
In-Flight Entertainment System
using BOOD

Premek Brada

28 September, 1995

This dissertation is a part requirement
for the MSc in Advanced Software Engineering

Abstract

This dissertation is concerned with the design of an In-Flight Entertainment System using
Booch’s Object Oriented Design methodology. The thesis project work formed a base for a
subsequent evaluation of the level of software component reuse from an object-based design,
and resulted in suggestions regarding a transition towards a full object oriented software
development. It supports the claims that software development benefits from the use of
object oriented methods.

The project was done with EASAMS Ltd. in order to provide help in the transformation of
their software development process with the intention to eventually use the methodology
developed by Grady Booch. Towards this goal, the company needed to gain knowledge in
how to use this methodology and to investigate which components of their current object-
-based design can be reused in the Booch-based versions of their applications. As an
additional issue, the use of CASE tools in the design process needed to be evaluated.

For the thesis project purposes a design of the passenger part of the In-Flight System was
developed using Booch’s methodology. This design was taken as a basis for the component
reuse evaluation, and its development provided an opportunity for practical assessment of the
Rational Rose and Object Domain CASE tools.

The results of this work are presented in this dissertation. It begins with a theoretical
background in the form of Booch’s methodology and CASE tools descriptions. The In-Flight
Entertainment System application requirements are summarised in one chapter and the
Booch-based design of the Passenger Application with the supporting appendices forms the
main part of the dissertation. The project results are presented in the chapters discussing the
component reuse and CASE tools evaluation, and synthesised in the form of
recommendations regarding the methodology transition. The dissertation is concluded with a
discussion of its achievements.

Note:

This is the postscript version of the dissertation with some fonts and styles changed to
facilitate on-line viewing. The layout of the text has therefore changed and does not
necessarily correspond to the paper version; the author disclaims any responsibility for
incorrect page references caused by this. Contact the author at <brada@kiv.zcu.cz> to
obtain the paper version, and Microsoft to include a sensible PostScript driver in Windows
3.1.

Acknowledgements

There are a number of people who made my studies in Sheffield possible and
enjoyable. I am particularly indebted to the Excalibur Scholarship people for their
idea and for making it work, and to GEC-Marconi for their sponsorship; as well as to
my parents and friends at home and in Sheffield for their support.

To the LORD my God then I give thanks and praise: it was Him who called me to this
studies and who has been my everpresent source of strength and joy.

Table of Contents Page iv

Page iv

Table of Contents

Chapter 1: Introduction...8

1.1 Project Goals ..8
1.2 Overview of the IFES ...8
1.3 Summary of Project Work...9
1.4 Encountered Problems ..9
1.5 Document outline..10
1.6 Abbreviations..10
1.7 Terms ...10

Chapter 2: BOOD Methodology..12

2.1 Introduction ..12
2.2 Overview of BOOD ..12
2.3 Analysis and Design Techniques...13
2.4 Micro Process ...14
2.5 Macro Process...16

Chapter 3: CASE Tools ...20

3.1 Introduction ..20
3.2 Types of CASE tools ..20
3.3 Role of Repository in I-CASE...21
3.4 Problems with Tools ...22
3.5 Requirements on I-CASE Tools ..22
3.6 Summary ..23

Chapter 4: CASE Tools Evaluation ..24

4.1 Introduction ..24
4.2 Evaluation Criteria ..24
4.3 Evaluation of Rational Rose/C++ v2.5 ..26
4.4 Evaluation of Object Domain v1.02 ..27
4.5 Application of CASE for EASAMS software development29
4.6 Summary ..29

Chapter 5: IFES Requirements ...30

5.1 Introduction ..30
5.2 Requirements Summary ..30
5.3 Other System Characteristics...32
5.4 User Interface..32

Chapter 6: IFES Design ...34

6.1 Introduction ..34
6.2 IFES Analysis...34
6.3 Architectural Design ...37
6.4 Detailed Design ..40

Table of Contents Page v

Page v

6.5 Summary ..50

Chapter 7: Reuse Evaluation..51

7.1 Introduction ..51
7.2 Scope..51
7.3 Reuse Analysis Method...52
7.4 Examples of Reuse Tables ..52
7.5 Conclusions ..53

Chapter 8: Transition to BOOD ..55

8.1 Introduction ..55
8.2 Current Situation...55
8.3 Readily Applicable BOOD Elements ..57
8.4 Methodology Transition..58
8.5 Summary ..59

Chapter 9: Conclusion ..61

List of References..62

Project Diary...64

Appendix A: Analysis Scenarios..65

A.1 Scanning Video Channels...65
A.2 Switch between Audio and Video...66
A.3 Payment for a Selected Game...66
A.4 Browsing Service Menus..67
A.5 Playing the Selected Video Programme..68

Appendix B: Analysis Data Dictionary ..69

Appendix C: Design Scenarios ..73

C.1 Playing a Video Programme...73
C.2 Switching between Video and Audio..73
C.3 Activating the Context Help ...74
C.4 Going to a Previous Menu Level ..75

Appendix D: Level 2 Class Specifications ..76

D.1 PassApp...76
D.2 Item Collections...77
D.3 Browsers ..78
D.4 ServiceItems ..79
D.5 MenuSystem ..81
D.6 Database ..82
D.7 Devices ..84

Tables of Figures Page vi

Page vi

Tables of Figures

Figure 1: Macro and Micro Process...13
Figure 2: Schematic Screen Example—Menu..33
Figure 3: Example Analysis Scenario ..36
Figure 4: Application Layers...38
Figure 5: Module Hierarchy ..38
Figure 6: Item Execution...41
Figure 7: Passenger Application Class Framework ..42
Figure 8: List of Data Types..44
Figure 9: Class category PassApp ...45
Figure 10: Class category ServiceItems ...46
Figure 11: Class category Browsers...47
Figure 12: Class category ItemCollections ..47
Figure 13: Class category MenuSystem...48
Figure 14: Architecture of the Current Design ...57

Scenario 1: Scanning Video Channels ...65
Scenario 2: Switch between Audio and Video Programmes...66
Scenario 3: Payment for the Selected Game ..66
Scenario 4: Browsing Service Menus ..67
Scenario 5: Playing the Selected Video Programme ..68
Scenario 6: Playing a Video Programme ...73
Scenario 7: Switching between Video and Audio Programmes ..74
Scenario 8: Activating the Context Help..75
Scenario 9: Going to a Previous Menu Level...75

Tables of Figures Page vii

Page vii

THIS SPACE IS INTENTIONALLY LEFT BLANK

PLAGIARISM DECLARATION HERE

Chapter 1: Introduction Page 8

Page 8

Chapter 1: Introduction

This master’s thesis is based on a project undertaken for EASAMS Ltd. to investigate the
possibilities of a transition from an object-based to a fully object-oriented software design
process. Among the issues this transition brings are the adoption of the new methodology,
the learning curve of the tools that are introduced, and reuse of the already available design
and code.

These issues were recognised by EASAMS Ltd. who have a long term plan to move towards
the use of the object-oriented design methodology developed by Grady Booch. This plan
coincided with the current software development of an In-Flight Entertainment System
(IFES), a project with long duration and several scheduled software releases (different
airlines, different application versions).

1.1 Project Goals
Based on this observations, the project had three main goals: to develop an ‘example design’
using Booch’s methodology to gather experience in using it; to indicate the opportunities for
reuse from the currently developed design into the Booch-based one; and to evaluate the
suitability of CASE tools for use in this design process.

The example design was necessary in order to get a practical knowledge of the methodology
and its techniques, and in order to facilitate work towards the other goals. There is only a
general knowledge of object oriented programming among the company staff and the know-
how and results of this project can be used as an aid during the transition period.

Producing the design of at least a part of the system also helps to assess the possible reuse of
code from the current development. Reuse is an important factor in the In-Flight
Entertainment System project because it deals with relatively similar applications for the
various airlines. Also, the ‘cross-methodology’ reuse would make the transition much easier.

Lastly, modern software development benefits from the use of tools that automate the various
mundane tasks and assist the creative but controlled design process. Acquiring the tools
however requires knowledge of both what level of support they can offer and of the real
needs of their user. The third goal of this thesis was to evaluate two tools from this point of
view.

1.2 Overview of the IFES
The In-Flight Entertainment System is used by airlines to provide entertainment for
passengers during the flight. It provides capabilities such as listening to audio programmes,
watching films and television channels, using telephones, and purchasing duty-free and
catalogue goods.

The system installed on the aircraft has two main parts: the passenger component used by the
airline customers to access the services through a seat-back screen and handset, and the
flight-attendant component used by the cabin crew to change the system settings and deal
with the transactions and data processing. There is also a ground-based system which allows

Chapter 1: Introduction Page 9

Page 9

preparation of the system data. The EASAMS Ltd. team develops the software part of the
passenger and flight-attendant systems.

Currently, the company still uses a traditional object-based approach to the software design.
There are two main reasons for this: firstly, the time for the application development is very
limited (9 months for a fully-functional system of approx. 85 KLOC) which prevents the use
of any new methodology with the associated learning curve effects. Secondly, there is a
concern that the object oriented implementation would have unacceptably high run-time
overheads on the hardware platform used for the system.

1.3 Summary of Project Work
The work on this master’s thesis project was done in six phases that correspond to its goals.
Although they to a certain extent overlapped, the sequence of these phases was as follows:-

1. As a prerequisite, a general knowledge of the In-Flight system was necessary, as well as
an insight into the current IFES development. This knowledge was gained by reading the
requirements specifications and associated documents, and by participating in some aspects
of the team’s work e.g. design reviews.

2. Another preliminary task was to become acquainted with Booch’s methodology. The
main reference [Boo94] was used to gain an understanding of its principles, and a small-scale
pilot project was run to get an initial insight into its practical execution. Rumbaugh’s book
[Rum91] provided some additional helpful ideas.

3. Developing the example BOOD design formed the major part of the project work. It
comprised analysing the system requirements and building the design of its representative
part, using the CASE tools chosen for evaluation. Booch’s book was constantly used during
this work to follow the methodology as closely as possible. Three internal EASAMS Ltd.
documents were produced documenting the analysis and design techniques and decisions, to
be used as a reference for the transition period.

4. The direct outcome from the work was the experience with the two CASE tools, Rational
Rose and Object Domain. Evaluation criteria lists were produced based on literature and the
practical tool use, and the assessment as presented in this dissertation was performed.

5. The finished example design made it possible to evaluate the code reuse. This was done
using the available design documentation of the current development process and resulted in
an internal document produced for EASAMS Ltd. A summary of its results is also included
in this dissertation.

6. All the previous steps formed a basis for understanding the issues brought by the
transition from the current to an object-oriented design process. As a result, several
suggestions were made regarding the use of BOOD techniques and CASE tools as well as
concerning the general management of the transition process.

1.4 Encountered Problems
The work on this project had to overcome problems of various kinds. The size of the project
and the amount of work it required were underestimated at the beginning and as they were
realised during its course, some adjustments had to be made (the original plan was to develop
a Level 2 design for the whole Passenger Application).

There was some initial uncertainty at the company side about the possible project objectives.
This introduced several changes in its goals, delaying the actual design work. The major
problem however was the lack of feedback from both the company managers and the team
members. Although this was understandable—their extremely tight project schedule left

Chapter 1: Introduction Page 10

Page 10

little time to deal with any other issues—it certainly had an impact on the quality of the
produced design and internal documentation.

1.5 Document outline
This dissertation document is divided into seven chapters that cover the various aspects of the
work, forming three logical groups.

Chapters BOOD Methodology and CASE Tools form a theoretical background for the project,
describing the design methodology and presenting basic information about the tools. The
CASE Tools Evaluation chapter follows immediately so as not to break the cohesion of the
rest of the dissertation.

The following two chapters, IFES Requirements and IFES Design, contain a summary of the
In-Flight Entertainment System functionality and of the developed Passenger Application
design. Their text is based on the documentation developed by and for EASAMS Ltd.

The evaluation chapters form the final part of the dissertation. Reuse Evaluation outlines the
technique and results of the code reuse investigation. The recommendations regarding the
Transition to BOOD are presented in the last chapter.

The dissertation has four appendices related to the IFES Design chapter. They contain
diagrams, tables and code extracts documenting the Passenger Application BOOD design,
separated from its main text to keep it concise and more readable.

The author is aware that the length of the dissertation exceeds the recommended 60 pages.
However, it already contains a substantially shortened description of the thesis project work
and further truncation could only be done at the expense of leaving out important parts of its
results.

The abbreviations and terms used in the dissertation are defined in the tables below.

1.6 Abbreviations
AFS application functional requirements specification
API application programming interface
ARS application requirements specification document
BOOD Object-Oriented Design methodology as defined by G.Booch in [Boo94]
FA flight attendant
FRS functional requirements specification
GUI graphical user interface
IFES In-Flight Entertainment System
LCD liquid crystal display
PVP personal video player
QA quality assurance
SPM seat processor module
TPV third-party vendor
TPVA third-party vendor application

1.7 Terms
Application Database the repository of all persistent data associated with the IFES software

attribute [of a class] variable of a data type inside the class abstraction barrier

Chapter 1: Introduction Page 11

Page 11

business rules the operating procedures pertaining to a given airline

current design design of the IFES applications developed by EASAMS Ltd.

event in an event-driven system, an occurrence which triggers the
application response, and the data structure used to convey the
associated information

feature [of a class] refers to both attributes and methods of a class

Level 1 design stage which identifies application components, also ‘Architectural
design’

Level 2 design design stage which established the class and component interfaces

Level 3 design design stage which expands implementation of classes

message transfer of control between two objects by the means of the target
object’s method invocation

method [of a class] an operation defined by the class, also called ‘member function’ in
C++

Chapter 2: BOOD Methodology Page 12

Page 12

Chapter 2: BOOD Methodology

Summary of Booch’s Object Oriented Design

2.1 Introduction
This chapter contains a brief description of the object oriented design methodology developed
by Grady Booch (the abbreviation ‘BOOD’ will be used from now on). It should help to
understand its main concepts and procedures and, Because Booch’s methodology was used
for the IFES design, should be also helpful in reading the IFES Design chapter of this
dissertation.

This summary is based on two sources: the original description of the methodology in
[Boo94] and the practical experience gained during the project work. The character of the
work placed emphasis on the design stages of the development, and the sections dealing with
conceptualisation and maintenance stages are therefore shortened.

The chapter is organised as follows: an overview of the methodology is presented first,
introducing the notions of micro- and macro-process. Next follows a brief description of
domain and use-case analysis which are the main techniques used in BOOD. The micro
process is then explained, followed by the description of the macro process stages.

The notation symbols used by BOOD are not included in this methodology summary for
brevity. Examples of the main ones, i.e. class and scenario diagrams, can be found in chapter
IFES Design and in the appendices of this dissertation.

2.2 Overview of BOOD

Chapter 2: BOOD Methodology Page 13

Page 13

Booch’s methodology is an object-oriented analysis and design methodology which supports
the evolutionary incremental delivery approach to software development. The BOOD
development process is described at two levels: macro process defines the overall process
framework which corresponds to the traditional waterfall lifecycle model; micro process
defines the sequence of steps within each stage of the macro process.

The relationship between these two processes is shown in Figure 1. The solid-line boxes
represent the macro process stages and correspond to the states in the development process.
As indicated three of them contain the micro process in one or several spins. The micro
process steps outlined in the enlargement are related to the development of the system
components i.e. classes, starting with their identification. Both processes are explained in
more detail later in this chapter.

The main technique that is used throughout the BOOD process is use-case analysis which
was first described by Jacobson. It is both an analysis and a design technique based on
scenarios and is described below together with another important technique, domain analysis.

2.3 Analysis and Design Techniques
The analysis and design techniques are used to find the candidate classes and objects that will
constitute the solution for the system, and to refine the design of the existing ones. To
achieve a good degree of stability of system abstractions and a correct allocation of
operations to objects, BOOD uses ‘behaviour-driven’ techniques to derive the design from
the structure and desired behaviour of the real system.

The goal of domain analysis is to establish those stable abstractions. The technique identifies
“the classes and objects that are common to all applications within a given domain” [Boo94]
and that are perceived as important by the domain experts (e.g. users of similar systems).
Domain analysis is done by consultations with the experts as well by as analysing the
existing systems within the domain.

The product of domain analysis is a list of key abstractions which form a generic model of
the domain applications. The abstractions and their relationships are captured in class
diagrams (see 2.4 Micro Process below for explanation and chapter IFES Design for

examples of these).

Use-case analysis is used to discover and clarify the responsibilities of system components,
i.e. classes and objects. The idea is to explore the interactions of previously identified

Concept

Architectural Design

Identification

Operations

Relationships

Implementation

 Evolution

µ

 Analysis

µ

 Maintenance

µ

Macro Process

Micro Process

Figure 1: Macro and Micro Process

Chapter 2: BOOD Methodology Page 14

Page 14

abstractions during a particular example of system usage. This ‘use-case’ of the system is
usually initiated by a user input or a system event and can be described by a scenario of
events that follow.

The analysts walk through these scenarios in order to “identify the objects that participate in
the scenario, the responsibilities of each object, and how those objects collaborate with other
objects” [Boo94]. Use-case analysis therefore leads to specification of classes and their
methods at the level of detail relevant to the given functionality and design stage. The
product are class specifications with clear boundaries, and object- or interaction diagrams
describing the scenarios.

The scenario-driven development is a key feature of BOOD with the effect that the design of
the internal parts of the system is based on its external behaviour. The main benefit is that
the analysis model and the subsequent design of the software system map very closely to the
real system and its environment, better meeting the user’s needs.

2.4 Micro Process
The micro process describes the flow of activities in the everyday design process. This
should be creative and therefore usually rather informal, and the micro- and macro process
definitions attempt to put them into a controllable framework to achieve the ‘defined’ level of
software process maturity (described for example in the Capability Maturity Model [Pau93]).

During one spin of the micro process, the classes relevant to the functionality of the
developed release are successively identified, specified and implemented. The degree of
implementation detail depends on the current design level: skeleton functionality and free-
form textual description at the beginning, precise definition towards the system completion.
The next four subsections describe the micro process steps.

