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Abstract – This paper summarizes findings related to the 

problematics of glottis detection in video sequences 

obtained by medical examination of vocal cords by high 

speed videolaryngoscopy (HSV). The glottis detection is 

based on cluster analysis method K-means which 

complements the existing set of segmentation methods 

used in detection algorithms. This method has been 

tested on a large corpus of HSV sequences from clinical 

practice on ENT department.  
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I.  INTRODUCTION 

Vocal cords examination by High Speed Video 
laryngoscopy (HSV) became standard method used in 
the field of otorhinolaryngology and phoniatry. The 
video recording of the glottis allows to observe the 
real movement of the vocal cords in a slow, time-
spaced form. Since watching the video alone by the 
doctor may not always be sufficient to evaluate the 
vocal cords kinematics, a number of supporting tools 
were developed to analyze the vocal cords behavior 
by various methods. For this purpose, methods of 
analysis and processing of individual vocal cord 
images (sequence of frames are used as a two-
dimensional signal, i.e. a 2D signal distributed over 
time). To analyze the behavior of the vocal cords, it is 
therefore necessary to define parameters that 
characterize the temporal changes of the vocal cords 
during one or more periods. Based on these 
parameters, the criteria used to assess the quality of 
the vocal fold kinematics are further determined 
[1], [2]. 

The basic task of processing images in the HSV 
sequence is to detect the glottis on each frame, which 
is the key to assessing the kinematics of the vocal 
cords. 

Currently, commercial software is available for 
HSV analysis, which typically allows manual or semi-
automatic glottis detection, manual vocal cords axis 
determination, calculating and displaying pixel value 
changes in time, calculating glottis area size and 
creating a videokymogram at any position on the 
frame. They also allow visualization and sorting of 
individual images to enable visually determine the 
opening and closing moment of vocal cords and 
calculate the Open Quotient (OQ) or to capture the 
change in brightness at predefined points on the vocal 
cords during one or more periods. When evaluating 
some results, which meet the necessary prerequisites, 

Fourier analysis (FFT) is used to obtain another 
parameter set. 

This paper deals with the description of 
segmentation method that we use for vocal glottis 
detection. It is a modified method of cluster analysis, 
specifically K–means method with static and adaptive 
parameters. 

II. HIGH SPEED VIDEOLARYNGOSCOPY AND 

GLOTTIS DETECTION 

High-speed laryngoscopy is an optical indirect 
laryngoscopic examination technique. This is a rigid 
endoscopic method supplemented by a high-speed 
camera with a frame rate of at least 1000 fps and 
a minimum resolution of 256x256 pixels, Fig. 1. The 
device is able to capture and store the real movement 
of the vocal cords during their entire oscillation in the 
form of a video sequence which can be slowed down. 
This allows detailed analysis of the vocal folds and the 
shape of the glottis during the opening and closing 
phases of the vocal cords. 

Figure 1.  Scheme of high speed videolaryngoscopy 

and the glottis detection [15]. 

 

The HSV recordings we process are captured by 
the HSV HRES ENDOCAM 55621 system

1
, with 

4000 fps and 256x256 pixels. The video recording is 
taken for a few seconds while phoning the vocal “i:” 
simultaneously with acoustic signal. Sometimes both 
recordings, video / audio, are supplemented with an 
electroglottographic EGG record. 
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A. Video recording quality 

The success of the glottis detection is determined by 

the quality of the video recording. Because it is an 

examination with a rigid laryngoscope with the 

request of phonation of the vocal “i:” and the short 

time available for obtaining the video, the quality of 

the resulting video can vary. 

Factors that mostly affect video quality: 

 Angle of camera – projection plane (optical 
system) should be parallel to plane of vocal 
cords, Fig. 1. 

 Image blur – it leads to inaccurate detection of 
the glottis boundary. 

 Over lighting – this causes false contours and 
areas in the image that can lead to false region 
of interest and glottis detection. 

 Poor lighting – Loss of visual information, 
image has low contrast and contains noise. 

 Overlap – Some anatomical structures of the 
larynx may overlap the glottis if the HSV 
camera is misaligned or rotated. 

 Camera movement – the camera moves due to 
the tremor of the hand. But the dynamics of 
camera position change is usually slow 
relative to the capture rate. Therefore, this 
movement is neglected in image processing, 
registration method is applied or the method 
can compensate that. 

 Noise – it affects processing and the accuracy 
especially when the illumination of anatomical 
structures in the image is low. 

