Web programming

Henning Schulzrinne
Dept. of Computer Science
Columbia University

2-May-02 Advanced Programming
Spring 2002

Web programming

= Web services vs. "classical" web
programming
= Client vs. server programming
= client: JavaScript, Java
= HTML-centric vs. program-centric
= HTML-centric: PHP, ASP
= cgi, fast-cgi
= (Java) servlet
= data model: Java servlet, database

2-May-02 Advanced Programming
Spring 2002

Web services vs. web
programming
= web services = remote procedure call
= we saw SOAP
= structured data (XML)
= methods and responses
= generally, for machine consumption
= web programming - generate HTML pages
= for humans
= often, database-driven
= replacement for IBM 3270 terminals ...

2-May-02 Advanced Programming 3
Spring 2002

Client vs. server
programming
= Execute code on client:
= download Java applet > self-contained
programming environment
= JavaScript (aka ECMAscript):

= madify and get values from HTML ("document
object model" — DOM)

= Execute code on server = generate
document

= state maintenance (HTTP stateless)
= login, shopping cart, preferences

2-May-02 Advanced Programming
Spring 2002

Taxonomy

embedded in HTML |separate

server |SSI, ASP, PHP, JSP, |server API (NSAPI),
CFM cgi, servlets

client |JavaScript Java applets, plug-in

2-May-02 Advanced Programming 5
Spring 2002

Example: JavaScript -
cookies

var expires = new Date()

var today = new Date()

function setCookie(name, value, hours) {
var expire = new Date();
expire.setTime (expire.getTime() + (1000 * 60 * 60 *
hours));
document.cookie = name + "=" + escape(value)
+ ((expire == null) ? "" : ("; expires=" +
expire.toGMTString()))

}

function unsetCookie(name) {
var exp = new Date();
exp.setTime(today.getTime() - 10);
document.cookie = name + "=" + "; expires=" +
exp.toGMTString()

}

expigps setTime(today - 0eRRiRGS hoFarliid00*365)

Spring 2002

JavaScript - DOM

function tz (f,v) {
var t = -1;
switch (f[v].value) {
case "us": t=128; break;
case "CI": t=0; break;
case "GH": t=1; break;

}
if (¢t !'=-1) {
f.form.timezone.options[t].selected = true
}
}

2-May-02 Advanced Programming
Spring 2002

Web as RPC

= request = HTTP GET, PUT
response (result): headers + body
object identifier ~ URL

typed data (XML) vs. HTML

= from constant = mostly constant >
completely on-demand

2-May-02 Advanced Programming 8
Spring 2002

Server-side include

= _shtm1 documents (or configured by default
for all .html documents)

include in HMTL/XML comments

<!l-- #element attribute=value
attribute=value ... -- >

limited scripting: if/else, include, exec,
variables

primarily for conditional inclusion, boilerplate
security issues: exec

2-May-02 Advanced Programming
Spring 2002

SSI example

= Columbia CS home page
<html>
<head><TITLE>Computer Science: welcome </TITLE>
<script language=javascript>

var section = "home™;
var subsection = "home";
var subsectionID = "-1";
</script>
</head>
<!--#set var="SECTION" value="HOME" -->
<l--#include file="top.inc" -->

<!--#include file="home.txt" -->

</tr> </table>

<!--#include file="bottom.txt" -->
</html>

2-May-02 Advanced Programming 10
Spring 2002

SSI Example

<body>
<h1>SSI Test</hl>
The document was last modified on

<!-- #flastmod file="$DOCUMENT_NAME" -
and has <!-- #fsize
file="$DOCUMENT_NAME" -- > bytes.

<h2>Environment</h2>
<!-- #printenv >
</pre>

2-May-02 Advanced Programming
Spring 2002

1

Common gateway interface
(cgi)

= Earliest attempt at dynamic web content
= language-independent
= passes HTTP request information via
= command line (ISINDEX) — rarely used
= environment variables: system info + query string
(GET)
= request body (POST) - standard input
= return HTML or XML via standard output
= non-parsed headers (NPH) return complete
response

2-May-02 Advanced Programming 12
Spring 2002

cgi arguments

= application/x-www-form-urlencoded
format
= space characters > "+"
= escape (%xx) reserved characters
= name=value pairs separated by &
= GET:

foo.cgi?name=John+Doe&gender=male&family=5&city=kent
&city=miami&other=abc%0D%0Adef&nickname=1%26D