2.4.1 Identify Classes and Objects
The micro process starts by identifying the classes and other abstractions related to the
functionality of the given analysis or design goal. Domain analysis and use-case analysis
techniques are used to discover the relevant abstractions in the problem domain and invent
new ones for the solution. Some of these abstractions may be already defined from the
previous stages. The scenarios to be used in this step are identified in the corresponding
stage of the macro process in order to focus the development to a particular area.

The product of this step is a list of classes added to the data dictionary of the developed
system. The data dictionary is used in the following steps and stages as a centralised source
of system component definitions. When CASE tools such as the Rational Rose are used, the
data dictionary may have a form of class definitions held in the tool repository and accessible
via the class diagrams.

2.4.2 Determine Class Methods
This step refines the semantics of the classes represented by a list of responsibilities in the
analysis stage, and by methods which define the protocol of the class during detailed design.
As more implementation detail is developed in subsequent iterations, the methods are given
precise names and eventually defined by their full signatures (function headers in C/C++).
An updated version of the data dictionary is a direct product of this process.

This step is very closely related to the previous step; in fact they are often performed at the
same time. Class methods are identified during detailed scenario analysis, when the free-
form textual description of messages passed between the objects is translated into a sequence
of method invocations. The object and interaction diagrams which capture the semantics of

Chapter 2: BOOD Methodology Page 15

Page 15

the scenarios are therefore another product of this stage. For examples of these diagrams see
chapter IFES Design and the appendices.

As a complement to the scenario-driven class design, isolated class design is performed after
the class roles have been established. The goal of this technique is to complete the list of
class methods by adding operations that are not directly required for the system
implementation but which belong to its semantics. The resulting set of class methods should
follow the rules of a good class design as described in [Boo94], i.e. it should be complete,
sufficient, and composed of primitive operations.

2.4.3 Identify Relationships of Classes
After the classes have been designed ‘in isolation’, they are placed in the client-supplier and
inheritance hierarchies by considering their mutual relationships and structural or behavioural
similarities. The aim is to achieve a clear separation of responsibilities between the
abstractions.

During analysis the type of relationship is often unspecified, indicating only that the classes
are related in some way. As the design gets more the relationships are refined into one of
inheritance, containment or client-supplier types. These relationships have the following
meaning:

• Using denotes client-supplier relationship, where “operations of the client class
invoke operations of the supplier class, or have signatures whose return class or
arguments are instances of the supplier class” [Boo94].

• Containment denotes whole/part relationship (aggregation), where instances or
references to instances of the ‘part’ classes are attributes of the ‘whole’. However,
because the methods of the contained class are usually invoked by the whole, this
relationship can be considered as a special case of the client-supplier relationship.

• Inheritance denotes a generalisation/specialisation relationship. The concrete type of
inheritance is defined by the implementation language, namely the use of
single/multiple inheritance, access to the private parts of the base class, etc.

The class relationships are captured in class diagrams. In addition, these diagrams are used to
structure the design into layers that correspond to the logical partitions of the system. Both
inheritance and use/containment can be shown in the same diagram as required. However, if
a class has many containment-type relationships it is better to specify the parts directly as
attributes to keep the diagrams readable. (An example of this case is the class CPassApp in
the IFES Passenger Application BOOD design).

2.4.4 Implement Classes
This step is an integration of the previous three steps. Class specifications are completed by
defining the attributes that are needed to support their implementation, and algorithms of
their methods. All methods should be specified in detail as soon as possible, mainly
concerning their signatures. Optimisation of selected operations is also done in this step if
required during later design stages.

There are two products of this step, which are also the products of the whole micro process.
Firstly, the system data dictionary (whether implemented as an explicit database, or indirectly
through details of classes in the class diagrams of a CASE tool) is updated by the completed
class specifications. After this, the source code as the second product can be generated from
the class specifications.

Related to the previous and this step is the development of the physical system design. The
compilation units, or modules, of the implementation are specified and the classes are

Chapter 2: BOOD Methodology Page 16

Page 16

allocated to them. The main goal is to structure the implementation in such a way that will
facilitate independent work of the development team members.

2.5 Macro Process
The BOOD macro process defines stages in software development in a manner similar to the
waterfall model (see Figure 1 on page 13). Its aim is to provide a framework for management
practices to achieve control over the process, mainly by enforcing development stage
boundaries. This approach is necessary in an evolutionary development where these
boundaries tend to be blurred.

Software process which uses BOOD goes through the following stages: conceptualisation
develops the basic idea of the system functions, analysis produces its complete model,
architectural design establishes the logical and physical application framework, and
evolution gradually develops the implementation in successive releases; after delivery the
system evolves in maintenance cycles. These stages are described in more detail in the
following subsections.

2.5.1 Conceptualisation
The purpose of conceptualisation is to establish the basic requirements, or “problem
statement” [Rum91], for the system to be developed. Before the development starts, the
basic idea of ‘what is to be done’ needs to be clarified and its assumptions validated.

The main activity and associated product is the development of one or several throw-away
prototypes which are used to validate the ideas and to make decisions about the system
development. Booch observes that “conceptualization is…an intensely creative activity” and
suggests that at this stage “the best thing the development organization can do to facilitate the
team’s effort is to stay out of its way.”

2.5.2 Analysis
The goal of analysis is to provide a complete description of the system to be developed by
producing a model of its external behaviour. The description is based on the knowledge
gained from the prototype and captured by use-case scenarios. It shows how the problem-
domain abstractions cooperate to achieve the functionalities related to the system function
points which Booch in [Boo94] defines as “some primary activity of a system in response to
some event.”

The product of analysis is a requirements document that describes the behaviour of the
system, plus associated management documents like a risk analysis. The functional
requirements are mainly expressed using the scenario diagrams corresponding to function
points. Also, an initial form of the data dictionary is prepared which lists all key abstractions
and descriptions of their responsibilities (functions) in the system.

Steps and Techniques

The analysis stage comprises a reduced micro process with two steps, components
identification and scenario planning, performed in several iterations. The stop condition for
the iterations is a stable data dictionary (little changes in classes and their roles and
operations).

Components Identification

The purpose of this task is to find the key components of the system which are the potential
classes for the implementation. However, the goal is to find classes related to the whole

Chapter 2: BOOD Methodology Page 17

Page 17

problem domain, not just to the particular system under development. This helps to identify
more general classes with higher potential for reuse in related applications.

The components are identified using the domain analysis technique outlined above. The
consultations with domain experts reveal a number of ‘things’—tangible objects, physical
locations, structural elements, concepts—that are important within the problem domain.
These are the key abstractions used later in the scenario analysis.

Scenario Planning

The purpose of scenarios is to find out the mechanisms through which the system achieves
the desired behaviour. Using scenarios, the behaviour can be jointly explored by the
developers and clients which helps to precisely specify the requirements. This step
implements the identification of class semantics, the second step of the micro process.

Scenario planning is based on use-case analysis described above. A scenario is storyboarded
for each set of related system function points detected for the system, using the key
abstractions found in the previous step. Initially this can be done in the form of a text
narrative or using the CRC cards1 to facilitate brainstorming. As the distribution of
responsibilities becomes clear, object or interaction diagram representation are used to
describe the scenarios.

Drawing high-level state transition diagrams is a supplementary technique which was found
helpful to explore the system behaviour. It can complement scenario planning to put the
scenarios into context and identify the paths in system behaviour that need to be explored in
more detail.

The product of scenario planning are interaction and object diagrams which describe the
system behaviour, grouped into clusters of related function points. Also, the data dictionary
is updated by adding the class methods and collaborators identified during this step.

2.5.3 Architectural Design
The design of the application architecture is the third macro process stage2. System
architecture describes both the dynamic and static aspects of the system: the layering of
classes/objects that reflects their run-time dependencies, and module hierarchies that describe
the compilation structure. Being concerned with large-scale strategic decisions, architectural
design does not use the micro process.

This stage has two main steps and associated products: establishing the architecture of the
application, and setting up the tactical policies that affect various aspects of the design. Also,
a release plan is established to form a basis for the system evolution.

Logical Design: Layers

The system layers reflect how the high-level functions are achieved by splitting them into
smaller tasks performed by the classes at lower levels. In Booch’s description, “a layer
denotes the collection of class categories at the same level of abstraction” and layers are split
into “partitions [which] denote each of the peer class categories that live at the same level of
abstraction.”

In BOOD, layers and partitions are described using class categories which represent logical
grouping of classes that provide a set of related services. The client-supplier relationship
between classes is used to determine the layers of the system: if class A needs classes B and

1 Class-Responsibility-Collaborator cards, described in more detain in [Boo94] and other sources.
2 Booch uses the term ‘Design’ for this stage in his book. However, the more descriptive term

‘architectural design’ is used in this dissertation as well as in the documents produced for
EASAMS Ltd.

Chapter 2: BOOD Methodology Page 18

Page 18

C to perform its functions, then A would usually be in a layer above B and C. The
associations between categories are thus based on clusters of class associations, simplified to
reduce high fan-outs and mesh patterns.

Physical Design: Modules

The physical design describes the compilation units into which the implementation source
code will be divided, using two levels of abstraction: modules and subsystems. Modules are
used in the usual meaning and contain declarations and definitions of classes. Module
dependencies determine the order of compilation or file inclusion. Subsystems represent
clusters of logically dependent modules which can reside in one subdirectory tree.

The physical design needs to be considered carefully as physical partitioning affects the
possibilities of independent and parallel work on different parts of the system. The module
hierarchy is based on class categories in general, but inheritance and containment
dependencies can affect the allocation of some classes into particular modules.

Design Policies

Various aspects of the system design, called ‘tactical policies’ in BOOD, need to be
considered before the detailed design begins. Main issues in this area are general error
detection and handling, memory management, and flow of control (e.g. client-server, event
driven), as well as domain- and system-specific issues like optimisation. The purpose is to
prevent these policies to develop in an uncontrolled ad-hoc manner during the design process.

Tactical policies are described in an appropriate document. Where possible, the policies
should be illustrated by scenarios that capture their semantics and mechanisms. Booch also
suggests to carry out a walkthrough of the policies, mainly in order to propagate the ideas
throughout the team.

2.5.4 System Evolution
During the evolution stages the design is gradually refined into the implementation until the
system is completed. The system evolves in separate releases—horizontal or vertical slices
of the system—from the core towards the complete functionality. The main advantage of this
approach is the early delivery of at least a skeleton system version which facilitates early
feedback from the user and has important psychological benefits.

A system release, the main product of the evolution stage, is developed by performing one or
more spins of the ‘micro process’ during which the classes relevant to the release
functionality are identified, specified and implemented. The degree of implementation detail
depends on the current design level: classes are specified at the beginning, and implemented
towards the release completion.

One iteration of the evolution stage consists of three main parts:

1. First, the function points which the current release should implement are identified. They
are taken from the list prepared during analysis and design, and the scenarios that describe
them serve as a basis for the work on the release implementation.

2. Next, one spin of the micro process is initiated and performed. During its execution, the
four steps described in the previous section are performed with the effort focused on the
abstractions related to the function points of the current release. Regular design reviews
and other management practices should be used to ensure the quality of the development
process.

3. After the implementation step of the micro process is completed, its results are integrated
into the system through change management and the release is produced. Design changes
need to be controlled due to their different relative cost. For example, changing a method

Chapter 2: BOOD Methodology Page 19

Page 19

implementation usually affects very little of the rest of the system, whereas modifying a
class interface or reorganising the inheritance hierarchy can have a substantial impact.

2.5.5 Maintenance
The last development stage represents the postdelivery evolution of the system. The changes
required after the system is delivered to the customer are incorporated into the system using
same methods as in the evolution stage. The only difference from the architectural design
and evolution is the reduced amount of design innovation.

The corrections and/or enhancements requested by the customer are grouped to serve the
same purpose as function points, but they must be prioritised so that important enhancements
or bug fixes are handled first. Then the same process as in the evolution stage is started,
resulting in a release which addresses the selected problems.

Chapter 3: CASE Tools Page 20

Page 20

Chapter 3: CASE Tools

3.1 Introduction
This chapter contains a theoretical background to the principles and use of Computer Aided
Software Engineering (CASE) tools. The support these tools provide for software
development in all stages of the lifecycle, as well as for the associated process management
tasks, is becoming more important with the growing maturity of software design
methodologies and an increasing need for effective team development of high quality
software. These issues were recognised in the software development at EASAMS Ltd. and
resulted in a requirement to evaluate the possibilities for the use of CASE tools as a part of
this thesis project.

After presenting a taxonomy of CASE tools and important aspects of their functionality, the
problems with adopting these tools in wider use are discussed in this chapter. The final
section presents a list of requirements that a good Integrated CASE tool should fulfil. The
results of actual evaluation of two tools are presented in chapter CASE Tools Evaluation
towards the end of this dissertation.

3.2 Types of CASE tools
There is a wide variety of CASE tools available on the market today, each offering a different
level of functionality and support. To ease orientation in this field, researchers and
practitioners have come up with categories that group the tools according to these levels of
functionality. These taxonomies provide information about both the quality of the tools and
their historical development as these two things come close together in this rapidly evolving
area.

One common way of classifying CASE tools is described in [Kel94] and summarised below:

• Lower CASE are tools that support the basic procedures in one phase of software
development, e.g. capturing system design in a notation of a particular methodology;

• Upper CASE tools cover system analysis and design as well as software production
support;

• Integrated CASE tools provide support for the whole software lifecycle including team
development and management tasks, e.g. version and configuration control, planning and
progress tracking;

• Component CASE are based on a defined application and data interface which allows
integration of tools from different vendors.

The increasing functionality of the tools in this classification is important for determining the
areas in which each can be used to the best advantage. Lower- and Upper CASE tools may
be suitable for an individual or a small team where the problems of shared access and
communication of design ideas are not significant. For any larger-scale project however, an
Integrated CASE environment is necessary to support the added tasks of project management
and team development.

Chapter 3: CASE Tools Page 21

Page 21

Integrated CASE tools are the current state of the art although many problems still need to be
resolved. After the developers adjust to the changes in development culture, using these tools
can bring real benefits, especially if they provide ways of tailoring to local specifics. Many
of the Integrated environments are in fact on the Component CASE level, and these two
categories are discussed below in more detail.

3.3 Role of Repository in I-CASE
To achieve their level of functionality, Integrated CASE tools must be able to maintain
relationships between data of various kinds—software component representations, design
diagrams, methodology-specific rules, etc. In addition to these data-data relationships,
information needs to be related to the tools that perform various transformations upon it (e.g.
from design notations to source code). Both the data and their relationships must also
conform to the syntax and semantics given by the design methodology.

All these requirements can be achieved only if all the data is kept in a common format and
centralised. This centralised store of project data is called repository. It can be formally
defined as “the set of mechanisms and data structures that achieve data-tool and data-data
integration” [Pre92]. Conceptually, there are two levels of data stored in a repository:
project-specific data which describe the components of the software under development, and
metadata which define how these pieces of data can be related to each other and to the tools
that manipulate them.

The repository is build on a standard database platform (relational or object-oriented) and
adds the functionality necessary for the CASE environment. [Pre92] lists the following
functions a repository provides in common with other database systems:

• centralised, non-redundant data storage of all information about the project under
development;

• high-level access to the data for all tools within the integrated environment, independent
of the physical representation;

• transaction control to manage data integrity during concurrent user access and prevent
losses in a case of system failure;

• security mechanisms that allow the users to access only the data and tools relevant to their
work;

• query and report facilities that enable users to browse the repository contents;
• means of data import and export that facilitate information exchange with other tools.

The special features of a CASE repository are then defined as

• storage of data of varying granularity and conceptual levels—text, diagrams, object
relationships, semantic information, metadata, etc.;

• integrity (consistency) enforcement capability which triggers cascade changes on relevant
objects when an existing object is updated or a new object added, also includes explicit
integrity checks;

• internal data representation independent of its external presentation so that each part of the
I-CASE tool can interpret it according to its needs;

• rules governing the software development process and project management tasks to ensure
that both the product and the process of its development are correct.

Tools that contain a full-featured functionality using a repository can thus help the software
development team not only to build the product in accordance with the chosen methodology
but also to ensure the traceability and quality of the process itself. This is important today
when it is realised that the quality of the software process is a major factor in ensuring the
quality of the resulting product.

Chapter 3: CASE Tools Page 22

Page 22

3.4 Problems with Tools
Despite the expectations, CASE tools are still used rather sparsely and/or inefficiently in
industry. One of the surveys cited in [Kem92] has found that 70 percent of CASE tools are
never used, and 25 percent are used by only a group and not to their full capacity.

There are several problems with adopting CASE tools successfully. Owing to their extensive
array of features and the resulting complexity, they have a relatively long learning curve. This
is very often further complicated by the time needed to learn a new methodology together
with the tool, and augmented by the wide variety of tasks involved during software
development.

When transformed into cost estimates, the effects of the learning curve can result in a
decrease of productivity for a period of two to six month [Kem92]. This can be
disappointing for managers who may hope to gain a relatively quick profit from the use of the
tools.

Kemerer also points out that tools often have a varying level of support for individual project
tasks. As the importance of some tasks changes between projects (some may require a
complicated analysis, other ones detailed testing) the benefits will be different for each of
them. This makes it difficult to evaluate the tools using a fixed set of criteria.

Last but not least, the relatively high cost of I-CASE tools may put off managers who are not
fully convinced about the benefits of these tools.

All these problems emphasise how important it is to know what facilities CASE tools can
provide and to select the proper tool with respect to the needs of the company. Next section
presents a list of general guidance rules for choosing an Integrated CASE environment.

3.5 Requirements on I-CASE Tools
As a synthesis of and corollary to the previous paragraphs, the following is a checklist of
criteria or requirements on Integrated CASE tools and. It can be used to help in assessing the
candidate tools (the list was compiled using information from [Pre92] and [Gra93]):

• team support: Does it support shared and exclusive access to objects plus communication
among the team members?

