
Specification-Based
Component Substitutability
and Revision Identification

Doctoral Thesis

Přemysl Brada

Charles University in Prague
Faculty of Mathematics and Physics
Department of Software Engineering

August 2003

Specification-Based Component
Substitutability and Revision Identification

Doctoral Thesis

The author can be contacted at:

Department of Computer Science and Engineering
University of West Bohemia in Pilsen
Univerzitni 8
30614 Pilsen
Czech Republic
email: brada@kiv.zcu.cz

Electronic version of this thesis is available at
http://www.kiv.zcu.cz/~brada/research/thesis/

Specification-Based
Component Substitutability
and Revision Identification

Doctoral Thesis

Přemysl Brada

Charles University in Prague
Faculty of Mathematics and Physics
Department of Software Engineering

August 2003

— Thank you, Jana —

Contents

1. Introduction . 1
1.1 State of the Art in Component Modelling, Versioning and

Compatibility . 2
1.1.1 Components, Component Models and Meta-Models 2
1.1.2 Component Versioning 4
1.1.3 Substitutability and Compatibility 6

1.2 Goals of the Thesis . 7
1.2.1 Primary Goals . 7
1.2.2 Addressing the Goals: The Constraints 8

1.3 Structure of the Thesis . 10
1.4 Contributions of the Work 10

1.4.1 List of Published Articles 11
1.5 Conventions Used in the Text 12

2. Component Interface Representation: The ENT Meta-model . 13
2.1 Elements of Component Interface Specification 14

2.1.1 Comparison of Component and Modular Systems . . 14
2.1.2 Component Specification and its Elements 16

2.2 Classifying Specification Element Properties 18
2.2.1 Common Properties of Elements 19
2.2.2 The ENT Faceted Classification System 20

2.3 The Model: Elements, Traits and Categories 21
2.3.1 Specification Elements 22
2.3.2 Traits of Elements in Component Specification . . . 24
2.3.3 Categories of Traits 25
2.3.4 The E, N, T Category Set 27
2.3.5 Restricted Elements and Categories 29

2.4 ENT Model of SOFA Components 30
2.4.1 Mapping of SOFA CDL Constructs to ENT Elements 30

x Contents

2.4.2 Trait Definitions . 32
2.4.3 How to Find Traits 33

2.5 Applications of the Model 33
2.5.1 Applicability to Frameworks and Technologies 34
2.5.2 ENT-based Component Visual Representation . . . 35
2.5.3 Assistance in Component Search and Retrieval 36
2.5.4 Other Applications 37

2.6 Discussion . 37
2.6.1 Advantages of the Model 37
2.6.2 Disadvantages and Open Issues 39
2.6.3 A Note on Specification Languages 39

2.7 Summary . 40

3. Analysing and Classifying Specification Differences 43
3.1 Motivations and Approaches 44

3.1.1 Desired Properties of Component Comparison . . . 45
3.1.2 The Approach Taken 46

3.2 Differences Between Specifications 47
3.2.1 Comparing Specification Parts 48
3.2.2 The Differences and Their Classification 51
3.2.3 Difference Propagation 52

3.3 Specification and Carrier Language Issues 55
3.3.1 ENT-based Comparison and Type Rules 55
3.3.2 Type Systems for Specification Languages 56
3.3.3 Carrier Language Issues 57

3.4 Comparison of SOFA Component Specifications 58
3.4.1 Subtyping Rules . 58
3.4.2 Examples of Frame Comparison 59

3.5 Discussion . 66
3.5.1 Advantages . 66
3.5.2 Disadvantages and Open Issues 67

3.6 Summary . 68

4. Revision Identification Scheme for Components 71
4.1 Issues in Component Versioning 73
4.2 Specification-Based Revisions 75

4.2.1 Types of Changes Between Revisions 75
4.2.2 Relating Changes and Revision Identification 76

Contents xi

4.2.3 Our Approach: Specification-Based Revisions 76
4.3 The ENT Revision Identification Scheme 77

4.3.1 Detailed Revision Identification 77
4.3.2 Component Revision Identification 79
4.3.3 Primitive Revision Identification 80
4.3.4 Cascaded Derivation of Revision Markers 81

4.4 Properties of ENT Revision Identification 82
4.5 Application of the Scheme in the SOFA Framework 83

4.5.1 All Types Have Revision IDs 84
4.5.2 How Revision Identification is Derived 84
4.5.3 Versioning Complete: Handling Branches and Vari-

ants . 85
4.5.4 Version Data in CDL 86
4.5.5 Identification of Versioned Types 86

4.6 Discussion . 88
4.6.1 Advantages . 88
4.6.2 Disadvantages and Issues 89

4.7 Summary . 89

5. Component Substitutability and Compatibility 91
5.1 Issues in Component Substitution 92
5.2 Substitutability of Components 94

5.2.1 Strict (Subtype) Substitutability 95
5.2.2 Deployment Context of a Component 96
5.2.3 Contextual Substitutability 98
5.2.4 Partial Substitutability 99

5.3 Backward Compatibility of Components 100
5.3.1 Redefinition of Larsson’s Compatibility Levels 101

5.4 Examples for SOFA Components 102
5.4.1 Compatibility of Frames 102
5.4.2 Determining Context 104
5.4.3 Role in Component Updates 107

5.5 Discussion . 107
5.5.1 Advantages of our Method of Substitutability Check-

ing . 108
5.5.2 Limitations of Our Method 108
5.5.3 Compatibility and Real Life Development 110

5.6 Summary . 111

xii Contents

6. Compatibility and Versioning Related 113
6.1 Relating Versioning and Compatibility 114

6.1.1 Motivation . 114
6.1.2 Generic Mechanism of Upgrades 115

6.2 Meta-data: The Integrating Element 116
6.2.1 What the Meta-Data Should Contain 116

6.3 Use in the SOFA Framework 118
6.3.1 Metadata Formats . 119
6.3.2 Repository for Versioned Components 120
6.3.3 Component Updates with Versioning 121

6.4 Summary and Discussion . 122
6.4.1 Advantages . 122
6.4.2 Issues . 123

7. Overall Evaluation and Related Work 125
7.1 Component and Interface Meta-Models 125

7.1.1 Distilling Commonalities from Component Models . 126
7.1.2 Meta-Models Defined as Such 127
7.1.3 Summary . 130

7.2 Component Comparison and Substitutability 130
7.2.1 Specification Comparison and Matching 130
7.2.2 Subtyping-based Substitutability 131
7.2.3 Component Substitutability and Compatibility 133
7.2.4 Summary . 135

7.3 Component Versioning . 135
7.3.1 Industrial Frameworks 136
7.3.2 Research in Component Versioning 137
7.3.3 Syntactical Analysis and Meta-Data in Versioning . . 137
7.3.4 Summary . 138

8. Conclusion . 139
8.1 Summary of Our Work . 139
8.2 Lessons Learned . 140
8.3 Open Issues . 141
8.4 Future Work . 142

A. ENT Model Definitions for Primary Component Frameworks . 145
A.1 The ENT Model for SOFA Components 145

Contents xiii

A.2 The ENT Model for CORBA Components 146
A.2.1 Trait Definitions . 146
A.2.2 Example: The Parking Component Source 147
A.2.3 Example: The Parking Component in ENT 147

A.3 The ENT Model for JavaBeans 147
A.3.1 Trait Definitions . 148
A.3.2 Example: The MyJuggler JavaBean Source 149
A.3.3 Example: The MyJuggler JavaBean in ENT 150

B. SOFA CDL Subtyping Rules . 153
B.1 The Rules for the SOFA CDL 153

C. The Specifications of SOFA Component Meta-Data 159
C.1 CDL Meta-Data Section Grammar 159
C.2 Grammar of the URI form of SOFA identifiers 160
C.3 XML Meta-Data Document Type Definition 160

Bibliography . 167

Chapter 1

Introduction

After years of research and industrial development, software component
technology [Szy98] has become well established as an important approa-
ch to engineering complex and flexible software systems. Building on ex-
tensive research in the field (systems like Darwin [M+95], UniCon [S+95],
SOFA [PBJ98], ArchJava [ACN02b] or Fractal [C+02]), commercial com-
ponent frameworks (Enterprise JavaBeans [Sun01a], CORBA Component
Model [OMG02f], and Microsoft’s DCOM and .NET technologies [Mic95,
Rog97, Cor02]) have gained commercial success.

From the outset, the main aim of the component technology has been
to create pluggable “software integrated circuits” [McI68] that can be easily
traded and assembled, even by knowledgeable end-users. This is believed
to increase productivity (via the reuse of general as well as domain-specific
components) in building software applications at large.

But components do not seem to live up to these “silver bullet” expecta-
tions [Bro95]. Their current use concentrates on user interface widgets (e.g.
Borland Delphi components [Sof01], Sun’s JavaBeans [Sun97]), server-side
data-centric components (Enterprise JavaBeans [Sun01a], CORBA Com-
ponents [OMG02f]) or specialised applications in communications or em-
bedded devices (the Koala model [vO01] or the Robocop project [Lav02]).
The functionality provided by commercial component frameworks is lim-
ited to the basic wiring of components (setting up their interconnections)
and supporting key system-level aspects (deployment to target hosts, loca-
tion transparency, communication and transaction management).

We believe that much more is actually needed. Components would be
in a more widespread use if they provided the intuitively expected sophis-
ticated functionality combined with easy application composition [LR01b,
LvdH02], high level of re-use, and seamless evolution found e.g. in per-
sonal computer expansion cards. In this respect, component frameworks
currently lack suitable support for smooth and safe component upgrad-
ing [OMG01, Ore98], version management in relation to component nam-
ing and search/trading [vdH01], component modelling (based on robust

2 Chapter 1. Introduction

meta-models) and visual development with components [YAM99, LR01a,
MAV02], etc.

This thesis shows how current component technology can be enhanced
to answer some of these concerns, by presenting a novel approach to meta-
modelling, version management and controlled substitution of software
components. In this introductory chapter we describe the open issues which
motivate our work, present its goals and approach, and list the contribu-
tions made to the component research field.

1.1 State of the Art in Component Modelling,
Versioning and Compatibility

Let us start by surveying briefly the current component technology and re-
search landscape in view of the above needs. We will focus on three areas of
the ones noted above: component modelling, versioning and substitutabi-
lity checking.

The subsections below list the needs of component technology with re-
spect to these areas, and discuss why their support in current systems is
inadequate. (Chapter 7, Related Work, contains a more detailed analysis of
the related research.) Motivated by these findings, the next section follows
with a formulation of the goals of this thesis.

1.1.1 Components, Component Models and Meta-Models

The term software component was coined by McIlroy [McI68] when software
engineering was still in its infancy. Because many definitions of this term
have emerged since, we will clarify the situation and set our position before
treating the issues of component modelling.

In this work we use the term in the following meaning: a software com-
ponent is a coarse grained black-box software element with contractually
specified interface syntax and semantics. This understanding has its roots
in the research on software architecture description languages (ADLs, see
[MT00] for a survey). The definition of the term component that is closest
to our use is given by Szyperski in [Szy98]. Several other definitions can be
found (e.g. in [BW98, PDH99]) which follow the same idea.

On the other hand, some authors [CCF00, Lav02, S+95] take a com-
ponent as a set of closely related artefacts that can be composed into more
complex applications. While this corresponds to current practice (e.g. En-
terprise JavaBeans, application packages), such components are difficult to
reason about formally. We therefore do not consider such models in our
work.

A component model defines “a standard to which a set of components

1.1. State of the Art in Component Modelling, Versioning and Compatibility 3

must adhere in order to be composable into applications” [LvdH02], i.e.
what components consists of and how they can be bound together. In many
component-based systems and ADLs, it is defined implicitly or informally
(for instance in UniCon [S+95], SOFA [PBJ98], ACME [GMW97], or on the
industrial side in EJB [Sun01a], Microsoft .NET [Cor02]).

At a more abstract level, a meta-model (the M3 level of the generic
framework described in the Meta Object Facility [OMG02g]) captures the
common aspects of a set of models in the above meaning. It is thus “an ab-
stract language for some kind of metadata” [OMG02g] — in this case com-
ponent specifications — which defines the common denominator for its
terminology, structural and semantic features, element relationships, mod-
elling possibilities etc.

The primary use of a component meta-model is usually to be the source
from which concrete component models are instantiated (we call these “a-
priori meta-models”), i.e. to establish the capabilities of a technology. The
UML Enterprise Distributed Object Computing (EDOC) Profile [OMG02h]
is a key meta-model of this kind which maps well to current industrial com-
ponent frameworks. In the component research area, the meta-models by
Seyler and Anoirte [SA02], Han [Han98] or from the Fractal framework
[C+02] belong to this category.

On the other hand, meta-models can be created by distilling the com-
monalities of existing component models (“derived meta-models”) for ana-
lysis or technology conversion purposes. Examples are the Vienna Compo-
nent Framework [OGJ02] or Rastofer’s meta-model [Ras02]; the developers
of the UML EDOC Profile have also used this approach.

Good meta-models are important because they define the standard le-
vel of practice and technology in their subject areas. In the current state
of art, component meta-models are used to define the component inter-
face structures and relations, and in part also their visual representation
[OMG02h]. However, the structures and relations they define are mostly
straightforward abstractions of the present state of the technology. Except
for [SA02], current meta-models offer few forward-thinking ideas and pro-
visions to handle future developments.

We think that even some of the current issues that penetrate the tech-
nology (i.e. are dealt with in several concrete component models or their
implementations) could be handled at the meta-level. Examples are con-
figuration management issues (versioning, compatibility as a key to confi-
guration consistency), aspects (distribution, location transparency, concur-
rency, persistence), or the “illities” [Han99a] (reliability, quality of service,
performance). While specialised standards and technologies exist for some
[IEE98, Cor02, OMG02d], none of the solutions have been made part of
any meta-model.

4 Chapter 1. Introduction

The result is that these issues are not handled consistently in concrete
models. In practice this leads to a duplication of effort and ad-hoc han-
dling of component interoperability [OGJ02], [OMG02e, Chapter 18]. In
addition, current meta-models will need to be modified to accommodate
these and some upcoming developments (mobility, emphasis on quality of
service) or else they quickly become obsolete.

1.1.2 Component Versioning

Versioning has been a standard part of software configuration management
for a long time [Bab86, Tic94, CW98], serving the need to distinguish dif-
ferent shapes of the same software artefact. Any software component, as
a software artefact, inevitably evolves and changes. Thus several versions
of one component are created, be it branches (results of parallel devel-
opment), revisions (sequences of historical versions) or variants (different
implementations of the same revision).

The need for version support suitable specifically for components is
well articulated by Brown and Wallnau in [BW98]. They argue that “tradi-
tional configuration management and version control techniques provide
an important starting point . . . [but] new methods and tools are essential.”
Compared to versioning used during software development, component
versioning faces several distinctive challenges:

• Component versioning is applied to software elements which are tre-
ated as black boxes, thus version information needs to be available
separately or via standardised introspection interfaces [LC99].

• Components should be easy to assemble, mainly in a (semi-)automa-
ted manner [BW98, LR01b, Ore98]. A component may therefore be
used in multiple configurations, some of them unforeseen at the time
of its creation. In addition, many component-based applications will
require maintenance (reconfiguration, bug fixes and upgrades) per-
formed with no or minimal human intervention [Lav02]. Version sup-
port is needed to easily select versions suitable for such composition
and maintenance operations [Szy98, Section 5.1.2].

• Components may exhibit unpredictable evolution, namely when e-
volved by other than the original producer. The result will be the
emergence of many versions of the same component (defined by its
specification) with complications in change management and version
graph control [Szy98, LC00].

• Component providers cannot govern the use of components after re-
lease to market. Therefore, version information need to be under-
standable, precise, and preferably standardised [LC99].

1.1. State of the Art in Component Modelling, Versioning and Compatibility 5

These challenges require component versioning to provide several dis-
tinctively novel features. First, it must support automated creation and pro-
cessing of version data (including querying, matching and searching) lest it
puts additional burden on the developers and tools. Automated creation al-
so increases the fidelity of the data, by eliminating errors caused by manual
creation.

Second, component versioning should use information-rich data with
a well-defined structure and format suitable for machine processing. Such
version data should be understandable and modifiable — without impair-
ing its consistency and meaning — by any player on the component market,
not just the original developer [LC99]. The potential scale of component
market calls for some standardisation in this area.

Third, component version data should have a well-defined meaning
(semantics) so that automated agents can use it in their reasoning about
components. In particular, it should be possible to search for particular
component versions based on current configuration information (e.g. for
upgrades) and prevent binding of incompatible component versions. The
semantics of data includes a correspondence between the structure of a
component, the changes to its parts, and its version identification.

As discussed in detail in the Related work (Chapter 7), we find very lit-
tle support for these component version management functions in current
industrial as well as research component systems. In some of them, notably
Microsoft COM [Mic95], versioning is omitted altogether and thus compo-
nent evolution is forbidden de iure. But since change cannot be avoided,
version identification appears in the disguise of naming conventions (e.g.
the IClassFactory and IClassFactory2 COM interfaces [Mic03]) which
makes component use complicated for developers. Worsely, the technology
may fail to deliver its purpose. This is the case of un-versioned Windows
shared libraries, where the developers prefer to bundle with the distributed
applications the required versions of DLLs, contrary to their purpose.

Even in systems with versioning support, version identification provides
at most a tag to distinguish versions (this is the case of e.g. CORBA, Java
product versioning, as well as some software packaging tools [OMG02f,
Rig02, Des98, Bai97]). The desirable advanced uses of versioning thus
cannot be achieved. A representative example is Java product versioning,
where two versions of a Java package can have version identifiers “3.2.5”
and “3.6.1”. Because of the vague definition of the scheme, we cannot con-
clude where and how the second version differs, whether it can substitute
the first one, etc. The only thing we can determine is that they should be
different (“equals” relation) and that the second one is probably newer than
the first one (“precedes/follows” relation).

The unsatisfactory state of component versioning had already been no-
ted by the research community [BW98, Szy98], and is also evident from the

6 Chapter 1. Introduction

fact that the OMG activities in the versioning area [OMG96] have been a-
bandoned [OMG02b]. The situation may well become serious in the near
future if components are used at a large scale and for a longer period of
time. Suitable approaches and tools are therefore required to handle the
proliferation of versions of successful components.

1.1.3 Substitutability and Compatibility

Substitution and in particular upgrade of components is a vital mechanism
for maintaining installed applications up-to-date. The key requirement is
that the upgrade must not introduce new problems, but rather fix the old
ones or enhance the application. In configuration management terms, it
must preserve (or improve) the configuration consistency of the applica-
tion.

Currently there are two main classes of solutions dealing with this issue
in similar (though not necessarily component-oriented) systems. In the first
one, meta-data is provided with each application package or component
[J+03, Hes03, Bai97, Des98, LC00]. It contains its version identification,
information about compatibility with previous versions and about the com-
ponents that must be present in the deployment environment for its correct
functionality.

These systems benefit if the meta-information is structured, rich and
precise. This is important for querying repositories for available compo-
nents and upon installation/upgrade of new ones to prevent compromising
application or system consistency.

However, in practice the meta-data is usually created by the component
producer manually based on their knowledge of its implementation. In
our opinion this has two drawbacks. First, it either leads to very simple (and
therefore insufficiently rich) data or its time consuming creation contradicts
the need for short development time. Secondly, manual work is error prone
due to the possibility of omissions, oversights or simple typos.

Approaching this issue from a more rigorous direction, some (mainly
research) systems use various forms of subtyping relation to check substitu-
tability. This relation is determined by comparing formal or semi-formal
component descriptions. Examples of this approach are function- and
module-matching relations [ZW97, HL99], compatibility definitions by Per-
ry [Per87] or behavioural subtyping [VHT00, Nie93].

Being based on data (code and specifications) that is available as a result
of normal software development, these approaches provide higher fidelity
than the above discussed meta-data. They also enable full automation of
its derivation and therefore reduce the risk of using incorrect data in the
compatibility checks.

1.2. Goals of the Thesis 7

On the other hand, the algorithms used in determining the subtyping
relation may have high computational complexity, resulting in potential
delays. Also, some research systems define relaxed compatibility levels to
increase the chances on substitution. But these relaxations are designed
for slightly different purposes (e.g. searching) and do not always fit with
the desire to make substitution as reliable as possible. (A standard feature
is to allow a change in the number or in the order of method parameters,
which is acceptable for human developers but may mean an insurmount-
able problem for automated component substitution.)

1.2 Goals of the Thesis

This thesis aims at providing answers to the open issues in component mod-
elling, versioning and substitutability described above. Towards this end, it
pursues the primary goals listed here.

1.2.1 Primary Goals

Meta-model for Components Develop an open derived component me-
ta-model that would serve as a common denominator in understanding
component specifications and would make it possible to define at least some
of the “penetrating” advanced technological features (flexible visual repre-
sentation, substitutability, version identification) on the the meta-level.

The existing component models and solutions to the penetrating issues
have much in common but only some of these features have been captured
in available meta-models. By doing so, we can achieve higher flexibility,
interoperability and re-use of components. The challenge is to serve both
the human and technology-related needs equally well, and to encompass
current technologies as well as future developments.

Component versioning Design a scheme for component versioning suit-
able for automated processing and supporting component distribution and
retrieval, while providing all of the traditional functions.

We would like to create a scheme which fulfills the requirements list-
ed in the previous section, mainly the well-defined structure and semantics
of version data. The main challenge is that its artefacts (the version data)
should provide relevant information for both human users and component
management tools, and at the same time reduce the need for manual ver-
sion data creation.

Component substitutability Define a notion of substitutability suitable
for black-box components, and devise a method for checking whether a

8 Chapter 1. Introduction

prospective component substitution will not break configuration consisten-
cy. Compatibility shall be considered as a special case of substitutability.

The challenges we face are twofold. First, the source code may not
(most often will not) be available when component substitutability needs
to be checked; the only information available may be component interface
specification plus possible meta-data created during development. Second,
due to the intimate connection of components and architectures the notion
of component substitutability has to consider the overall architecture and
environment configuration.

Link between versioning and compatibility In software configuration
management, there is a close link between versioning and configuration
consistency. This work should give an answer how this link can be estab-
lished in the case of black-box components.

The challenge (and the motivation for setting this goal) is to formally
describe the oft-observed fact that an upgrade to an downstream revision
is effectively a special case of substitution. In practical terms we would like
to use the version data of the components as an aid in the compatibility
assessment.

1.2.2 Addressing the Goals: The Constraints

Solutions relevant to practice need to offer end-user simplicity, reliability
and standardisation. In the work towards the primary goals we therefore
need to carefully choose suitable approaches and methods. The following
constraints formulate the guidelines for their selection or design that our
work should follow.

Use existing data We should (re)use already existing data including sour-
ce code as much as possible; in particular, we should try not to introduce
new human-entered data in our methods.

From the perspective of software composition from independent parts,
the interface represents the most important part of a component. Its des-
cription is often the only information about the component available to
the tools (compilers, linkers, assembly etc.) as well as — more often than
desirable — to the humans who control the particular activity.

This fact motivates the key viewpoint of our work: that we have a real
need to base formal reasoning about software components on the already
available description of their interfaces, possibly augmented by stand-alone
data derived from the source code. Only then will the methods and tools
resulting from the work be useful for the area of black-box components,
in which their users have no access to the source code. Additionally, such

1.2. Goals of the Thesis 9

already existing data is directly used in component implementation which
leads to cost effective (no added work) and more reliable methods.

Use automated methods There should be as much automation, and as
little additional human effort involved in developing and using compo-
nents as possible.

Components should make software, its development and use simpler,
not more complicated. In our opinion this means (among other things)
that we should strive for automated derivation of information and auto-
mated reasoning based on such data. Some effort in their development
is understandable as the technology is complex and feature-rich (e.g. the
need to describe the deployment options, ensure security, provide trading
information).

But many tasks like creating technical description of components, their
selection, deployment, and upgrading should have a reasonable fully au-
tomated default implementation (the UML EDOC Profile, Section 3.3 of
[OMG02h], provides a similar argument). Only in exceptional cases, a man-
ual control override should be used, and even this should be supported by
tools.

Strive for simplicity and readability Aim at creating methods and sys-
tems that are simple, produce or require data that can be read and written
by humans, and that fit well within current frameworks and tools.

This constraint expresses our position that the software industry should
create systems where people and their knowledge can take precedence over
algorithms (hidden in opaque executables and binary data formats) and
which allow manual control if needed.

We therefore favour solutions which use declarative specifications (like
IDL languages), structured data in textual format (like XML), and uncom-
plicated syntactical structures.

Relate to real systems The methods should be readily applicable in
practice, mainly in mainstream component frameworks and the associat-
ed development tools.

Software engineering research should provide answers to practical ques-
tions, and component technology still needs a lot of help in this respect.
The work described in this thesis uses prototype implementations for the
SOFA research component system. We nevertheless believe that the results
of this work will be applicable in current practice, notably in the CORBA
Component Model implementations.

10 Chapter 1. Introduction

1.3 Structure of the Thesis

The text of this thesis is broadly divided into three parts: foundational de-
finitions and models, core chapters on component versioning and compa-
tibility, and final summations of the work.

The first part forms a general foundation for the work. Chapter 2 opens
the thesis with an in-depth discussion of the role of component specifica-
tions and the structures they contain. Considering the fact that software
components are fairly complex and that the existing component models
have many similarities, we present a general meta-model of component
interface which allows its system-independent description. The chapter de-
scribes this meta-model, introducing the key abstractions (component fea-
tures and qualities, and their grouping into traits and categories) used in
subsequent chapters.

The core part starts by an analysis and classification of differences in
component specifications (Chapter 3) that express the changes made dur-
ing evolution. Its results are then used in two related areas. Chapter 4
presents a novel scheme for identifying component revisions, based on the
component meta-model and classification of interface differences. Next,
these abstractions are applied in the definitions of component substituta-
bility in Chapter 5. The key result described in this chapter is the nov-
el contextual compatibility which considers the architecture in which the
component is bound.

Besides being based on the same model, these two key results of our
work are closely related in consistency-preserving component upgrades.
Chapter 6 describes this correspondence in detail, emphasising the use of
the same data and algorithms for the two different purposes.

The work is done in an area with abundant research and strong indus-
trial interests. Chapter 7 therefore provides a survey of the current research
achievements and related efforts. Finally, the Conclusion (Chapter 8) sum-
marises the achieved results and discusses how they match the objectives
set in this Introduction. It also describes our ideas on how to apply the
presented methods to other, non-component systems. The issues that re-
main open and the possibilities for further research complete the conclud-
ing remarks. At the end of the thesis, several appendices contain detailed
descriptions of the results presented in the main text.

1.4 Contributions of the Work

The work described in this thesis and in related published articles con-
tributes to the current state-of-the-art in component research and develop-
ment in the following:

1.4. Contributions of the Work 11

1. It defines an abstract meta-model of component interface which ma-
kes it possible to model components in a wide range of current com-
ponent frameworks [Bra02a, Bra02c]. Furthermore, it can easily ac-
commodate future developments that will result in creating new kinds
of component specifications.

2. It introduces the definitions of and algorithms for a novel notion
of contextual substitutability and compatibility, specifically designed
for black-box software components as parts of architectures [Bra99,
Bra01b, Bra02b].

3. It describes a versioning scheme (revision/release identification) suit-
able for black-box components and providing a precise meaning of
version data [Bra99, Bra01a]; the author is aware of no similar appro-
ach neither in component systems nor in other software development
areas.

4. It clearly defines the (intuitively obvious) relation between component
versioning and compatibility, and shows the advantage of using this
relation in component upgrading [Bra02b].

5. The use of data resulting from normal development processes, name-
ly IDL and source code, is a key aspect which other approaches tend
to neglect or at least do not emphasise.

1.4.1 List of Published Articles

Reviewed Articles

[Bra99] P. Brada. Component Change and Version Identification in SOFA.
In Proceedings of SOFSEM’99, LNCS 1725, Springer-Verlag 1999. SOF-
SEM’99, Milovy, Czech Republic.

[BR00a] P. Brada, J. Rovner. Methods of SOFA Component Behavior Des-
cription. In Proceedings of ISM’2000. Information Systems Modeling, Rož-
nov, Czech Republic.

[Bra01b] P. Brada. Towards automated component compatibility assess-
ment. Position paper. WCOP’2001 — Workshop on Component-Oriented Pro-
gramming. ECOOP 2001, Budapest, Hungary. Available at http://research.-
microsoft.com/˜cszypers/events/WCOP2001/ .

[Bra01a] P. Brada. Component Revision Identification Based on IDL/ADL
Component Specification. Poster. In Proceedings of ESEC/FSE’01, European
Conference on Software Engineering. IEEE Computer Society Press 2001. Vi-
enna, Austria.

12 Chapter 1. Introduction

[Bra02b] P. Brada. Metadata Support for Safe Component Upgrades. In
Proceedings of the 26th Computer Software and Applications Conference (COMP-
SAC’2002). Oxford, England. IEEE Computer Society Press, August 2002.

Unreviewed Articles

[ABV00] S.-A. Andréasson, P. Brada, J. Valdman. Component-Based Soft-
ware Decomposition of Flexible Manufacturing Systems. In Proceedings
of International Carpathian Control Conference. Podbanské, Slovak Republic,
2000.

[Bra00] P. Brada. SOFA Component Revision Identification. Technical re-
port No. 2000/9, Department of Software Engineering, Charles University,
Prague 2000.

[Bra02a] P. Brada. The ENT model: A general model for software in-
terface structuring. Technical Report DCSE/TR-2002-10, Department of
Computer Science and Engineering, University of West Bohemia, Pilsen,
Czech Republic. 2002.

[Bra02c] P. Brada. Parametrized Visual Representation of Software Com-
ponents. In Proceedings of the 7th Objekty conference, Prague, Czech Republic.
November, 2002.

1.5 Conventions Used in the Text

The following typographical and notational conventions are used through-
out the text of the dissertation.

2 In normal body text, term definitions are in italics.

2 Samples of source code use fixed-width font.

2 When identifiers are used in definitions and mathematical expres-
sions, clarity is preferred to brevity, i.e. we often use names rather
than single-letter symbols.

2 The notation tuple.element denotes a single element of an n-tuple
defined as tuple = (..., element, ...).

2 The set Identifiers contains identifiers as defined in standard pro-
gramming languages, i.e. string starting with a letter or underscore
and containing letters, numbers and underscores.

2 The <: symbol denotes the subtyping relation (e.g. short <: integer).

2 Concerning spelling, the text of the thesis is written in British English.

Chapter 2

Component Interface
Representation: The ENT
Meta-model

Software modules and components play an important role in software engi-
neering, primarily as key abstractions for software decomposition. Despite
their substantial differences in purpose and language of expression, we can
on an abstract level observe many similarities — separation of interface
and implementation, declaration of exported and imported elements, etc.
As already noted in the Introduction, the same holds for the component
models used in research and industry.

To capture these common aspects is the main motivation for creating
meta-models above the component models. Several such a-priori and de-
rived meta-models already exist [OMG02f, OMG02h, OGJ02, Ras02]. They
place their emphasis on the technical aspect of components, mainly in or-
der to develop frameworks for component interoperability.

The ENT meta-model which we have developed and describe here is
different and unique — its motivation is to capture the common component
characteristics from the user’s point of view. In order to do so, it embod-
ies selection and structuring mechanisms that reflect the way people rea-
son about component interfaces. The name of our meta-model technically
comes from the abbreviation of a key set of structures — Exports-Needs-
Ties — it defines; see Section 2.3.3 below. For brevity, it is referenced as
“the ENT model” in this thesis.

The primary purpose of our meta-model is to enable analyses of com-
ponent properties (understanding component purpose and usage, com-
parison for determining type differences), visualisation that helps in these
analyses, and synthesis of component specifications (development of new
features in specification languages). This reflects our opinion (presented in
Section 1.1.1) that meta-models should encompass foreseeable future de-
velopments.

14 Chapter 2. Component Interface Representation: The ENT Meta-model

Moreover, the model’s design allows our method of component com-
parison (described in the next chapter) to be defined on the meta-model
level, rather than just of a single component model. Its subsequent use in
component substitutability checking and revision identification (chapters 5
and 4) then provides a meta-level approach to these issues.

In the text of this chapter, we first discuss the reasoning that backs the
ENT model’s design as a result of analysing important component models
and modular programming languages (sections 2.1 and 2.2). Section 2.3
presents the model itself by defining its constituent parts. Section 2.5 gives
some hints on the possible uses of the model, and Section 2.4 shows its
implementation for the SOFA component framework.

2.1 Elements of Component Interface Specification

When we study the the purpose of components and modules1, and their
realizations in various languages and systems, we note both similarities and
differences. Let us review several comparative studies, component models
and modular programming languages in order to analyse these similarities.

Note: We do not include connectors in our analysis, even though they play
key roles in some architectural descriptions [S+95, MT00] and component mo-
dels [BP01]. The reason is that, in correspondence with many researchers, we
view them simply as special-purpose components. There is thus no need to treat
connectors in a special way for our purposes.

2.1.1 Comparison of Component and Modular Systems

The high-level similarities of various systems, as studied e.g. by Shaw [S+95]
or Medvidovic and Taylor [MT00], concentrate around the principal pur-
pose of both modules and components which is information hiding. Both
abstractions employ the key concept of interface to declare the features made
available for use in inter-component communication, and sometimes also
the non-functional properties governing its correct usage. Further, differ-
ent parts of the interface play different roles in their interactions. This
fact is exemplified by the separation of provided and required features in
software components [Szy98].

The SOFA [PBJ98] and CORBA [OMG02f] component models are the
primary component models targeted by our work. As such they are de-
scribed in various places of this thesis, and we will mention here only their
key characteristics. The SOFA model offers clearly defined component fea-

1 In this section, we will consider both “components” as defined by Szyperski [Szy98] and
“modules” as understood by Parnas [Par72] and module interconnection languages (MILs)
[PDN86, SEI97].

2.1. Elements of Component Interface Specification 15

tures — provided and required interfaces, configuration properties, and
behaviour protocol (expresses the correct ordering of interface methods).
The CORBA component model adds the notion of events for asynchronous
component communication, plus keywords for specifying arity of interfaces
and events. It is a key model because of its industrial importance. Both fra-
meworks use simple to analyse IDL language which makes it easy to analyse
component properties statically.

The JavaBeans [Sun97] and Enterprise JavaBeans (EJB) [Sun01a] com-
ponent frameworks are also industrially important. In principle the com-
ponents provide Java interfaces, can communicate by sending/receiving
events, and be configured by properties. However, there is a difficulty in
finding these features in a bean’s interface because the models use naming
conventions and library interfaces to designate them in Java source of the
components. (The problems of modeling JavaBeans are treated in detail in
Appendix A.3).

Rapide [LV95] and UniCon [S+95] are ADLs whose purpose are spec-
ifications of architectural structures, in the former case executable ones.
Components are specified by an interface type which contains signatures
of provided and required functions, observed and generated events, inter-
face instances (“service” in Rapide, predefined “player” types in UniCon)
provided or required by the component, behavioural and non-functional
specification (Rapide allows to describe event and function ordering in a
protocol-like notation, state transitions description, and declarative con-
straints). The component models are quite rich, UniCon in player types,
Rapide in semantic descriptions. However, they exhibit lower abstraction
level with functions as first-class component interface elements.

Han [Han98, Han99b] has developed a fairly rich component model
aimed at easier configuration of components for different usage scenarios.
A component interface in this model consists of a signature (sets of opera-
tions, events, and properties) plus description of semantic constraints (both
per-element like pre/post conditions or property ranges, and per-relation
like behaviour protocol). Lastly, “illities” (security, performance, reliability,
. . .) can also be specified for a component. A unique feature is the speci-
fication of required features on a per-role basis (rather than for the whole
component interface). The model is also interesting in its explicit definiti-
on of semantic and quality-of-service properties, some of which express the
link between provided and required services. The only drawback from our
point of view is that the interface parts are too fine-grained, thus unsuitable
for large components.

The Fractal component model specification [C+02, BCS02] includes a
definition of its foundational meta-model. Components called kells have in-
terfaces (access points for sending/receiving signals) and a specification of
behaviour as a set of transitions where transition = (kelloriginal, signalsin,

16 Chapter 2. Component Interface Representation: The ENT Meta-model

signalsout, {kellresulting
i }). The meta-model does not include properties

(for kell configuration) although the related ADL for the Fractal concrete
model [Fra03] uses them. The meta-model allows hierarchical composi-
tion of kells. The concrete model (implemented by the Fractal framework)
differs from this source meta-model in several aspects: the component spe-
cification does not include the behaviour, the signals are implemented as
Java methods, and each interface has a set of associated tags which specify
its role, necessity of presence at run-time, and binding model.

One of the latest works in the field is the ArchJava language [ACN02b,
ACN02a]. Its aim is to bridge high-level architectural descriptions with the
actual executable code of its components, placing emphasis on enforcing
integrity of the system. The relatively simple component model of ArchJa-
va is unusual in that each port (the basic interface element) contains both
provided and required items, i.e. method signatures. While this may reduce
the number of interfaces, in our opinion it makes it harder to understand
(and analyse) the behaviour of a component and much complicates the de-
sired decoupling of exported and needed parts of component interface.

Modules (e.g. Ada packages [Ada95]) also provide a separate interface,
usually consisting of a set of exported functions, variables and data types.
Apart from the granularity of interface parts, they differ from components
in several ways. Their specification is tightly bound to a particular pro-
gramming language while components tend to use language-independent
IDLs. Modules are primarily units of source code partitioning (components
are often binary units), and thus units of compilation and linking, of oth-
erwise monolithic applications. Components are additionally independent
units of application composition, distribution and deployment.

The result of this brief analysis of several component models is that
overall, each uses a slightly different terms for the same or very similar
concepts. We can therefore distill the most basic concepts of their com-
ponent interface specifications into high-level terms, similarly to other ex-
isting meta-models [GMW97, Ras02, OMG02h, C+02, SA02]. When re-
fined by additional properties, they can be mapped to the individual parts
used by the different models. The following section defines these high-level
terms in the scope of component specification.

