it is easy to show that the logistic map (withr = 4), T4(x);
on [0;1] and TΛ(x) on [0;1] are topologically conjugate byh(x) = sin2(πx=2).
Clearly,h transforms the unit interval[0;1] to itself in a one-to-one fashion, it is
continuous, and its inverse,h�1, is also continuous. To prove the conjugacy, it
suffices to show thatT4(x)�h= h�TΛ(x).

2.7 Transition to Chaos

In the previous sections, we have provided a classification of attractors and dis-
cussed the distinct properties of chaotic attractors. The relevance of these proce-
dures would be greatly enhanced if, in addition, we could describe the qualitative
changesin the orbit structure of the system which take place when the control
parameters are varied. In this way, we would obtain not only a snapshot of chaotic
dynamics, but also a description of its emergence. Moreover, if we could provide
a rigorous and exhaustive classification of the ways in which complex behavior
may appear, transition to chaos could be predicted theoretically, and potentially
turbulent mechanisms could be detected in practical applications - and their unde-
sirable effects could be avoided by acting on the relevant parameters.

Unfortunately, the present state of the art does not permit us to define the
prerequisites of chaotic behavior with sufficient precision and generality. In order
to forecast the appearance of chaos in a dynamical system, we are for the time
being left with a limited number of theoretical predictive criteria and a list of
certain typical (but by no means exclusive) ‘routes to chaos’. Typically, transition
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to chaos takes place throughbifurcations. A bifurcation is an essentially nonlinear
phenomenon and describes a qualitative change in the orbit structure of a (discrete
or continuous-time) dynamical system when one or more parameter is changed.
Bifurcation theory is a vast and complex area and we shall consider it here only
incidentally.

There exist various types of routes to chaos, generated by so-called codimen-
sion one bifurcations (that is, bifurcations depending on a single parameter). In
what follows, we shall only (briefly) deal withperiod-doubling, probably the
best known route to chaos at least in the economics literature - see, for exam-
ple, William Baumol and Jess Benhabib (1989). For a discussion of other routes
to chaos (such as intermittency and the quasiperiodic route), see Medio (1992,
chapter 9).

Period-doubling takes place in both discrete and continuous-time dynamical
systems, and can be most simply described by considering the dynamics of the
logistic map,Tr(x) given by equation (3), for different values ofr. If r < 1; the
phase curve will lie entirely below thext+1 = xt line in the positive quadrant - see
Figure 3(a) - andx= 0 is the only fixed point (in factx= 0 is an equilibrium for
all r). Figures 3(a) and 3(b) give the phase and state space representations ofTr(x)
for r = 0:6 andx0 = 0:01. Notice that the only fixed point is atTr(x) = x= 0:

As r increases beyond 1,x= 0 loses stability, but a new (positive) fixed point,
x= 1�1=r, appears at the intersection of thext+1 = xt line and the phase curve,
as shown in Figure 4(a). In fact, forr = 2 the fixed pointx = 1�1=r becomes
superstable - sinceT 02(1=2) = 0: Therefore, for 1< r < 3 there are two fixed
points: x = 0, which is unstable, andx = 1�1=r, which is stable. From Figure
4(b) we see that the trajectory approaches some positive unique value (a so-called
single limit point) between 0 and 1.

As r goes throughr = 3 , a bifurcation called ‘flip’ occurs and the situation
changes. The fixed pointx = 1� 1=r turns into a repeller, sincejT 0r (x)j > 1,
and a stable 2-cycle (or an orbit of period2) is born: x;Tr(x);T2

r (x) = x. For
example, forr = 3:2360679775, there is a superstable orbit of period 2: 0:5,
0:8090169943:::, 0:5 - see the state diagram in Figure 5(b).

Let us briefly describe how this happens. For an orbit of period 2 we need to
consider the function ofTr �Tr(x) - abbreviatedT2

r (x) - and the associated dynamic
equation

T2
r (x) = Tr �Tr(x) (7)

= r2x(1�x)(1� rx(1�x)):
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This is again a nonlinear system and its dynamic behavior can be studied asr
varies using the same analysis as before. In particular, the fixed points ofT2

r (x)
can be found by equatingT2

r (x) with x and solving the resulting 4th order equa-
tion. Hence

x = T2
r (x)

= r2x(1�x)(1� rx(1�x))

= �r3x4+2r3x3� (r2+ r3)x2+ r2x

whence we can derive the four fixed points, namely:

x1 = 0

x2 = 1�1=r

x3 =
1
2r

�
r +1+

p
(r�3)(r +1)

�
x4 =

1
2r

�
r +1�

p
(r�3)(r +1)

�
Clearly, the four fixed points ofT2

r (x) are the two fixed points ofTr(x) and the
two elements of the 2-cycle, which have no counterpart inTr(x) - see the phase
diagram in Figure 5(a).

The fixed points of the second-order system (7) are characterized by the deriva-
tive of T2

r (x); (T
2
r )

0(x): Since(T2
r )

0(0) = r2 and (T2
r )

0(1� 1=r) = (2� r)2; for
values ofr between 3 and 3:45, each of the fixed pointsx = 0 andx = 1� 1=r
(which are still present) are unstable. The other two fixed points, however,x =

1
2r

�
r +1�

p
(r�3)(r +1)

�
, are both stable, thus implying that each of them

locally attracts the dynamics of the second-order system (7).
With respect to Figure 5(a), forr between 3 and 3:45, the trajectories of the

first-order system (3) no longer converge to the fixed pointx= 1�1=r (point B),

but escape from it and diverge towards the pair of fixed points,x= 1
2r

�
r +1�

p
(r�3)(r +1)

�
- points D and C, respectively. Any one of them is unstable under the first-order
system (3) - sincejT 0r (x)j > 1 at both C and D, so that the trajectories once in
any one of these points are initially repelled. Points C and D, however, are stable
under the second-order system (7) - since(T2

r )
0(x) at both C and D is less than 1

in absolute value, so that after having moved away from each of C and D in the
first step, trajectories come back to each of these points in the second step, thus
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making the dynamics of system (7) stable with respect to each of C and D. Sum-
marizing, forr between 3 and 3:45, the trajectories ofTr(x) oscillate in the setfC,
Dg, giving rise to a stable 2-cycle forTr(x), as it is shown in Figure 5(b). In this
case the system is said to undergo aflip bifurcation- see John Guckenheimer and
Philip Holmes (1983).

If r is increased further, then the two stable fixed points ofT2
r (x) become

unstable. In particular, both fixed points ofT2
r (x) will bifurcate at the samer

value, leading to an orbit of period 4. In other words

T2
r �T2

r (x) = T4
r (x)

= Tr �Tr �Tr �Tr(x)

will have eight fixed points, four of which will be stable. For example, forr =

3:498561699 there is a superstable orbit of period 4 : 0:5, 0:874:::, 0:383:::, and
0:827::: - see the phase and state space representations in Figures 6(a) and 6(b).

The same bifurcation scenario will repeat over and over again asr is increased,
yielding orbits of period 16, 32, 64; and so onad infinitum. However, the se-
quencefrκg of values ofr at which κ-cycles appear has a finite accumulation
point r∞ ' 3:569946, involving an infinite number of period doubling bifurca-
tions22. The limit set corresponding tor∞ is a geometric object with a non-integer
fractal dimension' 0:538 and a Lyapunov exponent equal to zero, and conse-
quently the motion on it is not chaotic in the sense defined above. In fact Mitchell
Feigenbaum (1978) discovered that convergence ofr to r∞ is controlled by the
universal parameterδ ' 4:669202 - known as theFeigenbaum attractor. The
computation ofδ is based on the formula

δ = lim
κ!∞

�
rκ� rκ�1

rκ+1� rκ

�

where(rκ� rκ�1) and (rκ+1� rκ) are the distances on the real line between suc-
cessive flip bifurcations.

Pastr∞; we enter what is usually called the ‘chaotic zone’. Forr∞ < r < 4
the model will behave either periodically or aperiodically - in the latter case, the
dynamics may be nonchaotic (zero Lyapunov exponent, no sensitive dependence

22The values ofr for which these transitions from one cycle to another cycle occur, are called
bifurcation points, the transitions are calledbifurcations, and the phenomenon is calledperiod-
doubling.
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on initial conditions) or chaotic (positive Lyapunov exponent, sensitive depen-
dence on initial conditions). There is, for example, a tiny interval nearr = 3:83
(a so-calledwindow of stabilityor periodicity) where a stable 3-cycle occurs -
see Figures 7(a) and 7(b). Just pastr = 3:83, the period doubling occurs again,
leading to orbits of period 6; 12; 24, and so on, also governed by the Feigenbaum
constant. In fact, forr betweenr∞ and 4 there is a denumerably infinite number of
periodic windows and still an indenumerable number of values ofr for which the
model behaves aperiodically (chaotically or not). Forr = 4, we have a completely
chaotic orbit, as is illustrated in the state space diagram of Figure 8.

In fact, the different period lengthsκ of stable periodic orbits appear in a
universal order, with higher-period cycles being associated with higher values of
r. In particular, ifrκ is the value ofr at which a stableκ-cycle first appears as
r is increased, thenrκ > rq if κ � q (whereκ � q simply means that “κ is listed
beforeq”) in the following Sharkovski (1964) ordering (in which we first list the
odd numbers except one, then 2 times the odds, 22 times the odds, etc., and at the
end the powers of 2 in decreasing order - representing the period doubling)

3 � 5� :::� 2�3� 2�5� :::� 22 �3� 22 �5� :::

� 23 �3� 23 �5� :::� 23� 22� 2� 1

This ordering seems strange, but it turns out to be the ordering which expresses
which periods imply which other periods. For example, the minimumr value for
an orbit of periodκ = 2�3= 6 is larger than the minimumr value for an orbit of
periodκ = 22 � 3 = 12, because 6� 12 in the Sharkovski ordering. One conse-
quence of this ordering is that the existence of a stableκ (= 3)-cycle guarantees
the existence of any other stableq-cycle for somerq < rκ - see, for example,
Tien-Yien Li and James Yorke (1975).

3 The Ergodic Approach

We have so far been discussing dynamical systems mainly from a geometric (or
topological) point of view. This approach, being intuitively appealing and lend-
ing itself to suggestive graphical representations, has been tremendously success-
ful in the study of low-dimensional systems, such as, for example, (discrete-
and continuous-time) systems with one and perhaps two variables. For higher-
dimensional systems, however, the geometric approach has encountered rather
formidable obstacles and rigorous results and classifications are few.
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Thus, it is sometimes convenient to change perspective and adopt a different
approach, based on the axiomatic formulation of probability theory and aimed
at the investigation of statistical properties of orbits. This requires the use and
understanding of some basic notions and results of set theory and measure theory,
which we shall briefly review. We shall see that in many aspects the ergodic
theory of dynamical systems parallels the geometric one. Moreover, the ergodic
approach is more powerful and effective in dealing with basic questions such as
complexity and predictability as well as with the relation between deterministic
and stochastic systems.

3.1 Some Elementary Measure Theory

Definition 3 Let X be a set of points x. A systemℑ of subsets of X is called a
σ-algebra if

a. /0;X 2 ℑ;

b. A2 ℑ implies Ac 2 ℑ; and

c. An 2 ℑ;n= 1;2; :::, implies[An 2 ℑ;\An 2 ℑ.

That is, ℑ is a σ-algebra if the null set (/0) and X are in ℑ, the setA and its
compliment (Ac) are inℑ, and given a sequencefAng

∞
n=1 of subsets ofX, An 2 ℑ,

then the union[An and the intersection\An are inℑ. The spaceX together with
a σ-algebraℑ of its subsets is ameasurable space, and is denoted by(X;ℑ).
Since we are dealing here with metric spaces (i.e., with spaces endowed with a
distance, such asRn), among the variousσ-algebras, we shall consider theBorel-
σ-algebra, i.e., the smallest such algebra containing the collections of open (or
closed) subsets ofX.

