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Abstract. The minimization of the parametr v in the equivalent

−

1

n

n
P

i=1

lg e(xi, v) in the cross-entropy H (X; e) = −

P

x∈X

p(x) lg(e(x, v)) where

p(v) is a real probability distribution an e(x, v) a parametrical model with
the parametr v leads to estimations with maximal likelihood. (It is proved
in [1,2].) This work concerns about different kinds of estimations with de-
fined constraints and investigates the discrete distributions with smoothness
conditions.

1. The smoothness of descrete destributions

The natural smoothness measure of discrete distribution p(x); x ∈ X ;
∑

x∈X

p(x) = 1 is its entropy

H(X) = −
∑

x∈X

p(x) log2 p(x) = 1
lg 2

(

−
∑

x∈X

p(x) lg p(x)

)

.

The entropy is expressed on the base of natural logarithmH(X) = −
∑

x∈X

p(x) lg p(x)

which differs from the general form in multiplicative constant 1
lg 2 . The entropy

by itself is the impropriate constraint for optimization in optimizing problems.
Therefore a new entropy measure is modified as N(X) =

∑

x∈X

lg p(x). If an alpha-

bet of elementary events is finite and ∀x ∈ X, p(x) > 0, the extreme of N(X) are
found by apparatus:

Q(p(x);x ∈ X ;λ) =
∑

x∈X

lg p(x) + λ

(

∑

x∈X

p(x) − 1

)

∂Q
∂p(x) = 1

p(x) + λ and ∂2Q
∂p(x1)∂p(x2)

= − 1
p2(x1)

⇔ x = x1 = x2; else = 0

then the saddle point ⇔ ∂Q
∂p(x) = 0 will be maximum. 1

p(x) + λ = 0 ⇒ p(x) = 1
|X|

and N
(

1
|X|

)

= −|X | lg (|X |). On the base of the maximum which we get for the

uniform distribution is defined a standardised rate of the certainty:

U(X) = − 1
|X| lg(|X|)

∑

x∈X

lg p(x) = K
∑

x∈X

lg p(x); K = − 1
|X| lg(|X|) .

The reason why is this expression called the rate of the certainty will be shown on
the Bernoulli distribution X = {x1, x2}; p(x1) = p, p(x2) = 1 − p. The measure

1
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of the certainty gets a minimum (equal to one) for the uniform distribution and it
is increasing with the growing deviation from the uniform distribution.
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Figure 1. Comparison of rate of entropy and rate of certainty
for Bernoulli distribution

2. The Probability Estimations of Finite Discrete Distributions

with a Smoothness Condition

The probability estimations of the finite discrete distribution from observed
values will be based on the following method: Let’s have n observed values
(x1, x2, . . . , xn;xi ∈ X) for a phenomenon with possible results from the alphabet
X specified with model probabilities p(x);x ∈ X . Then the sample entropy is

Hn(X) = − 1
n

n
∑

i=1

lg p(xi). Optimal estimations of p(x);x ∈ X in accordance with

the smoothness condition
∑

x∈X

lg p(x) = h are the solutions of an optimization

problem:

Q(p, λ, ψ) = − 1
n

n
∑

i=1

lg p(xi) + λ

(

∑

x∈X

p(x) − 1

)

+ ψ

(

∑

x∈X

lg p(x) − h

)

=

= − 1
n

∑

x∈X

n(x) lg p(x) + λ

(

∑

x∈X

p(x) − 1

)

+ ψ

(

∑

x∈X

lg p(x) − h

)

−→
p(x) min

where n(x) is the number of observations of the value x ∈ X in the sample
(x1, x2, . . . , xn;xi ∈ X). By the standard way we get:

∂Q

∂p(x)
= −

(

n(x)

n
− ψK

)

1

p(x)
+ λ

∂2Q

∂p(x1)∂p(x2)
=

(

n(x)

n
− ψK

)

1

p2(x1)
⇔ x = x1 = x2; else = 0
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⇒ if ∀x ∈ X ;
(

n(x)
n

− ψK
)

> 0, then the saddle point represents the minimum. In

a case that ∀x ∈ X ;
(

n(x)
n

− ψK
)

< 0 the saddle point represents the maximum.

For the saddle point ∂Q
∂p(x) = 0 we get

p(x) = 1
λ

n(x)
n

+ 1
λ

ψ
|X| lg(|X|)

and from the condition ∂Q
∂λ

= 0 ⇔ 1 =
∑

x∈X

p(x) is λ = 1 + ψ
lg(|X| . Then

p(x) = 1
λ

n(x)
n

+ 1
λ
λ−1
|X|

and after the substitution 1
λ

= 1 − α we obtain:

p(x) = (1 − α)n(x)
n

+ α 1
|X| .

However this expression represents the mixture of observed relative frequencies
(1 − α) and the uniform distribution (α). The value of α is possible to compute
by numerical solving of the equation:

∂Q
∂ψ

= 0 ⇔ h = K
∑

x∈X

lg p(x) = K
∑

x∈X

lg
(

(1 − α)n(x)
n

+ α 1
|X|

)

,

if such solution exists and 0 ≤ α ≤ 1. After substitution in the existence condition

of minimum
(

∀ ∈ X ;
(

n(x)
n

− ψK
)

> 0
)

, we get ∀ ∈ X :

(

n(x)
n

−
(

−1
|X|lg|X| lg|X | α

1−α

))

= n(x)
n

+ 1
|X|

α
1−α > 0 ⇔ (n(x) > 0) ∨ (α > 0).

The condition of non-negativity is valid for almost all cases.

