Lecture 3: Applications #1: Intro and Telnet

Digression #1: RFCs and Internet Documentation

In this subject, we concentrate fairly heavily on the protocols and architectures used in the global Internet.

Every aspect of the Internet is documented in a series of documents called "RFCs" (Request For Comment). RFCs are the means by which new technologies are introduced in the Internet: after suitable research work has been done, the new proposals are published as an RFC. On the other hand, some RFCs document standard Internet protocols. RFCs are usually in plain text form.

Once an RFC is published, it is not changed. However, it may be "obsoleted" by later work. Unfortunately, there is no easy way to "browse" RFCs to discover which RFC is the latest on a particular topic, although there are various Web Indexes which can be useful[1]. All RFCs are available on-line on the Internet. In Australia, they are available at several sites: in particular your lecturer's favourite (and fastest) RFC archives are at:

http://mirror.aarnet.edu.au/pub/rfc/
ftp://munnari.oz.au/rfc
ftp://ftp.monash.edu.au/pub/disk2/internet-standards/
You will probably (later) need to learn how to download RFCs to answer some of the assignment questions.

[1] See, for example, the excellent index at http://www.faqs.org/rfcs/

Application Protocols

Application protocols define the way in the TCP reliable service can be used to achieve network-based computing. Because applications can assume reliability, their protocols can be relatively simple.

Most Internet application protocols use commands (and, in some cases, responses) in a human-readable form. They normally also use plain ASCII text (see later) where possible. This makes debugging the protocols quite straightfoward in most cases.

Some application protocols include:

Telnet

provides remote login allowing a user to log into a remote computer as though it was local. We examine Telnet in this lecture.

SMTP

(Simple Mail Transfer Protocol) is the Internet electronic mail delivery protocol. We look at electronic mail in the next lecture.

FTP

(File Transfer Protocol) is used to copy files from one system to another.

HTTP

(HyperText Transfer Protocol) is the protocol basis of the World Wide Web.

Remote Login

Remote login means to "log in" to a remote computer (or, to use the historical term, a "host") as though it were local.

· The idea of "remote login", as opposed to "local login" is significant in the history of computing -- originally, a user "logged in" at a basic display terminal which was directly connected to a hardware port on a multi-user host computer. When the Internet's predecessor ARPANET was being developed, this was viewed as its likely main application.

· If the host was connected to a network, remote login allowed users to log in to other networked hosts over the network as though their terminal was directly connected. Either way, the idea of "logging in" is still based on getting a command line shell on the target system. On our Unix systems, we nowadays talk about a shell window, which performs this function.

· Some systems do not (even now) support remote login, in most cases because they don't support a decent "command-line" interface.

· Different operating systems have (or used to have...) quite different procedures for handling local logins, making the problem of providing a generic remote login facility (potentially) quite complicated.

Telnet

Telnet is the basic remote login protocol, and is supported on virtually all time-shared operating systems.

Basic Telnet operation:

1. The user invokes the telnet client process, usually by name from the command line, eg:

telnet redgum

Once running, the client process then establishes a TCP connection to the desired telnet server, which is "waiting for connections" at the well-known port 23 -- note that we are again ignoring the question of how the name "redgum" gets translated to a network address, see later. If you like, you could simply replace the word "redgum" with its IP address, 149.144.21.3
2. In the case of Unix, the telnet server connects the incoming connection to a variation of the standard "login" process on the server host. This may work differently on other systems.

3. The user's keystrokes are transmitted to the remote server, and output is displayed on the user's screen. Thus, initially the user can "log in", and once authenticated (using a username/password pair) has a normal shell, or command line interface, on the remote host.

Digression #2: ASCII Text

Fundamental idea: the most basic unit of data is the byte -- virtually all computers (and network systems) handle data one byte at a time. Recall that a byte is an 8-bit value and thus can take any value between zero and 255decimal.

US-ASCII (or, just "ASCII") was the first widely accepted data representation system, and is universally recognised. In its traditional form, it's a 7-bit code, meaning that if an ASCII message is stored or carried in a modern byte-oriented system, the Most Significant Bit (MSB) of every byte will always be zero. For this reason, ASCII messages are sometimes called "7-bit data". An ASCII-valued byte has traditionally been called a "character", and obviously takes any value between zero and 127.

Within the ASCII "character set" there is a further subdivision:

Printable ASCII
characters with values between 32 (the ASCII "space" character) and 127 (the "DEL" character). This includes all of the uppercase and lowercase letters, the digits and the punctuation characters.

Control Characters
character values between zero and 31. These were originally designed for a range of "official functions", most of which are now irrelevant.

Telnet NVT

The telnet protocol defines a "Network Virtual Terminal" (NVT) that provides a standard interface to remote systems, regardless of their particular approach to terminal login. A telnet implementation (client or server) maps the semantics of local terminal operation to the NVT before sending data over the connection. Some aspects of the NVT include:

· The basic unit of transmission is the "line of text" -- ideal for command-line interfaces.