Definition 4 Let(X;ℑ) be a measurable space. A real-valued function µ=µ(A);A2
ℑ, taking values in[0;∞], is a measure if

a. µ( /0) = 0;

b. µ(A)� 0 for all A 2 ℑ; and

c. if fAng
∞
n=1 is a disjoint sequence ofℑ-sets, then µ([∞

n=1An) = ∑∞
n=1µ(An):
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Thus a measure assigns zero to the empty set, is nonnegative, and is countably
additive. The triple(X;ℑ;µ) is called ameasure space. We shall be interested in
finite measures (that is, 0� µ< ∞) in which caseµ can suitably be rescaled so
thatµ(X) = 1. Whenµ(X) = 1, µ(X) is called aprobability measureand (X;ℑ;µ)
is called aprobability space. In this caseX is the sample space (or space) of
elementary events, the setsA in ℑ are events, andµ(A) is the probability of the
eventA:

Two especially important examples of probability measures, which will be
used in the sequel, are theDirac and theLebesque measures. The former, also
calledDirac delta and usually denoted byδx is the probability measure that as-
signs value 1 to all the subsetsA of X that contain a given pointx, and value zero
to all the subsets that do not contain it. Formally,δx(A) = 1 if x2A andδx(A) = 0
if x =2 A: TheLebesque measureon the real line (henceforth denoted bym) is the
measure that assigns to each interval its length as its measure23. In particular, the
Lebesque measure of(a;b), as well as of any of the intervals(a;b], [a;b], or [a;b),
is simply its lengthjb�aj.

Definition 5 Let (X;ℑ;µ) be a probability space. A transformation T of X into X
is measurable if, for every A2 ℑ, T�1A= fx : Tx2 Ag 2 ℑ.

Notice thatT�1A denotes the pre-image ofA – the set of points that are mapped
ontoA by T in one step.

Definition 6 A measurable transformation T is said to preserve a measure µ if
for every A2 ℑ, µ(T�1A) = µ(A). If T is measure-preserving (with respect to µ),
µ is called T-invariant.

When these concepts are applied to the investigation of dynamical systems,
X will typically correspond to the phase space and the elementsx of X to states
(or positions) of the system. The subsetsA (the events) will correspond to certain
interesting configurations of orbits of the system in the phase space (such as, for
example, fixed points, limit cycles, or strange attractors, basins of attraction, etc.).
Finally, the transformationT will correspond to the (flow) map governing the evo-
lution of the state of the system in time24. We shall refer to a measure-preserving

23Thus, the Lebesgue measure corresponds to the intuitive notion of length (for one-dimensional
sets) and volume (fork-dimensional ones). It also provides an intuitive and physically relevant
notion of probability.

24We can think, for example, of the transformationT as a mechanism for recursively generating
a samplefx;Tx; :::;Tnxg from the domainX from an initial conditionx2 X. Since, in the present
context, there is no essential difference between discrete- and continuous-time dynamical systems,
in what follows we shall discuss the issue in terms of maps, i.e., discrete-time systems.

26



transformationT on the probability space (X;ℑ;µ) as adynamical system, denoted
by (X;ℑ;µ;T).

3.2 Ergodicity

As we want to study the statistical properties of orbits generated by measure-
preserving transformations, we need to calculate averages over time. In fact, cer-
tain basic quantities such as Lyapunov exponents (which, as we have seen above,
measure the rate of divergence of nearby orbits) or metric entropy (which, as we
shall see below, measures the rate of information production of observations of a
system) can be looked at as time averages.

The existence of such averages is guaranteed by the following theorem.

Theorem 1 (Birkhoff and Khinchin). Let(X;ℑ;µ) be a probability space, T mea-
sure preserving and ergodic on X, and f an integrable function. Then

lim
n!∞

1
n

n�1

∑
i=0

f (Tix) = bf (x)
exists for µ-almost every x2 X25. bf (x) is T -invariant, i.e.,bf (T(x)) = bf (x):

In general, time averages depend onx, meaning that they may be different for
orbits originating from different initial states. This happens, for example, when
the spaceX is decomposable (under the action ofT), in the sense that there exist,
say, two subspacesX1 andX2, both invariant with respect toT (i.e.,T maps points
of X1 only to X1 and points ofX2 only to X2)

26. It is for this reason that we shall
concentrate in a fundamental class of invariant measures that satisfy the require-
ment of indecomposability, and known asergodic measures. This will ensure that
X is (dynamically) indecomposable - a requirement, for it to be called chaotic.

Definition 7 Given a dynamical system(X;ℑ;µ;T), the measure-preserving trans-
formation T is said to be ergodic (or indecomposable) if T�1(A) = A; for some

25‘µ-almost everyx2 X’ means ‘all pointsx2 X, except a set of points to whichµ assigns zero
value’.

26The dynamic decomposability of the system - a geometric, or topological fact - is reflected
in the existence ofT-invariant measuresµ that are decomposable in the sense that they can be
represented as a weighted average of invariant measures. For example, in the case mentioned
above, we can writeµ = αµ1 +(1�α)µ2, whereα 2 (0;1) andµ1 andµ2 may or may not be
further decomposed.

27



A2 ℑ; implies either µ(A) = 1 or µ(A) = 0: In this case, the T-invariant measure
µ is also said to be an ergodic measure for T .

As an example, consider a discrete-time dynamical system characterized by an
attracting periodic orbit of periodk;

�
x;Tx; :::;Tkx= x

	
. In this case, the measure

that assigns the value 1=k to each point of the orbit is invariant and ergodic.
To discuss ergodic properties of dynamical systems, letf :X ! R be a mea-

surable function, representing a measurement made on the system (such as, for
example, the number of times that an orbit generated by the mapT and starting
from the pointx visits a setA whenT is iteratedn times). As it was argued in the
previous section, it is interesting and sometimes necessary to consider thetime av-
erageof f (the average value off evaluated along the forward trajectory), defined
by

bf (x) = lim
n!∞

1
n

n�1

∑
i=0

f (Tix):

If bf (x) exists, it may be thought of as an equilibrium value off .
Alternatively, we could evaluate thespace(or phase) averageof f , by consid-

ering f as a function ofx and multiplying that value by the probability that the
system visits the setA. This average is the expectation (or mean value) off (x)
evaluated on the spaceX

f =
Z

X
f (x)dµ(x):

The following result establishes the connection between the time average and the
space average.

Theorem 2 Let (X;ℑ;µ) be a probability space. If the measure-preserving trans-
formation T is ergodic then the limit functionbf (x) defined in the Birkhoff-Khinchin
theorem above is a constant and we have

lim
n!∞

1
n

n�1

∑
i=0

f (Tix) = bf (x) = Z
X

f (x)dµ(x)

In words, the theorem states that ifT is ergodic, then the time average,bf equals
the space averagef .
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3.3 Lyapunov Exponents Revisited

Clearly, ergodic theory provides an alternative (and often simpler) way of calcu-
lating average properties of a dynamical system. In fact, we can use the ideas just
discussed, to reformulate the definition of Lyapunov exponents. In particular, if
we choosef (x) = logjT 0(x)j and apply the ergodic theorem, then the Lyapunov
exponent of a mapT can be written as

λ =

Z
X

log
��T 0(x)��dµ(x)

which is independent of the initial condition. The quantity logjT 0(x)j - the natural
logarithm of the absolute value of the slope of the curve generated by the mapT in
the(xt+1;xt) plane - measures the (exponential) rate at which small discrepancies
between trajectories (or small errors) are amplified by the action of the map. In
the general case in which that slope varies withx, its different values are weighted
by µ. It follows that slopes obtaining over sets of values ofx whoseµ-measure is
zero, do not affect the final results.

All this can be easily illustrated by two simple examples. Let us first compute
the Lyapunov exponent for the asymmetric tent map

TΛ̂(x) =

�
x=a for 0� x� a

(1�x)=(1�a) for a� x� 1

In this case, it is easy to see that the mapTΛ̂(x) preserves the Lebesque measure
whose density function isρ(x) = 1, implying thatµ(x) =

R
x ρ(x)dx=

R
xdx and

dµ(x) = dx. Consequently,

λ =

Z 1

0
log
���T 0Λ̂(x)

���dµ(x)

=

Z a

0
log

�
1
a

�
dx+

Z 1

a
log

�
1

1�a

�
dx

= alog(
1
a
)+(1�a) log(

1
1�a

)

Clearly, for a = 1=2, we are in the case of the symmetric tent map,TΛ(x), and
λ = log2:

As another example, let us compute the Lyapunov exponent for the logistic
map (forr = 4), T4(x) = 4x(1� x), using its conjugacy with the symmetric tent
map,TΛ(x), h(x) = sin2(πx=2). Since the tent map preserves Lebesque measure,
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the conjugacy also induces an invariant measureµ(x) for the logistic map, with
density functionρ(x) = π�1[x(1�x)]�1=2. Consequently, the Lyapunov exponent
for the logistic map (forr = 4) is given by27

λ =

Z 1

0
log
��T 04(x)�� dx

π[x(1�x)]1=2

=

Z 1

0

logj4�8xj

π[x(1�x)]1=2
dx

= log2:

4 Predictability, Entropy

The rather formidable apparatus described above will allow us to discuss the ques-
tion of predictability in a rigorous manner. In so doing, however,we must first re-
move a possible source of confusion. In particular, given that the ergodic approach
analyzes dynamical systems by means of probabilistic methods, one might imme-
diately point out that since the outcomes of deterministic dynamical systems are
not random events, measure and probability theories are not the appropriate tools
of analysis.Prima facie, this seems to be a convincing argument – if the system
is deterministic, we know the equations of motion, and we can measure its state
with infinite precision, then there is nothing left to discuss.

However, infinite precision of observation is a purely mathematical expres-
sion, and it has no physical counterpart. When dynamical system theory is ap-
plied to real systems, a distinction must be made betweenstatesof a system, i.e.,
points in a state space, andobservable states, i.e., subsets (or cells) of the state
space, whose (non-zero) size reflects our limited power of observation28. This
will be consistent with the fact that in real systems perfect foresight only makes
sense when it is interpreted as an asymptotic state of affairs which is approached
as economic agents accumulate information and learn about the position of the
system. Much of what follows concerns the conditions under which, given pre-
cise knowledge of the equations of the system (i.e., given a deterministic system),

27Recall that we are using the invariant measureµ(x) =
R

xρ(x)dx=
R

x
1

π[x(1�x)]1=2 dx, which

implies thatdµ(x) = 1
π[x(1�x)]1=2 dx:

28As will become apparent in the discussion that follows, this distinction is not important for
systems whose orbit structure is simple, such as, for example, systems characterized by a stable
fixed point or a stable limit cycle. For these systems, that is, the (unrealistic) assumption of infinite
precision of observation is a convenient simplification.
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but an imprecise, albeit arbitrarily accurate, observation of its state, prediction is
possible.

We can now characterize the concept of predictability in a rigorous fashion,
in terms of a quantity called entropy. Let(p1; :::; pN) be a finite probability dis-
tribution, i.e.,pi � 0 for all i andp1+ :::+ pN = 1, for the occurrence of events
A1; :::;AN. The entropy of this distribution is

H =�
N

∑
i=1

pi log(pi);

with 0log0= 0. H measures the degree of indeterminacy (uncertainty) of an event.
It attains its largest value(logN) for p1 = :::= pN = 1=N, meaning that the dis-
tribution has maximal indeterminacy, and its minimum value (zero) when one of
thep’s is equal to one, the others being zero29.