2.1.2 Component Specification and its Elements

The specification of a component interface is a formal or semi-formal defi-
nition of the capabilities that cross the encapsulation barrier of the compo-
nent. In this thesis we always assume that the specification uses a language
with formal grammar (regular or context-free). Such specification can be
utilised in many different ways, from documentation and evaluation pur-
poses (application developers) through comparison (done by tools) for the

2.1. Elements of Component Interface Specification 17

purpose of linking or interconnecting components, to the automated gen-
eration of (skeletons of) implementation source code.

System Features Quality attributes
Ada object, number,

subprogram, package,
exception

none

ArchJava port, method, field, extends,
implements

none

COM interface none
CORBA
(CCM)

facet, receptacle, sink,
emitter, publisher, attribute

none

Fractal server interface,
client interface

transition set

Han property, operation, event interface constraint,
role constraint,
configuration constraint

JavaBeans method, property,
event fired, event received,
extends, implements, import

none

Rapide function, action, interface behaviour, contraint,
transitions

SOFA provided interface,
required interface, property

protocol

UniCon RoutineDef, RoutineCall,
GlobalDataDef,
GlobalDataUse, PLBundle,
ReadFile, WriteFile,
ReadNext, WriteNext,
StreamIn, StreamOut,
RPCDef, RPCCall, RTLoad

RecordFormat, Library,
EntryPoint, Priority,
Processor, SegmentDef,
TriggerDef, RPCTypesIn,
RPCTypedef

Tab. 2.1: Component features and qualities in several systems

The resulting correspondence between the specification and the final
component is very important for our work. It means we can base our rea-
soning about the component (in the black-box form used for distribution),
its features and properties on the information contained in its specification.

The specification of a given component can be modelled as a set of ele-
ments which define its capabilities. From the survey analysis of the previous
subsection, summarised in table 2.1, we can distill common denominator
abstractions of these elements. In doing this, we abstract away not only
from the particular interface specification languages with their syntax and

18 Chapter 2. Component Interface Representation: The ENT Meta-model

type systems, but also from the individual characteristics of individual com-
ponent models.

The following informal definitions describe the “functional” and “non-
functional” kinds of elements.

Definition 2.1.1 (Feature) A component feature is a minimal complete element
of the component specification which (1a) is needed to establish its language type or
(1b) is involved in the interactions between the component and its environment, and
(2) is treated as an atomic unit when the component type information is constructed
or its associations used for the interactions are established.

This definition should correspond to the intuitive notion of a feature as
“something sticking out of the component interface”. Ideally, features are
named and referenced by name. Examples of features are an IDL interface
of a COM component, an event sink of a CORBA component, a log file
created and written to by a web server module, etc. See Table 2.1 on the
page before for examples of elements in several specification languages.

Definition 2.1.2 (Quality attribute) A component quality attribute is a min-
imal complete element of the component specification which declares a single complete
non-functional property of either the whole component or of a subset of its features.

Again, the definition should correspond to the natural understanding
that qualities often provide information about the implementation of fea-
tures. Typical instances of quality attributes are semantic descriptions, for
example invariant expressions as in Eiffel classes, frame protocols in SOFA,
state transition descriptions in Rapide [LV95], the “illities” described in
[Han99a], or quality of service indications [FK98]. Note that we do not
require that qualities be named, in accordance with common usage.

Using the terminology of this section, features and qualities will be col-
lectively called specification elements in the rest of the thesis. The following
sections defines the fine-grain properties of elements that we can use to
distinguish them further.

2.2 Classifying Specification Element Properties

The classification of specification elements into features and qualities is
rather coarse. However, it is quite easy to formulate the characteristics that
we as humans see when observing the various elements of the specification.
Figure 2.1 on the facing page shows some of these characteristics schemati-
cally. From these characteristics we can create a formalised classification of
element properties. Consequently, the features and qualities can on a finer
level be distinguished in several orthogonal ways.

2.2. Classifying Specification Element Properties 19

p
ro

v
id

e
s

re
q
u
ir

e
s

dataoperations

component interface

calls and events
incoming, outgoing

data written, read

call semantics,
data formats

interfaces
provided, required

Fig. 2.1: Parts of software component interface

2.2.1 Common Properties of Elements

A fundamental distinction is by what we call the kind of the element. The
operational features and qualities describe or are used to invoke functionali-
ty. The data features describe (sets of) data which the component exchanges
with its environment. There can also be features and qualities which contain
a mix of these two characteristics.

An orthogonal classification attribute is the role in component interac-
tions. Each component provides features which its clients can use to invoke
its functionality and which thus represent the purpose of the component.
On the other hand, the component may require the connection to or exis-
tence of some features in its environment for correct linking or execution.
Some kinds of elements (e.g. the behaviour protocol in SOFA components)
provide ties between these two parts of component interface, i.e. exhibit
both provided and required roles. This distinction of element roles is ex-
plicit in component-based systems [PBJ98, OMG02f, M+95] and in many
modular programming languages [Ada95, Sof01].

From the point of view of the specification language, it is sometimes
important to distinguish the language construct of the element declaration.
In most cases, the element will define an instance of a type; in rare cir-
cumstances (e.g. properties in UniCon) also a constant value. Sometimes
however, the element will contain just type information in the form of type
definition or type reference. Then its contents is not accessible via an identi-
fier within the scope of the component declaration – as, for example, the
supports interfaces of CORBA components.

In some systems, element’s necessity of presence can be designated. Or-
dinarily an element is mandatory which means that it must be present on
the component interface at run-time. On the other hand, optional elements
may be missing and still the component conforms to its specification. An

20 Chapter 2. Component Interface Representation: The ENT Meta-model

example of a component model which uses this distinction is the Fractal
framework [C+02].

Next, each feature may have different arity with respect to the bindings
on that feature. We differentiate two cases — single arity for 1:1 bindings,
and multiple for 1:many links. An example of using arity are CORBA Com-
ponent Model’s event publishers (which allow multiple sinks) and emitters
(for one-to-one communication).

Lastly, we can differentiate features and qualities according to their us-
age during or applicability to different stages in component lifecycle. Cur-
rent practice and research [Sun01a, PBJ98, LC99, LR01b] distinguishes
several such stages: development for correct compilation, static or dyna-
mic linking, and packaging (when e.g. component assemblies are created
from individual pieces), assembly (or design) for the integration stage of
creating component interconnections in a visual tool and configuring the
composed application, deployment which covers the phase of (re)configuring
the application in the actual deployment environment, and run-time stage
which exercises interface elements during application execution for inter-
component communication. Again, some elements may be relevant in more
phases of the lifecycle – for example provided interfaces of a CORBA com-
ponent are useful in compile-time, design-time as well as run-time stages.

2.2.2 The ENT Faceted Classification System

We now formalise these findings in a classification system which uses the
faceted classification approach [PDF87]. The system has seven facets —
called dimensions — suitable for the classification of component specifica-
tion features and quality attributes from the human perspective, as de-
scribed above. However, the number of dimensions is not fixed and the
classification is open to future developments.

The term space of each facet is represented as a set of Identifiers de-
scribed by the regular expression [a-zA-Z][a-zA-Z0-9]*. We use the set
Idspec = {nil, na, nk, all} ⊂ Identifiers of special identifiers: the nil value
denotes an empty identifier, the na value is used in the cases when the gi-
ven dimension is not applicable to the given feature or quality; the nk value
(not known) is used when the class cannot be clearly determined; the all va-
lue is used as a substitute for a conjunction of all the user-defined terms of
the dimension.

Definition 2.2.1 (ENT classification) The ENT classification system is a
system for faceted classification of component specification elements which uses an
ontology DimensionsENT = {Nature, Kind, Role, Construct, Presence,
Arity, Lifecycle} where the dimensions (facets) are

• Nature = {feature, quality} ∪ Idspec is a basic dimension used to describe

2.3. The Model: Elements, Traits and Categories 21

the primary meaning of an element,

• Kind = {operational, data} ∪ Idspec is a dimension describing the nature
of an element with respect to computational characteristics,

• Role = {provided, required, neutral} ∪ Idspec describes the “orientation”
of an element in component interactions and type relations,

• Construct = {constant, instance, type}∪Idspec describes how an element
is to be interpreted in terms of the specification language syntax,

• Presence = {mandatory, optional} ∪ Idspec denotes whether the compo-
nent interface must contain an element at run-time.

• Arity = {single,multiple} ∪ Idspec denotes how many connections an
element can accept/provide,

• Lifecycle = {development, assembly, deployment, runtime} ∪ Idspec

is a dimension describing the possible phases in component’s lifecycle in which
an element can be meaningfully accessed or used.

The ENT classifier is an ordered tuple (nature, kind, role, construct, pre-
sence, arity, lifecycle) = (d1, d2, . . . , dD) such that di ⊆ dimi, and dimi ∈
DimensionsENT .

We should note that there may be systems which can unambiguously
distinguish interface elements using a subset of the ENT classification. For
example, the {Nature, Kind,Role} facet collection would be sufficient for
the current SOFA component model. However, the presented facet collec-
tion provides for a generality and makes the classification applicable to a
wide range of modular and component specification languages.

2.3 The Model: Elements, Traits and Categories

This section defines the structures which form the ENT model as such. It
starts with the lowest level, describing the specification elements. Their
definition uses the ENT classification system to capture the human-driven
understanding of elements. After that, the aggregation constructs for build-
ing more abstract specification parts are defined.

We will illustrate the newly introduced concepts on an example of a
SOFA component with specification given in Figure 2.2. The example uses
a slightly modified CDL grammar which allows the readonly modifier for
properties; see Section 2.4 for the reasons.

22 Chapter 2. Component Interface Representation: The ENT Meta-model

1

3

4

5

6

7

9

10

11

2

8

frame FAddressBook {

requires:

::sys::IFileAccess files;

provides:

IAddressBook book;

property short defaultSortOrder;

protocol: // abbreviated

(?book.addPerson …)*

};

readonly property long maxSize;

provides: IAddressSearch search;

Fig. 2.2: An example SOFA component specification

2.3.1 Specification Elements

To be able to analyse and manipulate the specification of a component in-
terface, we need to handle the parts of the specification which correspond
to the features and qualities as defined in the previous chapter. They de-
scribe the smallest elements of interest in our model.

Definition 2.3.1 (Specification element) A specification element e found in
the specification of a component M written in language L is a tuple e = (name,
type, tags, inh, metatype, classifier) where name ∈ Identifiers∪{nil}, type ∈
L is a language phrase, tags = {(namei, valuei)}, valuei ∈ L is a (possi-
bly empty) ordered set of named language phrases, inh = (i1, i2, . . . , in);n ≥
0, i ∈ Identifier is an ordered tuple of identifiers, metatype ∈ Identifiers and
classifier = (ce1, ce2, ..., ceD); cei ⊆ dimi is an ENT classifier.

The (polymorphic) function Elements : L → {e} returns the set of all specifi-
cation elements contained in the specification of a component M .

A specification element represents a complete information about one
feature identified by language name and type or of one component-wide
quality attribute; the name may be empty (nil).

The tags item contains a set of phrases with additional declarations
pertaining to the particular element (not to its type). Tags often describe
the semantics of the element. Contents of tags is ordered alphabetically
by the namei part of the pairs. These names can be chosen arbitrarily
but their relation to the corresponding phrases must be consistent for the
given language L. We use the “associative array” notation for access to
tags: e.tags[name] denotes the set of values for a tag with name name in an
element e.

2.3. The Model: Elements, Traits and Categories 23

1

3

4

5

6

7

9

10

11

2

8

frame FAddressBook {

requires:

;

provides:

IAddressBook book;

;

protocol: // abbreviated

};

property short defaultSortOrder;

provides: IAddressSearch search;

::sys::IFileAccess files

readonly long maxSize

(?book.addPerson …)*

property

name

type

tags

Fig. 2.3: Example elements in component specification

Tags serve as an aid if one needs to e.g. precisely compare two elements2

or re-generate valid source code for the element. A correct ENT parser of
the language shall provide the appropriate default value for each tag that is
not explicitly declared in the specification (e.g. for SOFA CDL properties,
the access tag values are {readonly , readwrite} with the second being the
default value).

The inh item contains, as an ordered n-tuple of identifiers, the fully
qualified type name of a component from which the element is inherited.
For example, an element inherited from a component ::core::foo::Bar
will have inh = (core, foo,Bar). If the element is not inherited, the tuple is
empty. This inheritance indication is necessary for distinguishing directly
specified elements from the inherited ones, e.g. when the ENT data is used
for component visualisation.

These four parts (name, type, tags and inheritance indication) of the
specification element can be derived directly from the specification source
code. Operations on them are subject to the syntax and typing rules of
the language L used for component specification – in other words, this
model is parametrised by the specification language for which its concrete
application is sought.

The metatype element is a name describing the general type of feature
or quality, such as “interface” or “event”. It is often related to or derived
from the name of the corresponding non-terminal symbol in the grammar
of L. The classifier contains the classification of the element according to
the ENT classification system.

The information about meta-type and classification of an element has
to be based on an manual analysis of the specification language L and the

2 For example, in a comparison of final static int x = 5 against int x, the final

static keywords stored in the tags part represent an important semantic information.

24 Chapter 2. Component Interface Representation: The ENT Meta-model

human-perceived meaning of its phrases. The purpose of such effort is
to create a complete but minimal set of meta-types and classifier combina-
tions which the specification elements in L can have, to reliably distinguish
them. Once this analysis is done, it is relatively easy to create the appro-
priate supplementary code in a suitable parser/analyser of the specification
language L. Such code fills the element data structures and possibly creates
the aggregated structures described further below.

Completeness of the element means that it includes all the information
about the feature or quality attribute contained in the specification (with
respect to both the language declarations and the classification dimensions)
even if this information is not available in a single language phrase. For
example, in SOFA CDL an interface (a component’s element) is contained
in either the provides or requires section but these keywords are not part
of the element declaration itself.

2.3.2 Traits of Elements in Component Specification

As was said at the beginning of this chapter, we would like our model to han-
dle the declarations in the component interface specification in a manner
natural to our human perception. In particular this involves grouping the
specification elements into more abstract concepts — characteristic traits of
the component.

Definition 2.3.2 (Trait) Let CT = (ct1, ct2, ..., ctD) be an ENT classifier.
A specification trait (or just trait in short) of a component M is a tuple t =

(name, metatype, CT , E) where name ∈ Identifiers, metatype ∈ Identifiers,
and E ⊆ Elements(M) is a set of specification elements such that ∀ei ∈ E :
metatype = ei.metatype ∧ CT = ei.classifier . (CT is called trait classifier.)

Function Traits : L → {t} returns a complete set of traits in the specification
of component M such that ∀ti, tj ∈ Traits(M) : ti.name 6= tj .name and ∀e ∈
Elements(M) ∃tk ∈ Traits(M) : e ∈ tk.E.

Function Elements : trait → {e} returns the elements contained in a trait;
that is Elements(t) = t.E.

A trait in a concrete component model can then be seen as a special
kind of element type — it is a named set of specification elements which
are equal in terms of their classification and metatype, i.e. have the same
meaning from user’s point of view. This differs from language types which
group elements with the same structure. Figure 2.4 on the next page shows
examples of traits in the SOFA component model together with concrete
contents for a particular component.

The consequence of this definition is that, for a given concrete com-
ponent model the set of traits is fixed because the model defines a finite

2.3. The Model: Elements, Traits and Categories 25

Name Elements
Properties { (defaultSortOrder, short, . . .),

(maxSize, long, . . .) }
Protocol { (nil, ?book.addPerson . . . , . . .) }
Provisions { (book, IAddressBook, . . .),

(search, IAddressSearch, . . .) }
Requirements { (files, ::sys::IFileAccess, . . .) }

1

5

6

11

7

2

9

10

8

3

4

frame {

};

FAddressBook

short ;

readonly long ;

// abbreviated

(?book.addPerson …)*

::sys::IFileAccess ;

defaultSortOrder

maxSize

files

property

property

protocol:

provides:

;

provides: ;

IAddressBook book

IAddressSearch search

requires:

provisions

requirements

protocol

properties

Trait colour
coding:

Fig. 2.4: Traits of the FAddressBook SOFA component

set of the metatypes and classification properties of specification elements.
This in practice means the number of traits and thus the complexity of the
ENT representation is small. For example, the SOFA system provides the
component specifier with just four traits of elements (see Section 2.4 later
in this chapter).

For the purposes of analyses described in later chapters, we may assume
that an order is defined on traits for the given specification language. By
default, traits are ordered lexicographically by their names. An advanced
option would be to define an order on the classification dimensions, which
would incur an ordering of traits. We should also note that not all combina-
tions of element classification dimension values need to be used (or make
sense) in trait definitions for the given component model. In such cases
we can use partial classification like (quality, na, nk, runtime), providing as
much information as practical.

2.3.3 Categories of Traits

Although traits provide a useful grouping of specification declarations, for
an architectural level view of a component their granularity is still too small.
In high-level analyses of software we often come into situations where would

26 Chapter 2. Component Interface Representation: The ENT Meta-model

like to handle for example “all provided features” as a single group. Such
groups are called categories in our model.

Definition 2.3.3 (Category) Let fK : (d1, . . . , dD) → Boolean be a boolean
function on ENT classifiers, called the selection function.

A specification trait category (shortly category) of a component M is a tuple
K = (name, fK , T) in which name ∈ Identifiers and T ⊆ Traits(M) such
that ∀t ∈ T : fK(t.CT) = true.

A category set is a set of categories {K1,K2, . . . ,Kn} such that ∀t1 ∈ Ki.T,
t2 ∈ Kj .T : t1 6= t2. The expression S = {K1,K2, . . . ,Kn} means a component
specification S structured into n categories.

Function Traits : category → {t} returns the set of traits contained in a
category; that is Traits(K) = K.T . Function Elements : category → {e}
returns the set of specification elements contained in the traits of a category; that is
Elements(K) =

⋃n
i=1 ti.E where ti ∈ K.T and n = |K.T |.

Categories group traits which are similar in some high-level aspect(s),
expressed in our model by sharing the values in some of their classifica-
tion dimensions as specified by the category’s selection function fK . The
category set provides category definitions such that each trait from the com-
ponent trait set belongs to at most one category of the set. Note that the
category set need not cover all specification elements of a component.

1

5

6

8

7

2

3

4

9

10

11

frame {

};

FAddressBook

provides:

IAddressBook ;

provides: IAddressSearch ;

property short ;

readonly property long ;

requires:

::sys::IFileAccess ;

protocol: // abbreviated

(?book.addPerson …)*

book

search

defaultSortOrder

maxSize

files

provisions
requirements

protocol

properties
Traits:

Categories:

Exports (E)

Needs (N)

Ties (T)

Fig. 2.5: Example categories in the FAddressBook SOFA component

For the purpose of analyses described in later chapters, we may assume
that an order is defined on categories for the given specification language.
By default, categories are ordered lexicographically by their names.

From the definition above it follows that, for a given specification lan-
guage, we can define an arbitrary number of different category sets. These
sets, superimposed on a particular component specification expressed in

2.3. The Model: Elements, Traits and Categories 27

F-D (Functionality-Data)
fF = λC. (C.kind = {operational})
fD = λC. (C.kind = {data})

Fe-Q (Features-Qualities)
fFe = λC. (C.nature = {feature})
fQ = λC. (C.nature = {quality})

S-Q (Services-Qualities, or the Server view)
fS = λC. (C.nature = {feature} ∧ C.kind = {operational} ∧

C.role = {provided} ∧ C.lifecycle = {runtime})
fQ = λC. (C.nature = {quality} ∧ C.role = {provided} ∧

C.lifecycle = {runtime})

Fig. 2.6: Example category sets

traits, then give us completely different views of the component. They thus
can match different needs of component users or developers. A key cate-
gory set, the E,N, T set, is defined below. Other category sets that can be
useful in the ENT model applications are shown in Figure 2.6.

It is worthwhile to note the subtle but important difference between
trait and category definitions. Traits require that the element classifier be
complete and equal for all trait’s elements; this effectively defines the trait
classifier. Categories may on the other hand group elements based on a
subset of the ENT classifier.

Another notable characteristic of categories is that they group elements
of different meta-types. They therefore allow operations on the component
specification based on its human understanding (represented by the clas-
sification system described above) rather than on the syntax or the typing
system of the language.

2.3.4 The E, N, T Category Set

The set of categories most useful for our work is obtained by using the role
dimension. It is based on a view of the component interface which de-
velopers (and some languages as well) use very often — that of elements
provided for others to use, of those required from the environment to en-
sure proper functionality, and those which express the bindings of these two
sets together (see Figure 2.7 on the next page).

This way we get three categories, “Exports”, “Needs” and “Ties”, which
also give the name to our model of component interface:

28 Chapter 2. Component Interface Representation: The ENT Meta-model

E = (exports, fE , TE) where
fE = λC. (C.nature ∈ {feature, quality} ∧ C.role = {provided});

N = (needs, fN , TN) where
fN = λC. (C.nature ∈ {feature, quality} ∧ C.role = {required});

T = (ties, fT , T T) where
fT = λC. (C.nature ∈ {feature, quality} ∧ C.role = {provided,
required}).

Functions Exports : L → {e}, Needs : L → {e} and Ties : L → {e} return
the sets of elements contained in the respective categories, that is for M =
{E,N, T} they return the Elements(E),Elements(N) and Elements(T) sets.

In subsequent work we use the following natural ordering of these ca-
tegories: E > N > T . It is derived from the importance of elements from
the developers point of view, in which the exported elements are the most
interesting ones (they tell us how the component can be used). The de-
pendencies come next (what do we have to give it so that it can provide its
services), and the ties becomes important only after we have the previous
two categories settled.

Fig. 2.7: A SOFA component structured by the E-N-T categories

In other words, the speciality of this category set is that it captures the
different aspects which each part of the interface (and consequently the

2.3. The Model: Elements, Traits and Categories 29

corresponding specification trait) has from the point of view of the compo-
nent interconnections. It is thus a formalisation of the general idea of what
can be found on a component as presented in Figure 2.1. Moreover, it is a
crucial structure for the definitions of compatibility presented in [Bra01b]
and in Chapter 5 of this thesis.

2.3.5 Restricted Elements and Categories

For the purpose of comparison of ENT structures, we need to define the
concept of restriction on elements and categories. The motivation are oper-
ations on elements in the T category which often reference other elements
from the component interface (by their names). This is the case of e.g.
SOFA behaviour protocols or Eiffel invariants.

When there is a need to compare elements in two components, the sets
of names contained in the components — and referenced in the elements
— may differ. It is therefore necessary to compare only those parts of the
element declaration that correspond to a relevant intersection of the sets of
names (see Chapters 3 and 5).

Definition 2.3.4 (Element restriction) The element e′ = e/A, e restricted by
alphabet A, is an element for which it holds

1. the declaration of e′ uses only identifiers from the set A, and

2. e <: e′.

A category restriction by alphabet A (denoted K/A) is a category such that
elements e′ ∈ Elements(K/A) are obtained as elements of K restricted by A.

Element restriction is based on language restriction: the declaration of
e (and consequently the type and tags parts) is a sentence in a language
Le.metatype generated by the subset of the specification language grammar
which corresponds to the metatype of e. The set A restricts the alphabet
of the language, resulting in L′ = Le′.metatype ⊂ Le.metatype. Thus the dec-
laration of e′ is “contained in” the original sentence e, expressed by the
subtyping relation.

An example of restriction on elements is the protocol restriction opera-
tor defined for SOFA behaviour protocols in [PV02] or trace projection in
[FW00]. In the rest of this thesis, we assume that the specification language
to which the ENT model is applied supports element restriction. For lan-
guages that do not fulfil this condition (albeit in just some traits) the notions
of substitutability defined in Chapter 5 cannot be applied.

30 Chapter 2. Component Interface Representation: The ENT Meta-model

2.4 ENT Model of SOFA Components

In this section, we provide the technical details of the ENT representation
of SOFA CDL constructs. We start with the mapping of these constructs to
elements and traits, and then present experiences gained from the imple-
mentation of a trait-separating parser.

Note: For explanatory purposes, we took the liberty to slightly modify the
SOFA CDL (component description language) used in the examples throughout
the thesis: the readonly modifier can be added to the property component ele-
ment. By doing so we do not lose the applicability of the presented results to the
SOFA framework; in fact, since the original CDL is simpler, the comparison of its
component specifications (Chapter 3) as well as all other methods are easier to
implement.

2.4.1 Mapping of SOFA CDL Constructs to ENT Elements

The following paragraphs define the elements that can be found within
a SOFA component specification, and how the parts of the ENT element
structure are obtained from the specification source. Their examples shown
in Figure 2.8 refer to the component CDL specification source given previ-
ously (see Figure 2.2 on page 22).

frame The component as a whole is represented by the frame construct.
Thus the specification element set of a concrete component will always be
a representation of a container named after the frame.
Abstract syntax:

frame ::= frame name ‘{’ (provisions requirements property)* protocol ‘}’

property These elements represent data structures that can be used to
configure the component.
Abstract syntax: property ::= [ro] property type name ‘;’

ro ::= ε | readonly
The name and type of these elements are based on the syntax as shown

in the grammar rule. The metatype of these elements is property . The tags
structure is defined as follows: tags = {access} where access = (“access ′′,
{readonly , readwrite}). The value of the access tag is readonly if ro = read-
only, and readwrite if ro = ε.

The classifier of the property elements is ({feature}, {data}, {provided},
{instance}, {mandatory}, {multiple}, {all}). Properties can be used in any
lifecycle phase: in development for generating code, in assembly to connect
components and/or to set globally applicable component properties, in de-
ployment to access/set component properties applicable to the particular

2.4. ENT Model of SOFA Components 31

maxSize
name = maxSize,
type = long,
tags = (access,readonly),
inh = ∅,
metatype = property,
classifier = ({feature}, {data}, {provided}, {instance},
{mandatory}, {multiple}, {all})

files
name = files,
type = ::sys::IFileAccess,
tags = ∅,
inh = ∅,
metatype = interface,
classifier = ({feature}, {operational}, {required}, {instance},
{mandatory}, {multiple}, {development, assembly, runtime})

protocol
name = nil,
type = (?book.addPerson . . .)*,
tags = ∅,
inh = ∅,
metatype = protocol,
classifier = ({quality}, {operational}, {provided, required},
{type}, {mandatory}, {na}, {development, assembly, runtime})

Fig. 2.8: ENT representation of the selected elements in the specification
of the FAddressBook SOFA component

application, at runtime to access and manipulate properties.

protocol This element represents the run-time semantic of the compo-
nent in terms of valid sequences of interface method calls.

Syntactically a protocol is a regular expression over interface method
names, with operators for specifying sequential and concurrent invocation.
Details are listed in [PV02].

The name part of the element is empty, the type is the declaration of
the protocol itself. The metatype of these elements is protocol , and the tags
structure is empty.

The classifier of the protocol element is ({quality}, {operational}, {pro-
vided, required}, {type}, {mandatory}, {na}, {development, assembly, run-

32 Chapter 2. Component Interface Representation: The ENT Meta-model

time}). Protocol is not useful for configuring component in the deploy-
ment phase as it describes run-time semantics; during development con-
trol code can be generated from it, during assembly it can be checked when
setting up interconnections.

provisions These elements represent the provided interfaces of the com-
ponent.
Abstract syntax:

provisions ::= provides: (interface)*
interface ::= type name ‘;’
The name and type of these elements are based on the syntax as shown

in the grammar rule. The metatype of these elements is interface, and the
tags structure is empty (CDL provides no constructs to modify the semantic
information about provided interfaces).

The classifier of provision elements is ({feature}, {operational}, {provi-
ded}, {instance}, {mandatory}, {multiple}, {development, assembly, run-
time}) — interfaces are not used during deployment time, as interconnec-
tions have been fixed during the assembly phase.

requirements These elements represent the interfaces that the compo-
nent needs to use during its execution.
Abstract syntax:

requirements ::= requires: (interface)*
interface ::= type name ‘;’
The name and type of these elements are based on the syntax as shown

in the grammar rule. The metatype of these elements is interface, and the
tags structure is empty (CDL provides no constructs to modify the semantic
information about required interfaces).

The classifier of requirement elements is ({feature}, {operational}, {re-
quired}, {instance}, {mandatory}, {multiple}, {development, assembly,
runtime}) — interfaces are not used during deployment time as inter-
connections have been fixed during the assembly phase.

2.4.2 Trait Definitions

The SOFA CDL in its current shape has four traits of elements in compo-
nent frame specification: “provides”, “requires”, “properties” and “proto-
col”. Their full specification is given in Appendix A.1.

The elements of the frame declaration as specified by the language syn-
tax and analysed above actually map one-to-one to the traits. This is merely
a coincidence due to the design of the SOFA CDL; other languages may not
have such clear mapping.

2.5. Applications of the Model 33

2.4.3 How to Find Traits

As can be seen, the definitions of specification item and trait are not so
exact that they would allow us to build an algorithm for automatic trait
separation in the given specification language grammar. This is caused
by the fact that traits are to a large extent a semantic concept that needs
human interpretation. However, the definitions help to create a parser that
can build trait contents for a given component specification.

One approach when creating such a parser is to find the individual el-
ements in the specification, assign classification terms to them, and name
the traits that result from the unique combination of classification terms
and meta-types.

An alternative approach is to take the specification grammar, and assign
traits directly to non-terminals. The guide is intuition in the first place (sep-
arate the different kinds of elements that can be found in the specification).
In the next step, the classification values are assigned to the traits.

While the first approach is closer to the definitions found in this chapter,
the second one feels more natural. Our experience from building an ENT
parser for SOFA CDL shows that it is actually very straightforward. Once we
became familiar with the classification system and the concept of traits, it
was very easy to find the grammar nonterminals and rules that correspond
to them. The following sample of the CDL grammar rules shows this case:

frame_dcl ->
"frame" identifier [uri_attributes] "{"
((frame_provides [frame_requires])

| (frame_requires [frame_provides])
| (frame_properties [frame_properties])

)+ "}"

In many cases the prospective trait name or element metatype can be
derived from a counterpart nonterminal symbol in the grammar. Some-
times in may also be advantageous to modify the grammar so that the
elements can be easily parsed out. The element name, type and/or type
declaration, and tags can be then easily found in the rules.

2.5 Applications of the Model

The primary application of the ENT model is the description of current,
and design of new, components and component models. Its novel app-
roach to meta-modelling allows the designers to reason about the desired
usage properties of components, rather than restricting them to the low-
level problems of component wiring. In other words, the model gives hints

34 Chapter 2. Component Interface Representation: The ENT Meta-model

about what is useful and possible rather than merely about what is currently
implemented.

The ENT model is however general enough to serve other different
purposes, making it interesting for the component developers (mainly in
component understanding) as well as their tools (automated component
comparisons).

In this section we briefly survey several potential uses of the model. The
applications that our work is directly concerned with — component com-
parison, versioning and substitutability — are covered in detail in Chapters
3, 4 and 5.

2.5.1 Applicability to Frameworks and Technologies

The SOFA [PBJ98] and CORBA [OMG02f] component models were the
primary sources of inspiration and verification during the development of
the ENT model. The particular features of SOFA which make it appealing
to ENT modelling are the simple and readable CDL component specifi-
cation language, plus the fact that it offers elements in all three key ENT
categories and exercises several classification dimensions.

In a straightforward extension, the model is well applicable to the COR-
BA Component Model (CCM [OMG02f]). While CCM does not use any
quality attributes in component specification, its has constructs for several
kinds of features, adds the notion of events (which belong to the operatio-
nal features) and element arity Its IDL is simple to analyse and the model
has the advantage of high industrial importance. The example shown in
Figure 3.6 on page 54 shows a visual representation of a CORBA compo-
nent using the ENT model. Appendix A provides the definitions of traits
applicable to CCM, as well as further examples.

In a similar manner, other component frameworks or modular systems
that use an IDL-like language for the specification of component interface
[Mic95, T+96] can utilise the ENT model.

The generality of the model makes it possible to apply it also to com-
ponents specified in other kinds of languages. In particular, the JavaBeans
and EJB [Sun97, Sun01a] component models would benefit for such mod-
elling. The application of the ENT model here is however seriously hin-
dered by the primary deficiency of these platforms — the non-existence
of a language for external formal specification of JavaBean and EJB com-
ponents. To reconstruct the component specification and the classification
properties of its elements for JavaBean and EJB components, a sophis-
ticated analysis of method body code has to used (see Appendix A.3 for
detailed explanations). From this case study we conclude that it is difficult
to formally model components in frameworks which use source code and
naming/design conventions as the primary means of their specification.

2.5. Applications of the Model 35

Based on our experiences, we expect the ENT model should be appli-
cable also to some well-designed modular programming languages, such as
to Delphi units, Ada packages. Again, finding and classifying elements of
modules written in programming languages can be complicated to a differ-
ent degree. Especially the case of languages with preprocessing constructs
and looser grammar or type systems (e.g. the C language) would require a
modified grammar and use of heuristics (e.g. to represent module depen-
dencies with role = required by the #include directive).

2.5.2 ENT-based Component Visual Representation

The ENT representation of software modules and components can be help-
ful in human understanding of the software. This is a direct result of the
design of the model achieved mainly via its classification system. The three
levels of interface structuring – elements, traits and categories – can pre-
sent the interface in different levels of detail and in various views oriented
towards different aspects. For an example of how this can look like, see
Figure 2.9.

Fig. 2.9: An ENT-based visual representation of a SOFA component

The aim of this use of the model is to provide for easier and less error
prone software evaluation, thus facilitating tasks such as visual design, re-
engineering and maintenance. The primary envisaged application in this
respect is in visual design tools. The use of the ENT model in this context
would result in software presentation in user terms rather than (as common
now) in language terms.

36 Chapter 2. Component Interface Representation: The ENT Meta-model

Especially for visual development with components, the developer can
then have the component appearance affected by category selection. Such
view parametrisation can have several applications:

1. In assembly (binding) of components into applications, e.g. in solv-
ing the tasks “now I want to see just the links between the provided
and required ifaces” in CORBA components, or “let’s see how events
propagate” by showing just event sinks/sources with event names.

2. In search/evaluation, the model can provide a tree view of a single
component in which the user can expand category, trait, and specifi-
cation item contents to trace down a particular feature. For example,
in searching for the animationRate property of the Juggler Java-
Bean, the developer would use the Operational-Data categories and
unfold, in sequence, the “Data” category and the “Properties” trait,
to find the specification.

3. For component deployment and application assembly, it would be of
advantage to use a visual representation of the difference of two com-
ponents as shown in Figure 3.6 on page 54. This would help in the
evaluation of module or component substitutability.

4. Similarly in maintenance or servicing, the maintainer can test chan-
ge propagation in “what-if ” scenarios using the role of features —
change is allowed if the proposed modification is an extension of the
provided or a reduction of the required features.

2.5.3 Assistance in Component Search and Retrieval

Another use of the ENT model is in library search and retrieval, which will
become of greater importance with the growing component market and
consequently the number of components available. There are two primary
problems in this area: the options in formulating the search query, and the
precision and extent of the result.

The ENT model can assist in both cases so that the queries are more
precise and the result set is more precise (narrower). This can be achieved
by augmenting the search methods (e.g. full-text search in descriptions,
signature matching, and so on) using the classifiers and other meta-data
associated with elements, traits and categories.

The user can, for example, restrict a signature-based search for a SOFA
component to match just signatures of the provided operational features
(within interfaces in the provides trait). This will eliminate the false hits
caused by components that require the same interface, which clearly is not
the intent of such query.

2.6. Discussion 37

2.5.4 Other Applications

Similarly to the use of UML in CASE tools, the ENT model visualisation
can form a base for component design and development tools that pro-
duce component specification code. From a wider perspective, the low-level
ENT data could also be used e.g. for translation of component interfaces
between systems. For example, after extracting ENT data for a JavaBean
component we could use this data to generate a CORBA IDL skeleton of a
corresponding CCM component.

We also envisage that the ENT model could be beneficial for compo-
nent testing, as identification of traits/categories allows separate testing of
independent aspects (functionality vs. quality of service tests).

On an abstract level, the definition of the meta-model provides a guid-
ance for specification language creators. It shows the range of component
interface elements that can be specified, and provides hints of their role in
component development. Thus a new language can be created by instanti-
ating the ENT model for a particular problem or technology domain. First,
a suitable set of element traits would be designed (by selecting relevant clas-
sification properties and meta-types). Then the appropriate grammar rules
can be defined to create concrete syntax for the resulting features and qua-
lity attributes.

2.6 Discussion

The purpose of creating models is to abstract away details of the subject
which are not interesting from the particular point of view. Therefore, care
must be taken to balance simplicity and precision in the model definition.
The subject of our work, software module and component systems, exhibit
a great degree of variation. In short, the goal of our work may be noble but
is not easy to attain.

In this section, we would therefore like to discuss in more detail the
model, its advantages and weaknesses. This opens the way for further work
on applications and improvements of the model, as well as in related areas.

2.6.1 Advantages of the Model

The primary objectives of the model are conceptual simplicity and close
correspondence to human (primarily developer’s) view on software compo-
nents. These aspects can be directly counted as the model’s advantages.

The simplicity lies primarily in the use of a restricted set of classification
facets and other meta-data items attached to specification elements, and in
straightforward rules for their grouping into traits and categories. The

38 Chapter 2. Component Interface Representation: The ENT Meta-model

model should thus be easy to understand and implement in code.
The definition of categories (via the selection functions) is independent

of a particular component model or specification language. On the other
hand, each component model will have its own set of traits. The ENT mo-
del therefore provides both standardisation and customisation possibilities.

The application of the model to a given module-based programming
language or component framework results in a representation of compo-
nents or components that is easy to visualise and comprehend. This rep-
resentation can be used for forward as well as reverse engineering of com-
ponent specifications. The model thus contributes to the area of program
understanding.