 Presence of body fluids – a mucus overlapping 
some anatomical parts may cause false 
reflections and false anatomical structures 
may be detected. 

 Size of the vocal cords in the image – at 
a limited camera resolution of 256x256 pixels, 
the small size of the vocal cords (large 
distance of the HSV camera from the vocal 
cords) causes inaccuracy in the glottis 
detection and consequently in parameter 
calculations. 

B. Glottis detection 

Currently during examination, the glottis is usually 
detected manually or semi-automatically with user 
input. Semi-automatic methods are mostly included in 
proprietary commercial software, but the processing 
methods are usually not described in detail. The most 
commonly published approaches to glottis 
segmentation are:  

 Automatic thresholding [3], [4], [5]. 

 Watershed segmentation [6], [7], [8]. 

 Region growing [9], [7]. 

 Gabor filtering [10], [11]. 

 Active contour [12], [13], [14], [23]. 

However, applying these methods separately is 
not very successful when processing complicated 
images with lower quality. Therefore, the combined 
methods are used by many authors [3], [5], [16], [17], 
[22]. 

In cooperation with the ENT Clinic of the 
University Hospital Pilsen, we use two methods for 
automatic glottis detection in our applications, the 
Max-Min-Thresholding method and the cluster 
analysis method. 

The Max-Min-Thresholding [18], [19] method 
consists of a sequence of steps and includes several 
processes that are applied to both individual frames 
and the entire video sequence. The method is the 
result of testing a number of approaches and their 
modifications in the field of point transformations, 
filtration, automatic thresholding and construction of 
continuous areas in the image. After exhausting the 
possibilities of this method we started to use another 
approach, cluster analysis, specifically MacQueen 
algorithm, K-means method applied on image pixels. 

III. GLOTTIS SEGMENTATION BY CLUSTER 

ANALYSIS METHOD 

Based on our experience, we analyzed the 
brightness and color composition of HSV recordings 
images. The glottis area differs in color from its 
surroundings, most notably in the red component of 
the RGB color model. We therefore consider 
individual pixels as separate objects with parameters 
derived from the character of the image data and the 
pixel position. Thus, pixels can be divided into classes 
with similar properties by means of cluster analysis 
[20].  

In general, cluster analysis represents procedures 
for grouping objects into more or less homogeneous 
groups based on their similarity. The most commonly 
used cluster analysis method is the K-means method 
[21]. According to individual parameters, objects are 
classified into k classes (CLASSj) with the least 
difference in parameters within the class or with the 
greatest difference in parameters between classes. 
Individual classified objects are placed in  
m-dimensional space, where m is the number of the 
parameters. Thus, the m-dimensional space 
coordinates are indexes to the parameter values and 
each parameter can have a different weight. The 
distances between objects are then calculated in this 
space to look for clusters of objects with similar 
properties. As the input of the method, centers 
(Centerj) are specified (which can be some selected 
objects or newly created objects with specified 
parameters) to reach the division of objects into 
classes accurately and quickly. 

The first step of the method is the initial division 
of the input data xxi, i = 1 to n, where n is the number 
of objects, into classes CLASSj according to the 
selected criterion. The criterion (1) of the smallest 
distance of the object relative to each primary center 
Centerj is used, where j = 1 to k, k is the number of 
CLASSj classes. 
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After division into classes, in the second step, new 
centers Centerj are computed for each class, e.g. their 
center points. The new centers are determined 
according to xxi objects belonging to CLASSj (2), 
where nj is the number of xxi objects in CLASSj. 
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This method can be repeated until the state is 
steady, when the division of the points into the classes 
no longer changes or the classification can be 
terminated after a specified number of cycles, Fig. 2. 

Figure 2.  Visualization of the K-means cluster analysis algorithm. 

 

A. Cluster analysis with static parameter weights 

Considering pixels as objects, there are several 
parameters that can be selected for classification 
together with their weights. Parameters defined for 
cluster analysis: 

 R – red component. 

 G – green component. 

 B – blue component. 

 X – x coordinate in the frame. 

 Y – y coordinate in the frame. 

 RmB – difference between R and B 
component. 

 C – distance from the center of the frame. 

 LRDiff – difference of red component value 
between neighboring left and right pixel 
(introduced later). 

The optimal weight setting is a very complex 
heuristic task where the values of the individual 
components were determined experimentally, 
TABLE I. 

Before applying the cluster analysis method it is 
necessary to determine the number of classes, it 
means number of primary centers. Two classes should 
be sufficient to detect points belonging to the glottis 
and its surroundings, but in low-contrast images, the 
two classes may be insufficient.  