• openness: Is integration of tools from other vendors possible, is the repository directly
accessible and implemented in a standard format (i.e. using an off-the-shelf database
system)?

• tailoring: To what extent can the tool be tailored to the specific project, methodology or
local culture needs?

• integration: Does it integrate both technical (e.g. design) and management (e.g. planning)
tools which cover the whole lifecycle and which communicate through one common
repository?

• consistency: Are changes automatically propagated to all relevant objects, how is the
consistency checked (e.g. on input, by explicit command, etc.) ?

• version and configuration control: Does it support version and change control of the
design files, configuration and baseline management, and in what way?

• document and code generation: Can the design etc. documentation as well as source code
in a required language be produced automatically from the repository contents, and how
does the tool handle manual changes to them?

• reuse: Does the tool provide an access to code and design libraries so that reusable
components can be both extracted and added?

Chapter 3: CASE Tools Page 23

Page 23

• metrics collection: Can the tool automatically collect technical and management metrics
during the design process and are these metrics useful for quality improvement?

All these criteria concentrate on the most labour-intensive tasks which should naturally
benefit from the tool support. In general, it should be always checked “on what does the
vendor base his claims of improvement in productivity and quality” because “100 percent
automatic source-code generation ... hardly makes [any difference when] programming code
actually consumes at most 15 percent of development cost” [Gra93].

3.6 Summary
This chapter presented a short overview of the functions of Computer Aided Software
Engineering tools mainly with respect to team development. Two lists of checklist criteria
were presented which can be used for a tool evaluation. The assessment of the tools used
during the work on this thesis project is given in chapter CASE Tools Evaluation.

Chapter 4: CASE Tools Evaluation Page 24

Page 24

Chapter 4: CASE Tools Evaluation

4.1 Introduction
Booch’s Object-Oriented Design methodology is very rich on notation and if it is to be used
in full it needs a tool to support the diagram-based analysis and design process. This was one
reason behind the requirement for this thesis project to evaluate the possibility of using
CASE tools. Another reason was that the current design method used at EASAMS Ltd. is
almost entirely paper-based, with the design diagrams produced using the drawing
capabilities of Microsoft Word for Windows.

The management of EASAMS Ltd. acknowledge that the lack of tools brings problems to the
software development, mainly in the areas of communicating changes through the design
team and ensuring consistency of the design during its evolution. However, no tool support
was sought so far because the design methodology in use is a non-standard one and because
the tight time scales for the IFES project do not allow for any delays at all.

For the IFES Passenger Application BOOD development, two tools were chosen and
evaluated by practical use: Rational Rose version 2.5 by Rational (demonstration version),
and Object Domain version 1.02 by Dirk Vermeersch (shareware edition). These tools were
chosen for the following reasons: Rational Rose is widely used in the industry thanks to its
good support for BOOD, Domain is a publicly available tool with a very low price tag. Both
tools were used in the Microsoft Windows version.

The rest of this chapter lists the criteria used for the evaluation, results for the two tools in
question, and suggestions regarding possible adoption of CASE tools for EASAMS Ltd.
software development.

4.2 Evaluation Criteria
The criteria are drawn from two sources: the requirements on I-CASE tools which are
summarised in chapter CASE Tools, and practical experiences gained during the work on the
project.

It could be argued that the choice of I-CASE criteria is inappropriate as none of these tools
can be regarded as integrated. In the author’s opinion this approach is valid because (1) these
criteria represent the full set and therefore allow to determine the category of the tool and (2)
any tool (not just CASE) should be assessed with future needs in mind, especially in software
industry where today’s state of the art technology becomes basic requirement in near future.

4.2.1 I-CASE Criteria
These requirements are common for the tools that are made to support the team development
and management of quality-centred software process:

Chapter 4: CASE Tools Evaluation Page 25

Page 25

1. team support
 The tool should provide locking mechanism for exclusive access to the components of

design for updates while allowing unlimited copies to be viewed in read-only mode;
integration with email, information systems, word processing packages is very helpful.

2. repository
 The design data must be held in a repository which allows consistency checking and

information sharing among the tools.

3. lifecycle support
 This allows to evolve the system from analysis through design to the maintenance stages

of its lifecycle, with smooth transitions of the information between these stages.

4. version and configuration control
 The tool should integrate or support control of versions of the evolving design and of its

parts, as well as provide a means to manage design differences for various implementation
platforms.

5. process flow control
 The support of a methodology is only complete if the work on the design components of

one stage can begin only after all the components of the previous stage(s) have been
finished.

6. management support
 The tool should incorporate project planning, progress monitoring, metrics collection and

other management-related functions.

7. documentation and code generation
 It is necessary that the design documentation and source code (at least in a skeleton form)

can be generated automatically from the information in the repository.

8. integration and data exchange
 The too should be able to export the design information in a common format which can be

used by other packages.

9. extensibility and tailoring
 The tool should have means for tailoring its functions to the particular environment in

which it is used, including the process flow control functions.

4.2.2 Experience-based Criteria
These criteria were developed during the actual use of the tools for IFES/EK design using
BOOD. They reflect the needs of a developer which uses the tool on a daily basis. For
everyday work, presentation capabilities and ease of use are very important because they
influence the human ability to deal with the complexity of the developed software.

10. presentation
 The information about the system under development must be presented in a clear way

that helps the designers in understanding and orientation in the system.

11. repository-related
 The tools should have such functions as duplication checks, queries about objects (classes,

diagrams), referencing same objects in various diagrams (e.g. a method in both the class
and interaction diagrams for BOOD).

12. diagram editors
 The diagram editors must help to make the presentation clear, for example by including

text annotations and formatting the diagram elements.

13. level of detail
 Information about objects both for input and presentation should be relevant to the current

development stage (e.g. omitting method parameters in architectural design).

Chapter 4: CASE Tools Evaluation Page 26

Page 26

14. ease of use
 The user interface should be designed in such a way that the tool’s functions can be

accessed ergonomically.

15. stability
 The tool must be stable to prevent losses of information and work (unfortunately, even

professional programs are prone to occasional crashes in the MS-Windows environment
due to its lack of memory protection).

The following two subsections present the evaluation of the two CASE tools used during the
IFES/EK Passenger Application BOOD development. Each criterion is evaluated both
verbally and numerically. This allows to compute a compound value of the total ‘quality’ of
each tool as well as include comments explaining the reason for the value.

The scale used for the individual criteria and the compound value is ordinal numbers from 0
to 10, with the equivalent meaning ranging from ‘not supported/useless’ to ‘excellent’. The
final compound value is computed as their arithmetic mean where all the criteria bear the
same weight. This is certainly a simplification, however it is very difficult to express the
importance of the criteria using numerical values without a substantial research backing such
decision. The value therefore gives only an approximate evaluation and needs to be used
with the accompanying verbal assessment.

4.3 Evaluation of Rational Rose/C++ v2.5
The Rational Rose tool is produced by Rational Software Corporation, Santa Clara, CA. For
the evaluation purposes, a demonstration version was obtained from Rational UK, Brighton,
East Sussex. This version has all the functionality of the full version but the design is limited
to contain the maximum of ten classes. The full version for Microsoft Windows cost £1,900
at the time of writing.

Individual criteria:

1. team support 8/10
 The design can be divided into separate parts (called ‘controlled units’) that can each be

modified by different developer using standard check in / check out functions, and write
protection can be set for these units; however no direct support for communication is
provided.

2. repository 9/10
 All the necessary repository functionality is provided, including queries about objects and

consistency checks with detailed error reports; however the repository is not held in a
standard (database) format and is not directly accessible.

3. lifecycle support 5/10
 Both the strength and a weakness, there are no explicit boundaries between development

stages and the design can be easily gradually refined, but no specific support for the stages
is supported (this is rather surprising with regard to the clear distinction of the stages in
the methodology and the close link between the author of the methodology and the
company that produces the tool).

4. version and configuration control 4/10
 No support for this functionality within the tool itself; at least the design is held in an

ASCII file which can be used by external tools like RCS without major problems (this
strategy is advocated in the Rational Rose user manual).

5. process flow control 0/10
 There is no support for sequencing the development of design components.

6. management support 0/10
 No functions towards this point nor any links to external tools are provided.

Chapter 4: CASE Tools Evaluation Page 27

Page 27

7. documentation and code generation 9/10
 The tool has a very good C++ source code generation support with a degree of

customisation, in addition user changes to the produced code are possible and preserved
by the tool, and also full documentation of class specifications can be generated; though
the latter one is hidden under the ‘Print specification’ menu command.

8. integration and data exchange 3/10
 The ‘petal files’ used by Rational Rose for design representation and export are

human-readable ASCII files but to the author’s knowledge not are not standard and
interchangeable with other CASE tools.

9. extensibility and tailoring 2/10
 The only tailorable option is the amount of information included in the source code

generation; there is no support for tailoring the methodology or the information
presentation.

10. presentation 9/10
 The diagrams are well readable and annotations, zooming and text formatting facilities are

available; the only possible problem is that the presentation is purely diagram-based
without any possibility to display the structure in a textual form.

11. repository-related 10/10
 Good support for all the required functions including detailed error reporting.

12. diagram editors 10/10
 Good support for both drawing and printing the various diagrams.

13. level of detail 5/10
 The dialogue boxes for object specifications input are the same regardless of the

development stage; at least they are easy to comprehend and the amount of class
specification information displayed in the diagrams can be easily changed.

14. ease of use 8/10
 The tool uses toolbars and an intuitive way of entering information, but navigation in

large designs can be potentially difficult.

15. stability 9/10
 Problems with the tool’s stability were accounted but were very rare.

Compound value: 6.6/10

From its list of features it is clear that Rational Rose is not an Integrated CASE tool,
especially due to its lack of support for process flow, management functions and standard
repository format. But it does not claim to belong to that category, and can be regarded as a
good Upper-CASE tool.

For the needs of EASAMS Ltd. this tool (in the full version) may be actually better suited
than a fully featured but non-customisable Integrated tool because of the specific
requirements on the software process the company needs to meet. The management, version
control, etc. procedures are already well established in the current management practices and
therefore their lack in the Rose tool need not be seen as a disadvantage.

4.4 Evaluation of Object Domain v1.02
This tool was developed by Dirk Vermeersch, San Jose, CA. A shareware version of the tool
was obtained from a mirror of the Simtel ftp archive and used for a one-month evaluation
period. It differs from the full version, which is available upon registration from the author
and costs US$99, by a message text included in all printed diagrams. The shareware version
is otherwise fully functional.

Individual criteria:

Chapter 4: CASE Tools Evaluation Page 28

Page 28

1. team support 0/10
 The tool has no support for multi-user access.

2. repository 4/10
 There is some kind of repository but its use is very rudimentary (allows referencing

classes in different class diagrams but no use of class specification in object/interaction
diagrams for example).

3. lifecycle support 6/10
 There is no direct support to distinguish the lifecycle stages; the only feature related

indirectly to this point is that the C++ source code can be generated only from module
diagrams whose contents is defined by the preceding work on class specifications.

4. version and configuration control 0/10
 There is no built-in support for these functions or any way to control the design versions

externally.

5. process flow control 0/10
 There is no support for controlling if prerequisites for design components have been

completed.

6. management support 0/10
 No management-related functions are provided.

7. documentation and code generation 5/10
 The tool can produce both structured text descriptions and C++ source code from the class

specifications; however, both functions are implemented in a rather clumsy way which
makes a lot of reformatting necessary.

8. integration and data exchange 2/10
 There is only an option to cut&paste the diagrams in a bitmap format; however this is of

little use due to the big size of the bitmaps and the consequent problems with their
integration into documents, and there is no possibility to export the data in any other
format.

9. extensibility and tailoring 0/10
 There are no options that would allow to customise the tool.

10. presentation 7/10
 The tool uses a window with a structured list of all diagrams which makes the orientation

in the design very easy, and has a reasonable way of handling text display and zooming;
however the input dialogue boxes are very complicated and no keyboard or mouse
shortcuts are used.

11. repository-related 2/10
 The use of repository is rudimentary and the tool will even allow to use two different class

specifications under the same name, although some diagram-rule checks are made on
input.

12. diagram editors: 6/10
 Graphical presentation of the diagrams is good but the text annotations are rather basic

and handling messages in object and interaction diagrams is awkward.

13. level of detail 4/10
 The dialogue boxes for class and association specifications contain all levels of detail

without any structuring; at least most information can be safely omitted when it is not
needed.

14. ease of use 4/10
 Despite some good ideas about information structuring, the access to the design

information is often difficult and not very intuitive.

15. stability: 5/10
 The tool has some serious internal problems which lead to incorrect memory handling and

subsequent crashes, in certain cases making the whole design file unreadable.

Chapter 4: CASE Tools Evaluation Page 29

Page 29

Compound value: 3/10

To conclude, the Object Domain CASE tool may probably be regarded as an Upper-CASE
only because it supports both design and coding stages of the software lifecycle to a certain
degree. However, its shortcomings and lack of stability prevent its use for any serious
project. It can be considered as an option perhaps for an individual developer because of its
low price as compared to the professional tools.

4.5 Application of CASE for EASAMS software
development
In the present situation it is unfortunately rather difficult to introduce an Integrated CASE
tool into the EASAMS Ltd. software development mainly for two reasons: (1) the time scales
for the IFES project do not leave any space to accommodate the effects of the tool adoption,
(2) the diversity of projects on which the company works makes it difficult to use a single
methodology—which would benefit from CASE tool support—for all of them.

However, the need may not be for an I-CASE specifically. As most practices of a good
project management are already in place, what is most needed is a tool that would support the
actual design and coding work. The Rational Rose tool could be fully used for this purpose
as soon as the IFES project starts using object-oriented design methods.

In the meantime, its support for scenario analysis in the form of object and interaction
diagrams would be beneficial. Also the current object-based design could be held in the tool
repository since its components can be relatively well represented as classes. This would
bring the benefits of a central reference which can be accessed by everyone but whose parts
can be modified only by the appropriate persons. However, it may be difficult to justify the
cost of the CASE tool for such a limited use.

The situation of EASAMS Ltd. is an example of the “readiness for CASE” issue, and the
suggestion made in [Kem92] that “developers are recommended to delay adopting integrated
CASE tools until they are fully comfortable with the underlying methodology” applies to a
certain extent.

4.6 Summary
This chapter has presented an evaluation of the two CASE tools used during the work on
IFES Passenger Application BOOD design. It first describes the criteria used for this
evaluation, based on the checklist given in chapter CASE Tools, as well as their approximate
numerical values.

The second part of the chapter contains an evaluation of the Rational Rose/C++ version 2.5
and Object Domain version 1.02 tools. This evaluation shows the advantages a professional
tool can offer over an under-developed one. Also included at the end are suggestions
regarding the use of tools for the EASAMS Ltd. purposes.

Chapter 5: IFES Requirements Page 30

Page 30

Chapter 5: IFES Requirements

Summary of Passenger Application Requirements

5.1 Introduction
This chapter summarises the requirements specification of the Passenger Application for
IFES. The requirements are based on the relevant EASAMS Ltd. documentation and have
been transformed into a narrative form.

5.1.1 System Structure
The Application Software for the whole IFES consists of four major areas:

Flight Attendant Applications

The FA Applications are hosted at the control panel (and optionally with limited functionality
at the flight attendant workstation), the software provides extensive facilities for system
administration, monitoring and controlling entertainment facilities, and running a duty free
sales operation.

Passenger Applications

The Passenger Applications are hosted at each seat. The software supports a number of
passenger services including entertainment programming review and selection, duty free and
catalogue shopping, game selection and air-to-ground telephone functions. The structure of
these applications may support additional applications from third-party suppliers.

Automated Applications

Hosted at the Cabin File Server, the software operates alongside the Application Database to
build a comprehensive record of a given flight leg including passenger transaction details,
statistics of services used by the passenger, and archiving of a flight leg for down-loading on
a later stopover.

Ground Based Support System Software

The software, hosted on customer provided equipment, provides the airline with facilities for
preparing the data at the ground site for loading on-board applications.

5.2 Requirements Summary
This sub-section provides a high-level summary of the software applications of the IFES. It
should give a concise but good overview of its functionality relevant to the scope of this
dissertation.

Video

The IFES supports up to twenty distributed video entertainment channels. Each channel
would be described on a main menu with a listing of selections. The FA has the ability to
program show times and monitor source operation. The passenger selects the channel of

Chapter 5: IFES Requirements Page 31

Page 31

video entertainment via the handset or touch screen and can select an alternative language
soundtrack for films where available.

Audio

Audio entertainment allows customers to select one of a number of audio channels in either
stereo or mono. The passenger may have the capability to view any channel description
listing on the video screen while listening to another channel. FAs have the capability to
monitor audio channels from an audio jack at the control panel.

Any audio channel (excluding audio associated with a pre-recorded video entertainment) may
be combined with any interactive application not having an associated audio. The IFES
assigns a default audio channel and retains the audio selection when a non-audio application
is selected.

Games

Customers have the option of selecting games through the IFES. A screen describing the
games is displayed via the main menu. From the game description screen, the passenger is
able to select the game, and begin to play. The game applications are supplied by TPVs and
their co-operation with IFES is maintained via a standard API. Game being executed can be
paused for the duration of an announcement. Pause and restart capability will be the
responsibility of the supplier.

Duty Free Sales

The duty free sales function allows passengers to place orders for duty free products at each
seat. Passengers are able to display product information in an alternative language other than
default English, select products for purchase, select a form of payment including payment in
multiple currencies, and record credit card information at the seat place.

The system maintains a running inventory of all products and notifies passengers if a
product is not available. It also maintains an audit trail of all transactions and controls access
to the duty free function at the control panel and flight attendant workstation.

Catalogue Sales

The catalogue sales function allows passengers to place orders for merchandise available
from a third party vendor. Passengers are provided with the capability to display product
information, select products for purchase, record credit card information at the seat place, and
identify the location to which the products should be delivered.

The system records all catalogue orders, including payment and delivery information. The
data is handed off at the completion of the flight to the catalogue vendor. The catalogue sales
vendor is responsible for any sales accounting and product delivery. In addition to using the
IFES to place orders, passengers may be offered the ability to order items via a telephone call
to the catalogue service provider.

