

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-1

Inteligentní softwarové prostředky

Inteligentní softwarové prostředky,

softwaroví agenti

13. 12. 2002

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-2

Inteligentní softwarové prostředky

Inteligentní softwarové prostředky aneb
inteligentní softwaroví agenti
Definition: Agent
Agent:
One that is authorized to act for another. Agents possess the characteristics of delegacy,
competency, and amenability.

Delegacy:
Discretionary authority to autonomously act on behalf of the client. Actions include making decisions,
committing resources, and performing tasks.

Competency:
The capability to effectively manipulate the problem domain environment to accomplish the
prerequisite tasks. Competency includes specialized communication proficiency.

Amenability:
The ability to adapt behavior to optimize performance in an often non-stationary environment in
responsive pursuit of the goals of the client. Amenability may be combined with accountability.

Examples of human agents include booking agents, sales agents, and politicians.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-3

Inteligentní softwarové prostředky

Definition: Software Agent
Software Agent:
An artificial agent which operates in a software environment.

Software environments include operating systems, computer applications, databases, networks, and
virtual domains.

Delegacy for software agents centers on persistence. "Fire-and-forget" software agents stay
resident, or persistent, as background processes after being launched. By making decisions and
acting on their environment independently, software agents reduce human workload by generally
only interacting with their end-clients when it is time to deliver results. Additionally, autonomous
automation can lead to super-human performance in terms of volume and speed.

Competency within a software environment requires knowledge of the specific communication
protocols of the domain. Protocols such as SQL for databases, HTTP for the WWW, and API calls for
operating systems must be preprogrammed into the software agents, limiting their useful range.

Amenability for non-intelligent software agents is generally limited to providing control options and
the generation of status reports that require human review. Such agents often tend to be brittle in
the face of a changing environment, necessitating a modification of their programming to restore
performance.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-4

Inteligentní softwarové prostředky

Definition: Intelligent Software Agent
Intelligent Software Agent (ISA):
A software agent that uses Artificial Intelligence (AI) in the pursuit of the goals of its clients.

Artificial Intelligence is the imitation of human intelligence by mechanical means. Clients, then, can
reduce human workload by delegating to ISAs tasks that normally would require human-like
intelligence.

Many researchers that formerly referred to their work as AI are now actively engaged in "agent
technology". Thus the word "agent" by itself generally connotes ISAs in the terms of the present-day
research community.

Delegacy for ISAs is far more absolute. ISAs have the capability to generate and implement novel
rules of behavior which human beings may never have the opportunity or desire to review. As ISAs
can engage in extensive logical planning and inferencing, the relationship of trust between the client
and the agent is or must be far greater, especially when the consumption of client resources is
committed for reasons unexplained or multiple complex operations are actuated before human
observers can react.

Competency as practiced by ISAs adds higher order functionality to the mix of capabilities. In
addition to communicating with their environment to collect data and actuate changes, ISAs can
often analyze the information to find non-obvious or hidden patterns, extracting knowledge from raw

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-5

Inteligentní softwarové prostředky

data. Environmental modes of interaction are richer, incorporating the media of humans such as
natural language text, speech, and vision.

Amenability in ISAs can include self-monitoring of achievement toward client goals combined with
continuous, online learning to improve performance. Adaptive mechanisms in ISAs mean that they
are far less brittle to changes in environment and may actually improve. In addition, client
responsiveness may go so far as to infer what a client wants when the client himself does not know
or cannot adequately express the desired goals in definitive terms.

Agent Variants
Mobile Agents:
Also known as traveling agents, these programs will shuttle their being, code and state, among
resources. This often improves performance by moving the agents to where the data reside instead
of moving the data to where the agents reside. The alternative typical operation involves a client-
server model. In this case, the agent, in the role of the client, requests that the server transmit
volumes of data back to the agent to be analyzed. Oftentimes the data must be returned by the
agent to the server in a processed form. Significant bandwidth performance improvements can be
achieved by running the agents within the same chassis as the data. Mobile agent frameworks are
currently rare, however, due to the high level of trust required to accept a foreign agent onto one's
data server. With advances in technologies for accountability and immunity, mobile agent systems
are expected to become more popular.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-6

Inteligentní softwarové prostředky

Distributed Agents:
Load-balancing can be achieved by distributing agents over a finite number of computational
resources. Some mobile agents are self-distributing, seeking and moving to agent platforms that can
offer the higher computational resources at lower costs.

Multiple Agents:
Some tasks can be broken into sub-tasks to be performed independently by specialized agents. Such
agents are unaware of the existence of the others but nonetheless rely upon the successful
operations of all.

Collaborative Agents:
Collaborative agents interact with each other to share information or barter for specialized services
to effect a deliberate synergism. While each agent may uniquely speak the protocol of a particular
operating environment, they generally share a common interface language which enables them to
request specialized services from their brethren as required.