We shall now apply this entropy idea to a description of the state space behav-
ior of a dynamical system,(X;ℑ;µ;T). Let a single trajectory run for a long time
to map out an attractor, and letP = (P1; : : : ;PN) be a finiteµ-measurable partition
of X30. The entropy ofP will be equal to

H(P) =�
N

∑
i=1

µ(Pi) logµ(Pi);

whereµ(Pi) measures the probability of finding the system in the ‘cell’Pi .
However, when dealing with a dynamical system, we are not interested in the

entropy of a partition of the state space (i.e., the information in a single experi-
ment), but in the entropy of the system (i.e., the rate at which replications of the
experiment produce information). To make this idea more precise, for eachPi , we
write T�kPi for the set of points that led toPi in k steps. We then denote byT�kP
the partition(T�kP1; :::;T�kPN), which is deduced fromP by time evolution. Fi-
nally, we define the ‘super-partition’31

29For example, in a game of dice, the maximum entropy of a throw (the maximum uncertainty
about its outcome) obtains when each of the six facets of a die has the same probability(1=6) of
turning up. An unfair player can reduce the uncertainty of the outcome by ‘loading’ the dice and
thereby increasing the probability of one or more of the six faces (and correspondingly decreasing
the probability of the others).

30A partition can also be viewed as a functionP : X ! fP1; :::;PNg such that, for each point of
the state spacex2 X, P(x) is the element of the partition, the cell ofX, in whichx is contained.

31Given two partitionsP1 andP2, the operationP1
W

P2 consists of all the possible intersections
of the elements ofP1 andP2 and it is called a ‘span’.
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n_
i=1

T�iP � P _T�1P _�� �_T�nP

which is generated byP in a time interval of lengthn. The entropy of the super-
partition,

Wn
i=1T�iP , namelyH(

Wn
i=1T�iP), can be calculated analogously, sum-

ming over all the cells of
Wn

i=1T�iP . A moment’s reflection will suggest that,
whereas an element of the original partitionP corresponds to a (approximately ob-
served) state of a dynamical system, an element of the super-partition,

Wn
i=1T�iP ,

corresponds to asequenceof n states.
If we now divideH(

Wn
i=1T�iP) by the number of observationsn, we obtain

the average amount of information contained in - the average amount of uncer-
tainty about - the ‘super-experiment’ consisting in the repeated observation of the
system along a typical orbit. If we increase the number of observations indefi-
nitely, we obtain32

h(T;P) = lim
n!∞

1
n

H(

n_
i=1

T�iP);

which is the entropy of the transformationT with respect to the partitionP33.
From the definitions above, the link between entropy and predictability should

be clear. Zero entropy means that, if we observe the state of a dynamical sys-
tem long enough, although with finite precision (and we know the “true” law of
motion), then there is no uncertainty left about the future. On the contrary, pos-
itive entropy means that, no matter how long we observe the system, additional
observations are informative, i.e., the future is unpredictable.

To investigate this point a little further,h(T;P) can be looked at as the limit
of a fraction - the numerator is the entropy of a ‘super-partition’ obtained by it-
eratingT, and the denominator is the number of iterations. Loosely speaking,
if when the number of iterations increases,H(

Wn
i=1T�iP) remains bounded, the

limit will be zero; if it grows linearly withn the limit will be a finite, positive
value; if it grows more than linearly, the limit will be unbounded. To interpret
this result, consider that each cell of the partition

Wn
i=1T�iP corresponds to a

sequence of lengthn of cells ofP (i.e., to an orbit of lengthn of the system, ob-
served withP -precision). Considering the definition of entropy, one can verify

32See Patrick Billingsley (1965, pp. 81-82) or Ricardo Ma˜né (1987, pp. 216) for a proof that
this limit exists.

33In the literature, we also find the expressionh(µ;P) where the system is identified by the
invariant measure. In the present context, the two exressions are entirely equivalent.
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thatH(
Wn

i=1T�iP) will increase withn linearly according to whether, increasing
the number of observations, the number of possible sequences will increaseexpo-
nentially. From this point of view, it is easy to understand why ‘simple’ systems
(i.e., those characterized by attractors which are fixed points or periodic orbits)
have zero entropy. Transients apart, for those systems the possible sequences of
states are limited and their number does not increases at all with the number of
observations. Complex systems are precisely those for which the number of possi-
ble sequences of states grows exponentially with the number of observations. For
finite-dimensional, deterministic systems characterized by bounded attractors, en-
tropy is bounded above by the sum of the positive Lyapunov exponents and is
therefore finite.34.

So far we have been talking about entropy relative to a specific partition. The
entropy of a transformationT, or equivalently the entropy of theT-invariant mea-
sureµ, is

h(T) = SupP h(T;P)

where the supremum is taken over all finite partitions. The quantityh(T) is also
known asK(olmogorov)-S(inai), ormetric entropy. Unless we indicate differently,
by entropy we mean K-S entropy. Actual computation of K-S entropy,h(T), di-
rectly from its definition looks a rather desperate project. Fortunately, a result
from Kolmogorov and Sinai guarantees that, under conditions often verified in
specific problems, the entropy of a systemh(T) can be obtained from the compu-
tation of its entropy relative to a given partition,h(T;P). Formally, we have the

34The entropy of a system with respect to a given partition can be given an alternative, very illu-
minating formulation by making use of the auxiliary concept ofconditional entropyof (partition)
A given (partition)B, defined by

H(AjB) =�∑
A;B

µ(A\B) log µ(AjB)

whereA;B denote elements of the partitionsA andB, respectively. Intuitively, conditional entropy
can be viewed as the average amount of uncertainty of the experimentA when the outcome of the
experimentB is known. It can be shown [see Billingsley (1965, pp. 81-82)] that

lim
n!∞

1
n

H(

n_
i=1

T�iP) = lim
n!∞

H(P

�
�
�
�
�

n_
i=1

T�iP)

This equation provides another useful interpretation ofh(T;P): it is the amount of uncertainty of
- the amount of information contained in - an observation of the system in the partitioned state
space, conditional upon the (finite-precision) knowledge of its state in the infinitely remote past.
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following35

Theorem 3 (Kolmogorov-Sinai). Let(X;ℑ;µ) be a probability space; T a trans-
formation preserving µ andP a partition of(X;ℑ;µ)with finite entropy. If

W∞
i=1T�iP =

ℑ mod 0, then h(T) = h(T;P). In this case,P is called agenerator.

As an example, consider the symmetric tent map given by equation (?) and the
partition of the interval consisting of the two sub-intervals located, respectively to
the left and to the right of the 1=2 point. Thus, we have a partitionP = fP1;P2g
of [0;1], whereP1 = f0< x< 1=2g andP2 = f1=2< x< 1g: Then the atoms of
T�1P1 are the two subintervalsf0< x< 1=4g andf3=4< x< 1g and the atoms
of T�1P2 are the two subintervalsf1=4< x< 1=2g andf1=2< x< 3=4g: Hence,
taking all possible intersections of subintervals, the spanfT�1P

W
Pg consists of

the four subintervalsf0 < x < 1=4g, f1=4 < x < 1=2g, f1=2 < x < 3=4g, and
f3=4< x < 1g. Repeating the same operationm times the spanf

Wm�1
i=0 T�iP g

is formed by 2m subintervals of equal length 2�m, defined byfx : (i� 1)=2m <
x< i=2mg; 1� i � 2m. Moreover, considering that (in the case of the tent map)
the span

W∞
i=0T�iP contains any open subinterval of[0;1] and therefore, if we

use the Borelσ-algebra, the selected partition is a generator, we can apply the
Kolmogorov-Sinai Theorem and haveh(T)= h(T;P). Finally, taking into account
the fact that the tent map preserves the Lebesgue measurem (which, we recall,
assigns to each measurable set a value equal to its length), we conclude that the
K-S entropy of the tent map is

h(T) = lim
m!∞

1
m

H

 
m�1_
i=0

T�iP

!

= lim
m!∞

1
m

�
�2m(2�mlog(2�m))

�
= log2:

Before concluding this section, we would like to notice that entropy is closely
linked with another type of statistical invariants, the Lyapunov exponents. It can
be shown that in general we have the following inequality

h(T)� ∑
i:λi>0

λi;

35For discussion and proof of the K-S theorem, see Billinglsey (1965, pp. 84-85) or Ma˜né
(1987, pp. 218-22).
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whereλ denotes a Lyapunov exponent. For observable chaotic systems, strict
equality holds36. As we have seen before, the equality indeed holds for the tent
map.

The close relation between entropy and Lyapunov exponents is not surprising.
We have already observed that entropy crucially depends on the rate at which the
number of new possible sequences of ‘coarsed-grained’ states of the system grows
as the number of observations increases. But this rate is strictly related to the rate
of divergence of nearby orbits, which is measured by the Lyapunov exponents.
Thus, the presence of one positive Lyapunov exponent on the attractor signals
positive entropy and unpredictability of the system.

5 Isomorphism

In the discussion of dynamical systems from a geometric point of view, we have
encountered the notion of topological equivalence. Analogously, there exists a
fundamental type of equivalence relation between measure-preserving transfor-
mations, calledisomorphism,which plays a very important role in ergodic theory
and which we shall use in the sequel.

Definition 8 Two transformations T andbT acting, respectively, on the state spaces
X and bX, and preserving, respectively, the measures µ andbµ, are isomorphic if a
one-to-one and invertible mapθ exists such that (excluding perhaps certain sets
of measure zero)

a. bT �θ = θ�T; and

b. the mapθ preserves the probability structure, i.e., if I andbI are, respectively,
measurable subsets of X andbX, then µ(I) = bµ�θ(I) andbµ(bI) = m�θ�1(bI).

Certain properties such as ergodicity and entropy are invariant under isomorphism.
Consequently, isomorphic transformations have the same entropy37.

As an example, we will show that the logistic map (withr = 4), T4(x), and
the tent map,TΛ(x), are isomorphic, and therefore have the same entropy. By
making use of the topological conjugacy,θ(x) = sin2(πx=2), we have already
shown thatT4(x) andTΛ(x) are topologically conjugate, that isθ�T4(x) = TΛ(x)�

36For technical details, see Donald Ornstein and Benjamin Weiss (1991, pp. 78-85) or Ruelle
(1989, pp. 71-77).

37The reverse is true only for a certain class of transformations called Bernoulli.
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θ. In general, however, topological conjugacy need not imply measure-theoretic
isomorphism. So we still have to prove thatT4(x) preserves a measureρ such that,
for almost all subintervalsI of [0;1], ρ(I) = m(θ(I)), wherem is the Lebesgue
measure which, as we already know, isTΛ(x)-invariant.

If these measures are absolutely continuous, the last equation is equivalent to
ρ(dx) = (dθ=dx)dx, whence, making use of the definition ofθ(x) and considering
that cos(θ) = [1�sin2(θ)]1=2, we obtain

ρ(dx) =
dx

π[x(1�x)]1=2
:

Now, considering that the counter-image of each intervalI underTΛ(x) consists
of two subintervals whose length is half the length ofI , it is easily verified that
TΛ(x) preserves the Lebesgue measure. If we also consider thatT�1

4 (x) = θ�1 �

T�1
Λ (x) � θ, we can establish thatT4(x) preservesmθ and therefore it preserves

ρ. Since isomorphism preserves entropy, we can conclude that the logistic map
T4(x), has entropy equal to log2> 0 and its outcome is therefore unpredictable38.

