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Abstract. The proposed paper deals with one of methods for study and modelling the relation 
of two probability descriptions (estimation of distribution and its theoretical model is one 
example of using) at distribution functions level. The essence of the used concept is 
a transformation of random variables. A version of duality between transformation (distortion) 
of distribution function and transformation of random variables is investigated too. 
The sensitivity of such descriptions is analyzed. Some algorithmic techniques are introduced 
(from statistical applications point of view). Paper extends our presentation [1]. 
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1 Method and model 
 We consider all of used cumulative distributions to be continuous and invertible. Further we 
consider a random variable η  defined as an invertible (increasing) transformation of a random 
variable

()t
 ξ . Let )(ξη t= . We compute the representations of the distributions η  in terms 

of the distributions ofξ . By the definition of the cumulative distribution we have: ηF

))(()}({})({}{)( 11 xtFxtPxtPxPxF −− =<=<=<= ξη ξξη ,                                 (1) 

where notation  represents the inversion of the transformation  ()1−t ().t
Substitution into (1) we obtain: )()(1 ytxxty =⇔= −

)),(()(   )())(()()( 1 xFFxtyFytFyFxF ξηξηξη
−=⇒=⇒=                      (2) 

()t  is continuous and increasing on the set { }1)(0: << xFx ξ . 
In similar way we compute the distributions η  in terms of a distortion [1, 2].  

))(()( xFGxF ξη =                                                            (3) 
 

The use of substitution means  )()( 1 yFxxFy −=⇔= ξξ

))(()( 1 xFFxG −= ξη                                                   (4) 



If we take into account the characteristics of cumulative distribution functions, it is clear 
that is continuous and increasing function from )(xG 1,0  to 1,0 .  The transformation 
and distortion – (2) and (4) – are equivalent in the case, where both  are well known. 
The properties distortion functions were studied in [1]. In this paper we will demonstrate some 
aspects of a transformation view.  
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2 Case Fη()  is good known and Fξ()  is estimated 

 This modification represents e.g. situation, where Fη()  represents a model and Fξ() is 
empirical distribution function1.  Consider that  is impossible to obtain without 
errors. Thus it’s useful define  

))(()( 1 xFFxt ξη
−=

))()(()( 1
)( xexFFxt xe += −

ξη ,                                                         (5) 
where  is a real model of obtained transformation. Because)()( xt xe 1)()(0 ≤+≤ xexFξ , fits 

. Now, it’s possible to define the sensitivity functional (shorter 
sensitivity) as: 

)(xe
)(1)()( xFxexF ξξ −≤≤−

)(
)()(

lim))(( )(

0)( xe
xtxt

xts xe

xe

−
=

→
.                                                          (6) 

In (6)  stands for uniform convergence to zero function on the definition’s 
domain . This sensitivity definition is derived (and motivated) from Taylor’s expansion 

.  Now it’s obvious when 

0)( ;0)( ≠→ xexe
)(xFξ

)())(()()()( xextsxtxt xe +≅ 1))(( <xts  then influence of the error is 

reduced and in case 

)(xe

1))(( >xts  is enlarged. From the practical point of view it’s interesting to study 

domain 1))(( <xts , now. Using (6) and l’ Hospital’s rule is obtained:  

))x(t(f
))x(t(s

η

1
= ,                                                        (7) 

where )()( xF
dx
dxf ηη =  is the probability density function of the distribution . )(xFη

From (2) and (7) we have
)))x(F(F(f

))x(t(s
ξηη

1
1

−= .                                                           (8)                  

The error reducing condition 1))(( <xts  for domain implies , because 

of non negativity . It’s necessary to remind that the condition 

11 >− )))x(F(F(f ξηη

()fη 1))(( <xts  is sufficient for any 
pair  (not only in case presented in this paper). Each computation leads to numerical 
representation with some errors. 