Social Agents:
Anthropomorphism is seen by some researchers as a key requirement to successful collaboration
between humans and agents. To this end, agents are being developed which can both present
themselves as human-like creations as well as interpret human-generated communications such as
continuous speech, gestures, and facial expressions.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-7

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-8

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-9

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-10

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-11

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-12

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-13

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-14

Inteligentní softwarové prostředky

A Panoramic Overview of the Different Agent Types

A Classification of Software Agents:

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-15

Inteligentní softwarové prostředky

A Panoramic Overview of the Different Agent Types

A Classification of Software Agents:

Collaborative Agents

emphasise autonomy and cooperation (with other agents) in order to perform tasks for
their owners. They may learn, but this aspect is not typically a major emphasis of their
operation. In order to have a coordinated set up of collaborative agents, they may have
to negotiate in order to reach mutually acceptable agreements on some matters.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-16

Inteligentní softwarové prostředky

The motivation for having collaborative agent systems may include one or several of the
following:

� To solve problems that are too large for a centralised single agent to do due to resource
limitations or the sheer risk of having one centralised system;

� To allow for the interconnecting and interoperation of multiple existing legacy systems,
e.g. expert systems, decision support systems, etc.;

� To provide solutions to inherently distributed problems, e.g. distributed sensor networks
(cf. DVMT, Durfee et al., 1987) or air-traffic control;

� To provide solutions which draw from distributed information sources, e.g. for distributed
on-line information sources, it is natural to adopt a distributed and collaborative agent
approach;

� To provide solutions where the expertise is distributed, e.g. in health care provisioning;

� To enhance modularity (which reduces complexity), speed (due to parallelism), reliability
(due to redundancy), flexibility (i.e. new tasks are composed more easily from the more
modular organisation) and reusability at the knowledge level (hence shareability of
resources);

� To research into other issues, e.g. understanding interactions among human societies.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-17

Inteligentní softwarové prostředky

Interface Agents
Interface agents emphasise autonomy and learning in order to perform tasks for their
owners. Pattie Maes, a key proponent of this class of agents, points out that the key
metaphor underlying interface agents is that of a personal assistant who is collaborating
with the user in the same work environment.

Figure depicts the functioning of interface agents. Essentially, interface agents support
and provide assistance, typically to a user learning to use a particular application such as
a spreadsheet or an operating system.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-18

Inteligentní softwarové prostředky

Mobile Agents
Mobile agents are computational software processes capable of roaming wide area
networks (WANs) such as the WWW, interacting with foreign hosts, gathering information
on behalf of its owner and coming back home having performed the duties set by its
user. These duties may range from a flight reservation to managing
a telecommunications network. However, mobility is neither a necessary nor sufficient
condition for agenthood. Mobile agents are agents because they are autonomous and
they cooperate, albeit differently to collaborative agents. For example, they may
cooperate or communicate by one agent making the location of some of its internal
objects and methods known to other agents. By doing this, an agent exchanges data or
information with other agents without necessarily giving all its information away.

The key hypothesis underlying mobile agents is that agents need not be stationary;
indeed, the idea is that there are significant benefits to be accrued, in certain
applications, by eschewing static agents in favour of their mobile counterparts. These
benefits are largely non-functional, i.e. we could do without mobile agents, and only have
static ones but the costs of such a move are high.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-19

Inteligentní softwarové prostředky

Example - A Part View of Telescript Architecture

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-20

Inteligentní softwarové prostředky

Information/Internet Agents
Information agents have come about because of the sheer demand for tools to help us manage the
explosive growth of information we are experiencing currently, and which we will continue to
experience henceforth. Information agents perform the role of managing, manipulating or collating
information from many distributed sources.

The underlying hypothesis of information agents is that, somehow, they can ameliorate, but certainly
not eliminate, this specific problem of information overload and the general issue of information
management in this information era.

The motivation for developing information/internet agents:

Firstly, there is simply a yearning need/demand for tools to manage such information explosion.
Everyone on the WWW would benefit from them in just the same way as they are benefiting from
search facilitators such as Spiders, Lycos or Webcrawlers. As Bob Johnson, an analyst at Dataquest
Inc., notes:"in the future, it [agents] is going to be the only way to search the Internet, because no matter
how much better the Internet may be organised, it can't keep pace with the growth in information ...".

Secondly, there are vast financial benefits to be gained. Recall that Netscape Corporation grew from
relative obscurity to a billion dollar company almost overnight – and a Netscape or Mosaic client
offers generally browsing capabilities, albeit with a few add-ons. Whoever builds the next killer
application – the first usable Netscape equivalent of a proactive, dynamic, adaptive and cooperative
agent-based WWW information manager – is certain to reap enormous financial rewards.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-21

Inteligentní softwarové prostředky

Reactive Software Agents
Reactive agents represent a special category of agents which do not possess internal,
symbolic models of their environments; instead they act/respond in a stimulus-response
manner to the present state of the environment in which they are embedded. Reactive
agents work dates back to research such as Brooks (1986) and Agre & Chapman (1987),
but many theories, architectures and languages for these sorts of agents have been
developed since. However, a most important point of note with reactive agents are not
these (i.e. languages, theories or architectures), but the fact that the agents are relatively
simple and they interact with other agents in basic ways. Nevertheless, complex patterns
of behaviour emerge from these interactions when the ensemble of agents is viewed
globally.