The implications for economics of the results just obtained are puzzling. For
example, consider the case in which models of optimal growth give rise to dy-
namic, logistic-type equations with chaotic parameter. The sequences thus gener-
ated are optimal in the sense that they solve a problem of intertemporal maximiza-
tion of rational agents, in an economy satisfying the requirements of competitive
equilibrium at each point of time. In the absence of (exogenous) random distur-
bances, along optimal trajectories agents’ expectations are supposed to be always
fulfilled. While the latter assumption may be acceptable when the dynamics of
the system are simple (i.e., convergence to a steady state or to a periodic orbit), it
makes little sense if the dynamics are chaotic.

6 Chaos in Dynamic Economic Models

Chaos represents a radical change of perspective on business cycles. Business
cycles receive an endogenous explanation and are traced back to the strong non-
linear deterministic structure that can pervade the economic system. This is differ-
ent from the (currently dominant) exogenous approach to economic fluctuations,
based on the assumption that economic equilibria are determinate and intrinsically
stable, so that in the absence of continuing exogenous shocks the economy tends

38Notice that, in this case, the metric entropy and the unique Lyapunov exponent are equal.
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towards a steady state, but because of stochastic shocks a stationary pattern of
fluctuations is observed.

Richard Goodwin was one of the first (back in the 1950’s and 1960’s) to un-
derstand the relevance of chaos theory for economics - see Goodwin (1982), for
a collection of the relevant papers. Recently, however, there has been a revival
of interest in dynamical systems theory, and there is a group of economists who
look at economic fluctuations as deterministic phenomena, endogenously created
by market forces, and aggregator (utility and production) functions. They agree
with Goodwin that chaos theory has great implications for both theory and policy.
For example, chaos could help unify different approaches to structural macroe-
conomics. As Jean-Michel Grandmont (1985) has shown for different parameter
values even the most classical of economic models can produce stable solutions
(characterizing classical economics) or more complex solutions, such as cycles or
even chaos (characterizing much of Keynesian economics).

In what follows, we shall briefly review some representative theoretical mi-
croeconomic and macroeconomic models that predict cycles and chaos as out-
comes of reasonable economic hypotheses. Our purpose is not to provide a com-
plete survey of all existing dynamic economic models that predict chaos. The
reader that is interested in a more exhaustive survey should also consult William
Brock (1988), Michele Boldrin and Michael Woodford (1992), Kazuo Nishimura
and Gerhard Sorger (1996), and Pietro Reichlin (1997).

6.1 Rational Choice and Chaos

Benhabib and Richard Day (1981), using a standard micro-framework, showed
that rational choice can lead to erratic behavior when preferences depend on past
experience. Following Benhabib and Day (1981), consider the (logarithmic rep-
resentation of the) Cobb-Douglas utility function

u(x;y;α) = α logx+(1�α) logy

with 0< α < 1: Maximizing subject to (the usual budget constraint)

pxx+ pyy= I (8)

yields the Marshallian demand functions

x= α
I
px

and y= (1�α)
I
py

(9)
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Assuming, however, that preferences depend on past experience, as in Ben-
habib and Day (1981), according to a function

αt = rxt�1yt�1 (10)

wherer is an ‘experience dependence’ parameter, then the demand forx andy is
described by a first-order difference equation inxandy, respectively. For example,
by substituting (10) into (9) and exploiting the budget constraint (8), the demand
for x is obtained (under the assumption of constant prices) as

xt =
rI

pxpy
xt�1(I � pxxt�1) (11)

Clearly, Equation (11) describes a one-humped curve like the logistic map (4). In
fact, for px = py = I = 1, Equation (11) reduces to Equation (4). Therefore, the
specification of experience dependent preferences generates chaotic behavior for
appropriate values of the experience dependence parameter,r:

6.2 Descriptive Growth Theory and Chaos

Following Day (1982), we consider the descriptive one-sector model due to Robert
Solow (1956). Under the assumptions that aggregate saving equals gross invest-
ment and that the capital stock exists for exactly one period, this system can be
written as a first-order system in discrete time as

(1+ν)kt+1 = s f(kt) (12)

wherek is capital per worker,f a neoclassical production function, and the two
parametersν > �1 ands2 [0;1] represent, respectively, the rates of population
growth and saving. Under the usual convexity assumptions, the phaseline of Equa-
tion (12) is an increasing concave function through the origin, with two fixed
points. The trivial steady state at 0 is asymptotically unstable while the other
(positive) fixed point is globally stable, attracting orbits that start at any initial
valuek0 > 0:

Day (1982) extended the above neoclassical one-sector model of capital ac-
cumulation by introducing a pollution effect that reduces productivity as in the
following (Cobb-Douglas type) production function

f (kt) = Bkϕ
t (ς�kt)

γ (13)
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wherekt � ς = constant (acting as a saturation level of capital per worker) and
(ς� kt)

γ reflects the effect of pollution on per capita output. In particular, when
k increases, pollution also increases and less output can be produced with a given
stock of capital than in the standard model. With (13), the neoclassical model (12)
becomes

(1+ν)kt+1 = sBkϕt (ς�kt)
γ (14)

which forB= γ = ς = 1 reduces to

kt+1 = rkt(1�kt) (15)

wherer = sB=(1+ ν). Equation (15) is formally identical with the logistic map
(4). Hence, all properties of the logistic map apply here as well. Moreover, the
general five-parameter map (14) is also chaotic for appropriate values of the pa-
rameters - see Day (1982) or Lorenz (1993) for details.

6.3 Optimal Growth Theory with Money and Chaos

In this section we consider one version of the neoclassical growth model - Miquel
Sidrauski’s (1967) optimal growth model with money. It is assumed that the econ-
omy is composed of a large number of identical infinitely lived households, each
maximizing (at timet) a lifetime utility function of the form

∞

∑
t=0

βtu(ct ;mt)

wherec andmare consumption and real money balances per capita. Ignoring cap-
ital accumulation, production, and interest-bearing public debt, the representative
household’s budget constraint for periodt is assumed to be

Pt(mt +ct) = Pty+Ht +Pt�1mt�1

wherey is a constant endowment andHt is per capita lump-sum government trans-
fers, assumed to be equal toµMt�1 (whereµ> 0 is the constant rate of money
growth). Assuming additive instantaneous utility, the equilibrium fixed points for
the system are obtained by solving the following first-order difference equation
[see Costas Azariadis (1993, section 26.3) for more details]

mt+1uc(y;mt+1) =
1+µ

β
[uc(y;mt)�um(y;mt)]mt (16)
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If we drop the separability assumption and instead consider

u(c;m) =

�
c1=2m1=2

�1�σ

1�σ
; σ > 0;σ 6= 1

whereσ is the reciprocal of the intertemporal elasticity of substitution between
current and future values of the aggregate commodity(cm)1=2, then Equation (16)
simplifies to

xα
t+1 =

1+µ
β

xα
t (1�xt) (17)

wherext = y=mt andα = (σ�3)=2, assumed to be positive. Equation (17) has a
unique positive steady state

x̄= 1�
β

1+µ
(18)

Substituting (18) into (17) to eliminate(1+µ)=β, we obtain

xt+1 = xt

�
1�xt

1� x̄

�1=α

which for α = 1 reduces to the logistic map - see Kiminori Matsuyama (1991) or
Azariadis (1993, section 26.4) for more details regarding the dynamic behavior of
this system.

6.4 Policy Relevancy of Chaos

As it has just been shown chaos can be produced, for some parameter settings,
from even many of the most classical economic models - including models in
which there is continuous market clearing, rational expectations, overlapping gen-
erations, perfect competition, no externalities, and no forms of market failure.
The issue has been whether or not the parameter settings that can produce chaos
are economically ‘reasonable’. With large enough nonlinear, dynamic models to
be viewed as possible approximations to reality, there are no currently available
conclusions regarding the plausibility of the subset of the parameter set that can
support chaos.

But there is also the question about whether or not we should care. In posi-
tive economics, there is good reason to care. Understanding the behavior of an
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economy that is chaotic is not possible with a model that is not chaotic, since
chaotic solution paths have many properties that cannot be produced from non-
chaotic solutions. But on the normative side, the usefulness of chaos is much less
clear. Grandmont’s (1985) model, for example, produces Pareto optimal chaotic
solution paths. The fact that the solutions are chaotic does not alone provide any
justification for government intervention, and indeed any such intervention could
produce a stable, but Pareto inferior solution. In fact, James Bullard and Alison
Butler (1993) have argued that the existing theoretical results on chaos have no
policy relevance, since in chaotic models the justification for intervention always
can be identified with a form of market failure entered into the structure of the
model, and hence the chaos is an independent and policy-irrelevant feature of
those models.

There is an exemption, however. Woodford (1989) has argued that chaos might
produce increased Pareto-sensitivity to market failure. If that is the case, then there
is an interaction between chaos and the policy implications of market failure, with
small market failures producing increased Pareto loss, when the economy also is
chaotic. This could be an important result and could result in high policy relevancy
for chaos, but at present Woodford’s speculation remains only a supposition, and
has not been confirmed in theory or practice. Hence, at present, the policy rele-
vance of chaos must remain in doubt.

7 Efficient Markets and Chaos

Recently the efficient markets hypothesis and the notions connected with it have
provided the basis for a great deal of research in financial economics. A volu-
minous literature has developed supporting this hypothesis. Briefly stated, the
hypothesis claims that asset prices are rationally related to economic realities and
always incorporate all the information available to the market. This implies the ab-
sence of exploitable excess profit opportunities. However, despite the widespread
allegiance to the notion of market efficiency, a number of studies have suggested
that certain asset prices are not rationally related to economic realities. For ex-
ample, Laurence Summers (1986) argues that market valuations differ substan-
tially and persistently from rational valuations and that existing evidence (based
on common techniques) does not establish that financial markets are efficient.

Motivated by these considerations, in this section we provide a review of the
literature with respect to the efficient markets hypothesis, discuss some of the
more recent testing methodologies, and finally consider the intersection between
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the efficient markets theory and chaos theory.

7.1 The Random Walk Hypothesis

Standard asset pricing models typically imply themartingale model, according to
which tomorrow’s price is expected to be the same as today’s price. Symbolically,
a stochastic processxt follows a martingale if

Et(xt+1jΩt) = xt (19)

whereΩt is the timet information set - assumed to includext . Equation (19) says
that if xt follows a martingale the best forecast ofxt+1 that could be constructed
based on current informationΩt would just equalxt . Alternatively, the martingale
model implies that(xt+1�xt) is afair game(a game which is neither in your favor
nor your opponent’s)39

Et [(xt+1�xt)jΩt] = 0: (20)

Clearly, xt is a martingale if and only if(xt+1� xt) is a fair game. It is for this
reason that fair games are sometimes calledmartingale differences40.

The fair game model (20) says that increments in value (changes in price ad-
justed for dividends) are unpredictable, conditional on the information setΩt. In
this sense, informationΩt is fully reflected in prices and hence useless in predict-
ing rates of return. The hypothesis that prices fully reflect available information
has come to be known as theefficient markets hypothesis. In fact Eugene Fama
(1970) defined three types of (informational) capital market efficiency (not to be
confused with allocational or Pareto-efficiency), each of which is based on a dif-
ferent notion of exactly what type of information is understood to be relevant. In
particular, markets are weak-form, semistrong-form, and strong-form efficient if
the information set includes past prices and returns alone, all public information,
and any information public as well as private, respectively. Clearly, strong-form
efficiency implies semistrong-form efficiency, which in turn implies weak-form
efficiency, but the reverse implications do not follow, since a market easily could

39A stochastic processzt is a fair game ifzt has the propertyEt(zt+1jΩt) = 0:
40The martingale process is a special case of the more general submartingale process. In par-

ticular,xt is asubmartingaleif it has the propertyEt(xt+1jΩt)> xt : Note that the submartingale is
also a fair game wherext+1 is expected to be greater thanxt : In terms of the(xt+1�xt) process the
submartingale model implies thatEt [(xt+1�xt)jΩt ]> 0: Stephen LeRoy (1989, pp. 1593-4) also
offers an example in whichEt [(xt+1�xt)jΩt ]< 0, in which casext will be asupermartingale.
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be weak-form efficient but not semistrong-form efficient or semistrong-form effi-
cient but not strong-form efficient.

