Chapter 7
 NetworkSecurity

A note on the use of these ppt slides:
We're making these slides freely available to all (faculty, students, readers).
Theyre in powerpoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:
If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we'd like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR
All material copyright 1996-2002
J.F Kurose and K.W. Ross, All Rights Reserved

Computer $\mathcal{N e}$ tworking: \mathfrak{A} Top Down Approach Featuring the Internet, $2^{\text {nd }}$ edition.
I im Kurose, Keith Ross $\mathcal{A d}$ dison-Wesley, Iuly 2002.

Chapter 7: NetworkSecurity

Chapter goals:

\square understand principles of network security:
O cryptograpfy and its many uses beyond "confidentiality"
O authentication
O message integrity
o key distribution
\square security in practice:
O fire walls
O security in application, transport, ne twork, link Cayers

Chapter 7 roadmap

7.1 What is network security?
7.2 Principles of cryptography
7.3 Authentication
7.4 Integrity
7.5 Key Distribution and certification
7.6 Access control: fire walls
7.7 Attacks and counter measures
7.8 Security in many layers

What is ne tworksecurity?

Confidentiality: only sender, intended receiver should "understand" message contents
O sender encrypts message
Oreceiver decrypts message
Authentication: sender, receiver want to confirm identity of each other
\mathcal{N} (onrepudiation: ne ither the sender nor the receiver of a message be able to deny the transmission
Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
Access and Availability: services must be accessible and available to users

Security attacks

Normal flow:
\square Interruption

- Availability
- Interception
o Confidentiality
\square Modific ation O Integrity
- Fabrication
- Authenticity

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securefy"
\square Irudy (intruder) may intercept, delete, add messages

There are bad guys (and girls) out there!
Q: What can a "bad guy" do?
A: a lot!
O eavesdrop: intercept messages
O active fy insert messages into connection
O impersonation: can fake (spoof) source address in packet (or any fie (d in packet)
O hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
O denial of service: prevent service from being used by others (egg., by overloading resources)
more on this later.....

Internet security threats

Packet sniffing:
O broadcast media

- promiscuous \mathcal{N} IC reads all packets passing by

O can read all unencrypted data (e.g. passwords)
O eeg.: C sniffs \mathcal{B} 's packets

Internet security threats

IP Spoofing:
O can generate "raw" IP packets directly from application, putting any value into $I P$ source address field
O receiver cant tell if source is spoofed
O egg.: C pretends to be \mathcal{B}

Internet security threats

Denial of service (DOS):
O flood of maliciously generated packets "swamp" receiver
O Distributed $\mathcal{D O S}(\mathcal{D D O S})$: multiple coordinated sources swamp receiver
O egg., \mathcal{C} and remote host $\mathcal{S} \mathscr{\mathcal { N }}$-attack \mathcal{A}

Chapter 7 roadmap

7.1 What is network security?
7.2 Principles of cryptography
7.3 Authentication
7.4 Integrity
7.5 Key Distribution and certification
7.6 Access control: fire walls
7.7 Attacks and counter measures
7.8 Security in many layers

The language of cryptography

symmetric key crypto: sender, receiver keys identical public-key crypto: encryptionkey public, decryption key secret (private)

Symmetric keycryptograpfy

substitution cipher: substituting one thing for another O monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq

Egg.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc way. mgsbc

Q: How hard to break this simple cipher?:
brute force (how hard?)
a other?

Symmetric key cryptography

symmetric Key crypto: Bob and Alice share know same (symmetric) Key: $\mathcal{K}_{\mathfrak{A}-\mathcal{B}}$

- egg., key is knowing substitution pattern in mono alphabetic substitution cipher
$\square \underline{Q}$: flow do Bob and Alice agree on key value?

Symmetrickeycrypto: DES

$\mathcal{D E S}$: Data Encryption S tandard

- US encryption standard [NIST 1993]

口 56-6it symmetric Key, 64-6it plaintext input

- How secure is $\mathcal{D E S}$?

O DES Challenge: 56-6it-Key-encrypted pfrase ("S trong cryptography makes the world a safer place") decrypted (brute force) in 4 months
O no known "backdoor" decryption approach

- making $\mathcal{D E S}$ more secure:

O use three keys sequentially (3-DES) on each datum O use cipher-block chaining

Public Key Cryptograpfy

symmetric key crypto
\square requires sender, receiver knowshared secret key
\square Q: how to agree on key in first place (particularly if never "met")?
public key cryptography
ㅁ radically different approach [Diffie He [lman76, RS A78]
\square sender, receiver do not share secret key
व public encryption key Known to all

- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

Requirements:
(1) need $\mathcal{K}_{\mathcal{B}}^{+}(\cdot)$ and $\mathcal{K}_{\mathcal{B}}(\cdot)$ such that

$$
\dot{\mathcal{K}}_{\mathcal{B}}\left(\mathcal{K}_{\mathcal{B}}^{+}(m)\right)=m
$$