The essential hypothesis of reactive agent-based systems is a specification of the physical
grounding hypothesis, not to be confused with the physical symbol system hypothesis.
Traditional AI has staked most of its bets on the latter which holds that the necessary
and sufficient condition for a physical system to demonstrate intelligent action is that it
be a physical symbol system. On the contrary, the physical grounding hypothesis
challenges this long-held view arguing it is flawed fundamentally, and that it imposes
severe limitations on symbolic AI-based systems.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-22

Inteligentní softwarové prostředky

Brook’s Subsumption Architecture

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-23

Inteligentní softwarové prostředky

Hybrid Agents

The key hypothesis for having hybrid agents or architectures is the belief that, for some
application, the benefits accrued from having the combination of philosophies within
a singular agent is greater than the gains obtained from the same agent based entirely
on a singular philosophy. Otherwise having a hybrid agent or architecture is meaningless.
Clearly, the motivation is the expectation that this hypothesis would be proved right; the
ideal benefits would be the set union of the benefits of the individual philosophies in the
hybrid.
Consider the obvious case of constructing an agent based on both the collaborative (i.e.
deliberative) and reactive philosophies. In such a case the reactive component, which
would take precedence over the deliberative one, brings about the following benefits:
robustness, faster response times and adaptability. The frame problem is also better
ameliorated by the reactive component.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-24

Inteligentní softwarové prostředky

Heterogeneous Agent Systems

Heterogeneous agent systems, unlike hybrid systems described in the preceding section,
refers to an integrated set-up of at least two or more agents which belong to two or
more different agent classes. A heterogeneous agent system may also contain one or
more hybrid agents.

The potential benefits for having heterogeneous agent technology are several:

� Standalone applications can be made to provide value-added services by enhancing
them in order to participate and interoperate in cooperative heterogeneous set-ups;

� The legacy software problem may be ameliorated because it could obviate the need
for costly software rewrites as they be given new leases of life by getting them to
interoperate with other systems. Heterogeneous agent technology may cushion or
lessen the blow or effect of routine software maintenance, upgrade or rewrites;

� Agent-based software engineering provides a radical new approach to software
design, implementation and maintenance in general, and software interoperability in
particular. Its ramifications (e.g. moving from passive modules in traditional software
engineering to proactive agent-controlled ones) would only be clear as this
methodology and its tools become clearer.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-25

Inteligentní softwarové prostředky

A Federated System

Genesereth & Ketchpel (1994) note that agent-based software engineering is often
compared to object-oriented programming in that an agent, like an object, provides
a message-based interface to its internal data structures and algorithms. However, they
note that there is a key distinction: in object-oriented programming, the meaning of
a message may differ from object to object (this is the principle of polymorphism); in
agent-based software engineering, agents use a common language with an agent-
independent semantics. They highlight three important questions raised by the new
agent-oriented software engineering paradigm. They include:

� What is an appropriate agent communication language?
� How are agents capable of communicating in this language constructed?
� What communication architectures are conducive to cooperation?

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-26

Inteligentní softwarové prostředky

Application areas:
• Logical Inferencing and Deduction

• Contextual Domain Knowledge

• Pattern Recognition

• Learning and Adaptivity

• Data Collection and Filtering

• Event Notification

• Data Presentation

• Planning and Optimization

• Rapid Response Implementation

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-27

Inteligentní softwarové prostředky

Vlastnosti softwarových agentů

An agent is a software entity with (some of) the following chatacteristics:
► ongoing execution
► environmental awareness – reactivity

– proactiveness
► agent awareness
► autonomy
► adaptiveness
► mobility
► anthropomorphism
► reproduceness

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-28

Inteligentní softwarové prostředky

Agents typically possess several (or all) of the following characteristics; they
are:

• autonomous

• adaptive/learning

• mobile

• persistent

• goal oriented

• communicative/collaborative

• flexible

• active/proactive

Agents also tend to be small in size. They do not, by themselves, constitute a
complete application. Instead, they form one by working in conjunction with
an agent host and other agents. In many ways, agents are of the same scope
as applets. Small and of limited functionality on their own.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-29