An existence of the solution is dependent on a reality–reflection of the value h.
The following analysis could be used for proving that the value h is realistic and
for choosing “starting values” of a numerical calculation as well:

h(α) = K
∑

x∈X

lg p(x) = −1
|X|lg|X|

∑

x∈X

lg
(

(1 − α)n(x)
n

+ α 1
|X|

)

=

= 1
|X|lg|X|

∑

x∈X

lg

(

1
n(x)

n
+α( 1

|X|
−n(x)

n )

)

and
dh
dα

= 1
|X| lg |X|

∑

x∈X

(

n(x)
n

+ α
(

1
|X| −

n(x)
n

))(

1
|X| −

n(x)
n

)

=

= 1
|X| lg |X|

(

1−α
|X| − (1 − α)

∑

x∈X

(

n(x)
n

)2
)

furthermore is

1 =
∑

x∈X

n(x)
n

⇒ 1 =

(

∑

x∈X

n(x)
n

)2

=

=
∑

x∈X

(

n(x)
n

)2

+
∑

x,y∈X;x6=y

(

n(x)
n

)(

n(y)
n

)

⇒
∑

x∈X

(

(n(x)
n

)2

< 1.
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Because:

dh
dα

= 1
|X| lg |X|

(

1−α
|X| − (1 − α)

∑

x∈X

(

(n(x)
n

)2
)

< 1
|X| lg |X|

(

1−α
|X| − (1 − α)

)

< 0

and so h(α) is decreasing function for 0 ≤ α ≤ 1 which has the maximum in α = 0
(even in an improper point - in the case that ∃x ∈ X ;n(x) = 0) and the minimum
in α = 1;h(1) = 1 The demonstration of such function for observed frequencies is:

Points Observed Points Observed

frequencies frequencies

0 1 13 19
1 3 14 23
2 5 15 29
3 7 16 18
4 7 17 15
5 18 18 18
6 16 19 10
7 13 20 9
8 25 21 13
9 19 22 3
10 19 23 3
11 31 24 0
12 22 25 1

Total 347

Demonstration of dependence of certainty on alpha
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Figure 2. The demonstration of the dependence of the certainty
on the parameter α

The mentioned single-valued relation between α and h can cause modification the
smoothness of an estimated probability distribution directly by α. In this way
α represents in more suitable way the smoothness. α = 1 represents “absolute
smoothness” in the case that model of the probability distribution is uniform
distribution. On the other hand α = 0 represents the not smoothed estimation –
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it means that the estimation is represented only by a relative frequency of observed
values. The problem and α(n) asymptotical behaviour of compared to amount of
observed data was studied in [3].

Probability dependence on alpha
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Figure 3. The dependence of probability estimations on the pa-
rameter α demonstrated by particular observations

3. The Probability Estimations of Finite Discrete Distributions

Based on Moment Condition

The classical extremal problems of probability theory are constructions of dis-
tributions with some pre-defined moments and maximal entropy [4]. Similar prob-
lems could be solved by methods of statistics as well. Let’s have a discrete random
variable with a value from a set C = {c1, ..., cm}; ci ∈ R1 and its observed values
(x1, x2, ..., xn, xi ∈ C). Its model probabilities p(x);x ∈ X based on the condition
of some pre-assigned moment mk =

∑

x∈C

xkp(x) are computed by solving of the

optimization problem:

Q(p, λ, ψ) = − 1
n

n
∑

i=1

lg p(xi) + λ

(

∑

x∈C

p(x) − 1

)

+ ψ

(

∑

x∈C

xkp(x) −mk

)

=

= − 1
n

∑

x∈C

n(x) lg p(x) + λ(
∑

x∈C

p(x) − 1) + ψ

(

∑

x∈C

xkp(x) −mk

)

−→
p(x) min.

By standard procedure we get:

∂Q
∂p(x) = −

(

n(x)
n

)

1
p(x) + λ+ ψxk,

∂2Q
∂p(x1)∂p(x2)

=
(

n(x)
n

)

1
p2(x1)

⇔ x = x1 = x2; else = 0 ⇒

a solution of the normal equations is the minimum. For the saddle point ∂Q
∂p(x) = 0

we get:

p(x) = n(x)
n

1
λ+ψxk
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and λ, ψ are numerical solutions of following equations:

1 =
∑

x∈C

p(x) = 1
n

∑

x∈C

n(x)
λ+ψxk

mk =
∑

x∈C

xkp(x) = 1
n

∑

x∈C

xkn(x)
λ+ψxk .

Further, there are defined family of functions with the aim to qualify a value of
the parameter mk like realistic and to compare possibilities of numerical solutions
of both equations:

fi(λ, ψ) =
∑

x∈C

xip(x) = 1
n

∑

x∈C

xin(x)
λ+ψxk ; i = 0, 1, ...,

represent the right sides of the equations. Their partial derivative are:

∂
∂λ
fi(λ, ψ) = − 1

n

∑

x∈C

xin(x)
(λ+ψxk)2

; i = 0, 1, ...

∂
∂ψ
fi(λ, ψ) = − 1

n

∑

x∈C

x(i+k)n(x)
(λ+ψxk)2

; i = 0, 1, ...

From partial derivatives is evident, that functions fi(λ, ψ) are decreasing for all
values of both parameters if the random variable is positive. This may simplify
the choice of the solution method. As well the problem of mentioned optimization
method is not considering the non-negativity condition of the probability:

∀x ∈ C; p(x) ≥ 0 ⇔ ∀x ∈ C;
1

λ+ ψxk
> 0 ⇔ ∀x ∈ C; [λ+ ψxk > 0].
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Figure 4. The example of probability estimation where the ar-
tificial mean value m1 = 10.5 and observed average is 12.04
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