(2) given public Key $\mathcal{K}_{\mathcal{B}^{+}}^{+}$, it should be
impossible to compute private Key $\mathcal{K}_{\mathcal{B}}$

RS A: Rives, Shamir, Adelson algorithm

RSA:Choosing keys

1. Choose two large prime numbers p, q.
(egg., 1024 bits each)
2. Compute $n=p q, \quad z=(p-1)(q-1)$
3. Choose e (with ear) that has no common factors with z. (e, z are "relative fly prime").
4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod $z=1$).
5. Public key is (ne). Private key is $\left(\begin{array}{rl}(n, d) & \text {. }\end{array}\right.$

RS $\mathcal{A}:$ Encryption, decryption

0. Given (n, e) and (n, d) as computed above
1. To encrypt bit pattern, m, compute $c=m^{e} \bmod n$ (i.e., remainder when m^{e} is divided by n)
2. To decrypt received bit pattern, c, compute $m=c^{d} \bmod n$ (i.e., remainder when c^{d} is divided by n)

$$
\begin{aligned}
& \text { Magic } \\
& \text { happens! }
\end{aligned} \quad(\underbrace{m^{e} \bmod n}_{c})^{d} \bmod n
$$

RS A example:

Bob chooses $p=5, q=7$. Then $n=35, z=24$.
$e=5$ (so e, z relatively prime).
$d=29$ (so ed -1 exactly divisible by z).
encrypt: $\begin{array}{cccc}\frac{\text { letter }}{I} & \frac{m}{12} & \frac{m}{}^{e} & \frac{c=m^{e} \bmod n}{1524832}\end{array}$
decrypt: $\quad \frac{c}{\frac{c}{7}} \underset{481968572106750915091411825223071697}{c^{d}} \frac{m=c^{d} \bmod n}{12} \frac{\text { letter }}{1}$

Chapter 7 roadmap

7.1 What is network security?
7.2 Principles of cryptography
7.3 Authentication
7.4 Integrity
7.5 Key Distribution and certification
7.6 Access control: fire walls
7.7 Attacks and counter measures
7.8 Security in many layers

Authentication

Goal: $\mathcal{B o b}$ wants Alice to "prove" fer identity to fim

Protocolap1.0: Alice says "I am Alice"
 Failure scenario??

Authentication

Goal: $\mathcal{B o} 6$ wants $\mathcal{A l i c e}$ to "prove" fer identity to fim

Protocolap1.0: Alice says "I am Alice"

> in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Authentication: another try

Protocolap2.0: Alice says "I am Alice" in an IP packet containing fer source IPaddress

Failure scenario??

Authentication: another try

Protocolap2.0: Alice says "I am Alice" in an IP packet containing fer source IP address

Trudy can create a packet "spoofing" Alice's address

Authentication: another try

Protocolap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Authentication: another try

Protocolap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Authentication: yet another try

Protocolap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Authentication: another try

Protocolap3.1: Alice says "I am Alice" and sends fer encrypted secret password to "prove" it.

Authentication: yet another try

Goal: avoid playback attack
Nonce: number (\mathcal{R}) used only once-in-a-life time
ap 4.0: to prove Alice "Five", Bob sends Alice nonce, R. Alice must return \mathcal{R} encrypted with shared secret key

Authentication: ap 5.0

ap 4.0 requires shared symmetric key

- can we authenticate using public key techniques?
ap 5.0: use nonce, public key cryptography

ap 5.0: security file

Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as $\mathcal{B o b}$ (to Alice)

$\mathcal{K}_{\mathcal{A}}$

$m=\mathcal{K}_{\mathcal{A}}^{(}\left(\mathcal{K}_{\mathcal{A}}^{+}(m)\right) \quad$ ennrypted with

ap5.0: security fole

Man (woman) in the middle attack: Trudy poses as Alice (to $\mathcal{B o b}$) and as $\mathcal{B o b}$ (to Alice)

Difficult to detect:

- Bob receives everytfing that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one weeklater and recall conversation)
a problem is that Trudy receives all messages as well!

Chapter 7 roadmap

7.1 What is network security?
7.2 Principles of cryptography
7.3 Authentication
7.4 Message integrity
7.5 Key Distribution and certification
7.6 Access control: fire walls
7.7 Attacks and counter measures
7.8 Security in many layers

Digital Signatures

Cryptograpfic tecfnique analogous to fiand. written signatures.
\square sender (Bob) digitally signs document, establisfing he is document owner/creator.

