
Socket Programming in Java

Learning Objectives

• The InetAddress Class

• Using sockets

– TCP sockets

– Datagram Sockets

Classes in java.net
• The core package java.net contains a number of classes
that allow programmers to carry out network programming
– ContentHandler

– DatagramPacket

– DatagramSocket

– DatagramSocketImplHttpURLConnection

– InetAddress

– MulticastSocket

– ServerSocket

– Socket

– SocketImpl

– URL

– URLConnection

– URLEncoder

– URLStreamHandler

Exceptions in Java

• BindException

• ConnectException

• MalformedURLException

• NoRouteToHostException

• ProtocolException

• SocketException

• UnknownHostException

• UnknownServiceException

The InetAddress Class

• Handles Internet addresses both as host names and as IP
addresses

• Static Method getByName returns the IP address of a
specified host name as an InetAddress object

• Methods for address/name conversion:
public static InetAddress getByName(String host) throws UnknownHostException

public static InetAddress[] getAllByName(String host) throws UnknownHostException

public static InetAddress getLocalHost() throws UnknownHostException

public boolean isMulticastAddress()

public String getHostName()

public byte[] getAddress()

public String getHostAddress()

public int hashCode()

public boolean equals(Object obj)

public String toString()

import java.net.*;
import java.io.*;

public class IPFinder
{

public static void main(String[] args) throws IOException
{

String host;
BufferedReader input =
new BufferedReader(

new InputStreamReader(System.in));

System.out.print("\n\nEnter host name: ");
host = input.readLine();
try
{

InetAddress address = InetAddress.getByName(host);
System.out.println("IP address: " + address.toString());
}

catch (UnknownHostException e)
{

System.out.println("Could not find " + host);
}

}
}

Retrieving the current machine’s address

import java.net.*;

public class MyLocalIPAddress
{
public static void main(String[] args)
{

try
{

InetAddress address = InetAddress.getLocalHost();
System.out.println (address);

}
catch (UnknownHostException e)
{

System.out.println("Could not find local address!");
}

}
}

The Java.net.Socket Class

• Connection is accomplished through the constructors. Each
Socket object is associated with exactly one remote host. To
connect to a different host, you must create a new Socket
object.

public Socket(String host, int port) throws UnknownHostException,
IOException

public Socket(InetAddress address, int port) throws IOException

public Socket(String host, int port, InetAddress localAddress, int localPort)

throws IOException

public Socket(InetAddress address, int port, InetAddress localAddress, int
localPort) throws IOException

• Sending and receiving data is accomplished with output and input
streams. There are methods to get an input stream for a socket and an
output stream for the socket.

public InputStream getInputStream() throws IOException

public OutputStream getOutputStream() throws IOException

• There's a method to close a socket:

public void close() throws IOException

The Java.net.SocketSocket Class

• The java.net.ServerSocket class represents a server socket. It is

constructed on a particular port. Then it calls accept() to listen

for incoming connections.

– accept() blocks until a connection is detected.

– Then accept() returns a java.net.Socket object that is used to perform the

actual communication with the client.

public ServerSocket(int port) throws IOException

public ServerSocket(int port, int backlog) throws IOException

public ServerSocket(int port, int backlog, InetAddress bindAddr)

throws IOException

public Socket accept() throws IOException

public void close() throws IOException

TCP Sockets
SERVER:

1. Create a ServerSocket object
ServerSocket servSocket = new ServerSocket(1234);

2. Put the server into a waiting state

Socket link = servSocket.accept();

3. Set up input and output streams

4. Send and receive data

out.println(awaiting data…);

String input = in.readLine();

5. Close the connection

link.close()

Set up input and output streams

• Once a socket has connected you send data to the server

via an output stream. You receive data from the server

via an input stream.

• Methods getInputStream and getOutputStream of class

Socket:

BufferedReader in =

new BufferedReader(

new InputStreamReader(link.getInputStream()));

PrintWriter out =

new PrintWriter(link.getOutputStream(),true);

TCP Sockets

CLIENT:

1. Establish a connection to the server

Socket link =

new Socket(inetAddress.getLocalHost(),1234);

2. Set up input and output streams

3. Send and receive data

4. Close the connection

The UDP classes

• 2 classes:

– java.net.DatagramSocket class
• is a connection to a port that does the sending and receiving. Unlike
TCP sockets, there is no distinction between a UDP socket and a UDP
server socket. Also unlike TCP sockets, a DatagramSocket can send to
multiple, different addresses.The address to which data goes is stored
in the packet, not in the socket.
public DatagramSocket() throws SocketException

public DatagramSocket(int port) throws SocketException

public DatagramSocket(int port, InetAddress laddr) throws SocketException

– java.net.DatagramPacket class
• is a wrapper for an array of bytes from which data will be sent or into
which data will be received. It also contains the address and port to
which the packet will be sent.
public DatagramPacket(byte[] data, int length)

public DatagramPacket(byte[] data, int length, InetAddress host, int port)

Datagram Sockets
SERVER:

1. Create a DatagramSocket object
DatagramSocket dgramSocket =

new DatagramSocket(1234);

2. Create a buffer for incoming datagrams
byte[] buffer = new byte[256];

3. Create a DatagramPacket object for the incoming
datagram

DatagramPacket inPacket =
new DatagramPacket(buffer, buffer.length);

4. Accept an incoming datagram
dgramSocket.receive(inPacket)

Datagram Sockets
SERVER:

5. Accept the sender’s address and port from the packet
InetAddress clientAddress = inPacket.getAddress();
int clientPort = inPacket.getPort();

6. Retrieve the data from the buffer
string message =
new String(inPacket.getData(), 0, inPacket.getLength());

7. Create the response datagram

DatagramPacket outPacket =
new DatagramPacket(

response.getBytes(), response.length(),
clientAddress, clientPort);

8. Send the response datagram
dgramSocket.send(outPacket)

9. Close the DatagramSocket: dgram.close();

Datagram Sockets

CLIENT:

1. Create a DatagramSocket object

DatagramSocket dgramSocket = new DatagramSocket;

2. Create the outgoing datagram

DatagramPacket outPacket = new DatagramPacket(

message.getBytes(),

message.length(),

host, port);

3. Send the datagram message

dgramSocket.send(outPacket)

4. Create a buffer for incoming datagrams

byte[] buffer = new byte[256];

Datagram Sockets
CLIENT:

5. Create a DatagramPacket object for the incoming
datagram

DatagramPacket inPacket =
new DatagramPacket(buffer, buffer.length);

6. Accept an incoming datagram
dgramSocket.receive(inPacket)

7. Retrieve the data from the buffer
string response = new String(inPacket.getData(), 0,

inPacket.getLength());

8. Close the DatagramSocket:
dgram.close();

References

• Jan Graba, An Introduction to Network

Programming with Java, Addison-Wesley.

• Elliotte Rusty Harold, Java Network

Programming, O’Reilly&Associates.