· An NVT text line contains only standard printable US-ASCII characters, terminated by an NVT "newline" indicator.

· The NVT "newline" or "line ending" indicator is the two-character sequence: carriage return, decimal 13 followed by linefeed, decimal 10. Traditionally this has been written as <CR><LF>[2]. A telnet implementation "maps" the "enter" or "return" key to this sequence before sending the line of text over the TCP connection.

· The telnet NVT has a few other interesting characterictics: it defines the meaning of a few other ASCII control codes, permits certain "out of band" commands to be sent to the remote host, and has faciliites for "Option Negotiation".

[2] The "angle brackets" here (ie, < and >) were traditionally used to indicate an ASCII control character. They are now so commonly used in HTML markup (see later) that this older usage is disappearing.

Other Aspects of Remote Login

Programs which implement the telnet protocol are widely (and freely) available, and telnet is much used.

The BSD version of Unix introduced (in the mid 1980s) a remote login utility with enhanced characteristics called "rlogin." Some of its features are:

· It supports the idea of "trusted" hosts, whereby a remote login request from a trusted host (providing the usernames match) is not re-authenticated. This can be administered on a per-host basis (/etc/hosts.equiv) or a per-user basis (~/.rhosts).

· rlogin exports the user's local "login environment" to the remote host, so that an rlogin session can look almost identical to a local login.

Nowadays, computer users who wish to use remote login facilities normally use a "secure" software package such as "ssh" (for "Secure SHell"). This software encrypts (for security, see later) and compresses the data (for efficiency) before sending it to the remote host. If you actually want to do remote login nowadays, you should always use ssh!

Telnet as a "Debugging Weapon"

A telnet program can be used to connect to other services than the standard telnet (ie, login) server at port 23. Most telnet implementations allow the user to specify a port number on the command line, and will open a TCP connection to that port. This can be very useful in debugging communications protocols.

The reason this works is that virtually all "traditional" Internet application protocols are based on the telnet idea of exchanging lines of text[3]. In fact, as we shall see, they usually use the telnet NVT specification.

In this subject, we will use telnet to demonstrate the operation of various Internet application protocols. For example, to investigate the Internet "email delivery" protocol SMTP (see next lecture) we could do:

telnet redgum 25

A final comment: telnet is a valuable tool to learn about network applications. In fact, it's so powerful that in some educational institutions, possession of a copy of telnet is regarded as prima facie evidence of intending to "hack into" computer systems... Be careful!

[3] In some cases this is only true for "commands" and "responses" -- so-called "8-bit data" can subsequently be transferred.

Lecture 4: Applications #2: Email

Electronic Mail Basics

Internet electronic mail (email) allows a person to compose a message and to send it to another person, usually on a remote system. Most email software also provides software to facilitate reading, saving, printing and replying to email. Until very recently, electronic mail was the single biggest generator of traffic volume on the Internet.

Email messages are delivered as follows:

[image: image1.png]Enail cient sotware,

‘wEutore znod Encilcies seftware
PECa2 Conplint
Message
Sonding Recsiving
Computer Conpures
Messgesent STPFCR) Mssoge divered
et Dy i bteret usng FOP

STPRey Destraion
pHiy CaP oot

Key concepts:

· RFC821 (and subsequent, currently RFC2821) SMTP protocol

· RFC822 (and subsequent, currently RFC2822) message format

· SMTP Relay, mailbox delivery.

· POP for mailbox access

RFC 822 Message Format

RFC822 defines the structure of an email message in the Internet. It has become the generic standard for all email messages. RFC2822 updates RFC822 without substantially changing its approach.

An RFC822-compatible email message consists of lines of ASCII text. It contains two sections:

1. An email message begins with a set of headers (or header lines), some of which are are mandatory and others optional. The headers have a fixed format, consisting of a keyword which starts immediately after a newline (ie, left-justified), followed by a colon character, followed by a space and a value -- sometimes called "name-value pairs". Some typical headers include:

2. From: pscott@ironbark.bendigo.latrobe.edu.au

3. To: hjc@redgum.bendigo.latrobe.edu.au

4. Reply-To: p.scott@latrobe.edu.au

5. Subject: Problems with redgum?

6. A body, which may contain any plain ASCII text. The body part follows the headers, separated from them by a blank line. Note that more recent standards than RFC822 (MIME) extend the range of possible messages which can be sent by email as enclosures or attachments, see later.

The SMTP Protocol

The Simple Mail Transfer Protocol defined in RFC821 (and updated, most recently, in RFC2821) specifies how mail is delivered from one system to another. It is a relatively straightfoward protocol.

Initially, an email client (usually the delivery agent software on the originating machine) establishes a TCP connection to the SMTP server (at port 25) on the destination machine.

