Soar and Quake 2

John Laird

November 21, 2001

This document describes at a high level the interaction between Soar and Quake 2 using SGIO. A second document, Soar2UT.doc, by Brad Jones gives a more detailed description of SGIO.
The basic parts

[image: image1]
Game Environment: Quake 2
An environment in which the AI characters exist.

The Quake 2 Dynamically Linked Library (.dll)
This is code that communicates directly with the game and is one part of the interface between Soar and the games. The .dll is where the game specific code is written (in C++) for extracting the sensory data from the game and performing actions in the game. This is the only place that domain specific code and knowledge of the game API is required (except for the Soar rules).
Code in the .dll is nominally executed during each cycle of the game. In Quake 2 this is 10 times a second. In UT, it is at whatever the framerate is. We have code in the UT .dll so that the input is only processed at 10 times a second. The .dll is automatically loaded in at runtime by Quake. The .dll communicates with Soar via SGIO, part of which is included in the .dll to support communication.
SGIO

This is the Soar General I/O system. It is written in C++ and provides a flexible interface between environments and Soar. SGIO supports communication via sockets so that Soar can be on a separate machine from the game, or it can be on the same machine as the game, but running in a separate process. In these cases, the complete development and debugging environment of Soar can be used. SGIO also supports a direct C-level API where the Soar system is embedded in the same process as the game. This is much more efficient but has the disadvantage that the development environments cannot be used. The best things about SGIO are that the mode of connection is selected at runtime (via a switch in a configuration file: soarbot.cfg), and that it does not have to be modified at all for a new environment – the exact same code is used for Quake 2 and UT. Part of SGIO is embedded within the game .dll. For the socket versions, another stub of SGIO is connected to Soar.
Soar
This is our AI engine. It communicates with the domain environment through SGIO. No changes have to be made to Soar when a new environment is created (except possibly to create new rules).
Installing Soar and SGIO with Quake 2
This section describes the software you must install and where it must be install to get Soar to run with Quake 2. You will need to install Quake 2 and the soarside, which contains everything for Soar using SGIO via sockets. You will probably also want to install VisualSoar, the editor for Soar.
Quake 2
You must install the commercial version of Quake to and get upgrade v3.20 from the internet (http://www.planetquake.com/quake2/files.shtml)

In the Quake 2 folder you should install the following from our release:
· The agents folder. This has the Soar agents that can be run embedded with Quake. Unfortunately we currently have to have two copies of the agents – one for the embedded version and one for the socket based versions of SGIO. As of today (11/20/01) the simplebot (spawned using esimplebot) works fine. There is an unknown problem that causes johnbot (spawned using fastbot) to crash.
· The map files in baseq2 folder. The baseq2 folder comes with Quake 2. You have to add our maps to the maps folder in baseq2. The maps are in the maps directory of the release and include the following: swdemo4.map/.bsp/.prt, swdemo5.map/.bsp/.prt, and lairddemo.map/.bsp/.prt. Johnbot is restricted to mapping only rectangular rooms and hallways, so it is best to stick with these maps.
· quakebot.bat – this is the file used to start up Quake for running with Soar. You double-click on it. (You may need to make sure that this has the correct path to quake.exe.
· The quakebot folder. This contains the following:

· gamex86.dll: This is the dll that contains all of the code for creating the input and processing the output from Soar. The source for this is in the quakebot/quake2_src folder.
· quakebot.cfg: This holds configuration information for the quakebots.
syntax for a bot is

#begin_bot

<keyword> <value>

#end_bot

where keywords are

name - a string that is used to invoke the bot from the console

 example: bot spawn simplebot

skin - the skin used: male/grunt

host - the internet address of the computer that will be used.

 If it is 127.0.0.1 it is on the same machine as Quake

port - the port number. Must be the same as the soarside

path - path to the Soar code to be loaded.

 if not embedded (using sockets), it is a path from
 soarside/soar/agents

 if emebedded, it is a path from quake2/agents

embed - if true, then the Soar API is used (not sockets).
· quake2_src: Contains the source code for generating the .dll file.
The soarside and visualsoar folders can be added anywhere on your system.
Running Soar and Quake 2

There three cases:

1. Running Quake 2 and Soar on separate machines.

a. One machine 1: start up soarside.exe. Make sure it points to the file in the release directory!
b. On machine 2: create or modify an entry in quakebot.cfg so that the host address is the internet address of the computer running soarside.exe

c. On machine 2: start up Quake 2.

d. Once Quake 2 starts up, back off of the spawn point and type ~ to bring up the console.

e. Type in “bot spawn simplebot” (without quotes and using the name of the bot your set up in the quakebot.cfg file).

f. That should get things started. To make the Soarbot run faster, set the watch level to 0 and click on the TSI to disable continual updates of the TSI (both of these make a huge difference).

2. Running Quake 2 and Soar on the same machine using sockets.

a. Start up soarside.exe. Make sure it points to the file in the release directory!
b. Create or modify an entry for simplebot in quakebot.cfg so that the host address is 127.0.0.1

c. Start up Quake 2.

d. Once Quake 2 starts up, back off of the spawn point and type ~ to bring up the console.

e. Type in “bot spawn simplebot” (without quotes and using the name of the bot your set up in the quakebot.cfg file).

f. That should get things started. To make the Soarbot run faster, set the watch level to 0 and click on the TSI to disable continual updates of the TSI (both of these make a huge difference).

3. Running Quake 2 and Soar on the same machine using the API.

a. Create or modify an entry in quakebot.cfg so that the host address is 127.0.0.1 and it has “embed true” – this is already set up for esimplebot and fastbot
b. Start up Quake 2.

c. Once Quake 2 starts up, back off of the spawn point and type ~ to bring up the console.

d. Type in “bot spawn esimplebot” (without quotes and using the name of the bot your set up in the quakebot.cfg file).

e. That should get things started (run for your life!).
Known problems with Soar/SGIO/…

1. Soar can’t be stopped running except by typing “bot pause” into the Quake window using ~. Using watch 0 to stop all of the printing to the window.
2. Strings with spaces – rocket launcher, super shotgun, timing log, o-support-mode
1 machine

1 process

Soar

Soar

DLL

SGIO

Game

Environment

(Quake2)

1 machine

with sockets

socket

socket

SGIO

Soar

SGIO

Soar

socket

SGIO

Soar

multiple machines

DLLSGIO

Game

Environment

(Quake2)

socket

SGIO

DLL

SGIO

Soar

Game

Environment

(Quake2)