The martingale model given by (19) can be written equivalently as

xt+1 = xt + εt

whereεt is the martingale difference. When written in this form the martingale
looks identical to therandom walk model- the forerunner of the theory of effi-
cient capital markets. The martingale, however, is less restrictive than the random
walk. In particular, the martingale difference requires only independence of the
conditional expectation of price changes from the available information, as risk
neutrality implies, whereas the (more restrictive) random walk model requires
this and also independence involving the higher conditional moments (i.e., vari-
ance, skewness, and kurtosis) of the probability distribution of price changes. By
not requiring probabilistic independence between successive price changes, the
martingale difference model is entirely consistent with the fact that price changes,
although uncorrelated, tend not to be independent over time but to have clusters
of volatility and tranquility (i.e., dependence in the higher conditional moments) -
a phenomenon originally noted for stock market prices by Mandelbrot (1963) and
Fama (1965).

7.2 Tests of the Random Walk Hypothesis

The random walk and martingale hypotheses imply a unit root in the level of the
price or logarithm of the price series - notice that a unit root is a necessary but not
sufficient condition for the random walk and martingale models to hold. Hence,
these models can be tested using recent advances in the theory of integrated re-
gressors. The literature on unit root testing is vast and, in what follows, we shall
only briefly illustrate some of the issues that have arisen in the broader search for
unit roots in financial asset prices.

Charles Nelson and Charles Plosser (1982), using the augmented Dickey-
Fuller (ADF) unit root testing procedure [see David Dickey and Wayne Fuller
(1981)] test the null hypothesis ofdifference-stationarityagainst thetrend-stationarity
alternative. In particular, in the context of financial asset prices, one would esti-
mate the following regression

∆yt = α0+α1yt�1+

`

∑
j=1

cj∆yt� j + εt
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wherey denotes the logarithm of the series. The null hypothesis of a single unit
root is rejected ifα1 is negative and significantly different from zero. A trend vari-
able should not be included, since the presence of a trend in financial asset prices
is a clear violation of market efficiency, whether or not the asset price has a unit
root. The optimal lag length,̀, can be chosen using data-dependent methods, that
have desirable statistical properties when applied to unit root tests. Based on such
ADF unit root tests, Nelson and Plosser (1982) argue that most macroeconomic
and financial time series have a unit root.

Pierre Perron (1989), however, argues that most time series [and in particular
those used by Nelson and Plosser (1982)] are trend stationary if one allows for
a one-time change in the intercept or in the slope (or both) of the trend function.
The postulate is that certain ‘big shocks’ do not represent a realization of the
underlying data generation mechanism of the series under consideration and that
the null should be tested against the trend-stationary alternative by allowing, under
both the null and the alternative hypotheses, for the presence of a one-time break
(at a known point in time) in the intercept or in the slope (or both) of the trend
function41. Hence, whether the unit root model is rejected or not depends on how
big shocks are treated. If they are treated like any other shock, then ADF unit
root testing procedures are appropriate and the unit root null hypothesis cannot
(in general) be rejected. If, however, they are treated differently, then Perron-type
procedures are appropriate and the null hypothesis of a unit root will most likely
be rejected.

It is also important to note that in the tests that we discussed so far the unit
root is the null hypothesis to be tested and that the way in which classical hy-
pothesis testing is carried out ensures that the null hypothesis is accepted unless
there is strong evidence against it. In fact, Denis Kwiatkowski, Peter Phillips,
Peter Schmidt, and Yongcheol Shin (1992) argue that such unit root tests fail to
reject a unit root because they have low power against relevant alternatives and
they propose tests (known as KPSS tests) of the hypothesis of stationarity against
the alternative of a unit root. They argue that such tests should complement unit
root tests and that by testing both the unit root hypothesis and the stationarity hy-
pothesis, one can distinguish series that appear to be stationary, series that appear

41Perron’s (1989) assumption that the break point is uncorrelated with the data has been criti-
cized, on the basis that problems associated with ‘pre-testing’ are applicable to his methodology
and that the structural break should instead be treated as being correlated with the data. More
recently, a number of studies treat the selection of the break point as the outcome of an estimation
procedure and transform Perron’s (1989) conditional (on structural change at a known point in
time) unit root test into an unconditional unit root test.

44



to be integrated, and series that are not very informative about whether or not they
are stationary or have a unit root.

Finally, given that integration tests are sensitive to the class of models consid-
ered (and may be misleading because of misspecification),fractionally-integrated
representations, which nest the unit-root phenomenon in a more general model,
have also been used - see Richard Baillie (1996) for a survey. Fractional integra-
tion is a popular way to parameterize long-memory processes. If such processes
are estimated with the usual autoregressive-moving average model, without con-
sidering fractional orders of integration, the estimated autoregressive process can
exhibit spuriously high persistence close to a unit root. Since financial asset prices
might depart from their means with long memory, one could condition the unit
root tests on the alternative of a fractional integrated process, rather than the usual
alternative of the series being stationary. In this case, if we fail to reject an au-
toregressive unit root, we know it is not a spurious finding due to neglect of the
relevant alternative of fractional integration and long memory.

Despite the fact that the random walk and martingale hypotheses are contained
in the null hypothesis of a unit root, unit root tests are not predictability tests.
They are designed to reveal whether a series is difference-stationary or trend sta-
tionary and as such they are tests of the permanent/temporary nature of shocks.
More recently a series of papers including those by James Poterba and Summers
(1988), and Andrew Lo and Craig MacKinlay (1988) have argued that the efficient
markets theory can be tested by comparing the relative variability of returns over
different horizons using the variance ratio methodology of John Cochrane (1988).
They have shown that asset prices are mean reverting over long investment hori-
zons - that is, a given price change tends to be reversed over the next several
years by a predictable change in the opposite direction. Similar results have been
obtained by Fama and Kenneth French (1988), using an alternative but closely re-
lated test based on predictability of multiperiod returns. Of course, mean-reverting
behavior in asset prices is consistent with transitory deviations from equilibrium
which are both large and persistent, and implies positive autocorrelation in returns
over short horizons and negative autocorrelation over longer horizons.

Predictability of financial asset returns is a broad and very active research topic
and a complete survey of the vast literature is beyond the scope of the present pa-
per. We shall notice, however, that a general consensus has emerged that asset
returns are predictable. As John Campbell, Lo, and MacKinlay (1997, pp. 80)
put it “[r]ecent econometric advances and empirical evidence seem to suggest
that financial asset returns are predictable to some degree. Thirty years ago this
would have been tantamount to an outright rejection of market efficiency. How-
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ever, modern financial economics teaches us that other, perfectly rational, factors
may account for such predictability. The fine structure of securities markets and
frictions in the trading process can generate predictability. Time-varying expected
returns due to changing business conditions can generate predictability. A certain
degree of predictability may be necessary to reward investors for bearing certain
dynamic risks”.

7.3 Random Walk versus Chaos

Most of the empirical tests that we discussed in the previous subsection are de-
signed to detect ‘linear’ structure in financial data - that is, linear predictability
is the focus. However, as Campbell, Lo, and MacKinlay (1997, pp. 467) ar-
gue “many aspects of economic behavior may not be linear. Experimental evi-
dence and casual introspection suggest that investors’ attitudes towards risk and
expected return are nonlinear. The terms of many financial contracts such as op-
tions and other derivative securities are nonlinear. And the strategic interactions
among market participants, the process by which information is incorporated into
security prices, and the dynamics of economy-wide fluctuations are all inherently
nonlinear. Therefore, a natural frontier for financial econometrics is the modeling
of nonlinear phenomena”.

It is for this reason that interest in deterministic nonlinear chaotic processes
has in the recent past experienced a tremendous rate of development. Besides its
obvious intellectual appeal, chaos is interesting because of its ability to generate
output that mimics the output of stochastic systems thereby offering an alternative
explanation for the behavior of asset prices. In fact, the possible existence of chaos
could be exploitable and even invaluable. If, for example, chaos can be shown to
exist in asset prices, the implication would be that profitable, nonlinearity-based
trading rules exist (at least in the short run and provided the actual generating
mechanism is known). Prediction, however, over long periods is all but impossi-
ble, due to the sensitive dependence on initial conditions property of chaos.

Clearly then, an important area for potentially productive research is to test for
chaos and (in the event that it exists) to identify the nonlinear deterministic system
that generates it. We turn to such tests in the following section.
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8 Tests of Nonlinearity and Chaos

Although the exciting recent advances in deterministic nonlinear dynamical sys-
tems theory have had immediate implications for the ‘hard’ sciences, the impact
on economics and finance has been less dramatic for at least two reasons. First,
unlike most hard scientists, economists are generally not specific about functional
form when modeling economic phenomena as deterministic nonlinear dynami-
cal systems. Thus they rarely have theoretical reasons for expecting to find one
form of nonlinearity rather than another. Second, economists mostly use non-
experimental data, rendering it almost impossible to recover the deterministic dy-
namical system governing economic phenomena, even if such a system exists and
is low-dimensional.

Despite these caveats, the mathematics of deterministic nonlinear dynamical
systems has motivated several univariate statistical tests for independence, non-
linearity, and chaos, to which we now turn.

8.1 The Correlation Dimension Test

The concept and measurement of fractal dimension are not only necessary to un-
derstand the finer geometrical nature of strange attractors, but they are also funda-
mental tools for providing quantitative analyses of such attractors. Unfortunately,
however, fractal dimension [as defined by Equation (4)] cannot be computed eas-
ily in practice, and convergence of the limit may not be guaranteed. To remedy
this, Peter Grassberger and Itamar Procaccia (1983) suggested the concept ofcor-
relation dimension(or correlation exponent) which is, at the moment, prevailing
in applications. The basic idea is that of replacing the box-counting algorithm,
necessary to computeN(ε) in Equation (4), with the measurement of correlations
between points of a long time series on the attractor. Hence, the correlation di-
mension (unlike the fractal dimension) is a probabilistic, not a metric, dimension.

To briefly discuss the correlation dimension test for chaos, let us start with
the 1-dimensional series,fxtg

n
t=1, which can be embedded into a series ofm-

dimensional vectorsXt = (xt ;xt�1; :::;xt�m+1)
0 giving the seriesfxtg

n
t=m. The se-

lected value ofm is called theembedding dimensionand eachXt is known as an
m-historyof the seriesfxtg

n
t=1. This converts the series of scalars into a slightly

shorter series of (m-dimensional) vectors with overlapping entries42. In particu-

42In creating the embedding one could also take a forward orientation,Xt =

(xt ;xt+1; :::;xt+m�1)
0, without affecting the results.
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lar, from the sample sizen; N = n�m+1 m-histories can be made43. Assuming
that the true, but unknown, system which generatedfxtg

n
t=1 is ϑ-dimensional and

provided thatm� 2ϑ+1, then theN m-histories recreate the dynamics of the data
generation process and can be used to analyze the dynamics of the system.

The correlation dimension test is based on thecorrelation function(or corre-
lation integral), C(N;m;ε), which for a given embedding dimensionm is given
by:

C(N;m;ε) =
1

N(N�1) ∑
m�t 6=s�N

H (ε�kXt �Xsk)

whereε is a sufficiently small number,H(z) is the Heavside function, which maps
positive arguments into 1, and nonpositive arguments into 0, i.e.,

H(z) =

�
1 if z> 0
0 otherwise,

and k:k denotes the distance induced by the selected norm44. In other words,
the correlation integral is the number of pairs(t;s) such that each corresponding
component ofXt andXs are near to each other, nearness being measured in terms
of distance being less thanε. Intuitively,C(N;m;ε) measures the probability that
the distance between any twom-histories is less thanε. If C(N;m;ε) is large
(which means close to 1) for a very smallε, then the data is very well correlated.