= POST: include in body of message

2-May-02 Advanced Programming 13
Spring 2002

cgi forms

= single form per submission

<form action=scripturi method=GET|POST>

form fields:
<input type="text" name="textl" size=10
maxlength=15 value="Initial text">
<input type="hidden" name="state"
value="secret">

<input type=radio name=radio value=WNYC
checked>

<input type=radio name=radio value=KQED>
<input type=submit value="Submit">

2-May-02 Advanced Programming 14
Spring 2002

Web state

= State:
= stateless
= state completely stored on client
= state referenced by client, stored on server
(most common)
= Mechanisms:
= hidden form fields
= URL parameters
= cookies (HTTP headers)

2-May-02 Advanced Programming 15
Spring 2002

cgi mechanics

= either called .cgi in HTML directory or

stored in cgi-bin

= in CS, both /home/alice/html1/foo.cgi Or
/home/alice/secure_html/foo.cgi work

executable (script file)

= runs as nobody or as owning user

(~user/mycgi.cgi)

store secret data off the document tree!

2-May-02 Advanced Programming 16
Spring 2002

SQL interface

= Most common web model:

= cgi script (or Java servlet) accesses
database

= database via TCP connection (ODBC, JDBC,
script)
= n-tier model:

= delegate "business logic" to RPC-based
server

= XML-based model:
= generate XML, render via XSLT

2-May-02 Advanced Programming 17
Spring 2002

Tcl cgi example

set env(LD_LIBRARY_PATH) /home/hgs/sun5/1ib
Tload $env(LD_LIBRARY_PATH)/1ibfbsql.so

Tappend auto_path /home/hgs/html1/edas3

Tappend auto_path /home/hgs/1ib

package require cgi

cgi_debug -on

cgi_eval {
sq1 connect dbhost.columbia.edu dbuser secret
cgi_body {

}

sql disconnect

2-May-02 Advanced Programming 18
Spring 2002

Tcl cgi

cgi_body {
hl "Database view"
set conflist [sql "SELECT
conference,name,url,logo
FROM conference WHERE conference=$c"]
table {
foreach conf $conflist {
maplist $conf c name url Togo
table_row {
td "$name"
td "$url”
}
}
}

}May—oz Advanced Programming
Spring 2002

19

Python for cgi

= Handles processing cgi variables
= need to generate HTML by print

= but separate object-oriented routines
#1/usr/local/bin/python
#1/opt/cucspython/bin/python2.2

import os, string, sys
from types import ListType

print "Content-Type: text/htm1" # HTML is following
print # blank 1ine, EOH

2-May-02 Advanced Programming 20
Spring 2002

cgi python

print "<title>Python cgi script</title>"
print "<body>"
print "<hl>Python script</hl>"
print "Before script"
print sys.path
try:

import cgi
except:

print “error", sys.exc_info()[0]

only for python 2.2!
import cgitb; cgitb.enable()

2-May-02 Advanced Programming
Spring 2002

21

cgi python

form = cgi.FieldStorage()

if not (form.has_key("name")):
print "<form action=pcgi.cgi method=get>"
print "<input type=text name=name size=10>"
print “<input type=submit value=Submit>"
print "</form>"

else:
print “<p>name:", form["name"].value

print "</body>"

2-May-02 Advanced Programming 22
Spring 2002

SQL interface

= SQL = more-or-less standard retrieval
language for databases
= Examples:
= Oracle
= Sybase
= IBM DB/2
= Microsoft SQL Server
= mySQL
= PostgreSQL

2-May-02 Advanced Programming
Spring 2002

23

SQL architecture

= library interface
= proprietary
= JDBC, ODBC

= driver that connects (via TCP) to
database
= same or different host

= issue queries, get results
= modify content
= transactions

2-May-02 Advanced Programming 24
Spring 2002

SQL basics

= relational database: tables with labeled
columns, combined into database

= columns are atomic types:
create table person (
person integer unsigned auto_increment
primary key,
name varchar(40),
state enum ("', 'AK', 'AL', ...),
biography text,
verified date,
index(name)

2-May-02 Advanced Programming 25
Spring 2002

SQL basics

= Integer: tinyint, smallint,
mediumint, int(eger), bigint

Floating point: float, double, real
= Decimal: decimal(m, d) (for $)

= Date: date, datetime, timestamp,
time, year

= String: char(a), varchar(n),

tinyblob, tinytext, blob, text,
enum, set

2-May-02 Advanced Programming 26
Spring 2002

SQL basics

Retrieval: SELECT fieldl, field?
FROM table WHERE condition ORDER
BY expression

= Insertion: INSERT table SET
fieldl=valuel, field?=value2, ...