Information Browser

This facility allows a Passenger to browse text and / or bitmap information on the touch
screen. This information comes either from the airline or from TPVs.

Telephone

Passenger telecommunication services are initiated through menu choices or the "new call"
button. The card reader at the seat is used for collecting card information. This data is to be
validated by the service provider before a call is placed.

Chapter 5: IFES Requirements Page 32

Page 32

Help

Passengers may request context sensitive help on all functions of the passenger application at
any time during use of the passenger services. This information guides the passenger in the
use of the system, and other facilities, that may be available.

5.3 Other System Characteristics

Passenger Services

During the course of a flight, a passenger may review all transactions or purchases made via
the system. This facility allows a passenger to review their account with the system, and
verify each payment made. The passenger is able to select the language, from those
supported, in which they wish text to be displayed.

Flight Transaction

All sales events such as catalogue sales, games payments and refunds which occur during a
flight leg, are recorded as flight transactions within the applications database. This data is
handed off via diskette as a part of final closeout.

Payments

The passenger is able to select to pay by credit card or cash from a list of currencies. The
passenger can request a printed receipt verbally from the FA. If a service is not
complementary then the passenger has to pay for that service before it is provided and is able
to exit and re-enter entertainment items previously purchased without further payment.

The IFES allows for charges to be applied toward video, audio, games, and telephone
services. The IFES checks the integrity of the data on a credit card and display acceptance or
rejection at the seat. System records the passenger's payment and calculates the change due.

Menu structure

The facilities provided by IFES are divided into a hierarchy of services and categories within
services for the purpose of menu selections. The passenger can browse the menus by
changing service, selecting a category, and selecting a topic within the category.

5.4 User Interface
The passenger application interacts with the user by the means of a colour LCD display
combined with a touch screen. User selections and alphanumeric data can be also entered via
a handset which combines application control and telephone functionality. The application
user interface uses menus and dialogue boxes for user selections, and overlays for changing
system parameters like headset audio volume.

The picture below shows a schematic menu screen of the Passenger Application IFES. The
horizontal menu on the bottom lists a few of the available services, the rest is accessible by
scrolling its contents sideways. The menu in the centre shows the categories and topic
selectable within the ‘Business Corner’ service, with the ‘Latest News’ highlighted. System
buttons are on the top of the screen.

Chapter 5: IFES Requirements Page 33

Page 33

OK

MODE OFF

VideoVideo
ChannelsChannels

BusinessBusiness
CornerCorner

DutyDuty
FreeFree

BACK

 Latest News TV Channel

 Stock Exchanges

 Games

Figure 2: Schematic Screen Example—Menu

Examples of the real user interface (screen snapshots etc.) of the IFES applications
unfortunately could not be included in this dissertation because they are a property of the
various airlines and under commercial confidentiality protection.

Chapter 6: IFES Design Page 34

Page 34

Chapter 6: IFES Design

Description of the Passenger Application Design

6.1 Introduction
This chapter presents the design of the In-Flight Entertainment System Passenger
Application. In accordance with the thesis objectives, it was developed to provide an
example design using Booch’s methodology and to evaluate the possibility of code reuse
form the current IFES design.

The contents of this chapter can be divided into three main parts, following the main stages
of BOOD macro process. The first part presents the analysis of the Passenger Application
requirements with a list of function points that were used in the behaviour analysis.

The second section describes the architecture of the passenger application software, outlining
the main class categories, their functions and relationships. A discussion of optimisation
strategies is also included.

The last section presents the Level 2 design of the Passenger Application. The attributes and
methods of classes are specified, as well as their relationships. The design is concerned only
with the part of the application classes related to video programmes.

Unfortunately the amount of design information had to be substantially reduced for this
dissertation because the original design documentation produced for the use of EASAMS
Ltd. has more than 100 pages. However all the important aspects and representative parts of
the design are presented here.

6.2 IFES Analysis
The analysis of requirements on the Passenger Application behaviour preceded the actual
design. Its main outcome was the familiarity with the system to be developed, and an initial
description of its key components and function points.

Subsection 6.2.2 System Behaviour Analysis below lists the main functions of the system
identified during analysis. The scenarios in the form of interaction diagrams that describe
them are shown in Appendix A at the end of the dissertation. A sample of the other analysis
product—the initial form of the system data dictionary—is included in Appendix B.

During the system analysis, the demonstration version of the Rational Rose tool version 2.5
was used. At this stage its restrictions were not limiting because the main work was
concentrated around scenario diagrams. The tool evaluation can be found in chapter CASE
Tools Evaluation.

6.2.1 Information sources
The main BOOD reference [Boo94] lists two major sources of information for the system
analysis: the knowledge of the domain experts and the experiences gained from the system
prototype developed in the preceding stage, conceptualisation.

Chapter 6: IFES Design Page 35

Page 35

This approach was not feasible for the IFES application analysis because the requirements are
send to the company in the form of already finished requirements specification documents.
For this reason, IFES analysis had to be done “in reverse” using these documents as well as
requests to the analysts.

Three points can be made in this respect:

• The experience demonstrated that this is a feasible approach to analysis. However, it
means effort duplication because there has to be some kind of analysis to establish
the requirements. This is unavoidable unless the whole system is developed with all
the participating teams using the same methodology.

• The results of analysis and the consequent design decisions may not conform to some
requirements imposed on the design developed by EASAMS Ltd. (one of these
requirements is a particular way of structuring the application architecture). This
results from the different methodologies used by the two IFES developments.

• Scenario planning during analysis from the requirement documentation revealed a
number of discrepancies in these documents mainly in terms of inconsistencies and
undefined behaviour. This can be seen as an indirect argument for the superiority of
BOOD over the structured method used at present, indicating that Booch’s method is
able to specify the system more precisely.

6.2.2 System Behaviour Analysis
This section contains the analysis of the system behaviour represented by its function points
clustered by the main groups of the application’s functionalities. They were identified from
the IFES Passenger Application requirements documentation. In some cases more general
function points that those directly indicated in the documentation were discovered, mainly in
the areas of payment and information browser functionalities.

As described in chapter BOOD Methodology, the behaviour is described by scenario
diagrams. During the analysis process, a scenario was developed for each of the function
points. The corresponding diagrams are included in the documentation produced for
EASAMS Ltd. For the purpose of this dissertation only several scenario diagrams were
selected to illustrate the important aspects of the system functionality and are included in
Appendix A.

The next several paragraphs list the function points of the Passenger Application identified
from the system requirements documentation.

Audio

The following function points concerning the audio functionality have been identified.

• Browse audio categories and programmes
• Play a selected audio programme
• View description of a different channel than the one currently playing
• Switch to the current video channel

For an illustration of the scenarios used in the analysis stage, the following diagram shows
the analysis of the first function point in the list above. See Appendix A for more scenario
diagrams.

Chapter 6: IFES Design Page 36

Page 36

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

input audio video handsetIFES

video-audio switch

stop playing

play default channel

switch to channel

display channel number

This tells audio service to
remember current channel.

Calls hardware API to
display video on screen

Figure 3: Example Analysis Scenario

Catalogue shopping

The following function points concerning the shopping functionality have been identified.

• Browse graphical screens with item descriptions
• Order an item
• Change the order
• Delete item from the order
• Cancel the order
• Review the order record
• Submit the order
• Switch to the current video programme

Games

The following function points concerning the games functionality have been identified.

• View description of available games
• View game instructions
• Pay for the selected game
• Pause a game during an audio/video announcement
• Change the game audio soundtrack
• Register for a multi-user game
• Start a multi-user game

Information Browser

The following function points concerning the text browsing functionality have been
identified.

• Display information browser pages
• Page forward and backward in the pages

System

The following function points concerning the overall functionality of the system have been
identified.

• System startup
• System close-down
• Browse menus up to an item selection
• Display help pages for the current context

Chapter 6: IFES Design Page 37

Page 37

• Change the screen and headphones attributes
• Activities during a passenger audio announcement

Video

The following function points concerning the video functionality have been identified.

• Select and play a video programme
• Change the video channel
• View the selected programme’s description
• Switch to the audio service
• Scan video channels

6.2.3 Analysis Data Dictionary
An important product of the analysis stage is the initial data dictionary. Its entries are the
classes that constitute the application implementation, and during analysis they are
discovered as the key abstractions found within the system. A part of the analysis version of
the data dictionary is shown in Appendix B.

The techniques used for the initial identification of classes were:

• identifying hardware components of the system—these are the tangible things within
it;

• domain analysis on the ARS and FRS documents—domain experts were not
available but their knowledge is contained in the specification of the system which
identifies its main parts, services and mechanisms;

• scenario analysis—as a mechanism for a function is developed, the missing
components are discovered or invented.

6.3 Architectural Design
This section presents the architectural design of the In-Flight Entertainment System
Passenger Application. The architecture is composed of the logical design of the system
(partitioning into layers of operation), its physical structuring into modules, and includes a
description of various tactical design policies.

An evaluation copy of the shareware CASE tool Domain version 1.02 was used to develop
the architectural and level 2 design. The class diagrams and source code extracts found in the
next section were produced in Domain and later formatted. See chapter CASE Tools
Evaluation for the evaluation of the tool.

6.3.1 Design Assumptions
The Passenger Application design was developed with the assumption that a good hardware
platform (e.g. an Intel i486/33MHz platform) will be used, without much need for software
optimisation. This assumption was necessary to facilitate the development of an “example
BOOD design” even though it is a significant difference to the platform available at present
(this uses i386sx and 4MB of memory). However, the need for optimisation that is important
for the present system was kept in mind in order to enhance reuse possibilities.

There is a potential for some inaccuracy of this design with respect to the customer
requirements. This is caused by the need to work from draft requirement documentation
during the analysis and design because the issued versions of these documents were not yet
available. However, the design should be sufficiently open to provide an easy way to
accommodate the eventual changes.

Chapter 6: IFES Design Page 38

Page 38

6.3.2 Logical Architecture
The logical architecture of the system was developed by analysing the client-server
relationship between the emerging classes. As a result, the IFES Passenger Application is
structured into the following hierarchy of class categories and sub-categories:

PassApp (classes CPassApp, CContext)
AppServices

ServiceItems (classes
CItem,CPayItem,CAudio,CVideo,CGame,...)

Browsers (classes CInfoBrowser,CHelp)
ItemCollections (classes

CItemCollection,CPaymentSystem,CVideoSystem,COrder)
UserInterface

Primitives (classes from MFC: CWindow,CMenu,...)
MenuSystem (classes

CMenuIFES,CListMenu,CGraphicMenu,CCatalogueMenu,...)
Database (classes CDatabase,CCacheManager)
Devices (classes
CHandset,CNetwork,CDisplayCtrl,CHeadphonesCtrl,...)
GenericLists (classes CList,CRing,...)

Figure 4: Application Layers

There are four main groups of class categories:

• PassApp which contains the root of the application;
• AppServices contains classes directly involved in providing the IFES

functionality;
• UserInterface provides the screen GUI objects;
• Database and Devices provide the low-level support.

Each of these categories is expanded into more detail in the 6.4.5 Class Specifications
section. If the category contains subcategories (not directly classes) the contents of the
subcategories is presented in the order given in Figure 4.

6.3.3 Physical Architecture
This section describes the source code modules that constitute the IFES Passenger
Application implementation. No module BOOD diagrams are included into this documents
as they do not convey more information than the module hierarchy shown in Figure 5.

PassApp (class CPassApp,CContext)
GUI

Primit (classes derived from MFC)
Menus (classes

CMenuIFES,CListMenu,CGraphicMenu,CCatalogueMenu,...)
Services

BaseItems (classes CItem,CPayItem,CProgramme,...)
Items (classes

CAudio,CVideo,CGame,CCatalGoods,CVendorApplication,...)
Collections (classes

CItemCollection,CPaymentSystem,CVideoSystem,COrder,...)
Browsers (classes CInfoBrowser,CHelp)

Devices (classes
CHandset,CNetwork,CDisplayCtrl,CHeadphonesCtrl,...)
Database (classes CDatabase,CCacheManager)
Lists (classes CList,CRing,...)

Figure 5: Module Hierarchy

Chapter 6: IFES Design Page 39

Page 39

The figure shows the directory structure of the implementation. Classes will each reside in a
separate file to facilitate parallel work on their specifications.

6.3.4 Tactical Policies
This section describes various policies that should be followed during the design and
implementation evolution. The policies listed below are largely specific to the IFES
development, few of them are general for the domain.

Business Rules Distribution

Provided the application model as described above is correct, the business rules information
can be largely stored in the Application Database in the form of initialisation files and menu
structure definitions. The information can be downloaded into the passenger application
(namely the application driver and service objects) at start-up and during execution.

Class categories affected by different business rules for different airlines are the
AppServices category and CPassApp, and partly also CDatabase which has to
provide the appropriate methods. Although the affected parts will probably form bulk of the
software, the application services model and class frameworks should ease code reuse (see
section 6.4 Detailed Design for their description).

Control Flow

The distribution and flow of control between the application objects will be based on the MS-
Windows event handling mechanism. This will allow greater flexibility for possible future
extensions and should also ease integration of the IFES Passenger Application with the
underlying software platform.

Depending on the hardware platform available the run-time overheads of the event driven
system may be unacceptable and there may be need for optimisation of various degrees. The
optimisation issues and their impact on design are considered in the next paragraphs.

Optimisation Strategy

As noted above, the application is designed with the assumption that there will not be much
need for optimisation. However, the object oriented design makes optimisation easier than
classical methods because it allows to localise it to the most critical parts. Within IFES the
greatest need for optimisation is in the operations that provide on-screen display
functionality. Also, keeping the same class interfaces prevents the changes to affect the
implementation of functional mechanisms.

If the system was designed for the current platform, the performance and size optimisation
methods would be (in order of importance):

1. Using direct method calls whenever possible and event handling in as few places as
possible. This results in a reduced number of event handlers that are called each time an
event needs to be processed. Use inline methods for attribute access and simple
computations.

2. Caching often used information (e.g. menu service classes keep full lists the of categories
and items they contain to reduce database access).

3. Design for a flat inheritance lattice to avoid too much dynamic binding. Implement
objects with similar behaviour that differ only in some minor aspect as one class with a
rich interface and behaviour modified by flags rather than use inheritance and virtual
methods.

Chapter 6: IFES Design Page 40

Page 40

6.4 Detailed Design
This section describes the class interfaces of the IFES Passenger Application classes. It
corresponds to the ‘Level 2 design’ as used in the EASAMS Ltd. design process, denoting
the stage which adds component interface specifications (function signatures) to an
architecture established during Level 1 design. See the chapter Transition to BOOD and the
list of terms in Introduction for more information.

In terms of the In-Flight system BOOD development it can be seen as one iteration of the
Evolution stage. It builds on analysis and the architectural design and adds class interface
details (i.e. the attributes and signatures of methods) to the general class architecture.

6.4.1 Scope
This ‘design release’ of the Passenger Application implements only the functionality for
playing a video programmes with the supporting system functions. This area was chosen for
these reasons:

• The video service functions are very representative of the rest of the system both with
respect to the flow of control, the logical information structure and its physical
representation;

• It is a vertical slice of the system representing the first release, as corresponds to the
evolutionary incremental strategy of BOOD;

• Building the design of the whole system would not be possible with the given
resources, namely one person effort during a period of approximately one month.

In the dissertation document, the need for brevity further limited the specifications to the
video-related classes only; the original design documentation produced for EASAMS Ltd.
specifies all classes. Where appropriate, scenarios were developed as part of the design
process to find out the class methods necessary for implementing the function points. In the
documentation they explain the use of these classes. Several example design scenarios are
presented in Appendix C.

6.4.2 Design Principles
There are two main ideas behind the IFES Passenger Application design: an application
model based on generic service items, and a white-box framework design for reuse inspired
by [Joh88]. Both were chosen in an attempt to achieve an open and easily extensible design.
They are described in the following sections.

Application Service Items Model

The design attempts to provide a general way of providing the entertainment services in
which the items in a particular menu can be of mixed types as identified in the airline
requirements. An example is the business centre service whose options include information
browser items, a video programme, audio programmes and TPVAs.

Based on this observation, the whole design is build around various kinds of ‘items’ which
are grouped into the menu service categories as required. On the implementation side the
corresponding objects are very simple during menu selections, and expanded to provide the
whole associated service after the item selection (e.g. to play an audio programme).

Chapter 6: IFES Design Page 41

Page 41

:CListMenu Windows event queue :CItem :CAudio

putEventPuts 'item selected' event
into the queue, with reference
to the item as parameter.

:CPassApp

checkEventQueueLooks for 'global' events
like item selection, announcement

typeDetermine type of the selected
item to know what new item
to create.

Create and InitialiseCreates an instance of audio
item and lets it copy its init
values from the :CItem object.

RunThis is a virtual method from
CItem redefined to play the
audio associated with the item.

:CChannelCtrl :CInfoBrowser

SwitchToSwitches audio output to the channel
on which the programme is playing.

putEventGenerates event 'audio chan # active'
(used by CContext)

DisplayPage(ID)Tells the browser to display the associated
Audio Highlights (determined by the ID) pages

Figure 6: Item Execution

This mechanism is illustrated in the interaction diagram in Figure 6 which shows the object
interactions when a passenger selects to play an audio programme.

In case this model of the Passenger Application is reasonably general (i.e. can be used to
implement the In-Flight Entertainment System for any airline) it should lead to a very high
degree of design and code reuse. Changes between the airlines would be restricted to the
following areas:

• adapting the existing or adding new service classes to provide the required
functionality (the class interface should remain the same);

• creating new specific item collections if the current payment and video systems don’t
offer the necessary functions; see also the next subsection for a discussion;

• restructuring the data in the application database (contents of menu and service items)
and changing the bitmaps and shapes of the user interface objects;

Application Class Framework

The application design is also influenced by the idea of white-box frameworks for reuse
described in [Joh88]. This is an approach to component reuse taken a step further: instead of
a disjoint collection of reusable classes, the whole framework for the applications in the given
domain is provided using abstract classes with polymorphic interface. A new application is
then built by adding its specific behaviour through derived classes with appropriately
redefined [virtual] methods.