To move from the correlation function to the correlation dimension, one pro-
ceeds by looking to see howC(N;m;ε) changes asε changes. One expectsC(N;m;ε)
to increase withε (since increasingε increases the number of neighbouring points
that get included in the correlation integral). In fact, Grassberger and Procaccia
(1983) have shown that for small values ofε, C(N;m;ε) grows exponentially at
the rate ofDc

C(N;m;ε) = ηeDc

43For example, the seriesfx1; :::;x6g would give the following four overlapping 3-histories:
X3 = (x1;x2;x3)

0; X4 = (x2;x3;x4)
0; X5 = (x3;x4;x5)

0; andX6 = (x4;x5;x6)
0:

44Brock (1986, Theorem 2.4) shows that the correlation integral is independent of
the choice of norm. The type most often used is the maximum norm (which is
also more convenient for computer applications):kXt �Xsk = maxk2[0;m�1] fjxt+k�xs+kjg,
wherek:k is Euclidean distance. Using this norm the correlation integral may be writ-
ten as C(N;m;ε) = 1

N(N�1) ∑m�t 6=s�N ∏m�1
k=0 H (ε�jXt+k�Xs+kj) since H (ε�kXt �Xsk) =

∏m�1
k=0 H (ε�jXt+k�Xs+kj), i.e., if anyjxt+k�xs+kj � ε thenH(:) = 0:
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whereη is some constant andDc is the above mentioned correlation dimension.
If the increase inC(N;m;ε) is slow asε is increased, then most data points have

to be near to each other, and the data is well correlated. If, however, the increase
is fast, then the data are rather uncorrelated. Hence, the higher the correlation
dimension [and the faster the increase inC(N;m;ε) as ε is increased], the less
correlated the data is and the system is regarded stochastic. On the other hand, the
lower the correlation dimension [and the slower the increase inC(N;m;ε) asε is
increased], the more correlated the data is and the system is regarded as essentially
deterministic, even if fairly complicated.

The correlation dimension can be defined as

Dc = lim
ε!0

d logC(N;m;ε)
d logε

that is, by the slope of the regression of logC(N;m;ε) versus logε for small values
of ε. As a practical matter one investigates the estimated value ofDc as m is
increased. If asm increasesDc continues to rise, then the system is stochastic.
If, however, the data are generated by a deterministic process (consistent with
chaotic behavior), thenDc reaches a finite saturation limit beyond some relatively
small m45. The correlation dimension can therefore be used to distinguish true
stochastic processes from deterministic chaos (which may be low-dimensional or
high-dimensional)46.

While the correlation dimension measure is therefore potentially very use-
ful in testing for chaos, the sampling properties of the correlation dimension are,
however, unknown. As William Barnett, Ronald Gallant, Melvin Hinich, Jochen
Jungeilges, Daniel Kaplan, and Mark Jensen (1995, pp. 306) put it “[i]f the only
source of stochasticity is noise in the data, and if that noise is slight, then it is pos-
sible to filter the noise out of the data and use the correlation dimension test deter-
ministically. However, if the economic structure that generated the data contains a
stochastic disturbance within its equations, the correlation dimension is stochastic
and its derived distribution is important in producing reliable inference”.

45SinceDc can be used to characterize both chaos and stochastic dynamics (i.e.,Dc is a finite
number in the case of chaos and equal to infinity in the case of an independent and identically dis-
tributed stochastic process), one often finds in the literature expressions like ‘deterministic chaos’
(meaning simply chaos) and ‘stochastic chaos’ (meaning standard stochastic dynamics). This ter-
minology, however, is confusing in contexts other than that of the correlation dimension analysis
and we shall not use it in this paper.

46It is to be noted that Grassberger and Procaccia (1983) have shown thatDc � D, i.e., Dc is
a lower bound forD - see also Medio (1992) for other measures of fractal dimension and their
relation toDc andD.
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Moreover, if the correlation dimension is very large as in the case of high-
dimensional chaos, it will be very difficult to estimate it without an enormous
amount of data. In this regard, Ruelle (1990) argues that a chaotic series can only
be distinguished if it has a correlation dimension well below 2log10N, whereN is
the size of the data set, suggesting that with economic time series the correlation
dimension can only distinguish low-dimensional chaos from high-dimensional
stochastic processes - see also Grassberger and Procaccia (1983) for more de-
tails47.

8.2 The BDS Test

To deal with the problems of using the correlation dimension test, Brock, Davis
Dechert, Blake LeBaron, and Jos´e Scheinkman (1996) devised a new statistical
test which is known as the BDS test. The BDS tests the null hypothesis of white-
ness (independent and identically distributed observations) against an unspecified
alternative using a nonparametric technique.

The BDS test is based on the Grassberger and Procaccia (1983) correlation
integral as the test statistic. In particular, under the null hypothesis of whiteness,
the BDS statistic is

W(N;m;ε) =
p

N
C(N;m;ε)�C(N;1;ε)m

bσ(N;m;ε)

wherebσ(N;m;ε) is an estimate of the asymptotic standard deviation ofC(N;m;ε)�
C(N;1;ε)m - the formula forbσ(N;m;ε) can be found in Brock et al. (1996). The
BDS statistic is asymptotically standard normal under the whiteness null hypoth-
esis - see Brock et al. (1996) for details.

The intuition behind the BDS statistic is as follows.C(N;m;ε) is an estimate
of the probability that the distance between any twom-histories,Xt andXs of the
seriesfxtg is less thanε. If fxtg were independent then fort 6= s the probability
of this joint event equals the product of the individual probabilities. Moreover,
if fxtg were also identically distributed then all of them probabilities under the
product sign are the same. The BDS statistic therefore tests the null hypothesis
thatC(N;m;ε) =C(N;1;ε)m - the null hypothesis of whiteness48.

Since the asymptotic distribution of the BDS test statistic is known under the
null hypothesis of whiteness, the BDS test provides a direct (formal) statistical test

47Therefore, to detect an attractor withDc = 2 we need at least 460 data points, withDc = 3 at
least 10;000 data points, and withDc = 4 at least 210;000 data points.

48Note that whiteness implies thatC(N;m;ε) =C(N;1;ε)m but the converse is not true.
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for whiteness against general dependence, which includes both nonwhite linear
and nonwhite nonlinear dependence. Hence, the BDS test does not provide a
direct test for nonlinearity or for chaos, since the sampling distribution of the
test statistic is not known (either in finite samples or asymptotically) under the
null hypothesis of nonlinearity, linearity, or chaos. It is, however, possible to use
the BDS test to produce indirect evidence about nonlinear dependence [whether
chaotic (i.e., nonlinear deterministic) or stochastic], which is necessary but not
sufficient for chaos - see Barnett et al. (1997) and Barnett and Melvin Hinich
(1992) for a discussion of these issues.

8.3 The Hinich Bispectrum Test

Hinich (1982) argues that the bispectrum in the frequency domain is easier to in-
terpret than the multiplicity of third order momentsfCxxx(r;s) : s� r; r = 0;1;2; :::g
in the time domain. For frequenciesω1 andω2 in the principal domain given by

Ω = f(ω1;ω2) : 0< ω1 < 0:5;ω2 < ω1;2ω1+ω2 < 1g ;

the bispectrum,Bxxx(ω1;ω2), is defined by

Bxxx(ω1;ω2) =

∞

∑
r=�∞

∞

∑
s=�∞

Cxxx(r;s)exp[�i2π(ω1r +ω2s)] :

The bispectrum is the double Fourier transformation of the third order moments
function and is the third order polyspectrum. The regular power spectrum is the
second order polyspectrum and is a function of only one frequency.

The skewness functionΓ(ω1;ω2) is defined in terms of the bispectrum as fol-
lows

Γ2(ω1;ω2) =
jBxxx(ω1;ω2)j

2

Sxx(ω1)Sxx(ω2)Sxx(ω1+ω2)
; (21)

whereSxx(ω) is the (ordinary power) spectrum ofx(t) at frequencyω. Since the
bispectrum is complex valued, the absolute value (vertical lines) in Equation (21)
designates modulus. David Brillinger (1965) proves that the skewness function
Γ(ω1;ω2) is constant over all frequencies(ω1;ω2) 2 Ω if fx(t)g is linear; while
Γ(ω1;ω2) is flat at zero over all frequencies iffx(t)g is Gaussian. Linearity and
Gaussianity can be tested using a sample estimator of the skewness function. But
observe that those flatness conditions are necessary but not sufficient for general
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linearity and Gaussianity, respectively. On the other hand, flatness of the skewness
function is necessary and sufficient for third order nonlinear dependence. The
Hinich (1982) ‘linearity test’ tests the null hypothesis that the skewness function
is flat, and hence is a test of lack of third order nonlinear dependence. For details
of the test, see Hinich (1982).

8.4 The NEGM Test

As it was argued earlier, the distinctive feature of chaotic systems is sensitive de-
pendence on initial conditions - that is, exponential divergence of trajectories with
similar initial conditions. The most important tool for diagnosing the presence of
sensitive dependence on initial conditions (and thereby of chaoticity) is provided
by the dominant Lyapunov exponent,λ. This exponent measures average expo-
nential divergence or convergence between trajectories that differ only in having
an ‘infinitesimally small’ difference in their initial conditions and remains well-
defined for noisy systems. A bounded system with a positive Lyapunov exponent
is one operational definition of chaotic behavior.

One early method for calculating the dominant Lyapunov exponent is that pro-
posed by Alan Wolf, Jack Swift, Harry Swinney, and John Vastano (1985). This
method, however, requires long data series and is sensitive to dynamic noise, so
inflated estimates of the dominant Lyapunov exponent are obtained. Recently,
Douglas Nychka, Stephen Ellner, Ronald Gallant, and Daniel McCaffrey (1992)
have proposed a regression method, involving the use of neural network mod-
els, to test for positivity of the dominant Lyapunov exponent. The Nychka et al.
(1992), hereafter NEGM, Lyapunov exponent estimator is a regression (or Jaco-
bian) method, unlike the Wolf et al. (1985) direct method which [as Brock and
Chera Sayers (1988) have found] requires long data series and is sensitive to dy-
namic noise.

Assume that the datafxtg are real-valued and are generated by a nonlinear
autoregressive model of the form

xt = f (xt�L;xt�2L; :::;xt�mL)+et (22)

for 1� t � N, whereL is the time-delay parameter andm is the length of the
autoregression. Heref is a smooth unknown function, andfetg is a sequence of
independent random variables with zero mean and unknown constant variance.
The Nychka et al. (1992) approach to estimation of the maximum Lyapunov ex-
ponent involves producing a state-space representation of (22)
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Xt = F(Xt�L)+Et ; F : Rm ! R
m

whereXt =(xt ;xt�L; :::;xt�mL+L)
0, F(Xt�L)= ( f (xt�L; :::;xt�mL);xt�L; :::; xt�mL+L)

0,
andEt = (et ;0; :::;0)0, and using a Jacobian-based method to estimateλ through
the intermediate step of estimating the individual Jacobian matrices

Jt =
∂F(Xt)

∂X0
:

After using several nonparametric methods, McCaffrey et al. (1992) recom-
mend using either thin plate splines or neural nets to estimateJt : Estimation based
on neural nets involves the use of the a neural net withq units in the hidden layer

f (Xt�L;θ) = β0+

q

∑
j=1

β jψ(γ0 j +

m

∑
i=1

γi j xt�iL)

whereψ is a known (hidden) nonlinear ‘activation function’ [usually the logistic
distribution functionψ(u) = 1=(1+ exp(�u))]. The parameter vectorθ is then
fit to the data by nonlinear least squares. That is, one computes the estimatebθ
to minimize the sum of squaresS(θ) = ∑N

t=1 [xt � f (Xt�1;θ)]2, and usesbF(Xt) =

( f (xt�L; :::;xt�mL;bθ);xt�L; :::;xt�mL+L)
0 to approximateF(Xt).