The server responds with an informative message beginning with the 3-digit code 220 The client then sends a HELO command identifying the domain name of the system it is running on.

The client software then transmits one (or more) mail messages to the server. Each message is preceded by a MAIL-FROM and one or more RCPT-TO messages. The responses to these messages always begin with 3-digit numbers followed by a human readable message. Then the text of the message itself (including its headers) is transmitted using a DATA message.

Finally, a QUIT message from the client tells the server to close the TCP connection. An example of this is given on the next slide.

An SMTP Session

NB: Text in italics is sent from the client, boldface messages are sent from the server. Note that messages from the server always have a 3-digit code at the start of line. Some lines folded for clarity.

220 redgum.bendigo.latrobe.edu.au ESMTP Sendmail SGI-8.9.3/8.9.3;

 Tue, 11 Mar 2004 20:29:37 +1100 (EDT)
HELO bindi.bendigo.latrobe.edu.au
250 redgum.bendigo.latrobe.edu.au Hello bindi.bendigo.latrobe.edu.au

 [149.144.20.82], pleased to meet you
Mail from: philscott@bindi.bendigo.latrobe.edu.au
250 pscott@bindi.bendigo.latrobe.edu.au... Sender ok
Rcpt to: hjc@ironbark.bendigo.latrobe.edu.au
250 Recipient ok
Data
354 Enter mail, end with "." on a line by itself
From: pscott@ironbark.bendigo.latrobe.edu.au

Reply-To: p.scott@latrobe.edu.au

Subject: Problems with redgum?

To: hjc@ironbark.bendigo.latrobe.edu.au

Do we have a problem with mail on redgum?

Regards

.
250 NAA17474 Message accepted for delivery
quit
221 redgum.bendigo.latrobe.edu.au closing connection

Other Aspects

There are many subtleties involved in electronic mail. These include:

· Email is (usually) accepted for delivery on an SMTP relay host, usually located in the same organisation as the sender. Such a system is sometimes also called an SMTP gateway. In the event that the destination system is not available (eg, is down or unreachable), the relay host "spools" the message, and attempts to deliver it at regular intervals. The emergence of spam email in recent years has resulted, in part, from improperly-configured email relays.

· A email address usually defines a mailbox, not a person (but see below). A mailbox is simply a text file, in mailbox format, on the destination host. It is not necessarily true that a destination mailbox resides on the actual host to which a message was sent...

· There are other forms of email address other than mailboxes. These include:

· mail forwarders

· mail aliases

· mailing lists

· automated mail systems, ie the destination is a process.

Email Attachments

The Multipart Internet Mail Extensions (MIME -- originally RFC1521 and RFC1522, now updated in RFC2045-9) specification extends the SMTP protocol to allow the mail message body to contain attachments or enclosures. This allows SMTP to be used to send files of arbitrary type, whilst retaining compatability with RFC822.

The MIME specification adds several new header types. In the most common usage, the following are added to the basic message header:

MIME-Version: 1.0

Content-Type: Multipart/Mixed; Boundary=NextBitString_8765r443

The message is then structured into one or more "message parts", using the "Boundary" string as a separator.The following shows an audio attachment to an ordinary text message. Note that non-ASCII data is usually encoded into an ASCII representation.

--NextBitString_8765r443

Content-Type: text/plain

Ordinary email mesage in plain ASCII text

--NextBitString_8765r443

Content-Type: audio/basic; name="message.au"

Content-Transfer-Encoding: base64

...ASCII encoded data for the audio message

MIME Types and Encodings

The Content-Type: header in MIME specifies a "MIME type" for the data which follows. The MIME type is used to open a suitable application program to display the attached data. Some standard MIME types include:

	text/plain
	lines of ASCII text

	text/html
	HTML text

	image/gif
	GIF image

	video/mpeg
	MPEG video

	application/postscript
	PostScript document

	application/octet-stream
	Arbitrary data

For non-ASCII (8 bit) data, common encodings include "quoted-printable" and "Base64".

In Base64 encoding, the message is subdivided into groups of 3 bytes (24 bits) in length. These 24 bits are then subdivided into 4 groups of 6 bits each. Each 6 bit group is represented as one of 64 printable ASCII characters, from the 95 printable characters in ASCII. Finally, each of the printable characters is sent as an 8 bit byte. Thus, 24 bits of data are sent as 32 bits of ASCII data in the encoded message.

The Post Office Protocol (POP)

SMTP is really only useful to deliver mail to multiuser hosts which are permanently available and connected to the network. It is not normally used to deliver mail directly to, for example, a user's PC or Mac desktop system.

The Post Office Protocol (currently POP3) is designed to allow mail to be delivered to a mailbox on, eg, a Unix host using SMTP, but to later (at the recipient's convenience) download the contents of the mailbox to their desktop system.