The aggregation of specification elements, using the classification terms,
into traits and categories enables purpose-specific views. For instance, an
application composer can highlight operational features that are essential
for run-time interactions, while an administrator who wants to upgrade a
component can check compatibility by comparing the groups of exported
and imported features (regardless of whether they are operational inter-
faces, data elements, or semantic properties).

Traits and categories group specification elements of a component even
if in the source these may be written in various places (as shown in Figu-
re 2.3 on page 23 and Figure 2.4 on page 25). Thus the interface specifi-
cation can be analysed and manipulated by the meaning of its parts rather
than by their place of occurrence or language type. This approach is similar
to connection protocols described in [aJP00].

The model was designed to be very general and independent of any
particular technology or specification language. It is thus applicable to
many research and industrial platforms — among others to SOFA [PBJ98],
C2 [T+96], CORBA [OMG02f], JavaBeans [Sun97] and Enterprise Jav-
aBeans [Sun01a]. (Examples of ENT model definitions of CORBA and
JavaBean components are given in Appendix A.) Furthermore, the mo-
del hints possible improvements in specification languages by showing the
classifiers which are not paired with concrete syntactical structures.

Finally, the model is open for extensions. It was noted in Section 2.3 that
the facet collection used in ENT classification is not a closed one. Should
the analysis of platforms, frameworks and languages not covered by our
research reveal new classification dimensions, they can be added without
directly affecting the model itself. Similarly, the ordering relations for spe-
cification elements as defined in Chapter 3 can be changed, e.g. using the
approach to relaxed signature matching presented by Zaremski and Wing
[ZW97].

2.6. Discussion 39

2.6.2 Disadvantages and Open Issues

The ENT model presented here has however several shortcomings that
need the attention of future research. The primary problem as we see it is
the difficulty of manual classification of specification elements in the given
language. This problem arises because automated classification is in gener-
al a difficult problem [Bör95, ZW97], in this case further complicated by the
lack of expressiveness of some specification and programming languages.
Manual classification opens room to different interpretations and thus am-
biguity of features and properties (e.g. along the Lifecycle dimension).

The second problem concerns the fact that elements are taken as atomic
units without considering the details of their internal structure. This calls
for a more accurate handling of the tags part of the specification element.
The desired effect would be achieved by defining this part as a set of pairs
tags = {(declarations, classifier)}, i.e. tagging individual parts of the dec-
laration with classifiers. This would make the model closer to reality but
at the expense of readability and simplicity. In this work we opted for the
simpler approach and consider declarations as monolithic, classified by its
overall proximity to the classification facet terms. The use of internal struc-
turing of declarations is reserved for future work.

Handling of component inheritance (supported by e.g. JavaBeans or
CORBA Component Model) is a little complicated in the ENT model.
Each element carries information about its origin in the inheritance hi-
erarchy, but this information is imprecise should we need to reconstruct the
identifiers of the component’s parent(s) as specified in its type declaration.
This issue is relevant in the context of visualisation using the ENT model,
and would deserve a cleaner solution.

Last but not least, the implementation of the ENT model for some
languages requires non-trivial amount of work. In some cases it is necessary
to redesign the language grammar so that elements and traits are easier to
separate. In any case its use depends on the creation of suitable parsers
which extract the relevant data from the specification source. These two
tasks combined pose a challenge mainly in the case of syntactically rich
programming languages like C/C++ or Java.

2.6.3 A Note on Specification Languages

There are however a few problems outside of the model, in specification
languages themselves, which may hinder the full use of our approach to
specification modelling. The most unfortunate one is the lack of expres-
siveness of current specification languages. For example, while the support
for the provides role is common, only several research and a few industrial
languages allow to specify required features [PBJ98, OMG02f].

40 Chapter 2. Component Interface Representation: The ENT Meta-model

Similarly, the languages provide only a limited repertoire for specifying
features of the data kind. The only common one are properties (named
data structures used for pre-runtime configuration), but in reality software
components often also depend on or create various data files and streams
[SA02]. No component framework in widespread use provides support for
file or stream specifications that would capture this important aspect of
their functionality. Similarly, event-based communication is supported by
just some, and only a handful of component models and their languages
support data elements, semantic or behavioural specifications.

The result is that the model presented in this paper can easily accom-
modate today’s specifications but is not used to its full potential. Thus our
reasoning about features and properties provides hints on what can (and
should) be done in terms of improving component specifications.

2.7 Summary

In this chapter we presented a novel meta-model of software components.
It defines a component as a set of user-defined categories, each of which
consists of a set of characteristic traits of the component’s specification lan-
guage. The traits contain specification elements that represent individual
features and quality attributes of the component.

The structuring into categories and traits is based on a faceted clas-
sification system derived from the human-perceived characteristics of ele-
ments. Traits group elements with the same classifier and meta-type, ca-
tegories group traits which conform to a user-defined classifier (called se-
lection function) that determine each category. Thus traits are specific to a
given component model whereas categories are system-independent.

Each element of the specification belongs to exactly one trait, and each
trait to at most one category. This means that traits and categories are
not recursive, i.e. the model creates a three-level view of the component
specification. The most useful categories are obtained by grouping by the
role classifier which results in categories named E (exports), N (needs), and
T (ties) which give the model its name.

Depending on the needs of developers, a software specification struc-
tured by the ENT model can be manipulated at various levels of abstrac-
tions and from various viewpoints. The next two chapters use such tech-
niques to provide foundations for component versioning and compatibility
assessment.

The ENT model representation has been implemented in prototype
applications for the SOFA and CORBA Component models. The imple-
mentations create the data structures of traits and categories for given CDL
resp. IDL3 sources, and make it possible to display the component in the

2.7. Summary 41

form shown in Figure 3.6 above. The CCM prototype also allows the com-
ponent specification to be edited in this graphical form.

The analyses performed while developing the ENT model also show
that more mature systems (e.g. CORBA Component Model, or the Rapi-
de ADL) provide means to declaratively specify various characteristics of
features and qualities which simpler approaches hide in source code. A
prime example is the distinction of functions and events, which platforms
like JavaBeans represent uniformly as methods.

The meta-model is applicable to a wide range of platforms, from IDL-
like languages used by CORBA, COM+ or SOFA systems, through modular
programming languages such as Ada or even the C language, and ending
with some formal specifications (e.g. as used by the Wright architecture des-
cription language [ADG98]). The only requirement that the model places
on its subject is the ability to determine primitive elements in the compo-
nent/module specification and the ability to compare these elements.

Chapter 3

Analysing and Classifying
Specification Differences

The possibility to see and analyse differences between similar software ar-
tefacts is important in all stages of software development cycle. During
analysis and design, the developers need to evaluate existing libraries or
components for possible reuse, in implementation and maintenance the
programmers often want to see the changes from previous versions or need
to adapt to existing interfaces when incorporating reused code.

In this chapter we present a method for describing software differences
based on the comparison of the ENT data structures. The primary target of
the method are black-box components or similar coarse-grained software
modules. We therefore assume nothing about the availability of their sour-
ce code and rely in this comparison solely on the component (interface)
specifications, expressed in terms of the ENT model. In this reasoning,
we assume the correspondence of the specification and implementation as
discussed in the previous chapter.

The goal of our method is to provide such comparison results that are
readily understandable by human users and at the same time suitable to
further automated processing and analyses. The method is therefore based
on finding the subset relation between corresponding parts of the specifica-
tions. The comparison results are represented using a simple yet powerful
classification scheme which provides human readability and sufficient in-
formation to reason about compatibility of the components.

The text of this chapter first presents the motivation for the overall
approach taken during the design of the method. Section 3.2 is the core of
the chapter — it describes our method for hierarchical comparison of ENT
data structures and the classification scheme used to represent comparison
results. The complete specification of comparison rules for SOFA CDL can
be found in Section 3.4 plus in Appendix B. Subsequent sections discuss the
role of specification language type systems in our method, and compares it
with similar approaches used in practice.

44 Chapter 3. Analysing and Classifying Specification Differences

The results presented in this chapter are then used in Chapters 5 and
4 in two different (yet related) situations — in component substitutability
assessment and in deriving revision identifications.

3.1 Motivations and Approaches

While the structuring of interface into traits and categories described in the
previous chapter is the basis for component understanding, the methods
which fulfill the goals of this thesis need to compare the components. Such
comparison can be done for different purposes — highlighting different
coding styles, showing the changes made during development, selecting
a component most appropriate for the given architectural environment,
finding a suitable interface to match a set of criteria, etc.

Fig. 3.1: Text- vs. grammar-based component comparison (specifications
in the CORBA Component model IDL3 language)

Our component comparison is driven by the need to detect differences
between components primarily in order to decide about their substituta-
bility. In the design of the comparison method we were motivated by the
needs of human developers and users. Particularly, we wanted the method
to behave similarly to humans with respect to the assumptions, emphases,
data structures, algorithms used for comparing the specifications, and the
resulting conclusions.

3.1. Motivations and Approaches 45

3.1.1 Desired Properties of Component Comparison

This “human view” approach can be described by several key characteristics
given below. They summarise the points that are important for humans in
evaluating specification comparison results.

• The specification is structured rather than flat — the developers do
not see it as a one-level list of declarations, but rather mix a birds-eye
view, comparing whole chunks of declarations, with a detailed exam-
ination of differences in particular feature or quality; this structuring
is reflected in the ENT model.

• The order of declarations is not important — the perceived semantic
of a component, and consequently the comparison result, is the same
regardless of the sequence of its declarations (cf. Figure 3.1).

• The formatting style is irrelevant for the semantics — indentation,
white space, comments, etc. do not matter in understanding the work-
ings of the component; of course good formatting helps in orienta-
tion in the specification but this issue is left aside here.

• Names (type and instance identifiers) matter in the comparison —
they are key in expressing and understanding the semantics, for ex-
ample provides IFileAccess fileOps; is more telling than provi-
des IFa fa; and property string NumberOfElements; is a mis-
leading code.

• The typing rules of the languages involved should be honoured —
this is because changes in the declared and referenced types have a
big effect on human as well as machine understanding of the com-
ponent. Thus the method should detect changes in the contents of
referenced types, e.g. records, and changes in the order of interface
method parameters.

These properties contrast with some “implementation dependent” app-
roaches to dealing with differences in specification (e.g. the “diff ” tool
or DCE interface change rules discussed in more detail in Section 7.2 on
page 130 as part of the overview of related work). We consider such app-
roaches rather inappropriate for the current state of software engineering,
where the complexity of software systems is rapidly increasing. This com-
plexity provides a strong incentive to move towards methods which put
more weight to the human needs than to the computer implementation
aspects, shielding the developers from low-level issues as much as possible.

The only exception is possibly the last property — typing rules are more
of the “computer implementation aspect” sort. However, they still reflect

46 Chapter 3. Analysing and Classifying Specification Differences

the relations between objects in the problem domain (certainly much more
than, for example, DCE’s rules for compatible interface evolution). Perhaps
more importantly, they are necessary to warrant practical usefulness of the
specification comparison methods. The components compared are in the
end always implemented in some programming language and their code
must obey type rules in order to be safe [Car97].

The method for detecting and classifying specification differences de-
scribed in this chapter is designed to provide these properties. It uses the
ENT model of interface structuring to aggregate the comparison results on
several levels. This provides a means for quick overview of the changes as
well as their detailed descriptions, regardless of the textual format of the
component specification or its binary representation.

3.1.2 The Approach Taken

The primary question we ask in this chapter is: given two components,
described by their specifications, where and how do they differ? In general,
the answer will always be along the line that “one is a subset of the other”,
at least in some aspect(s). The precise meaning of this answer can however
be approached from two directions.

One view on component differences is based on the client-server in-
teractions in which components are ultimately engaged at run-time (this
approach is schematically depicted on Figure 3.2). In this scenario we have
a component C1 employed in an application by binding its features to and
from features of other components. If we want to use C2 in its place we
need to evaluate the differences between C1 and C2 from the point of view
of the bindings, i.e. how the differences would affect their consistency.

C 2C 1

Fig. 3.2: Comparing components in client-server relationships

Thus the question is transformed into the question of component com-
patibility or substitutability. At the specification level it is usually resolved
by checking the subtype relation between C1 and C2.

Another view on the changes is standalone component comparison, de-
picted in Figure 3.3 on the facing page: taking C1 and C2 just as they are,
what can we say about their differences? In other words, the goal is to com-

3.2. Differences Between Specifications 47

pute a “diff ” (as in comparing two versions of a program source) that is
taken as a characteristic of component differences. This diff however must
be based on the syntactic and semantic structure of the component specifi-
cation — rather than on the bytes of its binary format or lines of its source
text — otherwise it will be of no real utility.

C1 C2 diff

-
+

+

Fig. 3.3: Standalone component comparison

The reasoning about the effects of the differences is in this approach
postponed until we know the context for the reasoning. By the “context”
we mean, for example, that at some stages in component development or
deployment, only some of its features and/or qualities are relevant for com-
parison (cf. configuration properties of CORBA components, or choice of
connectors in the SOFA framework, that are not referenced at run-time). In
this way we obtain a more general comparison method, hopefully a more
useful one.

The price to pay is the need for a careful design of the data structures
and algorithms used in computing and interpreting the diff. In particular,
the comparison results must be expressed in a way which allows their effi-
cient use in various circumstances — ideally there should be several levels
of detail in the results and some flexibility in their interpretation.

The latter approach to determining the difference between components
is the one taken in our work; the comparison from the client-server point
of view is derived using its results. The rest of this chapter describes the
way we compare the component specifications and the data in which the
resulting diff is stored.

3.2 Differences Between Specifications

This section describes the core of our method for specification comparison.
Its main idea is to structure the specification using the ENT model and
derive the difference by comparing the resulting structures.

In what follows, we first define the comparison operations for the indi-
vidual levels of the ENT model, using the specification language type rules

48 Chapter 3. Analysing and Classifying Specification Differences

as a starting point. Using these operations we then create a straightforward
classification system for specification differences, and discuss its properties.

3.2.1 Comparing Specification Parts

The motivation for comparing specifications pair-wise is to provide the in-
formation about how and where the specifications differ, in a format suit-
able for human interpretation. Such differences are usually expressed as
the subset relation. Applied to the ENT model, we therefore want to define
this relation for the elements, traits and categories found in the component
specification source.

Definition 3.2.1 (Element comparison) Assume two specification elements ei

and ej written in specification language L; assume further that their metatype,
inh and classifier items are equal. We say that

• the elements are equal (denoted ei = ej) if
ei.name = ej .name

∧ ∀u ∈ ej .tags ∃t ∈ ei.tags :
t.name = u.name ∧ t.value =L u.value

∧ ei.type =L ej .type

• element ei subsumes element ej (denoted ei � ej) if
ei.name = ej .name

∧ ∀u ∈ ej .tags ∃t ∈ ei.tags :
t.name = u.name ∧ t.value <:L u.value

∧ ei.type <:L ej .type

• element ei is incomparable to ej (denoted ei 4 ej in this work) if
ei.name = ej .name

∧ ei 6� ej ∧ ej 6� ei

The definition assumes that an order is defined on the tag values which
forms their subtyping relation. For example, for access ∈ {readonly, read-
write} tag we expect readwrite <: readonly, using the principle of substi-
tutability.

Note that the relations are based on the contents derived from the spe-
cification source only and are parametrised by the specification language L
of the elements. That is, element comparison pays no attention to the ele-
ment’s classification, in particular to its role (occurrence on the provided or
required side of component interface). This is accounted for in the compo-
nent comparison (see below) where it results in the application of covariant
or contravariant rules.

3.2. Differences Between Specifications 49

We require that the names of the elements be the same for a good rea-
son: the names are used in the bindings of the containing component (e.g.
by the architecture specification in SOFA CDL). The tags and type items
are both compared for subtyping because frequently they are tightly inter-
related — a prime example is the readwrite vs. readonly access modifier
which has a profound impact on the typing rules.

An example of the element comparison for basic data types is given
in Figure 3.4. The detailed specification of element comparison rules for
SOFA CDL can be found in Section 3.4 and Appendix B.

Assume Java class attributes represented as ENT elements
e1 = (count , short , {(access, readonly)}, . . .), e2 = (count , long ,
{(access, readwrite)}, . . .), and e3 = (count , long , {(access, readonly)}, . . .).
Then, the following holds:

• e1 � e3, because short <: long and the tags are equal,

• e2 � e3, because types are equal and readwrite <: readonly ,

• e1 4 e2, because short <: long but readonly 6<: readwrite ,

Fig. 3.4: Examples of element comparison results

The direction of the subtyping relation used in the definition of element
subsumption is the intended meaning “ei can substitute ej” (see Chapter 5).
In the case of interface types used most often in component specifications,
this very often manifests as “ei has more declarations than ej”.

Definition 3.2.2 (Trait comparison) Assume traits ti and tj such that ti.name
= tj .name. We say that the two traits are

• equal (denoted ti = tj) if
|ti.E| = |tj .E|

∧ ∀ej ∈ tj .E ∃ei ∈ ti.E : ei = ej ,

• ti subsumes trait tj (denoted ti � tj) if
|ti.E| ≥ |tj .E|

∧ ∀ej ∈ tj .E ∃ei ∈ ti.E : ei � ej ,

• incomparable (denoted ti 4 tj) if ti 6� tj ∧ tj 6� ti.

Note that, in line with the specification element equality and order,
these relations are again based solely on the specification contents. The

50 Chapter 3. Analysing and Classifying Specification Differences

human-added information is inaccurate for this purpose — namely, it is
difficult to find any natural ordering of the classification facets and their
terms.

Definition 3.2.3 (Category comparison) Assume two categories Ki, Kj such
that Ki.name = Kj .name. We say that

• these two categories are equal (denoted Ki = Kj) if
|Ki.T | = |Kj .T | ∧ ∀ti ∈ Ki.T ∃tj ∈ Kj .T : ti = tj ,

• category Ki subsumes category Kj (denoted Ki � Kj) if
|Ki.T | ≥ |Kj .T |

∧ ∀t1,j ∈ Kj .T ∃t2,i ∈ Ki.T :
t1,i.name = t2,j .name ∧ t1,i � t2,j ,

• the two categories have incomparable contents (denoted Ki 4 Kj) if
Ki 6� Kj ∧Kj 6� Ki .

To complete the comparison framework, the last definition states how
complete component specifications are compared using the ENT struc-
tures. This definition differs from the above slightly in its pattern, as the
element classification comes into play (mainly the Role dimension).

Definition 3.2.4 (Component comparison) Assume two components, C1 and
C2, and their specifications structured by the ENT category sets {K1,i} = {E1,
N1, T1} and {K2,j} = {E2, N2, T2}. Let A = Names(C1)∩Names(C2) where
Names(C) denote the set of all identifiers (the e.name parts of elements) that occur
in the specification of component C. We say that

• these two components are equal (denoted C1 = C2) if
∀i ∈ {1..|K1,i|} : K1,i = K2,i ,

• component C1 subsumes component C2 (denoted C1 � C2) if
E1 � E2 ∧ N2 � N1 ∧ T1/A � T2/A ,

• the two components have incomparable contents (denoted C1 4 C2) if
C1 6� C2 ∧ C2 6� C1.

That is, the provided and required elements (and consequently the E
and N categories) play covariant and contravariant role, respectively, in
component comparison: for C1 < C2 to hold, the provided parts must be
in subtype relation and the required ones in supertype relation. This is the

3.2. Differences Between Specifications 51

normal and expected behaviour; it is also fundamental to the understand-
ing of component substitutability defined in Chapter 5.

The role of the Ties category is similar to that of the Exports as we want
the C2 to obey the same semantic contract(s) as the ones defined by C1.
However, we must use the restricted elements in the comparison in order
to “align” the compared elements. The use of the name sets intersection to
restrict the alphabet is the only option — it guarantees that the comparison
will not include the elements added to C2’s exports and those removed from
its needs. The component C1 does not have to obey the specification of C2

concerning these elements; if it had to, it would cause subtyping problems
in the ties.

Note also that in the definition, we differentiate the contravariant role
of the categories by the role classifier (using the ENT category set, i.e. sepa-
rating role = provided , role = required , and role = provided∧role = required
respectively). Further investigations are needed to provide useful compari-
son rules for the cases of more complicated classifiers.

3.2.2 The Differences and Their Classification

We now describe the classification of specification differences, which forms
the basis for the subsequent analyses of their effects. The system is an
attempt to create a simple scheme based on natural observations. The main
one is that specifications, seen as sets of declarations, can be compared
using set operations.

As well as taking the specifications per se, we approach their comparison
as if one has evolved from the other. Therefore, the subscripts used in the
definitions that follow may be understood as “S2 was created from S1” or,
rephrased, “S1 and S2 are two subsequent revisions”. In general however
this aspect is not important to the definition of the comparison method and
interpretation of its results.

We would like to emphasise here that, as straightforward reasoning
shows, the differences between specifications can be uniformly classified
regardless of the level of granularity. We therefore define the classification
of differences formally for all levels of the ENT model hierarchy at once.
This uniformity of specification differences is key for our approach to com-
ponent compatibility assessment.

The following definition formalises the intuition used by developers, us-
ing the ENT structuring of specifications and the comparison rules (groun-
ded in type theory) set above.

Definition 3.2.5 (Specification Differences) Let S1 and S2 be the specifica-
tions of components C1 and C2. Assuming the specifications are structured according
to the ENT model, let σ1 ⊆ S1 and σ2 ⊆ S2 such that σ1.name = σ2.name de-

52 Chapter 3. Analysing and Classifying Specification Differences

note two parts of the specifications at the same level of abstraction (i.e. two elements,
traits, categories or the complete specifications).

Let Differences = {init, none, specialization, generalization, mutation}
be a set of classification terms.

Then, specification difference is a value d ∈ Differences generated by a poly-
morphic specification matching function diff : × → Differences defined as
follows:

• diff (σ1, σ2) = init if σ1 is not defined;

• diff (σ1, σ2) = none if σ2 = σ1;

• diff (σ1, σ2) = specialisation if σ2 � σ1;

• diff (σ1, σ2) = generalisation if σ1 � σ2;

• diff (σ1, σ2) = mutation if σ1 4 σj .

We may also rephrase the above definition as follows: for the specializa-
tion difference, only specialisation changes are allowed in σ contents (and
required in at least one); for the generalization difference, only generalisa-
tion changes are allowed (required in at least one). The mutation occurs
if some contents mutates or if two subsets of the contents undergo differ-
ent changes (some specialisation, some generalisation) which make the σ
specification parts incomparable.

That is, σ2 can be a specialization, generalization or a mutation of σ1.
The init value represents a special case — on the first creation/release of a
specification being compared, there is no previous revision and therefore
no specification to make difference against.

3.2.3 Difference Propagation

Consider the specifications of two CORBA components shown in Figure 3.5
on the facing page. When we take the contents of the component declara-
tions alone, we see several differences directly:

• the facets trait has been specialised by adding the IBar interface;

• the attributes trait has been generalised, because the developer re-
moved the logname property; and

• the receptacles trait has mutated as the C2 component requires a dif-
ferent interface (this is equivalent to removing the ILog interface and
adding the IAdvLog one).

3.2. Differences Between Specifications 53

C1 C2

interface IFoo {
long foo();

};

component Example {
attribute
String logname;
provides
IFoo foo;

uses
ILog log;

};

interface IFoo {
short foo();
short baz();

};

component Example {
uses
IAdvLog log;

provides
IFoo foo;

provides
IBar boo;

};

Fig. 3.5: Standalone comparison of CORBA components: IDL3 sources

This comparison is what the developer can and would do at the first
approximation. However, it is obviously incomplete and inaccurate — there
are also “hidden” changes in the specifications of the referenced types:

• the baz() method was added to the IFoo interface; and

• its foo() method was changed into a subtype of that in C1.

These changes must be considered by the comparison method in the
same way as the “direct” ones to provide adequate support for the devel-
opers. In the terms of the ENT model, the difference can occur at the
level of categories, traits, or elements (the “direct” ones) but also within
the elements (the “hidden” ones). This has the consequence that the com-
parison must propagate the differences in lower levels of the ENT model
to the upper ones. In consequence, it must recursively compare the types
referenced in the specification of the component type. The result for the
Example component should be as shown in Figure 3.6 on the next page.

The method of comparing specification parts defined above provide
this propagation. This can be informally proven as follows:

1. Assume two identical component specifications represented by com-
ponent element sets, E′

M1 = E′
M2; this means all elements are equal.

2. Now extend the specifications by elements e1 and e2: EM1 = E′
M1 ∪

{e1}, EM2 = E′
M2 ∪ {e2}. Let these elements have the property that

• they belong to the same trait (and consequently to the same cate-
gory): e1 ∈ tiM1.E, e2 ∈ tiM2.E (thus tiM1 ∈ Kj

M1.T , tiM2 ∈
j
M2 .T);

54 Chapter 3. Analysing and Classifying Specification Differences

• they are “visually” equal (their names and type identifiers are
the same) but they reference a type which has evolved in a type-
compatible way: e1.name = e2.name ∧ e2.type <: e1.type;

• for simplicity we can assume that other parts of the elements are
empty, i.e. e1.tags = e2.tags = ∅ (this simplification does not
affect the result of the comparison).

3. Using Definition 3.2.1 on page 48, the result of comparing these two
elements is e2 � e1. This means that the “hidden” difference in the
referenced type has propagated to the difference between the ele-
ments themselves.

4. By a successive application of the trait and category comparison rules
(Definitions 3.2.2 and 3.2.3), it follows that tiM2 � tiM1 and Kj

M2 �
Kj

M1. In plain words, the traits and categories differ because of a
change in a referenced type in their element.

As a related issue we note that when differences propagate, they may
have opposing effects. For example, if one trait in a category K is spe-
cialised and another one generalised, the overall effect is that we cannot
find any subset relation at the level of the K category as a whole. The
resulting difference at the level of the E category is therefore mutation.

This is a clear and desirable consequence of Definition 3.2.5 — it corre-
sponds to natural understanding and fulfils the requirement set forth at the
beginning of this chapter, that the comparison should honour typing rules.

Fig. 3.6: ENT-based difference highlighting for CORBA components

3.3. Specification and Carrier Language Issues 55

On the other hand it shows the usefulness of the several levels of detail pro-
vided by the ENT model. If all we knew was that the mutation difference
occurred at the category level it would not be sufficiently clear information.
The trait differences explain why and how the mutation occurred.

Finally we want to note here that the practical consequences of a par-
ticular difference depend on the part of component in which it manifests,
as expressed by its ENT classifier. For instance, specialisation in provided
interfaces has clearly different semantics than the same difference in the
required interfaces. It would therefore be wrong to draw conclusions about
component substitutability based on the diff results only (e.g. requiring all
traits to have the specialization difference), without considering the ENT
classification values of specification parts.

3.3 Specification and Carrier Language Issues

In this section we want to discuss the relation of our specification compar-
ison method to specification language type systems and the need for its
correspondence with implementation language typing rules. The motiva-
tion for the analysis of these areas is the fact that we use comparison of
specifications to express differences in the implementations of a compo-
nent.

3.3.1 ENT-based Comparison and Type Rules

The definition of the element comparison (and consequently the trait, cate-
gory and component comparisons) given in the previous section is paramet-
rised by the component specification language, namely its typing rules. Be-
cause the comparison defines an inclusion relation between specification
parts, it in effect creates subtyping rules for these parts.

The astute reader may have noticed that the specialization difference in
fact constitutes a subtype relation, generalization a supertype, and mutation
is an expression of type incompatibility. Thus the sentence “S1 subsumes
S2” (S1 � S2, a result of comparison) can be read “S2 defines a supertype
of S1”.

There may already exist type rules governing the use of the component
type in the given specification language — although the author is not aware
of such rules for any of the widely used IDLs. So what is special about the
approach we are presenting? The key novelty is a result of the application
of the ENT model: it gives us the possibility to compare (i.e. define the
subtyping rules for) only parts of the component type. We can therefore
evaluate the effects of changes, in terms of the subtype relation, in just one
or several well defined particular aspects (represented by the corresponding

56 Chapter 3. Analysing and Classifying Specification Differences

trait or category) of the component type.
This differs from the traditional approach to typing in programming

languages which treat even structured types as uniform wholes, without any
internal structure (with respect to the type rules). Of course, the separate
treatment of the particular aspects is enabled by their very existence —
and often explicit declarative separation — in component types. However,
the approach could be used even in some “traditional” programming lan-
guages. The only condition to be fulfilled is that it is possible to distinguish
a type’s aspects as traits — an example is a class declaration with attributes
and methods, in the Eiffel language augmented by pre-conditions, post-
conditions and class invariant.

The aggregation mechanism which groups elements into traits and ca-
tegories has considerable impact on these subtyping rules. In particular,
the role classification dimension distinguishes the contravariant role of the
elements at the complete type level — the provided and required elements
are similar to function parameters and return type, respectively. This is the
fundamental reason behind the E, N , T categories; it also shows the pos-
sibilities that the ENT classification system gives in more flexible handling
of component specifications. Chapter 5 gives a detailed treatment of the
consequences of the differences in different roles to component substituta-
bility.

3.3.2 Type Systems for Specification Languages

The practical implementation of our component comparison method has
to handle the issues that stem from the properties of current component
models. The method assumes that typing rules for the specification lan-
guage exist, as the element comparison is based on them. The real situ-
ation is however, that for most languages the formal specification of their
type systems is not available. For our work this would have the consequence
that we may lack a formally sound foundation for the element comparison.

This is of course a substantial shortcoming that is not mitigated by the
fact that its causes are mostly beyond our control. There are two possible
solutions to this situation:

1. Define complete formal type system for the specification language in
question, i.e. mainly SOFA CDL and CORBA IDL.

2. Create an implementation using informal rules that can be derived
from textual specifications and similar languages.

The first option is certainly the right one as it provides the foundation
for the necessary correctness of our method. However, the task is rather
complex and is not in alignment with the focus of this thesis. (The fact that

3.3. Specification and Carrier Language Issues 57

the creation of type systems for programming languages is not a trivial task
is indirectly supported e.g. by the Featherweight Java [IPW01] work.)

We therefore decided to go half way, defining only the subtyping rules
(as a subset of the complete type system) for the SOFA CDL language. The
rules are presented in Appendix B. Concerning the rest of the languages
and the remaining parts of the type systems, we opt for the second solution
and suggest the creation of typing rules as a possible future work.

Once the (sub)typing rules exist for a language, the ENT comparison
of component types should produce the same results as their subtyping
relation. We expect this is straightforward to achieve as the goals of these
two comparison approaches are essentially the same. The designer and
implementer of the comparison rules must nevertheless make sure that this
condition is fulfilled.

3.3.3 Carrier Language Issues

The second language-related issue are the effects caused by language bind-
ings, i.e. the translations from the specification language to the program-
ming language in which the component is implemented. We use the term
carrier language in this work to denote such programming languages. They
come into play in any practically usable comparison system for components
with declarative specification. In order to create the component implemen-
tation, the component specification defined in an interface description lan-
guage must be translated into skeletal constructs in a programming lan-
guage. The programmers then supply the actual business-logic code into
this skeleton, and compile it to create the binary form of the component.

The problem lies in the fact that sometimes inconsistencies can be found
between the (sub)typing rules of the given IDL and those of the carrier lan-
guages. Thus each language mapping would create different typing rules.
To complicate matters even more, the design- and run-time linking of the
component binaries via interface bindings may have its own restrictions on
the linked elements, thus introducing additional rules.

The following examples illustrate these effects.

• In CORBA IDL and SOFA CDL mappings to Java, both short and
unsigned short types are represented by the Java short type. Thus
we could add the rule unsigned short <: short to our system presented
in the next section. However, this would violate the type system for
the C language mapping in which the types are separate.

• The Java Binary compatibility specifications [GJS96] specifies in the
paragraph 13.4.12 that “changing the name of a method, the type of
a formal parameter to a method or constructor . . . has the combined

58 Chapter 3. Analysing and Classifying Specification Differences

effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature;” and
similarly to the result type of a method.

This means that Java binary compatibility forbids subtyping chan-
ges in methods: for example int foo(long) 6<: int foo(int), con-
trary to standard type system rules. If we wanted to take this into
account and retrofit our subtyping rules, we would lose an important
part of their flexibility and create possible inconsistencies with other
language mappings. On the other hand, implementation of compo-
nents in Java will encounter the clash of this rule with our subtyping
rules.

In effect, this example reveals that using Java as the implementation
language for black-box components may create unforeseen issues.

This section has shown some of the problems encountered when creat-
ing type systems for declaratively specified black-box components. In our
work we take the position that the specification and its rules have prece-
dence over the implementation-related ones. In the following section we
use this position to present the subtyping rules for SOFA CDL which are
used in element comparison.

3.4 Comparison of SOFA Component
Specifications

Based on the findings and definitions set in the previous section, we now
show the basis for the implementation of SOFA component comparison.
We use the nominal type system in this implementation, that is we require
that types have the same name (as well as structure) to be considered equal
[Pie02].

3.4.1 Subtyping Rules

The comparison of SOFA language constructs is based on their subtyping
rules (developed as part of this work) described in Appendix B. The com-
parison of ENT component representations works with parts of the frame
declaration.

The element structure separates the instance semantic (tags part) and
typing (type part) information. This results in slightly modified ENT-based
subtyping rules for elements with non-empty tags. For SOFA CDL, this is
the case of the property element in trait properties.

Tags

3.4. Comparison of SOFA Component Specifications 59

access: readwrite <: readonly

Element property

for properties p1 and p2:
p2.tags[′access′] <: p1.tags[′access′]

∧
{

p2.type <: p1.type if p1.tags[′access′] = readonly
∧p2.type = p1.type if p1.tags[′access′] = readwrite

⇒
p2 <: p1

For elements in other traits, the rules are direct equivalents of subtyping
defined for their meta-types.

3.4.2 Examples of Frame Comparison

In this section we show examples of some common differences between
components that can be encountered in the real world. The examples use a
simple addressbook application components; we omit protocol declarations
here to keep the code examples short. The impact the differences have on
component substitutability are discussed in Chapter 5 below.

First, a baseline set of declarations is specified. Then we introduce chan-
ges on the level of component, referenced types, or both. The differences
discussed are, in the order given: a simple set of changes on the compo-
nent level that lead to the generalisation difference, a contravariant (sub-
type compatible) change that includes changes in referenced types, and a
subtype incompatible change.

Baseline Declarations

The following CDL source declares the necessary data types, and two inter-
faces provided by the FAddressBook component.

/** Data types */

typedef short PID;
typedef sequence <PID,1000> ListOfPID;

struct Person {
PID Id;
string Name;

};

struct Address {
string Street;

60 Chapter 3. Analysing and Classifying Specification Differences

string City;
string<10> Phone;

};

/**
* R/W access to address book data
*/
interface IAddressBook {
PID addPerson(in Person data);
void delPerson(in PID person);
Person getPerson(in PID person);
Address getAddr(in PID person);

};

/**
* The component which encapsulates address book
* manipulation on the data level.
*/
frame FAddressBook {
// [revision C1]
readonly property long maxSize;
provides:
IAddressBook book;

requires:
::sys::IFileAccess files;

protocol:
(?book.addPerson { !files.write } +
?book.delPerson { !files.write } +
?book.getPerson { !files.read } +
?book.getAddr { !files.read })*

};

The representation of C1 = FAddressBook in the ENT data structures
(the component element set) is EC1 = {book ,files,maxSize,nil(protocol)}
where

book
name = book, type = IAddressBook, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

files
name = files, type = ::sys::IFileAccess, tags = ∅,

3.4. Comparison of SOFA Component Specifications 61

metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

maxSize
name = maxSize, type = long, tags = (access,readonly),
metatype = property, inh = ∅,
classifier = ({feature}, {data}, {provided},
{instance}, {mandatory}, {multiple},
{all})

nil (protocol)
name = nil, type = (repeat protocol definition), tags = ∅,
metatype = protocol, inh = ∅,
classifier = ({quality}, {operational}, {provided, required},
{type}, {mandatory}, {na},
{development, assembly, runtime})

Example 1: Trivial Gen Change

The following CDL specifies a component which is a generalisation of C1.

/**
* The component which encapsulates address
* book manipulation on the data level.
*/

frame FAddressBook {
// [revision C2]

// property maxSize removed
provides:

IAddressBook book;
requires:

::sys::IFileAccess files;
::sys::IDbAccess db; // added

protocol:
(?book.addPerson { (!files.write + !db.insert) } +
?book.delPerson { (!files.write + !db.insert) } +
?book.getPerson { (!files.read + !db.select) } +
?book.getAddr { (!files.read + !db.select) })*

};

The ENT representation of the revision 2 of FAddressBook is EC2 =
{book , db, files, (protocol)} where

62 Chapter 3. Analysing and Classifying Specification Differences

book
name = book, type = IAddressBook, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

db
name = files, type = ::sys::IDbAccess, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

files
name = files, type = ::sys::IFileAccess, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

nil (protocol)
name = nil, type = (repeat protocol definition), tags = ∅,
metatype = protocol, inh = ∅,
classifier = ({quality}, {operational}, {provided, required},
{type}, {mandatory}, {na},
{development, assembly, runtime})

When compared to C1 it is clear that in C2 the property was removed,
and a required interface was added. Regardless of types and tags of these
two elements, such changes constitute a generalization difference (the types
and tags of other elements as used in the comparison have not changed).