As appropriate values ofL;m; andq, are unknown, Nychka et al. (1992) rec-
ommend selecting that value of the triple(L;m;q) that minimizes the Bayesian
Information Criterion (BIC) - see Gideon Schwartz (1978). As shown by Gal-
lant and Halbert White (1992), we can usebJt = ∂bF(Xt)=∂X0 as a nonparametric
estimator ofJt when(L;m;q) are selected to minimize BIC. The estimate of the
dominant Lyapunov exponent then is

bλ =
1

2N
logjbv1(N)j

wherebv1(N) is the largest eigenvalue of the matrixbT 0NbTN and wherebTN = bJN bJN�1; :::; bJ1.

8.5 The White Test

In White’s (1989) test, the time series is fitted by a single hidden-layer feed-
forward neural network, which is used to determine whether any nonlinear struc-
ture remains in the residuals of an autoregressive (AR) process fitted to the same
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time series. The null hypothesis for the test is ‘linearity in the mean’ relative to an
information set. A process that is linear in the mean has a conditional mean func-
tion that is a linear function of the elements of the information set, which usually
contains lagged observations on the process49.

The rationale for White’s test can be summarized as follows: under the null
hypothesis of linearity in the mean, the residuals obtained by applying a linear
filter to the process should not be correlated with any measurable function of
the history of the process. White’s test uses a fitted neural net to produce the
measurable function of the process’s history and an AR process as the linear filter.
White’s method then tests the hypothesis that the fitted function does not correlate
with the residuals of the AR process. The resulting test statistic has an asymptotic
χ2 distribution under the null of linearity in the mean50.

8.6 The Kaplan Test

We begin our discussion of Daniel Kaplan’s (1994) test by reviewing its origins
in the chaos literature, although the test is currently being used as a test of linear
stochastic process against general nonlinearity, whether or not noisy or chaotic.
In the case of chaos, a time series plot of the output of a chaotic system may be
very difficult to distinguish visually from a stochastic process. However, plots of
the solution paths in phase space (xt+1 plotted againstxt and lagged values ofxt)
often reveal deterministic structure that was not evident in a plot ofxt versust -
see, for example, Figure 9. A test based upon continuity in phase space has been
proposed by Kaplan (1994).

Briefly, he used the fact that deterministic solution paths, unlike stochastic
processes, have the following property: points that are nearby are also nearby un-
der their image in phase space. Using this fact, he has produced a test statistic,
which has a strictly positive lower bound for a stochastic process, but not for a
deterministic solution path. By computing the test statistic from an adequately
large number of linear processes that plausibly might have produced the data, the
approach can be used to test for linearity against the alternative of noisy nonlinear
dynamics. The procedure involves producing linear stochastic process surrogates

49For a formal definition of linearity in the mean, see Tae-Hwy Lee, White, and Granger (1993,
section 1). Note that a process that is not linear in the mean is said to exhibit ‘neglected non-
linearity’. Also, a process that is linear is also linear in the mean, but the converse need not be
true.

50See Lee, White, and Granger (1993, section 2) for a presentation of the test statistic’s formula
and computation method.
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for the data and determining whether the surrogates or a noisy continuous nonlin-
ear dynamical solution path better describe the data. Linearity is rejected, if the
value of the test statistic from the surrogates is never small enough relative to the
value of the statistic computed from the data51.

9 Evidence on Nonlinearity and Chaos

There have been a great deal of studies over the past few years testing for nonlin-
earity or chaos on economic and financial data. Thus we devote a good deal of
space to this empirical work. In this section we present a discussion of the empir-
ical evidence on economic and financial data, look at the controversies that have
arisen about the available results, address one important question regarding the
power of some of the best known tests for nonlinearity or chaos against various
alternatives, and raise the issue of whether dynamical systems theory is practical
in economics.

9.1 Evidence on Economic Data

In Table 1 we list 7 studies that have used various economic time series to test for
nonlinearity or chaos. In Columns 2 to 5 we present the data set; the number of
observations; the testing procedure used; and the results obtained. Clearly, there is
a broad consensus of support for the proposition that the data generating processes
are characterized by a pattern of nonlinear dependence, but there is no consensus
at all on whether there is chaos in economic time series. For example, Brock and
Sayers (1988), Murray Frank and Thanasis Stengos (1988), and Frank, Ramazan
Gencay, and Stengos (1988) find no evidence of chaos in U.S., Canadian, and
international, respectively, macroeconomic time series.

On the other hand, Barnett and Ping Chen (1988), claimed successful detection
of chaos in the (demand-side) U.S. Divisia monetary aggregates. Their conclusion
was further confirmed by Gregory DeCoster and Douglas Mitchell (1991, 1994).
This published claim of successful detection of chaos has generated considerable
controversy, as in James Ramsey, Sayers, and Philip Rothman (1990) and Ramsey
and Rothman (1994), who by re-examining the data utilized in Barnett and Chen
(1988) show that there is no evidence for the presence of chaos. In fact, they raised
similar questions regarding virtually all of the other published tests of chaos.

51See Kaplan (1994) or Barnett et al. (1997) for more details about Kaplan’s procedure.
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Further results relevant to this controversy have recently been provided by
Apostolos Serletis (1995). Building on Barnett and Chen (1988), Serletis (1995)
contrasts the random walk behavior of the velocity of money to chaotic dynamics,
motivated by the notion that velocity follows a deterministic, dynamic, and nonlin-
ear process which generates output that mimics the output of stochastic systems.
In doing so, he tests for chaos using the Lyapunov exponent estimator of Nychka
et al. (1992) and reports evidence of chaos in the Divisia L velocity series.

Although from a theoretical point of view, it would be extremely interesting to
obtain empirical verification that macroeconomic series have actually been gen-
erated by deterministic chaotic systems, it is fair to say that those series are not
the most suitable ones for the calculation of chaos indicators. This is for at least
two reasons. First of all, the series are rather short with regard to the calculations
to be performed, since they are usually recorded at best only monthly; secondly,
they have probably been contaminated by a substantial dose of noise (this is par-
ticularly true for aggregate time series like GNP). We should not be surprised,
therefore, that exercises of this kind have not yet led to particularly encouraging
results.

9.2 Evidence on Financial Data

As can be seen from Table 2 (where we summarize the evidence in the same fash-
ion as in Table 1), there is already a substantial literature testing for nonlinear dy-
namics on financial data, using various inference methods - for other unpublished
work on testing nonlinearity and chaos on financial data, see Abhay Abhyankar,
Laurence Copeland, and Woon Wong (1997, table 1). In fact, the analysis of fi-
nancial time series has led to results which are as a whole more interesting and
more reliable than those of macroeconomic series. This is probably due to the
much larger number of data available and their superior quality (measurement in
most cases is more precise, at least when we do not have to make recourse to
broad aggregation).

Scheinkman and LeBaron (1989) studied United States weekly returns on the
Center for Research in Security Prices (CRSP) value-weighted index, employ-
ing the BDS statistic, and found rather strong evidence of nonlinearity and some
evidence of chaos52. Some very similar results have been obtained by Frank and
Stengos (1989), investigating daily prices (from the mid 1970’s to the mid 1980’s)

52In order to verify the presence of a nonlinear structure in the data, they also suggested employ-
ing the so-called ‘shuffling diagnostic’. This procedure involves studying the residuals obtained by
adapting an autoregressive model to a series and then reshuffling these residuals. If the residuals
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for gold and silver, using the correlation dimension and the Kolmogorov entropy.
Their estimate of the correlation dimension was between 6 and 7 for the original
series and much greater and non-converging for the reshuffled data.

More recently, Serletis and Periklis Gogas (1997) test for chaos in seven East
European black market exchange rates, using the Kees Koedijk and Clements
Kool (1992) monthly data (from January 1955 through May 1990). In doing so,
they use three inference methods, the BDS test, the NEGM test, as well as the
Lyapunov exponent estimator of Gencay and Dechert (1992). They find some
consistency in inference across methods, and conclude, based on the NEGM test,
that there is evidence consistent with a chaotic nonlinear generation process in
two out of the seven series - the Russian ruble and East German mark. Alto-
gether, these and similar results seem to suggest that financial series provide a
more promising field of research for the methods in question.

A notable feature of the literature just summarized is that most researchers,
in order to find sufficient observations to implement the tests, use data periods
measured in years. The longer the data period, however, the less plausible is the
assumption that the underlying data generation process has remained stationary,
thereby making the results difficult to interpret. In fact, different conclusions
have been reached by researchers using high-frequency data over short periods.
For example, Abhyankar, Copeland, and Wong (1995) examine the behavior of
the U.K. Financial Times Stock Exchange 100 (FTSE 100) index, over the first
six months of 1993 (using 1-, 5-, 15-, 30-, and 60-minute returns). Using the
Hinich (1982) bispectral linearity test, the BDS test, and the NEGM test, they find
evidence of nonlinearity, but no evidence of chaos.

More recently, Abhyankar, Copeland, and Wong (1997) test for nonlinear de-
pendence and chaos in real-time returns on the world’s four most important stock-
market indices - the FTSE 100, the Standard & Poor 500 (S&P 500) index, the
Deutscher Aktienindex (DAX), and the Nikkei 225 Stock Average. Using the
BDS and the NEGM tests, and 15-second, 1-minute, and 5-minute returns (from
September 1 to November 30, 1991), they reject the hypothesis of independence
in favor of a nonlinear structure for all data series, but find no evidence of low-
dimensional chaotic processes.

are totally random (i.e., if the series under scrutiny is not characterized by chaos), the dimension
of the residuals and that of the shuffled residuals should be approximately equal. On the contrary,
if the residuals are chaotic and have some structure, then the reshuffling must reduce or eliminate
the structure and consequently increase the correlation dimension. The correlation dimension of
their reshuffled residuals always appeared to be much greater than that of the original residuals,
which was interpreted as being consistent with chaos.
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Of course, there is other work, using high-frequency data over short periods,
that finds order in the apparent chaos of financial markets. For example, the arti-
cle by Shoaleh Ghashghaie, Wolfgang Breymann, Joachim Peinke, Peter Talkner,
and Yadolah Dodge (1996) analyzes all worldwide 1,472,241 bid-ask quotes on
U.S. dollar-German mark exchange rates between October 1, 1992 and September
30, 1993. It applies physical principles and provides a mathematical explanation
of how one trading pattern led into and then influenced another. As the authors
conclude, “...we have reason to believe that the qualitative picture of turbulence
that has developed during the past 70 years will help our understanding of the
apparently remote field of financial markets”.

9.3 Controversies

As discussed in the previous two subsections, there is little agreement about the
existence of chaos or even of nonlinearity in economic and financial data, and
some economists continue to insist that linearity remains a good assumption for
such data, despite the fact that theory provides very little support for that assump-
tion. It should be noted, however, that the available tests search for evidence
of nonlinearity or chaos in data without restricting the boundary of the system
that could have produced that nonlinearity or chaos. Hence these tests should re-
ject linearity, even if the structure of the economy is linear, but the economy is
subject to shocks from a surrounding nonlinear or chaotic physical environment,
as through nonlinear climatological or weather dynamics. Under such circum-
stances, linearity would seem an unlikely inference53.