A POP client (eg Eudora, Netscape Mail, MS Outlook) establishes a TCP connection (on port 110) to a server process on the (eg) Unix system where the mailbox resides. The user is authenticated (username/password), and the contents of her mailbox is downloaded for processing on her PC or Mac.

POP is almost universally used where a user has "dial up" Internet access from a commercial Internet Service Provider - the user's mailbox is maintained by the ISP. The IMAP protocol has superior functionality to POP, but is not (yet) in wide use.

Digression: Web-based Email Clients

A significant trend in email usage in recent years has been the emergence of "Web-based" email systems (of which the most significant is probably hotmail.com). In these systems, the mail is delivered to an SMTP mailbox, as usual. However, the user agent function is provided by a Web server and CGI (see later) combination running on the same system as the mailbox is located. The great attraction is that the user can access their mailbox from any Web browser and any location.

The system diagram looks like:

[image: image2.png]Web & Emai Server

b Browser

SR

= -
PR

o | 1

e

The main disadvantage of these systems, compared to POP (and IMAP) based email clients, is their slower performance, and more limited functionality. There are also privacy and/or security considerations, since the user's mailbox is stored on a remote system where the attitudes, ethics and competence of the system manager are unknown.
Lecture 05: Applications #3.1: HTML and HTTP Basics

The World Wide Web

Of all the Big Ideas in computer networking, the invention of the World Wide Web (also called the WWW, or just the Web) would have to be the biggest.

History:
1989

original proposal from Tim Berners-Lee at CERN for a "Web" of linked documents. Prototype followed soon after.

December 1991

First public demonstration.

February 1993

Mosaic (first alpha version) released by NCSA. First fully operational, multiplatform version released in September. Awareness of WWW project growing.

February 1994

We (Department of IT) start running a Web server on machine ironbark. at Bendigo (first regional institute in Australia to do so, and in the first 10 nationally!) Rah, Rah!
Early 1995

Netscape Communications releases Netscape Navigator 1.1. The rest is, as they say, history.

WWW Architecture

Four key components:

1. Web Browser software (eg IE, Mozilla, Camino, etc, Netscape, Opera, Safari, iCab, OmniWeb, lynx, Amaya, Mosaic, or even (for the truly desperate) Emacs/W3 -- and this is by no means an exhaustive list!).

2. Web server software. The most popular server program is apache -- this is what we run on ironbark., and redgum however there are several other popular server packages, especially those from Microsoft.

3. A collection of "hyperlinked" documents (or pages) written in HTML (the HyperText Markup Language), as well as a great number of other object types (eg, images, sounds, video clips, etc).

4. The HyperText Transfer Protocol, HTTP. The browser uses HTTP to obtain Web documents, specified using a URL, from a server. For example, the "home page" of ironbark is:

5. http://ironbark.bendigo.latrobe.edu.au/index.html

This specifies the application protocol (HTTP) used to fetch the object, the domain name where it is located and the local filename of the object on that host (/index.html). The "magic" string :// doesn't mean anything in particular except to signify that it's a URL...

Digression: HTML

Although it is not "core" knowledge in this unit, we really need to mention HTML.

HTML is a markup language -- documents are (in general) plain ASCII textfiles, with certain characters reserved to denote markup. Such languages have a long and venerable history in computing (eg starting with *roff, TeX, (see also here), LaTeX, SGML and subsequently XML.

· The structure (or, to a somewhat lesser extent, the displayed appearance) of a HTML document (or Web page) is described using embedded formatting codes (or tags) intermingled with the information in the document.

· In HTML, the markup tags are delimited by the special characters "<" and ">" -- the "less than" and "greater than" characters, often (rather clumsily IMHO) called "angle brackets". If either of these characters must appear as part of the actual data, they are written as < and > respectively.

· HTML introduced a uniform, and revolutionary, way of specifying hyperlinks in a document, using the link text structure. This was revolutionary!

· Modern HTML standards have evolved to support incredibly complex document layouts (using the <TABLE> markup, style sheets, client-side scrpting, etc), seemlessly mingling text and graphics into what has become an entirely new form of media.

If you're interested to see some very simple hand-crafted HTML, have a look at the document source for these lecture notes...

Hypertext Transfer Protocol (HTTP)

In Lecture #2,, the World Wide Web was used to illustrate the idea of a layered communications architecture. In that lecture, the basic ideas of the original version (0.9, circa 1992) of HTTP were introduced.