= Update: UPDATE tabTle SET
fieldl=valuel, field2=value2
WHERE expression

Delete row: DELETE FROM tabJe WHERE
expression

2-May-02 Advanced Programming 27
Spring 2002

SQL basics: joins

= Join two tables that have a common
value ("product")
" €.0., SELECT lastname,city.name FROM

person,city WHERE city.zip=person.zip AND
Tastname="Jones'

2-May-02 Advanced Programming 28
Spring 2002

SQL

= Get description of table:

$ mysql -h grandcentral -u cs3995 -p
mysql> use grades

mysql> describe students;

| Field | Type | Null | Key | Default | Extra |

| firstname | text | YES | | NULL | |
| Tastname | text | YES | | NuLL | |
| points | int(11) | YES | | NULL | |
3 rows in set (0.00 sec)

2-May-02 Advanced Programming 29

Spring 2002

SQL Python interface

import MysQLdb
import MysQLdb.cursors

try:
db = connect(host="grandcentral’,
user="'cs3995"', passwd='cs3995',
db="grades")
except MysqQLdb.Error, e:
print "Error %d: %s" % (e.args[0], e.args[1])
sys.exit(l)
¢ = db.cursorQ
c.execute("SELECT ... FROM ...")
results = c.fetchall() # list of tuples
c.close()

2-May-02 Advanced Programming 30
Spring 2002

SQL Python interface

= Results are just tuples, with fields in
order of table definition

= can also fetch one row at a time:
c.execute("SELECT firstname,lastname FROM
students ORDER BY lastname")
print ""
while (1):
student = c.fetchone()
if student == None: break
print "<1i>", student, student[0]
print ""

2-May-02 Advanced Programming 31
Spring 2002

Python SQL - dictionary
cursor

= Map rows to dictionary elements instead of

list elements:

c.close()

¢ = db.cursor(MysqQLdb.cursors.DictCursor)

c.execute("SELECT firstname,lastname FROM
students™)

results = c.fetchall(Q

for row in results:
print "%s, %s" % (row["firstname"],

row["Tastname"])
print "%d rows were returned" % c.rowcount

2-May-02 Advanced Programming 32
Spring 2002

Servlet life cycle

= server application loads serviletcClass
= creates instance via no-args constructor
= servers call servlet's init() method

= server calls service(reqg, res)
method for each request (often, with
class name as URL), possibly
concurrently

= servers calls destroy() on shutdown

2-May-02 Advanced Programming 33
Spring 2002

HTTP requests as servlets

= HTTP method GET, PUT, POST, ... 2
doGet, doPut, doPost

= subclass of Httpserviet overrides
default implementation

2-May-02 Advanced Programming 34
Spring 2002

Servlet example

import java.io.*;

import javax.servlet.*;

import javax.serviet.http.*;

public class HelloClientServiet extends HttpServiet

protected void doGet(HttpServietRequest req, HttpServietResponse res)
throws ServletException, IOException
{
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><HEAD><TITLE>Hello Client!</TITLE>" +
"<HEAD><BODY>Hello Client!</BODY><HTML>");
out.close();

¥
public String getServietInfo() {

return "HelloClientServlet 1.0 by Stefan Zeiger";
¥

3
2-May-02 Advanced Programming 35
Spring 2002

2-tier architecture

= "client-server", "fat client"

= e.g., ODBC on client (PC), accessing
SQL database

= business logic on PC

= (-) transport data across network

= (-) need applications for each platform

= (-) need to update applications on many
desktops

2-May-02 Advanced Programming 36
Spring 2002

n-tier architecture

- GUI Client ‘

- EE)
R Wy ==

R /
] R A 1
! WA Application- 3%@ ¥
5 Browser Tier

Systers Management j
Transactions |

] largusge dependent interface. B cOReA interface < communicaion
O I comac W cvarrlrgese

2-May-02 Advanced Programming 37
Spring 2002

n-tier architecture

= client tier:
= receives user events (keyboard, mouse)
= presentation of data
= user interface
= e.g., Java applets, web browser, thin client
application
= application-server tier:
= "business logic" - actual data processing,
algorithms
= can be component-based (Java Beans)

2-May-02 Advanced Programming 38
Spring 2002

n-tier architecture

= Data-server tier
= data storage
= relational and legacy databases
= all tiers could run on same machine, but
usually separated
= HTTP (or SOAP) from client to server
= Corba or SOAP or remote-SQL between server
tiers
= Advantages:
= independent of storage model
= simpler authentication to database

2-May-02 Advanced Programming 39
Spring 2002