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-30

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-31

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-32

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-33

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-34

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-35

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-36

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-37

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-38

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-39

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-40

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-41

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-42

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-43

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-44

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-45

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-46

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-47

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-48

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-49

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-50

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-51

Inteligentní softwarové prostředky

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-52

Inteligentní softwarové prostředky

GenericAgent.java

import java.io.*;
import java.util.*;
import java.lang.*;
import webl.lang.*;
import webl.lang.expr.*;
import webl.util.*;

public class GenericAgent
{
 static String script = "";
 static WeblEngine webl_engine
 = new WeblEngine();
 static int number_of_patterns = 0;
 static int selected_pattern = 0;
 int search_str_set = 0;
 int current_pattern = 0;

 public GenericAgent()
 {
 executeScript("AgtFiles/Init.agt");
 }

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-53

Inteligentní softwarové prostředky

 public void startAgain()
 {
 webl_engine = new WeblEngine();
 executeScript("AgtFiles/Init.agt");
 search_str_set = 0;
 }
 public String executeScript(String filename)
 {
 String line = null;
 String return_val = "";
 try
 {
 BufferedReader in = new BufferedReader(
 new FileReader(filename));
 while ((line = in.readLine()) != null)
 {
 script += line;
 }
 in.close();
 System.out.println("executeScript():" + filename + "\n"+ script + "\n");
 return_val = webl_engine.executeScript(script).print();
 script = "";

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-54

Inteligentní softwarové prostředky

 }
 catch (FileNotFoundException fnf)
 {
 System.err.println("GenericAgent(): " +
 filename + " not found");
 }
 catch (IOException ex) { System.err.println(ex); }
 return return_val;
 }

 public String executeLine(String line)
 {
 Expr result;
 System.out.println("executeLine(): " + line + "\n");
 result = webl_engine.executeScript(line);
 return result.print();
 }

 public String searchWebSite(String website, String type_of_site,
 String search_string, String matching_power)
 {
 String search_str_line =
 "import Str; import Browser; var searchInput = \""

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-55

Inteligentní softwarové prostředky

 + search_string + "\";" ;
 String type_of_site_line =
 "var searchType = \"" + type_of_site + "\";" ;
 String website_line =
 "var website = \"http://" + website + "\";" ;

 script = search_str_line +
 type_of_site_line + website_line;

 if (matching_power.length() != 0)
 executeLine("repeatThreshold = "
 + matching_power + ";");
 executeScript("AgtFiles/Search.agt");
 return "hello";
 }

 public String setSearchString(String search_str)
 {
 if (search_str_set != 0)
 return ";";
 search_str_set = 1;
 executeLine("searchString =\"" + search_str + "\";");
 return executeScript("AgtFiles/InitQuery.agt");

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-56

Inteligentní softwarové prostředky

 }

 public void setStarttoParent()
 {
 executeLine("childTag = Name(startQueryPiece);");
 executeLine("startQueryPiece = Parent(startQueryPiece);");
 }

 public void executeQuery(int dir)
 {
 String query = null;
 if (dir != 0) {
 String child_tag = executeLine("childTag;");
 String query_stmt = executeLine("queryStmt;");
 query = "Elem(P,\"" + child_tag + "\") directlyinside "
 + query_stmt;
 } else {
 query = executeScript("AgtFiles/Query.agt");
 }
 executeLine("records = " + query + ";");
 String ShowRec = "DummyRec = " + query
 + " contain (Pat(P,searchString)[0]);";
 executeLine(ShowRec);

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-57

Inteligentní softwarové prostředky

 executeScript("AgtFiles/ShowRec.agt");
 }

 public int getNumberOfPatterns()
 {
 String result = executeLine(" Size(ToList(patterns));");
 number_of_patterns = Integer.parseInt(result);
 return number_of_patterns;
 }

 public String getFirstPattern()
 {
 String index = "";

 if (number_of_patterns == 0)
 return null;

 current_pattern = 0;
 index = String.valueOf(current_pattern);
 executeLine("import Str; tags = Str_Search(patterns[" +
 index + "][1], \"[<](.*?)[>]\");");
 executeScript("AgtFiles/Pattern.agt");
 showPattern();

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-58

Inteligentní softwarové prostředky

 return "hello";
 }

 public String getLastPattern()
 {
 String index = "";

 if (number_of_patterns == 0)
 return null;

 current_pattern = number_of_patterns - 1;
 index = String.valueOf(current_pattern);
 executeLine("import Str; tags = Str_Search(patterns[" +
 index + "][1], \"[<](.*?)[>]\");");
 executeScript("AgtFiles/Pattern.agt");
 showPattern();

 return "hello";
 }

 public String getNextPattern()
 {

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-59

Inteligentní softwarové prostředky

 String index = "";

 if (number_of_patterns == 0)
 return null;
 if (current_pattern >= number_of_patterns)
 return null;
 current_pattern ++;
 index = String.valueOf(current_pattern);
 executeLine("import Str; tags = Str_Search(patterns[" +
 index + "][1], \"[<](.*?)[>]\");");
 executeScript("AgtFiles/Pattern.agt");
 showPattern();

 return "hello";
 }

 public String getPreviousPattern()
 {
 String index = "";

 if (number_of_patterns == 0)
 return null;
 if (current_pattern == 0)

