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Abstract. Our paper deals with the application of insurance methods in technical 
disciplines, mainly in power engineering and information technologies. Models used for 
the description of the cumulative claim are analogous to the probability description of the 
cumulative power equipment outage duration. The same might be said about the 
cumulative costs of failure events clearance, their causes and consequences. We focus on 
the computational methods for model probabilities and we also present statistical methods 
of the estimations of model parameters. Our methodology comes from the new-fashioned 
approach to reliability theory where we leave the classical approach working with the 
failure rate curve, because it has not suitable apparatus for the description of several 
failure effects (outage duration, costs of failure causes and consequences clearance). We 
stem from the following trivial equivalences: (insurance event � failure), (insurance claim 
� outage duration), (insurance claim � costs of failure causes and consequences 
clearance). The counting process of failure events number and the compound point 
process of failure effects become grounds for our modelling. 
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1     Introduction 
 
 

,

In the modelling and prediction of failures and their consequences (power equipment outages), 
we work with the following processes (random sequences): 
 
Time point process of outages starts: 
 

 ...  ..., ,,,,, 11321 �� iii TTTTTT                                                       (1) 
 

Counting process of the number of outages (failures) occurred up to time t: 
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Time point process of outage durations:    
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Time point process of costs of failure causes and consequences clearance: 
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Compound process of total cumulative costs of the clearance of all failure causes and consequences up 
to time point t: 
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2     Time measurement and other assumptions 
 
 In the classical model (5) there is an explicit assumption that the time required for the 
insurance claim execution is neglecting toward the time period between insurance events. From the 
technical point of view: the power equipment outage durations are neglecting toward the time periods 
between failures occurrence. If this assumption can not be verified (and we focus on such situation) it 
is necessary to introduce some modifications of the time axis.  
 

Modification for the classical model (5): Let’s have 
 

 ...  ..., ,,,,,, 11321 �� iii ������ , 
 

where� is the time interval between the device installation and the beginning of the first 
outage and�  is the time interval between the end of (i -1)

 1

i
th outage and the beginning of 

ith outage.  
 

Furthermore let:  
 ...  ..., ,,,,,, 11321 �� iii ������  

 

be the corresponding outage durations. To be able to use the classical model we need to consider two 
abstract clocks – operational clock and outage clock. Operational clock is switched on when the device 
is installed and stopped whenever a failure occurs. After the failure clearance (the end of an outage) 
operational clock is switched on again. Outage clock is switched on within the start of an outage and 
stopped within its end. Those two abstract clocks are therefore alternating. It is obvious that the time 
in classical model (5) is the time of operational clock. Time axis holds the following shape (expressed 
in lengths of the time intervals): 
 

�1,�1, �2 ,�2, …, �i ,�i ,�i+1, �i+1, …                                                    (6) 
 

We assume for observed random variables: 
 

 ...  ..., ,,,,, 11321 �� iii ������  are independent and identically  distributed random variables,  
 ...  ..., ,,,,, 11321 �� iii ������  are independent and identically  distributed random variables,  

 ...  ..., ,,,,, 11321 �� iii cccccc  are independent and identically  distributed random variables, 
N(t) a �  are independent random variables,  ...  ..., ,,,,, 11321 �� iii �����

N(t) a  are independent random variables,  ...  ..., ,,,,, 11321 �� iii cccccc
N(t) a  are independent random variables.  ...  ..., ,,,,, 11321 �� iii ������
 

Those are the classical assumptions which enable us to obtain reasonably closed model forms. 
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3     Classical model 
 

 Using the assumptions mentioned above we will observe two cumulative processes. The 
process of total (cumulative) outage duration D(t) up to time point t and the process of total 
(cumulative) causes and consequences clearance C(t) again up to time point t: 
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With respect to the formal similarity of both processes (the usage of operational clock), we will further 
deal only with the process C(t). The results we obtain will be applicable for the process D(t) as well.  
 