Example 2: Another Component

In the second example, the scenario is to compare the FAddressBook com-
ponent with a different one Cd, possibly from another component provider.

typedef short TPersonID;
typedef string TName;

struct TPersonData {
TPersonID id;
TName name;

};

3.4. Comparison of SOFA Component Specifications 63

struct THomeAddress {
TName street;
short number;
TName city;
string<10> phone;

};

typedef sequence <TPersonID,1000> ListOfIDs;

interface IAddrManagement {
TPersonID addPerson(in TPersonData data,

in THomeAddress addr);
void updatePersonAddress(in TPersonID pid,

in THomeAddress addr);
void delPerson(in TPersonID person);
TPersonData getPerson(in TPersonID person);
THomeAddress getAddr(in TPersonID person);

};

frame CoAddrManagement {
// component Cd
provides:

IAddrManagement book;
readonly property long maxSize;
protocol:

(?book.addPerson + ?book.delPerson +
?book.updatePersonAddress +
?book.getPerson + ?book.getAddr)*

};

In this situation, the analysis of element sets EC1 and ECd
shows that

the Exports category of Cd has the same number of elements as that of C1,
and that Cd needs less than C1. This suggests possible Cd � C1 and, as the
names of exported elements are equal, we can proceed to the comparison
of types.

The maxSize property is exactly the same. The comparison of the pro-
vided interfaces IAddrManagement and IAddressBook reveals, that the for-
mer is a subtype of the latter — it has an extra method and the types used
in the rest are the equivalent (using SOFA CDL subtyping rules).

We can therefore conclude that Cd � C1, or in terms of difference clas-
sification, diff (C1, Cd) = specialization.

64 Chapter 3. Analysing and Classifying Specification Differences

Example 3: Standard Evolution

This last example attempts to analyse a more realistic case of component
evolution. The developers in this case corrected a few problems found in
the data types, and added a new interface to provide a read-only access
to the data. At the same time, the component implementation newly uses
database to store the addressbook contents, therefore a new dependency
(required interface) is declared.

typedef short PID;
typedef sequence <PID,1000> ListOfPID;

struct Person {
PID Id;
string FirstName; // name changed
string Surname; // added
string Nick; // added

};

struct Address {
string Email;
string Street;
short Number;
string City;
string Phone; // changed

};

interface IAddressBook {
PID addPerson(in Person data);
void delPerson(in PID person);
Person getPerson(in PID person);
Address getAddr(in PID person);

};

/* R/O and search access to address book data,
* duplicates some of the IAddressBook methods.
*/
interface IAddressSearch {
Person getPerson(in PID id);
Address getAddr(in PID id);
ListOfPID findByName(in string Name, in string Surname);

};

3.4. Comparison of SOFA Component Specifications 65

frame FAddressBook {
// [revision C3]
readonly property long maxSize;
provides:

IAddressBook book;
IAddressSearch find; // added

requires:
::sys::IFileAccess files;
::sys::IDbAccess db;

protocol:
(?book.addPerson { (!files.write + !db.insert) } +
?book.delPerson { (!files.write + !db.insert) } +
?book.getPerson { (!files.read + !db.select) } +
?book.getAddr { (!files.read + !db.select) } +
?find.getPerson { (!files.read + !db.select) } +
?find.getAddr { (!files.read + !db.select) } +
?find.findByName { (!files.read + !db.select) })*

};

In this new revision of the FAddressBook (denoted C3 here), the Person
type was enriched by a missing field and the Address type was amended to
accommodate international phone numbers. Additionally, a new interface
is required because the component wants to store the data in a database.

The ENT representation of this revision of FAddressBook is EC3 =
{book , db, files, find , maxSize, (protocol)} where

book
name = book, type = IAddressBook, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

db
name = db, type = ::sys::IDbAccess, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

files
name = files, type = ::sys::IFileAccess, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {required},

66 Chapter 3. Analysing and Classifying Specification Differences

{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

find
name = search, type = IAddressSearch, tags = ∅,
metatype = interface, inh = ∅,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

maxSize
name = maxSize, type = long, tags = (access,readonly),
metatype = property, inh = ∅,
classifier = ({feature}, {data}, {provided},
{instance}, {mandatory}, {multiple},
{all})

nil (protocol)
name = nil, type = (repeat protocol definition), tags = ∅,
metatype = protocol, inh = ∅,
classifier = ({quality}, {operational}, {provided, required},
{type}, {mandatory}, {na},
{development, assembly, runtime})

Because the Address type is used both as in and out parameters in the
methods of IAddressBook, these natural changes lead to a mutation of the
IAddressBook interface. Together with the addition of a required interface
this means that C3 4 C1.

3.5 Discussion

We have described a method for comparing component interface specifi-
cations that fulfils the desired properties defined at the beginning of the
chapter. Here we summarise its advantages, disadvantages and the issues
that remain open.

3.5.1 Advantages

First of all, an important characteristics of the specification comparison me-
thod is its independence of the physical representations of the components
compared. This is a key difference to the approach used by e.g. DCE inter-
face compatibility, which compares the binary representations of interfaces,
and DCOM, which does not allow any change in interface specifications.

3.5. Discussion 67

Secondly, we believe our approach to component comparison provides
an important contribution because it defines the foundational subtyping
rules for parts of type. This is a difference to standard type systems which
treat type as an unbreakable unit. The advantage of our approach is the
possibility to interpret the subtyping results depending on context. It also
allows us to omit parts of the component type from the subtyping com-
parison, should we wish so for some reason (see e.g. the notion of partial
substitutability defined in Chapter 5).

Our method is designed to be open to extensions because it defines
the comparison at a meta-model level. In particular, it is easy to incorpo-
rate new meta-types of elements in component specification — the method
defines the component subtyping relation as a composite function, using
the role classification of elements in determining contravariance. Thus we
believe we have in fact created a comparison framework, rather than a single-
use method, that can be used on many component models. This is similar
in approach to [SC00] who define standard contravariant subtyping for the
ComponentJ language. Their definition of component type (R ⇒ P) in
principle allows any type to be part of the R and P sets.

Using the ENT model, the method gives comparison results in a format
that is easy to understand and interpret by humans — see Figure 3.6 on
page 54. The straightforward classification of differences makes it easy to
visualise them, e.g. in a tool that would show the side-by-side comparison
of the specifications. Users can start at the coarse granularity of differences
between categories, and dig into the lower levels to find details. This is
important for quick and accurate interpretation of the comparison results.

On the more fundamental side, the results of the comparison are a basis
for the ENT-based re-definition of the subtyping relation on components.
The notion of strict compatibility defined in Chapter 5 effectively embodies
this relation.

3.5.2 Disadvantages and Open Issues

The generality of our specification comparison method however points to
its most important weakness: it depends on ENT model structures and
subtyping rules being defined for the given specification language.

While it is usually not very difficult to develop these prerequisites even
for specification languages that lack them, it adds to the amount of work
needed to use the method. Additionally, there may be problems in defin-
ing the subtyping rules for some systems. The carrier language mapping
problems discussed above show that this may not be a simple task in real
world scenarios.

A possible weakness of our method is the use of the restriction operator
in the comparison of the Ties category. It may result in disregarding parts

68 Chapter 3. Analysing and Classifying Specification Differences

of the component specification which are important for its environment.
For example, let’s consider the components with the specifications in Fi-
gure 3.7. Their comparison will determine that C2 � C1 but the required
ordering of outgoing calls can be important for the components that bind
to C1’s required interfaces. The standalone component comparison will in
such case fail to prevent run-time errors when C2 is used in place of C1.

frame C1 {
provides:

InterfaceX x;
requires:

InterfaceA a;
InterfaceB b;

protocol:
?x.foo { !a.bar ; !b.qux }

};

frame C2 {
provides:

InterfaceX x;
requires:

InterfaceA a;
protocol:

?x.foo { !a.bar }
};

Fig. 3.7: Frame specifications with different ties

Future specifications may include global rules for application consisten-
cy and semantics, to which a component must conform. Such rules will
require that the comparison handle the interplay of the per-component se-
mantics with these global rules. At present, the method described in this
chapter does not consider global rules.

Of course, our comparison method depends on the existence of spec-
ifications — component features and properties that are not included in
the specification cannot be compared even though they may be important.
This issue is treated by the global simplifying assumptions of the work.

3.6 Summary

In this chapter we have presented a method for comparing ENT data struc-
tures derived from component specifications. Its design is driven by two key
factors: to honour language type system so that the results can be reliably
used in automated component management, and to reflect human view-
point in presenting the differences found.

The comparison uses the typing rules for the given specification lan-
guage in element comparison. The aggregation rules for trait and category
creation then drive the comparison of these levels. On the level of who-
le components, the Role classification facet is used to distinguish elements
with covariant and contravariant roles. The actual carrier language used to
implement the components may however complicate the rules.

As an example, the implementation of the comparison for SOFA CDL
was presented. This entailed the creation of so-far nonexistent subtyping

3.6. Summary 69

rules for the language together with ENT-related amendments. A proto-
type implementation of this comparison was created for both SOFA CDL
and CORBA Component Model IDL3 specification languages. The proto-
types allow to compare the contents of two specification files and display
the differences found between the components declared in them.

The method presented in this chapter is a key part of the work of this
thesis as it forms a basis for its main results presented in the following chap-
ters: a consistent revision identification scheme for components (Chapter
4), and evaluation of their substitutability (Chapter 5. The use of the ENT
model together with run-time component management structures creates
some interesting possibilities compared to standard subtyping methods.

Chapter 4

Revision Identification Scheme
for Components

Any piece of software that is successfully used for a period of time under-
goes a series of changes — bug fixes, maintenance releases, enhancements.
Software components are no exception. It is therefore important to be able
to distinguish the resulting different versions of the same component.

This chapter describes a revision identification scheme suited for black-
box software components. The need for such work is given by the fact that
none of the current industrial strength component frameworks (CORBA
Component Model, DCOM/COM+, EJB) as well as the various research
frameworks (Darwin, Rapide, SOFA, Fractal) provide a systematic approach
to component versioning. In addition, the version identification schemes
used in version control tools are not standardised and are not suitable for
determining the compatibility of subsequent revisions (see Figure 4.1). We
believe these deficiencies already create problems in smooth upgrades of
existing component-based software systems.

/**
* $RCSFile: AdrBookExample.cdl,v $ $Revision: 1.2.2.2 $
*/
frame FAddressBook { ...

Revision: 1.2.2.2 means “this is the second change to this file on a branch
created from the second revision on the trunk.”

Fig. 4.1: Meaning of revision identifiers in RCS-based systems

Our goal in this endeavour is to reconcile the sometimes conflicting
needs of two kinds of players in the software component industry — the
human developers and their automated tools. The developers are primarily
interested in knowing what versions of an component are available and
what has changed between any two of them; for this they need primarily a

72 Chapter 4. Revision Identification Scheme for Components

concise, readable version identifiers and indication of the changes.
The automated configuration and deployment tools need to decide

which component version to use for the desired configuration and how
component changes impact the possibility to substitute one component ver-
sion (in the given environment) by another one. This requires that the
version and compatibility information be in a precise, standard, machine-
readable format.

With these general needs in mind, we designed a versioning scheme
that uses component specification as its subject. It is based on the generic
ENT model view of software structure (Chapter 2) and on the classification
of differences presented in the previous chapter. The main novel idea of
our approach is that the revision numbers are derived automatically from
the results of component type comparison. This leads to a clearer relation
between (changes in) parts of the specification and parts of the revision
identification, shown in Figure 4.2.

frame FAddressBook
[@rev = 3.2.1]
{ ...

@rev = 3.2.1 means “since the first release (1.1.1) of this component, its pro-
vided parts have have changed two times, required once, and ties have been left
unchanged.”

Fig. 4.2: Meaning of ENT-based revision identifiers

The text of the chapter describes first the motivation for a component
versioning scheme. The main part covers the various levels of revision
markings and their properties. Section 4.5 describes the implementation
for the SOFA system, including the issues of branching and variant descrip-
tion. The chapter ends with a discussion of the strengths and weaknesses
and a summary of the findings.

Overview of Versioning and SCM Terms

For a clarification of terms used, this paragraph provides an explanation
of terms related to versioning. It is based on common understanding used
by the software configuration management (SCM) community, contained in
works by Tichy [Tic94], Conradi and Westfechtel [CW98] and others.

• branch is a separately identified line in the evolution of a software
element, consisting of one or more successive revisions;

• revisions describe the evolution of a software element in time;

4.1. Issues in Component Versioning 73

• variants denote alternate implementations of a particular revision with
different properties (semantics, storage vs. speed requirements, etc.);

• a particular version (of a software element) in a SCM-specific mean-
ing is its concrete realization that can be uniquely described by the
combination of branch, revision and variant descriptions;

• configuration is a set of software elements (in concrete versions) that
together forms an application or its part.

• revision number is an unsigned integer which is incremented whenever
the related software element is changed.

There is one consequence of this understanding of terms — the branch-
es, revisions and variants form a hierarchy. A component identified by na-
me (which in effect denotes a version set) has one or more branches, one
branch consists of one or more revisions, and one revision is a set of one or
more variants.

This assumption is important for our work because the relation between
revisions and variant reflects the relation between component specifica-
tion and the implementation(s) derived from it. This allows us to define
specification-based revisions in Section 4.2 below.

4.1 Issues in Component Versioning

There are several key considerations that a component versioning scheme
must care for.

Scope Component versioning is concerned with assigning version identi-
fication to the whole software component. In particular, it is to be used for
describing released components, not for versioning during development,
and should therefore consider the needs of component trading, deploy-
ment and updating.

Granularity of versioned elements Components are often coarse grai-
ned elements that are developed, traded and used as atomic entities. How-
ever, they provide or require several interfaces and possibly other features.
These features as well as related datatypes obviously undergo changes dur-
ing component evolution.

It would be therefore useful if the versioning scheme would work at a
finer granularity than that of a whole component. Ideally such scheme
should also provide versioning of the individual interfaces and even struc-
tured data types.

74 Chapter 4. Revision Identification Scheme for Components

Support for automation Perhaps the most important aspect of compo-
nent versioning, from our point of view, is that it has to support automated
processing. This means that it must be possible to create, query and match
version descriptions in a way that is least obtrusive to users.

The component developers could be relieved from assigning version
numbers because there is no technical reason for manual identification of
revisions — the scheme should be analogous to e.g. RCS-based systems.
This of course does not affect the provider’s freedom to assign marketing
version numbers.

Identifying branches and variants however will probably still remain
largely a manual process as it is essentially based on classification according
to pre-selected criteria.

Relation to substitutability A versioning scheme suitable for compo-
nents should enable the tools to reliably detect whether there is a new-
er/older version of the component at hand (a typical role of traders) and
whether it can substitute the currently used component.

That is, the link between versioning and update should indicate where
are the differences between versions and how they affect substitutability.
Additionally, there should be support for the common task of finding an
appropriate version of a component that would match a currently existing
architecture. Unless done manually, both of these tasks require the exis-
tence of version and change description with well-defined structure and
contents.

Version families Due to the coarse grained nature of components we
can expect that a given component will exist in relatively few revisions and
variants. This means that from the users’ point of view the version informa-
tion need not cater for large version families. In particular, we expect that
branching and merging should not be an important issue in component
versioning.

Readability The scheme should not compromise readability despite its
support for automation. The versioning should not be repelling to normal
developers and should, and if need be, offer the possibility to create the
version descriptions by hand. (One of the motivating aspects was to develop
a system which does not require the use of unreadable UUIDs in the COM
or DCE style.)

Additionally, because components are black-box units, their version des-
cription needs to be accessible outside of the component for the purposes
of searching, trading and deployment. We thus need a suitable meta-data
to contain the versioning information.

4.2. Specification-Based Revisions 75

4.2 Specification-Based Revisions

In line with the fundamental positions of the thesis, we design our ver-
sioning scheme to use component specification as the primary object of
versioning. At the same time, the specification provides the source data
used to compute the revision identification.

This approach is motivated by two considerations. The first one is our
general aim to use already existing data, rather than to introduce a need
for manual entry. The second reason is the observation that component
revisions are a result of changes that often manifest in the component spe-
cification.

4.2.1 Types of Changes Between Revisions

The changes between component revisions are incurred by the need to fix
a bug, or to enhance the software in some way. In general, the change to
a software component can be (in order of the increasing influence on its
compatibility with the previous versions):

• internal (implementation) — no visible change in the interface or
behaviour. Clients can use the new version without adaptation, except
perhaps that they can trip over unspecified semantical properties.1

• semantic (behavioural) — the structural features on the interface are
unchanged, the semantic properties differ (e.g. timing, state transi-
tions, protocol). Whether a client can use the services of the element
with the new behavioural characteristics is on its discretion.

• external (interface) — the component’s interface is changed. Whet-
her a client of the previous version can use the new one depends on
the nature of changes, the probability is that if the new version is not
a superset of the old one, problems will occur.

It can be seen that the latter types of changes subsume the former ones,
i.e. that behavioural changes lead to internal changes, and that external
changes lead to both behavioural and internal changes.

We observe that changes are often manifested in the software specifica-
tion which is in particular true for software components. Our versioning
relies almost completely on this fact. The internal changes may be reflect-
ed in the N category of specification traits, the external changes should be

1 In this thesis, we assume a “nearly ideal world” — the software elements really do what
they promise in the specification, and the specification reveals as much as possible about
the component. In these assumptions we are inspired by existing languages like Eiffel or
SOFA CDL, and by our hope that in future more such well-designed languages will be in
use for the sake of software robustness.

76 Chapter 4. Revision Identification Scheme for Components

reflected in the E category. The behavioural changes may show in the E or
T categories provided the appropriate semantic specification is available.

The distinction between internal and behavioural change is thus based
on the semantic specification available: if a change occurs in a semantic
property captured by the specification (category T) then the change can be
detected as behavioural by automated tools.

4.2.2 Relating Changes and Revision Identification

In the “real world”, the changes classified above usually result in a change in
the version (revision or variant) identifier of the affected software elements
or components. Depending on the versioning system in use, the change in
the version identifier may in some way hint the importance of the change.
These paragraphs provide a digest of the current practice based on various
sources — the DCE and Java systems, the RCS-based tools, the Debian
Linux package versioning scheme, and assembly versioning in Microsoft’s
.NET framework [Rig02, Pet95a, Tic85, Ber90, J+03, Cor02].

Most systems use a two- to four-number revision identification scheme,
which we call here the “M.m.µ” (major, minor, micro) scheme. Major en-
hancements (evolution and perfective maintenance, i.e. adding features)
lead to external changes and are obviously accompanied by internal and
behavioural changes. These enhancements are often indicated by changing
the major version number(s) and/or giving the software a different market-
ing name.

Minor enhancements (preventive and adaptive maintenance, e.g. sup-
port for new hardware or media types) and bug fixes (i.e. corrective main-
tenance) lead primarily to internal changes in the implementation. How-
ever, in current practice there is no clear classification of what constitutes a
“minor enhancement” with respect to changes in the component interface.
These enhancements usually lead to some modifications of minor and/or
micro revision number(s).

4.2.3 Our Approach: Specification-Based Revisions

The component versioning approach presented in this chapter attempts to
change this fuzzy situation by linking the component revision identification
to the information about exactly which parts of the specification are affected
by the change between revisions.

This idea of using information obtained from syntactical analysis of soft-
ware source for its versioning was used in the Gandalf system and its un-
derlying SVCE versioning environment [HN86, KH83]. Compared to their
approach we provide a scheme which is language-independent and which
is well suited for coarse grained software elements.

4.3. The ENT Revision Identification Scheme 77

Additionally, to provide an answer to the novel issues of component
versioning, our scheme aims to be precise in the format and meaning of the
revision identifiers. This lead us to the use of the ENT model and ENT-
based specification comparison (described in the previous chapter) in the
process of defining and practical implementation of the revision scheme.

In turn, this means that our revision identifications have a very close
and well-defined relation to the structure of the specification it describes.
We therefore call it specification-based revisions.

Definition 4.2.1 (Specification-based Revisions) A specification-based re-
vision marker is an ordered tuple (r1, r2, ..., rn), ri ∈ N assigned to a single
revision of component specification such that

• each ri has a one-to-one relation to a well-defined part of the specification;

• the union of all ri covers the whole component specification.

A (specification-based) revision identifier is a human readable form of revision
marker. It has the form of a string “r1.r2.rn”, for which a mapping
between the positions in the marker and positions in the string is defined.

The term revision identification refers to markers and identifiers collectively.

4.3 The ENT Revision Identification Scheme

This section describes the details of our scheme for component revision
identification. It attempts to break new ground with its approach to the
creation and meaning of the revision identifiers. At the same time it is
intentionally very straightforward and strives to follow established conven-
tions so that its results fit neatly in current mainstream versioning systems.

The usage of the ENT model provides us with the opportunity to create
revision identification at several levels of abstraction, rather than a single-
level scheme. In this process, higher (abstract) levels — which are useful for
human understanding — can be derived from lower (detailed) ones, which
have a clear correspondence to individual parts of the specification.

We now present the individual levels of ENT-based revision identifica-
tion, starting from the most detailed one. The revision number of a speci-
fication part is in the following text denoted rev(ξ) where the ξ stands for
either a trait, a category or the whole specification.

4.3.1 Detailed Revision Identification

The lowest level of revision markers is designed to provide the most de-
tailed information about the evolution of the component specification. In

78 Chapter 4. Revision Identification Scheme for Components

the ENT model, the finest grain is provided by the specification elements.
However, to version each element separately would result in too much in-
formation which would be too volatile — elements come and disappear as
often as they change. Element-based revision marker would thus have a
variable number of elements, and thus would not be practical for identifi-
cation purposes.

We therefore need to start with structures that are not too numerous,
have fixed number of elements, yet are on a relatively low level of abstrac-
tion. The nearest such structure in the ENT model are specification traits.
In the detailed revision marker, each specification trait is thus assigned a
single revision number. The semantics of this number is that at first com-
ponent release it has the value 1 (one), and at each subsequent release it is
incremented if the trait has changed in some way.

Definition 4.3.1 (Detailed revision identification) Let us have two immedi-
atelly subsequent revisions of a component, C1 and C2, and traits ti ∈ Traits(C1),
tj ∈ Traits(C2) such that ti.name = tj .name.

The revision number rev(tj) of the trait j is

• rev(tj) = 1 if diff (ti, tj) = init, i.e. C1 does not exist2;

• rev(tj) = rev(ti) if diff (ti, tj) = none;

• rev(tj) = rev(ti) + 1 if diff (ti, tj) 6∈ {init ,none}.

Detailed revision marker of a component C2 is a tuple RD = (r1, . . . , rn),
ri ∈ N such that ∀tj ∈ Traits(C2) ∃rj ∈ RD : rj = rev(tj). Detailed revision
identifier is a string “r1.r2.rn” where ri are the corresponding elements of
the marker.

The definition stipulates that there must exist a mapping between traits
and positions in the revision marker. This mapping is generated by an or-
der defined on traits which is arbitrary as far as the definition is concerned
— in practice it depends on the intended use of the detailed revision iden-
tification. For normal use we recommend lexicographical ordering, more
elaborate schemes may utilise the ENT classification system as shown in
the description of component marker level below.

The example in Figure 4.3 shows two revisions of a CDL specification.
The detailed revision marker in the bottom row illustrate that their parts
are closely tied to the specification: the changes in provided interfaces and
properties of the component result in a change of two revision numbers of
the revision marker. The order of traits — and thus of the marker elements
— is the default (alphabetical) one: properties, protocol, provides, requires.

2 The C2 is the first revision

4.3. The ENT Revision Identification Scheme 79

frame FAddressBook {
requires:
::sys::IFileAccess files;
provides:
IAddressBook book;
property short maxSize;
protocol: // shortened
(?book.addPerson

{ !files.write })*
};

frame FAddressBook {
requires:
::sys::IFileAccess files;
provides:
IAddressBook book;
IAddressSearch search;
readonly property

short defaultSortOrder;
property short maxSize;
protocol: // shortened
(?book.addPerson

{ !files.write })*
};

RD = {1, 1, 1, 1} RD = {2, 1, 2, 1}

Fig. 4.3: Two revisions of AddressBook frame CDL

4.3.2 Component Revision Identification

Since component specifications may contain a number of traits, detailed
revision marker may consist of too many numbers to be practical for human
reading and understanding. We therefore need a simpler description that
more closely resembles the schemes in common use which have proven to
be effective in practice, namely the “M.m.µ” system.

At the same time, there should be a clear relation of this higher-level
marker to the detailed one. This would create the desired correspondence
between the marker and the specification, and reuse already computed da-
ta. We therefore need an aggregation mechanism to distill this higher-level
markers from the trait-based ones.

Using the ENT model we find the concept of categories a natural ve-
hicle for this purpose. It has two benefits with respect to versioning. First,
it already aggregates the traits themselves and thus creating category re-
visions is straightforward. Second, equally important reason is the fixed
number of categories (in a given category set) across different components
but also different specification languages and component frameworks.

Therefore, each category of specification traits is assigned a revision
number according to the changes in its traits. For the purpose of com-
ponent revision identification we can in principle use any category set to
obtain the aggregate revision description. However, to standardise the revi-
sion marker structure we use the key categories that we described in Chap-
ter 2 — the E,N, T category set. The semantics of the resulting revision
identification is the same as for trait-based identification.

Definition 4.3.2 (Component revision identification) Let us have two imme-

80 Chapter 4. Revision Identification Scheme for Components

diatelly subsequent revisions of a component, C1 and C2, and categories Kc,Kr

such that Kc.name = Kr.name ∧ Kc.T ⊆ Traits(C1),Kr.T ⊆ Traits(C2).
The revision number of the category Kr is

• rev(Kr) = 1 if diff (Kc,Kr) = init;

• rev(Kr) = rev(Kc) if diff (Kc,Kr) = none

• rev(Kr) = rev(Kc) + 1 if diff (Kc,Kr) 6∈ {init ,none}

Component revision marker of component C2 is a triple RC(C2) = (rE , rN ,
rT), where rE = rev(Er), rN = rev(N r) and rT = rev(T r). Component re-
vision identifier is a string “rE.rN.rT ” where rξ are the corresponding elements
of the marker.

The component marker can be derived in two ways — from the detailed
marker or by analysing differences between specification categories directly.
Both methods are equivalent in terms of the revision marker produced, due
to the method of aggregating elements into traits and categories. However
we prefer to use the detailed revision marker as the source for component
one because it does not increase the complexity of its computation.

Using the E,N, T category set the component revision number defi-
nition gives us a triple of numbers. This can be easily mapped to exist-
ing version data placeholders in current component frameworks (CORBA,
COM+, .NET). As will be shown shortly, component revision identification
has therefore all the properties required on the industry-standard revision
identifiers.

4.3.3 Primitive Revision Identification

In certain cases, namely if user-defined data types need to be versioned,
the component revision markers are still overly elaborate. One reason is
that data types (including interfaces) are mostly homogeneous, meaning
they consist of declarations that would be classified into a single trait and
category. Another reason is that version numbers of types are pervasive in
the specification code and the shorter they are the better for all users of the
specification.

As the most abstract level we therefore define a single revision number
that aggregates all the previously described revision information.

Definition 4.3.3 (Primitive revision identification) Let us have two immedi-
atelly subsequent revisions of a component, C1 and C2. The primitive revision
marker of the latter component, RP is a natural number

• RP (C2) = 1 if C1 does not exist, i.e. C2 is the first revision;

4.3. The ENT Revision Identification Scheme 81

• RP (C2) = RP (C1) if ∀ti ∈ Traits(C1), tj ∈ Traits(C2),
ti.name = tj .name : diff (ti, tj) = none;

• RP (C2) = RP (C1) + 1 if ∃tk ∈ Traits(C1), tj ∈ Traits(C2),
ti.name = tj .name : diff (ti, tj) 6∈ {init ,none}.

The primitive revision identifier is a string representation “RP ” of the RP

number.

4.3.4 Cascaded Derivation of Revision Markers

As mentioned above, each revision identification can be derived either di-
rectly from specification comparison or from the markers on the lower level.
The definitions use the former approach, here we show the latter.

This “cascaded” derivation uses the following mechanism: if there is
a change (increment) in any revision number on the lower level, then the
corresponding revision number on the higher level according to the ENT
model aggregation rules is incremented. For example, if the revision num-
ber belonging to one trait in the E category is incremented in the detailed
revision identification, then the rev(E) of the component is incremented.

Figure 4.4 describes schematically this hierarchy of revision marker le-
vels and their dependencies. The notation “3,spec : 4” means “if 3 is the
revision number of ξc and diff (ξc, ξr) = spec, then rev(ξr) is 4”.

m

n

g

n

n

n

n

n

s

2,spec : 3

1,mut : 2

3,none : 3

2,gen : 3

3,spec : 4

1,mut : 2

2,gen : 3

3,mut : 4

n = none, s = spec
g = gen, m = mut

previous rev number, diff :
new rev number

Whole
- primitive rev.

Categories
- component rev.

Traits
- detailed rev.

Elements

Fig. 4.4: Derivation of Revision Data

82 Chapter 4. Revision Identification Scheme for Components

4.4 Properties of ENT Revision Identification

In the preceding paragraphs we described the scheme of revision identifica-
tion suitable for components. It remains to show that its revision numbers
actually behave correctly, mainly with respect to unique identification of
revisions [IEE98, CW98]3.

This behaviour can be characterised by three properties. The first one,
consistency says that the same change set, applied to a current revision, al-
ways results in a revision with the same revision marker. The second which
we call differentiation means that the derived revision of a component can-
not have the same revision marker as its predecessor. The third property
is called monotonicity meaning that the markers preserve the time order of
revision creation.

Consistency is needed for the stability of revision identifiers and their
relation to the software they describe. Differentiation is fundamental for the
identification role of our revision markers, while monotonicity for ordering
components according to their markers.

Proof of Consistency

This proof is straightforward and intuitive, and is backed by the isomor-
phism of the rev(ξ) functions. Application of a given set of changes will
always result in the same diff values for the ENT representation of the re-
visions’ comparison, at all levels of the model. Consequently, the revision
marker of the second revision will always be the same.

Note that this property may not be satisfied in case of manually assigned
revision identifiers, since different developers may interpret the applied
changes in different ways and thus assign different revision identifiers to
the second revision.

Proof of Differentiation

We show that our scheme differentiates revisions by contradiction. Assume
we have a component revision Cp and a revision Cd of the same component
for which Cp is the immediate revision ancestor, and that Cp and Cd differ
in one element.

Assume further that the two components have equal revision markers:
Rp

D = (rp
1, . . . , r

p
N), Rd

D = (rd
1 , . . . , r

d
N), Rp

D = Rd
D.

The difference in one element between Cp and Cd must, by the rules de-
scribed in Section 3.2 of the preceding chapter, lead to the same difference

3 Although the following text explains these properties on the revision markers, the same
holds for the revision identifiers.

4.5. Application of the Scheme in the SOFA Framework 83

in the traits which contain it, say ti. Consequently, diff (tpi , t
d
i) 6= none.

This means that, using the definition of detailed revision marker, rd
i

must be equal to rp
i + 1. We conclude that Rd

D 6= Rp
D, contradicting the

assumptions.
Thus the differentiation property of our revision scheme is confirmed.

It is apt to note that the scheme cannot guarantee uniqueness of revision
markers: it is easy to show that two revisions C1, C2 derived from the same
Cp can have the same revision markers even if diff (C1, C2) 6= none. The
uniqueness of version identification must thus be handled by other means,
e.g. using branch tags as described in Section 4.5 below.

Proof of Monotonicity

This proof uses induction on detailed revision markers. Assume that an
order is defined on specification traits for the given language. A change
in i-th trait of a component specification leads to its revision marker R1

D =
(r1, r2, ..., ri, ..., rn) (before change), R2

D = (r1, r2, ..., ri + 1, ..., rn) (after
change).

Using pair-wise comparison of numbers at the same positions results in
R1

D < R2
D. Thus later component revisions have greater revision identifiers.

4.5 Application of the Scheme in the SOFA
Framework

In this section we show how the ENT specification-based revision identifi-
cation scheme is used in the SOFA component framework. The interest-
ing feature of our implementation is the use of revision identifiers as an
integral part of the CDL where any user-defined type is versioned. This
allows among other options the so called “versioned dependencies” — a
component may explicitly declare that it requires a particular version of an
interface.

Different types of clients prefer different formats of revision informa-
tion: precise and rich descriptions are useful for tool use, while humans
prefer conciseness and readability. Our implementation caters for both of
these cases by providing different representation of the same revision mar-
ker in component meta-data and in the CDL specification.

The revision information is stored in two places: as part of the CDL spe-
cification of the component plus in a meta-data attached to its distribution
form. The redundancy should not create the multiple maintenance prob-
lem as the data is handled by closely cooperating tools. The meta-data is
described separately (Chapter 6); in this section we primarily describe the
CDL versioning extensions.

84 Chapter 4. Revision Identification Scheme for Components

4.5.1 All Types Have Revision IDs

The structures subject to the above versioning scheme are all user-defined
types. The motivation for this rather far-reaching step is the need to handle
the evolution of components at large. Once we allow one name to denote
multiple versions, we have to uniquely identify also all the types it refer-
ences in order to ensure the correctness of their interactions.

For this type revision identification we use (recursive) type comparison,
via the specification comparison method described in Chapter 3, to de-
tect differences between types. Except for component types (frames, which
use component revision markers), primitive revision identification is then
sufficient. To make the type versioning work, we have to use adornments
on type declarations (to declare their revisions) and add version identifi-
er when the type is referenced (to denote a unique type declaration). The
adornments are described in subsection 4.5.4, the references in subsection
4.5.5 below.

Despite all the benefits, it would be a nuisance if the developers had
to specify the version every time a type is used. And in many cases, the
“ordinary” data types do not evolve. The SOFA implementation therefore
uses default values to make type versioning simpler: when a reference to a
type without version identification is encountered, the “trunk” branch and
the most recent revision with respect to the referencing type is used.

T

C
1 2 3 4 5

1 2 3

rev

rev

Fig. 4.5: Selecting default type revision

The use of default revisions is illustrated in Figure 4.5 where a compo-
nent C references a type T . When all the revisions shown are available,
revisions 3 and 4 of C use revision 2 of T (rather than the absolutely most
recent revision 3, which would lead to type inconsistencies).

4.5.2 How Revision Identification is Derived

We have explained that SOFA revision identification is derived from the
CDL specification of the data types. The tool which generates the mar-
kers uses comparison of normalised derivation trees to obtain the source
differences.

Figure 4.6 on the facing page shows the process how the revision marker

4.5. Application of the Scheme in the SOFA Framework 85

is generated from CDL sources. The revision ID of the first revision is
obtained either from its CDL source or from component meta-data, the
description of changes is usually stored in the meta-data.

CDL diff
1strev

2ndrev

CDL

desc. of
changes

rev ID
generator

rev ID (1st rev) rev ID (2nd rev)successor

CDL
DATA

successor

[opt]

describes

Fig. 4.6: Generating Revision Identification

4.5.3 Versioning Complete: Handling Branches and Variants

As was mentioned above, revisions alone are not sufficient for component
identification — the development may occur on parallel branches, and each
revision of a component specification may have several variants differing in
the implementation.

While we do not explicitly deal with branching and variants in our work,
we offer some thoughts on the topic. We expect that branching will be
relatively rare due to the nature of components, which are coarse-grained
market entities. Their providers therefore cannot change their versions
(including branches) too often as this would adversely affect their business.
It should therefore be sufficient to use simple branch tags which uniquely
identify branches in the version family of a component.

The changes that do not manifest in the component interface (bug fix-
es and implementation changes, including different architectures of a
frame) cannot be captured by the revision identification scheme. We there-
fore need to handle them as variants of a given revision.

For variant description we find it suitable to use boolean or description
logic [Zel98] which provide means to specify variant properties in a suffi-
ciently precise manner. They are also suitable to structured representations
such as XML and URI schemes.

86 Chapter 4. Revision Identification Scheme for Components

4.5.4 Version Data in CDL

Because the developers need to know the version information of the types
(mainly interfaces and components) they use, we include revision identifiers
in the CDL specification source. To this end we designed an extension to
the original CDL grammar described below. The main emphasis of this
form is on the conciseness and readability of the representation.

This representation uses component-level revision identifiers for frame
revisions and primitive ones for all other types. The format follows the
established convention, i.e. numbers separated by dots (“3.2.12” for com-
ponent revisions, respectively “3” for primitive revisions). The conversion
from the (rE , rN , rT) triple uses the category ordering to map to positions
in this M.m.µ format. The component revision identifiers thus preserve
the benefit of showing the place of change in their structure.

The revision identifier of a type is placed in a meta-data section of its
CDL declaration. The syntactical constructs are inspired by the attribute-
based programming used e.g. in the C# language [ECM02]. An example of
the version data section is given in Figure 4.7 on the next page, its grammar
can be found in Appendix C. An extension of the standard CDL compiler
was developed which generates and manipulates this data.

4.5.5 Identification of Versioned Types

An important goal of component naming is to identify components in re-
mote repositories or run-time spaces. Distributed systems use name services
for this purpose (e.g. CORBA Naming Service, Java Naming and Directory
Services) which link logical names of components or server objects to their
(remote) implementations.

In our work on the SOFA implementation we do not explicitly deal with
these issues. Instead we provide a mechanism for component naming suit-
able for two different purposes which otherwise do not receive much atten-
tion. The first is the need to reference remote types and components in
the CDL source, the second is a desire to support automated downloads of
particular versions from remote traders.

The problem in this area stems from the need to extend the name by the
complete information needed to uniquely identify a single component ver-
sion. With independently deployed and traded components, this informa-
tion has to include the provider, name, and version of the component. The
latter consists of the branch, revision and variant identifiers (see above).

We therefore propose that type names in SOFA have the form of an URI
(Uniform Resource Identifier, [BLFM98, Fie95]). This enables us to create
structured identifiers which carry a lot of information yet remain human
readable. The URI identifiers help us to maintain our position articulated

4.5. Application of the Scheme in the SOFA Framework 87

in the Introduction, that the system should support equally well tools and
human developers — otherwise we could opt for numeric UUIDs used e.g.
in COM.

frame FAddressBook
[// meta-data section

branch=freeze1; // manually provided value
@rev = 3.2.1; // automatically generated
@diff= (spec,mut,none);

]
{

provides:
IAddressBook book;
sofa://com.notscape/ab/IAddressSearch search;

property short maxSize;
requires:

/sys/IFileAccess files;
OfficeApps/IPhoneBook#rev=2 phone;

};

Fig. 4.7: Proposed revision identifiers in CDL source

A consequence of this design is that the extended CDL can reference
any type — from different namespaces but also from different providers
and/or in different version. This is a novel but quite natural extension of
the ability to reference names in other namespaces (modules, packages, ...)
known from modern programming languages. The illustration of the URI
names is in Figure 4.7.