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-60

Inteligentní softwarové prostředky

 return null;
 current_pattern --;
 index = String.valueOf(current_pattern);
 executeLine("import Str; tags = Str_Search(patterns[" +
 index + "][1], \"[<](.*?)[>]\");");
 executeScript("AgtFiles/Pattern.agt");
 showPattern();
 return "hello";
 }

 public String showPattern()
 {
 String result = executeLine("Size(ToList(weblstmt));");
 int numberStmt = Integer.parseInt(result);
 String[] weblstmt = new String[numberStmt];

 for (int i = 0; i < numberStmt; i++)
 {
 result = executeLine("weblstmt[" + String.valueOf(i) + "];");
 weblstmt[i] = result;

 String webltext1 = "weblobj[" + String.valueOf(i) + "] := "
 + weblstmt[i] + "; weblmarkuptxt = weblmarkuptxt + Markup(weblobj[" +

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-61

Inteligentní softwarové prostředky

 String.valueOf(i) + "][3]);";

 String webltext2 = "if (Size(weblobj[" + String.valueOf(i) +
 "]) > 0 and minweblobj == -1) then minweblobj = " +
 String.valueOf(i) + "; end;";

 String webltext3 = "if (Size(weblobj[" + String.valueOf(i) +
 "]) < Size(weblobj[minweblobj])) then minweblobj = " +
 String.valueOf(i) + "; end;minweblobj;";

 String webltext = webltext1 + webltext2 + webltext3;
 executeLine(webltext);
 }
 String browser_text1 = "import Browser;";
 String browser_text2 = "Browser_ShowPage(\"<html><body><hr>\"
+weblmarkuptxt+\"<hr></body></html>\");";
 String browser_text3 = "weblmarkuptxt = \"\";";
 executeLine(browser_text1 + browser_text2 +
 browser_text3);

 return "hello";
 }

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-62

Inteligentní softwarové prostředky

 public int selectPattern()
 {
 selected_pattern = current_pattern;
 executeScript("AgtFiles/Select.agt");
 return selected_pattern;
 }

 public int getNumberOfResults()
 {
 String result = executeLine("Size(txt);");
 int number_of_results = Integer.parseInt(result);
 return number_of_results;
 }

 public String findPattern(int index, String pattern)
 {
 String line1 = "import Str; currList = nil;";
 String line2 = "currList = Str_Search(txt[" +
 String.valueOf(index) + "],\"" + pattern + "\");" ;
 String line3 =
 "if (Size(currList) != 0) then Str_Trim(currList[0][1]); else \"empty\";
 end;";
 String result = executeLine(line1 + line2 + line3);

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-63

Inteligentní softwarové prostředky

 return result;
 }

 public String executeStmt(int index, String stmt)
 {
 String line1 = "dummy =\"\";CurrentRec = NewPiece(Markup(records["
 + String.valueOf(index) +
 "]), \"text/html\");";

 String line2 = "import Str;";
 String line3 = stmt;
 executeLine(line1);
 //String CheckNilStmt = executeLine("CheckNilStmt;");
 //if (executeLine(CheckNilStmt).equals("empty"))
 /// return "empty";
 String pre_result = executeLine(line2 + line3);
 StringTokenizer st = new StringTokenizer(pre_result);
 String result = "";
 while (st.hasMoreTokens())
 result += st.nextToken() + " ";
 return result;
 }
 }

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-64

Inteligentní softwarové prostředky

The word agent has found its way into a number of technologies. It has been
applied to aspects of artificial intelligence research and to constructs
developed for improving the experience provided by collaborative online social
environments (MUDS, MOOs, and the like). It is a branch on the tree of
distributed computing. There are agent development toolkits and agent
programming languages.

Hucksters claim that agents can sort your mail, buy you a car, and solve your
distributed computing woes -- in one fell swoop. Agents have tremendous
potential to be sure, but this claim is a little far fetched -- at least today.

What is an agent?

It's difficult to find a succinct definition for agent that includes all of the things
that most researchers and developers consider agents to be, and excludes all
of the things they aren't. I recommend you read "Is it an Agent, or just a
Program? A Taxonomy for Autonomous Agents" by Stan Franklin and Art
Graesser for a thorough, well-thought-out classification scheme. (See
Resources.)

In this article, I'll limit myself to illustrating rather than defining.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-65

Inteligentní softwarové prostředky

Agents typically possess several (or all) of the following characteristics; they
are:

• Autonomous

• Adaptive/learning

• Mobile

• Persistent

• Goal oriented

• Communicative/collaborative

• Flexible

• Active/proactive

Agents also tend to be small in size. They do not, by themselves, constitute a
complete application. Instead, they form one by working in conjunction with
an agent host and other agents. In many ways, agents are of the same scope
as applets. Small and of limited functionality on their own.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-66

Inteligentní softwarové prostředky

Why study agents?