- verifiable, nonforgeable: recipient (Alice) can prove to someone that $\mathcal{B o b}$, and no one else (including Alice), must have signed document

Digital Signatures

Simple digital signature for message m:
$\square \mathcal{B o b}$ signs m by encrypting with fis private key $\mathcal{K}_{\mathcal{B}^{\prime}}$ creating "signed" message, $\mathcal{K}_{B}(m)$

Digital Signatures (more)

- Suppose $\mathfrak{A l i c e}$ receives $m s g$, digital signature $\overline{\mathcal{K}}_{\mathcal{B}}(m)$
- Alice verifies m signed by Bob by applying Bob's public Key $\mathcal{K}_{\mathcal{B}}^{+}$to $\overline{\mathcal{K}}_{\mathcal{B}}(m)$ then checks $\mathcal{K}_{\mathcal{B}}^{+}\left(\bar{K}_{\mathcal{B}}(m)\right)=m$.
口 If $\mathcal{K}_{\mathcal{B}}^{+}\left(\mathcal{K}_{\mathcal{B}}(m)\right)=m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:
$\checkmark \mathcal{B o b}$ signed m.
$\checkmark \mathcal{N}$ o one else signed m.
$\checkmark \mathcal{B o b}$ signed m and not m '.
Non-repudiation:
\checkmark Alice can take m, and signature $\mathcal{K}_{\mathcal{B}}(m)$ to court and prove that $\mathcal{B o b}$ signed m.

$\underline{\text { Message Digests }}$

Computationally expensive to public-key-encrypt long messages
Goal: fixed-length, easy-to-compute digital "fingerprint"

- apply fash function \mathcal{H} to m, get fixed size message digest, $\mathcal{H}(m)$.

Hash function properties:
a many-to-1

- produces fixed-size msg digest (fingerprint)
\square given message digest χ, computationally infeasible to find m such that $\chi=\mathcal{H}(m)$

Internet cfecksum: poor crypto fiasfi function

Internet checksum has some properties of fiasf function: \checkmark produces fixed length digest (16-6it sum) of message \checkmark is many-to-one

But given message with given hasf value, it is easy to find another message with same fash value:

$\underline{\text { Digital signature }=\text { signed message digest }}$

Bob sends digitally signed message:

Alice verifies signature and integrity of digitally signed message:

Hasf Function $\mathcal{A l g o r i t f m s}$

- MDD Gasf function widely used (RFC 1321) Ocomputes 128-6it message digest in 4-step process.
O arbitrary 128-6it string x, appears difficult to construct msg minose $\mathcal{M D 5}$ hash is equal to χ.
- $\mathcal{S H A}-1$ is also used.

O UUS standard [NIST, FIPS PUB 180-1]
O 160-6it message digest

Chapter 7 roadmap

7.1 What is network security?
7.2 Principles of cryptography
7.3 Authentication
7.4 Integrity
7.5 Key distribution and certification
7.6 Access control: fire walls
7.7 Attacks and counter measures
7.8 Security in many layers

Trusted Intermediaries

Symmetric key problem: Public key problem:

ㅁ How do two entities establisf shared secret key over network?

Solution:

व trusted key distribution center (SDC) acting as intermediary betwe en entities

- When Alice obtains Bob's public key (from we 6 site, e-mail, diskette), how does she Know it is Bob's public Key, not Trudy's?
Solution:
\square trusted certification autfority (CA)

Key Distribution Center (SDC)

\square Alice, Bob need sfiared symmetric key.

- KDC: server sfiares different secret key with each registered user (many users)
ㅁ Alice, Bob know own symmetric keys, $\mathcal{K}_{\mathcal{A} \text {-XDC }} \mathcal{K}_{\mathcal{B} \text {-和C }}$, for communic ating with $\mathcal{Z D C}$.

Key Distribution Center (SDC)

Q: How does $\mathcal{X D C}$ allow $\mathcal{B o b}$, Alice to de termine sfiared symmetric secret key to communicate with each other?
 with $\mathcal{A l i c e}$

Alice and $\mathcal{B o b}$ communicate: using R1 as session key for shared symmetric encryption

Certification Authorities

\square Certific ation authority (CA): binds public Key to particular entity, \mathcal{E}.
$\square \mathcal{E}($ person, router) registers its public Key with $\mathcal{C A}$.

- Eprovides "proof of identity" to CA .
- CAcreates certificate binding \mathcal{E} to its public key.

O certificate containing \mathcal{E} 's public Keydigitally signed by CA - CA says "this is E's public Key"

Certification Autforities

- When Alice wants $\mathcal{B o b}$'s public key:

Ogets Bob's certificate (Bob or elsewhere).
O apply CA's public Key to $\mathcal{B o b}$'s certificate, get
Bob's public key

Acertificate contains:

\square Serial number (unique to issuer)

- info aboutcertificate owner including algorithm and key valuo itself (not shown)