Basic apparatus of our model is based on distribution functions: 
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Using the exponential distribution with the parameter �  for the distribution of costs of failure causes 
and consequences clearance and using the Poisson distribution with the parameter �t for the 
distribution of the number of failures up to time t we get: 
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where  f  denotes the density function, �(x) denotes  the Dirac function and  
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 are the characteristics of the Gamma distribution. 
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We can easily derive the following iterative method for individual parts of the sum (the definition 
domain of all mentioned functions is the positive half-axle): 
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These equations (11) underline the effective numeric methods which enable us to compute the 
majority of required computations in acceptable time (of course using current information 
technologies). 
 
4     Identification of parameters 
 

Using the following assumptions:  
 

 ...  ..., ,,,,, 11321 �� iii ������ ,
,

 are (iid) and have exponencial distribution with the parameter �, 
 ...  ..., ,,,,, 11321 �� iii cccccc  have the same probability distribution with the parameter �  and 

 ... ,,, ..., ,,, 11321 �� iii ������  are (iid) and have exponencial distribution with the parameter �,  
 

we can apply the same procedure for identification of the required parameters. We can use the 
Maximum likelihood method with the estimation of the parameter � : 
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if n observations from the end of previous outage up to the beginning of the following one are 
available. Identification of the rest parameters will follow the same procedure, as it is obvious from the 
assumptions mentioned above. 
 
5     Non-classical model with one time (one common clock) 
 
 In some practical situations, there will not be usable the above mentioned assumptions either 
about a negligence of an outage durations toward the others times or about the existence of double 
model clock. Standard models exploit times up to a failure. Then the time axis will look like as 
follows: 
 

�1, �1+�2 , �2+�3 , … , +�i , �i +�i+1,  �i+1+�i+2, …           (12) 
�1,    �2,     �3,   …    �i,       �i+1,       �i+2, … 

 
Durations between failures will be formed as a sum of two independent variables with exponential 
distribution (with the exeption of the first one), therefore: 
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th failure, i.e. the time up to the beginning of  ith outage, and 
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)(tH n  the distribution function of the random variable , then the following holds true: nS
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Using formulas (15) and (16) we get the iteration for  
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This formula is a classical expression of a probability, that just n failure events will occure up 
to time t. It is the analytic notation, hence for the practical usage with distributions from the formulas 
(13) and (14), we will have to replace it by an effective numeric instrument. If we use for the time axis 
the quantization with the length of  a computational step  for the time axis, the trapezium rool for the 
numeric integration and for the quantized time t , then we can write: 
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It is quite simply and for the main fast executable algorithm. It is necessary to assign an initial 
condition, i. e. the probability that no failure will occure up to time t: 
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Thereby we have prepared all the instruments for modelling of the processes C(t) and D(t) from the 
formulas (7) and (8) employing conditions, that we deal with only one time and with the standard real 
time clock: 
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This formula has the same form for both the cumulative costs of failure causes and 
consequences clearance and  the cumulative time of outage durations. Assigning to the one or the 
latter indicator is possible only by substituting the relevant distribution function  to the formula, 
or more exactly, in our case, by choosing the parameters 

)(xFn

�  for cumulative costs and �  for 
cumulative outage durations. 
 
6     Conclusion 
 
 We put forward the variations of the classical model of cumulated claims for modelling of 
processes of operation and outages of real working equipments. We complete the analytic models for 
various assumptions with computational instruments in the form of iterations (11) or quite simple 
discrete convolutions (18). Our models are based on the simplest class of recovery processes with the 
combination of reporting of costs (expressed first by own economic costs and the second by the power 
equipment outage duration). 
 
7     Discussion and potential model variation 
 

Our paper describes one possible version of solving the proposed problem. Of course one can 
also vary mentioned assumptions.  The probability  
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i.e. by the geometric distribution with the same mean value as the classic Poisson distribution. In such 
case we can achieve even closed formulas for expressions of type (20). The numerical method used for 
solving the equation (17) is not the only possible. One can achieve elegant results by using the Laplace 
or Fourier transformation. Of course the question of the classification of our model can be discussed. 
The name of our paper leads to the relation to insurance mathematics. We can not exclude relations of 
our model to the reliability theory (strong links) and also to the queuing theory (weaker links). 
According to questions we put in our paper, it is very close to insurance mathematics; according to 
problems solved in our paper, it is close to the reliability theory. As for the practical usage of our 
model we refer to the research report [9]. 
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