Agents make an interesting topic of study because they draw on and integrate
so many diverse disciplines of computer science, including objects and
distributed object architectures, adaptive learning systems, artificial
intelligence, expert systems, genetic algorithms, distributed processing,
distributed algorithms, collaborative online social environments, and security -
- just to name a few.

Agent technology is significant because of the sustained commercial interest
surrounding it. You've most likely heard of General Magic and Telescript, and
maybe even IBM's Aglets Workbench (now called IBM Aglets SDK) and
Mitsubishi's Concordia. Agent technology may not have hit prime time quite
yet, but it does seem to be gathering its share of investment money. Take a
gander at the Resources section for a host of other companies engaged in
agent technology development.

Agent technology is also interesting for its potential to solve some nagging
productivity problems that pester almost all modern computer users. Many
agents are meant to be used as intelligent electronic gophers -- automated
errand boys. Tell them what you want them to do -- search the Internet for

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-67

Inteligentní softwarové prostředky

information on a topic, or assemble and order a computer according to your
desired specifications -- and they'll do it and let you know when they've
finished.

What problems do agents solve?

Agent technology solves, or promises to solve, several problems on different
fronts.

Mobile agents solve the nagging client/server network bandwidth problem.
Network bandwidth in a distributed application is a valuable (and sometimes
scarce) resource. A transaction or query between a client and the server may
require many round trips over the wire to complete. Each trip creates network
traffic and consumes bandwidth. In a system with many clients and/or many
transactions, the total bandwidth requirements may exceed available
bandwidth, resulting in poor performance for the application as a whole. By
creating an agent to handle the query or transaction, and sending the agent
from the client to the server, network bandwidth consumption is reduced. So
instead of intermediate results and information passing over the wire, only the
agent need be sent.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-68

Inteligentní softwarové prostředky

Here's a related situation. In the design of a traditional client/server
architecture, the architect spells out the roles of the client and server pieces
very precisely -- up front, at design time. The architect makes decisions about
where a particular piece of functionality will reside based on network
bandwidth constraints (remember the previous problem), network traffic,
transaction volume, number of clients and servers, and many other factors. If
these estimates are wrong, or the architect makes bad decisions, the
performance of the application will suffer. Unfortunately, once the system has
been built and the performance measured, it's often difficult or impossible to
change the design and fix the problems. Architectures based on mobile agents
are potentially much less susceptible to this problem. Fewer decisions must be
made at design time, and the system is much more easily modified after it is
built. Agent architectures that support adaptive network load balancing could
do much of the redesign automatically.

Agent architectures also solve the problems created by intermittent or
unreliable network connections. In most network applications today, the
network connection must be alive and healthy the entire time a transaction or
query is taking place. If the connection goes down, the client often must start
the transaction or query from the beginning, if it can restart it at all. Agent

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-69

Inteligentní softwarové prostředky

technology allows a client to dispatch an agent handling a transaction or query
into the network when the network connection is alive. The client can then go
offline. The agent will handle the transaction or query on its own, and present
the result back to the client when it re-establishes the connection.

Agent technology also attempts to solve (via adaptation, learning, and
automation) the age-old (not to mention annoying) problem of getting a
computer to do real thinking for us. It's a difficult problem. The artificial
intelligence community has been battling these issues for two decades or
more. The potential payoff, however, is immense.

An agent architecture

In this column and in the next few down the road, I'm going to show you how
to design and build an agent architecture. I'll concentrate on designing and
implementing support for several of the agent characteristics mentioned
earlier. Specifically, I'll consider the tactile characteristics of mobility and
persistence, the social characteristics of communication and collaboration, and
the cognitive characteristics of adaptation, learning, and goal orientation.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-70

Inteligentní softwarové prostředky

Requirements
Before we explore these three areas in detail, we need to build the foundation.
Let's take a look at the key requirements our agent architecture must satisfy:

• An agent must have its own unique identity

• An agent host must allow multiple agents to co-exist and execute
simultaneously

• Agents must be able to determine what other agents are executing in the
agent host

• Agents must be able to determine what messages other agents accept
and send

• An agent host must allow agents to communicate with each other and the
agent host

• An agent host must be able to negotiate the exchange of agents

• An agent host must be able to freeze an executing agent and transfer it to
another host

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-71

Inteligentní softwarové prostředky

• An agent host must be able to thaw an agent transferred from another
and allow it to resume execution

• The agent host must prevent agents from directly interfering with each
other

These architectural requirements provide support for the tactile and social
characteristics of supported agents. Explicit support is not provided for the
cognitive characteristics. We'll handle those requirements in a future column.

The objects

From the requirements listed above, we can determine what classes will be
present in the system. Obviously, the system will include an Agent class and
an AgentHost class. Less obviously, our system will also include an
AgentInterface class. The AgentInterface class provides agents with a view of
each other. This is necessitated by the last requirement -- agents must not be
able to directly interfere with other agents. In practice this means that agents
must not be able to directly invoke the public methods of other agents.
Finally, the first requirement dictates that there be an AgentIdentity class.
This class identifies agents both to themselves and to others. It allows an

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-72

Inteligentní softwarové prostředky

agent to decide whether a message from another agent should be accepted or
merely discarded.