TABLE I.  DESCRIPTION AND THEIR STATIC WEIGHTS OF 

CLUSTER ANALYSIS PARAMETERS 

Parameter description with the initial and result weight 

settings coeff0 and coeff1 

Parameter Value range coeff0 coeff1 

R Component value (0 to 255) 1,00 1,00 

G Component value (0 to 255) 0,50 0,10 

B Component value (0 to 255) 0,50 0,10 

X Coordinate value (0 to 255) 1,00 1,00 

Y Coordinate value (0 to 255) 0,50 0,10 

RmB Value difference (-255 to 255) 1,00 1,00 

C Distance in pixels (0 to 181) 1,00 1,00 

LRDiff  Value difference (-255 to 255) - - 

 

Four images with localized ROI (Region of 
interest) area of the vocal cords were chosen as an 
example for illustrating the method application, 
Fig. 3. 

Figure 3.  Images with localized vocal cords. 

 

The visualization of the results shows the image 
after classification, Fig. 4, where the area of points 
belonging to one class is represented by the average 
color of the points belonging to the class. The 
highlighted color point is the center point of the class, 
located at the position of average coordinates of all 
points in the class. 

Figure 4.  Classification result after the test with 2 classes, j = 2, 

using weights coeff0 . 

In further tests, the number of classes was 
increased to j = 3, 4, 5 and various parameter weight 



 

 

settings were used. In the end the weight settings have 
stabilized at coeff1 from TABLE I.  

In the last test, changes in the weight of the 
parameters and the selected number of classes 
improved the result and the glottis was well detectable 
not only in all tested images, Fig. 5, but also in other 
images in our corpus.  

The calculated centers of the most open vocal 
cords are then used for all frames in the video 
sequence to detect glottis in each frame. 

Figure 5.  Classification result after the after the test with 5 

classes, j = 5, using weights coeff1 . 

 

B. Cluster analysis with adaptive parameter weight 

In the cluster analysis method with static 
parameters, each parameter weight has been 
experimentally set and these weights are used to 
calculate distances between individual objects (pixels 
in the image). This static setting is further applied to 
the other analyzed HSV sequences. However, since 
the characteristics of each recording may vary, a 
modified method has been proposed based on the 
adaptive weights for each video recording calculated 
from the input image data. For every weight it is 
necessary to define relation depending on the selected 
input parameter(s). The set of the input parameters 
(from the image) was set: 

 Xmax – ROI width of the input image. 

 Ymax – ROI height of the input image. 

 Rmax – Maximum R value in the selected ROI. 

 Rmin – Minimum R value in the selected ROI. 

 Rsum – Sum of red component values of all 
point in the ROI. 

We assume that for videos with narrow ROI 
(width is much lower than height), the weight of the 
X parameter should be greater, while in the wider 
ROI region, the weight of the X parameter decreases. 
This should prevent poor detection at the right/left 
edges of the vocal cleft due to the large distance from 
the center. The same applies to the R parameter where 
images with higher contrast needs higher weight of R 
parameter than low contract images to avoid wrong 
classification of the most dark or light points in the 
glottis area, 

In order to find these suitable relationships and 
their settings, a learning mechanism with a teacher 
was created, where, according to the knowledge of the 
correct result, several possible settings were tested, 
from which the best one was subjectively selected. 
Learning was done on several sample videos to 

achieve the most general settings. This procedure 
helped to find the best relationship for calculating 
parameter weights. 

The condition for calculating the relationships is 
a simple calculation which should have complexity at 
most n (where n is the number of pixels in the ROI), 
e.g. to find the maximum and minimum of the color 
component. In this way we have reached the resulting 
relationships, (2), (3), (4), (5), (6), (7), and resulting 
for weights, TABLE II. 
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The weights for parameters G, B and Y were 
decreased to zero for low effect in the result to speed 
up the segmentation process. 

TABLE II.  DESCRIPTION AND THE EXAMPLE OF ADAPTIVE 

WEIGHTS OF CLUSTER ANALYSIS PARAMETERS 

Parameter description with the initial and result weight 

settings coeff0 and coeff1 for specific image 

Parameters Weight of parameter coeff0 coeff1 

WR R 3,00 1,29 

WG G 0,00 0,00 

WB B 0,00 0,00 

WX X 1,00 0,47 

WY Y 0,20 0,00 

WRmB RmB 1,00 0,64 

WC C 2,00 1,12 

WLRDiff  LDDiff 3,00 1,12 

 

IV. RESULTS 

The implemented method of cluster analysis with 
static weight of parameters increases the success rate 
of glottis detection when comparing the results with 
the method Max-Min-Thresholding [18], [19]. 