To revise, in HTTP/0.9 the GET operation was used to obtain HTML "pages" from a server, eg: the "home page" of ironbark at URL http://ironbark.bendigo.latrobe.edu.au/index.html
We first establish a reliable (TCP) connection to the server process waiting at port 80 (HTTP) on ironbark.bendigo.latrobe.edu.au. We then send the single line request shown in italics and receive in response the HTML text, shown here in boldface:

GET /index.html
<HTML>
<HEAD>
<TITLE>The Department of Information Technology at La Trobe University, Bendigo</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<!-- ******** Department Header ***************-->

La Trobe University, Bendigo
 etc

HTTP 0.9 actually defined a few other operations besides GET. However, since HTTP/1.0 (RFC 1945) and HTTP/1.1 are now commonly used, we shall defer discussion of them.

HyperText Transfer Protocol, v1.0

The original (0.9) version of HTTP was not in use for very long, being quickly replaced by version 1.0. In its most basic form, a v1.0 GET request looks like:

GET /index.html HTTP/1.0<newline><newline>

The response from the server consists of a status line, then a number of plain text headers, followed by a blank line and then the requested data object. It's clearly a very similar format to an RFC822 email message:

GET /index.html HTTP/1.0
HTTP/1.0 200 OK
Server: Netscape-Enterprise/3.5.1C
Date: Sun, 16 Mar 2004 11:48:39 GMT
Content-type: text/html
Last-modified: Fri, 14 Mar 2004 02:22:52 GMT
Content-length: 11378
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 (etc)

A Tour of the HTTP/1.0 Response Headers

HTTP/1.0 200 OK

An ordinary plain text status line -- note the "200-series" status.

Server: Netscape-Enterprise/3.5.1C
Date: Sun, 16 Mar 2004 11:48:39 GMT
Last-modified: Fri, 14 Mar 2004 02:22:52 GMT

Various entertaining bits of information. The "Last-modified:" header is very useful, see the HTTP/1.0 "Conditional-GET" and HEAD" request types.

Content-length: 11378
Content-type: text/html

These two headers follow (approximately) the MIME convention for identifying the type of data contained in the "body" of the response -- in this case, ASCII text which should be interpreted as HTML by the browser. Note that MIME email-header "Content-Encoding:" (used in MIME-encoded email messages) is not normally used in HTTP because the protocol is designed to handle "8-bit" data. That is, any data at all can be sent after the blank line which signifies the end of the response headers.

More on the GET Request

HTTP/1.0 permits the GET request (and other HTTP request types, see later) to additionally send a series of optional Request Headers along with the request. For example, here's a typical request to ironbark, snarfed from the local network (with some cosmetic editing):

GET /index.html HTTP/1.0
Accept: image/gif, image/jpeg, */*
Host: ironbark.bendigo.latrobe.edu.au
User-Agent: Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC)
Referer: http://bindi.bendigo.latrobe.edu.au/index.html
The request headers are terminated with a blank line -- hence the need for two newlines, as seen in the first slide of today's lecture. It's also possible for the request to contain a "message body", just like a response message -- we defer discussion of this until later.

Conditional-GET

Perhaps the most interesting optional request header is "If-modified-since:", which takes an HTTP standard GMT time/date string as its value.

For example, in the above example we saw an HTTP response with the following header line:

Last-modified: Fri, 14 Mar 2004 02:22:52 GMT
The browser can cache this object (keep a local copy in case it's requested again soon), and use the local copy instead of going out to the network, possibly causing uneccessary delays. The HTTP request would then look like:

GET /index.html HTTP/1.0
If-modified-since: Fri, 14 Mar 2004 02:22:52 GMT
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-US; rv:0.9.4)
Host: ironbark.bendigo.latrobe.edu.au
....etc, as before

If the requested page has not, in fact, been modified since the specified time, it won't be returned -- instead, a "304 Not Modified" response is sent, without a response body -- just the headers. We return to the topic of caching in the next lecture.

Other HTTP/1.0 Request Types

The HTTP 1.0 protocol is formally specified in terms of "methods," rather than simple commands. The available methods are:

GET

We've already seen this "request to read a generalised object". The object can be a Web "page" (HTML document), an image, a sound sample or a wide range of other types.

HEAD

A request to return the response header only, without the content. This can contain much useful information about the requested entity, without the need to actually load it -- eg, how big it is.

POST

Originally defined as a request to "append to a named resource" (eg, a Web page), this method is extensively used in CGI-based systems, see later.

PUT

Request to store an object (eg, Web page, image, etc). Has only ever been used experimentally.

DELETE

Delete the specified object. I'm unaware of this having ever being used, so we can ignore it.

LINK

Connect two existing resources. Likewise, never used.

UNLINK

Breaks an existing connection between two resources. Not used.

Lecture 06: Applications #3.2: HTTP

HTTP/1.0 Authentication

Most users of the Web will have at some time attempted to access a page, and been presented with a dialogue something like:

[image: image3.png]@ Enter username for ByPassword at ironbark bendigo Jatrobe edu.au

vser ;[
Fassvorc: [

OK Clear Cancel

An initial HTTP attempt to access a "password protected" Web page of this type (without providing suitable "authentication" information) will generate an HTTP error message together with a Web page which explains the nature of the error. Typically the response headers will contain:

HTTP/1.1 401 Authorization Required
Date: Wed, 17 Mar 2004 01:17:56 GMT
Server: Apache/1.2.6
WWW-Authenticate: Basic realm="ByPassword"
Last-Modified: Mon, 15 Mar 2004 00:43:51 GMT
....etc....