The figure below illustrates the relationship between the classes described
above.

 Our agent architecture

Let's take a look at each class in more detail.

• The AgentHost class defines the agent host. An instance of this class
keeps track of every agent executing in the system. It works with other
hosts in order to transfer agents.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-73

Inteligentní softwarové prostředky

• The Agent class defines the agent. An instance of this class exists for each
agent executing on a given agent host.

• The AgentInterface class defines the agent interface. An instance of this
class envelopes an agent and provides access to it via a well-defined
interface. It is also the primary conduit for communication between
agents.

An AgentInterface instance is the only handle an agent gets to the other
agents executing on a given host.

• The AgentIdentity class defines agent identity. An instance of this class
uniquely identifies an agent. Agents use this information to identify the
agents with whom they are interested in collaborating.

Because the associated body of code is large, and the classes are difficult to
use without additional explanation, I'm not going to provide any source code
this month. But don't fret. Tune in next month, and you'll get plenty of source
code along with detailed instructions on how to put it to good use.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-74

Inteligentní softwarové prostředky

Conclusion
With the foundation in place, we're ready to erect the walls. In coming
months, I'll explore each of the three groups of characteristics mentioned
above -- the tactile, the social, and the cognitive. I'll begin with the tactile
characteristics, so expect a demonstration of how to weave agent mobility into
the framework as we develop it next month.

Before I finish, I thought I'd leave you with some guidelines that should help
you determine where agent technology might find a home in your projects.

The most robust and well-developed areas of agent technology are those
revolving around autonomy and mobility. Applications built around unreliable
or intermittent network connections will almost certainly find benefit, as will
applications that must perform offline processing.

Oddly enough, the weakest areas of agent technology (though not for lack of
trying) are those that seem to receive the most hype -- the aspects related to
intelligence. If your application requires intelligent agents, you'll probably
need to wait a while longer to get them. The artificial intelligence community
has been working diligently for over two decades on this single problem.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-75

Inteligentní softwarové prostředky

Remember, a computer has to do a better, more accurate job at a given task
than we're capable of, or we won't use it.

I hope to hear from readers who are currently using, deciding whether or not
to use, or developing agent-based technology or solutions -- especially with
regard to the guidelines provided above.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-76

Inteligentní softwarové prostředky

The Open Agent ArchitectureTM

A framework for integrating a community of heterogeneous software agents in a distributed environment.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-77

Inteligentní softwarové prostředky

What is an Agent?
The term "agent" has been used by many people to mean many different things.
Even within the Agent Research Community, there are at least the following
variants on the term agent: Mobile Agents (e.g. Voyager, Grasshopper),
Learning Agents, Autonomous Agents (e.g. robots), Planning Agents, Simulation
agents, Distributed Agents.

In the context of the Open Agent ArchitectureTM (OAA®), we are focused on
building distributed communities of agents, where agent is defined as any
software process that meets the conventions of the OAA society. An agent
satifies this requirement by registering the services it can provide in an
acceptable form, by being able to speak the Interagent Communication
Language (ICL), and by sharing functionality common to all OAA agents, such as
the ability to install triggers, manage data in certain ways, etc. In our community
of agents, we are able to include, and make use of, each of the different types
of agents mentioned above.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-78

Inteligentní softwarové prostředky

Agent Architectures as a programming methodology

Distributed Agent technology can be thought of as the next step in the evolution
of programming methodologies. In the beginning, there were machine and
assembly languages. These evolved into higher level programming languages
able to break apart programming steps into subroutines. A next generalization
allowed programmers to group collections of subroutines into libraries or
modules. A subsequent innovation added the notion of object orientation: data
and routines could be grouped into a single object, which further encapsulated
the internals of the routines and increased modularity and reuse. Distributed
Object technologies, such as CORBA or DCOM, then broke the rule that every
object must reside on the local machine; now object libraries could post services
through a broker, and the objects themselves could even be written in different
programming languages, as long as they used the same Interface Definition
Language.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-79

Inteligentní softwarové prostředky

So, what can Distributed Agents possibly add to the Distributed Object paradigm?
With distributed objects, even though objects may run on different platforms,
applications generally form a single monolithic entity of tightly-bound objects, with
hand-coded calls to known methods of pre-existing objects.