The format of the URI names is given by the grammar included in
Appendix C (section C.2). It uses the fragment identifier notation (‘#’) to
separate the component name (i.e. the version family identifier) from the
identification of a particular version. The examples in Figures 4.7 and 4.8
on the following page show several names that can be used in the speci-
fication of a component frame and architecture as well as the use of URI
identifiers in the SOFA CDL source.

In some cases, especially with complex variant descriptions, the URI
format becomes too long and unwieldy. To preserve the readability and
support for automation, a XML format of the identifier could be designed.
This option is described in Chapter 6 where the component versioning
information is merged with other related data to form a rich component
meta-data.

As the examples given in Figure 4.8 on the next page show, the use
of URI identifiers in CDL makes it possible to declare references to types

88 Chapter 4. Revision Identification Scheme for Components

sofa://com.borlund/school/Calcul
An incomplete absolute identifier, denoting a component in default
branch and version.

/school/Calcul#rev=3.2.4&var=architecture:3
Absolute scope name of a component in a concrete architecture.

requires: sofa://com.borlund/school/ICalc#rev=3.3.7
It is possible to specify versioned dependencies in CDL, using the
URI style of identifiers. Here we show the use of interface version-
ing, where a component frame can require a particular revision of an
interface coming from a different provider.

Fig. 4.8: Examples of proposed SOFA URI identifiers

or components from different providers or in different versions. In this
use, only the branch and revision parts of the version identification are
significant.

Second potential use of the URI component names is during the down-
loads of components from traders or remote repositories. When a client
node determines the complete identification of a required component, it
can contact its repository with the component’s URI (similarly to request-
ing a web page). This can make downloads and queries easily integrated
into current WWW-based services.

4.6 Discussion

Version identification is a standard part of software engineering practice,
ranging in granularity from approaches that version individual procedures
and types [HN86, OMG02d] to application release numbers [Bai97]. Let
us therefore discuss what are the merits and inadequacies of our approach.

4.6.1 Advantages

The results presented in this chapter provide a means to effectively create
and manage revision identification of software components. Furthermore,
it makes it possible to specify version information in component depen-
dencies (described in Section 4.5 above). This improves the composeability
and reliability of component-based configurations [BW98].

The greatest advantage of the ENT revision identification scheme is its
blend of algorithmic predictability and comprehensibility of meaning. This

4.7. Summary 89

means firstly that the way revision markers and identifiers are derived en-
sures among others their consistency — the same set of changes will always
result in the same marker. This is unlike schemes in e.g. RCS-based systems
[Tic85, Ber90] or application management systems [Bai97].

Secondly, the ENT revision identifiers convey a clear meaning to hu-
mans (developers, component users). The correspondence between the
place of change (in terms of category or trait of elements) and position in
the identifier means that by comparing the revision identifiers, they can
determine where the changes have occurred. Thus the identifiers help in
assessing the impact of change in component interface. Again, this precise
semantics is missing in current schemes.

These two aspects provide a formal backing for the standard “M.m.µ”
revision identificaion scheme. As this scheme is common in several indus-
trial component frameworks, our approach can be readily used in practice.

We would also like to point out that it can be without modification ap-
plied to any user-defined type. In fact, the SOFA framework versioning
uses it to version all user-defined data types as is shown in the next sec-
tion. The only precondition for such use is the availability of the data type
specification, which is by default satisfied in all IDL/ADL specification lan-
guages. The CORBA Component Model is similarly ready for such type
versioning (see the discussion in Related work, Chapter 7).

4.6.2 Disadvantages and Issues

When compared to the “M.m.µ” schemes, ENT revisions do not reflect the
extent of differences between revisions. (In standard schemes, the chan-
ges in lower positions mean “small change” and correspondingly in the
higher positions.) To provide such feature, we would need to augment the
specification comparison method by some characterisation of the extent of
differences, and use it in the revision marker.

Due to the ENT model structures, the revision marker abstracts away
the source of differences — even the detailed marker does not point to the
differing elements, just to their containing traits. This may make locat-
ing the differences somehow complicated. However, the detailed marker
combined with the differences at trait level should provide sufficient infor-
mation for the common cases.

4.7 Summary

In this chapter we have presented the first concrete result of the ENT-
based component structuring and comparison — a scheme for component
revision identification. It is novel in its use of grammar-based comparison

90 Chapter 4. Revision Identification Scheme for Components

of component specifications for obtaining information from which the re-
vision identification is derived. Consequently, this revision identification
scheme provides semantically rich and structurally clear identifiers. The
use of three kinds of revision markers with varying level of detail also helps
to cater for the needs of both automation tools and human readers.

We have shown that our revision identifiers preserve the standard prop-
erties of distinguishing two revisions of the same component and express-
ing the time order in which the component revisions were created. On the
practical side, they easily fit into mainstream versioning schemes, used e.g.
by CORBA or COM+.

A novel aspect introduced by the implementation is the proposed us-
age of the URI identifiers in the SOFA CDL specification. Any identifier
in the CDL grammar may in fact have the form of a URI which includes
the revision identification of the denoted object. This makes it possible to
declare versioned dependencies, i.e. references to types or components in
different versions. A proof-of-concept implementation has been developed
which creates revision markers from component comparison for the SOFA
framework.

Chapter 5

Component Substitutability and
Compatibility

The aim of software component technology is to provide means for easy
creation and modification of software systems. A frequent kind of such
modification is an upgrade, that is the replacement of an out-dated version
of a component by a more current one. An upgrade is therefore a special
case of component substitution.

The basic scenario is the standard one: we have an application consist-
ing of several interconnected components. For whatever reason we want to
substitute1 one of these components by another one, be it a newer version
or a component from a different provider. It is natural to require that the
substitution be side-effect free, i.e. that after such substitution, the whole
application must function correctly and its behaviour must be consistent
with that before the change. When dealing specifically with upgrades, this
property is usually called backward compatibility of the components.

Many approaches exist that attempt to ensure this, ranging from a-
priori tests for behavioural subtyping [LW94] to intercepting incorrect func-
tioning at run-time e.g. in fault-tolerant systems [Kop87]. The aim is usu-
ally to try all the options at hand before concluding, in the worst case, that
the substitution is undesirable.

In this chapter, we present a formal underpinning of methods which
test two components for substitutability a-priori. The goals of this part of
our work can be summarised in two points. Firstly, the methods we de-
sign should be applicable in scenarios where the component substitution is
fully automated (e.g. during remote or unattended updates of embedded
component-based applications). Secondly, we need to find a suitable rela-
tion as the basis of substitutability definition — both practical experiences
and related research [ZW97, VHT00, HL99] show that pure subtyping is
often too restrictive.

1 In this work we are not concerned whether the substitution occurs at design-time or at
run-time (usually called “update”).

92 Chapter 5. Component Substitutability and Compatibility

To some degree, these two goals are contradictory. Automation puts an
emphasis on safety, which is best achieved by the subtype relation of the
components. Yet we would like to soften this subtyping relation to gain
some flexibility. Our approach to solving this dilemma is based on the fact
that for components with specified dependencies (the N category), substi-
tutability is the property of not just the two components but includes the
environment in which they work.

The text of the chapter is structured as follows. We start by describing
the issues and options in determining whether a component can be sub-
stituted by another one; this provides the context and motivations for our
work. Section 5.2 on page 94 is the key part of the chapter – it contains
the definitions of two primary and several derived kinds of black-box com-
ponent substitutability. The results of previous chapters, mainly the ENT
model and specification comparison, are extensively used in the definitions.

Section 5.4 describes some options in the practical use of our method of
checking component substitutability in the SOFA component framework.
Then the method is discussed and compared to other similar works, and
the chapter is ended by a short summary.

5.1 Issues in Component Substitution

Before we describe the details of component substitutability and compatibi-
lity, let us consider several issues that affect our approach and the resulting
definitions.

Definition of substitutability and compatibility. From the practical view-
point, the replacement component is substitutable for a current component if
it satisfies three general requirements:

1. Present the same operational interface to its environment.

2. Read and write the same data (with respect to the place and format)
as the current one2.

3. Conform to the semantics of the current component in all interactions
in which it is engaged.

There are many definitions of substitutability that can be found in rela-
ted work. Some emphasise the need for a holistic view, arguing that substi-
tutability involves global integrity checking [Szy96]. While this is certainly
right, the complexity of such checks may be prohibitive.

2 The input-output compatibility in [LC99]

5.1. Issues in Component Substitution 93

We therefore prefer the approaches that use local solutions, which are
based on the comparison of just the components directly involved in the
substitution. These approaches are mostly based on the principle of sub-
stitutability coined by Wegner and Zdonik [WZ88]: a subtype (replacement)
component should be usable whenever a supertype (the current one) was expected,
without the client noticing it. In our approach we adopt the same definition,
and expand in some detail the aspect of linking clients to the component
subject to substitution.

With respect to compatibility, there are two views on the meaning of this
term. The “formal” one, represented e.g. by the work by Vallecillo at al
[VHT00], understands it as a mutual correspondence of interfaces (to be)
bound, so that their owners can interoperate. The “practical” one under-
stands the term as the ability of a new version (of a software application or
component) to safely substitute a previous one. This backward compatibility
thus stresses the relation to versioning.

We position our work between these two view, considering compatibility
of components to be a special case of substitutability applied to subsequent
revisions of a software component.

Means of substitutability checking. Our work is concerned with black-
box components, and therefore the checks for substitutability cannot be
based on code analysis. Instead, we have two options. First, we can use a
suite of compliance tests embedded with the component itself3 as e.g. in
the certified components research [M+01]. This may be flexible and cater
for many practical issues in substitutability checking, but depends highly
on the quality of the test suite. In reality, this approach would require non-
trivial amount of work from the component developers, contrary to the
goals of this thesis.

Alternatively, we can statically compare the available component spec-
ifications to determine whether they indicate substitutability. A number
of methods exist that can be used for this purpose – signature matching
[ZW97], comparison of pre- and post-conditions [Per87], protocol confor-
mance [PV02], and also the component specification comparison method
presented in the previous chapter.

The advantages of static checks are their fidelity — they precisely e-
valuate all of the declared aspects — and low computational demands (for
signature and many semantic specifications, they are comparable to static
type checking during compilation). In addition, this type of checking does
not interfere with the (possibly running) applications. However, it is possi-
ble only so far as the adequate declaration of surface features exists. Thus
static checks may not ensure complete configuration consistency.

3 Software testing people would use the term regression tests.

94 Chapter 5. Component Substitutability and Compatibility

In this work we use the static approach, which we prefer for its fidelity
and automation possibilities.

Who should control substitution. The substitution can be initiated and
controlled by a very diverse set of agents — component developers, system
administrators, ordinary users, and increasingly also management software
(automated and/or remote updates) [VHT00, Ore98]. The method of sub-
stitution used in any of these situations must therefore provide useful sup-
port to these agents, from reasonable default behaviour for fully automated
updates to support for manual intervention.

This diversity suggests the need for precise and sensible definition of
compatibility for substitution. This is the main topic of this chapter which
in its approach is geared towards the unattended automatic methods.

Handling incompatibilities. Since black-box components don’t provide
access to their source code, there is little room for component adapta-
tion. In the extreme cases (unattended updates, substitution run by non-
programmers) we even can’t write any adaptation code manually [Sta00].
Thus the substitutability checking methods should warn early about po-
tential and real incompatibilities and provide hints when adaptation is at-
tempted as a fix.

The use of adaptors or connectors [BP00] working on top of component
interface is a possible step in this way. However, these issues are out of the
scope of our work.

5.2 Substitutability of Components

In this section we define our notion of black-box component substitutability
and consequently specialise it to define component compatibility. We begin
with a discussion providing the rationale for our approach, and then pre-
sent the definitions of two key compatibility levels, using the ENT model
structures and their comparison described in the previous two chapters.

The principle of substitutability shows that this property does not con-
cern just the two components in question. It tells us that we additionally
need to take into account their use by clients. From the usage point of view,
changes in the provided and required parts of component interface do not
affect substitutability in a uniform way. The replacement component’s pro-
vided features should in most cases be at least the same as those of the cur-
rent one, otherwise its clients will not be able to successfully communicate
with it. However, it need not be a problem if the replacement component
has different requirements because its environment may be able to satisfy
them, i.e. to provide features to which the new dependencies will be bound.

5.2. Substitutability of Components 95

The situation is unlike most programming languages where the type
of the “replacement” object must be an exact subtype of the current type.
The reason for this difference is the more complex and dynamic nature of
inter-component relations: the bindings between the current, respectively
replacement component and its surrounding components can themselves
use subtyping relation, can be evaluated at replacement time (rather than
statically by comparing just the two components, which would be equal to
type checking in programming languages), and even adapted dynamically
to overcome discrepancies.

This observation tells us that the commonly used notion “only subtypes
are compatible” may be overly restrictive in the case of component substi-
tution in a particular context, even when no adaptation is possible. This
observation is supported by many works that attempt to provide more flex-
ible notions of subtyping [ZW97, VHT00, Nie93, FW00].

We therefore define two kinds of component substitutability that deal
with the extent to which the environment is considered: strict and contex-
tual substitutability. The following subsections provide the definitions of
these forms of component compatibility using the E, N and T categories
of traits and their comparison.

5.2.1 Strict (Subtype) Substitutability

This type provides a notion of compatibility useful for the case of compar-
ing two components alone, i.e. without any information about their actual
use. The only data which we can use in this case are component specifica-
tions. This results in a usual definition of subtyping-based substitutability.

Definition 5.2.1 (Strict substitutability) The replacement component with the
ENT representation Cr = {Er, N r, T r} is strictly substitutable for the current
one Cc = {Ec, N c, T c} if Cr � Cc, that is Er � Ec ∧ N c � N r ∧ T r/A �
T c/A where A = Names(Cr) ∩Names(Cc).

In terms of our difference classification system, this means that diff (Ec,
Er) ∈ {none, specialization}, diff (N c, N r) ∈ {none, generalization} and
diff (T c/A, T r/A) ∈ {none, specialization}.

The definition corresponds to the natural understanding: the replace-
ment component provides at least the same, requires at most the same, and
does not impose new semantic constraints. It is the same as the “common
sense” notions used e.g. by Seco [SC00] or Vallecillo [VHT00]. Based on
the standard contravariant subtyping between component types, this kind
ensures substitutability “a-priori”.

96 Chapter 5. Component Substitutability and Compatibility

5.2.2 Deployment Context of a Component

We noted in the introductory paragraphs of this chapter that substituta-
bility need not be a local property of the two components. In its evalu-
ation, we can determine the actual run-time architectural environment of
the application in which the component will be bound. This leads to a novel
“architecture-aware” form of substitutability especially suited for black-box
components.

We take into account two important aspects of the environment:

1. Which of the current component’s provided features actually have
bindings to particular required features of other components in the
given application configuration (architecture).

2. Whether the environment provides features which the replacement
component declares as required, not necessarily considering the re-
quirements of the current component.

current replaced by
N'E' HTTPClient

rev 1

HTTPClient

rev 2

HTTP(1.0)

keepalive

Simple
Sockets

HTTP(1.1)

Simple
Sockets

keepalive

XMLParser

P
a
r
s
e
r

P
a
r
s
e
r

exports

needs

ties

binding

r

C
c

C

B
r
o
w
s
e
r
E
n
g
i
n
e

s
y
s

s
y
s

B
r
o
w
s
e
r
E
n
g
i
n
e

WebDAV

timeout

Fig. 5.1: Context and Component Substitution

This idea is illustrated by Figure 5.1: the new version of a HTTPClient
component (“rev 2”) provides both HTTP and WebDAV interfaces, and
can be assembled in an application that does not use the WebDAV protocol,
or a HTTP 1.1 interface can be bound to a HTTP 1.0 required one.
On the opposite side, the new version requires an additional XMLParser
interface that is being provided in the environment by an already present
parser component.

The description of the deployment environment in terms of the ENT
model is called deployment context. It is defined as follows.

Definition 5.2.2 (Deployment context) Assume that Cc has been deployed and
is correctly functioning in an environment which contains the sets of components L
(clients) and S (servers). Let ES =

⋃
s∈S Exports(s) be the set of all elements with

5.2. Substitutability of Components 97

classifier .role = {provided}, NL =
⋃

l∈L Needs(l) be the set of all elements
with classifier .role = {required} that exist in the deployment environment.

The deployment context of the current component Cc is a pseudo-component
Cx = E′ ∪N ′ ∪ T ′, where E′, N ′ and T ′ are sets of elements such that

• ∀e′ ∈ E′ it holds that there exists an element n ∈ NL bound to an element
e ∈ Exports(Cc), and e′.name = e.name, e′.type = n.type, e′.tags =
n.tags (to preserve type information of the context), e′.metatype = n.meta-
type, e′.classifier = n.classifier and e′.classifier [“role”] = {provided}
(to preserve ENT semantics of Cc).

• ∀n′ ∈ N ′ it holds that there exists an element e ∈ ES (for which a bind-
ing to an n ∈ Needs(Cc) may or may not exist) and we set n′.name =
n.name (if binding exists) or n′.name = nil (otherwise), n′.type = e.type,
n′.tags = e.tags, n′.metatype = e.metatype, n′.classifier = e.classifier
and n′.classifier [“role”] = {required}.

• T ′ = T c/Names(Cx) where Names(Cx) = Names(E′) ∪ Names(N ′) ∪
Names(T c) is the set of names of elements relevant for the context.

The E′ set represents the subset of provided elements of the current
component that are actually bound to other components. The N ′ set rep-
resents the provided elements of other components that can satisfy the re-
quirements of the replacement one. The T ′ are the current component’s
ties that are related to the bound exports of the component and the coun-
terparts of its needs available in the context.

The definition of context deserves a few explanations. The E′ elements
use the type n.type which may be somehow unexpected. The purpose is to
compare the replacement component’s elements not to those of the current
component, but to their actual counterparts in the bindings. This exploits
the fact that the binding from n (required) to e (provided) is allowed only if
e.type <: n.type.

It can be seen that multiple choices may exist for the elements in N ′ in
case there are several elements (in one or more server components) which
satisfy the subtyping relation for n. In order to create an unambiguous set
of elements in N ′, a single element must be selected in such cases.

There are three strategies for this selection. The first one is to use an
arbitrary element. Second, select the most specialised one if a total order
can be created using the subtyping relation. Third, let the user choose
if user interaction is possible. While we would prefer the second option,
it may not be always possible (candidate elements may be mutually type
incompatible) and thus either of the other strategies will be used depending
on the circumstances.

98 Chapter 5. Component Substitutability and Compatibility

5.2.3 Contextual Substitutability

Now we can define the kind of substitutability which uses the notion of
deployment context.

Definition 5.2.3 (Contextual substitutability) Given a current component Cc

and its deployment context Cx = {E′, N ′, T ′}, the replacement component Cr =
{Er, N r, T r} is contextually substitutable for Cc (modulo renaming of elements
n′ ∈ N ′;n′.name = nil) if Cr � Cx , that is Er � E′ ∧ N ′ � N r ∧ T r/A �
T ′/A where A = Names(Cr) ∩Names(Cx).

In terms of difference classification, this means that diff (E′, Er) ∈ {no-
ne, specialization}, diff (N ′, N r) ∈ {none, generalization} and diff (T ′/A,
T r/A) ∈ {none, specialization}.

In plain words, the replacement component provides at least the same
features and qualities as are used of the current one in the context, requires
at most what is available from other components, and its ties correspond to
those of the current ones related to the replacement elements. Renaming
of context elements is necessary for those in N ′ that were not bound to
elements with role = required in Cc and which need to be compared with
the new elements of N r.

Note that among other things the definition allows downgrading of pro-
vided features and extension in the required ones, through the definition
of deployment context. For example, if Cc has its provided HTTP 1.1 in-
terface bound to a required HTTP 1.0 then this feature of the replacement
component can be downgraded to the latter one.

Intuitively, one would expect that strict substitutability implies contex-
tual. This is proven in the following proposition.

Proposition 5.1 (Strict substitutability implies contextual) Let us have two
components Cc and Cr. If Cr is strictly substitutable for Cc, then it is contextually
substitutable for Cc in any deployment context Cx .

Proof: What we need to prove is that Cc � Cx . From the definition of
context we can easily see that Ec � E′ ∧ N ′ � N c. Let us therefore consider
the ties, for which we want to prove that T c/A � T ′/A with the reduction set
A = Names(Cc) ∩Names(Cx).

It follows from the Definition 5.2.2 that Names(E′) ⊆ Names(Ec) and
Names(T ′) = Names(T c). Also, for comparing the Ties categories we may safe-
ly lay Names(N ′) = Names(N c) because the “nil” name (added for the avail-
able context’s provided elements not used by Cc) cannot be used by elements in
T c. From these assumptions we get Names(Cx) ⊆ Names(Cc) and therefore
A = Names(Cx).

Consequently, we obtain T c/Names(Cx) � T ′/Names(Cx) but this is equal
to T ′ � T ′/Names(Cx). Because Names(Cx) is neutral relative to reduction of

5.2. Substitutability of Components 99

T ′, we get T ′ � T ′ which holds by Definition 3.2.3 and therefore T c/A � T ′/A.
Thus Cc � Cx and, because Cr � Cc was assumed, we prove the claim.

This fact can be useful in certain common cases, e.g. subsequent revi-
sions of a component — we can easily prove strict substitutability at com-
ponent release, store appropriate indication in its meta-data, and use it
when upgrading the component. Only if no such indication is available the
assessment of substitutability must be carried out at the assembly or update
time.

5.2.4 Partial Substitutability

Component’s clients may be interested in the compatibility of only particu-
lar parts of the substituted component’s interface, and/or of only selected
aspects of these parts. For example, a client in a distributed system may be
able to handle changes in call semantics (synchronous vs. asynchronous),
or a user who only reads data generated by a component is not affected by
changes in its operational interface.

We therefore should allow the definition of substitutability to disregard
some aspects of the component or parts of its interface, in order to increase
the chances of substitution. This approach of abstracting away details is in
various modifications used in many works on interface matching, notably
by Zaremski [ZW97].

Orthogonally to the two types defined above we therefore define a hier-
archical system of partial substitutability levels. It gradually leaves out more
of the “unimportant” information from the compatibility assessment. The
levels were motivated by the work of Larsson [LC99]. In our definitions we
take the advantage of using the classification system defined in Chapter 2
to specify the scope considered in the evaluation.

Full substitutability All features and qualities are included in the assessme-
nt, implying that both syntax and semantics of component interac-
tions is compared.

Feature substitutability This medium level concentrates on the syntactical
aspects of the component interface. Therefore, the specification of
qualities is disregarded under the assumption that clients will be able
to adapt to changes in component semantics.

For the assessment, a subset F ⊆ Elements(S) of component element
set is used such that ∀e ∈ F : ({feature}) ∈ e.classifier .

Data substitutability The least strictness is achieved by considering only the
data features. The motivation for this level is to preserve, as the last
resort, the usefulness of data created by the current component.

100 Chapter 5. Component Substitutability and Compatibility

For the assessment, a subset D ⊆ Elements(S) of component element
set is used such that ∀e ∈ D : ({feature}, {data}) ∈ e.classifier .

As is obvious from the above, these compatibility levels constitute a hi-
erarchy: feature compatibility is a special case of full compatibility, and is a
more general concept than data compatibility.

We would like to point out that we can use combinations of substituta-
bility kinds and levels, due to their orthogonality. Thus we can require full
strict substitutability to ensure plug-in replacement, full contextual substituta-
bility for smooth upgrade of a given application, or for example contextual
data substitutability if we know there are only a few operational bindings that
we can adapt.

5.3 Backward Compatibility of Components

In the previous section we defined two kinds of component substitutability.
As the reader has noted, the definition uses the specification comparison
method described in Chapter 3. One of the consequences of the definitions
is that the names of the components are not included in the comparison.
This deliberate design allowed us to define general substitutability relation
between any two components.

As we noted in the introduction to this chapter, there is the common
case of component upgrade, where the Cr is actually a downstream revi-
sion of the Cc. This means that both of them will have the same name.
Substitutability between such two components is customarily called back-
ward compatibility.

In this section, we therefore define this notion as a simple extension of
the previous results. In particular, we combine the above substitutability
relations with the approach to component revision identification described
in Chapter 4.

Definition 5.3.1 (Strict backward compatibility) Let us have two components,
C1 and C2 with revision data assigned. We say that C2 is strictly backward com-
patible with C1 if

1. C2.name = C1.name and

2. RP (C1) < RP (C2) and

3. C2 is strictly substitutable for C1.

That is, strict compatibility uses the comparison of primitive revision
data of the components to establish the successor relationship.

5.3. Backward Compatibility of Components 101

Definition 5.3.2 (Contextual backward compatibility) We say that the com-
ponent C2 is contextually backward compatible with the component C1 if

1. C2.name = C1.name and

2. RP (C1) < RP (C2) and

3. C2 is contextually substitutable for C1.

The contextual compatibility makes it explicit that newer versions may
not be plug-in replacements for the old ones; in fact, real life sometimes
requires such incompatible changes to happen. On the other hand, in the
sequence of revisions there may occur changes to component specification
such that two distant revisions (RP (C2) − RP (C1) > 1) are compatible al-
though intermediate revisions are incompatible.

5.3.1 Redefinition of Larsson’s Compatibility Levels

Using our model of component interface, we can formalise the compatibili-
ty levels defined in some of the related works. We would in particular like to
treat here the levels described by Larsson and Crnkovic in [LC99], in effect
providing their “implementation definitions”. The subject of their com-
patibility description are components in isolation, i.e. we are using strict
substitutability.

Larsson’s behaviour compatibility considers all component’s characteris-
tics, i.e. all its specification traits. It is therefore equivalent to our full strict
substitutability as defined above.

The interface compatibility aims at preserving the interface but allows dif-
ferent implementations. It can be inferred from the article [LC99] that by
“interface” the authors mean the standard IDL-like interfaces. This level is
thus a special case of the feature substitutability defined above.

In our model this level would therefore be modelled by the strict feature
substitutability, reducing further the subset of component elements consid-
ered by eliminating elements e ∈ F : e.metatype 6= interface.

Lastly, the input/output compatibility requires that only the format of data
produced and read by the component to remain the same. In our approach
this is modelled by the data substitutability.

Our substitutability levels were to a large degree inspired by these ones.
However, the above analysis shows that — given the understanding of the
term interface as an abstract class (like in OMG IDL, Java language, etc.)
— Larsson’s levels do not constitute a hierarchy. This is because the in-
terface and input/output levels consider complementary sets of component

102 Chapter 5. Component Substitutability and Compatibility

features. In case the component interface would include data descriptions,
these three levels would become identical to our system.

5.4 Examples for SOFA Components

The SOFA component framework is an ideal platform for evaluating this
approach to component substitutability checking. It uses black-box compo-
nents with CDL specification of their surface, and provides means for au-
tomated swapping of components in applications (even at run-time). Such
environment is a good model for real-world situations which require ad-
vanced checks to ensure application consistency across substitutions.

In this section we first show examples of strict and contextual substituta-
bility using compatibility of SOFA frames (component declarations). Then
we discuss the options in determining the context, and at last briefly treat
use of our compatibility checking in component updates.

5.4.1 Compatibility of Frames

Strict Compatibility

We illustrate the strict compatibility (and consequently substitutability) on
the FAddressBook SOFA component specifications. Please refer to Chapter
3 to the full CDL declarations.

frame FAddressBook {
[@rev=1.1.1]
provides:
IAddressBook book;

requires:
::sys::IFileAccess files;

protocol:
(?book.addPerson { !files.write } +
?book.delPerson { !files.write } +
?book.getPerson { !files.read } +
?book.getAddr { !files.read })*

};

frame FAddressBook {
[@rev=2.1.2]
provides:
IAddressBook book;
IAddressSearch find;

requires:

5.4. Examples for SOFA Components 103

::sys::IFileAccess files;
protocol:

(?book.addPerson { !files.write } +
?book.delPerson { !files.write } +
?book.getPerson { !files.read } +
?book.getAddr { !files.read } +
?find.getPerson { !files.read } +
?find.getAddr { !files.read } +
?find.findByName { !files.read })*

};

If revision 2.1.2 is the Cr and revision 1.1.1 the Cc, it is easy to see and
prove that Er � Ec (the find element was added) and N r = N c. The A =
{book, files} and T r/A = T c/A (the second revision’s protocol contains
that of the first one). The second revision is therefore strictly compatible
with the first one.

frame FAddressBook {
[@rev=3.2.3]
provides:

IAddressBook book;
IAddressSearch find;

requires:
::sys::IFileAccess files;
::sys::IDbAccess db;

protocol:
(?book.addPerson { (!files.write + !db.insert) } +
?book.delPerson { (!files.write + !db.insert) } +
?book.getPerson { (!files.read + !db.select) } +
?book.getAddr { (!files.read + !db.select) } +
?find.getPerson { (!files.read + !db.select) } +
?find.getAddr { (!files.read + !db.select) } +
?find.findByName { (!files.read + !db.select) })*

};

In this case, the specialization difference in the requires trait (the added
db interface) results in the loss of strict compatibility with both previous
revisions.

Contextual Compatibility

To illustrate the method and effects of contextual compatibility checking,
consider the latter two revisions of the FAddressBook component embed-
ded in an contact-list editor.

104 Chapter 5. Component Substitutability and Compatibility

frame FContactListEditor {
provides:
IAddressBook contact;

requires:
::sys::IFileAccess files;
::sys::IDbAccess db;

protocol:
// not important

};

architecture aProvider AContactListEditor
implements FContactListEditor {
inst FAddressBook ab;
subsume ab:files to files;
delegate contact to ab:book;

};

Initially, the revision 2.1.2 of the address book is used as the ab instance
in AContactListEditor. When an upgrade to the revision 3.2.3 is consid-
ered, we see that the IAddressSearch interface is not used (bound). Also,
the FContactListEditor contains a declaration of a required DbAccess in-
terface.

Thus the changes introduced by the third revision of the FAddressBook
can be accommodated by the architecture – i.e. revision 3 is contextually
compatible with revision 2 in this case.

5.4.2 Determining Context

The context of a component, needed for determining contextual compa-
tibility, can in SOFA be determined in two places. The first option is an
“a-priori” method which uses the description of architecture, i.e. the com-
ponent interconnections on the first level of nesting. The second option is
to use the run-time information about actual component structures held by
the SOFA runtime system.

Context from Architecture

A SOFA application is (at the conceptual and declaration level) a hierarchi-
cal composition of components. Any component can be structured into a
set of interconnected subcomponents, as described by its architecture dec-
laration. Conversely, it can itself be a part of such structure of a container
component. There are two exceptions: top-level components which rep-
resent whole applications are not part of any container component, and

5.4. Examples for SOFA Components 105

primitive components at the leaves of the hierarchy are not decomposed
into subcomponents.

frame C1 {
provides:

IProvided p;
requires:

IBetween br;
};

frame C2 {
provides:

IBetween bp;
requiress:

IRequired r;
};

frame A {
provides:

IProvided ap;
requires:

IRequired ar;
};

architecture aProvider aA
implements A {
inst C1 c1;
inst C2 c2;

delegate ap to c1.p;
bind c1.br to c2.bp;
subsume c2.r to ar;

};

frame A

architecture A
delegate

bind

subsume

c1

c2

Fig. 5.2: An architecture declaration to illustrate context

The a-priori method of determining deployment context is suitable for
components which are not the top-level ones, i.e. which can be contained in
an architecture. For a (current) component C the method determines the
architectural context from the architecture declaration A in which C is em-
bedded. We use the knowledge of component interface bindings (the bind,
delegate and subsume keywords) and the specifications of other frames

106 Chapter 5. Component Substitutability and Compatibility

contained in the architecture (see the schematic example given in Figu-
re 5.2 on the preceding page).

The E′ part of the context is derived from two sources. First, the bind-
ings within the architecture are examined — the bind keyword with a C’s
provided element on one side of the binding. Second, the delegations
from the containing component’s provisions are included — the delegate
phrases which include C.

The N ′ also has two sources. First, it uses the provided features of other
components contained in the architecture, i.e. all elements in Exports(Cj)
for all Cj 6= C. Second, the required interfaces of the container are includ-
ed (to these the requirements of Cr can be subsumed). In the example in
Figure 5.2, the context for c1 is such that the Elements(E′c1) = {ap} and
Elements(N ′c2) = {c2.bp, ar}.

The N ′ in architectural context may contain a superset of what may
actually be needed by a particular Cr. This is because at time of its com-
putation we don’t know the actual Cr and thus rather take all the relevant
elements available within architecture. We also use empty names in these
elements. When a concrete Cr is supplied, the names are filled in accord-
ing to its requirements. Because a component can be part of any number
of architectures, the context pertains to the pair (C,A) — that is, a C can
have multiple architectural contexts.

The main advantage of architectural context is that it can be determined
in advance (when the architecture is created) and once for all future uses.
This saves some computational time and resources as compared to the run-
time method, for instance if used as part of component meta-data. A dis-
advantage is the limited scope of source information. If the component
framework allows bindings across the boundaries of architectures (in the
SOFA meaning) then this kind of context cannot include the parts of N ′

that are outside the boundary of A. Where this is a limitation, the method
of determining context on-demand should be used.

Determining Context on Demand

This method uses the run-time data structures of the deployment environ-
ment called SOFA node (an analogy of “deployment dock” in [H+97] or
“container” in EJB [Sun01a]).

The deployment environment maintains two kinds of data: the Run part
maintains the list of active components (loaded in memory) and is a gate-
way to data about their bindings, in the form of component architectures.
The component (or template) Repository contains all components avail-
able at the given SOFA node, including their CDL specifications. From
this information the deployment context of a particular component can be
reconstructed.

5.5. Discussion 107

The use of this method is illustrated on Figure 5.1 on page 96. The re-
placement version of the HTTPClient component requires additional XML
parsing interface and thus is not a subtype of the original one. However,
the environment contains more components than those bound to the cur-
rent version. Their provided features in this particular context contain the
interfaces needed by the replacement version.

The primary property of this method is that the context is determined
in a “just-on-time” manner: immediately before the attempted component
substitutability check, at the node where the substitution should take place.
This is both advantage and disadvantage — it provides the most complete
and accurate data for the check, but compared to architectural context may
take more time to compute. In case the component framework allows bind-
ings across architectural boundaries, this method is probably the preferred
one as discussed above.

5.4.3 Role in Component Updates

An update of a component means its replacement, at run-time, by another
version. In a prototype implementation this replacement is guarded by
substitutability checking mechanism which uses the results presented above.

The check for strict compatibility is fairly straightforward and easy to
perform, and is especially suitable for the case of upgrading the component
to a new revision. The system uses the component meta-data to obtain the
base information for the check (see Chapter 6 for detailed description). It
can then use the current architecture in which Cc is contained to establish
the bindings of the replacement component.

When the context of the current component needs to be determined,
the system may start from the architectural context if this is available. If
it is not available, insufficient for the Cr, or if it is preferred to explore a
maximum of choices, the current deployment context of Cc is determined.
With the context created, it is compared against the specification of the
replacement component, using contextual compatibility.

If Cr passes this check, the system must create a new architecture us-
ing the information from the context. In particular, it must specify the
bindings between the elements of Cr and the elements in the context that
match them. This ad-hoc architecture description is given as an input to
the relevant component builders which do the bindings.

5.5 Discussion

Let us now consider the advantages and open issues of the presented defini-
tions, as well as some practical aspects of component substitutability based

108 Chapter 5. Component Substitutability and Compatibility

on specification comparison.

5.5.1 Advantages of our Method of Substitutability Checking

Checking substitutability of black-box components using the methods pre-
sented in this chapter should bring clear advantages to substitution and up-
grades. We consider the contextual substitutability to be especially useful in
cases of big components with many interfaces, where some of them may be
optional, and in systems consisting of a large number of components.

Instead of a narrowly focused solution, we have created a generic fra-
mework for component substitutability and compatibility, applicable to dif-
ferent technologies and extensible to future developments (for instance in
the area of behavioural subtyping [LW94, VHT00]). The use of traits and
categories means the resulting substitutability evaluation will continue to
work if we modify the specification language by adding new parts of speci-
fication, or devise new classification dimensions.

On the other hand, the approach allows us to leave out parts of the
specification from the assessment. This feature can be used to loosen the
requirements on substitutability if we know we are able to handle the re-
sulting misalignments by adaptation. The result is an increased chance on
substitution, i.e. a larger set of possible replacement components. For ex-
ample if we can provide an adaptor modifying SOFA component protocol
then the protocol trait can be left out of the assessment. The re-statement
of Larsson’s compatibility levels presented in this chapter another example.

The second use of leaving out traits in compatibility assessment is the
application of the method in different phases of component lifecycle. In
particular, design-time features or properties in the component specifica-
tion will not be used at run-time. Thus they need not be considered in the
case of component hot-swapping.

In addition to the advantages of static checking noted in the Intro-
duction, the presented methods make it possible to compute the data for
compatibility assessment in advance. This can be beneficial for compo-
nents with extensive declarations, including the specification of semantics
for which comparison algorithms sometimes have substantial computation-
al complexity [PV02]. When used in conjunction with meta-data containing
pre-computed compatibility data (see Chapter 6), this checking can be done
in linear time.

5.5.2 Limitations of Our Method

Our notions of component substitutability is based purely on subtyping so
some trivial changes (e.g. parameter swapping or element renaming) mark
the components as non-compatible. This is mostly desirable since the me-

5.5. Discussion 109

thod is targeted at fully automated updates with as little additional pro-
gramming as possible. However, in many cases such non-compatible dif-
ferences can be easily handled by software adaptation. Our methods can
currently help in providing detailed information about the place and na-
ture of the changes but do not otherwise count with adaptation.