In HTTP/1.0, only the Basic authentication method was available, as used in this example.

Upon receiving this error, the Web browser will normally pop up a dialog box similar to the above, collect a user-ID and password from the user, and then retry the request with an additional "Authorization: " request header containing the additional information.

The Authorization Request Header

The "Basic" form of authentication used in HTTP is slightly strange. It takes a user-ID string and a password string and concatenates them using a colon character as a separator. The resulting string is then encoded using the base64 scheme, and included into a new request header.

Let's use as an example, a page for which the username is "student", password "student" -- pretty typical :-). The concantenation is thus "student:student". We can use the Unix commandline base64 program mimencode to encode the data, (it encodes to "c3R1ZGVudDpzdHVkZW50") so that the request header will look something like:

GET /subjects/int21cn/test/index.html HTTP/1.0
Authorization: Basic c3R1ZGVudDpzdHVkZW50
....etc....

This, of course, begs the obvious question -- why on earth do they do this? The obvious answer is "for security reasons" -- to deter casual network snoopers who might be observing traffic, watching for passing user-IDs and passwords. We are left wondering...

Cookies

Cookies are an extension to HTTP, originally developed at Netscape. In general, a server "sets" a cookie by sending an additional response header, thus (eg)

HTTP/1.0 200 OK
Set-cookie: myname=myvalue
....etc...

A browser which is "cookie-enabled" will normally[1] store this name/value pair, and future requests to the same server will contain an additional request header, thus:

GET /somefile.html HTTP/1.0
Cookie: myname=myvalue
....etc...

Cookies are extensively used in Web session management, which is discussed later in the unit.

[1] In fact, cookie operation is rather more complex than we discuss here -- for example, the "Set-cookie: " header can take several additional parameters (which affect how the cookie is interpreted), and the behaviour of browsers with respect to cookies can be changed by the end-user.

Digression: Forms in HTML

In HTML version 2, the idea of "forms" (and various related data structures) were introduced. These provided the basis technology for the recent explosion in "electronic storefronts" on the Web as well as several other innovations.

A form in HTML is an area of a Web page which is used to gather input from a human user. The information which is gathered can then be returned to the page's owner using a SUBMIT action.

The form is, as expected, delimited by a <FORM> and </FORM> markup pair.

The <FORM> markup has two important attributes:

ACTION
specifies the action URL of this form. Typically this is the URL of an executable CGI program, see later.

METHOD
specifies the way in which the ACTION URL is accessed. There are two methods, GET and POST.

Example:

<FORM

ACTION="http://ironbark.bendigo.latrobe.edu.au/cgi-bin/myprog" METHOD="GET">

Form Elements

Data is collected in a form by the use of INPUT tags. Each INPUT tag has an associated TYPE attribute.

For example:

<INPUT TYPE="TEXT"

This INPUT type can take several further attributes, eg:

<INPUT TYPE="TEXT" NAME="Name" MAXLENGTH="64" SIZE="20">

In a browser, this would be presented as a (scrollable) textbox, 20 characters wide (but able to accept 64 characters of input).

There are several other INPUT types:

· TYPE="PASSWORD"

· TYPE="CHECKBOX"

· TYPE="RADIO"

· TYPE="IMAGE"

· TYPE="HIDDEN"

· TYPE="SUBMIT"

· TYPE="RESET"

Form Elements #2

There are two other markup tags used in forms:

SELECT
allows the user to select from an enumerated list of values. Each value is given by an OPTION markup tag, which can take a couple of extra attributes.

TEXTAREA
presents a multi-line text field into which the user can type information. It is specified as a number of ROWS and COLS and can have a NAME attribute and an initial value.

URL Encoding

When form information is returned to the HTTP server, it is encoded into a format called (using MIME terminology):

application/x-www-form-urlencoded

...or simply "URL-encoded". In this format:

· ASCII space characters (decimal 32) are (usually) replaced by the "+" character. This is a hangover from an older format and is normally, but not universally, used -- see next point.

· Most (but not all) non-alphanumeric characters are encoded in hexadecimal format, thus: %HH, where the H characters are the two hexadecimal digits of the byte. Sometimes the space character is also sent in this format, as "%20", instead of as "+".

· The fields of a form are encoded as name=value, with each name-value pair separated by the "&" (ampersand) character.

· Fields with null values are (normally) not sent, nor are unselected CHECKBOXes and RADIO buttons.