Since the available tests are not structural and hence have no ability to identify
the source of detected chaos, the alternative hypothesis of the available tests is
that no natural deterministic explanation exists for the observed economic fluctu-
ations anywhere in the universe. In other words, the alternative hypothesis is that
economic fluctuations are produced by supernatural shocks or by inherent ran-
domness in the sense of quantum physics. Considering the implausibility of the
alternative hypothesis, one would think that findings of chaos in such nonparamet-
ric tests would produce little controversy, while any claims to the contrary would
be subjected to careful examination. Yet, in fact the opposite seems to be the case.

We argued earlier that the controversies might stem from the high noise level

53In other words, not only is there no reason in economic theory to expect linearity within the
structure of the economy, but there is even less reason to expect to find linearity in nature, which
produces shocks to the system.
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that exists in most aggregated economic time series and the relatively low sample
sizes that are available with economic data. However, it also appears that the
controversies are produced by the nature of the tests themselves, rather than by
the nature of the hypothesis, since linearity is a very strong null hypothesis, and
hence should be easy to reject with any test and any economic or financial time
series on which an adequate sample size is available. In particular, there may be
very little robustness of such tests across variations in sample size, test method,
and data aggregation method. That possibility was the subject of Barnett et al.
(1995), who used five of the most widely used tests for nonlinearity or chaos
with various monetary aggregate data series of various sample sizes and acquired
results that differed substantially across tests and over sample sizes, as well as over
the statistical index number formulas used to aggregate over the same component
data.

9.4 Single Blind Controlled Competition

It is possible that none of the tests for chaos and nonlinear dynamics that we
have discussed completely dominates the others, since some tests may have higher
power against certain alternatives than other tests, without any of the tests neces-
sarily having higher power against all alternatives. If this is the case, each of the
tests may have its own comparative advantages, and there may even be a gain
from using more than one of the tests in a sequence designed to narrow down the
alternatives.

To explore this possibility, Barnett with the assistance of Jensen designed and
ran a single blind controlled experiment, in which they produced simulated data
from various processes having linear, nonlinear chaotic, or nonlinear nonchaotic
signal. They transmitted each simulated data set by e-mail to experts in running
each of the statistical tests that were entered into the competition. The e-mailed
data included no identification of the generating process, so those individuals who
ran the tests had no way of knowing the nature of the data generating process,
other than the sample size, and there were two sample sizes: a ‘small sample’ size
of 380 and a ‘large sample’ size of 2000 observations.

In fact five generating models were used to produce samples of the small and
large size. The models were a fully deterministic, chaotic Feigenbaum recursion
(Model I), a generalized autoregressive conditional heteroskedasticity (GARCH)
process (Model II), a nonlinear moving average process (Model III), an autore-
gressive conditional heteroskedasticity (ARCH) process (Model IV), and an au-
toregressive moving average (ARMA) process (Model V). Details of the param-
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eter settings and noise generation method can be found in Barnett et al. (1996).
The tests entered into this competition were Hinich’s bispectrum test, the BDS
test, White’s test, Kaplan’s test, and the NEGM test of chaos.

The results of the competition are available in Barnett et al. (1997) and are
summarized in Table 3. They provide the most systematic available comparison
of tests of nonlinearity and indeed do suggest differing powers of each test against
certain alternative hypotheses. In comparing the results of the tests, however, one
factor seemed to be especially important: subtle differences existed in the defini-
tion of the null hypothesis, with some of the tests being tests of the null of linearity,
defined in three different manners in the derivation of the test’s properties, and one
test being a test of the null of chaos. Hence there were four null hypotheses that
had to be considered to be able to compare each test’s power relative to each test’s
own definition of the null.

Since the tests do not all have the same null hypothesis, differences among
them are not due solely to differences in power against alternatives. Hence one
could consider using some of them sequentially in an attempt to narrow down
the inference on the nature of the process. For example, the Hinich test and the
White test could be used initially to find out whether the process lacks third order
nonlinear dependence and is linear in the mean. If either test rejects its null, one
could try to narrow down the nature of the nonlinearity further by running the
NEGM test to see if there is evidence of chaos. Alternatively, if the Hinich and
White tests both lead to acceptance of the null, one could run the BDS or Kaplan
test to see if the process appears to be fully linear. If the data leads to rejection
of full linearity but acceptance of linearity in the mean, then the data may exhibit
stochastic volatility of the ARCH or GARCH type.

In short, the available tests provide useful information, and such comparisons
of other tests could help further to narrow down alternatives. But ultimately we
are left with the problem of isolating the nature of detected nonlinearity or chaos
to be within the structure of the economy. This final challenge remains unsolved,
especially in the case of chaos.

9.5 Testability of Chaos within the Economy

Recently there has been considerable criticism of the existing research on chaos,
as for example in Granger’s (1994) review of Benhabib’s (1992) book. However,
it is unwise to take a strong opinion (either pro or con) in that area of research.
Contrary to popular opinion within the profession, there have been no published
tests of chaos ‘within the structure of the economic system’, and there is very little
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chance that any such tests will be available in this field for a very long time. Such
tests are simply beyond the state of the art.

All of the published tests of chaos in economic data test for evidence of chaos
in the data. If chaos is found, the test has no way of determining whether or not
the source of the chaos is from within the structure of the economy or perhaps is
from within the chaotic weather systems that surround the planet. Considering the
fact that chaos is clearly evident in many natural phenomena, and considering the
fact that natural phenomena introduce shocks into the economy, the observation
of chaotic behavior in some economic variables should be no surprise, but should
give us no reason to believe that the economic system is chaotic, or is not chaotic.

To determine whether the source of chaos in economic data is from within the
economic system, a model of the economy must be constructed. The null hypoth-
esis that then must be tested is the hypothesis that the parameters of the model
are within the subset of the parameter space that supports the chaotic bifurcation
regime of the dynamic system. Currently, however, we do not have the mathemat-
ical tools to find and characterize that subset, when more than three parameters
exist. Hence, with any usable model of any economy, the set that defines the null
hypothesis cannot be located - and no one can test a null hypothesis that cannot
be located and defined.

Since we cannot test the hypothesis, we may instead wish to consider whether
or not chaos is plausible on philosophical ground. On that basis, the question
would be whether the economy should be viewed as having evolved naturally, as in
the natural sciences, or was the product of intentional human design by economic
‘engineers’. Systems intentionally designed (by engineers) to be stable are stable
and not chaotic, if designed optimally. Nature, however, was not designed by
human beings, and is chaotic - the weather, for example, will never converge to
a steady state. Which view is more appropriate to understanding the dynamics of
actual economies is not clear.

10 Conclusion

We have reviewed a great deal of high quality research on nonlinear and complex
dynamics and evidence concerning chaotic nonlinear dynamics in economic and
financial time series. There are many reasons for this interest. Chaos, for exam-
ple, represents a radical change of perspective on business cycles. Business cycles
receive an endogenous explanation and are traced back to the strong nonlinear de-
terministic structure that can pervade the economic system. This is different from
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the (currently dominant) exogenous approach to economic fluctuations, based on
the assumption that economic equilibria are determinate and intrinsically stable,
so that in the absence of continuing exogenous shocks the economy tends towards
a steady state, but because of stochastic shocks a stationary pattern of fluctuations
is observed.

Chaos could also help unify different approaches to structural macroeconomics.
As Grandmont (1985) has shown, for different parameter values even the most
classical of economic models can produce stable solutions (characterizing classi-
cal economics) or more complex solutions, such as cycles or even chaos (char-
acterizing much of Keynesian economics). Finally, if forecasting is a goal, the
possible existence of chaos could be exploitable and even invaluable. If, for ex-
ample, chaos can be shown to exist in asset prices, the implication would be that
profitable, nonlinearity-based trading rules exist (at least in the short run and pro-
vided the actual generating mechanism is known). Prediction, however, over long
periods is all but impossible, due to the ‘sensitive dependence on initial condi-
tions’ property of chaos.

However, as we argued in the previous section, we do not have the slightest
idea of whether or not the economy exhibits chaotic nonlinear dynamics (and
hence we are not justified in excluding the possibility). Until the difficult problems
of testing for chaos ‘within the structure of the economic system’ are solved, the
best that we can do is to test for chaos in economic data, without being able to
isolate its source. But even that objective has proven to be difficult. While there
have been many published tests for chaotic nonlinear dynamics, little agreement
exists among economists about the correct conclusions.
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TABLE 1.

SUMMARY OF PUBLISHED RESULTS OF NONLINEARITY
AND CHAOS TESTING ON ECONOMIC DATA

Study Data N Tests Results

Barnett & Various weekly simple-sum 807 Correlation dimension Evidenc
Chen (1988) and Divisia monetary and chao

aggregates aggregat

DeCoster & Various weekly simple-sum 469-842 Correlation dimension Evidenc
Mitchell (1990) and Divisia monetary and chao

aggregates aggregat

Ramsey, Sayers, Barnett & Chen’s (1988) 807-5,200 Correlation dimension No evide
& Rothman (1990) Divisia M2 series and

Scheinkman & LeBaron’s
(1989) CRSP value weighted
daily stock returns

Serletis (1995) Various monthly simple-sum 396 NEGM Evidenc
and Divisia velocity series velocity

Brock & Several U.S. macroeconomic 134 Correlation dimension Nonline
Sayers (1988) time series, using (mostly) evidence

quarterly data from the late chaos
40’s to the mid 80’s

Frank & Several Canadian macroeconomic 147 Correlation dimension Nonline
Stengos (1988) time series, using (mostly) evidence

quarterly data since 1947

Frank, Gencay, & Real GNP series for Germany, 87-108 Correlation dimension Nonline
Stengos (1988) Italy, Japan, and the U.K., using evidence

quarterly data since 1960
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TABLE 2.

SUMMARY OF PUBLISHED RESULTS OF NONLINEARITY
AND CHAOS TESTING ON FINANCIAL DATA

Study Data N Tests R

Serletis & Seven East European 438 a. BDS a.
Gogas (1997) black-market exchange rates b. NEGM b.

c. Gencay & Dechert c.

Abhyankar, Copeland, Real-time returns on four 2,268 - 97,185 a. BDS a.
and Wong (1997) stock-market indices b. NEGM b.

Abhyankar, Copeland, FTSE 100 60,000 a. Bispectral linearity test a.
and Wong (1997) b. BDS b.

c. NEGM c.

Hsieh (1991) Weekly S&P 500 and 1,297 - 2,017 BDS N
CRSP value weighted returns

Frank & Gold and silver rates 2,900 - 3,100 a. Correlation dimension a.
Stengos (1989) of return b. Kolmogorov entropy b.

Hinich & Dow Jones industrial 750 Bispectral Gaussianity N
Patterson (1989) average and linearity tests no

Scheinkman & Daily CRSP value 5,200 BDS E
LeBaron (1989) weighted returns

Brockett, Hinich & 10 Common U.S. stocks 400 Bispectral Gaussianity N
Patterson (1988) and $-yen spot and and linearity tests no

forward exchange rates
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TABLE 3.

RESULTS OF A SINGLE-BLIND CONTROLLED COMPETITION
AMONG TESTS FOR NONLINEARITY AND CHAOS

Small Sample Large Sample
Test Null hypothesis Successes Failures Successes Failures

Hinich Lack of 3rd order 3 2 3 plus ambiguous 1 plus ambiguous
nonlinear dependence in 1 case in 1 case

BDS Linear process 2 Ambiguous 5 0
in 3 cases

NEGM Chaos 5 0 5 0

White Linearity in mean 4 1 4 1

Kaplan Linear process 5 0 5 0

Source: Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997, tables 1-4, 6-7, and 9-10).
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