Applied to the IFES Passenger Application BOOD design, this approach is used mainly in
two areas: communication between the application driver and the menus using lists of generic
items, and maintaining lists of items grouped for various reasons (e.g. to perform operations
on both the whole list and its individual items). This is illustrated in Figure 7 with these
areas shaded.

Chapter 6: IFES Design Page 42

Page 42

CPassApp

CMenu

CItem

CItem Collection

CItem

DevicesCDatabase

contents

1

n

1

n

1

n

1

n

payment, audio,
video system s

1

n

availablecurrent

1

1

plug-in
plug-in

Figure 7: Passenger Application Class Framework

The picture shows the base classes that are used in the framework, although in the
implementation the appropriate derived classes are often used. For example the ‘systems’ are
implemented by CPaymentSystem, CVideoSystem, etc. as necessary.

The ‘plug in’ boxes point to the components that bring the framework genericity. In the
menu area, new items of any kind can be added and will be handled by the user interface
classes in the same way as the current ones as long as they are derived from CItem class.
No specific information about the type of the items (audio programme, game, etc.) is needed
for the menuing purposes.

After an item is selected, the object of the proper class is either created or looked up in the
relevant item collection by the application driver. All the item objects can be then
manipulated—initialised and ‘executed’—using methods defined in the CItem specification.
Thus a uniform interface to the item functionality is achieved independently of its type.

Concerning the second area, any item collection derived from CItemCollection
contains a list of references to CItem objects. The skeleton functionality provides access to
the last item used, looking up items by their ID, and updating their list. The derived
collections add the specific functionality, e.g. purchase sequence for the payment system or
scanning video channels for the video system.

A new collection can be defined and accessed using the polymorphic interface of
CItemCollection. The Microsoft Windows event mechanism makes it easy to activate
its specific functions, for example purchase of an item, with only little code changes in the
application driver.

6.4.3 Relevant Function Points
For this design release, only the function points related to the video functionality were used.
The associated primary scenarios are:

1. System start-up;
2. Select a video programme in a menu;
3. Play selected video programme;
4. View video information and help;
5. Switch from video to audio.

During the analysis of these scenarios, secondary scenarios were necessary to explore the
mechanisms for the following functionalities:

1. Payment for an item (outline);
2. Return to the previous menu level;

Chapter 6: IFES Design Page 43

Page 43

3. Stop a TPVA when switching to a video programme.

It should be mentioned that in several cases the mechanism identified during analysis could
not be used for the design purposes because it was incorrect. The main reason was that the
incomplete knowledge of the system during analysis and limited feedback from the company
team members. If used, quality assurance practices like reviews should ensure correctness of
the analysis.

6.4.4 Issues
Several areas of the IFES design remain to a certain extent unresolved and would require
more discussion and investigation. Among the important ones are:

• validity of the service-item application model, mainly with respect to its generality
and ability to cover future airline requirements;

• clearer identification of high risk areas within the application (need for optimisation,
liability to substantial changes among airlines and associated amount of expected
rework);

• the relatively high distribution of the business rules across the Passenger Application
which could potentially pose problems in rework for other airlines.

Foreseeable Benefits

Despite these open issues, the presented design should offer the following benefits as
compared with the current development:-

1. The service application classes have a relatively uniform behaviour and interface based in
CItem. This makes it easier to add new kinds of services and/or extend the present ones if
necessary, e.g. ‘plug in’ payment into all services when its functions and implementation are
clarified. As a result, design and code reuse should be fairly high. (In the current system
these functionalities are designed in a rather rigid way.)

2. Provided the application model based on ‘executable’ service items is correct, these items
can be arranged in almost any way to suit very different kinds of entertainment systems. This
should help to overcome the limitations of hard-coded business rules as used in the current
system.

3. The device wrap-around classes will ease both host-based and target platform testing as
they allow to use hardware stubs and real platform access under the same API. In addition
they should be easily reused for other airline IFES applications as long as the hardware
platform does not radically change.

6.4.5 Class Specifications
This section contains the specifications of the IFES Passenger Application software
components. In particular, the classes related to the video service functionality are described.
For class declarations see Appendix D.

With accordance to the Level 2 design definition, the design specifies class method signatures
and describes their functions. Scenarios of the major functionalities describe how the high-
level functions could be implemented; selected scenarios are presented in Appendix C. At
this level of design, no or very little information is provided about the method
implementation details, and in some cases the representation of data types is not fixed.

Form of Specifications

The design information is expressed in two forms. The class diagrams describe the
relationships of classes in a category plus classes from other categories which are related to
them (the former are shown as full-size class icons, the latter as “flat” icons).

Chapter 6: IFES Design Page 44

Page 44

The class specifications are in the form of C++ header files extracts. Specifications are
grouped by the class categories as described in the IFES (BOOD) Passenger Architectural
Design document. See Appendix D for declaration of classes related to the video
functionality.

Both the class diagrams and the source code were produced by the Object Domain CASE tool
in which the design was developed. However, its limited capabilities for both diagram and
source code production made it necessary to edit the output a lot.

6.4.6 Types
The following table lists the descriptions of the basic data types used within the IFES
Passenger Application. They are used either for class attributes, or as a means of data
exchange between the high-level classes and the database.

Name Description
TAudioChanMa
p

function same as TVideoChanMap

TCacheItem used by the cache manager and database to exchange
data for caching

TCreditCardD
ata

credit card data as read by the handset reader

TFacilityTyp
e

type of facility associated with an item, also used
for requesting help pages

TItemID unique identifier for each item within the system
TItemLevel position of the item in the menu forest: services are

roots and topics are leaves
TLanguage list of languages supported by the in-flight system
TOrderID unique identifier of each order, for reference
TPaymentID unique identifier of each purchase, for reference
TResult return value of methods, used for error indication and

checking
TSeatData contains seat identification information
TSoundtrack determines the logical video channel associated with

the given language.
TStatusPVP used by the CPVPCtrl device
TVideoChanMa
p

maps logical video channels to the physical channels
within the Boeing distribution core; the array has an
entry for each logical channel

TVideoData data defining a video programme as read from the
database

Figure 8: List of Data Types

6.4.7 Classes
This section contains the specifications of the IFES Passenger Application classes. Each
subsection corresponds to one class category as shown in Figure 4 on page 36. See Appendix
C for examples of scenarios that illustrate the class behaviour, and Appendix D for
declaration source code extracts.

A. Application Driver

This category represents the top level of the application. Classes in this category control the
running of the Passenger Application and maintain its state.

Chapter 6: IFES Design Page 45

Page 45

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

theContext

1

1

CPassApp

CDatabase

CServiceMenu

CContext

CListMenu

CWinApp

Figure 9: Class category PassApp

Description of Classes

The CPassApp class is the root of the application. It launches the various services, performs
the start-up and closedown functions, instantiates all the necessary run-time classes, and
handles responses to system events such as announcements and the ‘Off’ button. This class
owns most objects that constitute the application although this fact is not shown in the class
diagram.

The system state information is concentrated in a specialised class CContext rather than
being invisibly distributed among system components. There is one instance of this class in
the system which is accessible by most of its objects. (The class specification is not included
in this document.)

B. Application Services

This category contains classes that form the core of the IFES Passenger Application
functionality by providing system’s specific passenger services. It has several subcategories
as shown Figure 4 on page 38. Details of these categories are described in the following text.

Service Items

The ServiceItems category contains the classes that provide the functionality of the
Passenger Application. Instances of these classes will be created or looked up by the
CPassApp object upon menu topic selection which will then ask them to activate their
service.

None of these classes has direct access to the screen in any way. User interface access is
managed by the UserInterface and Browser classes even in the cases when the
functional relationship to the service item classes is very tight (namely for the information
browser item class). This separates the internal mechanisms from the presentation, making
the class responsibility boundaries clearer and implementation for other airlines easier.

Description of Classes

CItem is a universal base class that provides the basic information about any kind of service
item for use by menus. This information is also used by CPassApp to create an object of
the appropriate class to provide the associated service.

Abstract classes CPayItem and COrderItem provide payment and goods order methods
to be inherited by the classes that need them. These functions are basically the same across
the IFES services and it is therefore beneficial to extract them to separate classes.

Chapter 6: IFES Design Page 46

Page 46

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

CCategoryItem

CChannelCtrl

COrder

CPaymentSystem

CItem

Activate

CProgramme

| channel

A

CCatalGoods

| order_co

CServiceItem

CGame

| multiuse

CAudioCVideo

CPayItem

A

COrderItem

A

CVendorApp

CDatabase

CInfoBrowser

CBrowserItem

| info page

audioHighlights

1

1

CObject

Figure 10: Class category ServiceItems

The seven main classes in the lower half of the diagram (CCatalGoods,
CBrowserItem, CAudio, etc.) implement the various IFES passenger application
services. They all have a redefined version of the virtual method Activate() inherited
from CItem which provides an polymorphic entry point to their service.

Two scenarios related to ServiceItem classes are included in Appendix C. One
illustrates the mechanism of activating a video programme selected from the menu, the other
one the operations performed when a switch from audio to video is triggered by the handset
key press.

Text Browsers

This category contains classes that provide the text browsing services in the form of an
information browser engine and a help system class which uses an instance of the browser.

Description of Classes

The CInfoBrowser class provides functions of the information browser: displaying text
described by the RTF tokens and its paging by the user. It is used by CBrowserItem and
CAudioProgramme (category ServiceItems) to display their associated text and
graphic information. This functionality is separated from the service item classes to make
them independent of the display presentation that will differ among the airlines.

The context sensitive help is implemented by the class CHelp which contains an instance of
the CInfoBrowser. Despite the apparent similarity of behaviour with the information
browser, aggregation was preferred to inheritance. There are two main reasons for this
decision: the two classes have rather different functional semantics (text viewer vs. help), and
if required another screen representation can be given to the help pages simply by providing a
different text pager.

The help object uses a referenced instance of CContext to determine the current application
state and gets the corresponding help pages directly from the database. Thus it has no direct

Chapter 6: IFES Design Page 47

Page 47

connection with any other system component which should make it available in any state of
the Passenger Application execution.
A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

CInfoBrowser CHelp
textBrowser

1

1

CContextCDatabase

CWindow

myWindow11

Figure 11: Class category Browsers

One scenario is included in Appendix C which illustrates the activation of the context-
sensitive help.

Item Collections

This category contains classes that supply the payment and order functionality for the service
item classes. These functions are basically the same for all Passenger Application services.
It is therefore useful to implement these shared characteristics of the service classes in a
separate layer of the inheritance lattice.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
A
A

CPaymentSystem COrder

CCurrency

CDatabase

CItemCollection

A

CAudioSystem CVideoSystem

Figure 12: Class category ItemCollections

Description of Classes

As described in Application Class Framework on page 41, the classes in this category share
the functionality of maintaining a list of item objects. This functionality is provided by the
abstract class CItemCollection.

Class CVideoSystem maintains an up-to-date list of video programmes currently available
at all the video channels. It is consulted by the CPassApp object when a video item is
selected from the menu, and handles other operations like channel scanning.

Class CPaymentSystem provides operations for checking credit card information,
payment by cash, and maintaining account information. All these functions are linked to the
database and/or IFES Flight Attendant application for back-end calculations. Class
CCurrency maintains a representation of currencies available for payments and their
exchange rate against a selected base currency.

Chapter 6: IFES Design Page 48

Page 48

C. User Interface

This category contains classes that form the various elements of the user interface. It has two
subcategories: Primitives which contains the basic user interface building blocks
(views, buttons, windows, etc.), and MenuSystem which uses the basic classes to build
menus needed in the IFES Passenger Application.

It is expected that the classes in this categories will be reused between different airline
applications except for the shapes and bitmaps used for their on-screen representation.
Building these classes by inheritance from the basic ones should also speed up the user
interface development.

Primitives

The classes contained in this category are the basic user interface building blocks, and as such
readily available from class libraries (e.g. Microsoft Foundation Classes). Reuse of the
library classes is the preferred strategy for the IFES Passenger Application BOOD
development because it increases programming efficiency and reduces development time.

Developing these basic classes afresh would be justified only if the use of library classes
resulted in a provably inefficient and/or overly large runtime code. The Primitives
category is included in the design to take account for this possibility.

Description of Classes

The meaning of and functions provided by the classes are that of the Microsoft Foundation
Classes, i.e. CWindow, CButton, CMenu etc. A specialised class CStringRTF
implements the display engine for text strings in the Rich Text Format.

Menu System

This category contains classes that define the functionality of the menus found within the
IFES Passenger Application. Their instances use lists of CItem objects to obtain the items’
text and graphic information to be displayed on the particular menu, and return the item
selected by pressing the OK button to the CPassApp object. Menu classes build on the
interface primitives and process the messages generated by instances of these classes, namely
the button objects.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

CMenuIFES

A

CListMenu CGraphicMenu CCatalogueMenu CServiceMenu

CMenu

Figure 13: Class category MenuSystem

Description of Classes

The four leaf classes in the category represent the different variants of menus found in the
requirements documents: CServiceMenu is the one on the bottom of the screen and
displays the service icons and titles. It uses the left and right arrow button objects.

Chapter 6: IFES Design Page 49

Page 49

CListMenu is the common menu which scrolls item title text strings according to the up
and down arrow presses. It displays the categories and topics that represent the available
selections within the given application service. CGraphicMenu co-operates with CAudio
and CVideo objects when the passenger browses the graphic previews. It displays one
window of text and graphics at a time.

CCatalogueMenu is used by the shopping service class CCatalGoods during the
purchase sequence. It mixes static text and graphics with scrollable menu items within one
window.

From all the classes in this category, only the specification of the base class of all Passenger
Application menus is included in Appendix D. The derived menu classes use the same class
interface, overriding the pure virtual methods to provide their specific functionality. The
scenario included in Appendix C illustrates how tracing back to higher menu levels can be
done. Refer also to Scenario 4: Browsing Service Menus in Appendix A for additional
information.

D. Database

Class CDatabase serves as an access point to the Application Database: it converts the
support operations for the higher-level classes into series of database queries and processes
the received or dispatched data. The CCacheManager provides low-level caching of raw
data; only this cache should be used within the application in order to reduce duplication of
data.

Description of Classes

The CDatabase is a class utility (a collection of relatively unrelated functions enclosed
behind a class abstraction barrier) with a relatively large number of methods as needed by the
higher level classes. Its functions can be more precisely defined only after these classes have
been designed in detail.

E. Devices

This category contains classes that provide a controlled access to the devices of the hardware
platform. Similarly to CDatabase they translate the function calls from the higher-level
classes into the appropriate hardware API calls, and conversely the hardware-generated
events into high-level ones.

It is difficult at this stage to determine any patterns of their behaviour or structure and
therefore the invention of the potential base classes and the building any kind of inheritance
hierarchy is left to the subsequent design stages.

Description of Classes

There are two logical groups of classes distinguished by the behaviour of the devices: those
which provide input of some form (‘interactive’) and those which only control the appropriate
device without producing active output (‘control’). However, only the specification of
classes relevant to the video functions is presented in this dissertation for brevity.

F. Generic Lists

This category contains classes that represent basic abstract data types based on linked list
which are used within the Passenger Application. Similarly to the basic user interface
category, class reuse from a library is strongly encouraged. Alternatively, it should be
relatively easy to transform the linked list functions developed for the current system into the
appropriate classes.

Description of Classes

The category contains classes like CListItem and CLinkedList which have the usual
semantics and are therefore not specified here in more detail. A CRing class which defines a

Chapter 6: IFES Design Page 50

Page 50

list with the head and tail items connected will also be needed for the wrap-around lists in
menus.

6.5 Summary
This chapter presents the design of the IFES Passenger Application developed for EASAMS
Ltd. in order to illustrate how to perform the BOOD development process. An analysis of the
system was done first, using domain and behaviour analysis techniques. Subsequently the
application architectural design was produced, followed by the design of class interfaces and
relationships.

An associated issue of the use of CASE tools was investigated during the design
development. The results of the investigation are presented in the form of the tools
evaluation in chapter CASE Tools Evaluation of this dissertation. The produced design was
also used to assess the possibilities of design and code reuse between the current design and
the design based on BOOD methodology; the results are summarised in chapter Reuse
Evaluation.

Chapter 7: Reuse Evaluation Page 51

Page 51

Chapter 7: Reuse Evaluation

7.1 Introduction
The evaluation of possible code reuse between the current design and the BOOD design was
one of the project goals. The main motivation for this investigation was to find the level of
similarity between the two design approaches and the likelihood of code transfer between
them. This chapter presents a summary of the method used to determine the level of reuse
and of its results. It is to a large extent based on the reuse analysis document produced for
EASAMS Ltd.

Note

The results of the actual reuse analysis produced for EASAMS Ltd. are based on and include
references to their source code. As such they are confidential and therefore not included in
this dissertation; all code extracts and document references in this chapter have no
correspondence to the documentation of EASAMS Ltd.

7.2 Scope
The reuse analysis covered all layers of the Passenger Application in accordance with the
project goals. The BOOD design differs quite substantially from the current one, both in
terms of the application architecture and its building blocks. Despite this, the same
functional requirements and common low-level API on which both are based should result in
a number of similar functions and data types, especially in the lower layers.

The resulting document identifies code mapping from the current airline Passenger
Application Level 2 design to the Passenger Application BOOD Level 2 design. This is not
an ideal basis for reuse evaluation because both designs are concerned with applications for
different airlines (referred to as ‘Airline A’ and ‘Airline B’ in the following text) and the
respective requirements differ. However it was the only possibility at the time of writing for
the following reasons:

1. the BOOD design covers only the Airline B Passenger Application up to Level 2 design;
2. only the Airline A Level 2 documents were available for the analysis; Airline B

documents were not yet in an issued (i.e. baseline) version.