More information

Some sites with good information on URL encoding include:
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.freesoft.org/CIE/RFC/1738/4.htm

Submission Methods

The two ways in which form data can be returned to the server are METHOD=GET and METHOD=POST.

GET

This method is (according to the original specification) preferred if the submission of the form is not going to have a lasting effect on the global state of the universe -- that is, it does not have side effects. For example, it may query a database, returning the result as HTML. A HTTP GET request is issued to the ACTION URL specified in the <FORM> markup tag, with the urlencoded form information appended after a separating "?" character. This can generate very long URLs.

POST

This method was originally used where processing of the form was intended to have side effects, eg, updating the contents of a database. In this case, a HTTP POST transaction is performed. The "body" of the transaction contains the urlencoded form data, as a single long line of text. The POST transaction is directed at the URL specified in the ACTION attribute of the <FORM> tag.

In "real life", GET and POST methods are used pretty much interchangeably, depending on the programmer's or system designer's preference.

Form submission using GET
Here is a typical HTML form which you can use to enter some random data. When you click on the Submit button, you should pay close attention to two things:

1. Notice that the form data is appended to the URL, in URL-encoded form as described above.

2. The server's response (generated by a trivial CGI program on ironbark) shows the complete "QUERY_STRING" which was passed to it. Notice that it's exactly the same as the information which was "tacked onto" the URL after the ? character.

The HTML for our FORM looks like:

<FORM action="/subjects/int21cn/cgi/L06CGIa.cgi" method="GET">

info1: <INPUT type="text" name="info1" size="20">

info2: <INPUT type="text" name="info2" size="20">

<input type="submit" value="Submit">

<input type="reset" value="Clear Form">

</FORM>

This is rendered in your Web browser as:

Začátek formuláře

info1: [image: image4.wmf]

info2: [image: image5.wmf]

[image: image6.wmf]S

ubmit

 HTMLCONTROL Forms.HTML:Reset.1 [image: image7.wmf]Clea

r

 Form

Konec formuláře

Try it!

Form submission using POST
We revisit the same Form as the previous slide, except this time the submission method is changed to POST.

In this case, we're going to try something different -- the CGI program which is the target of this Form is going to show us the actual HTTP request as it was received[2].

Začátek formuláře

info1: [image: image8.wmf]

info2: [image: image9.wmf]

[image: image10.wmf]S

ubmit

 HTMLCONTROL Forms.HTML:Reset.1 [image: image11.wmf]Clea

r

 Form

Konec formuláře

Again, try it.

[2] Actually, it's a "reconstructed" version of the HTTP request: not all request headers are necessarily shown. But it's close enough for our purposes!

Common Gateway Interface (CGI)

CGI defines the (original) way in which form data was/is presented to an application program by the HTTP server. There are several newer standards than CGI, but it's still the "default" way of doing Web server-side programming. The examples on the previous slides use the CGI standard interface.

When a user clicks the SUBMIT button on a form, the HTTP server starts up the specified CGI program, and makes the form data available to it.

From a programming perspective, the difference between GET and POST is the way in which a CGI program receives the form data. If the method was GET, the information is usually obtained by examining the contents of an environment variable (usually called "QUERY_STRING) containing the URL-encoded form data. Other environment variables contain additional useful information.

If the method was POST, the CGI program usually receives the form data on its standard input stream, with any extra stuff obtained, as before, from environment variables.

CGI programs can, as a rule, be written in any language (compiled or interpreted) supported on the system running the HTTP server.

On Unix servers, they are commonly written in Perl, C or as Bourne shell (/bin/sh) scripts.

A CGI program (almost) always generates (to standard output) a Web page which is returned to the browser, in addition to any other effect.

Lecture 7: Internet Applications #3.3: HTTP/1.1

A nice short lecture this time -- we tie up a few last topics in HTTP.

HTTP/1.0 Performance Issues

HTTP/1.0 has been criticised for poor performance and lack of scalability. There are several aspects to this:

· HTTP/1.0 opens a new TCP connection for every single transaction. For example, if a Web page contains 10 images, HTTP/1.0 must open a total of 11 TCP connections -- one for the original page, and 10 for the images. Problems which arise from this include:

· There can be a moderately long overhead in initial connection establishment due to round-trip delays.

· TCP initiates connections using the so-called "slow start" algorithm. This is necessary for proper operation, but is very inefficient for short transfers -- TCP typically takes 10 to 20KB of transferred data to get "up to full speed". Both of these can cause HTTP/1.0 browsers to seem really slow.

· TCP is required to maintain "state" information about closed connections for 240 seconds, to ensure that stray packets from old connections won't be interpreted as valid data by a later connection. When a server is handling a large number of connections, this can require huge buffer space, and is very inefficient.

· HTTP/1.0 has limited support for caching.

Because of these aspects, HTTP 1.0 is gradually being replaced by HTTP/1.1. (rfc2616).

