
Intelligent Agents in Computer Games

Michael van Lent, John Laird, Josh Buckman, Joe Hartford,
Steve Houchard, Kurt Steinkraus, Russ Tedrake

Artificial Intelligence Lab
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48109
vanlent@umich.edu

As computer games become more complex and consumers
demand more sophisticated computer controlled
opponents, game developers are required to place a greater
emphasis on the artificial intelligence aspects of their
games. Our experience developing intelligent air combat
agents for DARPA (Laird and Jones 1998, Jones at al.
1999) has suggested a number of areas of AI research that
are applicable to computer games. Research in areas such
as intelligent agent architectures, knowledge
representation, goal-directed behavior and knowledge
reusability are all directly relevant to improving the
intelligent agents in computer games. The Soar/Games
project (van Lent and Laird 1999) at the University of
Michigan Artificial Intelligence Lab has developed an
interface between Soar (Laird, Newell, and Rosenbloom
1987) and the commercial computer games Quake II and
Descent 3. Techniques from each of the research areas
mentioned above have been used in developing intelligent
opponents in these two games.

The Soar/Games project has a number of goals from both
the research and game development perspective. From the
research perspective, computer games provide domains for
exploring topics such as machine learning, intelligent
architectures and interface design. The Soar/Games
project has suggested new research problems relating to
knowledge representation, agent navigation and human-
computer interaction. From a game development
perspective, the main goal of the Soar/Games project is to
make games more fun by making the agents in games more
intelligent. If done correctly, playing with or against these
AI agents will more closely capture the challenge of
playing online against other people. A flexible AI
architecture, such as Soar, will also make the development
of intelligent agents for games easier by providing a
common inference engine and reusable knowledge base
that can be easily applied to many different games.

 Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Quake II and Descent 3, both popular first person
perspective action games, include software hooks allowing
programmers to write C code that can access the game’s
internal data structures and agent controls. This has
allowed us to extract symbolic information from the games
without interpreting the image displayed on the computer
screen. A common approach to building intelligent agents
in computer games is to use C code and these
programming hooks to control agents via a large number of
nested if and switch statements. As the agents get more
complex, the C code becomes difficult to debug, maintain
and improve. A more constrained language that better
organizes the conditional statements could be developed
but we believe that language would be similar to the Soar
architecture. By using the Soar architecture, we are taking
advantage of the Soar group’s 15 years of research into
agent architectures.

Soar serves as the inference engine for the intelligent agent
(see figure 1). The job of the inference engine is to apply
knowledge to the current situation and decide on internal
and external actions. The agent’s current situation is
represented by data structures representing the states of
simulated sensors implemented in the interface and
contextual information stored in Soar’s internal memory.
Soar allows easy decomposition of the agent’s actions
through a hierarchy of operators. Operators at the higher
levels of the hierarchy explicitly represent the agent’s
goals, while the lower level operators represent sub-steps
and atomic actions used to achieve these goals.
Representing goals explicitly in internal memory
encourages agent developers to create goal directed agents.
Soar selects and executes the operators relevant to the
current situation that specify external actions, the agent’s
moves in the game, and internal actions, such as changes to
the agent’s internal goals. Soar constantly cycles through a
perceive, think, act loop, which is called the decision cycle.

1. Perceive: Accept sensor information from the game
2. Think: Select and execute relevant knowledge
3. Act: Execute internal and external actions
One of the lessons learned, as a result of the DARPA
project and the Soar/Games project, is the importance of
carefully designing the interface between the inference

engine and the simulated
extracts the necessary inf
encodes it into the format
requires a custom interfac
interaction and the content o
from game to game. For
flying in a spaceship withou
to move and rotate in all six
agents, running normally w
degrees of freedom. Howe
common template allow
developed for one game to b

The Soar/Games project us
representation of a hi
implemented by multiple p
at the top level of the h
general goals or modes of b
level operators in a Quake
include attack, explore, re
levels of the hierarchy repre
representations of the agen
the top-level attack operato
of attacking, such as pop
steps followed to impleme
type and face-enemy. The
hierarchy are atomic steps
operators above, such as s
moving. The Quake II age
consists of a five level op
different operators implem
production rules. Our hope
be reused in the develop
Because Quake II and De
games, they share many s
tactical levels. We hope
creating a game independ
base used by both games.

The game portion of our
workstations (200MHz or f
for the Quake II demonstr
For each game one workst
AI system, a second displa
agent’s perspective and au
game against the AI agen
understanding how the res
concepts and how those co
will also be able to evaluate

Inference
Engine
(Soar)

Knowledge
Base

Actions

Sensor Data

Socket

Computer
Game

Figure 1: Soar is attach
computer game.
Interface

DLL
 environment. The interface
ormation from the game and
required by Soar. Each game
e because the details of the
f the knowledge extracted vary
 example, Descent 3 agent’s,
t gravity, must have the ability
 degrees of freedom. Quake II
ith gravity, require only four

ver, basing each interface on a
s much of the knowledge
e reused in other games.

es the standard Soar knowledge
erarchy of operators each
roduction rules. The operators
ierarchy represent the agent’s
ehavior. For example, the top-
 II or Descent 3 agent might
treat and wander. The lower
sent successively more specific
t’s behavior. Sub-operators of
r could include different styles
-out-attack or circle-strafe, or
nt an attack, like select-attack-
 operators at the bottom of the
and actions that implement the
hoot, move-to-door and stop-

nt currently under development
erator hierarchy containing 57

ented with more than 400
 is that many of these rules can
ment of a Descent 3 agent.
scent 3 are the same genre of
imilarities at the strategic and
to take advantage of this by

ent, genre specific knowledge

demonstration consists of six
aster Pentium machines), three
ation and three for Descent 3.
ation runs the game server and
ys the ongoing game from the
dience members can play the

t on the third. In addition to
earch has resulted in valuable
ncepts are used, the audience

 the effectiveness of the

concepts by playing the games. Both games are easily
understood, action oriented and visually impressive, which
leads to an accessible, exciting demonstration of applied
artificial intelligence research.

Acknowledgements

The authors would like to thank Outrage Entertainment
Inc. for allowing us to work with Descent 3 while in
development and Intel for the donation of machines.

References

Laird, J. E. and Jones, R. M. 1998. Building Advanced
Autonomous AI systems for Large Scale Real Time
Simulations. In Proceedings of the 1998 Computer Game
Developers’ Conference, 365-378. Long Beach, Calif.:
Miller Freeman.

Laird, J. E., Newell, A. and Rosenbloom, P.S. 1987. Soar:
An architecture for general intelligence. Artificial
Intelligence 33:1-64.

Jones, Randolph M., Laird, John E., Nielsen, Paul E.,
Coulter, Karen J., Kenny, Patrick. and Koss, Frank V.
1999. Automated Intelligent Pilots for Combat Flight
Simulation. AI Magazine, 20(1):27-41.

van Lent, M. C. and Laird, J. E. 1999. Developing an
Artificial Intelligence Engine. In Proceedings of the 1999
Game Developers’ Conference, 577-587. San Jose, Calif.

ed to the computer game through a socket connection to an interface that is compiled into the