In addition, no Level 3 documents were available for the Airline A Passenger Application
and therefore the descriptions of module private (implementation) functions were not
available. The reuse analysis is consequently based only on public module functions which
complicated the assessment of the degree of reuse—better estimates require the knowledge of
implementation details for both the data and operations.

7.2.1 Documents
The following documents were used for the reuse analysis:

• Airline A Level 2 design document;
• IFES Level 1 (framework) document;

Chapter 7: Reuse Evaluation Page 52

Page 52

• Airline B Level 2 Design Alpha Release (internal memo, covers Services layer
only).

• Airline B Passenger BOOD Architectural Design document;
• Airline B Passenger BOOD Level 2 Design document;

7.3 Reuse Analysis Method
The equivalent section of the reuse analysis document lists the current development
Passenger Application functions and data types and indicates to what level they can be reused
within the BOOD design. The target classes in the BOOD design are also indicated where
possible. Several already available Level 2 design functions from the current Airline B
development were also analysed.

Each layer of the IFES application framework was analysed in turn. For each layer, two
separate lists—of reusable and of non-reusable components—were produced in the form of
separate tables for function reuse and data types reuse.

The reuse analysis was done by comparing the description of functions and types in the
design documents. Where additional information was available (e.g. in the form of source
code or scenarios) it was used to determine the similarities in function’s implementation.
Using the knowledge of the target application design and professional judgement, the
character and level of reuse was estimated for each component.

7.3.1 Estimates of Reuse
As noted above, target class(es) in the BOOD design are indicated for each component of the
current design. Here, ‘target class’ means the class into whose attributes or methods the
component would be incorporated. In some cases the target could not be clearly identified;
level 3 design information for both applications would be needed to facilitate better
evaluation.

After each table, an approximate percentage of code reuse estimated for each layer was
included. The format of this estimate is Overall: x% from y% of current code with the
following meaning:

x estimate of reuse in the given layer; the conversions from the notes in the table are
approx.:

partially 50%
maybe / depending on implementation 0%–50%
parts 60%
most or all except data representation 70%
probably all 90%

y percentage of ‘reusable’ functions/types out of total number in given layer.

It should be noted however that the percentages are rough estimates only—see the 7.5
Conclusions for a discussion about reasons. For practical use, they are to be taken as
optimistic.

7.4 Examples of Reuse Tables
The two tables below show an example of the tables used in the original reuse documentation
produced for EASAMS Ltd. A separate table was produced for each layer of the current
application design. The fields in the rows have the following meaning:

Function/Type Name of the function or data type used in the EASAMS Ltd. design
documentation;

Chapter 7: Reuse Evaluation Page 53

Page 53

Source Section in the relevant document included for traceability;
Destination The class or data type within the BOOD design which would use the

original function/type;
Notes Indicates (verbally) the degree of reuse expected for the given

component.

Because the original EASAMS Ltd. code is covered by commercial confidentiality, the
contents of the tables has no relationship to the actual source code of the current IFES
application.

Function Source
in design docs

Destination
class in BOOD
design

Notes
what and how much reused

WinMain section 1.1.4.2.1 CPassApp partially, startup code and
message pump

… … … …

Overall: 40% from 60% of current code.

Table 1: Reuse analysis — functions

Type Source
in design doc

Destination
type in BOOD
design

Notes
what and how much reused

GLOBALS section 1.3.5.1.1 event types probably all

Overall: 90% from 100% of current code.

Table 2: Reuse analysis — data types

7.5 Conclusions
This section presents the conclusions drawn from the reuse analysis and a summary of code
reuse. The problems surrounding it are indicated, followed by comments about the reuse
patterns and possible approaches to its exploitation.

In a summary, the reuse analysis showed that although there should be some level of code
reuse, the really useful level of reusing whole functions and mechanisms will be very difficult
to achieve. This conclusion is an argument in favour of the suggestion made in the
Transition to BOOD chapter to develop the object-oriented IFES design afresh rather than by
re-engineering the current application.

7.5.1 Reuse Evaluation
The greatest level of reuse should be from the low-level support modules, with target classes
mainly in the Database and Devices categories. This was expected due to the proximity
of these components to the seat box hardware API which partially dictates the available data
and operations.

Higher layers show decreased levels of reuse, contributing mainly to CPassApp
implementation. Although the relative reuse from these layers is approximately the same as
from the low-level modules, they amount less to the total figure because of the smaller
number of functions they provide.

Including Level 3 details (module implementations) into the analysis may increase this ratio;
however this is uncertain as the high-level mechanisms differ between the two designs.

Chapter 7: Reuse Evaluation Page 54

Page 54

Classes derived from CItem and CItemCollection can probably reuse only a small part
of the current business rules implementation code.

7.5.2 Problems
There are two main problems in reusing the current code, resulting in the small figures.
Firstly, the higher layers of the two designs are rather incompatible both in terms of data
representation and the mechanisms used to implement the system functionality. This makes
the current functions as well as data types of limited use, both the public and the
implementation ones.

The second problem lies in the low-level data representation. While the basic attributes are
same or very similar (channel numbers, programme titles, etc.) they are grouped in different
ways in many cases. This means that the elements of the current structured types would need
to be moved into the target classes and data structures on a one-by-one basis, involving an
amount of manual work.

7.5.3 Reuse Patterns
The analysis showed that the similarities of the two designs are on a rather abstract level.
There are a number of similar mechanisms both in the current and in the BOOD design,
mainly in the areas of device control, item information retrieval, and payment for items (e.g.
check credit card, then record payment). Most of these represent communication between
higher level components and the Services layer or CDatabase and Devices respectively.
However, the differences in implementation details described above will probably prevent
substantial reuse of these functions.

Most types used for communication with the database should be reusable in the BOOD
design. As long as the attributes of service items remain similar there will be no need to
change their low-level data representation. This fact is interesting with respect to the claims
that object-oriented design is easy to change and maintain because it is be based on data
(usually relatively stable) and not system functions which change very often.

Chapter 8: Transition to BOOD Page 55

Page 55

Chapter 8: Transition to BOOD

8.1 Introduction
This chapter describes the steps and techniques that were suggested to EASAMS Ltd. as a
possible way of migrating from their current design process to an object-oriented one based
on Booch’s methodology. The ideas presented in the following paragraphs form a synthesis
of the work on this master thesis project, bringing together an analysis of the process used at
present and its products, the experiences with techniques and tools gained by developing the
BOOD-based design, and their possible application during and beyond a software process
transformation period.

The text of this chapter is divided in three parts. The current situation is analysed in the first
section. This includes an overview of the development process used by EASAMS Ltd.,
observations about the current design of the IFES applications, and of the use of object-
oriented techniques within it.

The second section presents a short list of ideas regarding the features of BOOD that could be
readily used within the process and how this could be done. Lastly, a discussion is included
concerning the steps in migration to a full BOOD process, and the transformation and reuse
of the design and code already developed for the application. The benefits of such migration
are also indicated.

8.2 Current Situation
EASAMS Ltd. are using an TickIT certified software development process. It has clearly
identified stages and the design methodology in use must be certified by the company process
quality engineers. Also, management-based quality assurance practices are in place, namely
project planning with risk assessment and baseline management, design and code reviews,
and documentation standards.

With respect to the In-Flight Entertainment System development, EASAMS Ltd. act as a
subcontractor of GEC-Marconi In-Flight Systems Ltd. responsible for the production of the
application software. This means the functional requirements are delivered to EASAMS Ltd.
as issued documents causing some undesirable effects, namely requirements being imposed
on the application’s design (as opposed to its functionality) and communication problems.

8.2.1 Process
The IFES development process is divided into the following stages:

1. Architectural, or Level 1 design
 High-level application architecture is developed, modules and their functionality are

identified.
2. Level 2 design
 The module interfaces are identified in the form of function signatures and data types.
3. Level 3 design

Chapter 8: Transition to BOOD Page 56

Page 56

 Implementation details (algorithms and private functions) are developed so that coding
can start.

4. Coding and Module testing
 The application modules are implemented in the selected programming language(s).

Functions are tested using stubs.
5. Host-based integration testing
 The whole system is tested on a host platform to ensure its correct functionality, using

stubs for specific hardware API calls.
6. Target platform testing
 The system is tested on the target hardware to ensure correct hardware-software

integration.

The design is developed using a modular decomposition methodology with some influences
of object-oriented methods. It originates in the Hierarchical Object-Oriented Design (HOOD)
developed in 1987–1989 for the European Space Agency but has been to a large extent
invented to suit the needs and specifics of the IFES development process, mainly by adopting
an incremental delivery approach. The established QA framework helps to ensure the
stability and quality of the development process.

This approach was implemented mainly due to the tight constraints on resources available for
the system development. For each of the airlines, a working system of approximately
85 KLOC (Flight Attendant and Passenger Applications plus the Application Database) has
to be delivered by a team of twenty engineers in nine months. Moreover, the work on the
different airline systems overlaps to a certain extent. Due to these constraints it was not
possible to start using a methodology new to the team members whose background is in
structured programming and the C language.

8.2.2 Products
The current design of the IFES applications has a clear structure, based on a hierarchy of
function layers. These are composed of modules which cooperate on a client-supplier basis.
The three main application layers define in turn user interface components and functions,
application control which implements the airline’s business rules, and low-level support
operations i.e. database and device access (see Figure 14 below). This architectural design is
generic to all IFES applications developed by EASAMS Ltd.

Chapter 8: Transition to BOOD Page 57

Page 57

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

S O F T W A R E F R A M E W O R K

EVENT MANAGEMENT

DISPLAY OPERATIONS

SERVICES

BUSINESS RULES

DATABASE LAYER HARDWARE API

MS-WINDOWS

GMIS SYSTEMS LAYER

sys te m e v e n ts

m e ssage s

w in d o w e v e n ts

w in d o w e v e n ts /calls

m e ssage s

Figure 14: Architecture of the Current Design3

The main design goals of the current system are clear module interfaces to facilitate their
independent design and coding, and localisation of airline-specific features (mainly business
rules and user interface elements) into separate components to ease reuse between different
airline versions.

Similarly to a good object-oriented design (or, indeed, any good design) the modules have
well identified and separated responsibilities. However, the design resembles more a
modular structured one rather than an object-oriented one: the modules merely define sets of
functions which operate on data passed between the modules. For example there are
functions to create a menu but there is no notion of the menu as a separate entity within the
IFES application.

The current design is reasonably well structured and robust. Its main weakness is the overly
rigid implementation tied to the particular airline specifics without much effort towards
generalisation. This may result in decreased code reuse between the applications for different
airlines. It can also cause major problems in perfective maintenance, i.e. implementing major
functionality enhancements.

The design documentation uses Hierarchical OOD object diagram notation, plus state
transition and ‘object’ interaction diagrams. The state transition and object diagrams are used
in a way relatively similar to BOOD, the Hierarchical OOD object diagrams are used to
specify the logical structure of the application.

8.3 Readily Applicable BOOD Elements
Based on the knowledge of both the process used by EASAMS Ltd. and Booch’s
methodology applied to IFES, several suggestions can be made how to incorporate selected
BOOD ideas into the process immediately, without any need to change the current
methodology. However, the benefits of the methodology cannot be reached unless object-
oriented design is used to a full extent.

The use-case analysis techniques using scenarios can be adopted during the architectural and
Level 2 design stages, using modules and the functions they contain instead of objects and

3 Diagram taken from the EASAMS Ltd. IFES Software Development Framework Document with

permission.

Chapter 8: Transition to BOOD Page 58

Page 58

their methods. Scenarios would be beneficial first to develop the mechanisms that implement
the required functionalities, and later (during design reviews) to check that the invented
functions work in the scope of the mechanism definition.

As was experienced in the Passenger Application BOOD development, scenario analysis
during early design has also the added benefit of identifying discrepancies in the requirements
specification. This early problem detection would be very useful in the current situation
where delayed response to some queries about unclear requirements cause design problems or
even plan slippage. Also, as Booch suggests in [Boo94], scenarios help to identify test cases
for the integration testing stage.

A good object-oriented design leads usually to a high level of component abstraction with the
benefit of a substantial code reuse. The emphasis BOOD places on ‘pattern scavenging’
should certainly be an inspiration for the current process—an effort to develop a design based
on generalised components means an initial increase of work but can bring large effort
savings in later developments, especially in a system like the IFES.

Lastly, more Booch’s notation can be used for the current design description. The main area
would again be the scenario diagrams, which can capture the use-case analysis as outlined
above. Both interaction and object diagrams can be used for this purpose. It should also be
possible to use a modified class diagram notation for the application architectural design.

8.4 Methodology Transition
To experience its benefits, the BOOD methodology has to be used in its full form. However,
it is not easy to change the development process in an industrial environment where the
associated cost of staff training and possible temporary decrease of productivity must be
carefully considered. At EASAMS Ltd., the transition towards Booch’s Object Oriented
Design could be done in the following steps.

The pre-requisite for its use is a familiarity of the designers and programmers with object
oriented concepts in general. This requires staff training and skill building before any serious
work can start because the paradigm shift from structured methods is usually not easy. Also
there is a need for both management and team willingness to undertake this step.

8.4.1 Steps
The transition would be best started by a relatively small-scale pilot project to gain initial
experience with the techniques and development process in general. Within the IFES
development for example it could be used to design one isolated part of the system (the
display operations layer could be a suitable choice) which could communicate with the rest of
the application via a defined API. The main issues to consider are choosing a low-risk area
and allocating the appropriate personnel for the pilot project.

After the initial experiences have been gained, a full-scale switch to BOOD would be
possible. Within the IFES framework it can be done by starting a new airline system
development using the methodology or by gradually transforming the current design to an
object-oriented one. The next subsection deals with these issues.

8.4.2 Re-engineering Strategies
With respect to the transformation of the current design into an object-oriented one, there are
two basic strategies that can be adopted:

1. design the system from the scratch using an object-oriented methodology, which is the
approach used in this thesis project;

2. re-engineer the current system into an OO-based, where the first approximation may be
that the classes are based on current modules.

Chapter 8: Transition to BOOD Page 59

Page 59

There may be compelling reasons for either of these: while the first approach should result in
a clearer and more maintainable design, the second would help to keep the system
functionality while gradually changing its implementation.

The chosen strategy influences the kind of reuse that would be possible, and consequently the
level of component reuse:

1. only intersections of functionality can be reused, resulting in rather low yields;
2. current code would be transformed, resulting in potentially high yields.

Whichever re-engineering strategy is used, a degree of experience with object-oriented design
methods is required. The first method (new design running in parallel with the current one)
should actually be preferred because it does not require the reverse engineering step and is
easier for newcomers to the object oriented methods.

8.4.3 Tools
As is discussed at the end of the CASE Tools Evaluation chapter, it is rather difficult at
present to introduce CASE tools into the EASAMS Ltd. software development process. With
the management framework in place, what is needed is a tool that supports the design and
coding work. During and after the full methodology change, the Rational Rose tool can be
suggested for this purpose.

In the meantime, the diagrams which are used to describe design and the underlying decisions
can be produced using a good graphic editor such as Visio by Shapeware Corporation. Its
main advantage is a seamless integration into the Microsoft Office suite currently used for
design documentation production and good customisation facilities. However, the
repository-based functionality (central point of reference, design checking, etc.) would be still
missing.

To partially remedy this it can be recommended (as Booch suggests) that a database is
developed that would held the system data dictionary and support team development. This
would still leave a need for manual checking of design correctness but at least the
communication of ideas and design parts among the team members would be easier.

As noted elsewhere, the situation of EASAMS Ltd. is an example of the ‘readiness for
CASE’ issue, and the suggestion made in [Kem92] that “developers are recommended to
delay adopting integrated CASE tools until they are fully comfortable with the underlying
methodology” can be endorsed.

8.4.4 Benefits
The advantages which the transition to BOOD as design methodology should bring can be
summarised in the following points:

• more stable design, both the process and its product, because the ‘centre of gravity’
of the development lies in the earlier design stages;

• increased degree of reuse between different airline applications, achieved by a more
open and general design;

• good tool support as Booch’s methodology is gaining strong support in the industry;
• the marketing advantage of using a modern and prospective methodology, with the

associated benefits of possible know-how transfer to other projects (BOOD should be
suitable for a variety of different application domains).

8.5 Summary
This chapter presents the end results of the master thesis project work in the form of steps
proposed for adopting Booch’s Object Oriented Design as the main methodology at
EASAMS Ltd. The proposal is based on understanding the current development process and

Chapter 8: Transition to BOOD Page 60

Page 60

its constraints, knowledge of BOOD gained during the example design development, and on
experience with CASE tools.

The proposed changes fall into two categories. Some features of the methodology can be
used within the current process without much need for its change; the scenario analysis
technique is probably the most useful of these features. Secondly, the actual methodology
switch should be preceded by a pilot project to gather the necessary experience and allow
smooth change in the development culture.

Chapter 9: Conclusion Page 61

Page 61

Chapter 9: Conclusion

Changing the software development methodology is not an easy task in any large
organisation. Apart from the psychological issues it brings—the paradigm shift in the minds
of designers and programmers, and the change of development culture—there are a number
of associated technical problems.

The goal of this master’s thesis project was to look at several of these issues and produce a
series of documents that would help the company, EASAMS Ltd. to deal with them. In
particular, there was a need to gain an initial know-how in Booch’s Object Oriented Design
methodology which was the development methodology chosen for the company’s future
software projects. The associated issues of evaluating code reuse and use of CASE tools
were also considered.

The design of the IFES Passenger Application produced as part of the thesis project proved
that the object oriented approach makes it easier to comprehend a complex system: it was
possible to develop by one person a design, albeit only on the level of class declarations,
corresponding to approximately 15-20 thousand lines of code. The other recognised benefits
of the BOOD approach are a better understanding of system functionalities and a more
general application design with increased possibilities of code reuse.

There are two main results of this project that should be beneficial for EASAMS Ltd. Firstly,
the example design documentation aids in understanding the BOOD development process. It
complements the main reference book which lacks information about the practical aspects of
the method’s application and use. If desired, the design can also serve as an inspiration for
the real IFES development. Secondly, the evaluation of the CASE tools gives guidelines
which can be used to choose a tool to support the software development.