Another possible deficiency of our approach lies in the handling of se-
mantic aspects. First, such aspects often relate to the whole component
and do not fit well in the contravariant scheme on which substitutability
is based. Second, semantic and quality of service aspects often have close
relation to global architectural rules for application consistency. Although
our approach does not currently consider such global rules, it should not
be difficult to extend the notion of context in this respect.

Obviously, our methods cannot discover incompatibilities which are due
to implementation differences not reflected in the specifications. However,
this issue is outside the scope of this work (as described in the Introduction);
it can be from another viewpoint seen as a motivation for using suitable
(read: sufficiently rich) specifications.

Use of contextual substitutability assumes an ability to set-up bindings
automatically at component substitution. The key issue here is to auto-
matically bind the new required elements of Cr to the available provisions
found in the context. Although this requires suitable methods of finding
and matching the elements to be implemented in the component runtime
infrastructure, these issues are outside the scope of our work.

If the system has to determine the context and/or compare the compo-
nent specifications directly (without pre-computed comparison results), the
overhead of substitutability checking depends on the properties of specifi-
cations used. This may be substantial especially for behavioural quality at-
tributes. For example, determining SOFA protocol conformance may lead
to exponential complexity problems [PV02]. This is why we stress the pos-
sibility of pre-computing the comparison data (see the next chapter) with
the net effect of linear time substitutability checking.

As a last point, we note that in many systems it is not possible to de-
termine whether a component actually needs all the required features as
declared. For example, if the WebDAV interface of the HTTPClient compo-
nent is not used (see 5.1 on page 96), no calls will be issued on the required
XMLParser interface. Such knowledge would be useful in the definition of
context and in contextual compatibility assessment. A step in this direction
is the work of Reussner on parametrised contracts [RS02] in which the re-
lationship between provided and required elements can be established by
source code analysis.

110 Chapter 5. Component Substitutability and Compatibility

5.5.3 Compatibility and Real Life Development

We would like to conclude the discussion of our approach by giving an
example of changes which can happen in realistic development scenarios.
The example shows that there are situations which cannot be handled by
any compatibility checks based on subtyping — as an antidote to the exam-
ples given at the end of previous chapter.

Consider again the following baseline declarations from a simple SOFA
addressbook system.

typedef short PID;

struct Person {
PID Id;
string Name;

};

struct Address {
string Street;
short Number;
string City;
string<10> Phone;

};

typedef sequence <PID,1000> ListOfPID;

/**
* R/W access to address book data
*/
interface IAddressBook {
PID addPerson(in Person data);
void delPerson(in PID person);
void updateAddr(in PID person, in Address addr);
Person getPerson(in PID person);
Address getAddr(in PID person);

};

The following small changes, fairly natural and common in standard de-
velopment process, make any component that uses the new IAddressBook
interface incompatible with the old version.

struct Person {
PID Id;
string Name;

5.6. Summary 111

string Nick;
};

struct Address {
string Email;
string Street;
short Number;
string City;
string Phone;

};

The reason is clear – the Person and Address types are used both as
in and out parameters in IAddressBook methods. Therefore the changes
make the interface type incompatible with the previous version.

When compatibility is more desirable than possible clarity of the inter-
face, a partial remedy can be found: we create a separate type and cor-
responding methods for the data added to the struct Person as shown
below. This will create a clean specialization difference in the interface; the
new version will be a subtype of and thus compatible with the old one.

struct Online {
string Nick;
string Email;
string URL;

};

interface IAddressBook {
// the old methods plus
void updateOnline(in PID person, in Online data);
void getOnline(in PID person, out Online data);

};

Obviously this approach will not work in all circumstances, for example
should we desire to generalise the string<10> Phone part of the Person
type to string Phone (the second case here). Thus there will always be
room for interface adaptation methods as well as a need for manual control
over the compatibility assessment process.

5.6 Summary

In this chapter we presented a formal basis for checking substitutability
of black-box components. It is provided by the definitions of component

112 Chapter 5. Component Substitutability and Compatibility

substitutability and backward compatibility, based on our type-aware com-
parison of ENT representations of component specifications.

The strict substitutability provides a formulation of the subtyping rela-
tion on component specifications. It uses the standard notion of contravari-
ance and applies it to the specific aspects of components — the existence
of explicit declarations of the required elements and of the ties between the
provided and required parts of the interface. The ENT model lets us also
define partial substitutability levels, where the scope of the assessment is
restricted to elements with selected classification properties.

The key contribution of this chapter is the notion of contextual substi-
tutability, in which the knowledge of the deployment environment of the
current component is used. This enables us to relax the usual requirement
for a subtyping relation between the components, increasing the chances
for successful substitution. The relaxation is possible because component
programming involves the deployment phase in which component inter-
connections are [re]defined. This creates a chance to modify the subject
of the subtyping assessment, using the actual and potential bindings of the
to-be replaced component.

The practical results of the work include the redefinition of component
compatibility levels described informally in other works, and a method for
ensuring safe component updates in the SOFA framework. Also, an ex-
isting research prototype of the SOFA framework has been augmented to
include substitutability checking. It uses the implementation of component
declaration comparison mentioned in Chapter 3. (At the time of writing
this text, the implementation is not fully complete though: support for ob-
taining the necessary component specifications from repository is yet to be
provided.)

The discussion of the method emphasises its genericity which makes
it platform-independent and able to accommodate future developments.
On the other hand it confirms the standard weakness of subtyping, that
even simple changes common in software development lead to component
incompatibility; we therefore acknowledge the usefulness of on-demand in-
terface adaptation.

Chapter 6

Compatibility and Versioning
Related

In many software deployment and application installation systems the dis-
tribution packages contain meta-data which describes their purpose, ver-
sion, dependencies and compatibility information. Such meta-data is used
in what we call distribution activities — trading, installation, upgrades, de-
ployment and configuration.

In our work we are particularly interested in the installation and up-
grade phases, at the granularity of software components (rather than whole
applications). It is clear that in particular, upgrade as a replacement of
a current version by a newer one is an important activity in long-lasting
systems.

One of the key conditions for the success of these actions is that the
introduction of a new component (or a new version) does not lead to mis-
behaviour of the already existing application(s). Usually this is summed up
in the requirement that “the new component must be compatible with the
given environment”. However, the common experience of system adminis-
trators is that very often upgrading means problems — broken dependen-
cies, changes in data formats, differences in library interfaces, etc. Thus
improvements in the automation and reliability of upgrades are highly de-
sirable.

In this chapter we describe a step towards such improvement, using the
results described in previous chapters. Our approach uses meta-data which
combines revision data with indications of compatibility between compo-
nent revisions. It is used prior to the upgrade to achieve reliable and at the
same time fast substitutability checks. A key achievement is that this com-
patibility information is pre-computed once (on component release) and
stored in a form which allows the checks to run (any number of times) in
linear time.

The structure of the chapter is as follows. We first describe our moti-
vation for and approach to combining revision and substitutability data of

114 Chapter 6. Compatibility and Versioning Related

components. In Section 6.2 we introduce the general scheme for the meta-
data which embodies this combination. Next, a concrete realization which
uses XML format of the meta-data for the SOFA system is outlined. The
chapter ends with a discussion of its results and a summary of the achieve-
ments.

6.1 Relating Versioning and Compatibility

In long-lived systems, upgrades to new versions are the most likely forms
of component substitution — introducing new functionality in downstream
revisions, providing alternative variants, or patches with corrected bugs.
Therefore compatibility is most often examined on components from one
version family.

In this section we first look at the motivation for this view in more de-
tail. Subsequently we describe an upgrade mechanism which uses the close
relation betweeen version information and compatibility assessment.

6.1.1 Motivation

Component upgrade is a special case of component substitution, in which
revision N is substituted by revision N + 1 (or N + m). The difference is
that in upgrades, the new version has the same name and usually introduces
just an incremental change in its interface or implementation. It is assumed
that the upgrade does not break the consistency of the configuration.

This fact can be formulated as an intuitive rule, that “rev(a) < rev(b)
implies that b can substitute a but not vice versa.” This rule expresses the
tight relation between the compatibility of different versions of a configura-
tion item and their version identifications. It is used (implicitly or explicitly)
by many software installation systems to ensure system consistency.

In simple form, the rule leads to the plain comparison of revision num-
bers to determine substitutability. This approach, used e.g. by DCE or Java
product versioning, relies entirely on the above interpretation of the rule
and usually uses an informally defined interpretation of the revision ID
parts.

A more complex approach used by software installation systems (Linux
package management, DMI, etc.) relies on meta-data with information
about the application’s compatibility. In general, this data contains two
kinds of information – compatibility (which versions of the application the
current one can safely replace) and dependencies (which versions of other
applications must be present so that the current one can function). This
leads to greater reliability of upgrades as the data supports decisions in
several dimensions of the problem.

6.1. Relating Versioning and Compatibility 115

However, the problem of both of these approaches is that the mean-
ing of the revision IDs and meta-data is not formalised. Also, very often the
data is created manually or semi-manually by the developers of the applica-
tions. These problems result in considerable manual effort, and introduce
the potential for misinterpretation and errors.

Ensuring configuration consistency is a complex issue which involves
both structural aspects (fitting interfaces) and semantic aspects (expectable
behaviour). Reducing upgrade compatibility checks to a simple rule and
using potencially errorneous data may be dangerous as it may result in
false positives, allowing upgrades that should not happen. This issue is
even more important in the area of component-based applications which
should support automated, unattended upgrades.

6.1.2 Generic Mechanism of Upgrades

With the above motivation and previous results in mind, we can define a
mechanism for component upgrading with rigorous compatibility check-
ing. The mechanism is inspired by the above intuitive rule and the pro-
cess used by the application istallation systems. Its subject are however the
“smaller” software components which are the focus of our work.

The steps of the mechanism are as follows:

1. Decide which component in which version (Cc) should be upgraded.

2. Obtain the desired new version (Cr).

3. Check whether rev(Cc) < rev(Cr).

4. (If yes) Check whether the new version can substitute the current one
without breaking the consistency of the applications which use it.

• First check for strict compatibility.

• If it fails, obtain context and check contextual compatibility.

5. (If compatible) Perform the upgrade, i.e. replace the current version
with the new version.

In this work we are interested in the core activities of this process. In
step 3, the revision data of components as defined in Chapter 4 are used.
Step 4 uses the compatibility definitions described in Chapter 5. Steps 1, 2
and 5 are outside the scope of our work.

More discussion of these decisions is desirable. Step 3 is included pri-
marily as a sentry which prevents downgrading. In principle, we could
use any revision identification scheme which has the monotonicity proper-
ty (Section 4.4 on page 82). The ENT-based revision data however gives us

116 Chapter 6. Compatibility and Versioning Related

additional information apart from the time ordering of the versions: which
parts of the component have changed between the two revisions. Thus we
may leave out the unchanged parts from the checks in step 4, leading to
improved efficiency of the process.

In the checks of step 4, the current research and industrial systems use
either hand-written compatibility data, or attempt formal methods in the
checks. The approach we propose is an attempt to get the best of both
worlds. We believe it is important to use the type-based comparison because
it is the only way to ensure run-time safety. Nevertheless, decisions based
on meta-data are appealing in their simplicity.

As we are able to represent the results of type-based comparison by clas-
sification values (Chapter 3, Section 3.2 on page 47) we do not have to
make compromises. In our approach, the comparison is automated and
performed in advance, at the release of the given version of the component
by the provider. Its results are stored in meta-data distributed together with
the component itself, and used by the installation system in the compatibi-
lity checks.

In the following two sections, we present first the contents of the meta-
data in generic terms, and then a concrete implementation for the SOFA
framework.

6.2 Meta-data: The Integrating Element

Several current component systems [Sun01a, vdHW02] and software pack-
aging systems [Hes03] use meta-data that contain information necessary
in trading, assembly, configuration and deployment of components. Nei-
ther of these systems however supports component versioning in the way
we require, and consequently the available meta-data specifications do not
include corresponding provisions.

As we have shown in the previous section, there are compelling reasons
for such provisions. In particular it is advantageous to merge versioning
data with indications of compatibility, as both are useful during upgrades.
Component meta-data is a natural place to put such indications.

6.2.1 What the Meta-Data Should Contain

We propose that the meta-data of a given component version, Cv, contain
primarily the elements described below. Of course, there are many other
pieces of information that should or could be included. Here we will con-
centrate only on those directly related to the problem of reliable upgrades.

• Identification of the component, i.e. the name of the provider, the
name of the component, and the namespace in which it exists.

6.2. Meta-data: The Integrating Element 117

• Identification of the version, i.e. the branch, revision and variant des-
cription of Cv.

• Difference of this revision against the previous one Cv−1, i.e. the base
data for determining their compatibility.

Secondly, there are some data which we suggest should be included in
the component’s meta-data although it is not strictly necessary:

• The revision history, i.e. the path from the first release revision (C1)
to the current one.

• Differences between the subsequent versions listed in the history.

• Pairwise differences between the current version and each revision
listed in the history.

These optional sets of data can be easily reconstructed from the meta-
data of the intermediate revisions. However, these revisions may not always
be available at the place of upgrade. In such case the data would have to
be obtained from the provider on request which would unnecessarily delay
the upgrade.

Sometimes it would be beneficial to increase the accuracy of compatibi-
lity checks between distant revisions (i.e. where the revision history between
the current and the new versions contains at least one revision). For this
purpose, the meta-data should additionally contain the differences of the
current version and each historical one.

The following paragraphs describe the structure and role of these meta-
data elements in more detail.

Revision and Diference Data In the motivation part (Section 6.1 above),
we stated that it is beneficial to put the revision and compatibility data
together.

The proposed meta-data therefore contains two tuples, dENT and dT .
The first represents coarse-grained data: dENT = (RC , DC);RC is com-
ponent revision data, DC = (dE , dN , dT) where dξ = diff (ξv, ξv−1) is the
result of comparison of the E, N , T categories in the given and preceding
revision.

In other words, this is the description of revision and difference at the
category level, using the key category set E-N -T . Its primary purposes are
(1) to provide human readable revision identification, and (2) to provide
source data for strict compatibility assessment.

The second tuple, dT = (RD, DT);RD is detailed revision data, DT =
(d1, . . . , dn) contains corresponding difference information at the granu-
larity of traits (assuming the specification language of C has n traits). This

118 Chapter 6. Compatibility and Versioning Related

detailed data is included in the meta-data to provide additional informa-
tion about the place and nature of changes from the previous revision.

Component Revision History The revision history is an ordered set
H = {dENT,1, dENT,2, . . . , dENT,v−1}. It contains the category-level data
of all preceding revisions of the component.

The purpose of the history is to speed up compatibility checks of distant
revisions by computing their difference from the diff values of the interme-
diate revisions. This is done by a fairly straightforward combination of the
result of previous computation with the current value.

Let Ku,Kv, u < v be the contents of category K in the specifications of
two revisions of a component, and {dK

i , u ≤ i < v} be the differences in the
intermediate revisions Ki. Then the value of dK

v is

• none if ∀i, u ≤ i < v, dK
i = none;

• specialisation if ∀i, u ≤ i < v, dK
i ∈ {none, specialisation};

• geneneralisation if ∀i, u ≤ i < v, dK
i ∈ {none, generalisation};

• mutation otherwise, i.e. if ∃j, u ≤ j < v, dK
j = mutation ∨

∃i, j;u ≤ i, j < v : dK
i = specialisation ∧ dK

j = generalisation.

Pairwise Differences The method of comparison via revision history
described above suffers from one systematic deficiency: a combination of
the specialization and generalization differences — which in reality may still
result in a subtype relation — is always flagged as mutation. For instance, if
Cm adds interfaces I1, I2 to its Exports, and then Cm+1 removes I2, then it
is still a subtype of Cm−1. It would however be marked as type incompatible,
using revision history data alone.

The pairwise differences data is an ordered set {d1,v, . . . , dv−1,v} which
contains category-level differences between each historical revision and the
current one. Its computation is straightforward, and the data can be e.g.
stored as an extension to the revision history.

The reason for the optionality of the pairwise differences is the time
penalty it incurs. If a component has a large revision history, the computa-
tion of this data may significantly delay the release of the component. The
provider can therefore choose not to include it in the meta-data.

6.3 Use in the SOFA Framework

The previous section describes the general design of meta-data which em-
bodies the combination of component revision and compatibility informa-

6.3. Use in the SOFA Framework 119

tion. This section describes the prototype implementation in the SOFA fra-
mework. In this case, the meta-data is automatically derived by comparison
of the CDL component specifications. It is used to enable the co-existence
of multiple versions in a system, and to ensure safe upgrades including the
case of dynamic update via the DCUP mechanism.

This meta-data contains mainly version and difference data, but obvi-
ously also component name, description, references to key implementation
objects in the binary, etc. Since the primary users of this form are various
tools, the emphasis is on completeness and an easily parsed structure.

6.3.1 Metadata Formats

In SOFA, the meta-data is present in two places. The revision data is made
part of the CDL component specification by extending the grammar of the
language and its compiler. The complete data in XML format is stored in
the component distribution package.

CDL Extension We observe that declarative aspects of computer pro-
grams have become more important in recent years. Additionally, version-
ing is a key aspect of development and it is customary that programmers
put some kind of version information as a visible part of program source.

We therefore extend the SOFA CDL specification language to include
version data description blocks for each user-defined type. Thus an impor-
tant part of the meta-data is accessible to the developers and users directly
in the component specification. Details of this CDL extension are described
in Chapter 4 of this thesis and in Appendix C.

Persistent XML Format For distribution with the components, we use
a XML format for meta-data (and consequently revision data) representa-
tion. It can describe fairly complex structured data, is easibly extensible
and automated manipulation is supported by many tools. With respect to
version data, it allows us to put all levels of revision data in one place.

This representation of revision data is illustrated in Appendix C to-
gether with the complete document type definition (DTD) for the format.
The example in Section C.4 shows how the different levels of revision da-
ta can be merged with corresponding differences between the appropriate
specification parts. Moreover, the chosen XML markup results in very read-
able meta-data description.

The data contains also the revision history of the component. For com-
plete representation of the path in the revision graph, both the branch and
revision identifiers must be used. As an compromise between size of the
data and its expressiveness, we include only the component revision and

120 Chapter 6. Compatibility and Versioning Related

difference data in the history. This is sufficient for basic identification and
compatibility assessment, and detailed checks can be done on easily obtain-
able detailed data or CDL specifications.

6.3.2 Repository for Versioned Components

When versioning is enabled for components, it is necessary to enhace the
repository where they are stored. In current component systems, the reposi-
tories (as in CORBA) or containers (in EJB) are not implemented to contain
more versions of the component with the same name.

Based on the above described meta-data, we have developed a proto-
type implementation of SOFA Template Repository. It uses a hierarchical
organization of the storage which corresponds to the tree-shaped names-
pace of SOFA IDL types including their branch and revision identification.
The meta-data included in the component distribution package is read to
insert the component into an appropriate place.

Fig. 6.1: The structure of the Template Repository contents.

For its various uses, the repository provides several interfaces including
In2TR, Run2TR and QueryTR. The first one contains methods to insert com-
ponent distribution package into the repository, the second to obtain parts
of the component (the component manager and builder classes, for ex-
ample), and the last one to search repository contents to find a particular
(version of a) component.

To identify versioned components at runtime (e.g. in Run2TR methods),
a data structure called ComponentDescriptor is used. It contains the provi-
der, namespace and component name, and its version data. The contents
of this structure is read from the XML meta-data via the QueryTR methods.

6.3. Use in the SOFA Framework 121

Fig. 6.2: Key interfaces of Versioned Template Repository.

6.3.3 Component Updates with Versioning

The update mechanism which is used in the prototype SOFA implemen-
tation is also easily extensible by the compatibility checks. When a user
requests the update1 of a selected component, the SOFAnode ensures its
viability.

This is done by running the strict compatibility checks on the current
and replacement components’ version data, prior to the actual update. On-
ly if subtype relation is confirmed (i.e. the update acually means an up-
grade), the replacement is allowed. The present implemenation does not
yet include the contextual compatibility assessment.

The VersionData structure is the run-time representation of the corre-
sponding <version> part of the XML meta-data. An important operation
which realizes the compatibility check is compareTo(); it uses the revision
and difference parts of the meta-data. It is therefore here that the results

1 The SOFA term for run-time replacement

122 Chapter 6. Compatibility and Versioning Related

of this chapter — the close relation of component versioning and compati-
bility — is used at run-time.

6.4 Summary and Discussion

In this chapter, we have presented how the key results of our work — the
specification-based revision identification and compatibility assessment —
can be merged into a coherent whole. The result is a conceptual proposal
for a meta-data scheme (plus a sketch of its practical implementation) used
in checking substitutability during component upgrades.

The key achievement is the realization that meta-data can contain the
base data for compatibility checks and which can be created once upon
component release. This leads to reduced computational complexity of
these checks and consequently shortened time needed for the upgrade.

A prototype implementation of SOFA component repository has been
developed. It uses the XML form of component meta-data, can store mul-
tiple revisions of a component and allows advanced querying of the reposi-
tory contents, including the possibility to specify revision number ranges in
the search.

6.4.1 Advantages

The essential aspect of our approach is the close and well-defined relation
between revision and compatibility data. This data is automatically derived
from the component specification (which is also used to generate its imple-
mentation skeleton). In effect, the system proposed here makes component
upgrades more reliable. Its rules ensure that only type-compatible down-
stream revisions will be replaced, which reduces the probability of run-time
errors.

The automated meta-data creation relieves the developers of a work
which is usually percieved as administrative and therefore tends to be ne-
glected. Even if the data were not included with the distributed component,
the target systems may be able to reconstruct it without human intervention,
using available component specifications.

The bundling of the meta-data with the component itself has several o-
ther advantages. First, it makes it easier to maintain consistency of the who-
le component distribution system. Is also allows the coexistence of multiple
versions of a component in a repository, prevents duplicate downloads of
existing versions, etc. Last but not least, the clear relation of the structure
of the data to the parts of the specification is helpful for humans who need
to evaluate the information.

6.4. Summary and Discussion 123

6.4.2 Issues

The downside of our approach is the need to design and implement the al-
gorithms for parsing and comparing the specification, needed to generate
the revision and change data. This may not be a trivial work especially for
more complex semantic specifications.

As mentioned earlier, the pre-computed differences stored in meta-data
reduces the time complexity of the compatibility checks. However, if the
system has to determine the context and/or compare the component spec-
ifications directly, this advantage of the distributed meta-data is lost.

This may easily happen in the case of upgrading from an earlier revi-
sion (rather than from an immediate predecessor) as then the meta-data
contains only basic difference information. Also, when there is no path
from the current to the replacement component in the version graph (e.g.
parallel branches), no compatibility information is available in the meta-
data.

Chapter 7

Overall Evaluation and
Related Work

The work described in this thesis spans several areas that in literature tend
to be treated separately; as this thesis shows this is needless or even disad-
vantageous. In this chapter we will therefore consider each area in turn,
discussing works that are influential at large or were inspirative for us in
some particular point. We will also note the points of contact between these
areas.

The key purpose of this chapter is to compare our work with these re-
lated research efforts, in order to show its merits, differences and possible
weaknesses. We would further like to stress its originality in several respects:

• In our approach to component meta-modelling, we aim at generality
and relevance for human users. Existing meta-models tend to be lim-
ited in their modeling capabilities and oriented towards the technical
“wiring standards”.

• Substitutability of components is a key issue in a longer term, to which
our work provides a flexible, well-founded and practically applicable
method. Related works are mostly concerned with foundational issues
and techniques, neglecting somehow the overall picture.

• Version identification that results from rigorous modeling and pro-
vides more than just discrimination tags is another novel aspect of
our work. The research in versioning resulted in many achievements
but still does not provide good answers to the challenges of automat-
ed version identification, selection and composition.

7.1 Component and Interface Meta-Models

During the last several years, dozens of component models and several
meta-models have emerged in both research and industry. In this section

126 Chapter 7. Overall Evaluation and Related Work

we provide an overview of the meta-modelling efforts, because of their direct
relation to our ENT model and their higher importance for the develop-
ments in component programming.

7.1.1 Distilling Commonalities from Component Models

The component models implicit in the existing component frameworks
[M+95, S+95, Sun97, PBJ98, Han98, ACN02b, C+02, OMG02f], though
defined at different levels of abstraction and formalism, use a fairly con-
sistent set of concepts and vocabulary. This makes it possible to extract
common modelling features into a meta-model. Meta-models consequent-
ly allow to design components in a platform-independent manner (then
generate their implementation code for the selected framework) and to in-
tegrate the tools and technologies that use them.

Despite these compelling reasons there are few works that attempt at
creating such meta-models, or even “just” unifying specification languages
(like ACME [GMW97]) or classification systems. What we are interested in
here are abstractions at the M3 (meta-metamodel) layer of the metadata ar-
chitecture described in OMG’s Meta Object Facility specification [OMG02g,
Section 2.2].

In a good survey of early ADLs and component models by Medvidovic
[MT00], a classification system is defined for the purpose of model compar-
ison. It separates component features into the syntactical structures (“inter-
face”), semantics, and non-functional properties. This is similar to the ENT
classification system, with two differences.

First, Medvidovic does not differentiate operational and data features
(the Kind facet in our classification); we see this as an shortcoming since
the distinction between data and operational features is an important one
from both practical and theoretical point of view. Second, his semantics and
non-functional properties are in the ENT model both modeled as quality
attributes (in the Nature facet). While we admit their separation would be
a more accurate approach, the current selection of terms in the Nature
facet does not limit the use of the ENT classification system in applications
encountered so far.

The Vienna Component Framework (VCF) [OGJ02] is a unified com-
ponent model (in fact, a meta-model) that aims to support interoperability
of components from different component frameworks. Its design is based
on an analysis of current industrial component models — Microsoft COM,
Enterprise JavaBeans, CORBA distributed objects, and JavaBeans.

Despite interesting achievements on the implementation and interop-
erability sides, the design of the VCF meta-model does not offer advanced
or novel modelling possibilities. The predefined features in a VCF compo-
nent interface are a method, a property, and an event; all of them are on a

7.1. Component and Interface Meta-Models 127

too fine granularity for component modelling and development. The fra-
mework does not use any IDL, relying on naming conventions and its own
introspection mechanism in its Java implementation. As discussed at length
in the JavaBeans case study (Section A.3), we consider this a shortcoming
in view of analysis and modelling purposes.

Rastofer [Ras02] has developed a simple meta-model which is derived
directly by extracting common basic features of ADLs and major industrial
component frameworks. A component can have ports (which denote ser-
vice points, provided and required) and properties. Ports have name, type
and multiplicity, properties have name and type. The meta-model also
includes connectors and constructs for describing composite components.
An interesting aspects from our point of view is that the author defines the
conformance relation, i.e. component subtyping, on the meta-model level,
similarly to our approach (Chapter 5). The motivation is also similar — the
resulting generality of the relation.

The meta-model itself is reasonable, generic in the intent, but rather
poor in expressiveness. The only two constructs to describe features on
component interface — ports and properties — are consequently used for
rather different notions, e.g. a required port can denote a method (Jav-
aBeans), receptacle interface (CCM), or event sink (CCM). We prefer to
separate these notions in the meta-model more clearly; to this end we use
the rich ENT classification system and suggest separate language keywords
for separately classified traits.

We believe Rastofer’s model also has an incorrect understanding of the
provided-required roles. In his model, role assignment is based on the di-
rection of control flow. This leads to the classification of CCM event sources
as provided, and sinks (as well as JavaBean methods) as required features.
It is the exact reverse of our classification which is based on the role of the
element in inter-component dependencies and supported by the standard
usage in many component models including the CCM.

The consequence in Rastofer’s model is that a component event sink (its
“server” port) would require at least one event source to be bound to, and
event source (on which the component emits events at its own will) does
not need a binding to an event sink. This is contrary to both reality — it
would mean that a server needs at least one client to function at all — and
author’s own definition of the provided and required roles.

7.1.2 Meta-Models Defined as Such

The component meta-models defined as such (the “a-priori” models) are
created as a prerequisite of or a means to defining concrete component
model(s). The OMG Meta Object Facility [OMG02g] is the primary indus-
trial meta-modelling framework used today. It defines by default a four-

128 Chapter 7. Overall Evaluation and Related Work

layer (M0 to M3) meta-data architecture which is important as a generic
context of our ENT modelling research. Language-independent notations
like UML and IDL are positioned on the M2 layer, and since the ENT mo-
del generalizes from these, it is positioned on the M3 (topmost) level of the
MOF framework.

For our purposes the MOF as such is insufficient because it is an object,
not component meta-modelling framework. (The elements of the frame-
work are basically a generalization of the features offered by UML). In par-
ticular, MOF does not provide first-class constructs for components (with
separation of provided and required element roles), behavioural specifica-
tion or structured data interface elements.

The UML Profile for Enterprise Distributed Object Computing Specifi-
cation (EDOC) [OMG02h] describes the model-driven architecture approa-
ch to specifying enterprise distributed applications. In particular, Chapter
3 defines the Component Collaboration Architecture, a UML profile for
component-based modelling. It provides good modelling features and fle-
xibility in terms of current industrial standards — the component can have
ports (operational or data access poinst) of several kinds, typed properties
and also state-machine based behavioural semantics (the “choreography”
part of port protocol). A sketch of a graphical notation is included in the
specification; far from complete, this notation example can be understood
as a supporting evidence of the close link between meta-modelling and
graphical representations (cf. Section 2.5).

Despite its flexibility and elaborated features, we find several problems
in the EDOC profile. To start with, the term “component” is very loosely
defined in the specification (“something that is composable” [OMG02h,
Section 3.3.3]) which makes it difficult to interpret its meaning and relate
meta-model’s structures to concrete models. This is why in our work we
prefer to restrict ourselves to the black-box components as discussed in the
Introduction.

Concerning port types, EDOC is interesting in the distinction of three
kinds of component interfaces which include mixed in-out interfaces (“pro-
tocol ports”, similar to ArchJava ports) and data-oriented interfaces (“flow
ports”). While this may add features to models conforming to EDOC, we
believe our ENT classification system embodies a more general approach.

Our biggest technical concern with ports is their unclear (if not com-
pletely missing) relation to type systems. Since in the meta-model, ports of
any kind do not refer to their types by any identifier or association, they
have to define the type explicitly ever again by enumerating their contents.
Even the “interface” classifier as a special kind of protocol does not have
to have a name and thus cannot be referenced. This is really impractical
for component design and implementation; it even does not map to some
important component frameworks, most notably the CORBA component

7.1. Component and Interface Meta-Models 129

model.
The mixing of provided and required roles in protocol ports makes sub-

typing difficult, resulting in complications when checking component sub-
stitutability in concrete models that use this feature of the EDOC profile.
These ports additionally allow to mix the specification of syntax (opera-
tions) and semantics (choreography) without distinction by identifiers, as-
sociations or language constructs. We believe that a clear separation of
these concepts on the meta-model level is beneficial for component mod-
elling, implementation and analysis. In our work, we solve this issue by the
Nature and Role classification facets, which lead to separate component
traits and consequently to related grammar rules/keywords of a concrete
models’ specification languages.

As a last point in this subject, we note that the EDOC meta-model allows
recursive composition of interfaces. This feature adds flexibility but we have
doubts about the usefulness of such abstraction, and feel that recursively
defined ports are overly complex to understand, model and analyse. Since
none of the current research or industrial component frameworks supports
such feature, we have not included recursion in the definition of the ENT
model’s “specification element” term.

The Fractal framework [BCS02, C+02] defines both a meta-model (the
authors call it a “general model”) and one concrete model which is its spe-
cialisation. The goal of the Fractal team is to create a component model
more general than the current industry ones. To this end, the components
(called kells) in the Fractal meta-model contain a “membrane” which can
control and adjust kell’s behaviour and allows component sharing and hi-
erarchical composition. A notable characteristics of Fractal is the possibility
to pass kells through interfaces, to allow dynamic evolution of component
applications.

Concerning the component specification elements supported, the meta-
model is quite poor — a component interface consists of only interfaces
(sets of signals) and one kind of behavioural specification. Missing are
for example configuration properties and “illities” (although the related
ADL for the Fractal concrete model [Fra03] uses attributes in component
templates). On the other hand, Fractal as the only component framework
known to us makes explicit the optionality of elements at run-time by its
“contingency” tag on component interfaces. Our Presence classification
facet was directly inspired by this notion.

Finally, the meta-model described by Seyler and Aniorte [SA02] is based
on a work in the area of system engineering using reusable components.
The meta-model is unique in the separation of the data and control flow in
component description. The component interface is split into functional
(control) and data (information) parts, and orthogonally into the standard
required and provided roles. The control part contains function invocation,

130 Chapter 7. Overall Evaluation and Related Work

synchronization and resource access points; the information part contains
information input and output points.

This meta-model provides features we think the commonly known mo-
dels are lacking, and supports our position that data elements should be
specified on component interface. On the other hand, its notion of infor-
mation points is a very general concept which needs more concrete map-
ping on real objects – files, data streams, tables etc. A formal description
of the meta-model is missing, as well as a mapping to an interface specifi-
cation language or to an implementation form, which makes the concepts
found in the meta-model stand on a rather weak ground.

7.1.3 Summary

Should we summarise the topic, we would do so by observing that in the
end, all of the above meta-models explicitly enumerate the possible kinds
of component specification elements (i.e. the possible traits). The approach
we chose is rather to enumerate the properties of such elements, and let the
ENT model user create its own set of traits, forming a concrete component
model. We believe this results in much increased flexibility, openness as
well as better chances to create mappings to present and future component
models and frameworks.

7.2 Component Comparison and Substitutability

The research and practical use of comparing specifications (often called
specification matching) and evaluating component substitutability has been
going on since 1980s. Yet at present, there seem to be few works targeted
at the needs of black-box components.

In this section we will first discuss the approaches to specification com-
parison. The following parts will treat subtyping-based approaches to en-
suring substitutability and then approaches specific to black-box compo-
nents.

7.2.1 Specification Comparison and Matching

There exist two fundamental approaches to the comparison of software and
interface specifications: text-based differentiating and grammar-based me-
thods. The first ones are mainly used in versioning systems, the latter ones
in systems for software search/retrieval and in relation to language typing
systems.

The text-based methods use a line-by-line comparison of (mostly plain
ASCII) texts. This approach is most prominently represented by the diff

7.2. Component Comparison and Substitutability 131

tool found in UNIX systems and used e.g. in the rcs-based version ma-
nagement systems [Tic85, Ber90]. While it is very common in practice, its
results are inappropriate for the purposes of component substitutability e-
valuation because they do not reflect the semantics of the text compared
(e.g. changing a coding style in C source code may show as a bigger differ-
ence than more substantial changes like changing method signatures).

Our approach belongs to the grammar-based methods that use syntac-
tical analysis to extract information from the specification or source code
and then compare the results. In a similar approach, though for a dif-
ferent purpose of library function retrieval, Zaremski [ZW97] as well as
Hemer and Lindsay [HL99] use matching of specifications (function sig-
natures plus simple semantic descriptions) based on their syntactical struc-
tures and type rules. Zaremski provides relaxed matches (generalized and
specialized) that are based on an idea similar to our specialization and ge-
neralization differences.

Loosely related to these issues are also development environments that
provide syntax highlighting and/or syntax-driven editing of source code.
Although they do not provide means of handling changes or differences,
they share our view that the information available in the syntactical struc-
ture of the code should be utilised to a greater degree.

7.2.2 Subtyping-based Substitutability

The assessment of component substitutability and compatibility uses either
grammar- and typing-based specification matching, or external, in-advance
provided compatibility data. The latter approach is discussed in the follow-
ing subsection; here we treat the first group to which most research efforts
(including this thesis) belong. Their focus usually revolves around the need
to provide more flexible substitutability relation than the strict (contravari-
ant) subtyping.

In the Inscape environment, Perry [Per87] has defined strict and upward
compatibility for functions with pre- and post-condition semantics that uses
separate handling (subset comparison) of parts of the specification. Specifi-
cation matching of Zaremski and Wing [ZW97] in fact also defines substitu-
tability for functions and modules, through the goal of finding components
that are similar to, and therefore can be substituted for or bound to, a query
component.

Although highly relevant for their algorithms for change analysis, these
approaches work with declarations of too fine granularity (usually method
signatures). To indicate changes at a level useful for our goals, the data
which they produce would need to be aggregated using our notions of traits
and categories.

Substitutability is often formally expressed by the subtype relation, de-

132 Chapter 7. Overall Evaluation and Related Work

fined in (or on top of) a given language’s type system. Most industrial speci-
fication languages (e.g. CORBA IDL) provide component specification on
the signature level, for which standard contravariant subtyping is usually
used [Car97, SC00]. Some works mentioned above (Zaremski and Wing,
Perry) relax the subtyping rules in various aspects to increase the chances
of substitution.

More importantly, there is a growing body of work on behavioural subtyp-
ing [LW94] which deals with specifications enhanced by semantic descripti-
ons. Most approaches relevant to our work define subtyping rules for spec-
ifications with operation pre- and post-conditions plus object/component
invariant [Per87, Mey92], interaction trace (“protocol”) descriptions [PV02,
VHT00, RS02] or variations of finite-state machine models [Nie93, FW00].
Such information increases the reliability of substitution as the replacement
component matches the behaviour of the current one more closely. We
should add that trace/protocol descriptions are examples of interface ele-
ments that fall into the (so far scarcely populated) “Ties” category of the
ENT model.