For a comprehensive testing of glottis 
segmentation methods, we used a data corpus 
containing 549 HSV recordings, TABLE III. For this 
comparative analysis, we selected 130 video 
sequences from this set of videos that were identified 
as problematic in terms of glottis detection (e.g. 
containing low contrast, blur, noise). These were 
records where the Max-Min-Thresholding failed or 
achieved different results compared to the Cluster 
analysis with static parameter weights method more 
often. For 419 out of 549 videos, both methods 



 

 

achieved comparable results. The accuracy of glottis 
detection has always been assessed in cooperation 
with an otorhinolaryngologist. 

Glottis was detected correctly in 97 cases using 
the Cluster analysis with static parameter weights 
method, and using the Max-Min-Thresholding method 
in 42 cases. The result of the Max-Min-Thresholding 
method was more accurate than the cluster analysis 
method in only 4 cases of the glottis detection. 

TABLE III.  DATA CORPUS STRUCTURE USED FOR ALGORITHM 

TESTING OF GLOTTIS DETECTION 

HSV data corpus 
video recordings 

total sum men women 

diagnosis 549 190 359 

cystis vocal 7 0 7 

vocal polyp 31 13 18 

chordectomy 5 0 5 

papillom 13 13 0 

vocal nodules 16 6 10 

carcinoma 8 8 0 

granuloma 2 2 0 

Reinke’s edema 18 1 17 

reccurent laryngeal n. paresis 104 32 72 

tonsillectomy 64 10 54 

hemangioma 3 0 3 

thyroid glan 23 2 21 

healthy vocal cords 133 34 99 

dg. is not determined 122 69 53 

 

The success of glottis detection by Max-Min-
Thresholding and cluster analysis methods for the 
purpose of this paper is presented in individual 
casuistries, Fig. 6. Casuistries contain an example of 
correct detection of glottis in healthy vocal cords, 
Fig. 6a, complete failure of the Max-Min-
Thresholding method for vocal cords with nodule on 
the left side, Fig. 6b, and partial failure of the Max-
Min-Thresholding method in case of left-sided paresis 
of the reversible nerve, Fig. 6c, and the polyp on the 
left side, Fig. 6d. 

Figure 6.  Comparation of glottis detection using Thresholding 

method and Cluster analysis (static weights) method on selected. 

 

In all cases, the failure of the thresholding method 
occurs due to the brightness and color conditions in 
the images, not overlapping anatomical structures, 
camera or vocal cords movement, blur or angle of 
capture. 

After comparison of the cluster analysis with 
static parameter weights, TABLE I, and adaptive 
parameter weights, TABLE II, there was slight 
improvement in success rate of correct glottis 
detection. From 100 random test cases, better result 
for adaptive weights was seen in 5 cases (recognition 
failed for static weights and was successful using 
adaptive weights, e.g. blur image on Fig. 7a or non-
uniform lighting Fig. 7b), in 1 case the recognition 
was better using static weights, Fig. 7c.  

The differences are caused by different image 
characteristics where the cluster analysis with 
adaptive parameter weights is able to react on input 
data and select more suitable settings. 

The specific reasons why the methods works in 
one case and fail in another are very complex and are 
individual for each case. In the example on Fig. 7c, it 
probably failed because of too high weight for R 
component parameter and low weight for X 
parameter. It is probably impossible to tune the 
parameter weights to have 100% success rate. 

Figure 7.  Causistry of results using cluster analysis with 

static and adaptive parameter weights. 

 

V. CONCLUSIONS 

Experience with solving the problem of glottis 
segmentation in HSV video sequences shows that 
published methods of automatic thresholding, 
Watershed segmentation, Region growing, Active 
contours, Gabor filtering and others, have comparable 
results for a large class of video sequences with 
similar image characteristics. 

The success of the methods differs in special 
complicated cases, where a very diverse range of 
methods has a significant influence on the success and 
accuracy of glottis detection. 



 

Presented methods are used in own software for 
computing many parameters of detected glottis area 
and evaluating vocal cords movement for possible 
early diagnosis of potential issues during the 
examination on the ENT department. 

The methods are tested on many HSV recordings 
from the vocal cods examinations. The data corpus is 
still growing and current number of usable HSV 
recordings is 692. All the results are evaluated to 
refine and tune the presented methods. 
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