In a distributed agent framework, we conceptualize a dynamic community of agents,
where multiple agents contribute services to the community. When external services
or information are required by a given agent, instead of calling a known subroutine
or asking a specific agent to perform a task, the agent submits a high-level
expression describing the needs and attributes of the request to a specialized
Facilitator agent. The Facilitator agent will make decisions about which agents are
available and capable of handling sub-parts of the request, and will manage all agent
interactions required to handle the complex query. The advantage? Such a
distributed agent architecture allows the construction of systems that are more
flexible and adaptable than distributed object frameworks. Individual agents can be
dynamically added to the community, extending the functionality that the agent
community can provide as a whole. The agent system is also able to adapt to
available resources in a way that hardcoded distributed objects systems can't.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-80

Inteligentní softwarové prostředky

Human calling Agent, come in Agent...
When designing the Open Agent Architecture, we realized that it is imperative that the human
user must be able to interact with the collection of distributed agents as an equal member of
the community, not just as an outsider to whom is presented a result once real agents have
done all the work. Multiple agents can provide services for retrieval, combination, and
management of the growing amount of online information, but this is only useful if controlling
and interacting with the network of agents remains less complicated than interacting with the
online services themselves!

With this in mind, we designed the InterAgent Communication Language (ICL) to be a logic-
based declarative language capable of representing natural language expressions. In addition,
we incorporated techniques into the architecture for communicating with agents using
simulataneous multiple (natural) input modalities; humans can point, speak, draw, handwrite,
or use standard graphical user interface when trying to get a point across to a collection of
agents. The agents themselves will compete and cooperate in parallel to translate the user's
request into an ICL expression to be handled. These techniques, in combination with the use
of special class of agents called Facilitator agents (Facilitator agents reason about the agent
interactions necessary for handling a given complex ICL expression), allow human users to
closely interact with the ever-changing community of distributed agents.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-81

Inteligentní softwarové prostředky

Technical Features

Characteristics
• Open: agents can be created in multiple programming languages and

interface with existing legacy systems.

• Extensible: agents can be added or replaced individually at runtime.

• Distributed: agents can be spread across any network-enabled computers.

• Parallel: agents can cooperate or compete on tasks in parallel.

• Mobile: lightweight user interfaces can run on handheld PDA's or in a web
browser using Java or HTML and most applications can be run through a
telephone-only interface.

• Multimodal: When communicating with agents, handwriting, speech, pen
gestures and direct manipulation (GUIs) can be combined in a natural way.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-82

Inteligentní softwarové prostředky

Platforms & Languages
The OAA 2.x Facilitator is distributed in binary form for Windows, Solaris, and Linux
platforms.

OAA 2.x agent libraries exist for the following languages, and have been used on (at
least) the following platforms:

Quintus Prolog SunOs/Solaris, Windows 9x/NT/2000, other Quintus-
supported platforms

Sicstus Prolog SunOs/Solaris, Linux, Windows 9x/NT/2000, other
Sicstus-supported platforms

ANSI C/C++ (Unix,
Microsoft, Borland) SunOs/Solaris, Linux, Windows 9x/NT/2000

Java Any Java platform

Compaq's Web Language Any Java platform

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-83

Inteligentní softwarové prostředky

OAA 1.0 agent libraries exist for the following languages, and have been used on (at
least) the following platforms:

Quintus Prolog SunOs/Solaris, Windows 9x/NT, other Quintus-
supported platforms

ANSI C/C++ (Unix, Microsoft,
Borland) SunOs/ Solaris, SGI IRIX, Windows 9x/NT

Common Lisp (Allegro & Lucid) SunOs/Solaris, Linux

Java Any Java platform

Borland Delphi Windows 3.1, Windows 9x/NT

Visual Basic Windows 3.1, Windows 9x/NT

Compaq's Web Language Any Java platform

Perl Unix

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-84

Inteligentní softwarové prostředky

 data
výběr
dat

předzpra-
cování

transfor-
mace dat

 data
mining

 znalost interpre-
tace dat

Data mining a deduktivní databáze

Prostředky, jak analýzou rozáhlých automaticky získaných dat
formulovat či odvozovat nové informace či znalosti.

Nová vědní disciplina – ”objevování” znalostí v databázích
(knowledge discovery in databases – KDD)

Celý proces je interaktivní, řízený uživatelem, využívající jeho
schopnosti, zkušenosti a znalosti.

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-85

Inteligentní softwarové prostředky

Postup “dobývání”, resp. “objevování” znalostí v databázích:

► získání apriorních znalostí o datech
► přesná formulace cílů uživatele
► výběr (pod)množiny cílových dat, v níž se budeme snažit znalosti “objevit”
► předzpracování dat (např. doplnění chybějících hodnot)
► transformace dat (transformace proměnných, redukce dimenze, …)
► výběr techniky “dobývání” – klasifikace, regrese, shlukování, generalizace, …
► výběr konkrétního algoritmu pro řešení úlohy “dobývání”
► vlastní výběr (“dobývání”) dat, vyhledávání souvislostí, funkčních závislostí,

logických pravidel, …
► interpretace a prezentace získaných (odvozených) znalostí
► dokumentování a integrace nových znalostí do systému

Metoda: Induktivní logické programování

__
Václav Matoušek, KIV FAV ZČU v Plzni: Programovací techniky 1-86

Inteligentní softwarové prostředky