Partially related to semantic descriptions are quality of service (QoS)
specifications. They have as yet received less attention in the research com-
munity, despite the signs that practice would benefit from such specifica-
tions [Lav02, Han99a]. The QML (Quality of service Modeling Language)
by Frolund and Koistinen [FK98] makes it possible to describe QoS proper-
ties of CORBA interfaces, which makes it an ideal vehicle for this purpose.
In addition, the authors define a conformance relation for QoS profiles and
contracts which can be used in our framework as the subtype relation. The
only problem in their proposal is the lack of information on how to link
QML specifications with the IDL syntactical structures.

Richer and more precise semantic specifications (e.g. formal notations
like B [Wor96]) receive less attention in both component research and prac-
tice. The likely reason is that they require increased effort in writing (unsub-
stantiated by comparative increase in substitution reliability in mainstream
practical situations) and their comparison tends to have high computation-
al complexity.

An example of practically used, though not formally specified, substi-
tutability based on subtyping is the Java binary compatibility specification
[GJS96]. It defines the rules for changes in interface description, resp. class
implementation that are considered compatible with respect to already ex-
isting compiled code. Java runtime then uses code reflection upon class
loading and linking to prohibit incompatible code bindings. The problem
from component-based point of view is that some of the rules are very low-
level (including e.g. the treatment of changes in names of method formal
parameters) and provide little help for substitutability of black-box compo-
nents.

7.2. Component Comparison and Substitutability 133

We would like to add two notes to the subject of subtyping-based substi-
tutability. First, the concept of reduction operation on interface elements
and categories defined in this thesis (chapters 2 and 5) is a generalization
of trace projection defined by Fischer and Wehrheim [FW00] and proto-
col restriction defined by Plášil and Vǐsnovský [PV02]. While its realization
for other kinds of elements (interfaces, boolean expressions) may be com-
plicated, these sources provide good substantiation for introducing such
operation.

Second, we have encountered only a handful of works that would link
subtyping with extensible specifications or meta-models, in order to create
a more general scheme similar to ours. In one such work, Seco et al [SC00]
use standard contravariant notion of component subtyping with the prop-
erty that their definition of component type (R ⇒ P) in principle allows
any metatype to be included in the R (requires) and P (provides) parts.

7.2.3 Component Substitutability and Compatibility

Substitutability of black-box components as such is the topic of several
(though not many) important research works. In a broader view, Szypers-
ki [Szy96] discusses the issue from the point of view of independent system
extensibility. Among other things he argues that interface specifications are
needed to enable independent extensibility.

Vallecillo et al [VHT00] is a good survey of issues in the area of substi-
tutability of components. The authors define the terms substitutability and
compatibility in a very useful way which has influenced our view. The latter
term nevertheless is understood as a mutual correspondence of interfaces
(to be) bound, so that their owners can interoperate — this is different from
our use in Chapter 5 where the motivation is to express the ability to up-
grade a particular component version.

Crnkovic and Larsson [LC99] define substitutability (termed “compa-
tibility” in their papers) specifically for black-box components, providing
several levels of relaxation: behaviour compatibility preserves the interface
as well as non-functional characteristics of the component, interface com-
patibility preserves only the functional interface, and input and output com-
patibility considers just the data which the component exchanges with its
environment. This is the first approach we know about to include the data
aspect of component interface in compatibility assessment.

However, the authors do not mention any means of determining whet-
her a component satisfies the given compatibility level. In addition, the le-
vels actually do not constitute a hierarchy of gradually looser requirements
— in Chapter 5 we show a formal redefinition of these levels and correct
this deficiency.

As mentioned above, Rastofer in [Ras02] defines component confor-

134 Chapter 7. Overall Evaluation and Related Work

mance relation at the meta-model level as an expression of substitutability;
this relation is consequently equal to component subtyping. Similarly to us,
he handles subtyping of the “tags” (in our terms), for instance port multi-
plicity. However, due to the limited generality of his meta-model the con-
formance definition lists the “tags” explicitly which would require changes
in case the model is extended.

Besides subtyping, there is also another approach to component sub-
stitutability which uses externally provided compatibility data (instead of
employing specification matching) and emphasize the role of an update
manager. As it turns out, this is usually the approach of routinely used
industrial systems.

The DCE environment [Pet95b] and Solaris/Linux libraries [BR00b] de-
fine the rules for changes in server or library interface that are considered
compatible with respect to existing clients. Both systems use a version num-
bering scheme with a mapping to these rules to express interface compati-
bility and evaluate it easily at run-time: if a client requires a server or libra-
ry and the required version number is bigger than that available (meaning
that client’s interface is a kind of subtype of the server’s), the binding is
prohibited to prevent invocations of unknown operations.

Although this approach has its merits and practical use (the idea of
relating versioning and compatibility was particularly inspirative for our
work), it is unsuitable for current state of art in component-based software.
The key problem is that the objects of comparison and versioning are bi-
nary images, which consequently leads to overly strict and counter-intuitive
compatibility rules — the standard example is DCE’s susceptibility to re-
ordering of interface operations.

It is surprising that Object Management Group (OMG) seems to pur-
sue little activity in the area of object and component substitutability. While
the Interface Repository [OMG02d] makes provision for using type ver-
sion identifiers for rudimentary compatibility checking (roughly along the
lines of the DCE rules but even less formal), this seems to be rarely used.
The recent Online upgrades Request for proposals and available reponses
[OMG01, OMG02a] deal with updates of object implementations only, i.e.
do not allow interface evolution.

In his research on systems with update managers, Oreizy [Ore98] de-
scribes the use of an evolution manager to allow flexible 3rd party compo-
nent software evolution. The manager uses a description of architectural
rules and evaluates attempted changes (adding a new component, restruc-
turing, . . .) against them. Our approach is not directly related to this one,
but we have noted that to make contextual substitutability operational the
system needs to extract the context information. Thus a component similar
to Oreizy’s evolution manager is assumed to exist.

7.3. Component Versioning 135

Some industrial software installation systems ensure the compatibility
of applications with respect to prospective upgrade – e.g. the DMI initia-
tive [Des98] or various Linux packaging systems [Bai97, J+03]. They use
structured description of the software packages which include explicit infor-
mation about required application/library versions and about compatibility
with older versions of itself. Their main disadvantage from our point of
view is that these descriptions must be supplied manually and thus may
contain errors or not reflect correctly the real properties of the application
implementation.

7.2.4 Summary

Except for several attempts, the current research of component substituta-
bility is scattered and insufficient. Type-based or behavioural subtyping of
one kind is usually assumed, and little has been done to use the advantages
of defining component substitutability on the meta-model level or consid-
ering component environment in its assessment.

In our work we try to blend the strength of proven approaches (subtyp-
ing, formally defined meta-models) with the unique opportunities provided
by component technology (the knowledge of the bindings and deployment
environment, the roles of interface elements). We believe the resulting con-
textual substitutability is an important step towards methods of substitution
which provide both reliability and flexibility.

7.3 Component Versioning

The situation with versioning targeted specifically for software components
is probably even worse than with substitutability assessment. Despite early
calls for action [BW98, Szy98], there seem to be only a few research works
on this topic and just rudimentary support in industrial systems. In the
following paragraphs we will look at the state of the art, considering also
the link between versioning and substitutability, and use of meta-data.

The survey by Conradi and Westfechtel [CW98] provide the current vo-
cabulary for the area of version management models and systems. Should
we classify our ENT-based component revision identification according to
Conradi, it would be an example of state-based extensional versioning, and
its combination with hierarchical component composition (as e.g. in SOFA)
leads to version-first selection in a total versioning scheme. Deltas are not
supported as such, rather they are abstracted using the difference classifi-
cation system.

A second survey by Estublier et al [E+02] reviews the state of the prac-
tice in the field. Its findings, among others, support our position that

136 Chapter 7. Overall Evaluation and Related Work

RCS-based revision identification scheme (by which our scheme is part-
ly inspired) is still by far the most acceptable to the software engineering
community.

7.3.1 Industrial Frameworks

Version support in current industrial component frameworks can be char-
acterised as “rudimentary, if any”. Perhaps the most advanced use is found
in Microsoft’s .NET framework [Cor02] at the level of assemblies (not .NET
components). Each assembly may declare a 4-level version “number” (the
real datatype is string) used by the Common Language Runtime when bind-
ing digitally signed assemblies. The version number is effectivelly part of
assembly identification, and it is also recorded in assembly dependencies
(stored by compiler). With respect to relation to substitutability, by default
only the assembly with exactly the same version number as recored can be
bound; however this policy can be changed.

The CORBA Component Model [OMG02f] builds on and extends the
CORBA IDL [OMG02c] and Interface Repository [OMG02d] specification-
s. In the Interface Repository, any Contained element has attribute version
which means that components (as well as all user-defined types) can be ver-
sioned. However, the specification provides no information about version
number structure and semantics.

Additionally, the specifications are unclear about the relation between
this repository version attribute and the pragma version IDL directive: the
value of the pragma is used in repository IDs but the specification does not
mandate that it be inserted into the repository. In effect, version identifica-
tions in IDL and in the repository may diverge and is practically unusable
for both version separation [SV01] and substitutability.

In the Koala component model [vO01] used by Philips, a package is
the entity closest to our understanding of the term component. Packages
are versioned, using a “M.m.p” scheme for release version identification
set by the developer. However, the papers mention just hints, not formal
rules about the meaning of the release numbers. In particular, there is no
relation to package compatibility as this is described in terms of informal
rules related to application build process.

In our opinion, the Koala model would benefit from a formalization of
its version identification. If the build system supported such formalization,
it could decide on the Koala’s “golden” and “silver” rules for component
compatibility without building the component-based applications.

JavaBeans and EJBs can use Java product versioning [Rig02] and ver-
sioning of serializable objects [Sun01c]. Both options provide a link be-
tween version identification and package/class compatibility, which is a step
forward. However, the lack of any formal definition of terms and algo-

7.3. Component Versioning 137

rithms leads again to the situation that Java versioning is at present not
suitable for any robust automated reasoning. (A more detailed discussion
can be found in [Bra00].)

7.3.2 Research in Component Versioning

Research component frameworks are usually concerned with fundamental
component modelling features and omit versioning issues. We are aware of
two research works that are directly related to our efforts.

The Ragnarok architectural configuration management model by Chris-
tensen [Chr98] relates the version numbers of components to those of the
whole configuration (total versioning in [CW98]). This includes the need
to reflect architectural changes in the version identification. Our appro-
ach uses the separation of component interface and architectural imple-
mentation, versioning only the interface part. Christensen’s work can be
used for versioning of the component implementation, e.g. via the SOFA
architecture construct.

The configuration management for component-based systems described
in [LC99] is concerned mainly with component dependencies and lack of
their explicit declarations in Microsoft COM. With respect to component
versioning, Larsson proposes a (standard) COM interface IVersion that
could be used to obtain version information at runtime. While this is a
workable solution, we find it insufficient as this information is equally im-
portant at design and deployment time to set component interconnections
properly. On the other hand, we agree with the author that “configuration
management functions should provide information about the changes on
the interface level” — Chapter 5 of our thesis provides a method that suits
this need.

Lastly, Hoek [vdH01, vdH+02] articulates the need for component ver-
sioning related to deployment. In the second paper he describes a proto-
type distributed version repository that could be used for such purposes.
Because his work is concerned mainly with the issues of release manage-
ment and changes in configuration, it does not treat versioning in much
detail.

7.3.3 Syntactical Analysis and Meta-Data in Versioning

Finally we would like to mention works that propose or use syntactical ana-
lysis for versioning and deploy meta-data for similar purposes as we do.

The SVCE and the Gandalf system [KH83, HN86] were among the first
to use information obtained from syntactical analysis of software source
for its versioning (the language-based approach to versioning according to
[CW98]) and also provided syntax-based editing environment. The prob-

138 Chapter 7. Overall Evaluation and Related Work

lem of Gandalf from our point of view is the environment was bound to a
concrete programming language. Also, it worked on elements of rather fine
granularity as compared to components and did not provide any means of
aggregating the results.

Among the industrial systems that use meta-data for component ver-
sioning are Enterprise JavaBeans [Sun97, Sun01a] and software package
descriptions [Bai97, J+03, Des98]. Especially this latter group deploys
meta-data that contains rich information about software dependencies in-
cluding version descriptions. As noted before, one of their problems from
our point of view is potential incorrectness resulting from manual creation.

In component research there are several works that hint or emphasize
the need for meta-data. For instance, in [vdHW02] it is used to track com-
ponent dependencies and support downloading the transitive closure. Un-
fortunately the description of meta-data in this paper is very vague and
(again) assumes manual work.

Last but not least, the WebDAV standard [WW98] by the World Wide
Web Consortium uses XML-based data about the managed documents. To-
gether with the URI notation [BLFM98] it provides an elegant way to u-
niquely identify objects on a global scale while retaining human readability
of the identifiers.

7.3.4 Summary

Current component frameworks treat versioning more as a marketing than
a technical issue — version numbers are assumed to be created and inter-
preted by humans (developers, users) rather than tools. In our work we
challenge this approach since we believe that components are highly tech-
nical artefacts and thus need adequate automated support, including the
configuration management issues. We add to the small body of component
versioning research a unique approach to creating and interpreting revi-
sion numbers. It is based on the rigorous notion of subtyping which results
in precise semantics of revision identifiers; at the same time, their struc-
ture allows them to be easily incorporated in currently existing versioning
schemes.

Chapter 8

Conclusion

When software component technology came on the scene after extensive
research in the 1990s, much hype arose about its potential. The hype has
gradually died down, the technology has matured (at least in some aspects),
but its forecasted widespread use ([Szy98], section 2.3) did not happen. The
work presented in this thesis is based on the hypothesis that part of this lack
of success is due to inadequate component versioning and compatibility
evaluation methods. Its results provide solutions to some of the open issues
in these areas.

8.1 Summary of Our Work

Our work is founded on the ENT meta-model of component specification.
It captures the common characteristics of component models in a way which
makes it easier for humans to analyse component properties. The elements
constituting the component specification are classified using a faceted sche-
me derived from an analysis of important component models and modular
programming languages. The two-level hierarchy of the meta-model’s ag-
gregate structures — traits and categories — facilitates both human under-
standing and automated analyses of component interface specification.

The presented specification-based versioning scheme provides compo-
nent revision identification with several unique features: multiple levels of
detail, well-defined relation to component’s structure and place of change,
and automatic derivation from results of component specification compari-
son. Its key advantages are the ability to denote compatibility between revi-
sions, to version dependencies and to become part of component naming.
At the same time, its representation should fit well into version placehold-
ers present in current component frameworks.

The proposed definitions of component substitutability and compati-
bility target the main aspect of component substitution — the fact that it
takes place in an architecture composed of interrelated components. This
is expressed by the notion of a context, utilized by the novel concept of con-

140 Chapter 8. Conclusion

textual compatibility which enables substitution even if strict compatibility
(using pure component subtyping) would prevent it. This gives the devel-
opers more freedom in making changes to component specification during
its evolution.

The explicit linking of component compatibility with versioning, achie-
ved by the use of meta-data with versioning and compatibility information,
is another important result of our work. It puts on a firm ground the im-
plicit version semantics used by software package installation systems, and
thus provides a way to fully automatic and reliable component upgrades.

On the fundamental level, we believe that the biggest contribution of
this work is the fact that the above achievements are defined at the meta-
level rather than for a selected component model only. Our component
comparison (on which the revision identification and substitutability check-
ing are based) is defined on the ENT structures, i.e. at the meta-model le-
vel. It thus makes the revision identification and substitutability assessment
applicable to any framework fitting the model and moreover open to new
developments in the area of specification languages. This work can there-
fore be also considered as a contribution to the component standardization
efforts.

To provide a path to practical use of these results, we have strived to give
the methods the “non-functional” properties listed in the Introduction. A-
part from branch and variant identification (which embody human under-
standing of the software element at hand), the key results are designed so
that their implementation can run without user intervention. The main
instrument is the comparison of types (present in already existing source
code) using subtyping rules, which clearly can be done algorithmically.

We believe that our proposal is well suited to some widely used systems,
in particular to the CORBA Component Model. Our confidence in the pre-
sented methods is also supported by several proof-of-concept implementa-
tions for SOFA and CORBA Component Model that were developed while
working on the proposed ideas.

8.2 Lessons Learned

During the development of the ideas and methods covered in this thesis we
have learned several lessons. We summarise them in this section; details
can be found in the appropriate chapters of this thesis.

Component modelling It is fairly easy to extract model information from
IDL or ADL sources, but doing so for component models implemented
directly in (standard) programming languages is very difficult. An example
is the JavaBeans component model and its event handling, discussed as

8.3. Open Issues 141

a case study in Appendix A.3. At present, only the CORBA Component
Model IDL3 specification language and most research ADLs or component
programming languages offer good support for modelling efforts.

The lesson of this experience is that component programming and
modelling greatly benefits from languages with a direct support of its key
abstractions; in other words, through the lack of such languages we learned
about their importance.

Specification language features Various component models provide in-
teresting and/or useful features, but there is no single specification lan-
guage which would support most (if not all) of them. As discussed in Section
2.6, interfaces and properties are commonly available but data elements or
behavioural specifications are rare.

Through our research on the ENT meta-model we realised that com-
ponent languages could (and should) be much richer in their repertoire,
which would bring the pleasant consequences of better usability of compo-
nents and improved reliability of their substitution.

Carrier language impact on substitutability Where specification lan-
guage is used as a basis of component comparison, care must be taken to
deal with the effects of implementation in concrete carrier language(s). As
our studies of IDL3 vs. Java (Section 3.3) show, the carrier language and the
resulting binary form can have its own (sub)typing rules which may modify
the rules of the specification language.

The lesson of our studies is that with separate specification and carrier
language, the mappings between the two should be defined with much care
and should consider not just translation of language and data structures
but also of the associated semantics and (sub)typing rules.

Specification-based versioning gets to the bone Until now, compo-
nent versioning has been understood as simple technical or marketing tag-
ging. However, our approach reveals that the nature of components — at
the same time design abstractions, language constructs and tradeable items
— requires to acknowledge that versioning needs to be integrated into the
component (meta-)models and related languages. Otherwise we cannot a-
chieve both a high composability of individual components that evolve and
a high reliability of the applications that use them.

8.3 Open Issues

While we believe that our work has achieved its goals, a work of this scope
can hardly cover all of the open issues. Let us therefore mention at least

142 Chapter 8. Conclusion

few of them.
An issue with the ENT revision identification scheme is that it cannot

capture the extent of differences, a feature that is at least naively handled
by many “M.m.µ” industrial schemes. We consider this shortcoming an im-
portant one, as providing the extent of difference is useful for developers.
Such feature would neatly fit into our aims; however, it is not easy to im-
plement it without additional data structures and methods that were not in
scope of the presented work.

Our versioning scheme assumes a tight integration into the interface
specification language. It thus can be incorporated into IDL-based systems
(e.g. CORBA Component Model) by simple modifications of the specifi-
cation language syntax, and would blend easily into the .NET framework
languages which support declarative attributes. However, to apply the pro-
posed revision identification scheme to systems that rely on implementa-
tion code only (Enterprise JavaBeans and similar) would require consider-
able modifications to the implementation language syntax.

In the area of compatibility checking, our methods ensure type safety
but cannot (therefore) cope with some simple changes like changing an or-
der of method parameters. They would benefit from the inclusion of the
achievements in specification matching and automated interface adapta-
tion to solve this issue. Also, we noted that compatibility in the component
world can include compliance with global (architectural) properties. In our
approach they can be expressed as part of the context but an explicit ex-
tension of contextual compatibility would certainly be a cleaner solution.

The biggest problem in the practical use of our results is the appli-
cation of the ENT model, and consequently the implementation of our
versioning and compatibility methods, in component systems which do not
use separate interface specification. At present, this is especially the case
of frameworks like Enterprise JavaBeans and ArchJava which use naming
conventions, design patterns and Java language extensions to represent
component-based design. This requires additional effort (in the case of E-
JBs a substantial one) to extract from these sources the component interface
description needed for our work.

8.4 Future Work

Many ideas have therefore come to our mind about “where next”. While it
is generally difficult to give any assurance about future research directions
of the field as well as of the author1, some challenges open to interested
successors are hinted below.

1 Worrying about future is vain effort anyway, see the proof by J. Nazarene cited e.g. by
Matthew in [Wan90, part 6.34].

8.4. Future Work 143

Our experience shows how important it is to have a well-designed in-
terface specification language. Most current IDLs concentrate on the func-
tional aspects of interfaces and components, neglecting the data interface
and non-functional properties — which sometimes have far greater im-
pact on software usability [BV02]. We would like to see more effort put
into research into, and then industrial use of, the next-generation means
of component interface specification that increase the role of declarative
programming in tackling software complexity.

Because the introduction of component versioning affects component
repositories, it would be useful to contribute some work on the design of
these repositories. In practice they would certainly benefit from suitably
merged meta-data of all contained components to facilitate search and re-
trieval, and also from more efficient storage of code — e.g. by storing only
one copy of the parts of code which do not differ between versions.

Variant description partly overlaps with specifications of quality of ser-
vice. The research in this area has been going on for several years but we
have not noticed any attempt to derive any meta-data or variant description
from QoS declarations (or code). Such effort would pay off by contributing
to automated derivation of information useful in component trading and
composition.

Our research of related systems makes it clear that creating a decent
component model is a difficult task, as it needs to encompass many or-
thogonal aspects in an elegant way. Our work provides versioning on top
of existing component models — for practical implementations it would be
more efficient to build it into a more elaborate component model.

Finally, the importance of visual modeling for large software applica-
tions is clear. There however is still a lack of suitable notation targeted
at black-box components [MAV02] which slows component adoption. Re-
search in this area, especially such that propagates into standardization ef-
forts, is needed.

Appendix A

ENT Model Definitions for
Primary Component
Frameworks

A.1 The ENT Model for SOFA Components

The SOFA Component Model was the reference framework used in the
development of the ENT model. This section contains the reference defi-
nitions of traits in the SOFA component model.

properties
metatype = property,
classifier = ({feature}, {data}, {provided},
{instance}, {mandatory}, {multiple},
{all})

protocol
metatype = protocol,
classifier = ({quality}, {operational}, {provided, required},
{type}, {mandatory}, {na},
{development, assembly, runtime})

provides
metatype = interface,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

requires
metatype = interface,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

146 Appendix A. ENT Model Definitions for Primary Component Frameworks

A.2 The ENT Model for CORBA Components

The CORBA Component Model uses fairly rich component specifications,
which provide both method- and event-based communication.

A.2.1 Trait Definitions

attributes
metatype = attribute,
classifier = ({feature}, {data}, {provided},
{instance}, {mandatory}, {na},
{development , assembly , deployment , runtime})

emitters
metatype = event,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {single},
{development, assembly, runtime})

facets
metatype = interface,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

publishers
metatype = event,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

receptacles
metatype = interface,
classifier = ({feature}, {operational}, {required},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

sinks
metatype = event,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{development, assembly, runtime})

supports
metatype = interface,
classifier = ({feature}, {operational}, {provided},

A.3. The ENT Model for JavaBeans 147

{type}, {mandatory}, {multiple},
{development, assembly, runtime})

A.2.2 Example: The Parking Component Source

The source (from OpenCCM [MMV01] examples):

// the parking.
component Parking
{

// parking states.
readonly attribute string description;
readonly attribute ParkingState state;
readonly attribute PlaceNumber capacity;
readonly attribute PlaceNumber free;
// parking facets.
provides ParkingAccess for barriers;
provides ModifyState for admin;
// parking events ports.
publishes ChangeState state notify;

};

A.2.3 Example: The Parking Component in ENT

The representation of the Parking component in traits is as follows, om-
mitting empty traits and element classifiers.

attributes = {(description, string , ∅, {readonly},atribute, (. . .)),
(state,ParkingState, ∅, {readonly},attribute, (. . .)),
(capacity ,PlaceNumber , ∅, {readonly},attribute, (. . .)),
(free,PlaceNumber , ∅, {readonly},attribute, (. . .))}

facets = {(for barriers,ParkingAccess, ∅, ∅,interface, (. . .)),
(for admin,ModifyState, ∅, ∅,interface, (. . .))}

publishers = {(state notify ,ChangeState, ∅, ∅,event, (. . .))}

A.3 The ENT Model for JavaBeans

It is not easy to create the ENT meta-model (i.e. mainly the trait defini-
tions) for JavaBean [Sun97] components; the difficulty of developing for-
mal models of JavaBeans and Enterprise JavaBeans has been also noted
by Sousa [SG00]. The primary reason is the way the component model is

148 Appendix A. ENT Model Definitions for Primary Component Frameworks

defined — that is, using excessively close links to the Java language type
system and to a set of name conventions1.

First, to find JavaBean’s properties, syntactical analysis of method sig-
natures must be complemented by an appropriate lexical analysis of their
names. This is because properties are implemented as pairs of accessor and
mutator methods that are named according to a convention. For example,
to define a property int property, a JavaBean must contain methods int
getProperty() for reading plus the dual void setProperty(int value)
for modifying the property.

Next, the JavaBean model contains an event-handling mechanism us-
ing the publish-subscribe design pattern. However, this is realized by Java-
Bean classes implementing listener interfaces which group event declara-
tions. If we were to define a trait for the events a component can react to,
we would have to refer to the contents of such interfaces which is obscure at
the conceptual level and difficult for the implementation.

The most we could do is to rely on another name convention as listener
interface names should end in Listener – but this method is highly unre-
liable because the name convention is not mandatory. We could also try to
detect event-handling methods in component interface – but the “design
pattern” by which they are described in the specification (void <eventOccu-
renceMethodName> (<EventStateObjectType> evt); in the Section 6.4
of [Sun97]) is clearly so general that it is useless for any automated analysis.

Finally, the lifecycle applicability of bean’s elements (design-time or run-
time) is defined by testing the isDesignMode() dynamic property (from
java.beans.DesignMode interface) inside method bodies. Unless a sophis-
ticated analysis of method body code is used, it is impossible to correctly set
the lifecycle classification property of each method.

We thus conclude that the JavaBeans framework belongs to systems that
do not lend themselves easily to formal, in our case ENT-based modelling.
We also consider this a supporting case for our call to the development
and use of specification languages with clearer separation from component
implementation.

A.3.1 Trait Definitions

The JavaBean framework therefore does not fit cleanly into the ENT clas-
sification system. The following trait definitions are a compromise result of
what can be resonably obtained from a beans’ source code.

Creating an ENT model of JavaBeans that corresponds fully to the
ideas described in the frameworks’ specifications would be a complicated
issue in terms of its implementation (i.e. it would be difficult to develop a

1 The specification refers to these as “design patterns” which is obviuosly a misnomer.

A.3. The ENT Model for JavaBeans 149

suitable parser to extract such ENT model representation).

cimport
metatype = class,
classifier = ({feature}, {operational, data}, {required},
{type}, {mandatory}, {single},
{development, deployment})

implements
metatype = interface,
classifier = ({feature}, {operational}, {provided},
{type}, {mandatory}, {multiple},
{all})

methods
metatype = method,
classifier = ({feature}, {operational}, {provided},
{instance}, {mandatory}, {multiple},
{runtime})

pimport
metatype = package,
classifier = ({feature}, {operational, data}, {required},
{type}, {mandatory}, {single},
{development, deployment})

properties
metatype = property,
classifier = ({feature}, {data}, {provided},
{instance}, {mandatory}, {multiple},
{assembly, runtime})

A.3.2 Example: The MyJuggler JavaBean Source

The following code is an shortened and modified version of the standard
“example” bean sunw.demo.Juggler. The method bodies are removed due
to the fact they are not primarily interesting for interface specification. Se-
veral specification elements are highlighted in the code.

package cz.cuni.mff.ent.demo;

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.net.URL;

150 Appendix A. ENT Model Definitions for Primary Component Frameworks

import java.beans.*;
import java.beans.DesignMode.*;

public class MyJuggler
extends

Applet
implements

PropertyChangeListener, DesignMode
{

/** design time methods */
public void setDebug(boolean debug) { /* ... */ }

/** property: int animationRate */
public int getAnimationRate() { /* ... */ }
public void setAnimationRate(int x) { /* ... */ }

/** Juggler methods */
public synchronized void startJuggling() { /* ... */ }
public synchronized void stopJuggling() { /* ... */ }
public void startJuggling(ActionEvent x) { /* ... */ }
public void stopJuggling(ActionEvent x) { /* ... */ }
public boolean isJuggling() { /* ... */ }

/** administrative methods */
public void setDesignTime(boolean dmode) { /* ... */ }
public boolean isDesignTime() { /* ... */ }
public boolean isDebug() { /* ... */ }

}

A.3.3 Example: The MyJuggler JavaBean in ENT

The representation of the MyJuggler JavaBean in traits is as follows, om-
mitting the metatypes and classifiers.

pimport = {(nil, java.awt, ∅, ∅,. . .),
(nil, java.awt.event, ∅, ∅,. . .),
(nil, java.awt.iamge, ∅, ∅,. . .),
(nil, java.beans, ∅, ∅,. . .),
(nil, java.beans.DesignMode, ∅, ∅,. . .)}

cimport = {(nil, java.net.URL, ∅, ∅,. . .)}

extends = {(nil, Applet, ∅, ∅,. . .)}

A.3. The ENT Model for JavaBeans 151

implements = {(nil, PropertyChangeListener, ∅, ∅,. . .),
(nil,DesignMode, ∅, ∅,. . .)}

methods = {(setDebug, boolean → void, ∅, ∅,. . .),
(startJuggling, void → void, ∅, {synchronized},. . .),
(stopJuggling, void → void, ∅, {synchronized},. . .),
(startJuggling,ActionEvent → void, ∅, ∅,. . .),
(stopJuggling, ActionEvent → void, ∅, ∅,. . .),
(isJuggling, void → boolean, ∅, ∅,. . .),
(setDesignT ime, boolean → void, ∅, ∅,. . .),
(isDesignT ime, void → boolean, ∅, ∅,. . .),
(isDebug, void → boolean, ∅, ∅,. . .)}

properties = {(animationRate, int, ∅, ∅,. . .)}

Appendix B

SOFA CDL Subtyping Rules

B.1 The Rules for the SOFA CDL

To support the definitions of component comparison (Chapter 3), we de-
scribe here the subtyping rules for SOFA CDL.

We use the fact that the subtype relation is reflective and transitive
[Car97]. For base types we define rules for type coercion, i.e. conversions
between simple types. From template types onwards, full subtyping is de-
fined. The abstract syntax shown for each metatype aims to present the
structure of the data, rather than to exactly correspond to CDL grammar
rules.

A note on the presentation style: we do not use the standard “bar” notation for
the typing rules (premises above the bar, consequences below). Rather, we present
the rules as standard boolean expressions, using logical connectives and implica-
tion. The reason is the complexity of some rules for structured types, combined
with a desire to use the names found in the CDL syntactical structures to enhance
the readability of the rules.

A. Simple Types

base types

Abstract syntax:
base ::= short | unsigned short | long | unsigned long | long long |
unsigned long long | float | double | long double | fixed |
char | wchar | octet | boolean | any

Subtyping rules:
unsigned short <: long
unsigned long <: long long
float <: double <: long double
long double <: fixed
char <: wchar

154 Appendix B. SOFA CDL Subtyping Rules

Notes:

• Noteworthy facts on non-subtype relations: boolean, octet and any —
no coercion, short 6= unsigned short, long 6= unsigned long, long long 6=
unsigned long long.

• Type coercion between fixed and double is based transitively on the
long double coercion, which in turn is based on the Java mapping
used in the CDL compiler implementation — for java.math.BigDe-
cimal, there exists a constructor with a double floating point parame-
ter, and a double doubleValue() method which can return the con-
stants DOUBLE.* INFINITY if the fixed number is too big (see the JDK
1.3 API documentation in [Sun01b]). The relation of these types is
otherwise not clearly defined in SOFA CDL or CORBA IDL specifica-
tions.

• The relation between signed-unsigned type pairs is schizofrenic when
it comes to actual carrier language binding: they should be type in-
compatible (the value sets are not in the subset relation) but all Java
mappings use the short type for both, so in practice (for Java imple-
mentations) they are type identical. The rules we define here follow
from the CORBA IDL definitions of these types (see [OMG02c]).

sequence

Abstract syntax:
s1, s2 ::= sequence
sequence ::= sequence< type,length >
length ::= number | ε

Subtyping rule:
s2.type <: s1.type ∧ s2.length ≥ s1.length
⇒
s2 <: s1

string, wstring

Abstract syntax:
s1, s2 ::= string
string ::= string< length > | wstring< length >
length ::= number | ε

Subtyping rules:
length2 ≥ length1 ∨ length2 = ε
⇒
s2 <: s1

B.1. The Rules for the SOFA CDL 155

B. Constructed Types

enum

Abstract syntax:
e1, e2 ::= enum
enum ::= enum name ‘{’ contents ‘}’
contents ::= identifier (‘,’ identifier)*

Subtyping rule:
e2.contents ⊃ e1.contents
⇒

e2 <: e1

union

Abstract syntax:
u1, u2 ::= union
union ::= union name switch ‘(’type‘)’ ‘{’ contents ‘}’
contents ::= (case const: type name;)* [default: type name ‘;’]

Subtyping rule:
|u2.contents| ≥ |u1.contents|

∧ ∀e1 ∈ u1 .contents ∃e2 ∈ u2 .contents :
e2.const = e1.const ∧ e2.name = e1.name ∧ e2.type <: e1.type

⇒
u2 <: u1

struct, exception

Abstract syntax:
s1, s2 ::= struct
struct ::= struct name ‘{’ contents ‘}’
e1, e2 ::= exception
exception ::= exception name ‘{’ contents ‘}’
contents ::= (type name ‘;’)*

Subtyping rules:
|s2.contents| ≥ |s1.contents|

∧ ∀c1 ∈ s1.contents ∃c2 ∈ s2.contents :
c1.name = c2.name ∧ c2.type <: c1.type

⇒
s2 <: s1

|e2.contents| ≥ |e1.contents|
∧ ∀c1 ∈ e1.contents ∃c2 ∈ e2.contents :

c1.name = c2.name ∧ c2.type <: c1.type
⇒
e2 <: e1

156 Appendix B. SOFA CDL Subtyping Rules

C. Interface Types

function

Abstract syntax:
f1, f2 ::= function
function ::= invoc rettype fname ‘(’ params ‘)’ mtraises ‘;’
invoc ::= ε | oneway
params ::= ([dir] type pname)*
mtraises ::= ε | mtraises ‘{’ (mtexc)+ ‘}’
dir ::= ε | in | out | inout

Subtyping rule:
f2.invoc = f1.invoc

∧ f2.rettype <: f1.rettype
∧ ∀exc1,i ∈ f1.raises ∃exc2,j ∈ f2.raises :

exc2,j <: exc1,i

∧ |f2 .params| = |f1.params|
∧ ∀p1,i ∈ f1.params ∃p2,i ∈ f2.params :

p2,i.dir ⊇ p1,i.dir

∧
(
p2,i.dir ∈ {ε, in} ⇒ p2,i.type :> p1,i.type

∨ p2,i.dir = out ⇒ p2,i.type <: p1,i.type

∨ p2,i.dir = inout ⇒ p2,i.type = p1,i.type
)

⇒
f2 <: f1

attribute

Abstract syntax:
a1, a2 ::= attr
attr ::= ro attribute type (name)+ ‘;’
ro ::= ε | readonly

Subtyping rule:
a2.ro ⊆ a1.ro ∧ (a2.ro = readonly ∧ a2.type <: a1.type)
⇒
a2 <: a1

constant

Abstract syntax:
c1, c2 ::= const
const ::= const type name ‘=’ value ‘;’

Subtyping rule:
c2.type <: c1.type
⇒
c2 <: c1

B.1. The Rules for the SOFA CDL 157

interface

Abstract syntax:
i1, i2 ::= interface
interface ::= interface name inherits ‘{’ types elems ‘}’;
inherits ::= ε | ‘:’ (inh)+
elems ::= (const | attr | function)*
types ::= (typedef | struct | union | enum)*
typedef ::= typedef typespec name ‘;’
typespec ::= base | sequence | string | identifier | enum | union | struct

where inh is an identifier that denotes an interface type.

Subtyping rule:
∀inh1,i ∈ i1 .inherits ∃inh2,j ∈ i2 .inherits :
inh2,j <: inh1,i

∧ ∀e1,j ∈ i1.elems ∃e2,j ∈ i2.elems :
e1,i.name = e2,j .name ∧ e2,j .type <: e1,i.type

∧ ∀t1,j ∈ i1.types ∃t2,j ∈ i2.types :
t2,j <: t1,i

⇒
i2 <: i1

Notes:

• For attributes, subtyping is allowed only if the attribute is read-only: the
fact that read-write attributes exhibit both covariant and contravariant
behaviour necessitates type equality.

• For constants, correct typing of the value is handled by the appropriate
typing rule — subtyping cannot deal with changes of the value in any
way.

• For functions, the context term is not used in the CDL compilers and
its role is not defined; it is therefore left out from the type rules.

• In the standard scenarios of our use, only functions with the same na-
me can be compared for subtyping (the function name is its “unique
identifier” in function call so comparing differently named functions
does not make sense). While this could be dealt with in the rule for
function by stipulating that f1 .name = f2 .name, it is left to a higher le-
vel (namely interface subtype rule) in order not to create an exception
in the general pattern of subtyping rules.

D. Component Types

frame

158 Appendix B. SOFA CDL Subtyping Rules

Abstract syntax:
f1, f2 ::= frame
frame ::= frame name ‘{’ provisions requirements properties protocol

‘}’
provisions ::= provides: (type name)* ‘;’
requirements ::= requires: (type name)* ‘;’
properties ::= ([ro] property type name ‘;’)*
ro ::= ε | readonly
protocol ::= protocol: prot

where prot is behaviour protocol expression as per [PV02].