()F(),F ξη

                                                 
1 By the initial assumptions on distribution functions, empirical distribution function is defined in this way: 

Let be a random sample and  its ordered version. For any  is nxx ,...,1 )()1( ,..., nxx )(ix
n
ixF iempir =)( )(. ; 

for ; for 0)(.)1( =⇒≤ xFxx empir 1)(.)( =⇒≥ xFxx empirn  and for any x  between and  )(ix nix i <+  )1(  

 is line from  to .  Then  is continuous (on real 

axis ) and increasing on the set 

)(. xFempir ))(,( )(.)( iempiri xFx ))(,( )1(.)1( ++ iempiri xFx )(. xFempir

1R { }1)(0: . << xFx empir . 
 



3 Example: PX50 log-return 
 Data of log-return Prague stock exchange PX50 index are used (time segment from 7.9.1993 
to 15.9.2005). 

Log-return  is defined as log-ratio)t(r ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)t(i

)t(ilog)t(r e 1
, where  is daily PX50 value 

in the .  As we use normal approximation with the empirical mean and empirical 
variance. And  is empirical distribution function of the log-return PX50. Both  are 
demonstrated in Figure 1. 

)t(i

dayt − )x(Fη
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Figure 1     Log-return PX50 empirical distribution and its normal approximation. 

 
Transformation (2) and sensitivity (7) are plotted in Figure 2. 
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Figure 2    Transformation and sensitivity. Identity and transformation are on the left axis 

and sensitivity and one are on the right. 



From Figure 2 is visible that the error contracting area is (approximately) interval from -0.035 

to +0.035. It represents interval from 0.9656 to 1. 0356 in classical PX50 return ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− )t(i

)t(i
1

.  

The distortion  is shown in Figure 3, for the completeness. )x(G
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Figure 3    Distortion of the pair . Normal approximation log-return PX50 

and its empirical distribution. 
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4 Example: ČEZ stock return 
 

 Data of the return Prague stock exchange CEZ-stock are used (time segment from 1.12.2000 
to 31.8.2005). 

Return  is defined as ratio)t(d ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)t(i

)t(i)t(d
1

, where  is daily stock value in the)t(i dayt − .  

As  we use the normal approximation with the empirical mean and empirical variance.  
And  is empirical distribution function of the daily stock return is. Both   are 
demonstrated in Figure 4. 
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Figure 4     Return CEZ stock empirical distribution and its normal approximation. 



Transformation (2) and sensitivity (7), on this example are visible in Figure 5. 
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Figure 5    Transformation and sensitivity. Identity and transformation are on the left axis 

and sensitivity and value one are on the right (example CEZ stock). 
 
From Figure 5 is clear that the error contracting area is (approximately) interval from 0.95 to +1.05. 
 
5 Example: Cauchy random variable simulation 

 This case may represent situation, where Fη()  describes a model and Fξ() is empirical 
distribution of one thousand simulated samples of Cauchy random variable (location parameter=0, 
scale parameter=1). As the  we use normal approximation with the empirical mean 
and empirical variance (but mean and variance in this case don’t exists).  And is empirical 
distribution function of the simulated data. Both   are demonstrated in Figure 6. 
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Figure 6    Simulated Cauchy data empirical distribution and its normal approximation. 



Transformation (2) and sensitivity (7), for this example are in Figure 7. 
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Figure 7     Transformation and sensitivity. Identity and transformation are on the left axis 

and sensitivity and value one are on the right (example Cauchy data). 
 
From the Figure 7 is clear that the error contracting area does not exist. 
 
6 Conclusions 

 Considered transformation is very useful, but very dangerous as well. If the partition 
(random variable definition area) into two sub-areas is not analyzed, then generating large errors is 
possible. In the case of distribution with fat tails possibility converts to certainty.  The error 
contracting domain is a good description for accepting area of transformation model 
and its complement is transformation rejecting area. This paper shows that the error contracting area 
(and complementary transformation rejecting area) depends on a choice , too. If the fat tails 
occurred, there is better to use switching models [3].    
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