HTTP/1.1 Basics

HTTP/1.1 (rfc2616) is now in widespread use. It extends the older protocol in a number of areas, notably persistent connections/pipelining and support for caching.

To implement Persisent Connections, HTTP/1.1 introduced a new request (and also response) header called "Connection:". This can take two values: "close" (which means that this is not a persistent connection) and "keep-alive", which means that the TCP connection is held until either side sends a "Connection: close" header, indicating that it wishes to terminate.

The browser can utilise a persistent connection by sending multiple requests over the connection without stopping and waiting for each them to be satisfied before sending the next -- the reponses are "in the pipeline". Similarly, the server can respond with responses sent one after another another. This is possible because each request can be unambiguously identified, as can the responses, using the "Content-length:" headers. The huge wins here, obviously, are that there's no delay opening multiple TCP connections, and the slow-start algorithm has time to get up to full speed.

Web Caching

The World Wide Web has been spectacularly successful -- so successful that a huge proportion of Internet traffic is HTTP, ie Web pages and related objects such as images. Caching is a technique whereby copies of popular objects are kept in strategic locations, and supplied in lieu of the originals, saving huge amounts of traffic on the "backbone networks".

The Conditional-GET operation seen earlier allows support for caching at the browser level -- that is, the browser can keep a local copy of an object and check if it's up to date before displaying it. Two additional features of HTTP/1.0 were:

The Expires:

response header was used to indicate that an entity had a limited (specified) "lifetime". This permits finer control over the Conditional-GET operation. It takes an Internet-standard date/time string as its value.

The Pragma: no-cache

response header has an obvious meaning: this entity should never be stored in a cache.

Note: the (non-standard) Refresh:

response header can be used (in some browsers) to force a reload of an entity.

Additionally, HTML "<META HTTP-EQUIV=..." tags can include "equivalent" response information in the <HEAD> section of an HTML document. The browser may regard this as being equivalent to the corresponding HTTP response header.

Proxy Caches

A proxy server is an HTTP server which fetches Web objects (pages, images, etc) on behalf of its clients. Proxies normally cache all "cacheable" reponses, so that if an entity is stored locally, it is returned instead of sending a request to the originating server. Such shared caches can significantly reduce an organisation's "download volume", as well as give significant performance improvements to the end-user.

Requests to a proxy server are always specified as full URLs, so the first line of a typical GET request now looks like:

GET http://www.bendigo.latrobe.edu.au/index.html HTTP/1.0
....other request headers...<newline><newline>

[image: image12.png]‘Web Browser
(egNetscape, IE) Proxy Server azabbb.com
Client Proxy
Cache
9 1 Wieb Server
Sorvare
GET ity //aaa. bbb con HITP/A.1

Whilst proxy servers (and caches) were described in HTTP/1.0, the rules as to how caching should be controlled were unspecified.

Cache Control Mechanisms in HTTP/1.1

HTTP/1.1 introduced a new Cache-Control: header which significantly improved the operation of both private (browser) and shared (proxy) caches. This response header is complex: it has many, many possible combinations of value. Some common examples include:

Cache-Control: public

This entity is always cacheable, even in circumstances where it may not be obvious (eg, in response to a request with an Authorization: header.

Cache-Control: private

The reponse is not to be cached in proxy caches, and is intended for the use of the end-user alone. The response may be cached at the end-user browser.

Cache-Control: no-cache

Obvious. Don't cache this reponse anywhere. The no-store directive is even more restrictive.

Cache-Control: max-age=3600

Specifies a time, in seconds, after which the entity becomes "stale". The s-maxage variant specifically refers to proxy (shared) caches. Both of these are commonly combined with re-validation options, to give (for example):

Cache-Control: max-age=3600, must-revalidate

After 3600 seconds, the freshness of the entity must be checked at the originating server.

Entity Tags in HTTP/1.1

The "Entity Tag" is new in HTTP/1.1 and is used to indicate that two (perhaps apparently unrelated) resources are in fact the same. For example, requests for each of the two Web pages:

http://ironbark.bendigo.latrobe.edu.au/subjects/int21cn/news.html

http://ironbark.bendigo.latrobe.edu.au/subjects/int31bcn/news.html

Both return the same Entity Tag header:

ETag: "1cc30e3-88e-404e6d9b"

The client can use an If-None-Match: "1cc30e3-88e-404e6d9b"
request header with a GET request to specify the version of the object which it already has. This is a significant improvement over the HTTP/1.0 "Conditional-GET" -- although not all entities are (by default) generated with Entity Tags.

You can discover lots more about HTTP/1.1 at: http://www.w3.org/pub/WWW/Protocols/Specs.html
_1225700584.unknown

_1225700586.unknown

_1225700587.unknown

_1225700585.unknown

_1225700582.unknown

_1225700583.unknown

_1225700581.unknown

_1225700580.unknown