Subtyping rule:
∀p1,i ∈ f1.provisions ∃p2,j ∈ f2.provisions :

p2,j .name = p1,i.name ∧ p2,j .type <: p1,i.type
∧ ∀p1,i ∈ f1.properties ∃p2,j ∈ f2.properties :

p2,j .name = p1,i.name
∧ p2,j .ro ⊆ p1,i.ro
∧ p2.j .ro = readonly

∧
{

p2,j .type <: p1,i.type if p1.j .ro = readonly
p2,j .type = p1,i.type if p1.j .ro = ε

∧ ∀r1,i ∈ f1.requirements ∃r2,j ∈ f2.requirements :
r2,j .name = r1,i.name ∧ r2,j .type :> r1,i.type

∧ f2.prot is compliant withf1.protonNames(f2)
⇒
f2 <: f1

Notes:

• For property, subtyping is allowed only if the attribute is read-only:
read-write properties exhibit both covariant and contravariant beha-
viour which necessitates type equality.

• Protocol comparison is based on the protocol compliance relation de-
fined in [PV02, Section 3.4.2].

• Architecture (the architecture construct) has no typing rules for a
clear reason — it is not a type definition and therefore is not subject
to comparison.

Appendix C

The Specifications of SOFA
Component Meta-Data

C.1 CDL Meta-Data Section Grammar

<type_id> ::= <identifier> <metainfo>
<metainfo> ::= ’[’ <metaelem> [<metaelem>*] ’]’
<metaelem> ::= <metaid> ’=’ <metaval> ’;’
<metaid> ::= ’@’<identifier> | <identifier>
<metaval> ::= ’"’ <arbitrary-string> ’"’ |

<string-without-whitespace>
<identifier> ::= /* standard identifier */

The following meta-information elements (the <metaid>s) are known:

@rev Revision identification of the type. Generated. String, the format
is “N” or “N.N.N” where N is a natural non-zero number. For the
frame dcl, the component versioning (with three numbers, for in-
stance rev=3.2.1) is used; for all other constructs, the primitive ver-
sioning (with one number, i.e. rev=1) is the only possibility.

@diff Difference indication of the revision. Generated. String, the format
is “(D.D.D)” where D from the set {none,spec,gen,mut} denotes the
difference classifier (“none”, “specialisation”, “generalisation”, “mu-
tation” respectively) of each ENT category . Used only for compo-
nents, i.e. in the frame dcl meta-data section.

@time Timestamp of the revision. Generated. String, the format is an
ISO-compliant, human readable datetime string; the default format
is YYYY-MM-DD hh:mm:ss.ddd GMT[+|-]hh:mm.

branch Name of branch in the version graph of the type. Manually insert-
ed. String without whitespace, default is “trunk”.

160 Appendix C. The Specifications of SOFA Component Meta-Data

tag Human readable moniker of the given revision. Manually inserted.
String without whitespace, no default.

description|desc Human readable description. Manually inserted. An ar-
bitrary string, default is empty.

C.2 Grammar of the URI form of SOFA identifiers

<scoped_name> ::= <sofauri>
<sofauri> ::= [<scheme>":"]<path><identifier>["#"<version>]
<scheme> ::= "sofa"

// identifies SOFA URI-style naming
<path> ::= ["//"<provider>]["/"]{<module>"/"}*

// ’/’ follows URI syntax rules, i.e. separates
// hierarchical levels (SOFA modules);
// module name ".." means the containing module

<version> ::= ["branch="<branch>"&"]["rev="<revision>
["&var="<variant>]]

// ’&’ follows URL conventions,
// separating one attribute from another

<revision> ::= <number>"."<number>"."<number>
// uses component revision identifiers, e.g. "3.3.4"

<variant> ::= <term>{<op><term>}*
<term> ::= <key>":"<val> | "("<variant>")"
<op> ::= "," | ";"

// uses description logic terms, <op>erators are
// "," for AND and ";" for OR
// <key> is variant property name, <val> is its value,
// using "/" to separate levels in hierarchical attributes.

<provider> ::= <reversed-DNS-name>
<module> ::= <identifier>
<branch> ::= <identifier>
<key> ::= <identifier>
<val> ::= <string-without-whitespace>

C.3 XML Meta-Data Document Type Definition

<?xml version="1.0" encoding="iso-8859-1" ?>
<!-- ===== SOFA component metadata DTD ===== -->

C.3. XML Meta-Data Document Type Definition 161

<!-- Pseudo-type declarations;
e.* for elements, a.* for attributes -->

<!-- element content type that does not allow whitespace -->
<!ENTITY % e.identifier "#PCDATA">
<!-- parameter content that does not allow whitespace -->
<!ENTITY % a.identifier "NMTOKEN"> <!-- should be ID -->
<!-- numberic element content -->
<!ENTITY % e.number "#PCDATA">
<!-- numeric parameter content -->
<!ENTITY % a.number "NMTOKEN">
<!-- revision id string (num.num.num...) parameter content -->
<!ENTITY % e.revid "#PCDATA">
<!-- revision data/id level -->
<!ENTITY % a.revlevel "primitive|component|detailed">
<!-- difference classifiers: should be init|none|spec|gen|mut -->
<!ENTITY % e.diff "#PCDATA">

<!-- Top-level elements, component info -->

<!ELEMENT compdata
(provider,namespace,name,about?,version,resources) >
<!-- which component framework is used -->
<!ATTLIST compdata

system %a.identifier; #REQUIRED
>

<!-- reversed DNS of provider -->
<!ELEMENT provider (#PCDATA)>
<!-- hierarchy of modules delimited by / -->
<!ELEMENT namespace (#PCDATA)>
<!-- name of the component -->
<!ELEMENT name (%e.identifier;)>

<!-- administrative info -->
<!ELEMENT about (moniker?, date, description?)>
<!-- alternative marketing name -->
<!ELEMENT moniker (%e.identifier;)>
<!-- release date in mm.dd.yyyy format -->
<!ELEMENT date (#PCDATA)>
<!-- human-readable description -->
<!ELEMENT description (#PCDATA)>

<!-- Version information -->

<!-- version data -->
<!ELEMENT version (tag?,branch?,revision,history?,variant)>
<!-- marketing tag of the version -->
<!ELEMENT tag (%e.identifier;) >

162 Appendix C. The Specifications of SOFA Component Meta-Data

<!-- name of development branch -->
<!ELEMENT branch (%e.identifier;) >
<!-- revision ID in string format -->
<!ELEMENT revid (%e.revid;) >
<!ATTLIST revid
level (%a.revlevel;) "component" >

<!-- Revision data -->

<!-- revision data -->
<!-- seq: sequence number of revision, used in history -->
<!ELEMENT revision (tag?,date,parent,data+) >
<!ATTLIST revision
seq %a.number; #IMPLIED >

<!-- immediate predecessor in history;
if empty, means no predecessor -->

<!ELEMENT parent ((provider,namespace,name)?,branch?,revid?) >
<!-- individual elements of revision data -->
<!-- level: of rev data -->
<!ELEMENT data (part)* >
<!ATTLIST data
level (%a.revlevel;) "component" >

<!-- one revision data element -->
<!-- name: of the rev data part,

value denotes trait or category -->
<!ELEMENT part (revnum,diff) >
<!ATTLIST part
name %a.identifier; #REQUIRED >

<!-- revision number of the part -->
<!ELEMENT revnum (%e.number;) >
<!-- difference classifier -->
<!ELEMENT diff (%e.diff;) >

<!-- Revision history -->

<!ELEMENT history (branch,data)* >
<!-- list of previous revisions; only component level data

are used, sequence (a path from root in version graph)
is assumed -->

<!-- Variant data -->

<!ELEMENT variant (term|op)* >
<!ATTLIST variant
exprtype %a.identifier; #IMPLIED >
<!-- variant description -->
<!-- exprtype: how to interpret variant expr,

possible values "and","boolean","feature";
default "and" -->

C.4. An Example of Complete Meta-Data 163

<!ELEMENT op (#PCDATA) >
<!-- operator joining expressions,

values for exprtype="boolean" are
"and","or","(",")" -->

<!ELEMENT term ((key|dim),value) >
<!-- a term in variant expression -->

<!ELEMENT key (%e.identifier;) >
<!ELEMENT dim (%e.identifier;) >
<!-- first part of variant expr term;

key denotes ordinal attributes,
dim denotes hierarchical attributes -->

<!ELEMENT value (#PCDATA) >
<!-- second part of the key,value pair -->

<!-- Resource descriptions -->

<!-- resources used by the component during lifecycle -->
<!ELEMENT resources (item)* >
<!ELEMENT item (key,value) >
<!ATTLIST item
type %a.identifier; #IMPLIED
mime CDATA #IMPLIED >
<!-- parts of resource description -->
<!-- type: how to interpret the value part,

valid values "string","int","boolean","float","file","class",
default "string" -->

<!-- mime: MIME type of referenced content for type="file",
default "application/octet-stream" -->

C.4 An Example of Complete Meta-Data

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE compdata SYSTEM "compdata.dtd">
<compdata system="sofa">

<provider>cz.zcu.kiv</provider>
<namespace></namespace>
<name>FAddressBook</name>

<about>
<moniker>Address Book</moniker>
<date>13.4.2001</date>

</about>

<version>
<branch>FixDate</branch>

<revision>

164 Appendix C. The Specifications of SOFA Component Meta-Data

<tag>rev3</tag> <date>13.4.2001</date>
<parent> <revid level="component">3.1.1</revid> </parent>
<data level="component">
<part name="E"> <revnum>4</revnum> <diff>spec</diff></part>
<part name="N"> <revnum>2</revnum> <diff>spec</diff></part>
<part name="T"> <revnum>1</revnum> <diff>none</diff></part>
</data>
<data level="detailed">
<part name="provisions">
<revnum>4</revnum>
<diff>spec</diff></part>

<part name="dependencies">
<revnum>2</revnum>
<diff>spec</diff></part>

<part name="properties">
<revnum>2</revnum>
<diff>none</diff></part>

<part name="protocol">
<revnum>1</revnum>
<diff>none</diff></part>

</data>
</revision>

<history>
<branch>trunk</branch>
<data level="component">
<part name="E"> <revnum>1</revnum> <diff>init</diff></part>
<part name="N"> <revnum>1</revnum> <diff>init</diff></part>
<part name="T"> <revnum>1</revnum> <diff>init</diff></part>

</data>
<branch>trunk</branch>
<data level="component">
<part name="E"> <revnum>2</revnum> <diff>spec</diff></part>
<part name="N"> <revnum>1</revnum> <diff>none</diff></part>
<part name="T"> <revnum>1</revnum> <diff>none</diff></part>

</data>
<branch>FixDate</branch>
<data level="component">
<part name="E"> <revnum>3</revnum> <diff>mut</diff></part>
<part name="N"> <revnum>1</revnum> <diff>none</diff></part>
<part name="T"> <revnum>1</revnum> <diff>none</diff></part>

</data>
</history>

<variant exprtype="and">
<term><key>OS</key><value>JDK1.3</value></term>

</variant>

</version>

C.4. An Example of Complete Meta-Data 165

<resources>
<item type="string"> <!-- class vraci soubor-->
<key>ManagerClassName</key>
<value>sofa.test.calcdemo.CalcDemo1CM</value>

</item>
<item type="file">
<key>DeploymentDescriptor</key>
<value>foo.cdl</value>

</item>
</resources>

</compdata>

Bibliography

[ABV00] Sven-Arne Andréasson, Přemysl Brada, and Jan Valdman.
Component-based software decomposition of flexible manu-
facturing systems. In Proceedings of International Carpathian Con-
trol Conference, Podbanské, Slovak Republic, 2000. TU Košice.

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin. Archi-
tectural reasoning in ArchJava. Technical Report UW-CSE-02-
04-01, University of Washington, April 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin. Arch-
Java: connecting software architecture to implementation. In
Proceedings of International Conference on Software Engineering
(ICSE’02), Orlando, Florida, May 2002. ACM Press.

[Ada95] International Organization for Standardization. Ada 95 Refer-
ence Manual: Language and Standard Libraries, 1995. Interna-
tional Standard ISO/IEC 8652:1995(E), Version 6.0.

[ADG98] Robert Allen, Rémi Douence, and David Garlan. Specifying
and analyzing dynamic software architectures. In Proceedings
of the 1998 Conference on Fundamental Approaches to Software En-
gineering (FASE’98), volume 1382 of Lecture Notes in Computer
Science, 1998.

[aJP00] Maŕıa José Presso. Declarative descriptions of component mo-
dels as a generic support for software composition. In Workshop
on Component-Oriented Programming (WCOP’00), Nice, France,
June 2000. Position Paper.

[Bab86] Wayne A. Babich. Software Configuration Management: Coordina-
tion for Team Productivity. Addison-Wesley, 1986.

[Bai97] Ed Bailey. Maximum RPM. Sams, 1997.

[BCS02] Eric Bruneton, Thierry Coupaye, and Jean-Bernard Ste-
fani. Recursive and dynamic software composition with

168 Bibliography

sharing. In Seventh International Workshop on Component-
Oriented Programming (WCOP 2002), 2002. Available at
http://research.microsoft.com/˜cszypers/events/WCOP2002/.

[Ber90] Brian Berliner. CVS II: parallelizing software development. In
Proceedings of the USENIX 1990 conference, 1990.

[BLFM98] Tim Berners-Lee, Roy Fielding, and L. Masinter. Uniform
resource identifiers (URI): Generic syntax. RFC 2396, IETF,
1998.

[Bör95] Juergen Börstler. Feature-oriented classifciation for software
reuse. In Proceedings of the 7th International Conference on Soft-
ware Engineering and Knowledge Engineering, pages 204–211,
Rockville, MD, USA, June 1995.

[BP00] Dušan Bálek and Frantǐsek Plášil. Software connectors: a hier-
archical model. Technical report, Charles University, Faculty of
Mathematics and Physics, 2000.

[BP01] Dušan Bálek and Frantǐsek Plášil. Software connectors and
their role in component deployment. In Proceedings of DAIS’01,
Krakow, Poland, September 2001. Kluwer.

[BR00a] Přemysl Brada and Jan Rovner. Methods of SOFA compo-
nent behavior description. In Proceedings of Information Systems
Modeling (ISM 2000), Rožnov pod Radhoštem, Czech Republic,
2000.

[BR00b] David J. Brown and Karl Runge. Library interface versioning
in Solaris and Linux. In Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, Georgia, 2000. USENIX.

[Bra99] Přemysl Brada. Component change and version identifica-
tion in SOFA. In Jan Pavelka and Gerald Tel, editors, Proceed-
ings of SOFSEM’99, LNCS 1725, Milovy, Czech Republic, 1999.
Springer-Verlag.

[Bra00] Přemysl Brada. SOFA component revision identification. Tech-
nical report 2000/9, Department of Software Engineering,
Charles University, Prague, Nov 2000.

[Bra01a] Přemysl Brada. Component revision identification based on
IDL/ADL component specification. In Proceedings of the 10th
European ACM Conference on Software Engineering (ESEC/FSE),
Vienna, Austria, 2001. ACM Press. Poster presentation.

Bibliography 169

[Bra01b] Přemysl Brada. Towards automated component com-
patibility assessment. In Workshop on Component-Oriented
Programming (WCOP’2001), Budapest, Hungary, June
2001. Position Paper. Available at http://research.-
microsoft.com/˜cszypers/events/WCOP2001/.

[Bra02a] Přemysl Brada. The ENT model: a general model for software
interface structuring. Technical Report DCSE/TR-2002-10, De-
partment of Computer Science and Engineering, University of
West Bohemia, Pilsen, Czech Republic, 2002.

[Bra02b] Přemysl Brada. Metadata support for safe component up-
grades. In Proceedings of COMPSAC’02, the 26th Annual Inter-
national Computer Software and Applications Conference, Oxford,
England, August 2002. IEEE Computer Society Press.

[Bra02c] Přemysl Brada. Parametrized visual representation of software
components. In Proceedings of the 7th Objekty Conference, Prague,
Czech Republic, November 2002.

[Bro95] Frederick Brooks, Jr. The Mythical Man-Month. Addison-Wesley,
20th anniversary edition, 1975, 1995.

[BV02] Manuel F. Bertoa and Antonio Vallecillo. Quality attributes for
COTS components. I+D Computación, 1(2):128–144, Novem-
ber 2002.

[BW98] Alan W. Brown and Curt Wallnau. The current state of CBSE.
IEEE Software, 15(5):37–46, September/October 1998.

[C+02] T. Coupaye et al. The Fractal Composition Framework (Version 1.0).
The ObjectWeb Consortium, July 2002.

[Car97] Luca Cardelli. Type systems. In Handbook of Computer Science
and Engineering, chapter 103. CRC Press, 1997.

[CCF00] Denis Conan, Michel Coriat, and Nicolas Farcet. A software
component development meta-model for product lines. In
Workshop on Component-Oriented Programming (WCOP’00), Nice,
France, 2000. Position Paper.

[Chr98] H. B. Christensen. Experiences with architectural software con-
figuration management in Ragnarok. In Proceedings of SCM-8
Workshop, ECOOP 1998. Springer-Verlag, 1998.

[Cor02] Microsoft Corp. Inside the .NET Framework, MSDN lib-
rary edition, 2002. http://msdn.microsoft.com/library/en-
us/cpguide/html/.

170 Bibliography

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. ACM Computing Surveys
(CSUR), 30(2):232–282, 1998.

[Des98] Desktop Management Task Force. Desktop Management Interface
Specification, version 2.0, 1998.

[E+02] Jacky Estublier (Editor) et al. Impact of the research commu-
nity on the field of software configuration management: Sum-
mary of an impact project report. Software Engineering Notes,
27(5), September 2002.

[ECM02] ECMA International. C# Language Specification, 2002. ECMA
Standard 334, 2nd edition.

[Fie95] Roy Fielding. Relative uniform resource locators. RFC 1808,
IETF, 1995.

[FK98] Svend Frolund and Jari Koistinen. Quality of service specifica-
tion in distributed object systems design. In Proceedings of the
4th USENIX Conference on Object-Oriented Technology and Systems
(COOTS), Santa Fe, New Mexico, April 1998.

[Fra03] The Fractal Project team. Fractal ADL Tutorial, 2003. Available
at http://fractal.objectweb.org/current/doc/tutorials/adl/.

[FW00] Clemens Fischer and Heike Wehrheim. Behavioural subtyp-
ing relations for object-oriented formalisms. In Proceedings of
AMAST 2000: International Conference on Algebraic Methodology
And Software Technology, volume 1816 of Lecture Notes in Compu-
ter Science. Springer Verlag, 2000.

[GJS96] J. Gosling, B. Joy, and G. Steele. Java Language Specification.
Sun Microsystems, Inc., 1996. Chapter 13 (Java Binary Com-
patibility).

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: an
architecture description interchange language. In Proceedings
of CASCON’97, pages 169–183, Toronto, Ontario, November
1997.

[H+97] R.S. Hall et al. An architecture for post-development configu-
ration management in a wide-area network. In Proceedings of
the 17th International Conference on Distributed Computing Systems,
Baltimore, USA, May 1997. IEEE Computer Society Press.

[Han98] Jun Han. A comprehensive interface definition framework for
software components. In Proceedings of 1998 Asia-Pacific Software

Bibliography 171

Engineering Conference, pages 110–117, Taipei, Taiwan, Decem-
ber 1998. IEEE Computer Society.

[Han99a] Jun Han. An approach to software component specification.
In Proceedings of the 2nd Workshop on Component-Based Software
Engineering, in conjunction with ICSE’99, May 1999.

[Han99b] Jun Han. Semantic and usage packaging for software compo-
nents. In Object Interoperability: ECOOP’99 Workshop on Object
Interoperability, pages 25–34, Lisbon, Portugal, June 1999.

[Hes03] Joey Hess. Comparing Linux/UNIX Binary Package Formats, July
2003. Available at http://www.kitenet.net/ joey/pkg-comp/.

[HL99] David Hemer and Peter Lindsay. Specification-based retrieval
strategies for module reuse. Technical Report 99-11, University
of Queensland, Queensland, Australia, July 1999.

[HN86] Nico Habermann and David Notkin. Gandalf: Software devel-
opment environments. IEEE Transactions on Software Engineer-
ing, 12(12), December 1986.

[IEE98] IEEE Computer Society. IEEE Standard for Software Configurati-
on Management Plans (828-1998), 1998.

[IPW01] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: a minimal core calculus for Java and GJ. ACM
Transactions on Programming Languages and Systems (TOPLAS),
23(3):396–450, May 2001.

[J+03] Ian Jackson et al. Debian Policy Manual, 2003. Available at
http://www.debian.org/doc/debian-policy/.

[KH83] Gaile E. Kaiser and Nico Habermann. An environment for sys-
tem version control. In Proceedings of 26th IEEE Computer Society
Conference, San Francisco, CA, 1983. IEEE Computer Society
Press.

[Kop87] Herrmann Kopetz. Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers,
1987.

[Lav02] Ronan Mac Laverty. Robocop: Robust open component based
software architecture for configurable devices project. Initial
specification, ITEA PROJECT 00001 Deliverable, 2002.

[LC99] Magnus Larsson and Ivica Crnkovic. New challenges for con-
figuration management. In Proceedings of the SCM-9 workshop,
ECOOP 1999, LNCS 1675, Toulouse, France, September 1999.

172 Bibliography

[LC00] Magnus Larsson and Ivica Crnkovic. Component configuration
management. In Proceedings of the ECOOP Conference, Workshop
on Component Oriented Programming, Nice, France, June 2000.

[LR01a] Chris Lüer and David S. Rosenblum. UML Component Dia-
grams and Software Architecture – Experiences from the Wren
Project. In 1st ICSE Workshop on Describing Software Architecture
with UML, pages 79–82, Toronto, Canada, 2001.

[LR01b] Chris Lüer and David S. Rosenblum. WREN—An Environment
for Component-Based Development. In Volker Gruhn, editor,
Proceedings of ESEC/FSE 2001, pages 207–217, Vienna, Austria,
2001. ACM Press.

[LV95] David C. Luckham and James Vera. An event-based architec-
ture definition language. IEEE Transactions on Software Engi-
neering, 21(9):717–734, 1995.

[LvdH02] Chris Lüer and André van der Hoek. Composition environ-
ments for deployable software components. Technical Report
UCI-ICS-02-18, University of California Irvine, August 2002.

[LW94] Barbara Liskov and Jeanette M. Wing. A behavioral notion
of subtyping. ACM Transactions on Programming Languages and
Systems, 16(6):1811–1841, November 1994.

[M+95] J. Magee et al. Specifying distributed software architectures. In
Proceedings of ESEC’95, Barcelona, Spain, 1995.

[M+01] John Morris et al. Software component certification. IEEE
Computer, September 2001.

[MAV02] Raúl Monge, Carina Alves, and Antonio Vallecillo. A graph-
ical representation of COTS-based software architectures. In
Proceedings of IDEAS 2002, pages 126–137, La Habana, Cuba,
April 2002.

[McI68] Doug McIlroy. Mass-produced software components. In P. Nau-
r and B. Randell, editors, Proceedings of NATO Software Engineer-
ing Conference, pages 138–155, Garmisch, Germany, October
1968.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

[Mic95] Microsoft Corporation and Digital Equipment Corporation.
The Component Object Model Specification, October 1995.

[Mic03] Microsoft corp. COM SDK Documentation, February 2003. MS-
DN Library, Component Development.

Bibliography 173

[MMV01] R. Marvie, P. Merle, and M. Vadet. The OpenCCM platform.
http://corbaweb.lifl.fr/OpenCCM/index.html, 2001.

[MT00] Nenad Medvidovic and Richard Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering, 26(1),
January 2000.

[Nie93] Oscar Nierstrasz. Regular types for active objects. In Proceed-
ings of OOPSLA ‘93, volume 28 (10) of ACM SIGPLAN Notices,
October 1993.

[OGJ02] J. Oberleitner, T. Gschwind, and M. Jazayeri. Vienna compo-
nent framework: enabling composition across component mo-
dels. Technical report TUV-1841-2002-48, Technical Universi-
ty of Vienna, September 2002.

[OMG96] Object Management Group. ORB Interface Type Versioning Ma-
nagement, January 1996. OMG Request for Proposals orb/96-
01-06.

[OMG01] Object Management Group. Online Upgrades, September 2001.
OMG Request for Proposals orbos/2001-09-10.

[OMG02a] Eternal Systems and others. Online Upgrades, May 2002. OMG
Revised Joint Proposed Specification mars/2002-05-01.

[OMG02b] Object Management Group. Issue 2227: Versioning needed for
CORBA Core, 1998-2002. Available at http://www.omg.org/-
issues/components-ftf.html.

[OMG02c] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA): IDL Syntax and Semantics, July 2002. OMG
Specification formal/02-06-39.

[OMG02d] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA), The Interface Repository, July 2002. OMG
Specification formal/02-06-46.

[OMG02e] Object Management Group. The Common Object Request Broker:
Core Specification (Version 3.0), December 2002. OMG Specifica-
tion formal/02-12-06.

[OMG02f] Object Management Group. CORBA Components, June 2002.
Version 3.0. OMG Specification formal/02-06-65.

[OMG02g] Object Management Group. Meta Object Facility (MOF) Specifi-
cation, 2002. Version 1.4. OMG Specification formal/02-04-03.

174 Bibliography

[OMG02h] Object Management Group. UML Profile for Enterprise Dis-
tributed Object Computing Specification, 2002. OMG Specification
ptc/02-02-05.

[Ore98] Peyman Oreizy. Decentralized software evolution. In Proceed-
ings of the International Conference on the Principles of Software Evo-
lution (IWPSE), Kyoto, Japan, April 1998.

[Par72] David L Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, December
1972.

[PBJ98] Frantǐsek Plášil, Dušan Bálek, and Radovan Janeček.
SOFA/DCUP: architecture for component trading and dynamic
updating. In Proceedings of ICCDS’98, Annapolis, Maryland,
USA, 1998. IEEE CS Press.

[PDF87] R. Prieto-Diaz and P. Freeman. Classifying software for reusa-
bility. IEEE Software, 18(1), January 1987.

[PDH99] Allen Parish, Brandon Dixon, and David Hale. Component
based software engineering: A broad based model is needed.
Technical report, The University of Alabama, Tuscaloosa, AL,
USA, April 1999.

[PDN86] R. Prieto-Diaz and J. M. Neighbors. Module interconnection
languages. Journal of Systems and Software, 6(4), November 1986.

[Per87] Dewayne Perry. Version control in the Inscape environment. In
Proceedings of ICSE’87, Monterey, CA, 1987.

[Pet95a] M. Peterson. DCE: A Guide to Developing Portable Applications,
chapter 17: UUID and Version attributes. McGraw-Hill, 1995.

[Pet95b] M. Peterson. DCE: A Guide to Developing Portable Applications.
McGraw-Hill, 1995.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, February 2002.

[PV02] Frantǐsek Plášil and Stano Vǐsnovský. Behavior protocols for
software components. IEEE Transactions on Software Engineering,
28(10), November 2002.

[Ras02] Uwe Rastofer. Modeling with components – towards
a unified component meta-model. In ECOOP Work-
shop on Model-based Software Reuse, Malaga, Spain, 2002.
Available at http://www.info.uni-karlsruhe.de/˜pulvermu/-
workshops/ECOOP2002/papers.shtml.

Bibliography 175

[Rig02] Roger Riggs. The Java Product Versioning Specification. Java-
Soft, 2002. Available at http://java.sun.com/j2se/1.4.2/docs/gui-
de/versioning/spec/versioning.html.

[Rog97] D. Rogerson. Inside COM. Microsoft Press, 1997.

[RS02] Ralf H. Reussner and Heinz W. Schmidt. Using parameterised
contracts to predict properties of component based software
architectures. In Ivica Crnkovic, Stig Larsson, and Judith
Stafford, editors, Workshop On Component-Based Software Engi-
neering (in association with 9th IEEE Conference and Workshops
on Engineering of Computer-Based Systems), Lund, Sweden, 2002,
April 2002.

[S+95] Mary Shaw et al. Abstractions for software architecture and
tools to support them. IEEE Transactions on Software Engineer-
ing, 21(4):314–335, March 1995.

[SA02] Frédérick Seyler and Philippe Aniorte. A component
meta model for reused-based system engineering. In Jean
Bezivin and Robert France, editors, Workshop in Software
Model Engineering, Dresden, Germany, 2002. Available at
http://www.metamodel.com/wisme-2002/.

[SC00] J. C. Seco and L. Caires. A basic model of typed components.
In E. Bertino, editor, Proceedings of ECOOP, number 1850 in
Lecture Notes in Computer Science, pages 108–128. Springer
Verlag, 2000.

[SEI97] Software Engineering Institute, Carnegie Mellon Univer-
sity. Module Interconnection Languages (Software Technolo-
gy Review), 1997. Available at http://www.sei.cmu.edu/-
str/descriptions/mil body.html.

[SG00] João Pedro Sousa and David Garlan. Formal modeling of
the enterprise javabeans component integration framework.
Technical Report CMU-CS-00-162, Carnegie Mellon univer-
sity, September 2000.

[Sof01] Borland Software Corporation. Delphi 6 Developer’s Guide, 2001.

[Sta00] Erlend Stav. Component based environments for non-
programmers: Two case studies. In Proceedings of the Workshop
on Component Oriented Programming (WCOP’00), 2000.

[Sun97] Sun Microsystems, Inc. JavaBeans API Specification (ver-
sion 1.01), 1997. Available at http://java.sun.com/products/-
javabeans/docs/spec.html.

176 Bibliography

[Sun01a] Sun Microsystems, Inc. Enterprise JavaBeans(TM) Specification
(Version 2.0), August 2001. Available at http://java.sun.com/-
products/ejb/docs.html.

[Sun01b] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.3:
API Specification, 2001. Available at http://java.sun.com/j2se/-
1.3/docs/api/index.html.

[Sun01c] Sun Microsystems, Inc. Java Object Serialization Speci-
fication: Versioning of Serializable Objects, 2001. Avail-
able at http://java.sun.com/j2se/1.4.2/guide/serialization/-
spec/version.doc.html.

[SV01] Douglas C. Schmidt and Steve Vinoski. Object interconnec-
tions: CORBA and XML, part 1: Versioning. C/C++ Users
Journal, 19(5), May 2001.

[Szy96] Clemens Szyperski. Independently extensible systems – soft-
ware engineering potential and challenges. In Proceedings of the
19th Australian Computer Science Conference, Melbourne, Austra-
lia, 1996.

[Szy98] Clemens Szyperski. Component Software. ACM Press, Addison-
Wesley, 1998.

[T+96] Richard N. Taylor et al. A component- and message-based
architectural style for GUI software. Software Engineering,
22(6):390–406, 1996.

[Tic85] Walter F. Tichy. RCS – a system for version control. Software –
Practice and Experience, 15(7):637–654, 1985.

[Tic94] Walter Tichy, editor. Configuration Management. Trends in Soft-
ware series. Wiley, 1994. ISBN 0-471-94245-6.

[vdH01] André van der Hoek. Integrating configuration management
and software deployment. In Proceedings of the Working Confer-
ence on Complex and Dynamic Systems Architecture (CDSA 2001),
Brisbane, Australia, December 2001.

[vdH+02] André van der Hoek et al. A testbed for configuration ma-
nagement policy programming. IEEE Transactions on Software
Engineering, 28(1), January 2002.

[vdHW02] André van der Hoek and Alexander L. Wolf. Software release
management for component-based software. Software - Practice
and Experience, 2002.

Bibliography 177

[VHT00] Antonio Vallecillo, Juan Hernández, and José M. Troya. Com-
ponent interoperability. Technical Report ITI-2000-37, Uni-
versidad de Málaga, Spain, July 2000.

[vO01] Rob van Ommering. Configuration management in compo-
nent based product populations. In Proceedings of 10th Inter-
national Workshop on Software Configuration Management (part of
ICSE 2001), Toronto, Canada, May 2001.

[Wan90] Henry Wansbrough, editor. The New Jerusalem Bible. Darton,
Longman and Todd Ltd, 1990.

[Wor96] John Wordsworth. Software Engineering with B. Addison-Wesley,
1996.

[WW98] James Whitehead and Meredith Wiggins. WEBDAV: IETF stan-
dard for collaborative authoring on the Web. IEEE Internet
Computing, pages 34–40, September-October 1998.

[WZ88] Peter Wegner and Stanley B. Zdonik. Inheritance as an incre-
mental modification mechanism or what like is and isn’t like.
In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 322, pages 55–77. Springer-Verlag,
1988.

[YAM99] Sherif Yacoub, Hany Ammar, and Ali Mili. Characteriz-
ing a software component. In Proceedings of the 2nd Work-
shop on Component-Based Software Engineering, in conjunction with
ICSE’99, May 1999.

[Zel98] Andreas Zeller. Versioning system models through descrip-
tion logic. In Proceedings of System Configuration Management:
ECOOP’98 SCM-8 Symposium, volume 1439 of LNCS, Brussels,
Belgium, July 1998. Springer-Verlag.

[ZW97] Amy Moormann Zaremski and Jeanette Wing. Specification
matching of software components. ACM Transactions on Software
Engineering and Methodology, 6(4), October 1997.

The manuscript of this thesis was written in the vim (Vi Improved) editor,
the images were created in Zoner Callisto 4 and Corel Draw 8. Typeset into
the Portable Document Format using the pdf LATEX system with a slightly
modified thesis.cls document class (originally by Wenzel Matiaske). The
typefaces used are 11pt Baskerville for body text, Helvetica for headings,
and Courier for source code samples.

	Title
	Contents
	Introduction
	State of the Art in Component Modelling, Versioning and Compatibility
	Components, Component Models and Meta-Models
	Component Versioning
	Substitutability and Compatibility

	Goals of the Thesis
	Primary Goals
	Addressing the Goals: The Constraints

	Structure of the Thesis
	Contributions of the Work
	List of Published Articles

	Conventions Used in the Text

	Component Interface Representation: The ENT Meta-model
	Elements of Component Interface Specification
	Comparison of Component and Modular Systems
	Component Specification and its Elements

	Classifying Specification Element Properties
	Common Properties of Elements
	The ENT Faceted Classification System

	The Model: Elements, Traits and Categories
	Specification Elements
	Traits of Elements in Component Specification
	Categories of Traits
	The E,N,T Category Set
	Restricted Elements and Categories

	ENT Model of SOFA Components
	Mapping of SOFA CDL Constructs to ENT Elements
	Trait Definitions
	How to Find Traits

	Applications of the Model
	Applicability to Frameworks and Technologies
	ENT-based Component Visual Representation
	Assistance in Component Search and Retrieval
	Other Applications

	Discussion
	Advantages of the Model
	Disadvantages and Open Issues
	A Note on Specification Languages

	Summary

	Analysing and Classifying Specification Differences
	Motivations and Approaches
	Desired Properties of Component Comparison
	The Approach Taken

	Differences Between Specifications
	Comparing Specification Parts
	The Differences and Their Classification
	Difference Propagation

	Specification and Carrier Language Issues
	ENT-based Comparison and Type Rules
	Type Systems for Specification Languages
	Carrier Language Issues

	Comparison of SOFA Component Specifications
	Subtyping Rules
	Examples of Frame Comparison

	Discussion
	Advantages
	Disadvantages and Open Issues

	Summary

	Revision Identification Scheme for Components
	Issues in Component Versioning
	Specification-Based Revisions
	Types of Changes Between Revisions
	Relating Changes and Revision Identification
	Our Approach: Specification-Based Revisions

	The ENT Revision Identification Scheme
	Detailed Revision Identification
	Component Revision Identification
	Primitive Revision Identification
	Cascaded Derivation of Revision Markers

	Properties of ENT Revision Identification
	Application of the Scheme in the SOFA Framework
	All Types Have Revision IDs
	How Revision Identification is Derived
	Versioning Complete: Handling Branches and Variants
	Version Data in CDL
	Identification of Versioned Types

	Discussion
	Advantages
	Disadvantages and Issues

	Summary

	Component Substitutability and Compatibility
	Issues in Component Substitution
	Substitutability of Components
	Strict (Subtype) Substitutability
	Deployment Context of a Component
	Contextual Substitutability
	Partial Substitutability

	Backward Compatibility of Components
	Redefinition of Larsson's Compatibility Levels

	Examples for SOFA Components
	Compatibility of Frames
	Determining Context
	Role in Component Updates

	Discussion
	Advantages of our Method of Substitutability Checking
	Limitations of Our Method
	Compatibility and Real Life Development

	Summary

	Compatibility and Versioning Related
	Relating Versioning and Compatibility
	Motivation
	Generic Mechanism of Upgrades

	Meta-data: The Integrating Element
	What the Meta-Data Should Contain

	Use in the SOFA Framework
	Metadata Formats
	Repository for Versioned Components
	Component Updates with Versioning

	Summary and Discussion
	Advantages
	Issues

	Overall Evaluation and Related Work
	Component and Interface Meta-Models
	Distilling Commonalities from Component Models
	Meta-Models Defined as Such
	Summary

	Component Comparison and Substitutability
	Specification Comparison and Matching
	Subtyping-based Substitutability
	Component Substitutability and Compatibility
	Summary

	Component Versioning
	Industrial Frameworks
	Research in Component Versioning
	Syntactical Analysis and Meta-Data in Versioning
	Summary

	Conclusion
	Summary of Our Work
	Lessons Learned
	Open Issues
	Future Work

	ENT Model Definitions for Primary Component Frameworks
	The ENT Model for SOFA Components
	The ENT Model for CORBA Components
	Trait Definitions
	Example: The Parking Component Source
	Example: The Parking Component in ENT

	The ENT Model for JavaBeans
	Trait Definitions
	Example: The MyJuggler JavaBean Source
	Example: The MyJuggler JavaBean in ENT

	SOFA CDL Subtyping Rules
	The Rules for the SOFA CDL
	A. Simple Types
	B. Constructed Types
	C. Interface Types
	D. Component Types

	The Specifications of SOFA Component Meta-Data
	CDL Meta-Data Section Grammar
	Grammar of the URI form of SOFA identifiers
	XML Meta-Data Document Type Definition
	An Example of Complete Meta-Data

	Bibliography