Personally the work on the thesis project was quite enjoyable and will certainly bring benefits
to its author as well. The main ones are the knowledge of Booch’s progressive methodology
which is gaining industry-wide support, and a practical insight into a well managed, quality
oriented software development process. It is felt that these benefits would be very valuable
for any seriously minded software engineer.

Considering the work done within this project and its outcomes from a wider perspective,
there are several outstanding issues which could be pursued further. The reuse evaluation
could be made more precise if a more detailed BOOD design was developed, implementing
the full functionality of both Passenger and Cabin Crew applications.

The Rational Rose CASE tool was used only in its demonstration version and in a single-user
development environment. Its capabilities would be better evaluated using a full version for
a team project. It would be helpful to assess other tools as well to achieve a more objective
view on their benefits.

To conclude, the project met the objectives set at its beginning. The question that remains
open is to what extent its results will be used by the EASAMS Ltd. management and team
members. The transition towards a full object oriented design development is certainly
possible and it is believed that this project would provide help in its implementation.

List of References Page 62

Page 62

List of References

Bibliography
The following table gives an alphabetically sorted list of the books and articles referenced in
the dissertation. Most of the references were directly used during the thesis project work.

[Boo94] Booch G. (1994), ‘Object-oriented analysis and design with applications’ (2nd
edition): Benjamin/Cummings. ISBN 0-8053-5340-2

[BS5750] BS 5750 part 13 (ISO 9000-3): British Standards Institute 1991
[Gra93] McGrath, F. (1993), ‘Checklist for Buyers of ICASE Products’, IEEE Software,

November 1993, pp.108–110
[Hum89] Humprey, W. (1989), ‘Managing the Software Process’: Addison-Wesley 1989
[Joh88] R.E.Johnson, B.Foote (1988), ‘Designing Reusable Classes’, Journal of Object

Oriented Programming, June/July 1988, pp.22–35
[Kel94] Kelly, P. (1994), ‘CASE Workbook’: lecture notes, Department of Computing,

University of Northumbria
[Kem92] Kemerer, C.F. (1992), ‘How the Learning Curve Affects CASE Tool

Adoption’, IEEE Software, May 1992, pp.23–28
[Mey88] Meyer, B. (1988), ‘Object-oriented Software Construction’: Prentice Hall

International
[Pau93] Paulk, M, et al. (1993), ‘Capability Maturity Model for Software, Version 1.1’:

Software Engineering Institute, Carnegie Mellon University
[Pre92] Pressman, R. S. (1992), ‘Software Engineering: A Practitioner’s Approach’ (3rd

edition): McGraw-Hill. ISBN 0-07-707936-1
[Rum91] Rumbaugh, J. et al. (1991), ‘Object-oriented analysis and design’: Prentice-

Hall. ISBN 0-13-629841-9

Applicable Technical Documentation
The table below lists all relevant technical documents produced by EASAMS Ltd. or GEC-
Marconi In-Flight Systems Ltd. which were used for the thesis project work. The documents
are copyrighted by the respective companies and are not publicly available.

[Airline A] Marketing Specification for Passenger Application
Application Requirement Specification For The GMIS 2700IK Inflight System
Video Channel Map Description (technical note)
GMIS Network API for the Cabin System Control Panel and Attendant Workstations
Software Design and Control Procedures
System Software Specification Annex F: SPM Application Programming Interface
[Airline A] In-Flight Entertainment Applications: Level 2 Design
In-Flight Entertainment Applications: Software Development Framework Document

The following internal documentation was produced for EASAMS Ltd. during the project
work.

List of References Page 63

Page 63

[Airline B] IFE Applications: Passenger Application BOOD Analysis
[Airline B] IFE Applications: Passenger Application BOOD Architectural Design
[Airline B] IFE Applications: Passenger Application Level 2 BOOD Design
IFE Applications: Reuse in Passenger Application BOOD Design

Project Diary Page 64

Page 64

Project Diary

The table below shows the major milestones in the master’s thesis project, the dates for
which their completion was planned, and the dates when they were completed in reality.

Stage Date planned Date completed

Background reading 14. 7. 14. 7.
IFES analysis 31. 7. 4. 8.
Architectural design 10. 8. 18. 8.
Detailed design 30. 8. 5. 9.
Tools and Reuse evaluation 8. 9. 15. 9.
Dissertation document 22. 9. 27. 9.

Appendix A: Analysis Scenarios Page 65

Page 65

Appendix A: Analysis Scenarios

This appendix contains the scenario diagrams produced by the IFES Passenger Application
system analysis which is described in chapter IFES Design. As is noted there, it was not
feasible to include all the scenarios from the original design documentation; the diagrams
presented here are selected examples. Refer to chapters BOOD Methodology and IFES
Design for more information about the scenario diagrams.

The diagrams show how the key components of the system would interact to achieve the
behaviour defined by the respective function points. At this stage (analysis) the names of the
classes, objects and their operations used in the diagrams are in a free text form, as the main
concern are the mechanisms rather than precise class interfaces.

The scenarios show logical rather than physical sources and handlers of events: for example
in Scenario 4: Browsing Service Menus the ‘Left’, ‘OK’, etc. messages can come from the
touch screen or handset key presses, and would be transformed by the appropriate button
objects to these high-level events. Also for this reason the handset and the touch screen
classes have been grouped into a single “input” object in most of the diagrams.

A.1 Scanning Video Channels
This scenario shows how the channel scanning after the handset ‘Scan’ button press would be
done.

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

video
service

handsetaudio
service

input

scan channels
channel scan

determine next channel

switch to channel

determine audio channel

switch to channel
display channel number

timeout
Goto <<A>> .

<<A>>

Depends on
language etc.

This is the operation
entry point.

Scenario 1: Scanning Video Channels

Appendix A: Analysis Scenarios Page 66

Page 66

A.2 Switch between Audio and Video
This scenario shows how the IFES would switch from the currently playing audio programme
to the video programme played last.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

input audio video handsetIFES

video-audio switch

stop playing

play default channel

switch to channel

display channel number

This tells audio service to

remember current channel.

Scenario 2: Switch between Audio and Video Programmes

A.3 Payment for a Selected Game
This scenario shows an outline of the payment actions after a purchasable game has been
selected.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AA
AA
AA
AA

games

service

payment

system

input interface

classes

database[Selected 'OK' in

game preview or

info page.]

check payment

pay sequence

prompt user for method

prompt user to swipe

select method

credit card data

check if OK

Let's say credit

card is OK.

confirm payment pop-up

start game

Gives current

state and game

info to

'payment'.

Loads executable

and starts playing

game.

record payment

Involves

checking list of

cards etc.

check credit card data

return result

Scenario 3: Payment for the Selected Game

Appendix A: Analysis Scenarios Page 67

Page 67

A.4 Browsing Service Menus
This scenario shows how the user interface and CPassApp objects cooperate when the user
browses through the application menu contents.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

input IFESmenu

system

database/

other object

applicationinterface

classes[In main menu
somewhere]

Left, Right
change service

get list of categories

display list

Up, Down
scroll list

OK
selected category

get list of items

display list

Up, Down

scroll list

OK
selected item

run appl

get executable
run

Left, Right arrows scroll
between services, list of new

service's categories is

Up, Down arrows scroll in the

list of categories.

OK selects current category, a
list of its items is displayed (if

such a list exists; if not, go to
<<A>>).

<<A>> OK selects the current

item, the service application is
launched and the ctxt of category

and item is passed to it as

The appriate executable is fetched

from the application database and
executed. The system services
(audio service, etc.) have 'run' as

entry point as well.

execute menu

execute menu

determine service

return list of categories

return list of items

display service icon and title

Scenario 4: Browsing Service Menus

Appendix A: Analysis Scenarios Page 68

Page 68

A.5 Playing the Selected Video Programme
This scenario shows the sequence of actions within the application after a video programme
has been selected for watching from the menu.
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

IFES video

service

audio

service

interface

classes

database handsetinput

preview selected

[Video programme (movie)
has been selected from
menu.]

gives context and

programme id.

request programme info

return programme info

request preview graphics

return preview graphics

build screen

display screen

OK

This is the Movie

Preview Screen

(Fig16, p86 AFS).

check payment

Puts the video on

the screen.

determine soundtrack
Soundtrack depends on

selected / default

language and available

soundtracks for the

programme.Puts appropriate

audio soundtrack to

headphones.

This is 'play selected'

entry point. All the

following operations are

within the 'play selected'.

(play selected)

switch to channel

switch to channel

display channel number

Scenario 5: Playing the Selected Video Programme

Appendix B: Analysis Data Dictionary Page 69

Page 69

Appendix B: Analysis Data Dictionary

This appendix contains a part of the IFES Passenger Application analysis data dictionary. It
was not possible to include the whole data dictionary developed during the project work into
this dissertation and the following table presents a sample of its analysis version. The classes
which it includes are in some ways characteristic of the rest of the classes, and should be a
good illustration of both the data dictionary format and contents, and of the system key
abstractions.

The dictionary contains the following characteristics of each potential class:

• its name, at the analysis stage in a rather free-text form;
• a general characteristic of the class and a description of its responsibilities;
• a list of its emerging attributes and methods (they are not distinguished at this stage

because that is largely an implementation decision made during class design);
• a lists of its collaborators which will be used during design to place the classes in the

inheritance lattice and to clarify their run-time relationships;
• the method by which the class was identified within the system;
• general comments as appropriate.

Class Description,
Responsibilities

Operations,
Attributes

Collaborators Method Notes

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

audio
programme

kind of
‘programme’ with
associated
channel

[programme +]
channel

needs
elabora
tion;
analysi
s phase,

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AA
AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

audio
service

responsible for
playing audio
programmes, and
video
soundtracks
mapped on audio
channels.

[service application
+]
play [selected] audio
(and display its
screen)
switch to [given]
audio channel
play default channel
stop playing (store
state)
channel scan
display programme
graphics

audio
controller,
input, menu,
graphic menu,

domain

AA

AAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAA

button interface class, in
dialogue boxes
etc.

? ? domain

Appendix B: Analysis Data Dictionary Page 70

Page 70

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

catalogue maintains list of
item descriptions
and associated
info

provide list of items
provide first item
provide last item
provide number of
items
provide item of
[given] number

catalogue
shopping,
menu, graphic
menu,
database,

domain

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

catalogue
item

provides
information about
the piece of
goods

name
description text
price
promotional graphics
number on stock
available options in
given category (e.g.
colours).
shipping address
read data

catalogue,
graphic menu,
menu system

discover
y

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

catalogue
shopping

service running
shopping choice
and purchasing,
dealing with
payments

purchase sequence
run (=application
entry point)
review purchases
modify purchases
delete purchases
stop shopping
(=pause for
announcement)

input (?),
catalogue,
order,
database,
interface
classes

domain

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

context identifies present
state of the
system

current service
current category
current item

IFES, help
system

scenario maybe
‘invisib
le’ in
IFES.

AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

currency used in cash
transactions, item
price display

name
symbol
exchange rate

catalogue
item,
programme,
payment
system

domain

Appendix B: Analysis Data Dictionary Page 71

Page 71

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

database provides
necessary
database access
at the seat
platform
(configuration and
application
database blended
together with file
access)

return list of services
return list of
categories for a
service
return list of items in
a category
return item
information (title,
play time, ...)
return item graphics
return help pages
text
check credit card
data
record catalogue
order
record PVP tape
order
return list of ordered
goods for a
passenger
record payment
cancel order
return
application/game
executable

order,
catalogue,
audio service,
video service,
information
browser, IFES,
payment

domain

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

display
control

controls
LCD/CRT display
output quailty

change brightness,
...
get brightness, ...
get attributes
change attributes

overlay discover
y

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AA
AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A

game
application

the game
executable with
its service points

run (=entry point)
demo
pause
resume

games
service, menu,
IFES

discover

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

graphic
menu

handles
picture+text
based item
information
browsing for
audio, catal. etc.

determine
next/previous item
display menu item
browse [with start
item]

audio service,
video service,
games
service,
catalogue
shopping

inventio
n

AA

AAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAA

help system ctxt sensitive text
oriented pages
? kind of info
browser ?

determine prev/next
page
show help pages [for
current context]

audio service,
video service,
games
service,
catalogue
shopping,
menu,

domain

Appendix B: Analysis Data Dictionary Page 72

Page 72

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

IFES The whole
system. runs
appropriate
services
depending on
menu choices,
manages
announcements
and config.

make announcement
determine next/prev
service
run application
refresh screen
startup (=entry point)
shutdown

audio
service,video
service,
catalogue
shopping,
games
service,
network
messages,
interface
classes,
database,
menu, overlay

domain

AA

A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A

info browser (hypertext?)
browsing service

show first page
show next page
show previous page

IFES, menu,
help system

domain

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

payment
system

deals with user
payments, shared
among services

pay sequence
check credit card OK

database,
audio service,
video service,
catalogue
shopping,
games
service,
interface
classes

system

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

programme one piece of
audio or video
entertainment of
specified
duration; provides
info about it.
maybe ‘kind of’
item

title
description
duration
artists
price (for watching
etc.)
graphics

<no direct
collaborators,
will be generic
class>

invent

AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

video
programme

kind of
programme with
associated
soundtracks and
video channel

[generic programme
+]
video channel
number
list of soundtrack
languages+channels

video service,
database

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

video
service

selection, viewing
(mapping from
title to channel),
and payment for
video
programmes

[service
application+]
preview selected
movie
play selected movie
play default channel
switch to [given]
channel
stop playing
channel scan
determine audio
channel for
soundtrack

IFES, menu,
audio service,
help

domain

Appendix C: Design Scenarios Page 73

Page 73

Appendix C: Design Scenarios

This appendix contains the scenarios used during the IFES Passenger Application design to
explore the functional mechanisms and class implementations. Refer to the chapter IFES
Design for more information and for the context of these scenarios.

C.1 Playing a Video Programme
This scenario shows how the video programme selected from the menu is played. The
scenario is sufficiently simple to be described by an object diagram.
AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

:CVideoSystem

:CPassApp

:CVideo

:CContext

:CChannelCtrl:CPaymentSystem

1:ItemWithID(pItem->ID)

2:("Activate")

3:PaySequence(this)
4:SwitchToVideo(channel)

5:UpdateActiveItem(this)
Initial state: a menu returned
"Item selected" with pItem as
parameter.

Scenario 6: Playing a Video Programme

Comments: thePassApp checks with theVideoSystem if the selected item is
currently available on one of the video channels. The scenario assumes this is true, and
proceeds by activating the video programme object returned. The PaySequence()
method is not invoked in case the programme is free, complimentary, or has already been
paid for; the CVideo object carries all the necessary information to check this (see the class
specification).

C.2 Switching between Video and Audio
This scenario is based on the co-operation with the hardware platform which performs the
actual switch from video to audio channel output. A message is then sent to the application
informing it about the change; the following pseudocode shows how the necessary
consequent checks could be performed within thePassApp object.

result = theContext.ActiveItem(programmePlayingNow);
AAA

A
A
A
A

A
A
A
A

// `result’ should be SUCCESS and the parameter return value valid
A
A
A
A

A
A
A
A

because the
A
A
A

A
A
A

// switch can only occur when in audio or video mode. the returned
A
A
A
A

A
A
A
A

programme
A
A
A

A
A
A

// playing now is in fact the one before the switch occured.
A
A
A
A

A
A
A
A

AA
A
A
A

A
A
A
A

Appendix C: Design Scenarios Page 74

Page 74

// we need to get the programme item that is to be played, it will be
AAA

A
A
A
A

A
A
A
A

// of ‘the other’ type than the one before the a/v switch.
A
A
A
A

A
A
A
A

if (progPlayingNow.Type() == video)
A
A
A

A
A
A

then
A
A
A
A

A
A
A
A

 aPayItem = (CPayItem&) theAudioSystem.CurrentItem();
A
A
A
A

A
A
A
A

 // this is the audio that has been switched to because
A
A
A

A
A
A

 // it was the last one playing; theAudioSystem can either take
A
A
A
A

A
A
A
A

 // the value from its attributes directly or ask the CChannelCtrl
A
A
A
A

A
A
A
A

about the
A
A
A

A
A
A

 // current channel and [safely] return the associated programme
A
A
A
A

A
A
A
A

item.
A
A
A

A
A
A

else
A
A
A
A

A
A
A
A

 aPaytItem = (CPayItem&) theVideoSystem.CurrentItem();
A
A
A
A

A
A
A
A

end if;
A
A
A

A
A
A

A
A
A
A

A
A
A
A

// The checks should be the same for both audio and video items,
A
A
A
A

A
A
A
A

therefore
A
A
A

A
A
A

// we can use CPayItem and assign it the proper value.
A
A
A
A

A
A
A
A

// Purchase is the main reason why playing the programme could be
A
A
A

A
A
A

abandoned.
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

if (aPayItem.PurchaseNeeded())
A
A
A

A
A
A

then
A
A
A
A

A
A
A
A

 // item has to be purchased before it can be activated
A
A
A
A

A
A
A
A

 result = aPayItem.Purchase();
A
A
A

A
A
A

else
A
A
A
A

A
A
A
A

 result = SUCCESS;
A
A
A

A
A
A

end if;
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

// The programme is either free/complimentary/purchased, or cannot be
A
A
A

A
A
A

played
A
A
A
A

A
A
A
A

if (result == SUCCESS)
A
A
A
A

A
A
A
A

then
A
A
A

A
A
A

 generate “Stop” event for the ‘programmePlayingNow’
A
A
A
A

A
A
A
A

 // the now abandoned programme needs to be told that the hardware
A
A
A

A
A
A

does
A
A
A
A

A
A
A
A

 // not play it any more.
A
A
A
A

A
A
A
A

 generate “Activate” event for the ‘aPayItem’ object
A
A
A

A
A
A

 // processing will update both context and appropriate CXxxSystem
A
A
A
A

A
A
A
A

objects.
A
A
A
A

A
A
A
A

else
A
A
A

A
A
A

 generate “Activate” event for the ‘programmePlayingNow’ object
A
A
A
A

A
A
A
A

 // this will switch back to the previous programme because the new
A
A
A

A
A
A

one
A
A
A
A

A
A
A
A

 // cannot be played, effectively overriding the hardware action.
A
A
A
A

A
A
A
A

end if;
AA
A
A
A

A
A
A
A

Scenario 7: Switching between Video and Audio Programmes

C.3 Activating the Context Help
The starting state is in a list or graphic menu with a video item selected. The outline of
actions during help activation are shown in the following object diagram:

Appendix C: Design Scenarios Page 75

Page 75

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAA

:CPassApp

:CHelpSystem

:CContext

:CInfoBrowser

:CDatabase

1:("Activate")

2:GetActiveItem()
3:GetHelpPages(aItem.ID)

5:Init(help_text)

4:GetFacilityHelpPages(aItem.Type())
aItem

6:Activate()

6:Build(help_text)

help_text

Scenario 8: Activating the Context Help

C.4 Going to a Previous Menu Level
This is a secondary scenario that complements the exploration of the menu functions set up in
the appropriate scenario (not included in this thesis).

