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As computer games become more complex and consumers
demand more sophisticated computer controlled
opponents, game developers are required to place a greater
emphasis on the artificial intelligence aspects of their
games.  Our experience developing intelligent air combat
agents for DARPA (Laird and Jones 1998, Jones at al.
1999) has suggested a number of areas of AI research that
are applicable to computer games.  Research in areas such
as intelligent agent architectures, knowledge
representation, goal-directed behavior and knowledge
reusability are all directly relevant to improving the
intelligent agents in computer games. The Soar/Games
project (van Lent and Laird 1999) at the University of
Michigan Artificial Intelligence Lab has developed an
interface between Soar (Laird, Newell, and Rosenbloom
1987) and the commercial computer games Quake II and
Descent 3.  Techniques from each of the research areas
mentioned above have been used in developing intelligent
opponents in these two games. 

The Soar/Games project has a number of goals from both
the research and game development perspective.  From the
research perspective, computer games provide domains for
exploring topics such as machine learning, intelligent
architectures and interface design.  The Soar/Games
project has suggested new research problems relating to
knowledge representation, agent navigation and human-
computer interaction.  From a game development
perspective, the main goal of the Soar/Games project is to
make games more fun by making the agents in games more
intelligent.  If done correctly, playing with or against these
AI agents will more closely capture the challenge of
playing online against other people.  A flexible AI
architecture, such as Soar, will also make the development
of intelligent agents for games easier by providing a
common inference engine and reusable knowledge base
that can be easily applied to many different games.
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Quake II and Descent 3, both popular first person
perspective action games, include software hooks allowing
programmers to write C code that can access the game’s
internal data structures and agent controls.  This has
allowed us to extract symbolic information from the games
without interpreting the image displayed on the computer
screen.  A common approach to building intelligent agents
in computer games is to use C code and these
programming hooks to control agents via a large number of
nested if and switch statements.  As the agents get more
complex, the C code becomes difficult to debug, maintain
and improve.  A more constrained language that better
organizes the conditional statements could be developed
but we believe that language would be similar to the Soar
architecture.  By using the Soar architecture, we are taking
advantage of the Soar group’s 15 years of research into
agent architectures.

Soar serves as the inference engine for the intelligent agent
(see figure 1).  The job of the inference engine is to apply
knowledge to the current situation and decide on internal
and external actions.  The agent’s current situation is
represented by data structures representing the states of
simulated sensors implemented in the interface and
contextual information stored in Soar’s internal memory.
Soar allows easy decomposition of the agent’s actions
through a hierarchy of operators.  Operators at the higher
levels of the hierarchy explicitly represent the agent’s
goals, while the lower level operators represent sub-steps
and atomic actions used to achieve these goals.
Representing goals explicitly in internal memory
encourages agent developers to create goal directed agents.
Soar selects and executes the operators relevant to the
current situation that specify external actions, the agent’s
moves in the game, and internal actions, such as changes to
the agent’s internal goals.  Soar constantly cycles through a
perceive, think, act loop, which is called the decision cycle.

1. Perceive: Accept sensor information from the game
2. Think: Select and execute relevant knowledge
3. Act: Execute internal and external actions
One of the lessons learned, as a result of the DARPA
project and the Soar/Games project, is the importance of
carefully designing the interface between the inference
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