ICS 153 Introduction to Computer Networks Inst: Chris Davison cbdaviso@uci.edu

ICS 153 Application Layer

- Contents:
 - Network Security
 - Domain Name System (DNS)
 - Simple Network Management
 Protocol (SNMP)

Network Security

- Network security is a broad topic that may cover:
 - Risk Assessment
 - Asset Valuation
 - Policy Formation and Implementation
 - Auditing and Incident Response
- A computer network is secure if you can depend on it and its software to behave as you expect.

Network Security

- Four areas of Network Security:
 - Secrecy
 - Authentication
 - Nonrepudiation
 - Integrity Control
- Every layer can contribute to network security.
 - Application Layer: PGP
 - Physical Layer: special transmission lines

Network Security Secrecy

- Secrecy pertains to keeping information out of the hands of unauthorized users.
 - Physical Security
 - Locks, vaults, guards
 - Cryptography

Cryptography Definitions

- Cryptanalysis
 - Art of breaking ciphers
- Cryptography
 - Art of devising ciphers
- Cryptology
 - Study of cryptanalysis and cryptography
- Private Key Cryptography
 - Uses the same key to encrypt and decrypt. Key must be kept secret
- Public Key Cryptography
 - Uses a public key to encrypt and a private key to decrypt.
 Only the private key is kept

- Substitution Cipher
 - Each letter or groups of letters is replaced by another letter or group of letters.
 - Caesar Cipher
 - Used by Caesar's troops
 - Rot13
 - Usenet method of encryption
- Easily broken

- Transposition Ciphers
 - Reorder letters but do not disguise them
 - Columnar cipher
 - Plaintext is encrypted in columns based on a keyword
- Not as easy to break as the Substitution Cipher

- One-Time Pads
 - Ciphertext is created by converting the plain text into a bit string and XORing it with a random bit string key.
- Unbreakable Cipher
- Key is almost impossible to memorize
 - Sender and receiver must carry a copy with them

- DES
 - Data Encryption System
- An encryption algorithm developed in the 1970s by the National Bureau of Standards and Technology and IBM.
- Uses a 56-bit key and 19 distinct encryption stages.
- Very strong but breakable

• IDEA

- International Data Encryption
 Algorithm
- Published in 1990
- Uses a 128-bit key
- Very strong encryption algorithm, no practical attacks have been published.

"brute force" attack not practical

 Covered under various International Patents

Skipjack

- Classified (SECRET) algorithm developed by the NSA.
- Algorithm used by the Clipper encryption chip
- Utilizes an 80-bit key

Public Key Encryption Methods

• RSA

- Created by: Rivest, Shamir,
 Adlemin 1978
- Very strong encryption
 - Supports variable length keys
 - Longer keys provide more security
- Algorithm is based on Prime Number computations.

Authentication

 Authentication is the technique by which a process verifies that its communication partner is who it is supposed to be and not an imposter.

Authentication

- Three ways to authenticate:
 - Tell the host something you know:
 - password (shared secret key)
 - Show the host something you have:
 - Card key
 - Let the host measure something about you:
 - Fingerprint

Digital Signatures

- Guarantee the authenticity of the "digitally signed" message
- A digital signature is encrypted with someone's private key to certify the contents:
 - authenticity
 - integrity
 - against repudiation

Digital Signatures

- Secret-Key Signatures
 - A central authority is used as a repository for all digital signatures.
 - Everyone must trust the central authority.
- Public-Key Signatures
 - Encrypt a messages with the sender's public key and decrypted with the sender's private key

DNS

- Domain Name System
 RFCs 1034 and 1035
 - Hierarchical, domain-based naming scheme and a distributed database system system for implementation
 - Used for mapping host names and email destinations to IP addresses
 - Port 53

DNS

- Internet is divided into a hierarchy with several hundred top level *Domains*.
 - com
 - gov
 - edu
- Domains are further divided into sub-domains.
 - Each domain controls how it allocates domains under itself.

DNS Resource Records

- Set of records containing the information that a domain is responsible for.
- Resource records can track the following information:
 - IP addresses (A record)
 - mail exchange information
 - aliases
 - machine names (Cname record)

DNS Name Servers

- For efficiency, the DNS name space is divided into many, non-overlapping zones.
- Each zone has an authoritative name server that manages and answers queries for the zone.

SNMP

- Simple Network Management Protocol
 - RFC 1157 (SNMP 1)
 - RFCs 1902-1908 (SNMP2)

SNMP Model

- SNMP model consists of four components:
 - Managed nodes
 - hosts, routers, etc.
 - Must run the SNMP management process known as the agent
 - Management stations
 - Computers running the SNMP management software
 - Management Information
 - *Objects* (variables) contain state information
 - Management Protocol
 - SNMP protocol used for communication
 - Port 161

SNMP Data Structures

- SNMP data structures are defined by Structure of Management Information (SMI)
 - An Abstract Syntax Notation One (ASN.1) derivative

Management Information Base

- The collection of all possible objects (175) in a network is given in a data structure called the Management Information Base (MIB)
 - Grouped into 10 categories