1. The ‘Back’ button is selected; the appropriate CButton object generates a “Back button
AAA

A
A
A
A
A

A
A
A
A
A

pressed” event for thePassApp.
A
A
A
A
A
A

A
A
A
A
A
A

2. thePassApp processes the event
A
A
A
A
A

A
A
A
A
A

 if (menuSelections.Size() > 1) then
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

 // the current menu is not the top level so backtracking is
A
A
A

A
A
A

possible
A
A
A
A

A
A
A
A

 menuSelections.Pop(); // removes the current level from
A
A
A
A

A
A
A
A

the stack
A
A
A

A
A
A

 pItem = menuSelections.Top(); // gets the current item for
A
A
A
A

A
A
A
A

further checks
A
A
A

A
A
A

A
A
A
A

A
A
A
A

 if (pItem->Level() does not match the active menu type) then
A
A
A
A

A
A
A
A

 // e.g. the new item is a category which has a list menu
A
A
A

A
A
A

associated,
A
A
A
A

A
A
A
A

 // but the current menu is the graphic menu
A
A
A
A

A
A
A
A

 generate “Close” event for the current menu;
A
A
A

A
A
A

 generate “Activate” event for the menu to become the current
A
A
A
A

A
A
A
A

one;
A
A
A

A
A
A

 end if
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

 theMenuContents.Free(); // destroys the current list of
A
A
A

A
A
A

menu items
A
A
A
A

A
A
A
A

 BuildMenu(pItem->ID()); // and builds the one for the level up
A
A
A
A

A
A
A
A

 generate “Update” event for the current menu with refence to
A
A
A

A
A
A

theMenuContents
A
A
A
A

A
A
A
A

 as parameter;
A
A
A

A
A
A

A
A
A
A

A
A
A
A

 else
A
A
A
A

A
A
A
A

 // nothing happens
A
A
A

A
A
A

 end if
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

3. the appropriate CMenu object processes the “Update” event
A
A
A
A
A
A

A
A
A
A
A
A

 contents = (CRing<CItem&>&) aEvent.param;
A
A
A

A
A
A

 current = contents.First();
A
A
A
A

A
A
A
A

 Draw();
AA
A
A
A

A
A
A
A

Scenario 9: Going to a Previous Menu Level

Appendix D: Level 2 Class Specifications Page 76

Page 76

Appendix D: Level 2 Class Specifications

This appendix lists the source code of the IFES Passenger Application class declarations
developed in the Level 2 desing. The project work involved specification of all classes
related to the video functionality; only the important ones were selected for the purpose of
this thesis.

The base source code was produced by the Domain CASE tool from the design specification.
It was then formatted and completed by adding vital information not included by the
automatic generation, e.g. specification of inheritance.

The class declarations that follow are grouped by the class categories in the order in which
these are given in the IFES Design. See this chapter for more descriptions and explanations
of the class functionality.

D.1 PassApp
//
//
// CLASS : CPassApp
//
//
/*
RESPONSIBILITIES :
Passenger (seat-box) application driver
*/

class CPassApp{
public:

 /* power up initialisations, among others network and event
registration and
 displaying the introductory screens.
 returns Success if initialisation is OK, Failure if any
problem occurs*/
 TResult StartUp();
 /* performs clean up actions on application shut down*/
 TResult ShutDown();
 /* processes MS-Windows event messages sent to the object*/
 EventHandler();
 /* the main programme, starts the passenger application*/
 WinMain();
 /* system context*/
 Ccontext theContext;

protected:
 /* builds the list of service menu items from database values*/
 TResult BuildServiceMenu();
 /* builds the list of list/graphic menu items that form the
contents
 of the menu with ID given by the parameter. This mechanism
allows
 building nested menu structures.*/
 TResult BuildMenu(TItemID);

Appendix D: Level 2 Class Specifications Page 77

Page 77

 /* sequence of items selected via menus during the passenger
interactions,
 is used for backtracking by the Back button.*/
 CStack<CItem&> menuSelections;
 /* list of items that are contents of the service menu; is built
by the
 BuildServiceMenu method.*/
 CRing<CServiceItem&>;
 /* list of items of the current list or graphic menu; is built by
the
 BuildMenu method.*/
 CRing<CItem&>;

private:
 /* creates and inits the given topic’s item. the basic
information is taken
 from the parameter values, and the proper class instance is
created
 based on the ‘type’ value. the created item is told to
initialise the
 rest of its data from the database.
 returns a reference to the created item.*/
 CItem& CreateItem(TItemData*);
 /* creates and initialises all the screen objects it owns (menus,
buttons)*/
 TResult StartUpGUI();

 /* passenger application window; the class will also contain
other user inter-
 face objects like the Back and Off buttons.*/
 CWindow myWindow;

};

D.2 Item Collections
//
//
// CLASS : CItemCollection
//
//
/*
RESPONSIBILITIES :
base class for classes collecting purchased items or listing all
available channel programs;
an abstract class
*/

class CItemCollection{
public:
 /* initialisation, redefined in subclasses for specific
functionality*/
 virtual TResult Init() = 0;
 /* return next item in collection, 'next' determined from
previous
 manipulations*/
 CItem& NextItem();
 /* returns previous item from collection, 'previous' determined
from
 manipulations before this call*/
 CItem& PrevItem();
 /* returns reference to the list of items held*/
 CList<CItem&>& ItemsList();
 /* returns TRUE if item with given ID is in the system's
collection, FALSE
 otherwise*/
 Boolean IsItemAvailable(TItemID);
 /* returns item of the given ID from the collection*/
 CItem& ItemWithID(TItemID);
 /* returns reference to the item which was last

Appendix D: Level 2 Class Specifications Page 78

Page 78

accessed/manipulated*/
 CItem& CurrentItem();
 /* class interface template for updating the collection
contents*/
 virtual TResult Update() = 0;
protected:
 CList<CItem&> itemList;
 CItem& current;
};

//
//
// CLASS : CVideoSystem
//
//
/*
RESPONSIBILITIES :
maintains list of currently played video programmes on all channels
*/

class CVideoSystem : public CItemCollection {
public:
 /* redefined to build the list of video programmes from database
information*/
 virtual TResult Init();
 /* rebuilds the list based on a new enquiry to the database*/
 virtual TResult Update();
 /* starts video channel scan*/
 void Scan();
private:
 /* switches to next channel in scanning*/
 void ScanNext();
};

//
//
// CLASS : CPaymentSystem
//
//
/*
RESPONSIBILITIES :
provides a uniform interface for purchase support operations to all
classes that need it.
*/

class CPaymentSystem : CItemCollection {
public:
 /* runs purchase sequence for the given item. interacts with
user interface
 objects and devices as necessary.*/
 TResult PurchaseSeq(CPayItem&);
 /* redefined, initialises the list*/
 virtual TResult Init();
 /* redefined update to ???*/
 virtual TResult Update();
};

D.3 Browsers
//
//
// CLASS : CInfoBrowser
//
//
/*
RESPONSIBILITIES :
defines data and operations that allow browsing info pages which are
described by RTF token lists. With respect to information browser

Appendix D: Level 2 Class Specifications Page 79

Page 79

items it is basically in the position of a device that carries the
item’s function.
*/

class CInfoBrowser{

public:
 /* displays the next page of text; returns Fail if on it
already*/
 TResult PageNext();
 /* displays previous page of text, returns Fail if on it
already*/
 TResult PagePrev();
 /* called at the end of browsing session, releases the list of
RTF strings*/
 TResult Close();
 /* displays the info pages text*/
 TResult Activate();
 /* displays current info page*/
 void Draw();
 /* redefined; reads text blob of RTF tokens (determined by the
given ID) from
 database and converts it to RTF strings. sets first string as
current*/
 TResult Init(TItemID);
 /* specific to CInfoBrowser; blob of text which contains RTF
tokens
 is given as parameter. sets first string as current.*/
 TResult Init(char*);
protected:
 Boolean fullscreen; // DEFAULT VALUE : FALSE
 CList<CTokenRTF> tokens;
private:
 int current;
 /* extracts the RTF token strings from the raw text*/
 CList<CTokenRTF> BuildRTF(char*);
 /* the window which displays the text*/
 CWindow* myWindow;
};

D.4 ServiceItems
//
//
// CLASS : CItem
//
//
/*
RESPONSIBILITIES :
contains basic information about a service topic, and defines the
interface for all items to perform the function associated with them.
*/

class CItem : public CListItem {

public:
 /* activates the item’s function;
 empty skeleton to be redefined in each child class as needed,
provides
 common interface that can be used in CPassApp for polymorphic
calls*/
 virtual TResult Activate() = {};
 /* reads item's data from the database; to be redefined in
subclasses
 to read all the data required. in order to reduce network
traffic and
 database access, this method should be only redefined in the
leaf classes
 to read the complete data structure for the item*/

Appendix D: Level 2 Class Specifications Page 80

Page 80

 virtual TResult Init();
 /* indicates whether the item is performing its function at the
moment;
 returns value of the attribute*/
 Boolean Active();

protected:
 char[] name;
 char* picture;
 char* description;
 TItemType type;
 TLevel level;
 TItemID ID;
 CContext* theContext;
 Boolean active;
};

//
//
// CLASS : CPayItem
//
//
/*
RESPONSIBILITIES :
defines the data and operations for all items that can be purchased.
an abstract class.
*/

class CPayItem : public CItem {

public:
 /* perform the item purchase via CPaymentSystem*/
 virtual TResult Purchase() = 0;
 /* returns TRUE if a purchase is needed before it can be
activated,
 FALSE if the item is free, made complimentary, or has been
paid for*/
 Boolean PurchaseNeeded();
 /* Registers that it has been purchased*/
 void RegisterPurchase(TPaymentID);

protected:
 float price;
 Bool charged; // DEFAULT VALUE : FALSE
 Bool paid; // DEFAULT VALUE : FALSE
 TPaymentID paymentID;
};

//
//
// CLASS : CProgramme
//
//
/*
RESPONSIBILITIES :
defines data and operations common for audio and video programmes;
an abstract class.
*/

class CProgramme : public CPayItem{
protected:
 int channel; // logical channel number
 TTime startTime;
 TTime duration;
};

//
//
// CLASS : CVideo
//

Appendix D: Level 2 Class Specifications Page 81

Page 81

//
/*
RESPONSIBILITIES :
defines data and operations of a video programme item that can show
itself on the screen
*/

class CVideo : public CProgramme {
public:
 /* redefined method, starts playing the video and informs the
context*/
 TResult Activate();
 /* processes event messages sent to the object*/
 EventHandler();
 /* gets its data from the database */
 virtual TResult Init();
protected:
 TSoundtrack[] soundtracks; // array of all available
language versions of
 // the video; ‘channel’ is the current
one
};

//
//
// CLASS : CAudio
//
//
/*
RESPONSIBILITIES :
defines data and functionality of an audio programme with the
associated audio highlights
*/

class CAudio : public CProgramme {
public:
 /* redefined to start playing the programme and display the audio
highlights*/
 virtual TResult Activate();
 /* gets its data from the database, instantiates and/or
initialises its info
 browser object*/
 virtual TResult Init();
protected:
 TItemID infoPages; // ID of the associated info page sequence;
used by
 audioHighlights* CBrowserItem; // this item for initialisation
};

D.5 MenuSystem
//
//
// CLASS : CMenu
//
//
/*
RESPONSIBILITIES :
establishes generic menu functionality,
the services, list, graphic and purchase menu are all derived from
this class.
an abstract class
*/

class CMenu : public CView {
public:
 /* initialises the value of list of items from the parameter*/
 TResult Init(CList<CItem> *);

Appendix D: Level 2 Class Specifications Page 82

Page 82

 /* draws the menu on screen; pure virtual*/
 virtual void Draw() = 0;
protected:
 CList<CItem>* contents;
 CItem& current;
 CButton* buttonPreviousItem;
 CButton* buttonNextItem;
};

D.6 Database
//
//
// CLASS : CDatabase
//
//
/*
RESPONSIBILITIES :
provides interface to the application database and access operations
that support higher-level class operations.
*/

class CDatabase{
public:
 /* checks with the application database if given credit card data
are valid
 for purchase and order operations
 returns Success if the data is valid, Failure otherwise*/
 TResult CheckCreditCard(TCreditCardData*);
 /* returns (via parameter) all data pertinent to a video service
item
 determined by the given ID. clients are responsible for
freeing the memory
 allocated to the data.
 returns Failure if the given ID has no data associated in the
database*/
 TResult GetVideoData(TItemID,TVideoData*);
 /* returns (via parameter) data pertinent to the audio service
item
 determined by the parameter ID. it is caller's responsibility
to free the
 memory allocated for the data.
 returns Failure if the given ID has no data associated in the
database */
 TResult GetAudioData(TItemID,TAudioData*);
 /* commits the purchase of the given item to the database.
 if successful, the parameter value is set to the transaction
ID and the
 return value is Success,
 otherwise returns Failure and the parameter value is
undefined*/
 TResult RegisterPurchase(CPayItem&);
 /* returns (via parameter) list of data structures with
information about
 all services as used with the service menu. clients are
responsible for
 freeing the list.*/
 TResult GetServiceData(CList<TServiceData>*);
 /* returns (via parameter) list of items that constitute the menu
of given ID.
 the first item is the default one. clients are responsible
for freeing the
 list.*/
 TResult GetMenuContents(TItemID,CList<CItem> *);
 /* returns (via parameter) the list of audio data for audio
programmes
 currently playing on all channels. clients are responsible for
freeing
 the list.*/

Appendix D: Level 2 Class Specifications Page 83

Page 83

 TResult GetCurrentAudios(CList<TAudioData> *);
 /* returns (via parameter) list of video data structures for all
video
 programmes currently playing on all channels. clients are
responsible for
 freeing the list.*/
 TResult GetCurrentVideos(CList<TVideoData> *);
 /* initialises the class instance--connects to the application
database (?)
 returns Failure if the initialisation was unsuccessful */
 TResult Init();
 /* returns (via parameter) text of help pages for item of the
given ID.
 clients are responsible for freeing the memory allocated for
the text*/
 TResult GetHelpText(TItemID,char*);
 /* returns (via parameter) text of help pages for the IFES
Passenger
 application, top level.
 clients are responsible for freeing the memory allocated for
the text */
 TResult GetSystemHelpText(char*);
 /* returns via parameter the help text of the given facility
(video etc).
 clients are responsible for freeing the memory allocated for
the text */
 TResult GetFacilityHelpText(TFacility, char*);

private:
 /* the database cache is contained here*/
 CCacheManager cache;
};

//
//
// CLASS : CCacheManager
//
//
/*
RESPONSIBILITIES :
caches raw data for the database. is not used by or visible to any
other part of the system.
*/

class CCacheManager{

public:
 /* returns TRUE if data with the given ID are stored in the
cache,
 FALSE otherwise*/
 Boolean CheckCache(TItemID);
 /* stores the given data (ID, size, data) in the cache*/
 TResult AddData(TItemID,unsigned int,BYTE*);
 /* removes data for the given item from the cache pool and frees
the memory
 allocated to the data structure
 returns Success if operation was OK,
 Failure if the item of given ID was not in the cache*/
 TResult RemoveItem(TItemID);
 /* removes some items from the pool using a LRU algorithm, frees
the memory
 allocated for them. will need an age threshold from
somewhere*/
 TResult Sweep();
 /* initialises the cache pool, allocates memory for it (parameter
gives pool
 size, should have a default value TBD)*/
 TResult Init(int);
 /* closes the cache manager, frees the cached data and the memory
pool*/

Appendix D: Level 2 Class Specifications Page 84

Page 84

 TResult Close();

private:
 CArray<TCacheItem> contents;
};

D.7 Devices
//
//
// CLASS : CHandset
//
//
/*
RESPONSIBILITIES :
reads credit card data, displays number on the handset display
*/

class CHandset{
public:
 /* displays given [channel] number on the handset 7 segment
panel*/
 TResult DisplayNumber(int);
 /* enables reading credit card data*/
 void EnableCardSwipe();
 /* disables reading credit card data*/
 void DisableCardSwipe();
 /* returns value of the attribute*/
 Boolean IsSwipeEnabled();
 /* initialises the handset data*/
 TResult Init();
protected:
 int numberShown;
 Boolean swipeEnabled;
};

//
//
// CLASS : CChannelCtrl
//
//
/*
RESPONSIBILITIES :
controls switching to given audio and video channels
*/

class CChannelCtrl{
public:
 /* switches to given channel*/
 SwitchToAudio(number);
 /* switches video output to given channel*/
 SwitchToVideo(number, window_coordinates);
 /* cycles through video channels*/
 ScanVideo();
 /* returns default logical audio channel (taken from HW)*/
 int DefaultAudio();
 /* returns default logical video channel number (taken from HW)*/
 int DefaultVideo();
protected:
 TVideoChanMap mapVideo;
 TAudioChanMap mapAudio;
};

